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ABSTRACT

Reputation and Bounded Memory in Repeated Games with Incomplete

Information

Daniel Monte

2007

This dissertation is a study of bounded memory and reputation in games. In the �rst

chapter we show that the optimal use of a �nite memory may induce inertia and infrequent

updating on a player�s behavior, sometimes for strategic reasons. The setting is a repeated

cheap-talk game with incomplete information on the sender�s type. The receiver has only a

�xed number of memory states available. He knows that he is forgetful and his strategy is

to choose an action rule, which is a map from each memory state to the set of actions, and

a transition rule from state to state. Unlike in most models of bounded memory, we view

memory as a conscious process: in equilibrium strategies must be consistent with beliefs.

First, we show that the equilibrium transition rule will be monotonic. Second, we show that

when memory constraints are severe, the player�s transition rule will involve randomization

before he reaches the extreme states. In a game, randomization has two interpretations: it

is used as a memory-saving device and as a screening device (to test the opponent before

updating).

The second chapter shows that bounded memory with sequential rationality constraints

can explain long-run reputation even in the case of parties with opposite interests. Memory

is modeled as a �nite set of states. The strategy of the player is an action rule, which is



a map from memory to actions, and a transition rule from state to state. In equilibrium,

strategies and beliefs must be consistent. The setting is an in�nitely repeated game with

one-sided incomplete information. The informed player is either a zero-sum normal type

or a commitment type playing a mixed strategy. Under full memory, types are revealed

asymptotically. Bounded memory in the form of a �nite automata cannot, by itself, explain

long-run reputations, as we show in the paper. However, if memory is modeled as a conscious

process with sequential rationality constraints, then long-run reputation will be sustained

in any Markovian equilibrium.

In the third chapter we study a repeated adverse selection model in which the best

contract for the principal is to reproduce the outcome with sequential rationality constraints.

The model suggests that contracting will only have an impact when the adverse selection

problem is less severe.



c
 2007 by Daniel Monte

All rights reserved.



Acknowledgments

I am grateful to my dissertation committee: Dirk Bergemann, Stephen Morris and
Ben Polak. I am also thankful for conversations with Attila Ambrus, Eduardo Faingold,
Hanming Fang, John Geanakoplos, Itzhak Gilboa, Ehud Kalai, Pei-yu Lo, George Mailath,
Wolfgang Pesendorfer, Maher Said, Lones Smith, Peter Sorensen and Joel Watson.



Chapter 1

Introduction

We study the implications of bounded memory in games. A typical assumption in economics

is that people have a perfect memory. In models of long-term relationships, players condition

their strategies on the entire history of the game, irrespective of how long and complicated

that history may be. Yet, in reality, most people forget things. They categorize. They often

ignore information and their updating may be infrequent. We study a model of bounded

memory that captures these features.

Throughout this dissertation, memory is modeled as a �nite set of states. All the agent

knows about the history of the game is her current memory state. The player�s strategy is

to choose an action rule, which is a map from each memory state to the set of actions, and

a transition rule from state to state. First, we characterize the equilibrium memory rule in

a reputation game and show that it may induce inertia and infrequent updating, sometimes

for strategic reasons. Second, we show that in a long-term relationship, learning (or type

separation) is never complete, in contrast to recent results in reputation games.

We view both action choice and updating rule as a conscious process, unlike the literature

1
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on �nite automata that assumes commitment to the ex-ante strategy. Therefore, the player

in our model is subject to sequential rationality constraints. The action chosen at each state

must be optimal given the beliefs at that state. And, the transition rule from each state must

be optimal given the beliefs at that memory state and taking as given the strategy� both

action and transition rules� at all her states. The reason for taking the strategy at all states

as given when deciding on an action or on which state to move is that if an agent deviates

today, she will not remember it tomorrow. This idea of sequential rationality constraints in

bounded memory comes from Piccione and Rubinstein (1997) and Wilson (2003), but these

authors studied single-person decision problems. Here we study games, where the inability

to commit matters.

In the �rst chapter, "Reputation and Bounded Memory", we focus on reputation games,

where one player is trying to learn her opponent�s type (for example, repeated games with

incomplete information). In these games memory plays a central role, since remembering

the exact history of the game is important for learning. The setting is a repeated zero-sum

game with two players, one of whom has bounded memory. She faces a player who, with

some exogenous prior probability, is committed to a pure strategy. This game is based

on Sobel�s (1985) credible advice model, in which a policy maker is uncertain about her

adviser�s preferences.

We characterize the equilibrium action and updating rule in this game. We show that

the bounded memory player must have beliefs about her opponent�s type that are one and

zero in her two �extreme�memory states. The transition rule from state to state must

satisfy a weak monotonicity property; hence, the resulting endogenous updating rule will
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resemble Bayesian updating whenever possible.

When the number of memory states is not �large enough,�the player will use random-

ization in her transition rule before reaching the extreme states. After a signal, the player

randomizes between updating and remaining on the same state. This leads to infrequent

updating and �inertia�on the player�s behavior. Similar to single-person games, random-

ization can be interpreted as a memory-saving device: with no capacity to store all the

informative signals, the player optimally decides to discard some of them. However, we

show that, in games, there is an additional strategic role for randomization. It is used as a

screening device: the player is �testing�the opponent before updating.

The second chapter, "Bounded Memory and Limits on Learning," contributes to the

literature on reputation and repeated games with incomplete information. A celebrated

recent result in this literature is that, asymptotically, the play of the game converges to

the play of a complete information game (see Cripps et al. (2004), for example). This

means that players can pro�t from a �false� reputation only in the short-run. Constant

opportunistic behavior will lead to statistical revelation of the actual type, which means no

long-run reputation.

The setting is very similar to that in the previous chapter. Here, the bounded memory

agent faces a player who, with some exogenous probability, might be committed to a mixed

strategy, instead of a pure strategy. This di¤erence is analogous to the distinction between

games with perfect monitoring versus imperfect monitoring.

We show that under bounded memory, we will not have full learning (or type separation),

even in the long run. The main intuition for this result is that with bounded memory the
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agent can hold only a �nite number of beliefs in equilibrium. And, these beliefs cannot

be too far apart from each other, or else the sequential rationality constraints would not

be satis�ed. Therefore, with initial uncertainty about types and bounded memory on the

uninformed player, long-term reputations can be sustained even in the extreme case in which

agents have opposite preferences.

Finally, the third chapter of this dissertation, studies a credibility model in which the

receiver has the ability to commit to a strategy before the �rst stage game. We show that

this ability to commit will not improve the receiver�s payo¤. In other words, the optimal

contract in this credibility model is to reproduce the perfect Bayesian equilibrium outcome

of the game without the ability of commitment. This suggests that the ability to commit

will only bene�t a player in cases in which the utility of the receiver is not directly opposed

to that of the sender.



Chapter 2

Reputation and Bounded Memory

2.1 Introduction

An implicit assumption in most economic models is that people have a perfect memory

and update their beliefs using Bayes� rule. In models of long-term relationships, players

condition their strategies on the entire history of the game, irrespective of how long and

complicated that history may be. Yet most people forget things. They categorize. They

often ignore information and update infrequently. This chapter studies a model of bounded

memory that captures these memory imperfections.

In our model, the bounded memory player has only a �xed number of memory states

available. He knows the information in the current period, but he is forgetful between

periods. All he knows about the history of the game is his current memory state. He

is aware of his memory constraints and chooses the best strategy to deal with them. He

chooses both an action rule, which is a map from each memory state to the set of actions,

and a transition rule from state to state.

In this chapter we focus on reputation games. These are games in which one player

5



2.1 Introduction 6

is learning about his opponent�s type. We characterize the equilibrium memory rule in

a reputation game and show the implications on the agent�s behavior. We show that the

transition rule must satisfy an intuitive weak monotonicity property; loosely speaking, good

news leads the bounded-memory player to move to a memory state associated with a weakly

higher reputation. But we also show that when memory constraints are severe, the player

will use randomization in his updating rule, which may induce �inertia�in his behavior and

infrequent updating. Thus, unresponsiveness to new information is, in fact, optimal for the

player when his memory is small.

A key innovation in this chapter is that we view both action choice and memory con-

straints as a conscious process. At all points in the game, the player is aware of his memory

constraints and consciously optimizes given what he knows. Thus, the player is subject

to sequential rationality constraints. The action he chooses at each memory state and the

transition rule from each state must be optimal given his beliefs at that state and taking

as given the strategy - both action and transition rules - at all his states. The reason the

player takes his own strategy at all states as given when deciding on an action or on which

state to move is that if he deviates today, he will not remember it tomorrow.

Conscious memory distinguishes our model from the standard �nite automata in the

literature. Like ours, the standard automaton has a �xed set of states, a transition rule

and an action rule. But standard automata can be committed to a strategy ex ante, and

hence does not face sequential rationality constraints. It is as if the standard automaton

unconsciously follows the pre-scribed action and transition rules chosen at the start of the

game. The idea of sequential rationality in bounded memory was introduced by Piccione
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and Rubinstein (1997) and Wilson (2003), but these authors studied single-person decision

problems. Here we study games, where the inability to commit matters.1

The setting of this chapter is a repeated cheap-talk game with incomplete information.

It is based on Sobel�s (1985) credible advice model, where a policy maker is uncertain about

his adviser�s preferences. On every period the adviser, or sender, knows the true state of

the world and reports it to the policy maker, the receiver. However, the sender need not

report truthfully; his reporting strategy will depend on his preferences. The sender is either

a commitment type, someone who always tells the truth, or a strategic type, someone with

opposite preferences to those of the receiver.

Once the receiver observes the report from the sender, he takes an action and the payo¤s

are realized. Payo¤s depend only on the state of the world in the current period and on the

action taken by the receiver. At the end of the period, the state of the world is veri�ed, and

the receiver knows whether the sender has lied to him or not. The receiver then updates

his beliefs (Bayesian updating in Sobel�s model) concerning the sender�s type. Thus, the

receiver acts based on the report of his adviser at the same time that he is learning about

his opponent�s type. In our model, the receiver has bounded memory; instead of updating

using Bayes� rule, he adheres to broadly de�ned categories. For example, if the receiver

had only three memory states, he might categorize the sender as �a friend�, �an enemy�,

or �still unclear�.

We show in propositions 2.2 and 2.3 necessary conditions for equilibria. In particular,

we show that the updating rule must be weakly increasing as long as the receiver obtains

1Rubinstein (1986) and Kalai and Neme (1992) also study automata models with a perfection requirement.
The solution concept used in this paper is substantially di¤erent, though, since it requires consistent beliefs,
as will be discussed later.



2.1 Introduction 8

truthful reports from the sender. This implies that the receiver�s belief that the sender is

committed to the truth is stochastically higher after a truthful report. Moreover, because

a false report leaves no uncertainty in the mind of the receiver, he moves to his �lowest�

memory state after this signal. We show that, even when the bounded player has very

few memory states and hence can not keep track of large amounts of information, in his

�lowest�state his belief on the sender being honest is zero, and in his �highest�state the

belief is one. Surprisingly, this result holds even for the minimal case of only two memory

states, or one-bit memory. This is shown in proposition 2.2.

Propositions 2.4 and 2.5 show that if the prior on the sender�s type is higher than a

particular threshold, the receiver will use deterministic transition rules. If this condition is

not met, then the equilibrium transition rule will require randomization. Informally, this

means that when the receiver does not have enough memory to keep track of the truthful

reports, he will use randomization to overcome the memory problem and test the sender

before updating.

The role of random transition rules in the optimal �nite memory has been studied in

single person decision problems. Hellman and Cover (1970) studied the two-hypothesis

testing problem with a �nite automaton (with ex-ante commitment to the strategy). A

decision maker has to make a decision after a very long sequence of signals. However, the

decision maker cannot recall all the sequence and has, instead, to choose the best way to

store information given his �nite set of memory states. A key result of the paper is that,

for a discrete signal case, the transition rule is random in the extreme states. The authors

concluded that, perhaps counter intuitively, the decision maker uses randomization as a
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memory-saving device.

The bene�ts of random transition rules for a decision-maker were also shown by Kalai

and Solan (2003). They showed that randomization is necessary in a single person decision

problem when the decision maker is restricted to automata. Their paper also showed the

advantages of randomization in the transition rule versus randomization in the choice of

action, a subject also discussed in this chapter.

Wilson (2003) studied a problem similar to Hellman and Cover (1970). In her model

the decision maker was subject to sequential rationality constraints. The optimal memory

rule obtained is similar to Hellman and Cover�s and includes randomization in the extreme

states. Moreover, she showed that modeling human memory as an optimal �nite automaton

can explain several biases in information processing described in the literature (see Rabin

(1998) for a survey on behavioral biases).

Our results suggest that in an incomplete information game randomization in the tran-

sition rule is needed as a memory-saving device in much the same way as in Hellman and

Cover (1970 and 1971), Kalai and Solan (2003) and Wilson (2003). However, unlike these

single player models, this chapter shows that in games there is an additional strategic role

for randomization. In the incomplete information game, randomization is used as a screen-

ing device: to test the opponent and give incentives for the opponent�s type to be revealed

early in the game.

In the second chapter we will consider an extension of the model studied here. In that

chapter the commitment type of sender plays all actions with positive probability. With full

memory, types are revealed asymptotically. However, if the uninformed player has bounded
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memory, we show that reputation will be sustained in any Markovian equilibrium. I.e.,

types are never fully separated. This �nding contrasts with recent results on reputation

games where the strategic e¤ects of reputation eventually washes o¤, as in Benabou and

Laroque (1992), Jackson and Kalai (1999) and Cripps et al (2004).

A player with bounded memory can hold only a �nite number of beliefs in equilibrium.

In Monte (2006) the commitment type plays a mixed strategy and the actions do not

reveal as much information as it does in the present chapter. Thus, the beliefs that the

bounded memory player holds in equilibrium cannot be too far apart, or else the incentive

compatibility constraints wouldn�t be satis�ed: there would not be an incentive to move

from one state to another regardless of the action observed. This imposes a maximum

di¤erence between the lowest and the highest beliefs. Thus, we can calculate a bound on

learning, which is given by the extreme beliefs. In the present chapter, on the other hand,

the beliefs can be far apart since one of the actions is fully revealing and thus, induces a

substantive change on the bounded memory player�s belief.

The study of the implications of an imperfect memory has taken two di¤erent modeling

strategies in the literature. One approach is to make explicit assumptions about the memory

process, while assuming that the agent is not aware of these limitations. This memory

process could be, for example, bounded recall, where the agent is able to recall only the

information of the last k periods.2 Or, it could be based on memory decay, such as studied

by Mullainathan (2002) and Sara�dis (2007). There are also the papers by Mullainathan

(2001) and Fryer and Jackson (2003), where agents are restricted to hold a �nite set of

2There are several papers on multi-player games with bounded recall, for example, Kalai and Stanford
(1988), Lehrer (1988) and, more recently, Huck and Sarin (2004).
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posteriors. In these papers the updating rule (categorization) is given exogenously; it is not

part of the player�s strategy.

The second approach in modeling memory restrictions is to assume constraints on the

agent�s memory, but such that he is fully aware of these limitations. The agent then decides

on the optimal strategy given this constraint. The memory rule itself becomes part of the

player�s strategy.

This second approach includes the automata models, such as Hellman and Cover (1970).

These models have also been studied to capture bounded rationality in implementing a

strategy. For some of the early papers modeling economic agents as automata, see Neyman

(1985), Rubinstein (1986) and Kalai and Stanford (1988).

The bounded memory model with sequential rationality constraints suggests that there

is an alternative interpretation for the player, modeling him as a collection of agents.3 These

agents act with the same interests and do not communicate with each other except through

the use of a �nite set of messages (the memory states). Thus, this model is in many ways

similar to dynastic repeated games as in Laguno¤ and Matsui (2004) and Anderlini et al

(2006). Each generation does not remember the past, but receives a message (from a �nite

set) from the previous generation. The current generation�s memory about the game must

be contained in the message received. In this sense, it is also similar to modeling a player

as a team.4

This chapter is organized as follows. Section 2.2 consists of the description of the model

3Modeling a player as an organization of multiple selves was done earlier by Stroz (1956) and Isbell
(1957).

4See Radner (1962) for a model of decisions with teams.
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and the de�nitions of memory, strategies, as well as the equilibrium concept. The case of two

memory states is shown in section 2.3. Section 2.4 gives the main result of the chapter: the

characterization of the memory rule and the condition for the receiver to have deterministic

transition rules, given a memory with n states. We show the example of 3 memory states

in section 2.5. In section 2.6 we present a discussion of the incentive compatibility concept

and a comparison with an automaton model. Section 2.7 concludes the chapter. Most of

the proofs are in the appendix.

2.2 Model

The setting of our study, a model based on Sobel (1985), is a repeated cheap-talk game in

which the receiver has incomplete information on the sender�s type. Before the �rst stage

game, Nature draws one of two possible types for the sender, about which the receiver

is uninformed. With probability � the sender is a behavioral type committed to a pure

strategy: he always tells the truth (truth and lie will be de�ned below). This behavioral

type will be denoted B. With probability (1� �) the sender is a �strategic type�S, with

utility opposite to the receiver�s.5

The timing of every stage game is the following. Nature draws a state of the world in

every period, !t 2 
 = f0; 1g ; each happening with probability 1
2 . The sender observes !t

and sends a message mt 2 f0; 1g to the receiver. This message has no direct in�uence on

the player�s payo¤s. We will say that the sender tells the truth when mt = !t: Otherwise,

he lies.

5Sobel (1985) calls the honest type the �Friend�and the strategic type, the �Enemy�.
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The receiver observes the message and takes an action at in the interval [0; 1]. After

he takes the action, the payo¤s are realized and the states are veri�ed. At this point, the

receiver can tell whether the sender has lied to him. Based on this information, the receiver

updates his belief on the sender�s type.

The game is repeated, but after every period there is an exogenous stopping probability

�. This variable is capturing an exogenous probability that the relationship will end. We

will focus on the case where this probability � is very small so that the players expect the

game to go on for a very long horizon. The players discount their repeated game payo¤

using this stopping probability and also using a discount factor � � 1.

The receiver maximizes his goal when he takes an action that matches the state of the

world. He is worse o¤ when his action is �far�from the true state. The particular functional

form of utility considered in this chapter is a quadratic loss function. Thus, the stage game

payo¤ of the receiver is: uR = � (at � !t)2. The strategic sender has preferences completely

opposite to those of the receiver, uS = (at � !t)2 :

Under full memory, the trade-o¤ for the strategic sender is between building reputation

or revealing himself. He might want to mimic the behavioral type and build reputation for

the following stage game. Or, he might want to lie and reveal himself. Once he lies, he plays

a zero-sum game with the receiver, and the unique equilibrium of this subgame is babbling,

which means that the receiver ignores the sender�s message when taking an action. We will

later see that this trade-o¤ is still present in the game with a bounded memory receiver.

Memory and Strategies A history in this game is de�ned as Nature�s choice of the

actual type, the sequence of action pro�les, states of the world, Nature�s choice about the
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repeated game ending or continuing, and the memory states of the receiver. The set of

histories in the game is denoted by H. The sender, who is unconstrained, will condition his

strategy on the observed history of the game.

Since the names of the states are irrelevant, we will de�ne the action space for the sender

to be fT;Lg where T is a �truth�and L is a �lie�. We de�ne the strategic sender�s strategy

as:

q : H ! � fT;Lg :

With slight abuse of notation, we will refer to q (h) as the probability of telling the truth

given the history h.

To simplify the analysis, we assume that at every period of the game the sender knows

the receiver�s current memory state. This assumption will leave out the sender�s inference

problem. We discuss this assumption further in section 2.4.2. We focus on equilibria in

which the probability that the sender will tell the truth or lie will vary only across states,

but not across time. Thus, we look only at equilibria with Markovian strategies.

The memory of the receiver is de�ned as a �nite set of states M = f1; 2; :::; ng. A

typical element ofM is denoted by si or sj ; or simply i or j:

At the start of each period, the receiver must decide on an action based on his current

memory state, which is all the information that he has about the history of the game. We

can write his action rule as:

a :M! [0; 1] ; (2.1)

interpreted as the probability (at the current memory state) that the receiver will follow

the sender�s advice.
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At the end of each period, the receiver must decide which memory state to move to next

based on his current memory state and whether that period�s message was true or false.

Allowing for the possibility of randomization, we can write the transition rule as a map

' :M�fT;Lg ! �(M) : (2.2)

We denote '
T
(i; j) as the probability of moving from state i to state j given that the sender

told the truth. This transition rule will determine how the receiver updates beliefs.

One way to think of this is that the bounded memory player�s knowledge about the

history of the game is summarized by an n�valued statistic si, which is updated according

to the map '.

Finally, it is also part of the receiver�s strategy to decide, before the �rst stage game,

his initial distribution over the memory states '0 2 �(M) :

The strategy for the receiver is the pair ('; a) and we denote the strategy pro�le by

� = ('; a; q).

Beliefs As described, we view memory as a conscious process. Players know that they

are forgetful. At every memory state they will hold a distribution of beliefs over the set of

histories. Given a strategy pro�le � = ('; a; q) ; the memory states form a partition of the

possible histories H, so we can write h element of si for a history that would result in the

receiver being at state si. Let � (hjsi; �) denote the belief of the receiver in state si and

given the strategy pro�le � that the correct history is h. As usual, at any information set
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the beliefs about all histories must sum up to one

X
h2si

� (hjsi; �) = 1:

We need to de�ne how the bounded memory player forms these beliefs.6 Following Pic-

cione and Rubinstein (1997), we assume that the beliefs correspond to �relative frequencies�

as follows.

