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ABSTRACT 

Economy-wide decarbonization will require electric power systems to rely heavily on variable renewable 

energy (VRE, mainly wind and solar generation), which has near zero marginal operating costs, and energy 

storage. We have modeled optimized, deeply decarbonized power systems in three US regions at mid-

century under a wide range of plausible cost and technology assumptions. The shadow marginal values of 

energy (MVEs) from these optimizations approximate the wholesale spot prices of energy in simplified 

hypothetical competitive energy-only wholesale markets in which revenues earned by selling energy in 

wholesale electricity markets should be sufficient to cover all capital and operating costs. A very robust 

result is that under carbon constraints, very low MVEs occur much more frequently than in today’s 

wholesale markets, and very high prices are also more frequent than today.  Revenues from a relatively 

small number of high MVE periods are required to fully cover VRE capital and operating costs, while 

storage charges and discharges in many hours. In an ideal, efficient regime, a competitive energy-only 

wholesale market without price caps would minimize total system costs, and retail rates equal to wholesale 

spot prices would fully cover those costs and induce efficient demand behavior. Real power systems depart 

significantly from this ideal: price caps are used frequently in wholesale markets, capacity payments from 

organized capacity markets or bilateral contracts are relied on to supplement energy market revenues to 

enable full cost recovery, and most customers face retail rates that do not reflect variations in marginal 

operating costs. The greater volatility of future decarbonized wholesale markets will increase the costs of 

such politically attractive departures from the ideal regime.  
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1. Introduction 

Modeled pathways for energy system decarbonization by mid-century imply an expanded 

role for electricity in final energy demand, coupled with the decarbonization of electricity supply 

through dramatically increasing generation from variable renewable energy (VRE) generation, 

particularly wind and solar [1–3]. For example, in the net-zero by 2050 scenario presented by the 

International Energy Agency (IEA), electricity’s share of global final energy consumption is 

projected to increase from 20% in 2020 to 50% by 2050, while wind and solar are projected to 

provide 70% of total electricity generation in 2050 [2]. The dominance of VRE-based power 

generation in energy-system-wide studies is also aligned with more granular power sector 

assessments [4–12] based on cost-minimizing (or welfare-maximizing) capacity expansion models 

(CEMs), in which the intermittency of VRE generation is shown to increase the value of energy 

storage. Both because the electric power sector will grow in relative importance and because 

electricity prices will affect investments that will be central to the vital process of economy-wide 

decarbonization, the costs of inefficient wholesale and retail electricity pricing will be much 

greater than at present. This paper describes key features of optimal future decarbonized power 

systems and discuss implications of those features for the design of efficient wholesale markets 

and efficient and equitable retail rate structures. 

As part of the MIT Energy Initiative’s Future of Energy Storage (FoES) project [13,14], 

we used the open-source CEM, GenX [15], to model optimal investment in and operation of deeply 

decarbonized electricity systems in three US regions in 2050 under a number of carbon emissions 

and technological scenarios described in the Methods section. (The results reported here go beyond 

those reported in the FoES study report [13,14].) We chose 2050 because many deep 
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decarbonization programs focus on that date and because it is plausible that most existing 

generation assets will have retired by then, thus permitting a (nearly) greenfield analysis.  

We imposed system-wide constraints on carbon emissions, which is equivalent to imposing 

a carbon tax. The shadow price on the carbon emissions constraint gives the marginal cost of 

carbon reductions that would need to be enforced as a carbon tax to achieve the same result in an 

optimally efficient system [10,16]. (Under certainty, a competitive cap-and-trade system could 

produce equivalent results.)  Because the modeled marginal cost of going all the way to zero carbon 

emissions generally exceeded reasonable estimates of the per-ton incremental cost of negative 

emissions technologies [17], which we do not model, we focus on deep decarbonization scenarios 

that get carbon emissions in the electricity sector close to zero, but not all the way there.  

State-of-art CEMs [15,18–21] like GenX evaluate the cost-optimal investment and intra-

annual operation of modeled power systems, and thus are in principle able to highlight the 

implications of temporal variability in electricity demand and in VRE resource availability under 

alternative assumptions. CEMs are often formulated as linear programs (LPs) with perfect 

foresight and constant returns to scale; under these and other standard assumptions, CEMs can be 

used to understand the impact of policy and technology drivers on the hourly frequency 

distribution of the marginal value of electrical energy (MVE), which is retrieved from the models 

as the shadow price on the supply/demand constraint at each operating time step. The MVE 

corresponds roughly to the spot wholesale energy price in a fully efficient power system with an 

energy-only market design.1   

 
1 MVEs only approximate spot prices in electricity markets for the following reasons. A) CEMs do not include a 
detailed representation of demand, implying that MVEs during scarcity events do not fully reflect demand’s ability 
to respond to price variations. B) Since capacity is a decision variable in CEMs, MVEs during periods of scarcity 
could also incorporate the investment cost of new generation, which will not necessarily be the case for spot prices 
in wholesale markets and C) MVE generated using CEMs often incorporates the (linearized) startup cost of 
generators in certain periods while spot prices generally do not consider these costs. D) the MVE computed here 
does not reflect the impact of short- and long-term capacity requirements that are often included in organized 
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To be clear, however, we are not attempting to model the details of any real wholesale 

market operating today. Ours is an optimization analysis under perfect foresight, not a simulation 

of the behavior or performance of actual wholesale market designs. We take as given only the 

availabilities and costs of various technologies and the pattern of electricity demand over time and 

compute the optimal pattern of investments and operations and the associated MVEs. Examining 

such fully optimal decarbonized systems reveals challenges that the design of real wholesale 

market systems and retail rate regimes must address to avoid distortions that could lead to 

excessive costs of economy-wide decarbonization.  Our focus in this paper is on the frequency 

distributions of MVEs, which we interpret as indicative of efficient spot wholesale market 

distributions (see footnote 1), and which we argue are likely to be much more variable than the 

frequency distributions of wholesale spot prices in today’s markets. To the extent that future 

investment and operating decisions are not based on efficient prices, society will pay more than 

necessary for decarbonization of electric power and of the broader economy. 

Our analysis includes a number of advances compared to the existing literature evaluating 

MVE or wholesale electricity price outcomes for VRE-dominant electricity systems [5,10,16,22–

26]2. First, we evaluate the impact of various technology options that have previously received 

only limited attention, including several different energy storage technologies and the effects of 

sector-coupling between electricity and other end-use sectors (e.g., industrial process heat). The 

latter is modeled through the example case of producing hydrogen from electricity and its 

subsequent use as a low-carbon fuel in the industrial sector. While previous studies have modeled 

 
markets to ensure resource adequacy. In addition, CEMs do not model either markets for ancillary services, which 
generally do not account for an appreciable fraction of system revenue, or such physical constraints as the need to 
maintain system frequency. 
2 All of the papers cited above on assessment of MVE or wholesale price outcomes for VRE-dominated systems 
relies on optimization-based modeling under perfect foresight similar to what is used here, and thus do not capture 
many of the market design details of real systems today and their impact on price outcomes. 
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this type of sector-coupling using H2 [27,28], the impacts on the wholesale electricity price or 

MVE distribution of such an integration has not been discussed. Second, for all technology and 

emissions scenarios, we discuss the implications for hourly distributions of MVEs as well as 

revenues earned by different technologies if they are paid exclusively through the wholesale spot 

price/MVE market. For example, we illustrate how sector-coupling via hydrogen reduces (but does 

not eliminate) instances of zero-price hours because wholesale electricity prices reflect the 

opportunity cost of using electricity-derived hydrogen in other sectors. In addition, while we do 

not consider a detailed model of electricity demand, we do consider the effects of demand shifting 

and flexible demand (See Table 1) on the (natural but unrealistic) assumption that the retail price 

of electricity is equal to MVE at every instant. 

In efficient power systems, governed by the well-documented principle of least-cost 

economic dispatch [29], at any instant the resource with the highest marginal cost among all 

operating generators (or when generating capacity is fully utilized, a higher price needed to balance 

supply and demand via scarcity pricing) determines the MVE and the associated market clearing 

electricity price. Dispatchable thermal power plants, which dominate the generation portfolio in 

most power systems today, have positive marginal costs. VRE generators, however, use no fuel 

inputs and thus have near zero marginal operating costs3. Without storage, the MVE of an efficient 

system composed entirely of VRE generation would either be zero or be determined by scarcity 

pricing. 

Storage, efficiently deployed, can be expected to eliminate such bang-bang behavior. The 

marginal cost of supply from energy storage systems is generally set by opportunity costs rather 

 
3 We model fixed operating costs of resources that scale with the installed capacity (Table S 1), which for VRE and 
most other generators is sourced from the NREL Annual Technology Baseline[35] and includes wear-and-tear 
related maintenance costs. 
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physical operating costs, however, and hence can vary substantially over time [10,16]. Thus, a 

shift from primary reliance on dispatchable thermal generators to primary reliance on VRE 

generators with a greater role for storage decouples the determination of MVE in efficient systems 

from the classical economic dispatch curve and the underlying marginal generating costs.  This 

shift also seems a priori likely to change the frequency distributions of MVEs.   

