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Abstract

This dissertation is a theoretical study of the role of beliefs in both individual and group

behavior. In Chapter 1, we consider a decision-maker who chooses from a set of options after

receiving some private information. This information however is unobserved by an analyst,

so from the latter’s perspective, choice is probabilistic or random. We provide a theory in

which information can be fully identified from random choice. In addition, the analyst can

perform the following inferences even when information is unobservable: (1) directly compute

ex-ante valuations of option sets from random choice and vice-versa, (2) assess which decision-

maker has better information by using choice dispersion as a measure of informativeness, (3)

determine if the decision-maker’s beliefs about information are dynamically consistent, and

(4) test to see if these beliefs are well-calibrated or rational.

In Chapter 2, we dispense with the standard assumption of expected utility maximiza-

tion and introduce a theory of stochastic ambiguity aversion. In the individual interpretation

of this theory, choice is random due to unobservable shocks to the individual’s ambiguity

aversion. In the group interpretation of this theory, choice is random due to unobservable

heterogeneity in ambiguity aversion within the group. A one-parameter distribution char-

acterizing stochastic ambiguity aversion can be fully identified from random choice. From

a technical standpoint, we offer decision theoretic foundations for relaxing linearity under

random utility maximization.

In Chapter 3, we study a model of competitive trading where agents have heterogeneous

beliefs about the persistence of states. This model addresses a robust finding in behavioral

finance known as the disposition effect where agents over-purchase stocks after prices fall and

over-sell stocks after prices rise. We show that agents who believe in the least persistence

exhibit the disposition effect while those who believe in the most persistence engage in

momentum trading. Moreover, agents can be ordered by how much of a disposition effect
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they exhibit if and only if their beliefs can be ordered by a single parameter measuring

persistence. This allows for identification of beliefs even when equilibrium considerations

restrict the observable choice data.
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1 Random Choice and Private Information

1.1 Introduction

Consider a decision-maker who at time 2, will choose an option from a set of available options.

At time 1, the decision-maker receives private information that will affect this time-2 choice.

An analyst (i.e. an outside observer) knows the decision-maker’s set of options but does

not know the decision-maker’s information. Hence, to the analyst, the decision-maker’s

choice is probabilistic or random. Many problems in information economics and decision

theory fit in this framework. In this chapter, we are interested in applications where the

set of available options are uncertain prospects, the decision-maker’s information reveals the

likelihood of various outcomes, and this information is strictly private, that is, it is completely

unobservable to the analyst.

To be concrete, suppose that the decision-maker is an individual agent choosing from

a set of health insurance plans at the beginning of every year. Before choosing, the agent

receives some private information (i.e. a signal) that influences her beliefs about her health

for the rest of the year. For example, she may get a health exam that informs her about the

likelihood of falling sick. As a result, her choice of an insurance plan each year depends on

the realization of her signal that year. The analyst however, does not observe this signal.

Hence, from the analyst’s perspective, the individual’s choice of health insurance every year

is probabilistic or random. This is captured by a frequency distribution of choices over the

years. We call this the individual interpretation of random choice.

Alternatively, suppose that the decision-maker is a group of agents choosing from the

same set of health insurance plans in a single year. Before choosing, each agent in the group

has some private information that influences her individual beliefs about her health. For

example, she may have some personal knowledge about her lifestyle that affects her choice of

insurance. This information however, is beyond what is captured by all the characteristics

observable by the analyst. As a result, to the analyst, agents are observationally identical.1

1 We can think of this group as the end result after applying all possible econometric (e.g. non-parametric)
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Hence, from the analyst’s perspective, the choice of health insurance within the group is

probabilistic or random. This is captured by a frequency distribution of choices over all the

agents in the group. We call this the group interpretation of random choice.

In both the individual interpretation (where the decision-maker is an individual agent)

and the group interpretation (where the decision-maker is a group of agents), the main feature

is that the decision-maker’s private information is unobservable to the analyst. Other ap-

plications include consumers choosing a retail banking service, private investors deciding on

an investment, buyers bidding at a Treasury auction or users clicking on an online ad. In all

these examples, it is likely that an analyst is unable to directly observe the decision-maker’s

private information or has difficulty discerning how that information will be interpreted.

The first main contribution of this chapter is providing a theory in which private infor-

mation can be fully identified from random choice.2 Moreover, we perform the following

inferences. First, by observing the decision-maker’s random choice from a set of options,

we can compute the set’s valuation, that is, its ex-ante utility (in the individual interpreta-

tion) or its welfare (in the group interpretation). Call this evaluating option sets. Second,

we can discern which decision-maker has better information by using choice dispersion as

a measure of informativeness. Call this assessing informativeness. Third, if valuations of

option sets are known, then we can compare them to the decision-maker’s random choice

to detect when beliefs about information are dynamically inconsistent. Call this detecting

biases. Finally, from the joint distribution of choices and payoff-relevant outcomes, we can

determine if beliefs are well-calibrated or rational. Call this calibrating beliefs.

When information is observable, the above inferences are important and well-understood

exercises in information theory and information economics. Our second contribution is to

provide the tools that allow us to carry out the same analysis even when information is

analysis available to differentiate the data.
2 An alternative approach is to directly elicit private information from survey data (for example, see

Finkelstein and McGarry [34] and Hendren [50]). However, respondents may not accurately report their true
beliefs or the data may be subject to other complications (such as excess concentrations at focal points). In
contrast, our approach follows the original spirit of Savage [73] by inferring beliefs from choice behavior.
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not directly observable and can only be inferred from choice behavior. Our theorems reveal

that when all relevant choice data is available, all these inferences can be performed just

as effectively as in the case with observable information. The more practical question of

drawing inferences when choice data is only partially available is left for future research.

Formally, let S represent an objective state space. For example, in the case of health

insurance, S could represent the binary state space where an agent can either be healthy or

sick. We call a set of options a decision-problem and each option in the set an act. An act

specifies a payoff for each realization of the state. For example, forgoing health insurance

corresponds to the act that yields a high payoff if the agent is healthy and a low payoff if she is

sick. On the other hand, choosing a no-deductible (full-insurance) health plan corresponds

to the act that yields the same payoff regardless of whether the agent is sick or not. At

time 2, a decision-maker, either an individual agent or a group of agents, chooses some act

from a decision-problem. In the individual interpretation, an agent chooses from the same

decision-problem repeatedly every year which results in a frequency distribution of choices

over all the years. In the group interpretation, all agents in the group choose from the same

decision-problem in a single year which results in a frequency distribution of choices over all

agents in the group. In either interpretation, we call the observable distribution of choices a

random choice rule (RCR).