Let f (hj�) be the probability that a particular play of the game passes through the

history h given the strategy pro�le �. For each history h and memory state si, let the

receiver�s belief be given by the relative frequency as de�ned below.

De�nition 2.1. (Consistency)

A strategy pro�le � is consistent with the beliefs � if, for every memory state si and for

every history h 2 si; we have that the beliefs are computed as follows:

� (hjsi; �) =
f (hj�)X

h02si

f (h0j�)
: (2.3)

Notice that denominator in expression (2.3) can be greater than one. The underlying

reason for this is that the receiver only keeps track of the time (the period of the game)

insofar as his transition rule allows. Thus, for example, depending on the transition rule,

a t-period history and its parent t � 1-period sub-history could place the receiver in the

same memory state. This contrasts with what would be the receiver�s information sets in

6Since the player is not forgetful within the period, but only across periods, we only have to de�ne how
he computes beliefs at the beginning of a stage game. At the end of the stage the player updates his beliefs
using Bayes�rule.
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the standard game without bounded memory. In the extreme case of one memory state, all

histories must be in the same state and the denominator in (2.3) would be 1
� , where recall

that � is the exogenous stopping probability. Even in this case, however, the exogenous

stopping probability ensures that beliefs are well de�ned; the bounded memory player will

have well de�ned priors over the time periods.

Let HB be the set of histories where the actual type is B. Similarly, HS is the set of

histories for which the actual type is S; hence, HB [HS = H. At the beginning of a stage

game, given some memory state si, the prior belief that the opponent is a behavioral type

is denoted by:

�i � Pr (Bjsi; �) =
X

h2si\HB

� (hjsi; �) : (2.4)

At the beginning of every stage game, we denote �i � Pr (T jsi; �) as the probability

that the sender will tell the truth in that stage game, given the current memory state si.

Since the sender is using a Markovian strategy, we can write the probability of truth as:

�i = �i + (1� �i) qi: (2.5)

After observing whether the signal was true or false, the receiver updates his belief

concerning the probability that the sender is a behavioral type. We denote this posterior

after a truth as pBi � Pr (BjT; si). These beliefs are computed using (2.4) and (2.5).

pBi =
�i
�i
: (2.6)

After a lie, the posterior on the sender being a behavioral type is zero, for a behavioral
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type always tells the truth.

In a game with full memory, the player�s posterior in the end of a stage game is also his

prior in the next stage game. This is not true in general for games with bounded memory

players. In any stage game, the player does not necessarily know which was the previous

stage game; or the belief he held in the last period. Upon reaching a memory state si, the

receiver will hold a belief about his opponent given by (2.4), regardless of the actual history.

Since all his knowledge about the history of the game is given by the statistic si, the belief

he holds in si must depend only on this information.

Imperfect Recall and Incentive Compatibility7 In our concept of optimality, we

use the notion of incentive compatibility as described by Piccione and Rubinstein (1997)8

and Wilson (2003). The assumption that we make is that at every information set the

player holds beliefs induced by the strategy pro�le �. If there is a deviation in the play

of the game, the agent will not remember it, and his future beliefs will still be the ones

induced by the strategy �. Thus, a player might decide to deviate at a particular time, but

he cannot trigger a sequence of deviations.

We say that a pair (�; �) is incentive compatible when it satis�es two conditions: one

for the sender and another for the receiver.

First, the strategy of the strategic sender is a best response for him given the strategy

of the bounded memory player ('; a). Since the sender is unconstrained and conditions

7Absentmindedness as de�ned in Piccione and Rubinstein (1997) is a special case of imperfect recall. In
this paper the bounded memory player is in fact absentminded. The issues of games with absentminded
players discussed in this section applies more generally to games with imperfect recall as well.

8They refer to this condition as �modi�ed multiself consistency�.



2.2 Model 19

his strategy on the entire history of the game, the incentive compatibility condition for the

sender is the usual best response.

Second, the strategy of the bounded memory player is a best response for him at every

point in time, taking as given the strategy for the sender and his own strategy at all memory

states. The strategy ('; a) is incentive compatible if at any information set si; there are

no incentives to deviate given the beliefs at si and taking the strategy � �xed. Again, the

reason for taking his own strategy as given when deciding on which action to take or what

state to move is that a deviation is not remembered in future periods and the beliefs in the

following periods will given by the strategy � = ('; a; q).

Given a strategy pro�le �, every memory state will have an associated expected continu-

ation payo¤ conditional on the actual type of the sender. The expected continuation payo¤

for the receiver at memory state i; given that the sender is a behavioral type, is denoted by

vBi . This expected continuation payo¤ is the stage game payo¤ and the continuation pay-

o¤ induced by the strategy pro�le. Formally, the expected continuation payo¤ vBi can be

written as:

vBi = � (1� �i)
2 + (1� �) �

X
j2M

'T (i; j) v
B
j : (2.7)

The �rst term on the right of (2.7) is the payo¤ of the receiver in the stage game. This

payo¤ is given by the equilibrium action ai and given the strategy of the behavioral type

of sender, which is to tell the truth with probability 1. The second term is the expected

continuation payo¤ of the continuation game. This depends on the transition rule and on

the associated continuation payo¤s of all states reached with positive probability given the
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transition rule '. The expected continuation payo¤ for the receiver given a strategic sender

is denoted by vSi : Under the Markovian assumption, we can write this expected payo¤ as:

vSi = �qi (1� �i)
2� (1� qi)�2i +(1� �) �

0@qi X
j2M

'T (i; j) v
S
j + (1� qi)

X
j2M

'L (i; j) v
S
j

1A :
(2.8)

When deciding on an action to take, and on which state to move, the bounded memory

player makes his decisions based on the expected continuation payo¤s associated with his

decisions. Thus, in the context of this game, the incentive compatibility constraint can be

written as two separate conditions: one condition for the transition rule and another one

for the action rule.

The condition for incentive compatibility on the action rule of the receiver requires that

he takes the myopic best action at all stage games. For suppose not: at some memory

state i the speci�ed action is di¤erent then the myopic best one. If the receiver deviates to

the best current action he will not remember it in the following period. Since histories are

private, the sender will only punish the receiver for this deviation if this punishment was

pro�table even in the case of no deviations. This implies that it must not be pro�table, and

thus, the receiver should deviate and play the myopic best one.

The incentive compatibility condition for the transition rule requires that the receiver

moves to the memory state that gives him the highest expected payo¤ given his beliefs.

Thus, if his transition rule assigns positive probability to move from state i to state j after

a truth, for example, then given his beliefs at state i, it must be optimal for him to do so.

We state the de�nition of incentive compatibility in the receiver�s transition rule.
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De�nition 2.2. (Incentive Compatibility: Transition Rule)

If a strategy � = ('; a; q) is incentive compatible, then the transition rule ' satis�es the

following condition. For any states i; j; and j0 2M:

'T (i; j) > 0) pBi v
B
j +

�
1� pBi

�
vSj � pBi vBj0 +

�
1� pBi

�
vSj0 ;

'L (i; j) > 0) vSj � vSj0 :

We can interpret the bounded player as a collection of di¤erent selves; each self acting

at a di¤erent point. Under this multi-self interpretation, we say that a strategy is incentive

compatible if one self cannot gain by deviating from his equilibrium strategy, given the be-

liefs induced by this strategy and assuming that all other selves are playing the equilibrium

strategy. The assumption in this de�nition is that the interim player can remember the

equilibrium strategy, but cannot remember deviations during the game.

For a further discussion of imperfect recall, time consistency and incentive compatibility,

see Aumann et al (1997), Gilboa (1997) and Piccione and Rubinstein (1997).

Equilibrium We de�ne equilibrium using the notion of incentive compatibility. An

equilibrium in this game is such that the strategies and beliefs are consistent, and the

strategies are incentive compatible. The strategy of the sender is a best response for him

given the strategy of the receiver and the strategy of the receiver is incentive compatible as

in de�nition 2.2.

De�nition 2.3. (Incentive Compatible Equilibrium)

The strategy pro�le � = ('; a; q) is an incentive compatible equilibrium if there exists a belief

� such that the pair (�; �) is consistent and the strategy � is incentive compatible.
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Sequential equilibrium is not the appropriate solution concept for games with absent-

mindedness, as was pointed out by Piccione and Rubinstein (1997, p18). The formal notion

of sequential equilibrium requires the strategy of the player to be optimal at every infor-

mation set, given the beliefs induced by this strategy. In games with absentmindedness the

continuation strategy need not be optimal, since the player cannot revise his entire strategy

during the play of the game (as described in section 2.2). In other words, the player might

be �trapped�in bad equilibria.

In games with imperfect recall there are typically multiple equilibria (even in one person

games). That the ex-ante decision maker will coordinate his actions in the most pro�table

equilibrium is an assumption of this model. We take the view that there are compelling

reasons to assume that, ex-ante, the receiver can coordinate on the most pro�table equilib-

rium, as was suggested by Aumann et al (1997). The memory rule will describe the agents�

heuristics on updating beliefs, and in our view, Nature will play the role of coordinating on

the �rst best for the bounded memory player. Thus, one way to think about this problem

is as a mechanism design. The principal is the ex-ante player and the agents are the un-

bounded opponent and all the interim selves of the bounded memory player. The principal

must choose the optimal mechanism given the set of equilibria between the interim agents

and the unbounded player.

2.3 Two Memory States

In this section we restrict attention to the two-memory state case. This is a very special

case, since the memory is minimal: one bit only. It will be very useful to our purposes since
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Figure 2.1: Updating Rule

the resulting equilibrium in this two-state world will show us the outcome on the extreme

states of more general memories (n > 2).

An updating rule for the two-memory state case is a probability of switching from state

1 to state 2 and vice-versa, after receiving a truthful signal or a lie. A general updating rule

is depicted in �gure 1.

We can interpret this situation as a person that thinks only through two categories; he

either thinks of his opponent as a �bad person�or as a �good person�.

There are multiple equilibria in this two-state case when the prior on the behavioral

type of sender is not very small.9 Among these equilibria, the one that gives the receiver

the highest ex-ante expected payo¤ is depicted below.

With the rule of �gure 2, the receiver starts at some memory state, say memory state 2,

and remains there as long as he keeps receiving truthful signals. After the �rst lie he moves

to the other state, which is absorbing.

To construct this equilibrium, lets consider the case where the expected continuation

9For a small prior about the behavioral type of sender, babbling in both states is the only possible
equilibrium. Babbling is characterized by a belief of 1

2
in both states and with the strategic sender telling

the truth with a probability that is just enough to make the receiver indi¤erent between believing the message
or not.
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Figure 2.2: Rule that Separates after a Lie

payo¤ given a strategic type is higher in state 1, vS1 > v
S
2 . We know that a lie completely

reveals the type of the sender. The receiver will then �nd optimal to move to state 1

whenever he observes a lie, regardless of his current state. Thus, the transition rule must

assign probability one after a lie to state 1 'L (i; 1) = 1, for i = 1; 2.

The strategic type of sender strictly prefers to lie in state 2: The intuition for this is

that the trade-o¤ between current payo¤ and reputation incentives does not exist in this

highest state. The reputation concerns disappear, since this last state is the highest belief

that the receiver can hold. The current payo¤ from telling the truth is worse than the

babbling payo¤ (otherwise, telling the truth would be pro�table even in the current period

and this would be a contradiction in equilibrium). Thus, even though after the sender lies

he is moved to the absorbing state 1, it is still strictly better for him to lie right away in

state 2:

Therefore, in state 2; the sender tells the truth with probability zero, q2 = 0: This implies

that after a truth in state 2 the receiver�s posterior is one pT2 = 1. Because strategies must

be incentive compatible, the receiver moves to the memory state with highest expected

continuation payo¤ given a behavioral type. In this two-memory state case, if both states
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are reached in equilibrium, it must be that vB2 > v
B
1 . Thus, the receiver prefers to remain

at memory state 2 after a truth: 'T (2; 2) = 1.

We analyze only the case where the exogenous probability of ending the game is very

small � ! 0. Before we state the main result of this section, note that when the stopping

probability � goes to zero, the expected length of the game increases.

In this example, the long-run probability of having a behavioral type in state 1 is zero,

since, given a behavioral type, the receiver eventually reaches state 2 and stays there forever.

Thus, by incentive compatibility, the receiver will assign 'T (1; 1) = 1. Similarly, given a

behavioral type, the receiver eventually reaches state 2 and remains there until the end of

the game, whereas the strategic type visits that state at most once. Thus, the belief in state

2 approaches one.

Therefore the equilibrium transition rule in the two-state case where both states are

reached in equilibrium is given by �gure 2. Since the transition rule completely separates

the liars, whenever the receiver reaches memory state 1 he can be sure that he is dealing

with a strategic type of sender. Thus the only possible belief that the truth is being told in

that state is the one associated with babbling: �2 = 1
2 :

To compute the belief in memory state 2 we have to compute the beliefs about the time

periods. Our �rst result is that the receiver will hold �extreme� beliefs, that completely

separate the types, even in this case of a minimal memory (2 states). This result will

generalize for the case where the receiver is has more than two memory states: his two

extreme states will have reputations zero and one.
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Proposition 2.1. (Extreme Beliefs)

For the two memory state game, the unique non trivial equilibrium is such that: lim
�!0

�1 =
1
2

and lim
�!0

�2 = 1:

Proof. The sender will lie with probability 1 in state 2, thus q2 = 0: This is true because the

sender strictly prefers to lie in that state, Us (Ljs2) > Us (T js2) ; regardless of the transition

probability. Thus, if state 2 is the initial state, then it must be that:

�2 = Pr (t = 1js2) �+ Pr (t = 2js2) + Pr (t = 3js2) :::

Where the probabilities of time periods are given by:

Pr (t = 1js2) =
1

1 +
P1
t=1 (1� �)

t �
=

�

� + (1� �) �:

Thus: �2 =
�

�+���� , which leads us to:

lim
�!0

�2 =
�

� + � (1� �) = 1: (2.9)

Moreover, since only behavioral types tell the truth in this state, the posterior on this

type after a truth is one. By incentive compatibility, it must be that the receiver does not

move to another memory state after a truth and, thus 'T (2; 2) = 1. If the transition in

state 1 is positive, i.e. 'T (1; 2) > 0 then eventually the behavioral type gets �locked� in

state 2 forever. This implies that in state 1 the belief about the behavioral type goes to

zero. Thus, babbling is the unique outcome in this state and lim
�!0

�1 =
1
2 :

We conclude that the receiver, having a very small memory, will start the game with
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�long run beliefs�. Another interesting property of the equilibrium is that the receiver keeps

track of the liars. The strategic sender will gain not because the receiver will forget in case

he lies, but because the receiver doesn�t know the period that he is in when he starts the

game. In other words, the receiver is confused about the time period when he is in state 2,

so he doesn�t know if he has already separated all the liars. This in�ates the belief in state

2 and gives the sender a high payo¤ in the initial period.

2.4 n Memory States

Consider now the general case where the bounded memory player is restricted to n memory

states, where n > 2.

Designing the best response for players with a bounded number of states has been shown

to be an NP-complete problem, even for the simple case of a repeated prisoner�s dilemma

with complete information.10 In our setting, for every state reached with positive probability

by the equilibrium updating rule, the incentive compatibility constraints must be satis�ed.

Computing a best-response automaton and checking whether the incentive compatibility

constraints are satis�ed seems to be a computationally infeasible task.

Fortunately, though, we can show necessary conditions for equilibria. We can then

characterize the equilibrium transition rule of the bounded memory player. We show that

the equilibrium transition rule must satisfy a weak monotonicity condition, and hence the

resulting updating rule resembles Bayesian updating whenever possible.

From what follows, we label the states in increasing order of continuation payo¤s given

10See Papadimitriou (1992).



2.4 n Memory States 28

a behavioral type. Thus, if i > j then vBi > v
B
j .

As has been pointed out in the literature,11 there are typically multiple equilibria in

games with imperfect recall. In this game, there are many equilibrium memory rules in

which the receiver has redundant states. All the results in the appendix allow for these

�bad equilibria�. The most intuitive way to think of the memory rule, though, is to have in

mind a rule without these redundant states. I.e., with n di¤erent memory states (holding

di¤erent beliefs in equilibrium).

Throughout the chapter we consider only strategies in which all states are reached with

positive probability in equilibrium.12 Suppose, for now, that all states have di¤erent vBi

and, consequently, di¤erent vSi (the cases of states with v
B
i = vBj are considered in the

appendix).

2.4.1 Equilibrium Updating Rule

Our main result is shown in the proposition below. We show that any equilibrium memory

rule will satisfy a weakly increasing property. The equilibrium updating rule is such that

the receiver separates the liars. Since only the strategic type can play this action, this signal

is completely revealing. Thus, the receiver�s posterior belief after a lie is zero. He will then

move to his lowest state, and therefore 'L (i; 1) = 1 for any memory state i. The same

intuition holds for the case where the strategic sender strictly prefers to lie. In this case,

a truth is completely revealing, since it is played only by a behavioral type in equilibrium.

The receiver then moves to his highest state with probability one.

11See Piccione and Rubinstein (1997) and Aumann et al. (1997).

12States not reached in equilibrium do not play any role, not even as a threat (since, as we will show,
there will be an absorbing babbling state). Thus, we can ignore these states without loss of generality.



2.4 n Memory States 29

While the receiver might ignore true signals, by not updating after receiving them, he

will never update to a worse belief after a truth. The receiver will get a better payo¤ from

staying in the same state rather than moving to a lower state. One interpretation of this

result is that the receiver might not pay attention (update) to some signals, but he will

never forget the information that he already holds.

Finally, the extreme states must have beliefs about the opponent�s type that are zero

and one. The intuition is that at state sn there are no reputation incentives, thus the bad

type of sender will lie right away. If the receiver is at this memory state, the only chance

that the sender is the strategic type is if this is the �rst stage game being played at this

memory state. In other words, the strategic sender will stay in this state for at most one

period. On the other hand, if the sender is an honest type, the state is absorbing and this

type will be in state sn forever. The probability of being at state sn for the �rst time goes to

zero as the stopping probability gets smaller. The same argument holds for what happens

at state s1. If this is not the initial state, then only the strategic type of sender can reach

this state. In this case, the result is obvious. If this is the initial state, the probability of

having a strategic sender at that state goes to one as the death rate goes to zero. Note that

since this state is absorbing, in equilibrium it will not be the initial state.

We state the result below for the case where the stopping probability is very small,

� ! 0: In the appendix we show a more general version of the proposition, which holds for

any stopping probability �; and which allows for redundant states.
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Proposition 2.2. (Increasing Property)

If the strategy pro�le � = ('; a; q) is an equilibrium, then:

1. After observing a lie move to an absorbing �babbling� state: 'L (j; 1) = 1.

2. Never go back after observing a true signal: �j > �i ) 'T (j; i) = 0.

3. Initial state is the lowest one after the �babbling state�'0 (2) = 1:

4. The lowest belief approaches zero: lim�!0 �1 = 0:

5. The highest belief approaches one: lim�!0 �n = 1:

At this point, we have ruled out some memory rules that could never be played in

equilibrium�in particular, rules with loops and rules that don�t separate the liars.

Although we have shown that the equilibrium updating rule must satisfy a weakly

increasing property, we still want to understand how the updating happens after true signals.

The proposition below tells us part of the story. All the results depend on a condition that

the posteriors about the sender�s type are di¤erent on the states. To weaken this restriction,

in the appendix we prove the following lemma: �j > �i ) pBj � pBi :13

Proposition 2.3. (Weak Monotonicity)

Consider only memory rules with states with di¤erent posteriors, i.e., states where pBi 6= pBj :

Then, for any two states i; j 2M, we have that:

1. (Single crossing) 'T (i; k) > 0 ; 'T (i;m) > 0 and 'T (j; k) > 0) 'T (j;m) = 0;

13 It can be easily shown that for n � 4; i.e. for memories with less than or equal to four states, we must
have that �j > �i ) pHj > pHi : And, thus, the properties in proposition 2.3 hold without any additional
restrictions.
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for 8k;m such that �k 6= �m:

2. (No Jumps) 'T (i; k
0) > 0 ;'T (i; k

00) > 0 ) 'T (j; k) = 0;

for 8k0 < k < k00:

3. (Monotonicity) If 'T (i;m) > 0) 'T (j;m
0) = 0;

for 8 m0 < m:

Proof. We �rst prove the single crossing property. Suppose that 'T (i; k) > 0 and also that

'T (i;m) > 0. This implies that:

pBi
�
vBk � vBm

�
+ pSi

�
vSk � vSm

�
= 0: (2.10)

Suppose now that 'T (j; k) > 0 and 'T (j;m) > 0; then

pBj
�
vBk � vBm

�
+ pSj

�
vSk � vSm

�
= 0: (2.11)

If pBi 6= pBj then (2.10) and (2.11) cannot hold at the same time. Thus, two states must

have at most one state in common in their transition rules.

The next step is to show a �no jump�result for states where pBi and p
B
j are di¤erent.