CEMs can be used to understand the impacts on the distribution of MVEs of constraints on 

carbon emissions in efficient power systems under the condition of full cost recovery4 for all assets  

selected by the deterministic LP formulation5 [10]. Despite the many CEM studies focused on deep 

decarbonization of electricity systems [4,7,11,30], few studies actually document the implied MVE 

distributions. Several CEM studies that do discuss MVEs or wholesale electricity prices [10,22–

24,31], including the results reported in Section 3, find that MVE distributions under low-carbon 

high-VRE scenarios are likely to have many more hours of very low prices (corresponding to 

periods of high VRE availability relative to load) than are observed today in wholesale electricity 

markets (see note S1.3) and more hours of very high prices, approaching the value of lost load 

(corresponding to periods of high net load, i.e., load minus VRE generation). The extent of both 

these effects is dependent on many factors, notably, a) the stringency and type of policy 

encouraging low-carbon generation, b) the assumed resource adequacy requirements, if any, c) the 

temporal resolution of grid operations modeled, which is shown to be important to capture VRE 

resource and load variations [32,33], d) the assumed cost and availability of technologies like VRE, 

 
4 Full cost recovery assumes that all binding constraints generate revenues that can be monetized. In case any 
binding constraint does not yield revenues that could be earned in practice, then full cost recovery is not guaranteed. 
See [16] for details. 
5 Electricity price outputs are commonly reported by studies simulating grid operations using industry-standard 
production cost models (PCMs) that closely mimic realistic economic dispatch of the grid over a short-time horizon 
(typically 24 hours). PCMs are not useful for analyzing electricity prices for deep decarbonization scenarios for two 
key reasons.  First, PCMs don’t consider investment costs and so cannot optimize asset portfolios.  Second, the 
prices generated by PCMs do not ensure full cost recovery for all resources, which means the impact of various 
policies that affect capital cost cannot be compared via these models. 
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storage, and low-carbon dispatchable generation and e) the cost and availability of demand 

response and demand flexibility.  The impacts of a number of these factors on the distribution of 

simulated MVEs in future US regional power systems are explored in Section 3.  

Recently, a few papers have suggested that instances of very low MVEs could be 

infrequent, and prices may never approach the value of lost load, if a large fraction of future energy 

demand could be met either by electricity or by switching to carbon-free chemical energy carriers 

(referred to here as “synthetic fuels”). Potential consumers capable of this sort of sector-coupling 

cited in the literature include district heating systems, plug-in hybrid electric vehicles, and dual-

fuel boilers in industrial settings [5,25,26]. In deeply decarbonized energy systems, however, the 

availability and cost of carbon-free synthetic fuels that can substitute for electricity at scale is 

highly uncertain. Moreover, if electricity is consumed in producing these synthetic fuels, which is 

likely for H2-derived synthetic fuels [27], then the cost and availability of synthetic fuel may vary 

over time, which is inconsistent with the constant cost and availability assumption made by some 

studies [8,25]. As we show in Section 3, incorporating the investment and operation of the supply 

chain of synthetic fuels, including production, storage and utilization, within a CEM reduces 

instances of low and high MVEs (by improving VRE and storage utilization) but does not eliminate 

them. 

As we also show in Section 3, in fully efficient decarbonized VRE-dominant energy-only 

wholesale power markets without price caps, in which spot prices approximate MVEs, generators 

and storage facilities would earn the bulk of their annual energy market revenues in relatively few 

hours. These high price hours are also where price caps are likely to bind in real systems, and other 

operating distortions are likely to occur as system operators seek to avoid potential loss-of-load 



8 
 

events. Financial instruments to hedge price volatility would, consequently, be costlier and the 

effects of other market distortions greater, in such decarbonized grids as compared to today’s grid.  

As Section 4 discusses, it is thus likely that, as today, many wholesale markets will cap 

energy prices and will employ capacity remuneration mechanisms to provide adequate investment 

incentives. Some current mechanisms can be adapted, with difficulty, to handle VRE generation, 

but storage presents new conceptual challenges, and it is critical to avoid approaches that distort 

spot prices. On the retail side, in order to encourage efficient economy-wide electrification, the 

marginal retail price of electricity should be low whenever the wholesale MVE is low.  But recent 

grid contingency events (e.g., Texas in February 2021 [44]) makes clear that requiring retail 

customers to pay wholesale spot prices for all their demand would impose intolerable risks today, 

and our work shows that those risks would be much higher in future efficient decarbonized 

systems. 

The rest of the paper is organized follows. Section 2 describes the methods used, with 

further details provided in the supporting information (SI); Section 3 describes the CEM modeling 

results for three U.S. regions, with a deep dive on the electricity price distribution and revenue 

distribution outcomes for Texas case study under various technology and carbon emissions 

scenarios. Section 4 discusses the implications of these findings for wholesale and retail electricity 

prices. Section 5 summarizes the conclusions and describes areas for future work. 

2. Methods 

We have constructed detailed optimization models to assess efficient electric power system 

evolution in three U.S. regions in 2050: the Northeast, the Southeast, and Texas. (See section S1 

of supporting information (SI) and the MIT Energy Initiative Future of Energy Storage study [14] 

for more details.)  These regions differ on several relevant dimensions, (1) wind speeds and solar 
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irradiation, land availability, and resulting installed costs of wind and solar generation; (2) 

hydroelectric resources; and (3) industry structure and regulation and associated implications for 

nuclear power development. As noted above, we assume that the existing stock of fossil generating 

capacity retires by 2050, so that our analysis examines a "near-greenfield" system developed to 

meet 2050 demand.  Per our (mostly) greenfield modeling assumption, we restrict investment to 

the following technologies in the base case: utility-scale solar and onshore wind (as well as 

offshore wind and distributed solar in the Northeast); natural gas-fired plants (open cycle gas 

turbine (OCGT) and combined cycle gas turbine (CCGT)), with and without amine-based carbon 

capture and storage (CCS) technology; and hydro resources where they play a major role 

(Northeast, Southeast). As noted below (see Table 1), we consider impact of alternative demand 

and supply-side technologies through a scenario-analysis approach. All three regional models use 

hourly electricity demand projections for 2050 from the high-electrification, moderate technology 

advancement scenario developed by the National Renewable Energy Laboratory (NREL) for its 

2018 Electrification Futures (EFS) study [34]. PV and Wind resource availability were represented 

using a discretized supply curve approach, described elsewhere (section S2 and [4]), that is 

developed based on available wind and solar resource databases from NREL. Technology cost 

assumptions are sourced mostly from the 2020 edition of the NREL annual technology database 

[35] (further details in section S2 in SI). 

The analysis is carried out via GenX [15], a CEM that includes representation of various 

supply and demand-side resources, including energy storage with independent discharging and 

charging power capacities and energy storage capacity, demand flexibility (section S4), demand 

response (section S5), and use of H2 for non-electric end-uses (described below and in section 

S6)). Flexible demand resources can temporally shift their energy consumption to some extent, 
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while demand response resources, on the other hand, can forgo consumption entirely when the 

electricity price is high.  

 

Figure 1. Representation of the power to H2 to power system within GenX and hydrogen’s use for meeting 
industrial hydrogen demand. 

For this study, we include an additional feature in GenX to study the impact of sector-

coupling resulting from hydrogen production via electricity and its subsequent use for 

decarbonizing other difficult-to-electrify sectors like industry.6 Figure 1 highlights the simplified 

representation of the modeled electricity-H2 infrastructure interactions, developed based on our 

prior work on detailed H2 infrastructure modeling [27,36], which includes: a) allowing hydrogen 

technology components to serve both the power sector and external H2 demand simultaneously 

and b) use of non-power H2 supply to meet industrial H2 demand, which refers to technologies that 

rely on other forms of energy sources as the primary energy input for H2 production.7 The use of 

electricity to produce H2 can be flexibly scheduled—because H2 can be stored at relatively low 

energy capital cost, even if we assume above-ground gaseous storage (see Table S 3 in SI)—even 

though external H2 demand is modeled to be constant and inflexible across all hours of the year.  

Moreover, operating H2 infrastructure this way provides valuable flexibility to the power system 

 
6 This capability is available as part of extension of the GenX model, available in separate repository focused on 
electricity-hydrogen infrastructure co-optimization [63].  The H2-electricty coupling capability was used in the 
Future of Energy Storage modeling [13] but without the option of sourcing non-power H2 supply for meeting H2 
demand outside the power sector. 
7 While water electrolysis is the most important example of a technology using electricity for H2 production, there 
are other approaches where electricity input is combined with other inputs for H2 production (e.g. methane pyrolysis, 
where process heat may be provided via electrical heating). 
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without incurring additional capital cost and round-trip efficiency losses associated with 

regenerating electricity from the stored H2. Prior comprehensive analysis on electricity- H2 

infrastructure interactions point to limited deployment of H2 to power assets as compared to 

electrolyzers when modeling deep decarbonization scenarios using gaseous H2 storage [27,36]. 

Therefore, as a simplification, we have ignored the possible use of non-power H2 sources for power 

generation here.  