At time 1, an agent receives some private information that allows her to form beliefs

about S. Since this information is unobservable to the analyst, beliefs are subjective. Each

agent then evaluates the expected utility of every act in the decision-problem using her

subjective belief. At time 2, she chooses the best act in the decision-problem. Since the

private information of the decision-maker (either an individual agent or a group of agents)

is unknown to the analyst, the decision-maker’s time-2 choice is probabilistic and can be

modeled as a RCR. We call this an information representation of the RCR.

An information representation is a model of random utility maximization (RUM).3 In

3 For more about random utility maximization, see Block and Marschak [12], Falmagne [31], McFadden
and Richter [61] and Gul, Natenzon and Pesendorfer [46].
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particular, the random utility is a subjective expected utility where the subjective beliefs

depend on the agent’s private information. In the individual interpretation, each realization

of this random utility corresponds to a realization of the agent’s private signal. In the

group interpretation, each realization of this random utility corresponds to a realization of a

random draw of an agent in the group. In both the individual and group interpretations, the

probability that an act is chosen is equal to the probability that the act attains the highest

subjective expected utility in the decision-problem.

In general, RUM models have difficulty dealing with indifferences in the random utility.

We address this issue by drawing an analogy with standard deterministic (i.e. not random)

choice. Under deterministic choice, if two acts are indifferent (i.e. they have the same

utility), then the model is silent about which act will be chosen. Similarly, under random

choice, if two acts are indifferent (i.e. they have the same random utility), then the model is

silent about what the choice probabilities are. This modelling approach has two advantages.

First, it allows the analyst to be agnostic about any choice data that is beyond the scope of

the model and provides some additional freedom to interpret data. Second, it allows for just

enough flexibility so that we can include deterministic choice as a special case of random

choice. In particular, the subjective expected utility model of Anscombe-Aumann [3] obtains

as a degenerate case.

We first provide axioms (i.e. testable implications) that characterize information repre-

sentations. The first four axioms (monotonicity, linearity, extremeness and continuity) are

direct translations of the random expected utility axioms from Gul and Pesendorfer [47].

Next, we introduce three new axioms. Non-degeneracy ensures that the decision-maker is

not universally indifferent. C-determinism states that the decision-maker must choose de-

terministically over constant acts, that is, acts that yield the same payoff in all states. This

follows from the fact that private information only affects beliefs and not tastes. Since a

constant act yields the same payoff regardless of what beliefs are, choice over constant acts

must be deterministic. Finally, S-monotonicity states that if an act is the best act in a

4



decision-problem for every state, then that act must be chosen for sure. It is the random

choice version of the state-by-state monotonicity condition under deterministic choice.

Theorem 1.1 is a representation theorem. It states that a RCR has an information

representation if and only if it satisfies the seven axioms above. Theorem 1.2 describes

the uniqueness properties of information representations. It asserts that analyzing binary

decision-problems is sufficient to completely identify the decision-maker’s private informa-

tion.

We then introduce a key technical tool that will feature prominently in our subsequent

analysis. Given a decision-problem, consider adding a test act (e.g. a fixed payoff) to the

original decision-problem in order to entice the decision-maker. Consider the probability that

some act in the original decision-problem will be chosen over this test act. As we gradually

decrease the value of the test act, this probability will increase. We call this schedule the

test function for the decision-problem. Test functions are cumulatives that characterize

the utility distributions of decision-problems. They also serve as sufficient statistics for

identifying private information.

Following, we proceed to address our main questions of identification. First, we evaluate

option sets. In the individual interpretation, the valuation of an option set is the ex-ante

utility of the option set at time 0, that is, before the individual agent receives her information.

In the group interpretation, the valuation of an option set is the welfare or total utility of

the option set for all agents in the group.4 Given a decision-maker’s random choice, how

do we compute the valuations of option sets (i.e. decision-problems)? We show that there

is an intimate connection between random choice and valuations. Theorem 1.3 shows that

computing integrals of test functions allow us to recover the valuations of decision-problems.

Conversely, Theorem 1.4 shows that computing the marginal valuations of decision-problems

with respect to test acts allow us to recover the decision-maker’s random choice. This latter

result is directly analogous to Hotelling’s Lemma from classical producer theory. Theorems

1.3 and 1.4 describe operations that are mathematical inverses of each other; given random

4 McFadden [60] calls this the “social surplus”.
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choice, we can directly compute valuations, and given valuations, we can directly compute

random choice.

Next, we assess informativeness. In the classical approach of Blackwell [10, 11], more

information is characterized by higher valuations (i.e. ex-ante utilities) of option sets. What

is the random choice characterization of more information? Theorem 1.5 shows that in

both the individual and group interpretations, more private information is characterized

by second-order stochastic dominance of test functions. Given two decision-makers (either

two individual agents or two groups of agents), one is more informed than the other if

and only if test functions under the latter second-order stochastic dominate test functions

under the former. This allows us to equate an unobservable multi-dimensional information

ordering with observable single-dimensional stochastic dominance relations. Intuitively, more

information is characterized by more dispersion or randomness in choice. For example, in

the special case where information corresponds to events that partition S, more information

is exactly characterized by less deterministic choice.

We then apply these results to detect biases. Suppose valuations of option sets (i.e.

decision-problems) are observable via a preference relation (or ranking) over all decision-

problems. Can we detect situations when this preference relation is inconsistent with the

decision-maker’s random choice? In the individual interpretation, this describes a form

of dynamic inconsistency where this time-0 preference relation (reflecting ex-ante utilities)

suggests a more (or less) informative signal than that implied by time-2 random choice. We

call this prospective overconfidence (or underconfidence). An example of the former would

be the diversification bias where an individual prefers large option sets at time 0 but always

chooses the same option at time 2. An example of the latter would be the confirmation

bias where an individual’s beliefs after receiving her signal at time 2 are more extreme (i.e.

more dispersed) than what she anticipated before receiving her signal at time 0. Both are

examples of subjective misconfidence. These biases also apply in the group interpretation.

For example, in the case of health insurance, consider a firm that chooses sets of health
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plans for its employees based on total welfare (i.e valuation). In this case, any inconsistency

suggests that the firm has an incorrect assessment of the distribution of beliefs among its

employees. By studying both valuations and random choice, we can detect these biases even

when information is not directly observable.