Suppose that 'T (i; k + 1) > 0 and 'T (i; k � 1) > 0: This implies that:

pBi
�
vBk+1 � vBk

�
+ pSi

�
vSk+1 � vSk

�
� 0; (2.12)

pBi
�
vBk � vBk�1

�
+ pSi

�
vSk � vSk�1

�
� 0: (2.13)
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If in addition we also have that 'T (j; k) > 0: Then it must be true that :

pBj
�
vBk+1 � vBk

�
+ pSj

�
vSk+1 � vSk

�
� 0; (2.14)

pBj
�
vBk � vBk�1

�
+ pSj

�
vSk � vSk�1

�
� 0: (2.15)

The equations above cannot hold for �k+1 > �k > �k�1 and pBi 6= pBj :

Finally, to prove the monotonicity condition, �rst note that by incentive compatibility

we must have that:

'T (j;m) > 0) pBj v
B
m + p

S
j v
S
m � pBj vBm0 + pSj vSm0;

which means that:

pBj
�
vBm � vBm0

�
+ pSj

�
vSm � vSm0

�
� 0: (2.16)

Note that
�
vBm � vBm0

�
� 0 and

�
vSm � vSm0

�
� 0:Thus, since pBi > pBj (and consequently�

pSj > p
S
i

�
); we have that:

pBi
�
vBm � vBm0

�
+ pSi

�
vSm � vSm0

�
> 0; (2.17)

which proves our last condition.

This monotonicity result tells us that for any two states with di¤erent posteriors, the

transition rule of both states might have at most one state in common, and this is the

highest point on the support of the transition rule of the lower posterior state. Moreover,

the lower posterior state does not move to any state in the higher posterior state�s support,



2.4 n Memory States 33

except for this �rst point.

As we argued before, there are compelling reasons to focus only on the equilibria that give

the receiver the highest payo¤. Lemma 2.1 below shows that we can ignore the redundant

states without loss of generality. This result tells us that any equilibrium in which the

receiver is using a redundant state can be reproduced with a memory without redundant

states. Therefore, when searching for the equilibrium that gives the receiver the highest

expected payo¤, we can focus only on rules where all states have di¤erent beliefs.

Lemma 2.1. (Redundant States)

Consider a receiver with memoryM that has only n states. The strategy � = ('; a; q) gives

the receiver a payo¤ of U�R. Now suppose that �i = �j ; for some i; j 2 M. Then, there 9

('; a; q)0 for memory some other memory M0 with n � 1 states and that gives the receiver

utility the same payo¤ U�R:

Proof. Let �i = �j : From proposition 2.2 this implies that vSi = vSj . Thus, if both states

are reached in equilibrium it must be that vBi = vBj . The receiver is always completely

indi¤erent between the two states i and j after a truth or lie. If pBi = p
B
j ; then the states

are identical and we can consider them as being a single state (just rewrite the transition

rules). If pBi > p
B
j ; then they must have the same transition rules, or else v

B
i = v

B
j would

not hold. But, if they have the same transition rules then again they are identical and we

can group them as one.

A class of memory rules that satis�es propositions 2.2 and 2.3 is depicted in �gure 3

below.
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Figure 2.3: A Class of Equilibrium Memory Rules

The results suggest that this is the class of memory rules that the receiver will use. I.e.,

a strategy in which the transition rule has only positive probability in staying in the same

state or moving to the next one.

In the following section, we will show the conditions under which the updating rule is

deterministic, meaning that 'T (i; i+ 1) = 1 for all states i < n. For n = 3; or 4 we can

show that the memory rule must be the one shown in �gure 3, allowing for the possibility

that 'T (i; i) = 0. It is possible, though, that for n > 4 the equilibrium transition is

stochastic, but not exactly like the one depicted above. This case would suggest that the

receiver is wasting resources by not fully using his memory states. Such a rule might exist

in equilibrium, as long as the memory rule satis�es the conditions in propositions 2.2 and

2.3.

2.4.2 Deterministic Updating Rule

We have characterized the equilibrium transition rule. In this section, we show under what

conditions this transition will be deterministic. We say that the receiver�s memory is not
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binding when he updates his beliefs using Bayes�rule, with no bias whatsoever. There are

cases, though, in which the transition rule is deterministic, but the updating di¤ers from

Bayesian in the last state. The memory of the receiver will confuse him in this extreme state

and there will be biases in information processing. In this section we show the conditions on

the parameters under which the receiver will use deterministic transition rules (the algorithm

uses the same reasoning whether one wants to compute the threshold for Bayesian updating

or for deterministic rules only).

We present the result in two propositions. The �rst one shows that, given a memory

of size n, there is a threshold in the prior space such that if the prior is smaller than this

threshold, the receiver will not use deterministic transition rules. We then prove another

result showing that this is in fact also su¢ cient for equilibrium with deterministic transition

rules. This su¢ cient condition is in fact a strong result by itself; thus, if the sender is using

a best response and the transition rules are not random, the receiver will �nd it in his

best interest to follow the speci�ed transition rules. Given this result, one can relate it to

Bayesian updating: if we describe Bayesian updating as an updating rule with an in�nite

number of memory states and deterministic transition rules, the player will �nd it in his

best interest to keep playing this strategy, i.e., it will be incentive compatible as well. Thus,

in this context, Bayesian updating is consistent with a large enough number of memory

states.

When the condition of the threshold described below is not met, there are no equilibria

with deterministic transition rules (besides the trivial one, where all states have the same

expected continuation payo¤). Thus, randomization is needed.
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Proposition 2.4. (Deterministic Transition Rule: Necessary Condition)

Given any number of memory states n > 2, there exists a threshold on the prior about the

behavioral type ��n such that if the actual prior is smaller than this threshold � < ��n then

there is no equilibrium with deterministic transition rules.

The proof of the proposition above is by induction (shown formally in the appendix).

The �rst step is to note that the last state will have belief 1, following the intuition of the

two state case. The receiver will use pure strategy only if the belief in state sn�1 is at least

as high as some threshold ��n�1; which depends on the parameters �; n and �: If the belief

is lower than this threshold, the sender will prefer to tell the truth and be updated with

probability one to the highest state. Moreover, by incentive compatibility there is a lower

bound on the posterior state sn�1. That is, if the posterior on the sender�s type is lower

than this lower bound, the receiver will �nd it in his best interest to remain in that state

after a true signal. Together, this implies that at every stage game there is a lower bound

on the prior on the sender�s type at that stage game. However, the prior on state sn�1 is

the posterior of state sn�2. Using the same reasoning backwards we �nd that there must

be a lower bound on the prior for the receiver to play pure strategy. In the appendix we

show how to compute this lower bound given the parameters �; n and �:

The next proposition shows a su¢ cient condition for deterministic transition rules.

Proposition 2.5. (Deterministic Transition Rule: Incentive Compatibility)

Let the transition rules be deterministic: 'T (i; i+ 1) = 1; and the strategy for the sender be

a best response for him. Then it will be incentive compatible for the receiver to move only
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to the next state after a true signal:

pBi�1v
B
i +

�
1� pBi�1

�
vSi � pBi�1vBs +

�
1� pBi�1

�
vSs ; 8s > 0:

Therefore, given a memory of size n, as long as the prior � is higher than the threshold

��n; which is shown in the appendix, the receiver will be able to reproduce Bayesian updating

and there will be no information loss.

The following result shows that there is at most one equilibrium in which the receiver

is using a pure strategy.

Proposition 2.6. (Deterministic Transition Rule: Uniqueness)

Fix the number of memory states n and the initial prior �. There is at most one equilibrium

with deterministic transition rule without redundant states.

Note that when memory states are unobservable by the strategic sender, the determin-

istic equilibria would still hold. In equilibrium the sender would know the current memory

state. In the case where there are no equilibria with only deterministic transition rules, the

structure of the transition rule would also be the same, since the results in proposition 2.3

would still hold.

2.5 Example: Three Memory States

In this section we show the equilibria for the case involving three memory states. The main

goal of this section is to exemplify the mechanics of the model and to show how to compute

the equilibria in a bounded memory game.

We use the results of proposition 2.2. The lowest state is equivalent to a babbling state,
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Figure 2.4: Three Memory States

where the probability of truth is �1 = 1
2 ; moreover, this lowest state is absorbing. Also, the

belief in the highest state is one �3 = 1: Finally, the receiver will start at the intermediate

state '0 (2) = 1: It remains for us to calculate the belief in state 2 �2, the transition

probability from state 2 to state 3 'T (2; 3) ; as well as the strategy of the sender. We focus

on Markovian equilibria only, i.e., equilibria in which the strategy of the sender depends

only on the current memory state. Figure 4 below depicts the equilibrium transition rule.

We know from the previous section that there is a threshold on the prior of the behavioral

type such that the equilibrium involves only a deterministic transition rule. Thus, if this

prior is higher than the threshold, � > ��3; then the equilibrium with three non-redundant

states involves deterministic transition from state 2 to state 3. This means that after a

truth, the receiver updates to state 3 with probability one.

In this section we characterize the equilibria when � < ��3: We already know that the

equilibria must be such that 'T (2; 2) > 0. In equilibrium, the sender must be mixing

between telling the truth and lying in state 2, or else the receiver would not mix himself,
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by incentive compatibility. The indi¤erence condition of the sender is that lying in state 2

gives the same expected continuation payo¤ for him as telling the truth in this same sate,

which means that:

�22 + �
1

4
= (1� �2)2 + �

�
'T (2; 2)�

2
2 + (1� 'T (2; 2))

�
: (2.18)

This gives us the following quadratic equation:

�'T (2; 2)�
2
2 � 2�2 + 1 + � (1� 'T (2; 2))� �

1

4
= 0: (2.19)

Solving for the belief �2 gives us:

�2 =
1�

q
1� �'T (2; 2)

�
1 + � (1� 'T (2; 2))� � 14

�
�'T (2; 2)

: (2.20)

We interpret the transition probability 'T (2; 2) as a testing parameter, since it is cap-

turing the probability that the sender will not be upgraded, even though the signal was

truthful. We show that in the three state case, there is a trade-o¤ between action rule and

transition rule, or between actions and testing.

Lemma 2.2. (Testing)

In equilibrium, the lower the receiver�s belief about the truth, the more he will test the sender

before updating.

Proof. Di¤erentiating the indi¤erence condition of the sender, which is given by (2.19),
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gives us:

�'T (2; 2) 2�1d�1 � 2d�1 + ��21d'T (2; 2)� �d'T (2; 2) = 0;

and �nally,

d'T (2; 2)

d�1
=
2

�

��1'T (2; 2)� 1�
1� �21

� < 0:

Condition (2.20) is necessary for equilibrium in this three state case. Another necessary

condition is that the receiver must be indi¤erent between updating to state 3 or staying in

state 2 after a truth. For this indi¤erence condition we have that:

p2
�
vH3 � vH2

�
+ (1� p2)

�
vS3 � vS2

�
= 0:

Substituting the continuation values gives us:

p2
(1� �2)2

1� �'T (2; 2)
+ (1� p2)

�
�22 � 1

�
= 0:

Solving for the posterior p2 and knowing that �2 < 1 this implies:

p2 =
(�2 + 1) (1� �'T (2; 2))

1� �2 + (�2 + 1) (1� �'T (2; 2))
: (2.21)

Now the two conditions missing are that these beliefs �2 and pT2 must be consistent in

equilibrium, according to 2.3. The posterior pT2 can be written as:

pT2 = 
1
�

�+ (1� �) q1
+ 
2

�2
�2 + (1� �2) q2

+ 
3
�3

�3 + (1� �3) q3
+ ::: (2.22)
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where the 
0s indicate the Bayesian updating of time periods. First note that: �2 +

(1� �2) q2 =
�+(1��)q1q2
�+(1��)q1 :

In general, we will have:

�t + (1� �t) qt =
�+ (1� �) q1q2:::qt
�+ (1� �) q1:::qt�1

: (2.23)

Let � = f1 + f2 + f3 + :::. Where fi is the frequency of period i. Then, 
i =
fi
� , and,

in general we must have that:


t =
(1� �)t�1 ('T (2; 2))t�1 (�+ (1� �) q1q2 � :::� qt)

�
: (2.24)

Before we compute what (2.22) should be, let�s calculate each term of the equation. But

�rst, also note that:

�t =
�

�+ (1� �) q1q2 � :::� qt�1
:

The individual beliefs of the time periods can be written as:


t
�t

�t + (1� �t) qt
=
(1� �)t�1 ('T (2; 2))t�1

�
�:

Thus, (2.22) can be simpli�ed:

pT2 =
�

�
+
(1� �) ('T (2; 2)) �

�
+
(1� �)2 ('T (2; 2))2 �

�
+ :::;

which in turn can be written as:
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pT2 =
�

�

1

(1� (1� �)�) : (2.25)

And, for the Markovian case, the term � can be calculated as:

� = (�+ (1� �) q)+(1� �) ('T (2; 2))
�
�+ (1� �) q2

�
+(1� �)2 ('T (2; 2))2

�
�+ (1� �) q3

�
+:::.

This term can be simpli�ed further to obtain the following expression:

� =
�+ (1� �) q � (1� �) ('T (2; 2)) q

(1� (1� �) ('T (2; 2))) (1� (1� �) ('T (2; 2)) q)
: (2.26)

Thus, substituting (2.26) in (2.25) gives us the following expression for the receiver�s

posterior:

pT2 =
� (1� (1� �) ('T (2; 2)) q)

�+ (1� �) q � (1� �) ('T (2; 2)) q
: (2.27)

Similarly, for the belief �2 we have that:

�2 =

264 (1� (1� �) ('T (2; 2))) (1� (1� �) ('T (2; 2)) q)+

+ (1� �) ('T (2; 2)) (�+ (1� �) q � (1� �) ('T (2; 2)) q)

375
�1

(2.28)

[� (1� (1� �) ('T (2; 2)) q) + (1� �) q (1� (1� �) ('T (2; 2)))]

If the beliefs and strategies
�
pH2 ; �2; '; a; q

�
satisfy the system of equations described by

(2.20), (2.21), (2.27) and (2.28) above, then we have an equilibrium in the 3 memory state

case.
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2.6 Standard Automata

The automata models are in many ways similar to a bounded memory player. An automa-

ton, like a bounded memory player, is a �nite set of states with a transition rule and an

action rule. When we model the memory of the player as an automaton, we ignore incentive

compatibility constraints and the memory is designed to be the ex-ante optimal one. As it

turns out, however, in single player games with no discounting, this distinction is nonexis-

tent: Piccione and Rubinstein (1997) show that the ex-ante optimal strategy will also be

incentive compatible.

In a game, there are two reasons that an equilibrium with automata could di¤er from

one with a bounded memory player. The �rst one is the same as in a single player game

with discounting. Think of a very impatient decision maker. Ex-ante, this player will design

a strategy to achieve a higher payo¤ in the initial periods. As the game starts, the player

might think that he is not in the initial periods any more and will take in consideration

the payo¤s of future periods. This distorts the incentives between the initial period and

the period where the game has already started. An automaton would allow an individual

to commit to actions and avoid the �temptations�to deviate that his future selves would

confront.

The second reason is the ability to commit against an opponent. Thus, modeling the

player�s memory as an automaton would require a further assumption�namely, that the

player can credibly commit to his strategy.14

We take the view that both approaches have their own interest, but this chapter focuses

14Since in this paper the strategic sender is playing a zero-sum game with the receiver, it is not clear
whether commitment would increase the receiver�s payo¤ absent discounting e¤ects.
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Bounded Memory Automata
� �2 'T (2; 2) UR �A2 'T (2; 2) UAR
0.1 0.5 1 -1.25 0.5313 0.9358 -1.2415
0.2 0.6220 0.7256 -1.1777 0.5919 0.8007 -1.1730
0.3 0.6593 0.6219 -1.0736 0.6385 0.6814 -1.0716
0.4 0.6931 0.5142 -0.9523 0.6791 0.5607 -0.9514
0.5 0.7255 0.3931 -0.8181 0.7168 0.4274 -0.8178
0.6 0.7581 0.2459 -0.6736 0.7540 0.2663 -0.6735
0.7 0.7926 0.0492 -0.5198 0.7920 0.0532 -0.5198
0.8 0.8 0 -0.36 0.8 0 -0.36
0.9 0.9 0 -0.19 0.9 0 -0.19

Table 2.1: Automata: more testing than Bounded Memory

only on the case where incentive compatibility is indeed an issue. We show that in some

situations the automaton can do better than the bounded memory player, while in others

the automaton does just as well (obviously, automata can never do worse, since the set

of incentive compatible memory rules is a subset of the memory rules described by an

automaton). In fact, we show some results for the three state case, where the automaton

does better than the bounded memory player.

One thing to note in table 1 below is that the lower the prior on the sender�s type,

the higher 'T (2; 2) which means that the receiver will test the sender more. These are the

equilibria for which the receiver is mixing on his updating rule. If � is very high (in this case

the threshold is 0.72), there will be no randomization. All these equilibria were computed

for � = 10�60 and � = 0:8.

The comparison between the automaton and the bounded memory player is shown in

the table below.15

15We present examples of automata that do better, but do not explicitly solve for the optimal automata.
This is an interesting open question that we leave to future work.



2.7 Conclusion 45

The results in table 1 show that the three state automaton does better than a bounded

memory receiver with the same number of states. Most importantly, it does so through

more testing. The transition from state 2 to state 3 is higher with the bounded memory

player than it is with an automaton. In fact, if the bounded memory player used the same

transition as the automaton, after a truth the bounded memory player would �nd it interim

optimal to move to state 3 and not to randomize. The incentives to move to state 3 would

break down the equilibrium.

To summarize, an automaton will perform better than a bounded memory player by

committing to test more.

2.7 Conclusion

This chapter is a study of bounded memory in a reputation game. It di¤ers from the existing

literature on imperfect memory by considering a game in which the memory rule is chosen

by the player and satis�es incentive compatibility constraints. Equilibrium with bounded

memory and incentive compatibility constraints was already studied in single player games,

but this is the �rst time it has been done in a multi-player game.

Our view is that, although forgetful, players have some ability to determine what to

remember and what to forget. A player might think that a fact is particularly important

and, knowing that he will likely forget it, he will rehearse the fact and increase his chances

of remembering it. Most models of bounded memory assume that, during the play of a

game, people have no control whatsoever over what to remember or what to forget.16

16 In models of optimal �nite memory, such as the automata models or Dow�s (1991) search model, the
player decides on the memory rule before the game starts. Once in the game, he has no control over his
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We showed that in this game the updating rule is rather simple: monotonic and weakly

increasing. In particular, given the memory size n, if the prior on the behavioral type is

high enough, the bounded memory player will use deterministic transition rules. In fact, he

might do just as well as if he used Bayes�rule. Or, if the prior is higher than a particular

threshold, but not �high enough,�he will su¤er loss (as compared to a Bayesian player) in

the extreme state, when he gets confused about the time periods.

The second contribution of this chapter is to show the updating rule when memory

constraints are severe. In these cases the receiver will use random transition rules in the

initial states. Despite the multiplicity of equilibria that games with bounded memory have,

there are necessary conditions on the updating rule for all equilibria. These conditions

suggest a particular updating rule (stay put or go forward), when the receiver can coordinate

on the equilibrium that gives him the highest payo¤. This randomization in the transition

rule is used for two di¤erent reasons. First, it is used to overcome the memory problem

by not storing all the signals. This intuition was also present in single player games. Most

importantly, however, in a two player game, randomization will be used as a strategic

element: to test the opponents before updating.

In a broader sense, this chapter is part of an emerging literature on restricted capacity

to deal with information. Players fail to use Bayes rule due to some constraint on their

technology. This departure from Bayes� rule could result from a cost on updating new

information (Reis (2007)), a restriction on acquiring new information (Sims (2003)), a cost

to thinking through the implications of a particular action (Bolton and Faure-Grimald

memory.
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(2005)), or memory constraints. In a repeated interaction, this ability to sort information

is very important because of the substantial amount of data that some equilibria require,

combined with possible cognitive restrictions of the agents.

The results that we see in the recent papers suggest that these constraints lead to inertia

and inattention. Due to a restricted capacity in dealing with information, players cannot

execute Bayes rule and will choose the information to memorize, and to acquire. In other

words, they will sort the information received and ignore part of it. This chapter con�rms

this intuition in the context of a two player game, showing that the agents will ignore

information and update only sporadically when their memory is constrained.

In the model presented, the strategic sender and the receiver had opposite preferences.

The zero-sum nature of this relationship did not leave any room for cooperation when the

bad type of sender was caught. Still unclear are the implications of bounded memory in

sustaining cooperation in repeated interactions. The study of the role of bounded memory

and reputation in a more general environment, without this zero-sum nature, is an open

road of research.

Finally, in this chapter we modeled human memory as a �nite set of states with sequential

rationality constraints. One is tempted to apply what was learned here to other situations

involving limited storage capacity, for example, to apply this model to the context of an

organization that keeps track of signals about their clients. The imperfect communication

between workers within a �rm suggests this analogy.
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2.8 Appendix

2.8.1 n Memory States

This section is divided as follows. First, we show a general version for proposition 2.2 in the

text. This theorem is true regardless if the transition rule is deterministic (in which case

it is trivially true) or not. Then we show in which cases the receiver will use deterministic

transition rules.

We need extra notation for this section. In general, we denote the sender�s expected

continuation payo¤ in some state si as US (si). His expected continuation payo¤ from telling

the truth in that state is US (T jsi) and from lying it is US (Ljsi) : This utility is given by

a current payo¤ of telling the truth (or lying) and an expected continuation payo¤ that

depends on the transition rule ' as well as on US (sj) for all j 2M.

2.8.2 Random Transition Rules

De�ne l as the state with highest expected continuation payo¤ if the receiver is facing a

strategic sender. Formally: D � fl 2 MjvSl � vSi ;8i 2 Mg, similarly de�ne: U � fu 2

MjvBu � vBi ;8i 2Mg:

Proposition 2.7. (Increasing Updating Rule: General version of Proposition

2.2)

If the strategy pro�le � = ('; a; q) is an equilibrium, then:

1. After Lie: 'L (j; l
0) = 0 where l0 =2 flj�l = mini �ig.

2. If US (Lji) > US (T ji)) 'T (i; h0) = 0 where h0 =2 fhj�h = maxi �ig :
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3. After True: �j > �i ) 'T (j; i) = 0 (don�t go back after a True signal).