Below, we briefly discuss the results for all three regions but focus here primarily on the 

results for Texas. We focus on Texas mainly because the market design of the Electric Reliability 

Council of Texas (ERCOT), the Independent System Operator that covers about 90% of Texas 

generating capacity, approximates the energy-only design implicit in our optimizations, so the 

MVE’s from our optimizations can be instructively compared with actual ERCOT spot wholesale 

prices.8 Texas is represented as a single transmission zone with greenfield conditions reflecting 

the retirement of the existing fleet of generators by 2050. The Texas optimization problems are 

configured with an hourly resolution of grid operations spanning 7 years (61,314 hours). Demand 

is inelastic except as otherwise noted. MVEs are capped at $50,000/MWh, which serves as a very 

high value of lost load to ensure high reliability outcomes.  No other resource adequacy 

requirements, either at the annual or hourly timescales, are enforced.  As noted above, because the 

GenX setup is a linear program, all generators and storage facilities optimally deployed are fully 

remunerated through energy market revenues with MVEs serving as spot prices [10]. For Texas 

and the other two regions, the hourly demand data from NREL’s EFS study [34] was assumed to 

be same for all seven years of modeled grid operations, but we do account for inter-annual 

 
8 Most U.S. wholesale markets have separate energy and capacity prices.  The shadow MVE’s that occur in our 
optimizations are most comparable to spot prices observed in so-called “energy-only” wholesale markets like 
ERCOT where a capacity remuneration mechanism (ORDC) includes all energy and capacity payments in the 
wholesale energy price [64]. 
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variations in VRE resource availability (see Table S 1 for data for other regions). Further 

documentation of data inputs and model representation is discussed in Table S 2 - Table S 6 in the 

SI and in Table 1 below. 

Table 1. Scenario groupings evaluated via the GenX model for various CO2 emissions constraints in this work. 

Scenario 
grouping 

Description 

Base Case 

Reference assumptions and conditions; Li-ion as the only energy storage 
technology that can be expanded, along with following generation resources: 
wind, solar PV, natural gas (NG) combined cycle gas turbine (CCGT) with 
and without carbon capture and sequestration (CCS) and open cycle gas 
turbine (OCGT). Assumed natural gas fuel price: $4.04/MMBtu – see section 
S1. 

Base + RFB 
Inclusion of low-cost energy storage with estimated cost and performance 
characteristics for redox flow battery (RFB) systems – see Table S 3 

Base + RFB+  
Thermal 
storage 

Inclusion of low-cost long-term energy storage with estimated cost and 
performance estimates for thermal energy storage systems - see Table S 3 

Base + DF 

Allowing a pre-specified fraction of flexible demand from EV charging and 
buildings to be temporally flexible at no incremental cost, per the 
assumptions from NREL electrification futures study [34], and summarized 
in Table S 5.  

Base+ DR 

Stylized representation of demand response, per the structure described 
elsewhere [7]. Up to 25% of hourly load can be shed with varying marginal 
costs for each incremental 5% of load, with the most expensive segment 
priced at 70% of value of lost load (VoLL, $50,000/MWh) and the least 
expensive segment priced at 5% of value of lost load (See Table S 6). Further 
load shedding is possible at the price equal to VoLL. 

Base + RNG 

Scenario meant to approximate the availability of renewable natural gas 
(RNG) or hydrogen for dispatchable power generation used in other studies 
[8]. Modeled as carbon-neutral fuel with a cost of $20/MMBtu via an OCGT 
with heat rate the same as that of conventional NG based OCGT and capital 
cost that 120% of the NG OCGT capital cost.  

Base + RFB + 
np-H2 @ $2 

or 10/kg 

Representation of exogenous H2 demand outside the power sector (19.7 
GWH2) that can be met via a combination of electrolysis, hydrogen storage/ 
discharging as well as from non-power based H2 sources with zero process 
CO2 emissions with a production cost of $2 or $10/kg – see Figure 1 and 
section S5 for detailed assumptions. The $2/kg scenario is a proxy for non-
power H2 supply sourced from natural gas reforming with carbon capture and 
storage (CCS), while the $10/kg scenario aims to minimize use of non-power 
H2 supply but not fully eliminate its use. Also includes RFB storage in 
addition to Li-ion storage in the power sector.  Discussed further below. 
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3 Results 

3.1 System outcomes for three regions 

Figure 2 summarizes the model outcomes for three regions across three alternative 

emissions constraint scenarios, for the base case technology assumptions (see corresponding 

capacity outcomes in Figure S 3).  Emissions intensity varies among the regions in the 

unconstrained (“No Limit”) case, reflecting differences in wind and solar resources and in load 

profiles. Across the three regions, the variability of VRE generation is managed via four 

mechanisms that are also noted by other CEM studies exploring deep decarbonization of power 

systems [7,30,37,38]: (1) flexible operation of gas generation to handle long periods of low VRE 

output, (2) deployment and utilization of energy storage for shorter periods of low VRE output, 

(3) optimization of the relative capacities of wind and solar generation, and (4) VRE deployment 

in excess of peak load, which is often called “overbuilding” and leads to curtailment of excess 

VRE generation at certain times. Thus, for instance, the fact that solar output is lower in the winter 

than in the summer is managed, not by storing energy for several months, but by building solar 

capacity that is adequate for the winter and, thus, more than adequate for the peak summer day-

time demand. This is less costly than deployment of longer durations of Li-ion storage. As the 

carbon constraint is tightened, gas generation is forced to decline, VRE curtailment increases 

(Figure 2), contributing to increasing incidence of low MVE periods [10,16].  This is a very robust 

result under the sort of cost assumptions we have employed. And because all facilities break even 

at MVE values, just as all real-world facilities need to break even in equilibrium, an increased 

incidence of low MVE values must be balanced by an increased incidence of high MVE values. 
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Figure 2. Annual generation, VRE curtailment, and system average costs of electricity (SCOE) in the Northeast (NE), 
Southeast (SE), and Texas (TX) under tightening CO2 emissions constraints. Modeling results are shown for a scenario with 
no limit on emissions (bottom row) and for two alternative carbon emissions limits scenario with an emissions intensity limit of 
10 (middle row) and 5 gCO2/kWh (top row). SCOE includes total annualized investment, fixed O&M, operational costs of 
generation, storage, and transmission, and any non-served energy penalty. Emissions intensity under the “No Limit” policy case 
for each region is as follows: NE: 253 gCO2/kWh, SE: 158 gCO2/kWh, Texas: 92 gCO2/kWh. For the Northeast case, “Wind” 
represents the sum of onshore and offshore generation. Installed power and energy capacity results for these cases are shown in 
Figure S 3 in the SI, along with methodological assumptions about the modeling noted in section S1. For comparison purposes, 
annual generation is normalized to the annual electricity demand in each region. 

 

3.2 Detailed Results for Texas 

Figure 3 highlights key system outcomes under two CO2 emissions intensity constraints 

(5gCO2/kWh and 1gCO2/kWh) for Texas for the six out of the eight scenarios defined in Table 1 

(demand-side scenario results shown in Figure S 4). Texas emissions in 2018 were 449 gCO2/kWh, 

so achieving a grid emissions intensity of 5 gCO2/kWh or 1 gCO2/kWh would amount to a 98.9% 

or 99.8% reduction, respectively. A few key results are visible in Figure 3. First, for the same CO2 

emissions constraint, availability of additional flexible resources relative to the base case, either 

on the supply side via dispatchable renewable generation (RNG) or long-duration energy storage 

(LDES), or on the demand-side via demand flexibility or demand response (see Figure S 4), 



15 
 

generally reduces VRE curtailment and thus improves VRE capacity utilization9.  This contributes 

to reducing the system average cost of electricity (SCOE).  Second, increasing stringency of CO2 

emissions limits from 5gCO2/kWh to 1gCO2/kWh results in greater VRE curtailment as well as an 

increase in SCOE across all the scenarios, ranging from 12% (Base + DF – see Figure S 4) to 3% 

(Base +RFB+ np-H2 @ $2/kg).  

 Third, the availability of electricity storage technologies with low energy capital cost, 

represented here by redox flow battery (RFB) technology10, thermal energy storage11 and H2, 

increases the value of VRE generation and reduces the role for dispatchable gas generation. As 

compared to the impact of low energy capital cost storage, the system impacts of including demand 

flexibility or demand response, as characterized in Table 1, are relatively small (Figure S 4). The 

H2 scenarios modeled here highlight the potential opportunity to share H2-related assets, namely 

both storage and the electrolyzer used to produce hydrogen, to serve both the power sector and 

external H2 demand simultaneously. This is effectively a special case of demand flexibility, since 

the use of electricity to produce H2 via electrolysis can be flexibly scheduled because H2 can be 

stored at relatively low energy capital cost, even though external H2 demand is modeled to be 

constant across all hours of the year. For the same CO2 emissions intensity limit, this type of 

demand flexibility leads to lower VRE curtailment and reduced investment in other types of 

 
9 The exception to this trend is noted in the cases with demand flexibility or demand response and relative high 
emissions intensity constraint of 50gCO2/kWh (Figure S 4), where the optimal solution favors using flexible demand 
resources to reduce storage energy and power capacity while marginally increasing VRE curtailment in a way that 
reduces system cost (increased capacity of wind vs. solar in Base +DR and Base + DF cases vs. Base Case). 
10 Redox flow batteries are rechargeable electrochemical devices where the power component can be independently 
sized from the energy storage component (i.e., two tanks holding the active charge storing species in a liquid phase 
in reduced and oxidized forms respectively). The liquid from the tanks is circulated back and forth through the 
power component to either produce or consume electricity – hence the reference “Flow” in the name  [65]. 
11 Thermal storage technologies rely on storing energy in the form of heat, either as sensible or latent heat.  The 
storage can “charged” by using a device that converts electricity to heat, say heating up a materials temperature or 
changing its phase. Subsequently, electricity can be produced by converting heat to electricity using a separate 
device. 
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storage and NG resources while increasing investment in VRE and H2 storage related components 

compared to the equivalent case without H2 (base + RFB scenario).   