Lastly, we calibrate beliefs. So far, we have adopted a completely subjective treatment of

beliefs. In other words, we have been silent about whether beliefs are well-calibrated. By well-

calibrated, we mean that beliefs as implied by random choice are consistent with both choice

data and actual state realizations. In the individual interpretation, this implies that the

agent has rational expectations about her signals. In the group interpretation, this implies

that agents have beliefs that are predictive of actual state realizations and suggests that

there is genuine private information in the group. If we consider the joint data over choices

and state realizations, can we tell if beliefs are well-calibrated? We first define a conditional

test function where we vary the payoffs of a conditional test act only in a given state.

Theorem 1.6 shows that beliefs are well-calibrated if and only if conditional test functions

and unconditional test functions have the same mean. This provides a test for rational

beliefs even when the decision-maker’s information is not directly observable. Finally, we

use this result to determine when our notions of subjective misconfidence discussed above

are measures of actual objective misconfidence.

1.2 An Informational Model of Random Choice

1.2.1 Random Choice Rules

We now describe the main primitive (i.e. choice data). A decision-maker, either an individual

agent or a group of agents, faces a set of options to choose from. We call the set of options

a decision-problem and each option in the set an act. If chosen, an act yields a payoff that

depends on the realization of some underlying state. For example, an act could correspond

to “forgoing health insurance”, in which case an agent will receive a high payoff if she is
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healthy and a low payoff if she is sick. The object of our analysis is a random choice rule

(RCR) that specifies the probabilities that acts are chosen in every decision-problem. In the

individual interpretation of random choice, where the decision-maker is an individual agent,

the RCR specifies the frequency distribution of choices by the agent if she chooses from the

same decision-problem repeatedly. In the group interpretation of random choice, where the

decision-maker is a group of agents, the RCR specifies the frequency distribution of choices

in the group if every agent in the group chooses from the same decision-problem.

Formally, let S and X be finite sets. We interpret S as an objective state space and X

as a set of possible prizes. For example, in the case of health insurance, S = {s1, s2} where

agents can either either be sick (s1) or healthy (s2). Let ∆S and ∆X be their respective

probability simplexes. We interpret ∆S as the set of beliefs about the state space and ∆X

as the set of lotteries over prizes. Following the setup of Anscombe and Aumann [3], an

act is a mapping f : S → ∆X that specifies a payoff in terms of a lottery on X for each

realization of s ∈ S. Let H be the set of all acts. A decision-problem is a finite non-empty

subset of H. Let K be the set of all decision-problems, which we endow with the Hausdorff

metric.5 For notational convenience, we also let f denote the singleton set {f} whenever

there is no risk of confusion.

In the classic model of rational choice, if an agent prefers one option over another, then

this preference is revealed via her choice of the preferred option. If the two options are

indifferent (i.e. they have the same utility), then the model is silent about which option

will be chosen. We introduce an analogous innovation to address indifferences under random

choice and random utility. Consider the decision-problem F = {f, g}. If the two acts f and

g are “indifferent” (i.e. they have the same random utility), then we declare that the random

choice rule is unable to specify choice probabilities for each act in the decision-problem. For

5 For two sets F and G, the Hausdorff metric is given by

dh (F,G) := max

�
sup
f∈F

inf
g∈G

|f − g| , sup
g∈F

inf
f∈G

|f − g|

�
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instance, it could be that f is chosen over g with probability a half, but any other probability

would also be perfectly consistent with the model. Thus, similar to how the classic model is

silent about which act will be chosen in the case of indifference, the random choice model is

silent about what the choice probabilities are. In both cases, we can interpret indifferences

as choice behavior that is beyond the scope of the model. This provides the analyst with

some additional freedom to interpret data.

Let H be some σ-algebra on H. Formally, we model indifference as non-measurability

with respect to H. For example, if H is the Borel algebra, then this corresponds to the

benchmark case where every act is measurable with respect to H. In general though, H can

be coarser than the Borel algebra. Note that given a decision-problem, the decision-problem

itself must be measurable. This is because we know that something will be chosen from the

decision-problem. For F ∈ K, let HF be the σ-algebra generated by H ∪ {F}.6 Let Π be

the set of all probability measures on any measurable space of H. We now formally define a

random choice rule.

Definition. A random choice rule (RCR) is a (ρ,H) where ρ : K → Π and ρ (F ) is a

measure on (H,HF ) with support F ∈ K.

For F ∈ K, we let ρF denote the measure ρ (F ). A RCR thus assigns a probability measure

on (H,HF ) for each decision-problem F ∈ K such that ρF (F ) = 1. Note that the definition

of HF ensures that ρF (F ) is well-defined. We interpret ρF (G) as the probability that some

act in G ∈ HF will be chosen given the decision-problem F ∈ K. For example, if an

insurance company offers two health plans F = {f, g}, then ρF (f) is the probability that

plan f is chosen over plan g. For ease of exposition, we denote RCRs by ρ with the implicit

understanding that it is associated with some H.

If G ⊂ F is not HF -measurable, then ρF (G) is not well-defined. To address this, let

ρ
∗

F (G) := inf
G⊂G�∈HF

ρF (G�)

6 This definition imposes a form of common measurability across all decision-problems. It can be relaxed
if we strengthen the monotonicity axiom.
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be the measure of the smallest measurable set containing G.7 Note that ρ
∗

F is exactly the

outer measure of ρF . Both ρF and ρ
∗

F coincide on HF -measurable sets. Going forward, we

let ρ denote ρ
∗ without loss of generality.

A RCR is deterministic iff all choice probabilities are either zero or one. What follows

is an example of a deterministic RCR. The purpose of this example is to highlight (1) the

use of non-measurability to model indifferences and (2) the modeling of classic deterministic

choice as a special case of random choice.

Example 1.1. Let S = {s1, s2} and X = {x, y}. Without loss of generality, we can let

f = (a, b) ∈ [0, 1]2 denote the act f ∈ H where

f (s1) = aδx + (1− a) δy

f (s2) = bδx + (1− b) δy

Let H be the σ-algebra generated by sets of the form B × [0, 1] where B is a Borel set on

[0, 1]. Consider the RCR (ρ,H) where ρF (f) = 1 iff f1 ≥ g1 for all g ∈ F . Thus, acts are

ranked based on how likely they will yield prize x if state s1 occurs. In the health insurance

example, this describes agents who prefer x to y and believe that they will fall sick (i.e.

s1 occurs) for sure. If we let F = {f, g} be such that f1 = g1, then neither f nor g is

HF -measurable. In other words, the RCR is unable to specify choice probabilities for f or

g. This is because both acts yield prize x with the same probability in state s1. Hence, the

two acts are “indifferent”. Observe that ρ corresponds exactly to classic deterministic choice

where f is preferred to g iff f1 ≥ g1.