4. '0 (i) = 0;8�i > �(2):

5. lim�!0 �l = 0; 8l 2 D.

6. lim�!0 �u = 1; 8u 2 U .

We show the proof of this proposition through several di¤erent lemmas.

Our �rst result comes from incentive compatibility. If Pr (Bji; L) = 0; 8i;we must have

that after a lie, the receiver moves to a state with the highest expected continuation payo¤

given that the sender is strategic. As de�ned above, the receiver moves to a state where the

expected continuation payo¤ for the receiver conditional on the bad type of sender is equal

to vSl (and for the sender is US (l)):

Before we state the �rst lemma, denote

j� 2M (j) �

8><>: j 2Mj after a true pBj vBj� + pSj vSj� � pBj vBj0 + pSj vSj0;

after a lie: vSj� � vSj0;8j0 2M

9>=>; :
Thus, the payo¤ of the sender after lying is:

US (Lji) = �2i + (1� �) �
X
i�

'L (i; i
�)US (l) :

Similarly, the payo¤ of the sender after telling the truth is:

US (T ji) = (1� �i)2 + (1� �) �
X
j�

'T (i; j
�)US (j

�)

Lemma 2.3. j =2 D ) 'L (i; j) = 0;8i 2M:
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Proof. By incentive compatibility, 'L (i; j) > 0 ) vSj � vSj0 ;8j0 2 M: Therefore we can

write the payo¤ of the sender after lying as:

US (Lji) = �2i + (1� �) �US (l) :

We now show a lemma that will be very helpful in subsequent results. The lemma is

that whenever the sender reaches a state where �i = 1; i.e., the highest possible belief, then

the sender will strictly prefer to lie. This is because by lying the sender gets the highest

possible current payo¤ and is then placed on the lowest state l. However, lying or telling

the truth in l is strictly better for the sender than telling the truth in a state with belief

higher than 1
2 :

Lemma 2.4. In the highest state the strategic sender lies with probability one (except for

the trivial equilibrium where all the states are the same):

US (Ljn) > US (T jn) :

Proof. We can write the utility of the strategic sender as:

US (Lji) = �2n + (1� �) �US (l) ;

US (T ji) = (1� �n)2 + (1� �) �
X
j2M

'T (i; j)US (j) :
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We can write the expected continuation payo¤ of the sender as:

US (j) = (1� �j)2 + (1� �) �
X
s2M

'T (j; s) (1� �s)2 + ::: (2.29)

+(1� �)t �t�2k + (1� �)
t+1 �T+1US (l) :

Note also that telling the truth in any state gives the strategic sender a lower current

payo¤ than the babbling payo¤, and lying at state n gives the strategic sender the highest

current payo¤ among all other states. Also, for 8j it must be true that (1� �j)2 � �2l ; and

also that �2j � �2n: In state sn we can write the utility for the sender as:

US (Ljn) = �2n + (1� �)
t �t�2l + (1� �) ��2l + :::+ (1� �)

t+1 �t+1US (l) ; (2.30)

and since we have that:

(1� �j)2 + (1� �)t �t�2k <
1

4
+ (1� �)t �t�2n

< �2n + (1� �)
t �t
1

4
� �2n + (1� �)

t �t�2l :

We can substitute in (2.29) and (2.30) to get that: US (j) � US (Ljn) ;8j: In particular

this holds for j = n:

Corollary 2.1. If the state has belief 1 then the sender strictly prefers to lie:

�i = 1) US (Lji) > US (T ji) :
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Lemma 2.5. The sender weakly prefers to lie in all the states:

US (Lji) � US (T ji) ;8i:

Proof. Suppose US (T ji) > US (Lji) ) qi = 1 ) �i = 1:By the corollary above, we have a

contradiction.

We show that the best states to move once the type of sender is identi�ed as strategic

are those with lowest beliefs. In other words, that �l = �1: The proof is by showing that

placing a strategic sender on state s1 gives the receiver a higher payo¤ than if the sender is

placed on state sl (l > 1) : Remember that after a lie, the receiver knows with probability

1 that the sender is strategic.

From now on, we write qi independently of the particular history h. We do this w.l.o.g.

because the argument holds following any history for which the current state is si.

Sending the bad sender to vSl gives the receiver the following payo¤:

vSl = ql

n
� (1� �l)2 + (1� �) ��j�'T (l; j�) vSj�

o
+ (2.31)

+(1� ql)
�
��2l + (1� �) �vSl

	
:

However, in this state i the strategic sender weakly prefers lying to telling the truth.

For if is this not the case, qi = 1 ) �i = 1; which implies that lying is actually better for
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the sender. So we have to consider only the case where

(1� �i)2 + (1� �) ��j�'T (i; j�)US (j�) � �2i + (1� �) �US (i) :

Thus equation (2.31) can be written as:

vSl = ��2l + (1� �) �vSl : (2.32)

Now consider a deviation where the receiver receives a lie and decides to place the sender

in the lowest belief state instead of moving to the state where the expected continuation

payo¤ is vSl . This deviation gives the receiver a payo¤ of:

vS1 = q1

n
� (1� �1)2 + (1� �) ��j�'T (1; j�) vSj�

o
+ (1� q1)

�
��21 + (1� �) ��vSi

	
:

Again, we have only to consider the case where:

(1� �i)2 + (1� �) ��j�'T (i; j�)US (j�) � �2i + (1� �) �US (i) :

For if this is not true then q1 = 1 and state 1 would not be the lowest belief state. Thus,

again we can write:

vS1 = ��21 + (1� �) �vSl : (2.33)

However we can compare the expected payo¤ on equations (2.32) and (2.33) to see that:
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vS1 � vSl ; since :

��21 + (1� �) �vSl � ��2l + (1� �) �vSl :

This means that after a lie, the receiver always prefers to place the bad sender on state 1.

'L (i; 1) = 1;8i:

Lemma 2.6. Memory state 1 has highest expected payo¤ given a strategic sender: 1 2 D:

Proof. The expected payo¤ of the receiver given a strategic type of sender is given by:

vSl = ql

n
� (1� �l)2 + (1� �) ��j�'T (l; j�) vSj�

o
+ (1� ql)

�
��2l + (1� �) �vSl

	
:

However,

(1� �l)2 + (1� �) ��j�'T (l; j�)US (j�) � �2l + (1� �) �US (l) ;

for if the sender strictly prefers to tell the truth in state l; then we would have that �l =

1: And lying would be strictly preferred as we saw in corollary (1). This would be a

contradiction.

Thus we can write vSl as :

vSl = ��2l + (1� �) �vSl :

Now consider the expected continuation payo¤ of placing a strategic sender in state 1.

Again, we need only to consider the case where

(1� �1)2 + (1� �) ��j�'T (1; j�)US (j�) � �21 + (1� �) �US (1) :
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Thus, we can write vS1 as:

vS1 = ��21 + (1� �) �vSl :

However, �1 � �l ) ��21 � ��2l ; and �nally:

��21 + (1� �) �vSl � ��2l + (1� �) �vSl :

Thus, vS1 � vSl : Since by de�nition of vSl ; vS1 � vSl ; we proved this lemma.

The corollary below shows an immediate consequence of this lemma is that unless there

is a state �2 such that �2 = �1 and vS2 = v
S
1 ; we must have that 'L (i; 1) = 1:

Corollary 2.2. All the states with lowest expected continuation payo¤ for the sender must

have the same belief:

i 2 D ) �i = �1:

Proof. Since we ordered the states by �i; by de�nition �1 � �l: Suppose �l > �1: As shown

in the lemma above:

vSl = ��2l + (1� �) �vSl ;

vS1 = ��21 + (1� �) �vSl :

If �l > �1 ) vSl < v
S
1 : This is a contradiction:

Corollary 2.3. For any state j such that �j > �1 then by incentive compatibility it must

be true that 'L (i; j) = 0:
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Proof. After a lie we have that Pr (Bji; L) = 0;8i. Then by incentive compatibility it must

be that vS1 > v
S
j which implies that 'L (i; j) = 0:

In the following lemma we show that, in equilibrium, the order of the states is exactly the

opposite of the order by vSi : This means that a state with higher belief has lower expected

continuation payo¤ given that the sender is strategic. The proof relies on the fact that after

lying the sender is placed in a state where his expected payo¤ is vS1 : Again, this lemma

relies on the �rst result of this section, which says that lying is always weakly preferred by

the sender.

Lemma 2.7. �i and vSi have the exact opposite ordering.

Proof. Consider any state si: The expected payo¤ conditional on the type of sender being

strategic can be written as vSi = ��2i + (1� �) �vS1 : Consider two states siand sj such that

�j > �i. Then it must be that:

��2i + (1� �) �vS1 > ��2j + (1� �) �vS1 ; (2.34)

but (2.34) implies that vSi > v
S
j .

This lemma leads us to the following result: the order of states will be the same as the

order by vBi . This means that states with higher beliefs have higher expected continuation

payo¤ for the receiver given that the sender is a behavioral type. The proof of this corollary

relies on incentive compatibility. If a state is reached with positive probability, then there

must not exist another state that has higher expected continuation payo¤ for the receiver
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regardless of the types of sender (i.e. higher vSi and v
B
i ). Since a state with lower belief has

higher vSi it must be that this state with lower belief has lower v
B
i : Otherwise for whatever

posterior the receiver holds, it is always strictly better to move to this lower belief state

than to the original state.

Lemma 2.8. For states reached with positive probability, � and vB have the exact same

ordering.

Proof. Suppose �k > �j ; and vBj � vBk : If j is reached with positive probability, then 9 i�

such that:

pBi�v
B
j +

�
1� pBi�

�
vSj � pBi�vBj0 +

�
1� pBi�

�
vSj0 ; 8j0:

Since �k > �j ; we already know that vSj > v
S
k : Thus,

pBi0 v
B
j +

�
1� pBi0

�
vSj � pBi0 vBk +

�
1� pBi0

�
vSk ; 8i0:

In particular, for i0 = i�: Thus, it must be that k is never reached with positive probability.

Lemma 2.9. If the receiver knows with probability one that the sender is behavioral type,

he will update to the state with highest expected continuation payo¤ given a behavioral type

of sender:

US (Lji) > US (T ji)) 'T (i; h) = 1:

Proof. Since the strategic type strictly prefers to lie at state si it must be true that after

any history h we have that qi = 0. This in turn implies that Pr (Bji; T ) = 1: Since we know
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that vBh � vBi0 ;8i0 and also that vBi and �i have the same ordering, we must have that:

n = argmax
i0
pBi v

B
i0 +

�
1� pBi

�
vSi0 = argmax

i0
vBi0 :

Thus, 'T (i; n) = 1:

Lemma 2.10. n 2 U and �u = �n ,8u 2 U :

Proof. First we show that vBn = v
B
u ; u 2 U : We also know that qn = 0: Suppose vBu > vBn

then, we have that the transition to state u has probability one 'T (n; u) = 1 (since qn = 0).

vBu = � (1� �u)2 + (1� �) �
X
u�

'T (u; u
�) vBu�

� � (1� �n)2 + (1� �) �
X
u�

'T (u; u
�) vBu�

� � (1� �n)2 + (1� �) �vBu = vBn :

Thus, vBu > v
B
n cannot happen. The proof that �u = �n is analogous to corollary 2.

The next lemma will be important in order to show that the receiver will not move to

a lower state after a true signal.

Lemma 2.11. If the sender strictly prefers to lie on state i and is indi¤erent in state j,

then �i > �j :

US (Lji) > US (T ji) and US (Ljj) = US (T jj)) �i > �j :
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Proof. Suppose US (Lji) > US (T ji), US (Ljj) = US (T jj) and �i � �j :

US (Lji) = �2i + (1� �) �US (1) ;

US (T ji) = (1� �i)2 + (1� �) �US (B) ;

�2i + (1� �) �US (1) > (1� �i)
2 + (1� �) �US (B) : (2.35)

But, we also have that:

�2j + (1� �) �US (1) = (1� �j)
2 + (1� �) ��j�'T (i; j�)US (j�) : (2.36)

Since, �i � �j ; we have that:

�2j + (1� �) �US (1) � �2i + (1� �) �US (1) > (1� �i)
2 + (1� �) �US (h) :

However: US (h) � US (i) ;8i and (1� �i)2 > (1� �j)2 :Thus,

(1� �i)2 + (1� �) �US (h) > (1� �j)2 + (1� �) ��j�'T (i; j�)US (j�) :

Finally, from (2.35) and (2.36) we have that:

�2j + (1� �) �US (1) > (1� �j)
2 + (1� �) ��j�'T (i; j�)US (j�) :

This is a contradiction with equation (2.36).

The lemma below shows that the receiver will not walk backwards after receiving a true

signal. This is true because after receiving this true signal, the receiver does better staying
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in the same place rather than degrading the sender. Both the current and the future payo¤

are higher.

Lemma 2.12. After a true signal the transition rule is weakly increasing:

�j > �i ) 'T (j; i) = 0:

Proof. Suppose �j > �i and 'T (j; i) > 0: First note that by incentive compatibility it must

be true that:

pBj v
B
i +

�
1� pBj

�
vSi � pBj vBj +

�
1� pBj

�
vSj :

However, it can also be written as:

pBj v
B
i +

�
1� pBj

�
vSi = p

B
j

 
� (1� �i)2 + (1� �) �

X
i�

'T (i; i
�) vBi�

!
+
�
1� pBj

�
vSi :

But vSi = �US (i) = US (Lji) � US (T ji) ; with strict inequality only if qi = 0:

If US (Lji) > US (T ji) ) 'T (i; n) = 1; implying that �i > �j (see lemma (20) that

implies that if qi = 0 and qj > 0) �i > �j). Thus, we conclude that US (Lji) = US (T ji) :

Therefore, vSi can be written as:

vSi = � (1� �i)
2 +

X
i�

'T (i; i�) vSi� : (2.37)

The expected continuation payo¤ of moving to state si after observing the truth in state

sj can be written using (2.37) as:

pBj v
B
i +

�
1� pBj

�
vSi = � (1� �i)

2 +
X
i�

'T (i; i�)
�
pBj v

B
i� +

�
1� pBj

�
vSi�
�
: (2.38)
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If, instead of going to state i after a truth, the receiver decides to stay in state j for one

more period, he gains from that:

pBj v
B
j +

�
1� pBj

�
vSj = � (1� �j)

2 +
X
j�

'T (j; j
�)
�
pBj v

B
j� +

�
1� pBj

�
vSj�
�
: (2.39)

By incentive compatibility and de�nition of j�and i� we have that

pBj v
B
j� +

�
1� pBj

�
vSj� � pBj vBi� +

�
1� pBj

�
vSi� : (2.40)

Using (2.40) in (2.38) and (2.39) gives us:

pBj v
B
j +

�
1� pBj

�
vSj � pBj vBi +

�
1� pBj

�
vSi :

Lemma 2.13. The receiver always starts either at the lowest memory state or at the lowest

after the babbling state:

'0 (i) = 0;8�i > �(2):

Proof. The ex-ante receiver chooses in which memory state to start the game. He will start

the game at state i0 such that i0 = argmaxi �vBi + (1� �) vSi : Given the results 1 and 3 in

proposition (2.7), we have that � < pBj ;8j > 1: Thus, if '0 (i0) > 0;for some �i0 > �(2); then

state si0 is not reached with positive probability in the game, except for time t = 0.

This concludes the proof of proposition 2.7. To relate this proposition with the one

presented in the text, we need two additional results:



2.8 Appendix 62

Lemma 2.14. The beliefs are extreme:

lim
�!0

�l = 0; for 8l 2 D,

lim
�!0

�u = 1; for 8u 2 U .

Proof. We can calculate the posterior of the sender�s type on any state l 2 D as:

pBl =
X

h2sl\HB

� ((h; T ) jsl) (2.41)

However, given the results on 2.7.1 and 2.7.3 from proposition 2.7 together with the fact

that the strategic senders will either remain on one of the states in D forever or will visit

it in�nitely often, this state, call it l;will be such that i holds. For this, note in this case

we have that as � ! 0, Pr (h1jsl) ! 0 where h1 means that the time period is 1 and

therefore Pr (Bjsl)! 0. By incentive compatibility it will then imply that 'T (l; l) = 1 and

consequently �l = 0:5:

Eventually all the strategic types will have lied. In particular, since states are observable,

qu = 0; for 8u 2 U . There are no reputation incentives on the last state, and all strategic

senders lie when they reach that state.

In other words, as � ! 0 we have that the strategic senders will be locked in the lowest

state and also that US (Lju) > US (T ju) ;8u 2 U since in the highest states there are no

reputation incentives. Thus, eventually only behavioral types remain in the last state, and

they stay in the state forever. We then have that lim�!0 �u = 1; for 8u 2 U .

We now show that the order of beliefs is the same as the order of posteriors. Consider
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two states �i and �j ,8i; j such that: �j > �i but also such that in equilibrium the posteriors

have di¤erent order: pBj < p
B
i : We will show that this is a contradiction.

Using the monotonicity lemma, we can prove our result. The intuition is that if you

have a state si with lower belief � and at the same time higher posterior than another state

sj , then the sender can�t be indi¤erent between lying and telling the truth in states si and

sj .

Lemma 2.15. The beliefs of the states are weakly ordered according to the posteriors:

�j > �i ) pBj � pBi :

Proof. Consider any two states i and j such that: �j > �i and pBj < p
B
i : This implies that

US (T ji) = US (Lji) and US (T jj) = US (Ljj) cannot hold at the same time. Recall that

US (T ji) = (1� �i)2 + (1� �) �
X
i�

'T (i; i
�)US (i

�) ;

US (Lji) = �2i + (1� �) �US (1) :

Since the beliefs (�i) have the same order as US (i) ; from the monotonicity lemma we

have that
P
i� 'T (i; i

�)US (i
�) �

P
j� 'T (j; j

�)US (j
�) :Thus:

US (T ji) = (1� �i)2 + (1� �) �
X
i�

'T (i; i
�)US (i

�)

> (1� �j)2 + (1� �) �
X
j�

'T (j; j
�)US (j

�)

= US (T jj) :
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At the same time we have that:

US (Lji) = �2i + (1� �) �US (1)

< �2j + (1� �) �US (1)

= US (Ljj) :

We have that US (T ji) > US (T jj) and also that US (Lji) < US (Ljj) : Thus, US (T ji) =

US (Lji) which, in turn, implies that US (Ljj) > US (T jj) : However,

US (Ljj) > US (T jj)) qj = 0;

which implies that pBj = 1. This is a contradiction. Thus, the only possibility is if:

US (T jj) = US (Ljj)) US (T ji) > US (Lji)) �i = 1;

but again we have a contradiction.

2.8.3 Deterministic transition rules

This section shows necessary and su¢ cient conditions for the bounded memory player to

use non random transition rules. The result below shows a necessary condition on the prior,

given a memory size n:

Proof of Proposition 2.4. This shows the lower bound on the priors so that the

receiver plays a pure strategy. The proof is by induction. Consider �rst the two last states,

n� 1 and n: We want to compute a threshold on the prior of that memory state such that
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the receiver will use 'T (n� 1; n) = 1:

We know that �n = 1; if �2n�1 + (1� �) � 14 > (1� �n�1)2 + (1� �) �1. Then lying is

better than telling the truth and qn�1 = 0; implying that �n�1 = �n�1: But if the equation

above holds with equality �2n�1 + (1� �) � 14 = (1� �n�1)
2 + (1� �) �1; then the sender is

indi¤erent between lying and telling the truth. Rearranging the incentive compatibility of

the sender we have that:

�n�1 =
1

2
+ (1� �) �3

8
: (2.42)

Thus, we need to �nd the lower bound on prior or, equivalently, the highest q that

can support (2:42) : The intuition is that if q is too high, the posterior will be low and

the receiver will not want to move forward, so we need to consider the receiver�s incentive

compatibility constraint as well.

To compute the incentive compatibility of the receiver, note that: vBn = 0; vBn�1 =

� (1� �n�1)2 ; vSn = �1�
(1��)�
1�(1��)�

1
4 ; and vSn�1 = ��2n�1 �

(1��)�
1�(1��)�

1
4 :

For the receiver�s incentive compatibility to hold, we need that:

pBn�1
�
vBn � vBn�1

�
+
�
1� pBn�1

� �
vSn � vSn�1

�
� 0:

In this context, rearranging terms and substituting the posteriors and the expected contin-

uation payo¤s we have that:

�n�1
�n�1 +

�
1� �n�1

�
qn�1

�
vBn � vBn�1

�
+

 
1�

�n�1
�n�1 +

�
1� �n�1

�
qn�1

!�
vSn � vSn�1

�
� 0;
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which happens if and only if:

�n�1 �
�n�1 + �2n�1

2
: (2.43)

For any �n�1 that is smaller than the threshold above, we need more q to induce the

� needed for (2.42) and this would mean that the posterior is too low for the receiver to

want to go up. If, on the other hand, the prior is strictly higher than (2.43) then we need

a lower q and (2.42) is maintained. We showed that 'T (n� 1; n� 1) = 0, moving forward

is better for the receiver.

The conclusion of this result is that if we arrive at state sn�1 with a �prior� �n�1 <

�n�1+�2n�1
2 then we can�t have a pure strategy, and it must be that 'T (n� 1; n� 1) > 0:

If we arrive at state sn�1 with a �prior��n�1 �
�n�1+�2n�1

2 then using pure strategy is best

response for the receiver.