 The impact is greatest when non-power sources of H2 supply to meet H2 demand outside 

the power sector are quite expensive ($10/kg), implying that all of the H2 demand has to be met 

by electrolysis. In this case, it is necessary to deploy greater electrolyzer and storage capacity to 

meet all of the non-power H2 demand, but utilization of H2 for power generation is relatively minor 

and unchanged as compared to the cheap non-power H2 case (reflected in the capacity deployment 

shown in Figure 3 and generation mix shown in Figure S 5). Across the CO2 emissions constraints, 

the combination of demand-side flexibility to meet non-power H2 demand and VRE curtailment 

are found to be more cost-effective than conventional use of H2 for only long-duration electricity 

storage (i.e., power-H2-power). 
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Figure 3. Key system outcomes for various CO2 emissions intensity constraints and technology scenarios for Texas. 1st column: installed power capacity by technology type, 
reported as a fraction of peak load; 2nd column: Deliverable energy storage capacity installed by technology type, reported as a fraction of mean annual demand. Deliverable 
energy capacity for each storage technology is defined as the installed energy capacity times the discharge efficiency; 3rd column: system average cost of electricity (SCOE), 
defined as ratio of total system cost by total demand met throughout the year; 4th column: variable renewable energy curtailment, defined as the fraction of available VRE 
generation that is not dispatched. Note that RNG is not deployed even if made available in the 5gCO2/kWh and so the results for Base +RNG are identical to Base Case results. 
Results for cases with demand response (DR) and demand flexibility (DF) as described in Table 1, are shown in Figure S 4 in the SI.



18 
 

3.3. Distributions of the Marginal Value of Electricity 

Figure 4 provides information on the impact of alternative scenario assumptions on the 

frequency distribution of MVEs for the Texas region12.  The bands shown in  Figure 4 are the 

following: (1) $0 to $5/MWh, characterized mostly by periods of high VRE generation; (2) $5–

$50/MWh when natural gas is the marginal generator;  (3) $50–$200/MWh when natural gas 

capacity needs to be started up and associated (linearized) start-up costs must be recovered; and 

(4) >$200/MWh, which corresponds to scarcity events, including times when load-shedding 

events, if any, are observed. Note that under a CO2 emissions constraint, the shadow price of 

carbon emissions is reflected in the wholesale price when natural gas generators are on the margin 

[10]. Under stringent CO2 emissions constraints, natural gas marginal costs, therefore, could be 

much higher than $50/MWh and might be responsible for high prices, i.e. $200/MWh or greater. 

Also, because the marginal cost of supply from storage is based on opportunity cost rather than 

being physically defined by marginal operating costs, it varies from period to period—

consequently, storage charging and discharging can and does occur in multiple price bands (see 

Figure S10). 

Figure 4 compares the simulated 2050 MVE distributions with the actual spot price 

distributions in ERCOT’s energy-only market in Texas in 2018 and 2019.  Treating MVEs as 

 
12 The general finding of increasing instances of low MVEs (<$5/MWh) with increasing stringency of CO2 emissions 
constraints also hold for the SE and NE regions. For example, under the base case, 50gCO2/kWh vs. 5gCO2/kWh 
emissions intensity scenario, MVEs in the $0-5/MWh range the NE region account for around 13% and 23% of hours, 
respectively. For the SE region under the base case, $0-5/MWh MVEs represent around 16% and 28% hours for 
50gCO2/kWh and 5gCO2/kWh scenarios, respectively. The lower incidence of very low MVEs for the NE and SE 
regions as compared to Texas for the same emissions intensity constraints can be explained by a combination of 
factors: a) our models of the NE and SE regions use lower temporal resolution of modeling grid operations compared 
to Texas (see Figure S 1) and therefore could miss out on the variability in grid operations (and prices) that is 
incorporated in the Texas study that models 7 years of grid operations at an hourly resolution, b) SE and NE regions 
have less optimal VRE curtailment, likely because lower quality of VRE resources makes storage deployment 
relatively more cost-effective than VRE generation at the margin (Figure S 3), and c) non-VRE low-carbon resources 
are available in the regions: nuclear (in SE) and hydro (in SE and NE). 
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approximations of wholesale spot prices (see footnotes 1 and 2), we see that there are many more 

hours of very low prices in the simulated data along with many fewer hours of prices where natural 

gas generation is on the margin, and more hours of high scarcity prices. Figure 4 shows that as the 

CO2 constraint tightens, across all scenarios the number of hours with marginal prices below 

$5/MWh increases, and the number of hours in the price band of $5–$50/MWh decreases. These 

trends reflect an increase in the share of VRE generation and a decline in natural gas generation13.  

 
Figure 4.  Impact of storage technology, external H2 demand as well as the price of non-power H2 supply on the distribution 
of Marginal value of Energy (MVE) for various CO2 emissions constraints. For comparison, wholesale energy price 
distributions from ERCOT in 2018 and 2019 are also shown in the first two columns of the chart [39]. Technology scenarios 
evaluated here are described in Table 1. Labels for scenarios with H2 “Base Case + RFB + np-H2 @ $2/kg” has been shortened 
to read as “BC + RFB + H2@$2” for brevity. Base case corresponds to Li-ion as the sole energy storage technology and no 
external H2 demand. BC = Base Case. RFB = Redox Flow Battery. 

 

 
13 It is worth reiterating that these model findings are based on what is effectively a representation of a simplified 
pure, energy-only electricity market structure, in which all wholesale (and, implicitly, all retail) transactions occur at 
the spot market price of electricity. Incorporating other resource adequacy mechanisms, such as capacity markets 
with a required capacity reserve margin, is likely to reduce the magnitude and frequency of scarcity prices but is 
unlikely to impact the frequency of low prices [22]. 
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Figure S7-S9 highlight inter-annual variation in the MVE/price distribution across the 

seven years, which reinforces main trends seen in the MVE distributions over 7 years reported in 

Figure 4.  At the same time, these figures highlight that MVE price distributions are strongly 

dependent on VRE availability patterns with years of low VRE availability (e.g. 2007) seeing 

fewer instances of MVE in the $0-5/MWh range as well as years with high VRE availability (e.g. 

2008 or 2011) where greater instances of MVEs in the $0-5/MWh range. 

3.4. A More Granular View for Texas 

A more granular view of the modeled MVE distributions for Texas in 2050 can be gained 

from the price duration curves in Figure 5, in which the scenario-specific curves indicate the 

percentages of hours for which MVEs are above the corresponding y-axis values. This view makes 

it easier to see the impacts of technology interventions on the demand side (demand response (DR) 

and demand flexibility (DF)) as well as of availability of dispatchable, low-carbon fuel (renewable 

natural gas (RNG)) than the format of Figure 4. Figure 5 again shows that the frequency of low 

prices increases as the CO2 emissions limit is tightened (left vs. right column). For example, in the 

base case, near-zero prices are observed for approximately 85% of hours in the 1 gCO2/kWh as 

compared to nearly 60% in the 5gCO2/kWh emissions scenario. In the 1gCO2/kWh, we also see 

that the adoption of dispatchable low-carbon generation (RNG) reduces instances of near-zero 

prices that correspond to periods of VRE curtailment (nearly 75% as compared to 85% in the base 

case) and increases instances of prices covering the marginal cost of various dispatchable 

generation resources, including RNG ($190-$330/MWh14). Demand response and demand 

flexibility reduce the magnitude and number of instances of high, scarcity prices compared to the 

 
14 RNG generation is parameterized with a heat rate of 9.5 MMBtu/MWh, which translates into a variable cost of 
$190/MWh for the assumed fuel price of $20/MMBtu. We also model the cost of starting up an RNG generator with 
the possibility of fractional startups, given the linear model formulation. The net impact is that the marginal costs of 
RNG generator can vary between $190/MWh and near $330/MWh. 
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base case (see insets in Figure S 6). Compared to the base case, the availability of LDES (RFB, 

Thermal) leads to reductions in instances of near-zero prices (due to reduced VRE capacity and 

thus lower VRE curtailment) as well as an increase in the frequency of moderate non-zero prices 

(e.g., <$100/MWh)15, when storage charging is effectively setting the wholesale price based on its 

shadow value of energy. However, the availability of LDES alone does not alter the broader trend 

of increasing hours with near-zero MVEs and increasing hours of high MVEs when CO2 

constraints are tightened. We note as well that there are a few hours when prices are higher than 

the price cap in Texas (ERCOT), set to $5000/MWh including the ORDC adder as of April 2022, 

and in other wholesale markets. While the number of such hours is small, the revenue produced 

by such high prices is significant (see Figure 6). 