1.2.2 Information Representations

We now describe the relationship between random choice and private information. At time 2,

the decision-maker, either an individual agent or a group of agents, chooses from a decision-

7 Lemma 1A.1 in the Appendix ensures that this is well-defined.
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problem. At time 1, the decision-maker receives some private information about the un-

derlying state space S. For instance, if the decision-problem is whether to purchase health

insurance or not, then this private information will affect beliefs about the likelihood of

falling sick. After receiving this information, each agent will choose the best act from the

decision-problem conditional on her subjective belief about S. Since this private informa-

tion is unobservable to the analyst, choice at time 2 is probabilistic and can be modeled as

a RCR. We call this an information representation of random choice.

Formally, after receiving her private information, each agent forms a posterior belief

q ∈ ∆S. Thus, we model private information as an unobservable distribution µ on ∆S. In

the individual interpretation, µ is the distribution of signal realizations over the canonical

signal space ∆S. Note that this approach allows us to circumvent any issues that arise

with updating beliefs and enables us to work directly with the posterior beliefs driving

choice. In the group interpretation, µ is the distribution of beliefs in the group. As an

example, consider the degenerate distribution µ = δq for some q ∈ ∆S. In the individual

interpretation, this corresponds to the case where the agent receives a degenerate signal that

induces a single posterior belief q. If q is also the prior, then this describes an agent who

receives no information about S. In the group interpretation, this corresponds to the case

where all agents in the group share the same belief about S. Thus, all agents in the group

are completely indistinguishable from each other. Note that in both interpretations, the

decision-maker’s choice in this example is deterministic.

Let u : ∆X → R be an affine utility function. We interpret q · (u ◦ f) as the subjective

expected utility of the act f ∈ H conditional on the posterior belief q ∈ ∆S.8 Since we

are interested in the studying the effects of information on random choice, we keep tastes

(i.e. risk preferences) the same by holding u fixed (in Section 8, we relax this assumption).

In the individual interpretation, this implies that signals only affect beliefs about S and

not preferences over ∆X. In the group interpretation, this implies that all agents in the

group share the same tastes but differ over beliefs about S. In both interpretations, choice

8 For any act f ∈ H, we let u ◦ f ∈ RS denote its utility vector where (u ◦ f) (s) = u (f (s)) for all s ∈ S.

11



is stochastic only as a result of varying beliefs.

We say µ is regular iff the subjective expected utilities of any two acts are either always

or never equal. This is a relaxation of the standard restriction in traditional RUM models

where utilities are never equal.

Definition. µ is regular iff q · (u ◦ f) = q · (u ◦ g) with µ-measure zero or one.

Let (µ, u) consist of a regular µ and a non-constant u. We are now ready to formally state

the relationship between a RCR and its information structure.

Definition (Information Representation). ρ is represented by (µ, u) iff for f ∈ F ∈ K,

ρF (f) = µ {q ∈ ∆S | q · (u ◦ f) ≥ q · (u ◦ g) ∀g ∈ F }

This is a RUM model where the random utilities are subjective expected utilities that

depend on unobservable private information. If a RCR is represented by (µ, u), then the

probability that an act f is chosen in the decision-problem F is equal to the probability that

the subjective expected utility of f is higher than that of every other act in F . For instance, in

the health insurance example, the probability of buying health insurance corresponds to the

probability of receiving a bad report from a health exam. Note that the latter probability (i.e.

µ) is subjective as the decision-maker’s private information is unobservable to the analyst.

Thus, any inference about this information can only be gleaned by studying the RCR.

One of the classic critiques of subjective expected utility (especially in the context of

health insurance) is the state independence of the (taste) utility. In an information repre-

sentation, utilities are independent of both the unobservable subjective states affecting in-

formation and the objective state space S. The former is addressed in Section 8 below where

we characterize a general model that allows for unobservable utility shocks. The latter can

by addressed by any random choice generalization of the classic solutions to state-dependent

utility (see Karni, Schmeidler and Vind [54] and Karni [53]).9

9 In practice however, the empirical literature on health insurance has largely assumed state independence
due to a dearth of empirical evidence (see Finkelstein, Luttmer and Notowidigdo [33]).
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We follow with two examples of information representations. The first example is deter-

ministic while the second is not.

Example 1.2. Let S = {s1, s2}, X = {x, y} and u (aδx + (1− a) δy) = a ∈ [0, 1]. Let µ = δq

for q ∈ ∆S such that qs1 = 1. In this example, agents believe that s1 will occur for sure

so they only care about payoffs in state s1. Let (µ, u) represent ρ, and let F = {f, g}. If

(u ◦ f)s1 ≥ (u ◦ g)s1 , then

ρF (f) = µ {q ∈ ∆S | q · (u ◦ f) ≥ q · (u ◦ g)} = 1

If (u ◦ f)s1 = (u ◦ g)s1 , then q · (u ◦ f) = q · (u ◦ g) µ-a.s. so

ρF (f) = ρF (g) = 1

and neither f nor g is HF -measurable. Note that this is exactly the RCR described in

Example 1.1 above.

Example 1.3. Let S = {s1, s2, s3}, X = {x, y} and u (aδx + (1− a) δy) = a ∈ [0, 1]. Let µ

be the uniform measure on ∆S, and let (µ, u) represent ρ. Given two acts f and g such that

u ◦ f = v ∈ [0, 1]3 and u ◦ g = w ∈ [0, 1]3, we have

ρf∪g (f) = µ {q ∈ ∆S | q · v ≥ q · w}

Thus, the probability that f is chosen over g is simply the area of ∆S intersected with the

halfspace q · (v − w) ≥ 0.

Example 1.2 above is exactly the standard subjective utility model where agents believe

that s1 will realize for sure. It serves to demonstrate how our random choice model includes

standard subjective expected utility as a special deterministic case.

We conclude this section with a technical remark about our definition of regularity. As

briefly mentioned above, in traditional RUM models, indifferences in the random utility

must occur with probability zero. This is because all choice options are assumed to be

measurable with respect to the RCR, so these models run into trouble when dealing with
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indifferences in the random utility.10 Our definition of regularity enables us to circumvent

these issues by allowing for just enough flexibility so that we can model indifferences using

non-measurability.11 For instance in Example 1.2 above, if q · (u ◦ f) = q · (u ◦ g) µ-a.s.,

then neither f nor g is Hf∪g-measurable. Acts that have the same utility µ-a.s. correspond

exactly to non-measurable singletons. Note that our definition however still imposes certain

restrictions on µ. For example, multiple mass points are not allowed if µ is regular.12

1.2.3 Axiomatic Characterization

In this section, we provide a set of axioms (i.e testable properties) on the RCR to character-

ize information representations. We also identify the uniqueness properties of information

representations.