Now let�s look at state sn�2 and generalize the argument for states i = n� 2; n� 3; :::1:

The necessary conditions for 'T (n� 2; n� 1) = 1 are the following.

Suppose (2.42) and (2.43) so that the last two states the receiver plays pure strategy.

We want to �nd conditions for 'T (n� 2; n� 1) = 1:

If (2.42) does not hold with equality, i.e., if it is better for the sender to lie in state sn�1,

then the lower bound is higher. Thus we focus on the case where (2.42) holds with equality.

More on this appears later. We use the equation:

�n�2 =
1

2
+ (1� �) �

2

�
�2n�1 �

1

4

�
; (2.44)

together with �n�1 �
�n�1+�2n�1

2 which is the same as
�n�2
�n�2

� �n�1+�2n�1
2 ; in order to
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write this condition as:

�n�2 �
�
�n�1 + �2n�1

2

�
�n�2: (2.45)

If �n�2 is smaller than in equation (2.45) then when we get to state sn�1 the receiver

will rather stay put than go forward.

We can now generalize the argument and we�ll have that for all i � n� 2 :

�i �
�n�1 + �2n�1

2

n�2Y
k=i

�k: (2.46)

�

Corollary 2.4. As the number of memory states increase n!1, the threshold computed

in (2.46) goes to zero:��n ! 0:

The result above guarantees that moving from state n� 1 to state n, 'T (n� 1; n) = 1;

is incentive compatible: But what guarantees that 'T (i � 1; i) = 1;8i < n? In other

words, what guarantees that there will not be any incentive to deviate from the speci�ed

deterministic transition rule? The next lemma answers these questions. I show that if the

receiver is playing pure strategy 'T (i; i
�) = 1, the beliefs are computed through Bayesian

updating and are such that the sender is playing a best response. Then it will be incentive

compatible for the receiver not to deviate from the pure strategies. First we check for

a deviation from moving forward to staying put. Then we generalize this result to any

deviation of going backwards. The second step is to show that going forward one state

(equilibrium) is better than jumping.

Lemma 2.16. ��j (1� �j) > ��j
�
1� �j0

�2 � (1� �j)�2j0 , 8j; j0 2M.
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Proof.

�j (1� �j) < �j
�
1� �j0

�2
+ (1� �j)�2j0 ()

�j � �2j < �j � 2�j�j0 + �j�2j0 + �2j0 � �j�2j0 ()

��2j < �2�j�j0 + �2j0 ()

�2j � 2�j�j0 + �2j0 > 0 ()
�
�j � �j0

�2
> 0

This holds for any �j ; �j0 :

To prove proposition 2.5 in the text, we show two lemmas.

Lemma 2.17. Suppose that the transition rule is deterministic, 'T (i; i+ 1) = 1; and the

strategy for the sender is a best response for him. Then it must be true that:

pBi�1v
B
i +

�
1� pBi�1

�
vSi � pBi�1vBi�s +

�
1� pBi�1

�
vSi�s;8s > 0:

Proof. We need to show that deviating to state si+1�s will not be a best reply for the

receiver after a true signal is received in state si. Note that we can write the equilibrium

payo¤ using the q and the discount factors.

�eq = ��i

 
nX
k=i

(1� �i)2
!
�(1� �i)

�
qi

�
(1� �i)2 + �US (i+ 1)

�
+ (1� qi)

�
�2i + �

1

4

1

1� �

��
:

(2.47)

We want an appropriate way to write (2.47) so that we can compare with the payo¤ from

a deviation. Note that we can write �i + (1� �i) qiqi+1 = �i+1�i; �i + (1� �i) qiqi+1qi+2 =

�i+2�i+1�i; and so on. However, (1� �i) qi (1� qi+1) = (1� �i+1)�i; (1� �i) qiqi+1 (1� qi+2) =
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(1� �i+2)�i+1�i and so on. We can then write (2.47) as:

�eq = ��i (1� �i)� �
�
�i�i+1 (1� �i+1) + (1� �i)

1

4

1

1� �

�
� (2.48)

��2
�
�i�i+1�i+2 (1� �i+2) + �i (1� �i+1)

1

4

1

1� �

�
+ :::

The deviation payo¤ can be written in the same way, but with qdev as being the best

response for the sender after a deviation. Note however, that US (Lji� 1) = US (T ji� 1) ;

thus (1� �i�1)2 + �US (i) = �2i�1 + � 14
1
1�� and therefore, any q

dev
i 2 [0; 1] will not change

equation (2.48). In particular, consider ~qi = q
eq
i : In fact, consider the same modi�cation for

the entire strategy for the sender, i.e., ~qj = q
eq
j ;8j � i:

Let�s rewrite the deviation payo¤ replacing the qs in the way suggested above. We want

to compare the payo¤s period by period. At all periods before reaching state sn�s lemma

(23) tells us that the equilibrium payo¤ is higher. It remains for us to show what happens

at state sn�s. The payo¤ in this case is

��i (1� �n�s)2 � (1� �i)
n�1Y
k=i

qk�
2
n�s;

which can be written as:

�
n�1Y
k=i

�k

h
��n (1� �n�s)

2 + (1� ��n)�2n�s
i
:

However, we have that:

�eq (n� s+ 1) > �dev (n� s+ 1) ()

��n (1� �n)
2 + (1� ��n)�2n < ��n (1� �n�s)

2 + (1� ��n)�2n�s
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Note that this will happen if and only if:

1� ��n < ��n � 2��n�n�s + ��n�2n�s + �2n�s � ��n�2n�s ()

0 < (1� �n�s) f2��n � (1 + �n�s)g :

Finally, this happens if and only if:

2��n > 1 + �n�s:

However, a necessary condition for equilibrium in pure strategy was that it should be

incentive compatible for the receiver to update in state sn�1. This condition is that �n�1 �

�n�1+�2n�1
2 ;knowing that we have that ��n = pBn�1 =

�n�1
�n�1

, but �n�1 �
�n�1+�2n�1

2 ; thus

��n �
1+�n�1

2 > 1+�n�s
2 : Thus, we showed that the equilibrium payo¤ is greater than the

deviation payo¤ at every period.

Lemma 2.18. Under deterministic transition rules we must have that:

�iv
B
i + (1� �i) vSi � �ivBi+s + (1� �i) vSi+s:

Proof. The equilibrium payo¤ is again given by (2.47), and again we can write as in equation

(2.48). We can further change the q and write (2.48) with qn�s = 0;instead: This change in

qn�s will not change the value of �eq since US (Ljn� s) = US (T jn� s) or, (1� �n�s)2 +
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�US (n� s+ 1) = �2n�s + �:The deviation payo¤ is:

�dev = ��i

 
nX

k=i+s

(1� �k)2
!
� (1� �i) (2.49)�
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1

4

1

1� �

��
:

Replace qdevj for ~qj for all j 2 fi+ s; :::; n� 1g : Consider ~qi = qeqi : In fact, consider the

same modi�cation for the entire strategy of the sender, i.e., ~qj+1 = q
eq
j :We �rst show that a

deviation to the immediately higher state is not pro�table. Then, we extend the argument to

all other states. There is also an alternative proof through induction. Even if the bounded

memory player could choose his beliefs satisfying only the incentive compatibility of the

sender, he would still choose the same beliefs induced by the deterministic transition rules.

Once we use ~q as the deviation probabilities for the sender, then (2.49) can be written

as:

�dev = �
h
�i (1� �i+1)2 + �i�2i+1

i
� (2.50)
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�
�i

h
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i
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h
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i
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1

4

1

1� �

�
+ :::

We now want to compare the payo¤s in (2.48) but with qn�1 = 0 and (2.50) period by

period. Note that according to lemma (9) we have that the payo¤ in (2.48) is greater than

the payo¤ in (2.50) in every period before n � i: At this period, ~qn�1 = 0: Period n � i

we have that ��i (1� �n�1)2 � (1� �i)
�Qn�2

k=i qk

�
�2n�1 whereas in the deviation we have

that:��i (1� �n)2 � (1� �i)
�Qn�2

k=i qk

�
�2n.
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We want to show that:

��i (1� �n�s)2 � (1� �i)
 
n�s+1Y
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!
�2n�s > ��i (1� �n)
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!
�2n;

but this happens if and only if:
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!
:

This can be written as

(1� �n�s)
(
(1� �i)

 
n�s+1Y
k=i

qk

!
(1 + �n�s)� �i (1� �n�s)

)
> 0;

1 + �n�1 � �i

 
n�s+1Y
k=i

qk

!
� �i

 
n�s+1Y
k=i

qk

!
�n�s + �i�n�s > 0:

Finally, this implies that

1� �i

 
n�s+1Y
k=i

qk

!
+ �n�1 + �i�n�1

 
1�

 
n�s+1Y
k=i

qk

!!
> 0;

which is always true. This argument can be extended to all states with higher beliefs. I.e.,

deviating to state i+ 2 is worse than i+ 1 and so on.

In the lemma below we show that there is at most one equilibrium in pure strategies

when there are no identical states.

Proof of Proposition 2.6. Let � and �0 be the vectors of beliefs associated to two

di¤erent equilibria in pure strategies (if the beliefs are identical, then we must have that the

equilibrium is in fact unique). Assume w.l.o.g. that �i > �0i for some i 2 M. This implies
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that �i+1 > �0i+1; for 8i < n� 1: This result is true because of the incentive compatibility

of the sender, for if �i > �0i and �i+1 � �0i+1 then it must be that either the receiver is

not playing a pure strategy or that the sender is not indi¤erent between telling the truth

or lying in state i in one of the two equilibria. This would imply that the sender is a

deterministic transition rule in state i in one of the two equilibria. Given this result, now

let�s examine two possibilities:

It could be that �n�1 = �0n�1 implies that �n�2 = �
0
n�2; also �n�3 = �

0
n�3; and so on,

which is a contradiction.

It could also be that �n�1 > �0n�1: However, by incentive compatibility of the sender

we will have that �n�2 > �0n�2 and so on. Thus, �1 > �
0
1 ) q1 > q

0
1, which in turn implies

that pB1 < p
0B
1 : We know that �2 > �

0
2 hence q2 > q

0
2. Following the argument we get that

pBn�2 < p0Bn�2; but �n�1 > �0n�1: This is a contradiction since in this case it must be that

�n�1 = pBn�2 and �
0
n�1 � p0Bn�2: �



Chapter 3

Bounded Memory and Limits on

Learning

3.1 Introduction

Many economic interactions have been going on for a very long time. Interestingly, in

some cases it is not clear whether both parties bene�t from the relationship. Notorious

examples are of countries that have been negotiating and engaging in disputes for centuries,

sometimes with no clear bene�ts for one of the parties. The question that we ask in this

chapter is the following: can we explain long-term relationships even when parties have

opposite preferences?

If agents have opposite interests, a repeated interaction will not su¢ ce to sustain a

long-term relationship between them. Including prior uncertainty about the opponent�s

motives can only sustain reputation in the short run. In a repeated game with incomplete

information and zero-sum normal type, the actual type will be asymptotically revealed, as

we will show in the chapter. This convergence result implies that the two parties might

74
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cooperate in the short-run, but not in the long-run.

We show that incorporating bounded memory on the uninformed player will impact the

possibility of long-run reputations. Thus, bounded memory explain long-term relationships

even in the extreme case where parties have opposite interests.

Memory is modeled as a �nite set of states in which the strategy of the player is to

choose a transition rule and an action rule. At every stage game the only information that

the player has about the history of the game is her current memory state. She can then

compute a best response based on the beliefs about the actual history at that point, knowing

that she is forgetful across periods. Thus, unlike a non-deterministic �nite automaton, the

equilibrium strategy of the bounded memory player must satisfy incentive compatibility

constraints.1

The setting is a repeated zero-sum game with two-players, one of which has bounded

memory. He faces a player that, with some exogenous probability, is committed to a speci�ed

mixed strategy. In a repeated game with incomplete information, a player with a bounded

number of states faces two constraints: bounded complexity on implementing a strategy

and bounded ability on updating beliefs about the actual type. The literature on automata

has focused on the �rst issue, while we focus on the second.2 In the setting of this chapter,

the bounded memory player is uninformed about the type of his opponent. Moreover, the

complete information game has a unique equilibrium in the repeated game. Thus, the

complexity of implementing a strategy is simple, and the issue is on updating beliefs and

1Memory modeled in such a way was already studied in Monte (2006), where we also discuss the com-
parison between the bounded memory models and the �nite automata models.

2See, for example, Neyman (1985), Rubinstein (1986), and Kalai and Stanford (1988) for repeated games
with automata.
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learning.

Our main result is shown in proposition 3.3 in the text. We compute an upper bound

on the learning ability of the uninformed player as a function of his memory size. Although

this upper bound decreases exponentially as memory increases, it is always bounded away

from zero. This implies that learning is never perfect in a world with bounded memory.

The impossibility of learning is due to the incentive compatibility constraints, and not to

the memory restriction itself. In fact, we show that, without these incentive compatibility

constraints, the player is able to learn even with a two state-automaton. Thus, if the players

could credibly commit to a memory rule, learning would be possible.

The main intuition for our result is that with bounded memory the agent can hold only

one of a �nite number of beliefs in equilibrium. And, these beliefs cannot be too far apart

from each other, or else the sequential rationality constraints would not be satis�ed.

Earlier papers have worked on the question of learning in the long run. Under di¤erent

settings, Hart (1985), Kalai and Lehrer (1993), and more recently Sorin (1999), for example,

showed that under some conditions the beliefs over an underlying stochastic process will

eventually converge.

In reputation games, or repeated games with one-sided incomplete information, there is

an analogous result. Either the uninformed player�s beliefs about the informed player�s type

converges to the �correct one�in the limit or the types will eventually pool in some equilibria

of the complete information game. Aumann and Maschler (1995), Benabou and Laroque

(1992), Jackson and Kalai (1999) and Cripps, Mailath and Samuelson (2004) showed that

this convergence result holds with an impressive generality, robust to di¤erent monitoring
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technologies and di¤erent underlying games. Essentially, their main result asserts that in

an incomplete information game, after an arbitrarily long history, any equilibrium of the

continuation game must be an equilibrium of the complete information game. The strategic

use of reputation will be eventually washed o¤.

The benchmark model in this chapter is closer to Benabou and Laroque�s (1992) model.

They showed that the Markov perfect equilibria in an imperfect monitoring game where

parties have opposite interests will exhibit this asymptotic revelation of types.3 We use

some of their arguments in section 3.3.

Explaining permanent reputations with imperfect memory is also currently being studied

by other authors. Ekmecki (2005) showed that if the memory of the uninformed player is

restricted (in the form of a �nite set of ratings) then there exists a rating system (set of

ratings and a transition rule) that can explain permanent reputation. The main di¤erence

between the two papers is that here memory is endogenous. It is part of the uninformed

player�s strategy and has to respect incentive compatibility requirements. In Ekmecki (2005)

the memory process is exogenous: designed by a third party.

Other authors have worked on alternative explanations for permanent reputations. For

example, in a game where types are continuously changing, permanent reputation can be

sustained as shown by Holmstrom (1999), Cole, Dow and English (1995) and Mailath and

Samuelson (2001). In a related study, Bar-Isaac (2004) showed that a model of reputation

in teams can endogenously introduce this type uncertainty and thus sustain reputation.

3There are two main di¤erences between our benchmark model and Benabou and Laroque�s (1992). First,
we have a perfect monitoring game with a commitment type playing a mixed strategy, whereas they have
an imperfect monitoring game with the equivalent of an action type (in the honest equilibrium). Second,
the payo¤ matrix for both players is di¤erent in the two papers.
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Finally, in the �rst chapter we studied a similar game. There, we considered the case

where the commitment type was playing a pure strategy. As a result, types were revealed

in �nite time with probability one. In this chapter we consider a behavioral type that is

committed to a mixed strategy. In particular, a strategy that plays all actions with positive

probability after any history. The di¤erence is analogous to the distinction between perfect

monitoring and imperfect monitoring games. This modi�cation allows us to study the long

run e¤ects of limited memory.

The reason for why we had full learning in the �rst chapter, but not here is that, in

the former, the equilibrium beliefs associated to every state did not impose a bound on the

posteriors. This happened because one of the actions was fully revealing (never played by

the commitment type). Here, the commitment type is playing a mixed strategy that assigns

positive probability to every action. Thus, in equilibrium, the beliefs can�t be too far away

from each other, since this would violate the sequential rationality constraints as we show

in section 3.6.1. This implies that we cannot have full learning.

Section 3.2 describes the model. In section 3 we solve the model for the full memory

case. We present a de�nition of learning with bounded memory in section 3.4. Learning

with a two-state automaton is shown in section 3.5. Section 3.6 is the main part of the

chapter where we show that under bounded memory reputation will always be sustained.

We conclude in section 3.7.
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player1: Informed
Head Tail

player 2:
Uninformed

Head
Tail

1;�1 �1; 1
�1; 1 1;�1

Figure 3.1: Payo¤s: Matching Pennies

3.2 Model

3.2.1 Repeated Game with Incomplete Information

The game is an in�nitely repeated zero-sum game with incomplete information. We will

consider the two-player matching pennies case. There are two players: one informed, called

player 1, and one uninformed, player 2. In the beginning of the game, nature draws one

of two possible types for the informed player: k 2 fB;Sg. Either a behavioral type (B) or

a strategic type (S). The uninformed player is not aware of nature�s choice. The payo¤s

of the stage game are shown in �gure 1. The repeated game payo¤ is discounted by a rate

� < 1.

The commitment type is playing a given mixed strategy known by both players. The

normal type maximizes his payo¤s, given by the payo¤ matrix in �gure 1.

One interpretation for this game is the following. A policy maker is uninformed about

his adviser�s motives. With some exogenous probability, this adviser is playing a known

action, which can be thought of as giving the correct advice about some issue. This loyal

adviser makes mistakes with a �xed probability (committed to a mixed strategy). There is

also a chance, though, that the adviser has opposite preferences and his goal is to make the

policy maker worse-o¤. He might pretend to be loyal, but his ultimate goal is to mislead
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his employer.

There are two main reasons for considering this particular game. First, the question of

learning under bounded memory is more clear cut here. In a repeated game with incomplete

information, the uninformed player needs memory states for two di¤erent reasons: to be able

to play complex strategies and to learn about his opponent�s type. Thus, modeling a player

with bounded memory is capturing bounded rationality in the way a player implements his

strategy as well as in his ability to learn. 4 We want to �isolate� the e¤ects of bounded

memory on the ability to learn, so we chose a game in which the strategies are not complex,

even under full memory. In the complete information game there is a unique equilibrium

in the repeated game. This implies that the only issue in this game is on learning the

opponent�s type.

The second for choosing the repeated matching pennies game is that we want to stress

that an in�nitely renewable reputation can happen even in a world in which parties have

completely opposite interests. In a general two-player game (not zero-sum) there might be

a possibility of types pooling in the same equilibrium of the repeated game. In this case, the

question of learning looses its byte. The zero-sum nature of this game, though, will ensure

that the types will not play the same equilibrium continuation strategy in any subgame.

In other words, the strategic type will not mimic the behavioral type forever. If he did so,

he would get negative payo¤s inde�nitely, which is lower than zero, which he can always

guarantee himself with.

4Modeling bounded rationality in implementing a strategy has been widely studied in the automata
literature�see Neyman (1985), Rubinstein (1986), and Kalai and Stanford (1988), for example. On the other
hand, linking bounded rationality with learning is one of the main contributions of Monte (2006).
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3.2.2 Memory and Strategies

In the reputation game we make no restrictions on the strategic type�s memory. He can

recall the exact history of the game. We denote H to be the set of histories, where a typical

element of this set is h. A history h is the sequence of action pro�les and the sequence of

memory states of the uninformed player.

We will assume throughout the chapter that the memory state of player 2 is observed

by player 1 at every point in time. Thus, the history observed by the informed player is

the actual history of the game. We de�ne the strategy of the strategic type of the informed

player as

q : H ! � fHead; Tailg :

Where the set of actions of the stage game is fHead; Tailg. Moreover, we will restrict

attention to strategies that are Markovian in the memory states.

The behavioral type is committed to a simple mixed strategy. After every history of the

game he plays heads with the same probability �q, i.e. �q = Pr (Headjh) ; 8h 2 H. Where

1
2 < �q < 1 and �q is known by both players.

The uninformed player has bounded memory. Memory is de�ned as a �nite set of states

M = f1; 2; :::; ng ; and the typical elements of this set are si or sj , or simply i or j.

The strategy of the bounded memory player is to choose the map from states to action,

which we call the action rule,

a :M!� fHead; Tailg :
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Also, the bounded memory player chooses a transition from state to state

� :M�fHead; Tailg2 ! �(M) ;

which determines how he update beliefs. Finally, he decides on an initial state �0 2 �(M),

which is decided before he enters the �rst stage game. We denote 'H (i; j) as the probability

of moving from state i to state j given that the opponent has played heads, regardless of

his own action.5

3.2.3 Beliefs

We will assume that the beliefs of the bounded memory player are computed using the

invariant distribution (when it exists) of the types over the memory states. I.e. conditional

on the actual type of player 1, the strategy pro�le � = (� ; a; q) will induce a distribution

over the memory states. If this distribution converges to some invariant distribution, we

refer to this distribution as fk where fk (i) is the ergodic probability of being at state si

given that the actual type of player 1 is k 2 fB;Sg.