 
15 Similar impacts can be seen with use of H2 as an LDES application. See Figure 6.20 in [14] for quantification. 
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Figure 5. Duration curves for 45% of the highest marginal value of energy (MVE) distributions for various technology 
scenarios and CO2 emissions constraints. Main plot focuses on the 45% of the hours with prices below $400/MWh. Inset zooms 
on the small number of hours (<0.5% of hours) when MVEs are approaching the value of lost load ($50,000/MWh). The X-axis 
of the main plot is only shown for 45% of the total hours to make it easier to see the impacts of various technology availability 
assumptions and CO2 emissions constraints on the frequency of high MVEs. In all cases, MVEs are near zero for the hours that 
are not shown. Note that RNG does not get deployed in the 5gCO2/kWh scenario and thus the duration curve for “Base + RNG” 
overlaps with “Base”. 
 

3.5. Hydrogen and Sectoral Coupling 

The effect of producing H2 for non-power end-uses on the MVE distribution is dependent 

on the cost of non-power H2 supply. When non-power H2 supply is cheap, say $2/kg, then the 

opportunity cost of H2 production sets the MVE for several hours of the year (see green line in top 

left panel of Figure 4). In other words, the marginal cost of electricity production to meet an 

incremental unit of load is set by the cost of forgoing H2 production via electricity and producing 

instead via non-power H2 supply sources. Specifically, $2/kg is equivalent to $60/MWh of H2 
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based on a lower heating value of H2 of 120.1 MJ/kg. When accounting for the electrolyzer 

efficiency of 77% (see Table S 3), this translates into a marginal electricity price of $46/MWh (flat 

portion of green line on top right panel in Figure 5). In the Base+RFB+np-H2 @ $2/kg scenario, 

non-power H2 supply sets the electricity prices for approximately 20% of the hours under 

1gCO2/kWh and 5gCO2/kWh constraints (see Figure 5).  

On the other hand, when non-power H2 supply is expensive, $10/kg, the model places more 

emphasis on electricity-based hydrogen production, leading to increased VRE deployment and 

increased frequency of low MVEs.  In this case, the marginal H2 production cost, estimated as the 

mean of the shadow price of the hourly hydrogen balance constraint, is generally near or below 

$1.50/kg across all CO2 emissions intensity scenarios assessed here (see Table S 7).  While the 

average H2 production cost is relatively low, the hour-to-hour variations in marginal H2 production 

cost are function of grid dispatch and follow the MVE price distribution. For example, hours of 

lowest H2 production cost are generally observed when VRE generation is the marginal generator 

(corresponding to periods in the price band $0-5/MWh), while hours of supply scarcity generally 

drive the utilization of non-power H2 supply. That said, even with non-power H2 supply at a 

relatively low cost of $2/kg, the majority of H2 supply is still sourced from electrolysis (based on 

electrolyzer capacity factor and installed capacity values reported in Figure S 5). The increased 

deployment of electrolyzer capacity and power generation/storage capacity in the case when non-

power H2 supply is expensive ($10/kg, see Figure S 5) results in greater marginal hydrogen 

production cost as compared to the case when non-power H2 supply is cheap ($2/kg).  

3.6 Energy Market Revenues 

The top panel of Figure 6 shows the fraction of energy sales each technology makes in each 

of the MVE bands in Figure 4 in the Base Case under various carbon constraint scenarios, while 



24 
 

the bottom panel shows the fraction of revenues received from sales at spot market prices in each 

band. With more stringent CO2 constraints, VRE technologies produce more at low MVEs but 

generally rely on a relatively few hours of high MVEs to earn the revenue required to break even. 

For example, Figure 4 shows that MVEs exceed $200/MWh for just over 5% of hours each year, 

on average, in the Base Case with a 5 gCO2/kWh constraint, while Figure 6 reveals that PV earns 

about 30% of its revenues in those few hours, and Wind and Li-ion storage earn about 38% and 

60%, respectively.  Availability of LDES generally reduces the dependence on revenues during 

high priced hours – for example, in the 5gCO2/kWh, PV earns 20% of its revenues in hours with 

MVEs greater than $200/MWh as compared 30% in the base case (Figure S 8- Figure S 9). Similar 

results are observed with hydrogen (Figure S10). In base case scenario with a tight emissions 

constraint, CCGT and OCGT are essentially only run when the MVE exceeds $200/MWh16, while 

CCGT_CCS earns about 60% of its revenue in those same hours.  In short, under an energy-only 

wholesale power market design, all resources would be dependent for at least an important fraction 

of the revenues they need to break even, and in some cases essentially all of those revenues, on 

sales in a handful of hours. This conclusion is robust to various technology scenarios considered 

here (see for example Figure S 11 - Figure S 13). Moreover, optimization ensures full cost recovery 

in the model because the model assumes perfect foresight of load and VRE availability. In reality, 

it could be difficult to finance investments in generation and storage assets that would have to rely 

for most of their revenues on a handful of operating hours in any given year. 

 
16 As noted earlier, the marginal cost of thermal plants under carbon constraints also includes the cost of emissions 
estimated at the shadow price of the carbon constraint. This explains why in the 5gCO2/kWh case, CCGT_CCS is 
dispatched at lower MVE values as compared to CCGT and OCGT.  



25 
 

 
Figure 6.  Technology operation and revenue by marginal value of energy (MVE) band for various resources under the Base 
Case defined in Table 1. The upper panel shows the distribution of delivered energy by price band for different technologies and 
emission constraints. The lower panel shows the revenue distribution by price band. 

 

4. Pricing Challenges 

As noted above, in many respects our model without carbon emissions constraints might 

be considered an optimized and highly stylized version of the energy-only electricity market 

operated by ERCOT, the Independent System Operator that covers about 90% of the generation in 

Texas, updated to reflect estimated 2050 conditions. With constraints on carbon emissions, 

however, our optimized systems differ from today’s ERCOT in important ways that highlight 

challenges that will face regulators and market designers in all future decarbonized systems.  When 

carbon emissions constraints are tightened, increased reliance on VRE generation becomes 

optimal, and the proportion of the time when VRE generation is on the margin increases. Since 

VRE generation has zero or near zero marginal cost, in all regions under all cost/technology 

scenarios, tightening carbon emissions constraints increases the optimal incidence of very low 
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MVEs. In any competitive wholesale market, very low MVEs must imply very low spot wholesale 

prices. 

On the other hand, as low MVEs become more common when emissions constraints are 

tightened, high MVEs also become more common in our optimizations because average costs are 

increased when emissions constraints are tightened, and under perfect foresight and constant 

returns to scale the costs of optimal investments in generation and storage are exactly covered from 

(shadow) energy market revenues. These results imply that under energy-only wholesale market 

designs, high spot prices would also need to become more common than at present in order to 

provide adequate investment incentives. Moreover, our optimization results indicate that in an 

energy-only market without price caps, generation and storage investments would depend for cost 

recovery on energy market revenues from significantly fewer hours a year than at present.   We 

also observe notable inter-annual variations in MVE distributions (Figure S7- Figure S9) that will 

translate into year-to-year variations in revenues for individual generators that could pose 

financing challenges. 

Finally, in our optimized systems (in which we don’t model line losses in distribution) 

consumers effectively pay MVEs for electricity.  This is a textbook requirement for efficiency: in 

order to encourage efficient consumption and investment decisions, consumers should be charged 

marginal cost – or, in more general models, marginal value.  Of course, the MVEs that emerge 

from our optimizations are much, much more variable than the prices that any real retail customers 

face today. It is hard to imagine policy makers allowing these implications of our optimizations to 

be directly translated into real wholesale market designs or retail rate structures as decarbonization 

proceeds. 
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4.1 Wholesale Markets 

 Energy-only wholesale market designs are not popular now; the greatly increased price 

volatility our optimizations predict, and the need for a few hours of prices that are much greater 

than existing price caps, would make them even less attractive in the future. Most organized power 

markets already have caps on wholesale prices that are below reasonable estimates of the value of 

lost load (in part to reduce the potential impact of market power as well as to reduce risk), and, as 

noted above, such caps will almost certainly be present in decarbonizing systems with higher 

underlying spot price variability.  Price caps today reduce energy-market revenues and create the 

so-called “missing money problem” of sub-optimal incentives for investment in generation [40].  

By reducing price variability, such caps will also reduce energy arbitrage opportunities for storage 

facilities and, thus, reduce incentives to invest in storage below efficient levels.  As noted, our 

optimization results indicate that there will be a few hours when MVEs will greatly exceed current 

price caps. 

 Market designers have responded to the “missing money problem” by introducing a variety 

of supplemental capacity remuneration mechanisms [41], and these will almost certainly be even 

more important in decarbonized systems. These mechanisms were originally designed for systems 

dominated by dispatchable thermal generators, however, which have relatively predictable 

maximum outputs and marginal costs.  These capacity remuneration mechanisms are being 

adapted to handle VRE generation [42], the outputs of which depend on the weather, which also 

affects demand.  Computing the expected ability of VRE generators to provide both capacity and 

energy in times of system stress essentially requires an examination of (1) the full probability 

distribution of supply, both at the bulk power level and from behind-the-meter providers, and (2) 

the full probability distribution of demand. Analyzing the former requires properly accounting for 
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correlations between expected production from different types of VRE generators (e.g. output from 

wind generators in the same area will be much more highly correlated than output from 

dispatchable generators today) and for correlations between VRE supply and energy demand, both 

of which will be much more sensitive to variations in weather conditions. A high-VRE system 

could be stressed in the late evening of a hot day, for example, when demand is below the system 

peak but there is no solar generation and (potentially) very little wind generation. 