Given two decision-problems F and G, let aF +(1− a)G denote the Minkowski mixture

of the two sets for some a ∈ [0, 1].13 Let extF denote the set of extreme acts of F ∈ K.14

We assume f ∈ F ∈ K throughout. The first three axioms below are standard restrictions

on RCRs.

Axiom 1.1. (Monotonicity) G ⊂ F implies ρG (f) ≥ ρF (f).

Axiom 1.2. (Linearity) ρF (f) = ρaF+(1−a)g (af + (1− a) g) for a ∈ (0, 1).

10 Note that if we assumed that acts are mappings f : S → [0, 1], then we could obtain a consistent model by
assuming that indifferences never occur. Nevertheless, this would not allow us to include deterministic choice
as a special case. Moreover, while extending a model with these mappings to the Anscombe-Aumann space
is standard under deterministic choice, the extension under random choice is more intricate and warrants
our approach.

11 More precisely, our definition of regularity permits strictly positive measures on sets in ∆S that have
less than full dimension. Regularity in Gul and Pesendorfer [47] on the other hand, requires µ to be full-
dimensional (see their Lemma 2). See Block and Marschak [12] for the case of finite alternatives.

12 See Example 1.7 below.
13 The Minkowski mixture for {F,G} ⊂ K and a ∈ [0, 1] is defined as

aF + (1− a)G := {af + (1− a) g | (f, g) ∈ F ×G}

14 Formally, f ∈ extF ∈ K iff f ∈ F and f �= ag + (1− a)h for some {g, h} ⊂ F and a ∈ (0, 1).
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Axiom 1.3. (Extremeness) ρF (extF ) = 1.

Monotonicity is the standard condition necessary for any RUM model. To see this, note that

when we enlarge the decision-problem, we introduce new acts that could dominate the acts

in the original decision-problem under certain beliefs. Thus, the probability that the original

acts are chosen can only decrease.

To understand linearity and extremeness, note that the random utilities in our model are

linear. In other words, after receiving private information, agents are standard subjective

expected utility maximizers. As a result, choice behavior must satisfy the standard properties

of expected utility maximization. Linearity is exactly the random choice analog of the

standard independence axiom. In fact, it is the version of the independence axiom that

is tested in many experimental settings (for example, see Kahneman and Tversky [51]).

Extremeness implies that only extreme acts of the decision-problem will be chosen. This

follows from the fact that linear utilities are used to evaluate acts. Thus, any act that is a

mixture of other acts in the decision-problem will never be chosen (except for the borderline

case of indifference). Note that both linearity and extremeness rule out situations where the

decision-maker may exhibit behaviors associated with random non-linear utilities (such as

ambiguity aversion for example).

We now introduce the continuity axiom for our model. Given a RCR, let K0 ⊂ K be the

set of decision-problems where every act in the decision-problem is measurable with respect

to the RCR. To be explicit, F ∈ K0 iff f ∈ HF for all f ∈ F . Let Π0 be the set of all

Borel measures on H, endowed with the topology of weak convergence. Since all acts in

F ∈ K0 are HF -measurable, ρF ∈ Π0 for all F ∈ K0 without loss of generality.15 We say ρ is

continuous iff it is continuous on the restricted domain K0.

Axiom 1.4. (Continuity) ρ : K0 → Π0 is continuous.

If H is the Borel algebra, then K0 = K. In this case, our continuity axiom condenses to

standard continuity. In general though, the RCR is not continuous over all decision-problems.

15 We can easily complete ρF so that it is Borel measurable.
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In fact, the RCR is discontinuous at decision-problems that contain indifferences. In other

words, choice data that is beyond the scope of the model exhibits discontinuities with respect

to the RCR. In our model, every decision-problem is arbitrarily (Hausdorff) close to some

decision-problem in K0.16 Thus, continuity is preserved over almost all decision-problems.

Taken together, the first four axioms above are the necessary and sufficient conditions for

a random expected utility representation (see Gul and Pesendorfer [47]). We now introduce

the axioms that are particular to our model. We say f ∈ H is constant iff f (s) is the same

for all s ∈ S. A decision-problem is constant iff it only contains constant acts. Given f ∈ H

and s ∈ S, define fs ∈ H as the constant act that yields the lottery f (s) ∈ ∆X in every

state. For F ∈ K, let Fs :=
�

f∈F fs be the constant decision-problem consisting of fs for all

f ∈ F . We now introduce the final three axioms.

Axiom 1.5. (Non-degeneracy) ρF (f) < 1 for some F and f ∈ F .

Axiom 1.6. (C-determinism) ρF (f) ∈ {0, 1} for constant F .

Axiom 1.7. (S-monotonicity) ρFs (fs) = 1 for all s ∈ S implies ρF (f) = 1.

Non-degeneracy rules out the trivial case where all acts are indifferent. C-determinism

states that the RCR is deterministic over constant decision-problems. This is because choice

is stochastic only as a result of varying beliefs about S. In a constant decision-problem,

all acts yield the same payoff regardless of which state occurs. Hence, in the individual

interpretation, the agent will choose the same act regardless of which signal she receives. In

the group interpretation, all agents will choose the same act since they all share the same

tastes. In both interpretations, choice over constant decision-problems is deterministic. In

fact, if ρ is represented by (µ, u), then ρ induces a preference relation over constant acts that

is exactly represented by u.

To understand S-monotonicity, note that in standard deterministic choice, the state-by-

state monotonicity axiom says that if fs is preferred to gs for every state s ∈ S, then f must

16 In other worlds, K0 is dense in K (see Lemma 1A.15 in the Appendix).
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be preferred to g. Translated to the realm of random choice, this means that if fs is chosen

with certainty in Fs for every state s ∈ S, then f must be chosen with certainty in F . This is

exactly S-monotonicity. Theorem 1.1 shows that Axioms 1.1-1.7 are necessary and sufficient

for an information representation.

Theorem 1.1. ρ has an information representation iff it satisfies Axioms 1.1-1.7.

Proof. See Appendix.

Theorem 1.2 highlights the uniqueness properties of information representations. The

main highlight is that studying binary choices is enough to completely identify private in-

formation. In other words, given two decision-makers (either two individual agents or two

groups of agents) with RCRs that have information representations, comparing binary choices

is sufficient to completely differentiate between the two information structures.