When this distribution does not converge, we will use the limit of the average of the

distributions. Let Pr (sijk; �; t) be the probability that at time t the bounded memory player

will be at memory state si given that the actual type of player 1 is k and that the strategy

pro�le is �. The long-run average is given by �fk (i) := limt!1
1
t

Pt�1
j=0 Pr (sijk; �; j) for

k 2 fB;Sg.

As we said, though, we will consider only the class of equilibria in Markov strategies

5The player ignores his own action in the transition rule because it does not reveal anything about his
opponent�s type. This is due to the simultaneous nature of the stage game.
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(Markovian on the memory states). This is possible given the assumption that memory

states are observable by the informed player. In the equilibria that we look at, the strategic

type of player 1 will play a stationary strategy that is conditioned only on the current

memory state of the uninformed player. The reason for why we focus on this particular

class of equilibria is that we will have an invariant distribution over the memory states that

will illustrate nicely the intuition for our main result.6

Given this class of strategies, the strategy pro�le � = (� ; a; q) will induce a transition

matrix for each type of the informed player. Let PB =
�
~'B (i; j)

�
and PS =

�
~'S (i; j)

�
be

the stochastic matrices that determine the evolution of both types of the informed player

over the memory states. For the behavioral type, the ith row and jth column element of PB

is given by:

~'B (i; j) := �q'H (i; j) + (1� �q)'T (i; j) .

For the strategic type,we have:

~'S (i; j) := qi'H (i; j) + (1� qi)'T (i; j) :

The stochastic matrices PB and PS de�ne transition probabilities on M which guar-

antees us that the sequence
n
1
n

Pn�1
i=0

�
P k
�io1

n=1
converges to some stochastic matrix R.

This means that limn!1 1
n

Pn�1
j=1 Pr (sijk; �; j) = Pr (sijk; �; t = 0)R; for any sequence

6The assumption of observable memory states and the Markovian restriction is not crucial for our results.
We made these assumptions only to have well de�ned Markov matrices. We could, instead, have used
stopping probabilities over the time periods and compute beliefs using a �frequentist�approach as suggested
in Piccione and Rubinstein (1997) and used in Wilson (2006), both papers study a decision problem. This
was done in a multi-player game in Monte (2006).
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fPr (�jk; �; t)gt =
�
Pr (�jk; �; 0) (T )t

	
t
:7 The product Pr (�jk; �; t = 0)R is an invariant dis-

tribution, which we denote fkand use it to compute the beliefs.

Long-Run Distributions

First, lets consider only the case where either fBi or fSi is positive. This means that all

states are visited in�nitely often given the strategy pro�le �. When both fBi and fSi are

zero, we assume that the bounded memory player will hold beliefs according to a modi�ed

and very long game. We will de�ne and discuss this re�nement later.

For the case of positive ergodic distribution of at least one of the two types in all the

memory states, we assume that beliefs are computed in the following way.

Whenever the receiver enters a memory state, he holds a belief about his opponent�s type.

In other words, there is an equilibrium reputation level associated to every memory state.

At the beginning of the stage game, this prior on the opponent�s type is calculated using

Bayes rule given the ergodic distribution. Formally, we de�ne the prior on the behavioral

type as follows.

Assumption (Prior Belief in a Memory State)

When fBi or fSi is positive, the prior belief on the opponent being a behavioral type at the

beginning of a stage game when the current memory state is si is given by:

�i := Pr (Bjsi) =
�fBi

�fBi + (1� �) fSi
: (3.1)

This is the crucial assumption of the section, perhaps of the chapter. All the other

7See Stokey and Lucas (1985), theorem 11.1
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beliefs will be obtained by using Bayes�rule and the belief at the beginning of the stage

game, �i. For example, the belief that the action played in a stage game at memory state si

is head, is equal to the probability of a behavioral type times the probability that this type

plays heads, plus the probability of a strategic type multiplied by his probability of playing

heads. Formally, we have that the belief associated to the action played in each memory

state is denoted �i and computed according to the following equation:

�i := Pr (Headjsi) = �i�q + (1� �i) qi: (3.2)

At the end of the stage game in memory state si, and after either action, Head or Tail;

was played by player 1, the uninformed player will hold a posterior belief on the actual type

of player 1 being behavioral. We denote this posterior belief by pHi or p
T
i : This posterior is

computed using the prior �i and Bayesian updating given the strategy pro�le � and memory

state si: It is given by:

pHi := Pr (BjHead; si) =
�fBi �q

�fBi �q + (1� �) fBi qi
; (3.3)

pTi := Pr (BjTail; si) =
�fBi (1� �q)

�fBi (1� �q) + (1� �) fSi (1� qi)
: (3.4)

We also know that Pr (SjHead; si) = 1� pHi and similarly for action tail:

Re�nement: Reducible Memories

For the case where both fBi and f
S
i are zero, we will consider the following re�nement. The

uninformed player has probability zero of being in a state where both fBi and fSi are zero,

as the number of time periods increase. However, if he �nds himself in such a state, he will
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hold beliefs about the underlying true type of player 1. We take the view that the beliefs

in such a state are not �free�. I.e., even in states where the ergodic distribution assigns

probability zero the beliefs must be consistent.

The way we de�ne beliefs in the case of states not reached with positive probability by

the distribution fB and fS is to think of very long, but �nite games. The uninformed player

forms beliefs by considering an alternative game �N of length N , where N is �su¢ ciently

large�. In this modi�ed game the strategy pro�le used is exactly the same as the one in the

original game, but truncated at the N th stage game. We de�ne the frequency of a type in

memory state si during the execution of the strategy pro�le � in the game �N as:

fBNi = Pr (sijB; �;�N ) = lim
N!1

X
h2si

Pr (hjB; �;�N ) ; (3.5)

where Pr (hj�;B;�N ) is the probability of reaching a history h during a play of game �N

and the execution of the strategy pro�le �; given that the actual type is the behavioral

type. Similarly, we de�ne

fSNi = Pr (sijS; �;�N ) = lim
N!1

X
h2si

Pr (hjS; �;�N ) : (3.6)

We use this re�nement only for states not reached with positive probability by the

ergodic distribution, thus, the sum in (3.5) and (3.6) will converge. Again, the prior in a

stage game is de�ned as:

�Ni := Pr (Bjsi; �;�N ) =
�fBNi

�fBNi + (1� �) fSNi
: (3.7)

Again, the bounded memory player�s prior belief on the action of the stage game and on
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his posterior on player 1�s type in memory state si are given by Bayes�rule, using (3.7). We

obtain similar expressions to (3.2), (3.3), and (3.4), but substituting fki by the distribution

induced by this modi�ed game: fkNi.

We are now ready to de�ne consistent beliefs. Let � denote the beliefs of the bounded

memory player: � = (�; p; �) :

De�nition 3.1. (Consistency)

A pair (�; �) is consistent if given a strategy pro�le �, the beliefs � are computed according

to (3.1)-(3.2). Whenever the memory states have probability zero in the long run, beliefs

are computed using (3.7).

3.2.4 Equilibrium

In games with forgetfulness, agents might return to the same information set. They forget

that they were already in that situation. In particular, they forget what they did when

they were in that situation. The beliefs that the player holds are the ones induced by the

strategy pro�le �. If the player deviates at some point in time, he will not remember it,

since he is forgetful and does not recall his own actions.

However, we view memory as a conscious process. The player makes conscious decisions

on what to remember and on what to forget. Given the beliefs induced by the strategy

pro�le, he will decide on the best action to take, knowing that he will not remember these

actions in the future.

For these reasons, the solution concept for games with bounded memory is not the

sequential equilibrium. In a game without forgetfulness, sequential equilibrium implies

that at any information set, the continuation strategy is optimal for the player given his
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opponent�s strategy and given his beliefs at that information set. In a game with bounded

memory, the continuation strategy at an information set need not be optimal. The player is

not able to revise his entire strategy, since he does not remember actions, or �revised plans�.

Informally, the player is playing a coordination game with all his di¤erent selves, and he

might be trapped in a bad coordination equilibrium.

Our concept of optimality involves only optimal actions and transitions, given the beliefs

induced by the strategy pro�le and taking as given the player�s own behavior in future

nodes. We refer to this concept of optimality as incentive compatibility. This concept was

�rst suggested by Piccione and Rubinstein (1997) and also used by Wilson (2003), both for

decision problems.8 In this dissertation it is the �rst time studied in a game.

Given a behavioral strategy pro�le � = (� ; a; q), the beliefs that the bounded memory

player holds in every information set are the beliefs induced by �. Should the player decide

to deviate at some point and use a transition � 0 or an action a0 di¤erent than the one

speci�ed by (� ; a), then in the following stage game, the beliefs that this player holds are

still the beliefs induced by � = (� ; a; q).

When deciding on an action to take, and on which state to move, the bounded memory

player takes his decisions based on expected continuation payo¤s associated with his deci-

sions. He takes his strategy�both action rule and transition rule�as given. The reason for

doing this is that if he deviates today, he will not remember it tomorrow.

We will say that the pair (�; �) ;is incentive compatible if two conditions hold. First,

for the informed player we must have that his strategy is a best response for him given a

8Piccione and Rubinstein (1997) denoted this concept as modi�ed multiself consistent. We call it incentive
compatibility, following Wilson (2003).



3.2 Model 89

memory rule (� ; a). Second, for the uninformed player there are no incentives from deviating

in any time t given the initial strategy � and given the action rule a.

For the �rst condition, we can write:

US (� ; a; q) � US
�
� ; a; q0

�
8q0 2 Q: (3.8)

Where US (� ; a; q) is the expected repeated game payo¤ for the strategic type of player 1,

given the strategy pro�le �. Q is the strategy space for the strategic type.

To de�ne the second condition formally, we need extra notation. For every strategy

pro�le � = (� ; a; q) each memory state has an associated expected continuation payo¤. We

denote vki as the expected continuation payo¤ for player 2 at memory state si, given that

the actual type of player 1 is k 2 fB;Sg. We can write these payo¤s as a sum of two terms.

The �rst term of vBi and v
S
i corresponds to the expected payo¤ in the stage game given that

the memory state is si. The second term corresponds to the expected continuation payo¤

after the �rst stage game at memory state si. This term depends on the associated vi of all

states and on the transition rule � . Formally we write:

vBi = (2ai � 1) (2�q � 1) + �

0@�qX
j2M

'H (i; j) v
B
j + (1� �q)

X
j2M

'T (i; j) v
B
j

1A ;
vSi = (2ai � 1) (2qi � 1) + �

0@qi X
j2M

'H (i; j) v
S
j + (1� qi)

X
j2M

'T (i; j) v
S
j

1A :
Thus, we de�ne an incentive compatible strategy for the bounded memory player as

follows.
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De�nition 3.2. (Incentive Compatibility: Memory Rule)

If a strategy � = (� ; a; q) is an incentive compatible equilibrium, then it must be true that

the memory process (� ; a) satis�es the following conditions for 8i; j; j0 2M 8k 2 fH;Tg:

�kij > 0) pki v
B
j +

�
1� pki

�
vSj � pki vBj0 +

�
1� pki

�
vSj0 ; (IC1)

a�i = arg max
a2[0;1]

(2a� 1) f�i � (1� �i)g : (IC2)

The �rst condition, says that when taking the decision of to which memory state to

move, player 2 chooses the optimal state, with its associated expected payo¤, given his

beliefs about the opponent�s type p.

The second condition, (IC2), says that if � = (� ; a; q) is an incentive compatible equilib-

rium, then the action rule implies taking the myopic best action every stage game. Suppose

a 6= a� where a� is the optimal myopic action. Suppose also that player 2 deviates and play

a�, and then transition to state sj ; for example. Player 1 knows about this deviation and

might want to punish player 2: The fact that player 2 is forgetful implies (by assumption)

that whenever he reaches state sj he will assume that on-equilibrium path actions were

taken. Now suppose that there is a way to indicate (through actions of player 1 that he is

punishing player 2). Then, if this deviation phase is pro�table for player 1, he might as well

do it even if no deviation had taken place. Player 1 evaluates what gives him a higher payo¤

and plays according to it. This implies that player 2 cannot be punished for a deviation of

the equilibrium action rule.

Under the multi-self interpretation, a strategy is incentive compatible if no interim self

wants to deviate from the equilibrium strategy assuming that all future selves are following
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it, and all past selves have been following the equilibrium strategy as well. The bounded

memory player can deviate from his equilibrium strategy, but he cannot revise his entire

strategy. In other words, he cannot trigger a sequence of deviations once the game has

started.

We are now ready to de�ne the equilibrium concept of this game. The main part of

the concept is to understand the beliefs and the incentive compatibility constraints. The

equilibrium of this game must be such that the strategies are incentive compatible and

consistent with the beliefs. We formalize the equilibrium concept for this bounded memory

game below.

De�nition 3.3. (Equilibrium)

The strategy pro�le � = (� ; a; q) is an incentive compatible equilibrium if there exists a

belief � such that the pair (�; �) is consistent and incentive compatible.

3.3 Equilibrium with Full Memory

In this section we analyze the benchmark model and look at the equilibrium under full

memory. Our main purpose is to show that although types are not revealed in �nite time,

as we show in the proposition below, they will be so in the limit.

This is a model that explains short-run relationships between two parties with opposite

preferences. The uninformed player has to act every period and is trying to learn about

his opponent�s motives at the same time. The strategic type of the informed player has a

current incentive for misleading the uninformed player. However, he might �nd it pro�table

to �pretend�to be the commitment type, and explore the bene�ts of reputation in a future
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period. We will show in the proposition below that reputation evolves in a realistic fashion,

with ups and downs, without ever reaching complete certainty.

We will focus on Markovian equilibrium only, since they su¢ ce for our purposes.9 Under

full memory, the posteriors of the uninformed player are denoted by �Ht+1 := Pr (Bj�t;Head)

and �Tt+1 := Pr (Bj�t; Tail). The player updates using Bayes�rule.

�Ht+1 =
��q

��q + (1� �) q (�) ; (3.9a)

�Tt+1 =
� (1� �q)

� (1� �q) + (1� �) (1� q (�)) : (3.9b)

In equilibrium, it must be true that the strategic type is mixing after every history. If

this was not true, than after some history h one of the two actions fHead; Tailg would only

be played by the behavioral type. This would imply that deviating from the equilibrium

strategy by playing this action would give a reputation of one to the strategic type forever.

Thus, for such an equilibrium to exist we need that the current payo¤ must be larger than

the continuation payo¤ with reputation one. A discount factor not too low rules out this

possibility. We state the proposition below, and prove it in the appendix.

Proposition 3.1. (Reputation Incentives under Full Memory)

In equilibrium it must be true that

US (Headjh) = US (Tailjh) ; and 0 < q (h) < 1; 8h 2 H:

9 In this game Markovian equilibrium does exist and is unique (see Benabou and Laroque (1992) for a
proof in a slightly di¤erent context). We suspect that it is indeed the unique equilibrium in the game.
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At any reputation level the strategic type of the informed player is indi¤erent between

playing heads and tails. Unlike Benabou and Laroque (1992), for example, where a high

enough reputation induces this strategic type to strictly prefer to play tail and �milk�down

his reputation, here the perfect monitoring nature of the game implies that if in the on-

equilibrium path the player strictly prefers one action to the other, this would create the

possibility of jumps in the reputation, which in turn would give even higher incentives for

the sender to play the action and get the reputation jump. This will ruin the possibility of

�equilibrium with reputation jumps�.

The reputation f�tgt2N is a Markov process (as shown above in (3.9a) and (3.9b)).

It depends on the sequence of actions, on the equilibrium q and on the actual type of the

informed player. From the uninformed player�s point of view the reputation of the opponent

follows a martingale:

E
�
�t+1j�t = �

�
= � (�) �Ht+1 + � (1� �q) + (1� � (�)) �Tt+1

= �t:

However, conditional on the actual type of the opponent, the reputation evolves di¤er-

ently. When the actual type is a behavioral type, we have that:

E
�
�t+1j�;B

�
= �q�Ht+1 + (1� �q) �Tt+1:

We use equations (3.9a), (3.9b) and also the fact that:

�q2

� (�)
+
(1� �q)2

1� � (�) > 1:
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This implies that conditional on the actual type being behavioral, the reputation of this

type will evolve according to:

E
�
�t+1jB; �

�
= �

(
�q2

� (�)
+
(1� �q)2

1� � (�)

)
> �: (3.10)

The reputation tends to increase every period and is a strict submartingale.

We show that the evolution of beliefs on the informed player�s type given that the actual

type is a strategic type follows, instead, a supermartingale. Before we can show this result,

we �rst prove the following lemma.

Lemma 3.1. The strategic type plays head less often than the behavioral type:

qi < �q; 8mi 2M.

Proof. Suppose that there exists a reputation level � such that q (�) > �q: This implies

that � > �q > 1
2 . Also it must be that the updating is given by: �

H = ��q
� < � whereas

�T = �(1��q)
(1��) > �. Thus, playing tail gives the sender a better current payo¤ (since a �

1
2)

and also a better reputation level.

Conditional on the type of player 1 being strategic, the reputation of this strategic type

will evolve according to:

E
�
�t+1j�; S

�
= q (�) �Ht+1 + (1� q (�)) �Tt+1:

Using equations (3.9a) and (3.9b) we can write this expected increase in the belief on

the type being behavioral given that it is actually the strategic type is given by:
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E
�
�t+1j�; S

�
= �

�
�qq (�)

� (�)
+
(1� �q) (1� q (�))

1� � (�)

�
< �; (3.11)

thus the belief �t follows a supermartingale when the actual type is strategic.

The proposition below shows that the beliefs will converge conditional on the type of

your opponent. Using the Martingale Convergence Theorem together with (3.10) and (3.11)

we can show that limt!1E [�tjB] = 1 and limt!1E [�tjS] = 0

Proposition 3.2. (Benabou and Laroque (1992)�Learning Under Full Memory)10

There is complete learning in this game:

lim
t!1

E [�tjB] = 1;

lim
t!1

E [�tjS] = 0:

The intuition for the proof is the following. We know from (3.10) that E
�
�t+1j�;B

�
� �

with strict inequality if � 2 (0; 1). From the martingale convergence theorem, limt!1E
�
�t+1j�;B

�
!

x1 for some random variable x1 2 [0; 1] with distribution d�1. Then, for all period t, it

must be true that:

E
�
�t+1jB

�
=

Z 1

0
E
�
�t+1j�;B

�
d� (�) :

Taking the limit as t!1, means that we are taking the expectation for the reputation

of the player conditional on being a good type. This expectation depends on the initial

reputation, which is given by some known distribution � (�). As we take the limit for

t ! 1 we want to know the expectation of future reputation when the distribution itself

10For the formal proof see Benabou and Laroque (1992, p953-954).
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converged to �1. From (3.10) we know that E
�
�t+1j�;B

�
> �: Thus, for � 2 (0; 1) it

must be that the reputation should converge to one of the extremes: zero or one. It should

be intuitively clear, though, that there can be no mass at 0: Thus, the reputation must

converge to one. The same reasoning is true for the case of a strategic type.

3.4 Learning or �Type Separation�

In the game with full memory, complete learning (or type separation) means that there

are some equilibria such that the types are separated statistically. In other words, the

uninformed player eventually learns the actual type. The beliefs about the actual type

either converges to one (if it is a behavioral type) or to zero (if it is a strategic type).

In a world with bounded memory, the de�nition of learning is not straight forward, since

the player will only hold one of a �nite number of beliefs in equilibrium. Thus, convergence

of beliefs has a rather di¤erent meaning than in the full memory case.

The claim that we make is that under bounded memory, the de�nition of learning means

that, at some point in time, the uninformed player will almost surely have a good impression

(if behavioral type) or a bad impression (strategic type) of the informed player.

De�nition 3.4. (Complete Learning)

An equilibrium will exhibit type separation (or complete learning) if and only if there are

two disjoint subsets ofM; call them MS and MB such that the two conditions below hold:

lim
t!1

Pr (si 2MBjB; t) = 1; (3.13)

lim
t!1

Pr (si 2MS jS; t) = 1:
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Although the de�nition is only a claim about the distribution of the types across the

memory states, it implies extreme beliefs. This will be shown in section 3.6.1.

3.5 Learning with a Two-State Automaton

In this section we will show that it is possible to separate types even with a two-state

automaton. This is not, in any way, to say that this is the automaton that gives the

boundedly rational player the highest payo¤. It is only to show that if memory is not a

conscious process, then screening is possible. Perhaps very expensive, but possible, even

with a minimal amount of memory.

Consider the case of a two state automaton where 'H (1; 2) = 1, 'T (1; 2) = 0; 'T (2; 1) =

0 and 'H (2; 1) = 0. Also, lets take a2 = 1 and the initial state to be s1. Now consider the

case in state s1 player 1 is indi¤erent between playing heads or tail. However, in state s2

she strictly prefers to play tail. Thus, for any belief that she has, she always prefers to play

tail. This implies that q2 = 0 and we will loot at the case where q1 = 0 as well.

At state s1 the payo¤of the strategic player is given by U1 (Tail) = 2a1�1
1�� and U1 (Head) =

1 � 2a1 + �U2. At state s2 it is given by: U2 = 2a2 � 1 + �U2. Thus, we have U2 = 1
1�� .