 Fully adapting these capacity remuneration mechanisms for systems that include 

significant storage resources will pose new conceptual challenges. Unlike VRE generators, the 

power that a fully or partially charged storage facility can supply is not likely to vary much over 

time. However, the length of time over which a storage facility can supply this power (and thus 

“carry load”) is limited both by the facility’s design duration and, in the short run, by its state of 

charge. And its state of charge at any time will be determined by prior operating decisions. 

To avoid excess electricity costs, operating and investment decisions must track MVEs as 

closely as possible, even if capacity mechanisms and other interventions move the market away 

from an energy-only design. It seems apparent that existing wholesale market designs will need to 

be modified in the interest of efficiency as VRE penetration increases[22,43]  

4.2 Retail Rates 

Unlike the retail customers in our optimized systems, only a few customers (almost 

exclusively large commercial and industrial concerns) pay wholesale spot prices today. Most 

customers face simple retail tariffs with minimal fixed charges and per-kWh prices that vary very 

little (if at all) over the hours of the year. As MVEs and wholesale spot prices become much more 

variable than they typically are today, it is hard to imagine regulators requiring more customers to 

pay wholesale spot prices for their entire electricity usage.  (The February, 2021 energy crisis in 
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Texas, when a few retail customers who had signed up to pay wholesale spot prices received 

astronomical bills, has provided a strong push in the opposite direction [44].)   

There is great resistance now to having retail prices reflect time-varying wholesale spot 

prices because of the risks involved; that resistance would increase dramatically as wholesale 

prices became dramatically more variable.  On the other hand, as MVEs become more variable, 

failure to reflect that variation in decision-making will raise the cost of electricity and retard the 

vital process of economy-wide decarbonization. To give just one important example, it would be 

desirable for both consumers and the power system if consumers charge their EVs when prices are 

very low rather than when they are very high [45].  Otherwise, EV utilization of the electric power 

system will increase peak capacity requirements and thus increase the cost barrier to grid and 

transport sector decarbonization. The problem of developing politically and socially acceptable 

retail rate designs that encourage efficient use of electricity by reflecting changes over time in 

MVEs is both important and difficult[46]. 

5. Conclusions 

Using capacity expansion modeling of electric power systems in three US regions in mid-

century, we show that under a wide range of plausible demand and supply-side technology 

assumptions, efficient, deeply decarbonized systems will have many more hours of very low 

marginal values of electricity (MVEs) and more hours of relatively high MVEs compared to spot 

wholesale market prices today. We also highlight that the extent of both these effects is dependent 

on many factors, including: a) the stringency of the constraint on carbon emissions, b) the cost 

assumptions and availability of technologies like VRE, storage, low-carbon dispatchable 

generation and c) the cost and availability of demand response and demand flexibility. Other 

factors that could impact the extent of very low and very high MVE prices estimated from CEMs 
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under carbon-constrained scenarios that are not discussed in detail here include: a) the temporal 

resolution of grid operations modeled, which is shown to be important to capture VRE resource 

and load variations and b) the prevalence of resource adequacy requirements, beyond the need to 

meet hourly demand and supply in balance. 

This dramatic change in the distribution of MVEs and, in the absence of price caps or other 

constraints, of wholesale market prices raises a number of issues for wholesale market design and 

the structure of retail pricing arrangements. At the wholesale market level, it is not reasonable to 

expect that optimal investment in generation and storage assets will take place if investors must 

rely on highly variable and uncertain future wholesale spot prices.  VRE-dominant bulk power 

systems with storage will have relatively high fixed (capital) costs and relatively low marginal 

operating costs compared to today’s bulk power systems, which largely rely on thermal generators. 

Consequently, the existing supplemental capacity remuneration mechanisms that have been 

adopted by many systems, as well as other elements of wholesale market design, will likely have 

to be modified both to provide adequate revenues to cover the costs of investing in an efficient 

portfolio of generating assets and to reflect the attributes of VRE generators and storage 

technologies.  It is not too early to begin to explore and implement alternatives.  

At the retail level, except for the largest customers, regulators and other policymakers have 

been reluctant to implement retail rate designs that allow prices to vary widely with variations in 

wholesale market prices.  This reflects their concerns about the impacts of increased price volatility 

on the level and variability of retail customers’ bills and, especially, their impacts on lower-income 

consumers.  The failure to more closely match the variations in wholesale prices with variations 

in marginal retail prices already creates inefficiencies given today’s wholesale price distributions, 

however, the cost of these inefficiencies will increase in the future as wholesale price variability 
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increases.  The reluctance of regulators to place very high levels of wholesale market price and 

retail bill volatility risks on residential and commercial consumers is understandable from political 

and equity perspectives.  As on the wholesale side, it is time to expand research on and experiments 

with retail rate designs that score well on both efficiency and equity. 

The analysis presented here is not the last word on the attributes of deeply decarbonized 

electricity systems. There are certainly opportunities to extend the implementation of CEMs to 

study deeply decarbonized electricity systems in a number of ways.  First, longer time series and 

more granular data for electricity demand would help better to capture more extreme demand 

realizations and their implications for reliability.  Second, more robust representations of consumer 

demand behavior by alternative types of consumers would allow for a better understanding of the 

effects of demand response and demand flexibility on the optimal portfolio of generation and 

storage assets as well its effects on wholesale price variations in the context of potential future 

retail rate design reforms.  Third, most of the experience that we have with energy storage in 

commercial applications has been with Li-ion batteries. While CEM representation of Li-ion 

storage can also be improved, notably to consider their use-dependent degradation [47], the 

operational representation of alternative storage technologies can also be improved in CEMs with 

increasing commercial experience.   

Fourth, expanded linkages between CEMs, economic dispatch models, transmission 

network models, and system reliability criteria would help to expand our understanding of 

potential additional operational issues associated with systems with high VRE penetration and 

solutions to them, especially the role of storage for mitigating operational issues associated with 

transmission limitations and the role of VRE and storage in providing ancillary network support.  

Finally, developments in low and no carbon dispatchable generating technologies continue to 
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emerge, including modular nuclear power plants, the Allam-Fetvedt cycle [48],  gas turbines 

capable of using hydrogen, etc.  Low and no carbon generating technologies can help to reduce 

the costs of deeply decarbonized electric power systems consistent with meeting emissions 

constraints and system reliability criteria.  Incorporating credible real-world information about 

these technologies into CEMs can provide valuable insights into potential alternative 

configurations of deeply decarbonized electric power systems.  
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Supporting Information 

S1. Notes on regional modeling  

As part of the MIT Energy Initiative Future of Energy Storage Study [14], we evaluated 

power system evolution under various carbon emissions and technological scenarios for three U.S. 

regions in 2050: the Northeast, the Southeast, and Texas. We do not seek to develop detailed 

trajectories of the evolution of the resource mix in these regions, as this evolution will be affected 

by a range of factors, including the turnover of the existing generation fleet, market design, state 

incentives, permitting rules, etc. Instead, the modeling focused on the effects of differences in VRE 

resource quality and the availability of long-lived, existing low-carbon hydro and nuclear 

generation assets, and pumped hydro storage assets, assuming cost-efficient investment and 

operation. We also assume that the existing stock of fossil-fuel generating capacity retires by 2050, 

so that our analysis basically examines a "greenfield" system developed to meet 2050 demand, 

utilizing existing transmission assets and some other existing non-fossil assets, with some regional 

differences (as detailed below). New fossil generating capacity may be selected depending on its 

costs, utilization rates in an optimal system, and the stringency of the system-wide carbon 

constraint. Given the central role for electrification in long-term U.S. decarbonization efforts, the 

model-based finding presented here rely on electricity demand projections from a high-

electrification, with moderate technology advancement scenario developed by the National 

Renewable Energy Laboratory (NREL) for its 2018 Electrification Futures (EFS) study[34] (See 

Table S 1). 

Here we briefly describe the unique attributes of the three region’s power systems as well 

as their representation in our modeling, along with listing the major input assumptions used in each 

case (Figure S 1). Since the majority of the paper focuses on modeling outcomes from the Texas 
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case study, the complete details on the modeling for that region are presented in this section and 

sections S3-S6 of the SI, while details for other regions can be found in forthcoming MIT Energy 

Initiative Future of Storage study[14]. 

 

Figure S 1. Summary of modeling assumptions across the Northeast, Southeast and Texas regions. Complete details about the 
modeling assumptions are documented in the forthcoming MIT Energy Initiative Future of Storage Study[14].. 