Theorem 1.2 (Uniqueness). Suppose ρ and τ are represented by (µ, u) and (ν, v) respec-

tively. Then the following are equivalent:

(1) ρf∪g (f) = τf∪g (f) for all f and g

(2) ρ = τ

(3) (µ, u) = (ν, αv + β) for α > 0

Proof. See Appendix.

Note that if we allow the utility u to be constant, then non-degeneracy can be dropped in

Theorem 1.1 without loss of generality. However, the uniqueness of µ in the representation

would obviously fail in Theorem 1.2.

1.3 Test Functions

We now introduce the key technical tool that will play an important role in our subsequent

analysis. To motivate the discussion, first recall the setup of our model. At time 2, a
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decision-maker (either an individual agent or a group of agents) will choose something from

an option set (i.e. decision-problem) F ∈ K. At time 1, the decision-maker receives private

information about the underlying state. Now, imagine enticing the decision-maker with some

test act that yields a fixed payoff in every state. For example, this could be a no-deductible

(full-insurance) health plan introduced by the insurance company. What is the probability

that at time 2, something in F will be chosen over the test act? If the test act is very

valuable (i.e. the fixed payoff is high), then this probability will be low. On the other hand,

if the test act is not very valuable (i.e. the fixed payoff is low), then this probability will be

high. Thus, as we decrease the value of the test act, the probability that something in F

will be chosen increases. We call this schedule the test function of F .

For a concrete example, suppose F = g is the act that corresponds to choosing some

high-deductible health insurance plan. Our test act corresponds to choosing a no-deductible

(full-insurance) plan. In this case, the test function of g is the probability of choosing plan g

over the full-insurance test plan as a function of its premium. As we increase the test plan’s

premium, it becomes less valuable and the probability of choosing g increases.

Formally, we define test functions as follows. First, define the best and worst acts for a

RCR. An act is the best (worst) act under ρ iff in any binary choice comparison, the act

(other act) is chosen with certainty.

Definition. f and f are the best and worst acts under ρ respectively iff ρf∪f

�
f
�
= ρf∪f (f) =

1 for all f ∈ H.

If ρ is represented by (µ, u), then we can always find a best and a worst act. To see this,

recall that C-determinism implies that ρ induces a preference relation over constant acts

that is represented by u. Since u is affine, we can always find a best and worst act in the set

of all constant acts. S-monotonicity ensures that these are also the best and worst acts over

all acts.

Formally, a test act is the mixture act af + (1− a) f for some a ∈ [0, 1]. Thus, test acts

are mixtures between the best and worst acts. Since both f and f are constant acts, test
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acts are also constant acts. Thus, under an information representation, their utilities are

fixed and independent of any beliefs about S. Test acts serve as the enticing option in the

opening discussion above. We now define test functions as follows.

Definition. Given ρ, let Fρ : [0, 1] → [0, 1] be the test function of F ∈ K where for

f
a := af + (1− a) f ,

Fρ (a) := ρF∪fa (F )

Given a RCR ρ and a decision-problem F ∈ K, we let Fρ denote the test function of F .

Suppose ρ has an information representation. As we increase a, the test act f
a progresses

from the best to worst act and becomes increasingly unattractive. Thus, the probability of

choosing something in F increases so Fρ is an increasing function. In fact, it characterizes the

utility distribution of F . Lemma 1.1 states that test functions are cumulative distribution

functions under information representations.

Lemma 1.1. If ρ has an information representation, then Fρ is a cumulative for all F ∈ K.

Proof. See Appendix.

If F = f is a singleton act, then we denote Fρ = fρ. An immediate corollary of the

uniqueness properties of information representations is that test functions for singleton acts

are sufficient for identifying information structures.

Corollary 1.1. Let ρ and τ have information representations. Then ρ = τ iff fρ = fτ for

all f ∈ H.

Proof. Follows from Theorem 1.2.

Corollary 1.1 implies that we can treat test functions as sufficient statistics for identifying

private information. In the following sections, we demonstrate how test functions can be used

to perform various exercises of inference. We end this section with a couple examples of test

functions.

19



Example 1.4. Recall Example 1.3 where S = {s1, s2, s3}, X = {x, y}, u (aδx + (1− a) δy) =

a ∈ [0, 1] and µ is the uniform measure on ∆S. Let (µ, u) represent ρ. Thus, u ◦ f = (1, 1, 1)

and u ◦ f = (0, 0, 0). For a ∈ [0, 1], the test act fa satisfies

u ◦ f
a = af + (1− a) f = (1− a, 1− a, 1− a)

Consider two act f and g where u ◦ f = (1, 0, 0) and u ◦ g = (b, b, b) for some b ∈ [0, 1]. The

test functions of the two acts are

fρ (a) = ρf∪fa (f) = µ {q ∈ ∆S | qs1 ≥ 1− a} = a

gρ (a) = ρg∪fa (g) = µ {q ∈ ∆S | b ≥ 1− a} = 1[1−b,1] (a)

Note that since g is a constant act, its utility is fixed regardless of what beliefs are. Thus, its

test function increases abruptly at the critical value 1− b. On the other hand, the utility of

f depends on the agent’s belief, so its test function increases more gradually as a increases.

1.4 Evaluating Option Sets

We now address our first identification exercise. Given an option set (i.e. decision-problem),

we will compute its valuation. In the individual interpretation, the valuation of an option

set is the ex-ante utility of the option set at time 0, that is, before the individual agent

receives her signal. In the group interpretation, the valuation of an option set is the welfare

or total utility of the option set for all agents in the group. What is the relationship between

the valuations of option sets and random choice from option sets? We call this exercise

evaluating option sets.

Formally, we model valuations via a preference relation � over all decision-problems K.

We call � the valuation preference relation. In the individual interpretation, � reflects the

agent’s time-0 utility of each decision-problem. Thus, at time 0, the agent prefers decision-

problem F to decision-problem G (i.e. F � G) iff the ex-ante utility of F is greater than
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the ex-ante utility of G. Since information is unknown at time 0, � is based on the agent’s

beliefs about signals that she expects to receive at time 1. For example, if the agent expects

to receive results from her health exam next week that will inform her of her health status,

then she may prefer to postpone the decision of which health insurance plan to purchase

until then. In other words, at time 0, she prefers the option set that contains both health

plans to committing to a single health plan.

In the group interpretation, � reflects the group’s total utility or welfare for each decision-

problem. Thus, the group prefers decision-problem F to decision-problem G (i.e. F � G)

iff the total utility of F is greater than the total utility of G. Note that � is based on

the distribution of heterogeneous beliefs in the group. For example, if a firm thinks that

its employees have very disperse beliefs about their health, then it may prefer an insurance

company that offers a larger set of health plans to one that does not. In other words, the

firm may prefer a more flexible set of health plans (even if it is more expensive) in order to

increase welfare for its employees.