Now, substituting for U1; gives us:

U1 = 1� 2a1 + �
1

1� � ;

using the fact that U1 (T ) = 2a1�1
1�� and solving for a1 :

2a1 � 1
1� � = 1� 2a1 + �

1

1� � :
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Thus, we must have that:

a1 =
1

2� � . (3.14)

This strategy pro�le: � = (� ; a; q) induces fS = (1; 0). The stochastic matrix that

determines the invariant distribution of the commitment type is given by:

TB =

0B@ 1� �q �q

0 1

1CA :
The long run distribution is fB1 = 0 and fB2 = 1. Since a1 is given by (4.8), and q1 = 0,

the strategic type of player 1 will never leave state s1: This means that fS1 = 1 and f
S
2 = 0,

and thus the condition of type separation in de�nition 3.4 is satis�ed.

Thus, it is not the restriction of two memory states per se that will impair learning. It

is the equilibrium condition as we will see on the following section.

3.6 Bound on Learning for n Memory States

We now turn to the main result of the chapter. We show that in any Markovian equilibrium

a player with n memory states cannot fully separate types, as de�ned in 3.4.

We �rst show the result for irreducible memories. I.e., if a memory is such that the only

ergodic set is the entire set of states, then types are never fully separated. In the second

part of the section, we show the proof for the case of a reducible memory.

The main intuition for the result is the following. The player has only a �nite set of

states, thus the number of posteriors after a particular action induced in equilibrium is

�nite. If the memory state is ever to be reached in equilibrium, by incentive compatibility,

the uninformed player must have had an incentive to do so. This implies that the beliefs in
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all memory states that are reached through the transition rule must not be �too far apart�.

3.6.1 Irreducible memories

Lets consider only irreducible memories for now, we will leave the case of reducible memories

for the following section. Irreducible memory is a set of states with no transient states (in

which you leave with probability one and never return). If there was complete learning

in these cases, then the action would not reveal enough extra information to the bounded

memory player to move to another state. Thus, the state would be absorbing, contradicting

irreducibility.

The proposition below is the main result of the chapter. It shows that under irreducible

memories there is an upper bound k, which is a function of the parameters, on the distri-

bution of types over the memory states. This implies that learning is bounded away from

one.

Before showing the result, note that under irreducible memories, the transition rule �

will de�ne a unique ergodic distribution over the memory states.

Proposition 3.3. (Bound on Learning)

For 8�; � if (� ; a; q) is an equilibrium in the n memory state game, then there exists some

bound k�;� > 0 such that:

Pr (M jS; t) � 1� k ) Pr
�
MC jB; t

�
� 1� k 8t;8 M 2M.

Proof. Consider only the case where memory is irreducible. We �rst note that there exists

at least one mi 2M such that �i � �"
�"+(1��)(1�") . For suppose not. Then, for 8i 2M it is
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true that:

�i =
�fBi

�fBi + (1� �) fSi
>

�"

�"+ (1� �) (1� ") ;

this implies that (1� �)
�
fBi (1� ")� fSi "

�
> 0. Which in turn implies that:

fBi (1� ") > fSi ": (3.15)

Summing the equation (3.15) for all the state in M we have that:

X
i2M

fBi (1� ") >
X
i2M

fSi ": (3.16)

However, since we know that
P
i2M f

S
i � 1� " and

P
i2M f

B
i � " . We can then write

(3.16) as:

" (1� ") �
X
i2M

fBi (1� ") >
X
i2M

fSi " � " (1� ") : (3.17)

It is then true that (3.17) does not hold. Thus, we must have that for at least on state

mi 2M

�i �
�"

�"+ (1� �) (1� ") : (3.18)

For this state not to be absorbing, we need that pHi � pTj for at least some state mj

where j 6= i. Computing the posterior in state mi gives us pHi =
�i�q
�i
:

At the same time, we must have that: pTj =
�j(1��q)
1��j . Since p

H
i � pTj , we have that:

�j(1��q)
1��j � �"

�"+(1��)(1�")
�q
�i
, which in turn implies that:

�j �
�"

�"+ (1� �) (1� ")
(1� �j) �q
�i (1� �q)

: (3.19)
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Equation (3.19) gives us pHj �
�"

�"+(1��)(1�")
�q2(1��j)
�i(1��q)�j . From state mj we move to some

state mj0 and this gives us the following condition: pHj � pTj0 . We then repeat the procedure

above and note that the highest upper bound for the posterior pHn�1 is given when the

transition occurs without any jump and it is:

pHn�1 �
�"

�"+ (1� �) (1� ")
�qn�1 (1� �2) (1� �3) ::: (1� �n�1)

�1 (1� �q)n�2 �2�3:::�n�1
:

On the other hand, we must also have that pHn�1 � pTn �
�(1�")

�(1�")+�"
(1��q)
(1��n) . This implies

the following inequality:

�"

�"+ (1� �) (1� ")
�qn�1 (1� �2) (1� �3)� :::� (1� �n�1)

�1 (1� �q)n�2 �2�3 � :::� �n�1
� � (1� ")
� (1� ") + (1� �) "

(1� �q)
(1� �n)

:

Thus, we have that:

� (1� ") "+ (1� �) "2

�" (1� ") + (1� �) (1� ")2
� (1� �q)n�1 �1�2�3 � :::� �n�1

�qn�1 (1� �2) (1� �3)� :::� (1� �n)

�
�
1� �q
�q

�n�1
:

Lets denote: ' (") = 1
1�" and construct � ("), such that:

� (") =
� (1� ") "+ (1� �) "2
�"+ (1� �) (1� ") :

For " 2 (0; 1) we have that ' (�) is continuous and '0 (�) > 0. Also, for � < 0:5 it is

immediate to show that �0 (") > 0. For the case in which � > 0:5; note that @�(�)@� > 0, for
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any " < 0:5. To show that there is a bound on learning, note that:

lim
"!0

� (1� ") "+ (1� �) "2

�" (1� ") + (1� �) (1� ")2
= 0:

This, together with
�
1��q
�q

�n�1
> 0; and with the fact that the product ' (")� (") is contin-

uous and strictly increasing for ", gives us our bound on learning.

Thus, if " is small enough, then there is no possibility of learning through time. For

example, for n = 2 if � = 0:5 and �q = 2
3 then " �

3
8 is the bound.

The bound is for both fB1 and fS2 at the same time. I.e., it might happen that f
B
1 < "

but fS2 > ". It would be meaningless if the de�nition was only for �one-sided� learning.

Consider for example the case with only one memory state: fS1 = 1 and also f
B
1 = 1, but

there is no learning whatsoever.

Note that this bound is not tight. In other words, the agent will typically learn much less

than the bound that we calculated. In any case, as the number of memory states increases,

n ! 1, the bound quickly converges to zero, as one would suspect. An interesting open

question is to �nd the equilibrium memory rule that would lead to faster learning given the

number of memory states n.

3.6.2 Reducible case

We now turn to the reducible case. Although it is intuitively clear that a reducible memory

cannot have more learning than an irreducible one, because there are less states to �dilute�

the posteriors, we prove the result in this section.

Consider a memory with k recurrent classes R1;R2; :::;Rk and a set of transient states
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T .

We want to show that in this case there is also a bound on learning and, in fact, it is

smaller than in the irreducible case.

Proposition 3.4. (Bound on Learning: the Reducible Case)

For 8�; �; n if (� ; a; q) is an equilibrium in the n�memory state game with k recurrent classes

and one transient state, then there exists a bound k�;� > 0 such that:

Pr (M jS; t) � 1� k ) Pr
�
MC jB; t

�
� 1� k 8t;8 M 2M.

Proof. Suppose not. There are two sets of statesMS andMB such that 8" > 0 9 �t > 0 such

that Pr (MS jS; t) � 1� " and Pr (MBjB; t) � 1� " for 8t > �t. Consider only the case where

MS � Ri and MB � Rj where j 6= i. For if j = i then the result of proposition 3.3 applies

and we have that the bound on learning is
�
1��q
�q

�ni�1
; where ni is the number of states in

Ri. Also, if MS or MB belong to T then the result clearly does not hold: Pr (T jS; t) = 0

as t!1, similarly for Pr (T jB; t).

Now for every recurrent class Ri consider the memory state in which pTi is lower. Also

denote mh as the memory state in the transient class that has the highest posterior pHT . It

must be the case that pHT � pTi . This is true since all the mass of strategic types that enter

a recurrent class will stay there forever. Similarly, if pTT is the lowest posterior in T ; and

pHj is the highest posterior in some recurrent class, then: p
H
j � pTT .

Thus, the lowest bound is achieved (or highest possibility of learning) when every state

in the transient class connects to each other and every state in the recurrent classes also

connect to each other. Using the same reasoning as in proposition 3.3 we have that the
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bound is given by: �
1� �q
�q

�ni+nj+nT �1
:

However, this number is smallest when ni + nj + nT = n. In other words, the bound is

smallest when all the states communicate with each other.

3.7 Conclusion

Our chapter contributes to the literature on reputation and repeated games with incomplete

information. A celebrated recent result in this literature is that the play of the game

converges asymptotically to the play of a complete information game. This means that

players can pro�t from a �false�reputation only in the short-run. Constant opportunistic

behavior will lead to statistical revelation of the actual type, which means no long-run

reputation.

We show that under bounded memory we will not have full learning (or type separation)

even in the long-run.

The result of no learning is due to the incentive compatibility constraints, since it does

not apply for the case of a non-deterministic �nite automaton, even for the minimal one

with two states. Therefore, with initial uncertainty about types and bounded memory on

the uninformed player long-term reputations can be sustained even in the extreme case

where agents have opposite preferences.

The recent results on reputations and long-term relationships are shown to be robust to

di¤erent underlying games and di¤erent monitoring technologies. From what we showed in

this chapter though, it is not robust to cognitive constraints on the individuals.
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3.8 Appendix

We show here the proof of proposition ??. We show the result through two separate lemmas.

Lemma 3.2. For any � 2 (0; 1) ; the sender always weakly prefers to play tail:

US (Tailj�) � US (Headj�) :

Proof. Suppose there exists a reputation level � such that US (Headj�) > US (Tailj�). Then,

it must be that after a tail the receiver correctly updates the reputation of the player to

be 1, since in this case a tail could be observed only through a good type. In the case of

completely separating the types, the continuation game goes on with no uncertainty about

the opponent�s type, i.e. US (1) = 1
1�� . Thus:

1� 2a+ �US
�
�H
�
> 2a� 1 + �US (1) = 2a� 1 +

�

1� � ;

a <
1

2
+
�

4

�
US
�
�H
�
� 1

1� �

�
:

Since 1
1�� > US

�
�H
�
then it must be that a < 1

2 . However, if US (Hj�) > US (T j�)

then the strategic type plays head with probability one: q = 1 and � = ��q + (1� �) q =

1� � (1� �q) > 0:5.

However, if � > 0:5 this implies that the receiver can best reply with a = 1. Thus, it is

not an equilibrium.

This is not surprising since we had obtained the same result when the good type plays

a pure strategy (�q = 1). The departure from the pure strategy case is shown below.
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Lemma 3.3. For � > 2
3 and any � 2 (0; 1) ; the sender always weakly prefers to play head:

US (Headj�) � US (Tailj�) :

Proof. Suppose that there exists a reputation level � such that the sender strictly prefers to

play tail (like in the pure strategy case � �q = 1): US (Tailj�) > US (Headj�). This implies

that after observing head the receiver can update his posterior to 1 and play a best response

from then on.

2a� 1 + �US
�
�T
�
> 1� 2a+ �US (1) = 1� 2a+

�

1� � :

Rearranging and solving for US
�
�T
�
gives us:

US
�
�T
�
>
(2� 4a) (1� �) + �

� (1� �) :

However, it is also true that

(2� 4a) (1� �) + �
� (1� �) >

(2� 4) (1� �) + �
� (1� �) =

�2 (1� �) + �
� (1� �) =

�2 + 3�
� (1� �) :

Then, assuming that � > 2
3 so that 3� � 2 > 0; it must be that:

(2� 4a) (1� �) + �
� (1� �) >

�2 + 3�
� (1� �) >

1

� (1� �) >
1

(1� �) = US (1) :

Thus, US
�
�T
�
> 1

(1��) which cannot be true, since
1

(1��) is an upper bound for the

sender�s utility.



Chapter 4

Why Contracts? A Theory of

Credibility under (No)

Commitment

4.1 Introduction

In long-term relationships with uncertainty, learning occurs over time and is often costly.

The ability to commit to a contract can make learning faster and improve a player�s payo¤.

Classical examples are in the study of oligopoly models, and the theory of contracts.

In this chapter we study a credibility game in which commitment will not do any better

than sequential rationality. In a credibility model, perhaps counter intuitively, the ability

to contract will be bene�cial only when the adverse selection problem is less severe.

The underlying game is based on Sobel�s (1985) credibility model. A policy maker

receives messages from an informed advisor. The advisor can be one of two types: a

behavioral type, a loyal employee that will always inform the policy maker about the true

107
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state of the world, or a strategic type, one with opposite preferences to the policy maker.

This game is shown to have a unique equilibrium in which the advisor builds reputation

through time, until a period in which all �bad�types will have lied and the policy maker

will play a complete information game.

The question that we ask is whether the policy maker could screen faster than the

equilibrium outcome. Consider a game in which this policy maker could write a contract.

He could then screen the types in the �rst period so as to play a complete information game

from the second period onwards. In fact, the question is more general. Is there any contract

in which the receiver could commit to ex-ante that would improve his payo¤? We show

that commitment is ine¤ective; the receiver cannot improve his payo¤ by committing to a

contract ex-ante, even in the case where he can credibly commit to a random device, i.e.

commit to a particular mixed strategy. In other words, the policy maker will decide to play

the strategy that he would otherwise play and thus, the optimal contract will reproduce

Perfect Bayesian equilibrium (PBE).

The complete information version of the game studied here will have the property that

commitment is ine¤ective. We show that after adding initial uncertainty, this incomplete

information game will extend the results of the complete information game. The intuition

for this result is exactly the expert�s motives. The fact that the bad type has opposite

interests to the policy maker drives the result. Whenever the sender is of a bad type, the

game is a zero-sum game and commitment will play no role.

In section 4.2 we outline the model; �rst, the game with no ability to commit, and

second the game modi�ed with the ability to commit ex-ante to a strategy. In section 4.3
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Sender
Head Tail

Receiver
Head
Tail

1;�1 �1; 1
�1; 1 1;�1

Figure 4.1: Matching Pennies

we show the main result of the chapter for the special case of two periods. We then show

an example when commitment does improve the player�s payo¤. This is done in section

4.4. Section 4.5 extends the result of section 4.3 for any �nite repetitions of this game. We

conclude in section 4.6.

4.2 A Credibility Model

4.2.1 Standard no-commitment case

The game is a repeated zero-sum game with incomplete information. We will consider the

two-player matching pennies case. There are two players: one informed (sender) and one

uninformed (receiver). Before the �rst stage game, nature draws one of two possible types

for the sender: k 2 fB;Sg; either a behavioral type (B) or a strategic type (S). The receiver

is not aware of the sender�s true type. The payo¤s of the stage game are shown in �gure 1.

The repeated game payo¤ is discounted by a rate � < 1.

The behavioral type of the sender is committed to a pure strategy known by both players.

He is analogous to the honest expert that will always report truthfully to the policy maker

(see Sobel (1985)). The strategic type maximizes his payo¤s, which are shown in �gure

4.1. Note that this strategic sender has opposite preferences to the receiver and thus, his

goal is to make the receiver worse-o¤. This game was studied by Monte (2006), although
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in another context.

We will show that two properties are crucial for the argument of the chapter. The

opposite preferences between the players and the fact that the behavioral type is committed

to only one action. Interestingly, the receiver�s degree of risk aversion plays no role in the

argument.

Let h be a history in the game and ht a history of length t: The set Ht is the set of all

possible histories of same length t. The behavioral strategy of the receiver is a map from

the set of histories to the set of actions in the stage game. We denote this strategy by

at : Ht ! � fH;Tg :

With slight abuse of notation we denote a (ht) as the probability of the receiver playing head

when the history is ht. The behavioral type of the sender is committed to a pure strategy,

so that the probability of playing head is one, regardless of the history. The behavioral

strategy for the strategic type of the sender is denoted

qt : Ht ! � fH;Tg :

We say that q (ht) is the probability that the strategic type will play head if the actual

history of the game is ht.

The receiver starts the game with some prior � on the probability of facing the behavioral

type. We denote �t as the receiver�s belief at the beginning of time t on the sender being a

behavioral type.

We �rst look at the case where the receiver cannot commit to a strategy ex-ante. The
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receiver is learning over time the true type of his opponent. At the �rst time that the sender

plays tail, the receiver�s belief on the behavioral type drops to zero and the continuation

game is a complete information game with zero-sum opponents. This complete information

game has a unique equilibrium where both players play both actions with equal probabilities.

In the interpretation of the credibility game, it represents the case where the policy maker

no longer pays attention to the sender�s reports. Whenever heads is played in the stage

game, the receiver�s belief on the behavioral type is updated according to Bayes�rule, given

the strategy pro�le � = (a; q). Suppose that at the beginning of a stage game after some

history ht the receiver�s belief on the behavioral type is �ht and the strategic sender play

head with probability qht . Then, if heads is played in the stage game, the posterior belief

on the behavioral type will be given by:

�(ht;(H;�)) =
�ht

�ht +
�
1� �ht

�
qht
:

In the proposition below we show that this game has a unique equilibrium regardless of

the time horizon. We denote the incomplete information game above as �N , if the game

above is repeated N times.

Theorem 4.1. [Unique Equilibrium]

Given the number of stage games t and the prior on the behavioral type �, the game �t has

a unique equilibrium. This is true for any t � 1.

Proof. Let �� = (a�; q�) be an equilibrium strategy pro�le. Then, at the beginning of

some stage game t, the history of the game must be one of two possible histories. Either a

history such that there was at least one tail played so far by the sender or a history that
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contains only heads by the sender. In the �rst case, the unique PBE is the matching pennies

equilibrium. In the second case, the belief of the receiver is given by some �t (ht).

Consider a game of length t. Given a particular history of length t � 1; say ht�1, the

receiver holds a belief at the beginning of stage game t�1 given by � (ht�1; ��). The sender

will then use his behavioral strategy q� (ht�1). If the sender played heads in stage t� 1, the

receiver�s belief at the beginning of stage game t; regardless of his own action, is given by:

�(ht�1;(�;H)) =
� (ht�1; ��)

� (ht�1; ��) + (1� � (ht�1; ��)) q� (ht�1)
:

We know that for every given belief, the last stage game must have a unique outcome.

This argument shows that in the next to last stage game, a deviation from the equilibrium

action a� (ht�1) to some other action a0t�1 will not change the outcome in the last stage

game. In other words, if the equilibrium action a� (ht�1) is not the optimal one in the next

to last stage game, then the receiver will deviate to his myopic best one, say a0t�1. This

deviation will give him a higher payo¤ in the next to last stage game and the same payo¤

in the last stage game. Thus, the last stage game is myopic and the next to last stage

game must specify a myopic best response from the receiver. We still need to show that the

sender is also playing myopically in the next to last stage game.

At the last stage game, at � 0:5, regardless of the history. Thus, we can write

U (Hjt� 1) = 1� 2at�1 + � (2at � 1) ;

and

U (T jt� 1) = 2at�1 � 1:
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We also know that the receiver plays myopically in stage game t � 1. We will analyze all

the possible cases in stage t � 1 according to the receiver�s belief about the actions being

played.

First consider the case where the probability that the receiver�s belief about the sender

playing head is �t�1 > 0:5. Since the receiver plays myopically, this implies a1 = 1: In this

case:

U (T jt� 1) = 2at�1 � 1 = 1 > �1 + � (2at � 1) = U (Hjt� 1) :

This implies that the sender would �nd it pro�table to play tail in stage game t � 1,

qt�1 = 0. Thus, �t�1 = �t�1. Since the receiver plays myopically, this can only hold if

�t�1 >
1
2 . And in this case, there is a unique equilibrium.

Now consider the case where �t�1 = 0:5. This implies that any at�1 is a myopic best

response for the receiver. For this belief be equal to one half it must be true that

qt�1 =
1
2 � �t�1
1� �t�1

:

There is a unique qt�1 that satis�es this equation and it can only hold if �t�1 � 0:5.

Moreover, this implies that �t = 2�t�1 which, if, greater than
1
2 implies at = 1 and at�1

just enough to be consistent with mixing for the sender. I.e. 2at�1 � 1 = 1 � 2at�1 + �,

solving for at�1 gives us: at�1 = 2+�
4 and again, unique value. If �2 = 2�1 � 0:5 then in the

second stage we have that a2 = 0:5 and the unique value of a1 that is consistent with this

is a1 = 0:5.

The last case to consider is when the strategy pro�le �� and the actual history ht�1 are

such that the receiver�s belief before the next to last stage game is �t�1 < 0:5. We already
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know that the receiver plays myopically in the next to last stage game. Thus, in the case

where �t�1 < 0:5, the receiver�s actions is to play tail: at�1 (ht�1) = 0. Given this action,

the value for the sender to play tail is:

U (T jt� 1) = 2at�1 � 1 = �1; (4.1)

whereas by playing heads the sender can get a value of:

U (Hjt� 1) = 1� 2at�1 + � (2at � 1) � 1: (4.2)

We can see that (4.1) is smaller than (4.2). Thus, telling the truth is pro�table and

q (ht�1) = 1 which implies that the belief about heads being played must be one, and not

smaller than 0.5, i.e. �t�1 = 1.

We saw in the above lemma that for a given history ht�1, the PBE in the next to last

stage is unique, given a belief �t�1. The argument can be easily extended for any stage

game that precedes time period t� 1.

Remark 4.1. Note that for constructing this argument we did not need to separate two

di¤erent conditions: when deviations can be detected and when they cannot. In this game,

deviations cannot be detected and randomization is private, but this is not relevant for the

argument.