 

S1.1. Northeast region 

The modeling of the electricity system of the US Northeast, defined as the region served 

by  Independent System Operator (ISO) New England and New York ISO (Figure S 1), is 

characterized by the following attributes: a) relatively low-quality solar resource, either as 

distributed or utility-scale installations,  but high-quality onshore and offshore wind (VRE 

resource characterization described in S3), b) non-trivial amounts of hydropower imports from 

Canada and as well in-region hydro resources that can help to support VRE integration, c) an 

expectation that penetration of electric space heating anticipated to meet decarbonization 

commitments (and included in the NREL high electrification demand scenario), will transform 

the Northeast into a winter-peaking region, d) an expectation that all existing nuclear units in the 

region retire by 2050, i.e. they do not renew their current operating license and that new nuclear 
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plants are not deployed by 2050 based on available information about the technology’s cost and 

public acceptance challenges, e) existing hydro and pumped storage resources continue to be 

operational in 2050 and f) for onshore wind, we applied a 1.5x multiplier to the base cost 

assumptions (sourced from the 2020 edition of the NREL annual technology baseline[35]) in the 

Northeast to reflect prevailing difficulties in siting and interconnection. 

Table S 1. 2050 electricity demand assumptions for the Northeast, Southeast and Texas region modeling. Data sourced from 
high-electrification with moderate technology advancement scenario of the NREL electrification futures study[34]. 

 System peak 
demand (GW) 

Annual Demand (TWh) 

Northeast 94 454 

Texas 151 715 

Southeast 298 1,457 

 

S1.2. Southeast region 

The modeling of the Southeast region (Tennessee, Alabama, Georgia, North and South 

Carolina, and Florida) is characterized by the following unique attributes: a) prevalence of winter-

peaking demands for some states within the region as of 2018 that remains in 2050 as per demand 

projections under a high electrification scenario (see Table S 1), b) an extensive nuclear generation 

fleet, that contributed 28% of the region’s annual power generation in 2018 and is assumed to be 

available in 2050 with the assumption these plants apply and receive second license renewals. This 

results in approximately 25 GW of existing nuclear capacity available in our modeled 2050 

scenario, c) availability of relatively good-quality solar resources and on-shore wind resources. 

While offshore wind may be a possibility in this region, we have not modeled its availability due 

to a lack of reliable data to characterize the resource. 

S1.3. Texas region 

The Texas case study is characterized by the following unique attributes: a) high-quality 

wind and solar resources, b) summer-peaking demand with a strong component of relatively 
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inflexible air conditioning demand, significant penetration of weather-sensitive electric heating, 

c) strong industrial energy demand that could spur increased demand for electricity to meet 

industrial hydrogen demand via electrolysis, and d) assumption that the two existing merchant 

nuclear plants (four units) in the state retire and are not replaced by 2050, which is consistent 

with the challenged economics of such plants in organized wholesale market today [49].  

S2. Generator and storage cost and performance assumptions 

Fossil-powered generation and VRE capital and operational costs are shown in Table S 2. 

The gas, VRE, and Li-ion costs are taken from the 2020 NREL Annual Technology Baseline 

2045 “Mid” cost projections[35]. Capital costs for generation and storage were annualized based 

on an after-tax weighted average cost of capital of 4.5% and a lifetime of 30 years, unless 

otherwise noted. We also apply a small, non-zero VOM for wind, hydropower, and storage to 

distinguish their dispatch as part of the economic dispatch modeled within GenX – they do not 

meaningfully affect resulting system costs.  

For storage, system costs are separated as energy-only components (e.g., battery packs 

for Li-ion, tanks for LDES), or power-only components (e.g., inverter, interconnection and 

permitting fees, land acquisition costs). In the case of hydrogen and thermal storage, power-only 

components can further be parsed into charging or discharging power costs (see Table S 3), 

which are applied to the respective sizing variables in the model. This separation of function-

based costs enables the model to independently vary the energy, discharging power, and 

charging power capacities of the energy storage systems for optimal sizing. For storage 

technologies other than Li-ion, cost projections used in the analysis are based on bottom-up 

analysis by MIT team members engaged in the Future of Energy Storage study [14]. 
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Operational assumptions for natural gas powered generators are summarized in Table S 4. 

Natural gas fuel price assumptions are taken from the EIA AEO 2020 Reference (EIA 2021) 

2050 case and correspond to $4.04/MMBtu. For CCGT with CCS, the fuel cost is updated to 

account for assumed CO2 transport and storage cost of $20/tonne of capture CO2 (90% flue gas 

CO2 capture). 

Table S 2. Generator capital and operating cost assumptions for GenX model runs discussed in the main text. FOM = Fixed 
Operating and Maintenance. VOM = Variable Operating and Maintenance.  

Technology Capital Cost 
($/kW) 

FOM ($/kW-
year) 

VOM 
($/MWh) 

Onshore Wind 1,085 34.6 0.01 

Utility-Scale Solar 725 8.5 0.00 

CCGT 936 12.9 2.16 

OCGT 854 11.4 4.50 

CCGT_CCS 2,080 27.0 5.72 

 

Table S 3.Energy storage cost and operational assumptions. Value for Li-ion storage from NREL annual technology baseline 
2020. Values for other technologies based on bottom-up analysis from MIT team members of the upcoming MIT Energy Initiative 
Future of Storage Study. RFB = Redox Flow Battery. Round-trip efficiency (RTE) expressed as a fraction is the product of 
Efficiency Up and Efficiency Down similarly expressed. Hourly self-discharge rates for storage technologies are also considered 
in the modeling, but are very small at: 0.002% for Li-ion and metal-air systems, and 0.02% for thermal systems. 

Tech 
Discharging 
Capital Cost 

($/kW) 

Charging 
Capital 

Cost 
($/kW) 

Storage 
Capital 

Cost 
($/kWh) 

FOM 
($/kW-
year) 

FOM 
($/kWh-

year) 

VOM 
($/kWh) 

Efficiency 
Up (%) 

Efficiency 
Down (%) 

RTE (%) 

Li-ion 110 - 125.8 0.8 2.2 0.0 92% 92% 85% 

RFB 396 - 48.0 4.1 0.0 0.0 92% 88% 80% 

Hydrogen 1,190 479.3 7.0 11.0 0.1 0.0 77% 65% 50% 

Thermal 736 3.3 5.4 3.9 0.0 0.0 100% 50% 50% 

 

Table S 4.Thermal generator operational characteristics for the GenX model runs presented in the main text. Data compiled after 
surveying a variety of literature sources including NREL Annual Technology Baseline[35] EIA Annual Energy Outlook 2018[50], 
other sources[7,51–53] CCGT = Combined Cycle Gas Turbine. OCGT = Open Cycle Gas Turbine. CCS = CO2 capture and 
storage. 

Tech 
Capacity Size 

(MW) 
Start 

Cost ($) 
Start Cost 

($/MW/start) 

 
Start Fuel 
(MMBTU/ 

start) 

Start Fuel 
(MMBTU/ 
MW/start) 

Heat Rate 
(MMBTU/ 

MWh) 

OCGT 237 33,147 140 
 

45 0.19 9.51 

CCGT 573 34,982 61 
 

115 0.20 6.40 

CCGT + CCS 377 36,419 97 
 

75 0.20 7.12 
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Tech 
Min Stable 
Output (%) 

Ramp 
Up (%) 

Ramp Down (%) 
 

Up Time 
(Hours) 

Down Time 
(Hours) 

 

OCGT 25 100 100 
 

0 0  

CCGT 30 100 100 
 

4 4  

CCGT + CCS 50 100 100 
 

4 4  

 

S3. VRE Resource characterization  

VRE resources are characterized based on the methodology described in [4]. Hourly PV 

capacity factors are simulated using 2007-2013 weather data from the NREL National Solar 

Radiation Database [54] through the PVLIB model framework [55], at a 4km x 4km spatial 

resolution. Hourly wind capacity factors are simulated using the same temporal and spatial 

resolution using the NREL Wind Integration National Dataset Toolkit [56] and power curve data 

for the commercial wind turbine Gamesa:G126/2500[57] at 100-meter height. To reduce the 

spatial resolution of the VRE capacity factor data, we aggregate sites within a zone on the basis 

of average levelized cost of electricity (including the cost of interconnecting to the nearest 

substation). Thus, for each resource and zone, we get a supply curve, with each bin representing 

increasing resource quality with an associated maximum availability (based on land area), 

interconnection cost and hourly capacity factor profile. For the Texas case study, we use 4 bins 

to characterize PV and wind resources in the region. Note that the interconnection cost of each 

bin is added on to the base capital cost of the technology, noted in Table S 2, to develop a bin-

specific installed capital cost. 

S4. Demand flexibility scenario definition 

The potential value of flexibility in electricity consumption for various end-uses increases 

with greater deployment of smart meters and related technologies and expanded electrification in 

sectors such as transportation. For these experiments, we consider a very optimistic version of 
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demand flexibility: the ability to shift electricity consumption from specific demand subsectors, 

highlighted in Table S 5, over constrained (feasible) time windows at zero cost and with zero 

energy efficiency losses or inconvenience costs.  Our assumptions about demand flexibility are 

based on the NREL EFS enhanced flexibility scenario, which provides potential hours of delay 

and advance for specific demand subsectors, along with the share of the load that can be shifted 

[34]. Since the load from each subsector changes over time, potential demand flexibility also 

varies from hour to hour. For this reason, Table S 5 notes the maximum load that could be 

shifted for each subsector at any point in time for the Texas region in 2050 under the high-

electrification load scenario. It is important to notice that these subsector peaks do not occur at 

the same time; the actual maximum potential demand flexibility at any particular hour is 47 GW, 

which corresponds to 31% of total demand in that hour [34]. 