In this section, we show that there is an intimate connection between this valuation

preference relation and random choice. Given a decision-maker’s random choice, we can

directly recover this valuation preference relation. Vice-versa, given the valuation preference

relation, we can directly recover the decision-maker’s random choice. In other words, knowing

either valuations or random choice allows us to completely and uniquely identify the other.

We now address the formal model. We say that a preference relation � is represented by

(µ, u) iff it satisfies the following.

Definition (Subjective Learning). � is represented by (µ, u) iff it is represented by

V (F ) =

�

∆S

sup
f∈F

q · (u ◦ f) µ (dq)

If we interpret � as the individual valuation preference relation, then V (F ) is exactly the

time-0 expected utility of F ∈ K for an agent with information µ and utility u. Note that

this is the subjective learning representation axiomatized by Dillenberger, Lleras, Sadowski

21



and Takeoka [23] (henceforth DLST). If we interpret � as the group valuation preference

relation, then V (F ) is exactly the total utility or welfare of F ∈ K for a group of agents

with beliefs distributed according to µ and utility u.

Suppose that we know the decision-maker’s random choice (i.e. ρ). What can we infer

about the valuation preference relation (i.e. �)? First, in this section, we assume that ρ

admits test functions that are cumulatives, that is, ρ has a best and worst act and Fρ is a

well-defined cumulative for all F ∈ K.17 We say that ρ is standard iff it satisfies monotonicity,

linearity and continuity (Axioms 1.1, 1.2 and 1.4).

Definition. ρ is standard iff it is monotone, linear and continuous.

If ρ has an information representation, then it is necessarily standard. Note that these

conditions on ρ are relatively mild. For example, they are insufficient to ensure that a

random utility representation even exists for ρ.

We now demonstrate how we can completely recover � from ρ. To gain some intuition

for how, note that if a decision-problem F is very valuable, then acts in F will be chosen

with high probabilities. Hence, the test function Fρ will take on high values. As a result,

consider evaluating decision-problems as follows.

Definition. Given ρ, let �ρ be represented by Vρ : K → [0, 1] where

Vρ (F ) :=

�

[0,1]

Fρ (a) da

Theorem 1.3 below confirms that �ρ is the valuation preference relation corresponding

to the RCR ρ. It shows that we can simply use Vρ to evaluate decision-problems.

Theorem 1.3. The following are equivalent:

(1) ρ is represented by (µ, u)

(2) ρ is standard and �ρ is represented by (µ, u)

17 The best and worst acts are respectively defined as constant acts f̄ and f where ρf∪f

�
f
�
= ρf∪f (f) = 1

for all f ∈ H.

22



Proof. See Appendix.

Thus, if ρ has an information representation, then the integral of the test function Fρ

is exactly the valuation of F . An immediate consequence of this is that if Fρ (a) ≥ Gρ (a)

for all a ∈ [0, 1], then Vρ (F ) ≥ Vρ (G). Thus, first-order stochastic dominance of test

functions implies higher valuations. This highlights the useful role that test functions serve

for evaluating option sets.

Theorem 1.3 also demonstrates that if a standard RCR induces a preference relation

that has a subjective learning representation, then that RCR must have an information

representation. In fact, both the RCR and the preference relation are represented by the same

(µ, u). We can thus interpret Theorem 1.3 as an alternate characterization of information

representations using properties of its induced preference relation.

The discussion above suggests that perhaps there is a more direct method of obtaining

the RCR from the valuation preference relation. We now demonstrate how this can be

accomplished. First, we say that a preference relation � is dominant iff it satisfies the

following.

Definition. � is dominant iff fs � gs for all s ∈ S implies F ∼ F ∪ g for f ∈ F .

Dominance is one of the axioms of a subjective learning representation in DLST. It captures

the intuition that adding acts that are dominated in every state does not affect the valuation

of the decision-problem.

We now define a RCR induced by a preference relation as follows.

Definition. Given �, let ρ� denote any standard ρ such that a.e.

ρF∪fa (fa) =
dV (F ∪ fa)

da

where V : K → [0, 1] represents � and fa := af + (1− a) f .

Note that given any generic preference relation �, the RCR ρ� may not even exist. This

is because we may not be able to find any V and ρ that satisfy this definition. On the other
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hand, there could be a multiplicity of RCRs that satisfy this definition. Our result below

shows that for our purposes, these issues need not be of concern. Theorem 1.4 asserts that

if � has a subjective learning representation, then ρ� exists and is unique. It confirms that

ρ� is the RCR corresponding to �.

Theorem 1.4. The following are equivalent:

(1) � is represented by (µ, u)

(2) � is dominant and ρ� is represented by (µ, u)

Proof. See Appendix.

Thus, if � has a subjective learning representation, then ρ� is the unique RCR corre-

sponding to �. The probability that the act fa is chosen in a decision-problem is exactly its

marginal contribution to the valuation of the decision-problem. In other words, if increas-

ing the value of fa does not affect the valuation of the decision-problem, then fa is never

chosen. For example, consider a set of health insurance plans that includes a no-deductible

(full-insurance) plan. If lowering the premium of the full-insurance plan does not affect the

valuation of the set of plans, then the full-insurance plan will never be chosen from the set.

Any violation of this would indicate some form of inconsistency (which we will explore in

Section 6).

Theorem 1.4 is actually the random choice version of Hotelling’s Lemma from classical

producer theory.18 The analogy follows if we interpret choice probabilities as “outputs” and

conditional utilities as “prices”. In this case, we can interpret the valuation of a decision-

problem as a firm’s maximizing “profit”. Thus, similar to how Hotelling’s Lemma allows us

to recover a firm’s output choices from its profit function, Theorem 1.4 allows us to recover

a decision-maker’s random choice from valuations.19

18 In the econometrics literature, Theorem 1.4 is related to the Williams-Daly-Zachary Theorem (McFad-
den [60]). The presence of constant acts in the Anscombe-Aumann setup however allows us to formulate
Theorem 1.3 which has no counterpart in that literature.

19 For a formal exposition, consider the following. Let y be a probability on F , and for each y, let Qy =
{Qf}f∈F denote some partition of ∆S such that µ (Qf ) = yf . For f ∈ F , let pf :=

�
Qf

q · (u ◦ f) 1
µ(Qf )

µ (dq)
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The other implication of Theorem 1.4 is that if a dominant preference relation induces

a RCR that has an information representation, then that preference relation must have a

subjective learning representation. As in Theorem 1.3, we interpret this as an alternate

characterization of subjective learning representations using properties of its induced RCR.