4.2.2 Commitment case

Now we consider the case in which the receiver can commit to a map of actions. The timing

of the game changes. Before the �rst stage game, the receiver announces and commits to a
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contract in which he speci�es a probability distribution over the set of actions after every

possible history. Then, the sender plays an action, gets a payo¤ and plays the next stage

game and so on.

The behavioral strategy for the sender is then given by the map:

qt : C �Ht ! � fH;Tg ;

which depends on the history and on the contract speci�ed by the receiver. The strategy

of the receiver is to specify a contract C which is a vector of probability distribution for

every possible history. I.e. the chosen contract C will be a map:

C : H ! � fH;Tg :

If the game is repeated t�times, for example, then a contract C must assign a speci�c

probability distribution over the actions for each di¤erent history.

4.3 The two-period case

We �rst show the result for the two-period case, which we denote �2. This will provide

intuition for the general argument.

4.3.1 Two period with no-commitment

In this section we show the two-period case. We will �rst construct the equilibrium of

this game; and argue that this equilibrium is unique. This is a special case of the general

theorem 4.1.
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a1 q1 �2 a2 q2
� > 1

2 1 0 1 1 �
1
2 � � >

1
4

2+�
4

1
2
��1
1��1

2�1 >
1
2 1 0

� � 1
4

1
2

1
2
��1
1��1

2�1 � 1
2

1
2

1
2
��2
1��2

Table 4.1: Equilibrium in two-stage game

At the second stage game there are no reputation e¤ects, so both players will play their

myopic best response. First, note that the receiver will always play head with probability

greater or equal to one half. If this was not true, then a2 < 0:5, which would imply that

the sender would play heads with probability one q2 = 1; and thus the receiver�s belief that

heads is played is �2 = 1. This implies that a2 < 0:5 is not a best response.

The receiver�s action will be greater than 0.5 if the belief that the sender�s type is

behavioral is also greater than 0.5. In this case, the receiver�s belief that heads will be

played is �2 = �2 > 0:5 and a2 = 1 is a best response regardless of q2. In the case where

the belief on the sender�s type is smaller than 0.5, the unique outcome in the second stage

game must specify a2 = 0:5 and q2 just enough to keep �2 = 0:5.

Knowing this, the receiver will play his myopic best response since he knows that his

own action will not change his belief on �2, which in turn determines his payo¤ in the second

stage. This implies that if � > 0:5, the game has a unique equilibrium where a1 = 1 and

q1 = 0 and the second stage game is a complete information game. In this case, we say that

there is perfect screening in the �rst period. When the initial prior on the sender�s type is

smaller than 0.5, then the unique equilibrium is such that �1 = 0:5 and the belief in the

second stage is either 0.5 or �2, whichever is higher.

Thus, we can summarize the equilibrium of this two-stage game in the table below.
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Table (4.1) shows that if � > 1
2 , then there is perfect screening in the �rst period.

However, if � � 0:5, the receiver will play an incomplete information game in the second

stage game as well.

The receiver�s utility in the unique equilibrium for an initial prior � is given by:

UR = � (2a1 � 1 + �) + (1� �) (q1 (2a1 � 1� �) + (1� q1) (1� 2a1)) : (4.3)

Since we are considering the case where the prior is between 1
4 and

1
2 , we can substitute

a1 as described in table (4.1). This gives us:

UR = �

�
2 + �

2
� 1 + �

�
+ (1� �)

�
q1

�
2 + �

2
� 1� �

�
+ (1� q1)

�
1� 2 + �

2

��
;

which, if we note that if q1 > 0 then the sender will weakly prefer to play tail. If he

is indi¤erent, because of the zero-sum nature of the game, then so is the receiver. We can

then write the receiver�s payo¤ as if q1 = 0.

UR = �

�
2 + �

2
� 1 + �

�
+ (1� �)

�
2 + �

2
� 1� �

�
;

which simplifying gives us the following expression:

UR =

�
2 + �

2
� 1
�
+ �� � � (1� �) : (4.4)

Another way of writing (4.4) is the following:

UR =

�
2 + �

2
� 1
�
(2�� 1) + ��: (4.5)
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4.3.2 Two period with commitment

In the event where the receiver can write down an enforceable contract, he could screen

perfectly in the �rst period. This contract with perfect screening would allow him to play a

complete information game in the second stage, giving him maximum payo¤ at that stage.

In fact, consider a very small increase in a1 from the action in table (4.1) such that

the receiver screens both types in the �rst period. Speci�cally, consider the case where the

prior is 1
2 � � > 1

4 and the receiver commits to an action a
C
1 =

2+�
4 + "; for some " > 0;

and a2 = 1: Suppose also that, just as in the no commitment case, if tail is played by the

sender in the �rst stage, then the receiver�s action in the second stage is a = 0:5.

In this case, the strategic sender �nds it pro�table to play tail with probability one. I.e.

qC1 = 0 and there is perfect screening. The second stage game reproduces the outcome of a

complete information game.

To provide an intuition for the result, we consider at �rst, a speci�c deviation, which,

perhaps would be the most intuitive one. The general result, for any deviation will be shown

in the end of the section.

Consider a prior in the range where the receiver screens in the �rst stage game when

playing the no-commitment game. Suppose that in the commitment game the receiver

increases the action in stage game 1 by a very small amount, just enough to break the

indi¤erence condition for the sender and induce the strategic type to play tail with proba-

bility one. Every other action remains the same. With this deviation, the receiver�s utility

becomes:
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UR = �

�
2

�
2 + �

4
+ "

�
� 1 + �

�
+ (1� �)

�
1� 2

�
2 + �

4
+ "

��
: (4.6)

Rearranging the terms we have that:

UR =

�
2 + �

2
� 1
�
(2�� 1) + 2�"+ (1� �) (�2") + ��: (4.7)

Thus, the receiver�s utility under commitment will be greater than his utility under

equilibrium, UCR � UR; if and only if

2�"+ (1� �) (�2") > 0;

which happens i¤

2�"� " > 0:

This condition is never satis�ed since it would imply that 2��1 > 0. But, by assumption

we had that � < 1
2 . Thus, for this particular deviation, the receiver�s utility of commitment

is never greater than the utility from playing equilibrium.

Before we can prove the general result that the equilibrium outcome weakly dominates

any contract that the receiver could write, we will �rst show some properties that the

optimal contract must have.

Proposition 4.1. [Necessary Conditions]

If C is the optimal contract chosen and (C; q) is the equilibrium in �C2 , then the contract C

must satisfy the following properties:

I. The action played by the receiver in the second period if the sender played tail in
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the �rst period is 0.5:

a
2(H;T ) = a2(T;T ) = 0:5:

II. The sender weakly prefers to play tail in every contingency:

US (T jh) � US (Hjh) ; for any history h:

III. If the optimal contract is such that the sender strictly prefers to play tail in the

�rst period, then in the second stage game, the action played by the receiver is one if

the sender played heads previously:

U (T jt = 1) > U (Hjt = 1)) a2(H;H) = a2(T;H) = 1:

Proof. First note that the contract must specify �ve di¤erent actions�one for each di¤erent

possible history. The proof is by contradiction. Let a contract C� be an optimal one for

some prior �.

For the claim in (I), suppose �rst that given this optimal contract C�, the sender weakly

prefers to play tail than to play head. Suppose also that a2(H;T ) and a2(T;T ) are di¤erent

then 0.5. Now, consider another contract C 0 that is exactly the same as the optimal contract

C� except after histories in which the sender played tail in the �rst stage. At these histories,

a2(H;T ) and a2(T;T ) are 0.5. In this second contract C 0, the payo¤ of the receiver is the same

when the sender is a behavioral type. The change only a¤ected the histories after which tail

was played by the sender, which can happen only when the sender is strategic. If the sender

is strategic and weakly prefers to play tail under C�, he is worse-o¤ under C 0, since the
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utility of playing tail has decreased. Given that the strategic sender is playing a zero-sum

game with the receiver, if he is worse-o¤, the receiver must be better o¤. Thus, in the case

where the sender weakly prefers to play tail, the optimal contract must specify an action of

0.5 after the sender plays tail. In the case where the sender strictly prefers to play head in

the �rst stage, the histories after tail are never reached. When we change the contract to

make a2(H;T ) and a2(T;T ) equal to 0.5 we make the incentives for playing tail even worse and

this does not change the outcome of the game. In this case, the receiver�s payo¤ under the

optimal contract C� is exactly the same as under the altered contract C
0
: This leads us to

conclude that we can concentrate w.l.o.g. on contracts that specify a2(H;T ) = a2(T;T ) = 0:5.

Now suppose that under the optimal contract C� we have that the sender strictly prefers

to play head in the �rst period. In this case, q1 = 1. We already know that after playing

tail, the sender will face a situation in which the receiver is committed to play a = 0:5,

giving an expected payo¤ of zero to the players, regardless of the sender�s action. If in this

contract we also have that a1 = 1 then, the sender�s utility of playing tail is 1. His utility

for playing heads is given by the utility in the �rst stage game, which is zero, plus the utility

in the second stage game, which is at most 1. Therefore, for a contract with a1 = 1 and a

discount factor smaller than 1, i.e. for � < 1, it must be that the sender strictly prefers to

play tail in the �rst stage game. Consider the case where the sender strictly prefers to play

head in the �rst period and a1 < 1. A second contract C 0 that speci�es a higher a1, high

enough that the sender is indi¤erent between playing tail or heads, dominates C�. This

is true because when the sender is a behavioral type, the receiver clearly bene�ts from a

higher initial action. When the sender is a strategic type, this increased action will make
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the strategic sender worse-o¤, thus bene�ting the receiver. This proves claims (II).

For claim (III), suppose that an optimal contract is such that the sender strictly prefers

to play tail in the �rst stage and that either a2(H;H) or a2(T;H) is smaller than 1. Then,

another contract that is exactly like C� except in the event of the sender playing head in

the �rst period, but with a higher a2(H;H) and a2(T;H) until the sender is indi¤erent in the

�rst stage, or until a2(H;H) = a2(T;H) = 1 is pro�table for the receiver. If the sender is a

behavioral type, the result is straightforward. If the sender is a strategic type, an increase

in a2(H;H) or a2(T;H) such that the sender still weakly prefers to play tail, does not change

the his payo¤, and thus, does not change the receiver�s payo¤ as well.

We now prove our general result in this section. The result shows that the ability to

commit does not improve the receiver�s payo¤.

Proposition 4.2. [Optimal contract is Sequentially Rational]

The equilibrium in �2 is the same as in �C2 .

Proof. We know that we can consider only contracts that satisfy properties I, II and III in

proposition 4.1. Thus, we can have only two di¤erent types of contracts. We can have a

contract in which the sender strictly prefers to play tail in the �rst period�and the second

period speci�es a2 = 1. In this case action in the �rst period must be:

a1 �
2 + �

4
: (4.8)

In this contract, the receiver�s objective function is to solve:

max
a1
� f2a1 � 1 + �g+ (1� �) f1� 2a1g ;
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where a1 2
�
2+�
4 ; 1

�
. The �rst order conditions are to set the action a1 = 1 when � > 1

2

and a1 = 2+�
4 otherwise.

The second possibility of contract must be such that the sender is indi¤erent between

head and tail in the �rst stage, in this case, the action in the �rst period must be:

a1 =
2 + � (2a2 � 1)

4
: (4.9)

The optimal contract is such that:

max
a1;a2

� f2a1 � 1 + � (2a2 � 1)g+ (1� �) f1� 2a1g (4.10)

We can substitute (4.9) in (4.10)and we have that the receiver�s problem is to solve the

following equation:

max
a1
�

�
2a1 � 1 + �

4a1 � 2
�

�
+ (1� �) f1� 2a1g ; (4.11)

subject to a1 2
�
0:5; 2+�4

�
. The �rst order conditions of equation (4.11) is such that

when � > 1
4 , the optimal action is a1 =

2+�
4 and a2 = 1. When, in the other hand, the prior

is � < 1
4 then the optimal action is a1 = 0:5, and, following equation (4.9), the action in the

second stage is also a2 = 0:5.

Therefore, when � < 1
4 the optimal contract is to set a1 = a2 = 0:5, since this dominates

setting a1 = 2+�
4 which is the optimal contract under the �rst type of contracts. For a prior

on the sender�s type on the interval 12 � � � 1
4 we have that the optimal contract under

both possible types is to set a1 = 2+�
4 and a2 = 1. In this case, there are multiple equilibria,

since any q1 2 [0; 1] and q2 = 0 is an equilibrium. Finally, when � > 1
2 we have that the
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Sender
Head Tail

Receiver
Head
Tail

1;�1 0; 1

�1; 1 1;�1

Figure 4.2: Modi�ed Matching Pennies

optimal contract is the �rst type, which speci�es a1 = 1. This contract dominates a1 = 2+�
4 ,

which is the optimal one under contract of type two.

These results, exactly mimic the perfect Bayesian equilibrium shown in table 4.1.

4.4 Example when commitment is e¤ective

We present a very simple example to show that commitment will indeed be e¤ective when

we move from the zero-sum situation. Consider the case where the game has the same types

of sender as before, but with the slight alteration in the receiver�s payo¤ as follows:

Consider this modi�ed matching pennies for two periods only. Also, lets focus on a

particular case where � = 1 and � = 1
4 . The equilibrium (with no possibility of commitment)

in this case is the following. The receiver plays head with probability a1 = 2+�
4 and a2 = 1 if

the sender played head in the �rst period. If the sender played tail in the �rst period, then

the action of the receiver is 0.5. The sender plays head in the �rst period with probability

1
9 and 0 in the second period. Thus, the receiver�s payo¤ is given by:

UR = � (2a1 � 1 + �) + (1� �)
�
q1 (2a1 � 1 + �0) + (1� q1)

�
1� 2a1 + �

1

3

��
(4.12)

UR =
5

12
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Now consider a contract that speci�es a1 = 1 and also a2 = 1 with the actions of both

players being the same (as in the equilibrium) in the case where the �rst period�s action of

the sender is tail. Then, the receiver�s payo¤ in this case is the following:

UR = � (1 + �) + (1� �)
�
0 + �

1

3

�
(4.13)

UR =
3

4

Therefore, the receiver is better o¤ if he can write a contract.

4.5 Commitment in a �nitely repeated game

In this section, we extend the results of section 4.3 for a �nitely repeated game. We denote

�N the game described in section 4.2.1 and repeated N times. Similarly, we denote �CN the

commitment game described in section 4.2.2 that lasts N periods.

The general version of proposition (4.1) is given below.

Proposition 4.3. [Necessary Conditions for Optimal Contracts]

If C is the optimal contract chosen and (C; q) is the equilibrium in �CN , then the contract C

must satisfy the following properties:

I. The action played by the receiver after the sender has played tail at least once

0.5:

ah = 0:5; 8h that contains at least one tail played by the sender:
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II. The sender weakly prefers to play tail in every contingency:

US (T jh) � US (Hjh) ; for any history h:

III. If the optimal contract is such that the sender strictly prefers to play tail after a

particular history, then in all the subsequent periods of the game, the action played by

the receiver is one if the sender played head previously:

U (T jht) > U (Hjht)) aht+i = 1; 8i > 1; 8ht+1 if the sender has only played head and 8ht

Proof. First note that the contract must specify a di¤erent action for each di¤erent possible

history. The proof is very similar to the proof in (4.1). Let a contract C� be an optimal

one for some prior �.

Suppose that C� is the optimal contract. and that claim I does not hold for all histories

in which the sender has ever played tail. Now consider a modi�cation in this contract such

that after a contingency in which the sender played tail, the receiver now plays 0.5 until the

last stage game. This modi�cation will have no e¤ect in the case where at that contingency

the sender strictly preferred to play head. In the case where the sender weakly preferred

to play tail, by decreasing his utility after playing tail, this may lead to a change on his

behavior, but it will not increase his payo¤ (and thus, not decrease the receiver�s payo¤)

and might decrease it, thus bene�ting the receiver.

The same argument is true for claim II. Consider a contingency after which the sender

strictly prefers to play head. An increase in the receiver�s action until the sender�s utility

has decreased enough to make him indi¤erent between head and tail at that contingency
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will increase the receiver�s payo¤ given a behavioral type and will not increase the sender�s

payo¤.

Finally, when the sender strictly prefers to play tail, the receiver is better o¤ by playing

an action of one in the period after that. By increasing the action afterwards until the sender

is indi¤erent or until the action is 1, the receiver increases his payo¤ given a behavioral type

and does not increase the sender�s payo¤.

Therefore, we can concentrate on contracts that satisfy the properties described in propo-

sition (4.3). We use this fact to show that among these contracts, the best ones are the ones

that mimic the perfect Bayesian equilibrium outcomes. But, before we present the result,

we need a simple lemma.

Lemma 4.1. 4 +
Pk�

t=1 2
t+1 = 2k

�+2

Proof. Lets denote S the following sum:

S = 4 + 22 + 23 + :::+ 2n�1 + 2n

Then, we have that:

S = 2
�
2 + 2 + 22 + :::+ 2n�2 + 2n�1

�
S = 2 (S � 2n)

S = 2S � 2n+1

S = 2n+1
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Proposition 4.4. [General optimal contract is Sequentially Rational]

The equilibrium in �N is the same as in �CN .

Proof. When selecting the optimal contract in �CN , the receiver is maximizing his ex-ante

expected payo¤, which is given by:

UR = �

 
NX
t=1

�t�1 (2at � 1)
!
+ (1� �) (�US) ;

where US is the utility that the sender has at the initial stage game. We know from

proposition (4.3) that at all stages the sender weakly prefers to play tail. Thus, we can

substitute US for the utility of playing tail in the �rst stage game. The objective function

of the receiver is then given by:

UR = �

 
NX
t=1

�t�1 (2at � 1)
!
+ (1� �) (1� 2a1) : (4.14)

This is the payo¤ that the principal is maximizing when he chooses the contract. How-

ever, the sender is playing a best response against the chosen contract, so the receiver must

maximize (4.14) subject to incentive compatibility constraints.

The receiver�s problem is the following:

max
fatgNt=1

�

 
NX
t=1

�t�1 (2at � 1)
!
+ (1� �) (1� 2a1)

subject to : (4.15)

at � 2 + �

4
) at+1 = 1; 8t

at <
2 + �

4
) at+1 =

4at � 2 + �
2�

; 8t
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The receiver�s problem can be reduced to choosing the optimal a1 subject to the incentive

compatibility constraints above. We can rewrite these constraints as follows:

at <
2 + �

4
) at+1 =

4at � 2 + �
2�

=
2at
�
+ k; 8t;

where the constant k is de�ned as:

k � � � 2
2�

:

Thus, inductively, we can write:

at+2 =
2at+1
�

+ k =
4at

�2
+
2

�
k + k:

In general, we can write:

~ai =
2i�1

�i�1
~ai + ki; (4.16)

where the constant ki is:

ki =

i�2X
s=0

2s

�s
k =

� � 2
2�

i�2X
s=0

2s

�s
:

It will be convenient to de�ne the functions V (x) and f (x) ; such that:

V (x) � � (2f (x)� 1) + �V (f (x)) ;

f (x) �

8><>: 1 if x � 2+�
4

4x+��2
2� if x < 2+�

4

:

Thus, the problem of the receiver, incorporating the incentive compatibility constraints,
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can be written as:

max
a
� (2a� 1 + V (a)) + (1� �) (1� 2a) : (4.17)

The �rst order condition is:

�

�
4 +

@V (a)

@a

�
� 2 = 0:

However, V (�) is not a continuous function. Thus, we write the solution to the problem

as:

�

 
4 +

k�X
t=1

2t+1

!
� 2 � 0; (4.18)

where k� is de�ned as follows. If a 2 [~ai+1; ~ai] ; then k� = i. Note that k� is uniquely

de�ned for every a 2 [0:5; 1].

If k� (a) is such that �
�
4 +

Pk�

t=1 2
t+1
�
� 2 > 0, then the receiver can do better by

o¤ering a contract with a higher a, which implies a lower k�.

From lemma (4.1) we have that:

4 +
k�X
t=1

2t+1 = 2k
�+2:

Thus, condition (4.18) can be written as:

�2k
�+1 � 1 � 0;

which implies that when 1
2n > � >

1
2n+1

then the �rst order condition is such that:

2k
�
> 2n ) �2k

�+1 � 1 � 0:
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We must have that the optimal contract requires that k� (a) = n. The argument goes

as follows. If k� (a) > n then �2k
�+1 � 1 > 0 and there is a better contract with a higher

a (lower k�). If, however, k� (a) < n then �2k
�+1 � 1 < 0 and there is a better contract

with a lower a (higher k�). When, in fact, k� (a) = n, we also have that �2k
�+1� 1 > 0 and

the optimal contract is to increase a. This action a is increased exactly to the point where

a = ~an. Thus, given (4.16), we must have that the optimal action when � 2
�

1
2n+1

; 12n
�
; is

the following:

a =
2n�1

�n�1
a1 + kn

a =
2n�1

�n�1
2 + �

4
+
� � 2
2�

n�2X
s=0

2s

�s

This shows that the receiver will choose a such that k� (a) = n, which implies that a will

be the same as the initial action in the equilibrium with sequential rationality constraints

and no ability to commit.

4.6 Conclusion

In this chapter we considered a dynamic adverse selection problem where the receiver faces

two extreme types, with either opposite preferences or a mechanical behavior. We showed

that the receiver�s ability to commit does not improve his payo¤ compared to the PBE.

The result suggests that contracting can only be bene�cial if preferences are not extreme,

as we showed in the example of section 4.4.
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