Table S 5. Demand flexibility assumptions for Texas under 2050 load conditions. HVAC = heating, ventilation and air 
Conditioning. Data sourced from NREL Electrification Futures Study 

Demand Subsector Hours 
Delay 

Hours 
Advance 

Share of End-Use That Is 
Flexible 

Maximum Hourly Demand 
Flexibility [GW] 

Commercial HVAC 1 1 25% 8.6 
Residential HVAC 1 1 35% 7 

Commercial Water 
Heating 

2 2 25% 0.2 

Residential Water 
Heating 

2 2 25% 1 

Light duty vehicles 5 0 90% 33 
Medium duty trucks 5 0 90% 3 
Heavy-duty trucks 3 0 90% 5 

 

S5. Demand response scenario definition 

The demand response scenario modeled here assumes that certain electricity consumers 

will be willing to forgo consumption above certain electricity prices. These type of demand 

response programs exist in some regions and are typically used for peak demand management 

[58]. To capture the underlying goal of these programs for supply-demand balancing, the stylized 

demand response scenario modeled here assumes that 25% of hourly load can be shed at prices 
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below the value of lost load ($50,000/MWh). Table S 6 summarizes the parametrization of this 

demand response resource in GenX where demand segments 2-6 have an associated quantity 

(5% of hourly demand) and marginal cost, that is measured as a fraction of the value of lost load.  

Demand segment 1 is the most expensive and is priced at the value of lost load. 

Table S 6 Demand response resource characterization. VoLL = Value of Lost Load, set to $50,000/MWh. 
Demand 
segment 

Cost of demand curtailment as a fraction 
of VoLL 

Maximum demand curtailment per segment as a fraction of 
hourly load 

1 1 75% 

2 0.7 5% 

3 0.5 5% 

4 0.2 5% 

5 0.1 5% 

6 0.05 5% 

 

S6. H2 scenario definition 

The configuration of Figure 1 is included in the GenX model, where along with 

specifying the cost of performance assumptions of the elements as used previously (e.g., 

electrolyzer, storage tank and gas turbines for H2 storage as per values in Table S 3), we add a 

constraint that requires the specified H2 demand from industry to be met by either the 

electrolyzer or by discharging H2 storage. This single constraint then enables the utilization of a 

traditional power-to-H2-to-power storage system to be also optimized, in terms of component 

sizes and utilization, to meet H2 demand in the industrial sector.  

Since we are primarily interested in understanding the impact on the power system from 

this external H2 demand, we make the following approximations to simplify the representation of 

the H2 supply chain. (1) We simplify the representation of non-power sources of H2 supply, by 

making them available at a constant cost, either $2/kg or $10/kg, without any supply limits. As 

reference, the cost of producing hydrogen from natural gas with carbon capture and storage is 

estimated to be around $2/kg in the U.S. context [59]. (2) We are not considering any spatial 
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distribution in H2 production and industrial demand and are thus ignoring H2 transportation. And, 

(3) we are not including source-dependent delivery costs for H2 supply that could be associated 

with adjusting the state of delivered H2 from different sources to meet industrial customer 

requirements. Other studies have included these factors in the H2 supply chain while also 

contemplating their impacts on the power system evolution [27,60]. 

Hydrogen demand is modeled as exogenous and uniform throughout the year. Hydrogen 

demand was estimated using NREL’s 2018 Industrial Data Book as a reference[61,62]. This 

publication contains a dataset detailing the annual energy consumed by large energy-using 

facilities17 in 2016. Here, we focus on hydrogen demand from substituting for the use of natural 

gas for heating purposes.  Total natural gas consumption by Large Energy Users in Texas 

accounted for 0.93 QBTU in 2016, which represents about 44% of the 2.1 QBTU of natural gas 

consumed by industry in Texas, as reported by the EIA (Figure S 2). From that 0.93 QBTU, we 

considered for the analysis Process Heaters, Furnaces, Boilers and Other Combustion Sources as 

potential units that use natural gas for heating purposes. Moreover, we excluded units whose unit 

name suggests natural gas is being used as feedstock. This results in 0.59QBTU of natural gas 

used for heating. By assuming flat demand, the total of 0.59QBTU/year of natural gas heat is 

equivalent to 19.7GWt of H2. For comparison purposes a constant 19.7 GWt load is equivalent to 

an average power demand of 25.6 GWe assuming 77% charging (electrolyzer) efficiency. 25.6 

GWe is equal to approximately 17% of projected 2050 peak electricity demand modeled here. 

 
17 Defined as those facilities that are required to report greenhouse gas emissions under EPA’s Greenhouse Gas 
Reporting Program. 
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Figure S 2. Natural gas consumption by Large Energy Users in Texas. Demand categories within the dotted box are considered 
when estimating potential future hydrogen demand for process heating. 

 

S7. Additional Results 

 

Figure S 3. Installed capacities in the Northeast (NE), Southeast (SE), and Texas (TX) under tightening CO2 emissions 
constraints. Left side: installed power capacities (relative to the region’s 2050 peak electricity demand); right side: deliverable 
storage energy capacity to the grid (i.e., product of energy capacity and discharge efficiency, relative to the region’s annual 
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average hourly electricity demand). Capacity factors of CCGTs can be found in Appendix D (Table D-1). For the Northeast, 
“Wind” represents the sum of onshore and offshore capacity. 

 

 

Figure S 4. Key system outcomes for various CO2 emissions intensity constraints and technology scenarios for Texas. 1st column: 
installed power capacity by technology type, reported as a fraction of peak load; 2nd column: Deliverable energy storage 
capacity installed by technology type, reported as a fraction of mean annual demand. Deliverable energy capacity for each 
storage technology is defined as the installed energy capacity times the discharge efficiency; 3rd column: system average cost of 
electricity (SCOE), defined as ratio of total system cost by total demand met throughout the year; 4th column: variable renewable 
energy curtailment, defined as the fraction of available VRE generation that is not dispatched.  
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Figure S 5. Key system outcomes for various CO2 emissions intensity constraints and technology scenarios characterized by 
energy storage availability, existence of non-power H2 demand and availability of non-power H2 supply at various prices. 1st 
column: annual generation mix by resource and storage discharging; 2nd column: annual average power to H2 (or electrolyzer) 
capacity utilization; 3rd column: installed power to hydrogen production capacity. For reference, hourly exogeneous H2 demand 
is set to 19.7 GWH2 

 

Table S 7 Marginal hydrogen production cost in $/kg for serving non-power sector hydrogen demand as a function of non-power 
H2 supply and CO2 emissions intensity constraint. The marginal hydrogen production cost is computed as the mean of the hourly 
shadow price associated with hourly H2 supply and demand balance constraint in the model. 

 

 Emissions intensity constraint (gCO2/kWh) 
 1 5 50 

Base + RFB + np-H2 @ $2/kg 1.07 1.15 1.47 

Base + RFB + np-H2 @ $10/kg 1.46 1.60 1.57 
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Figure S 6. Duration curves for 45% of the highest marginal value of energy (MVE) distributions for various technology 
scenarios and CO2 emissions constraints. Main plot focuses on the 45% of the hours with prices below $400/MWh. Inset zooms 
on the small number of hours (<0.5% of hours) when MVEs are approaching the value of lost load  ($50,000/MWh). The X-axis 
of the main plot is only shown for 45% of the total hours to make it easier to see the impacts of various technology availability 
assumptions and CO2 emissions constraints on the frequency of high MVEs. In all cases, MVEs are near zero for the hours that 
are not shown. Note that RNG does not get deployed in the 5gCO2/kWh scenario and thus the duration curve for “Base + RNG” 
overlaps with “Base”. 

 

 

Figure S7. Inter-annual variation in the marginal value of energy (MVE) distribution for various emissions constraints under the 
Base Case defined in Table 1.  
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Figure S8. Inter-annual variation in the  marginal value of energy (MVE) distribution for various emissions constraints under the 
Base Case + RFB scenario defined in Table 1.  

 

 

Figure S9 Inter-annual variation in the  marginal value of energy (MVE) price distribution for various emissions constraints 
under the Base Case + RFB + Thermal scenario defined in Table 1.  
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Figure S10. Distribution of Li-ion storage annual charging (top), discharging energy (middle) and revenue earned (bottom) 
across the wholesale electricity price bands introduced earlier. Results shown for various CO2 emissions constraints and 
correspond to “Base” technology scenario described in Table 1. Note that Li-ion charges predominantly, but not exclusively, 
when prices are in the lowest band. 
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Figure S 11. Technology operation and revenue by price band for various resources under the Base +RFB scenario defined in 
Table 1. The upper panel shows the distribution of delivered energy by price band for different technologies and emission 
constraints. The lower panel shows the revenue distribution by price band. 
 

Figure S 12. Technology operation and revenue by price band for various resources under the Base +RFB +Thermal scenario 
defined in Table 1. The upper panel shows the distribution of delivered energy by price band for different technologies and 
emission constraints. The lower panel shows the revenue distribution by price band. 
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Figure S 13. Technology operation and revenue by price band for various resources under the Base +RFB +np-H2 @$10/kg 
scenario defined in Table 1. The upper panel shows the distribution of delivered energy by price band for different technologies 
and emission constraints. The lower panel shows the revenue distribution by price band. 