Given any � represented by (µ, u), we can easily construct the corresponding RCR ρ = ρ�

as follows. First define ρ so that it coincides with u over all constant acts. This allows us

to set the best and worst acts of ρ so that they are also the best and worst acts of u. We

can now define ρF∪fa (fa) for all a ∈ [0, 1] using the definition of ρ�. Linearity then allows

us to extend ρ to the space of all acts. By Theorem 1.4, the ρ so constructed is represented

by (µ, u). Hence, ρ is exactly the RCR corresponding to �.

Test functions play a distinguished role in the analysis above. Integrating them allows

us to recover valuations, while differentiating valuations allows us to recover random choice.

Thus, �ρ and ρ� are invertible operations that correspond to integration and differentiation

respectively. In the individual interpretation, this means that observing choice behavior in

one time period allows us to identify and directly compute choice behavior in the other. This

eliminates the need of identifying the signal distribution and utility. We summarize these

insights in Corollary 1.2 below.

Corollary 1.2. Let � and ρ be represented by (µ, u). Then �ρ = � and ρ� = ρ.

Proof. Follows immediately from Theorems 1.3 and 1.4.

The following example demonstrate how these operations can be used to recover valua-

tions from random choice and vice-versa.

Example 1.5. Let S = {s1, s2}, X = {x, y} and u (aδx + (1− a) δy) = a ∈ [0, 1]. We

associate each q ∈ ∆S with t ∈ [0, 1] such that t = qs1 . Let µ have density 6t (1− t). Let

� and ρ be represented by (µ, u) and V : K → [0, 1] represents �. An insurance company

denote the conditional utility of f . If we interpret y as “output” and p as “price”, then V (F ) = supy,Qy
p · y

is the maximizing “profit”. Note that a = pfa is exactly the “price” of fa. Of course, in Hotelling’s Lemma,
“prices” are fixed while in our case, pf depends on the partition Qy.
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offers two health plans: a no-deductible (full-insurance) plan f and a high-deductible plan

g. Let u ◦ f =
�
2
5 ,

2
5

�
, u ◦ g =

�
1
4 ,

3
4

�
and F = {f, g}.

Valuations from random choice: What is the valuation of F if we only observe ρ? The

test function of F is given by

Fρ (a) = µ

�
t ∈ [0, 1]

���� max

�
2

5
, t

1

4
+ (1− t)

3

4

�
≥ 1− a

�

It is straightforward to check that Fρ (a) = 0 for a ≤
1
4 , Fρ (a) = 1 for a ≥

3
5 and

Fρ (a) = (4a− 1)2 (1− a)

for a ∈
�
1
4 ,

3
5

�
. Integrating Fρ yields

V (F ) =

�

[0,1]

Fρ (a) da =

�

[ 14 ,
3
5 ]
(4a− 1)2 (1− a) da+

2

5
≈ 0.511

Random choice from valuations: What is the probability of choosing f over g if we

only observe �? Let fa := af + (1− a) f where a ∈ [0, 1] and note that f 2
5
= f . It is

straightforward to check that for a ∈
�
1
4 ,

3
4

�

V (g ∪ fa) =

�

[0,1]

max

�
t
1

4
+ (1− t)

3

4
, a

�
µ (dt)

= −4a4 + 8a3 −
9

2
a
2 + a+

27

64

Differentiating V (g ∪ fa) at a = 2
5 yields

ρF (f) = ρg∪fa (fa) =
dV (g ∪ fa)

da

����
a= 2

5

= (4a− 1)2 (1− a)
��
a= 2

5
=

27

125
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1.5 Assessing Informativeness

1.5.1 Random Choice Characterization of More Information

We now provide a random choice characterization of more information. Given two decision-

makers (either two individuals or two groups of agents), we can determine which decision-

maker is more informed even when information is not directly observable and can only be

inferred from random choice. We call this assessing informativeness.

First, consider the classic methodology of assessing informativeness when information is

observable. Let µ and ν be two measures on ∆S. We say that a transition kernel20 on ∆S

is mean-preserving iff it preserves average beliefs about S.

Definition. The transition kernel K : ∆S × B (∆S) → [0, 1] is mean-preserving iff for all

q ∈ ∆S, �

∆S

p K (q, dp) = q

We say that µ is more informative than ν, iff the distribution of beliefs under µ is a

mean-preserving spread of the distribution of beliefs under ν.

Definition. µ is more informative than ν iff there is a mean-preserving transition kernel K

such that for all Q ∈ B (∆S)

µ (Q) =

�

∆S

K (p,Q) ν (dp)

If µ is more informative than ν, then the information structure of ν can be generated

by adding noise or “garbling” µ. This corresponds exactly to Blackwell’s [10, 11] ranking

of informativeness based on signal sufficiency. In other words, µ is a sufficient signal for

generating ν. Note that in the case where K is the identity kernel, no information is lost

and ν = µ.

In the classical approach, Blackwell [10, 11] showed that more information is character-

ized by higher valuations of option sets. What is the random choice characterization of more

20
K : ∆S × B (∆S) → [0, 1] is a transition kernel iff q → K (q,Q) is measurable for all Q ∈ B (∆S) and

Q → K (q,Q) is a measure on ∆S for all q ∈ ∆S.
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information? To gain some intuition for our result below, consider the following individual

interpretation of random choice. An agent receives a completely uninformative (i.e. degen-

erate) signal about the underlying state. As a result, her choice behavior is deterministic.

Consider her test function of some act f . As we gradually lower the test act, there will be a

critical value where her choice changes abruptly from never choosing f to always choosing it.

Since test functions are cumulatives under information representations, her test function of

f corresponds to a single mass point at this critical value. A second agent on the other hand,

receives a very informative signal. Depending on her signal, f could either be very valuable

or not. Thus, her test function of f will increase more gradually. If both test functions have

the same mean under both agents, then the test function under the more informed agent

will be a mean-preserving spread of the test function under the less informed agent. The

same reasoning equally applies in the group interpretation of random choice. In general, this

property is captured by second-order stochastic dominance.

Definition. F ≥SOSD G iff
�
R φdF ≥

�
R φdG for all increasing concave φ : R → R.

The result below demonstrates that we can assess informativeness simply by comparing

test functions via second-order stochastic dominance.

Theorem 1.5. Let ρ and τ be represented by (µ, u) and (ν, u) respectively. Then µ is more

informative than ν iff Fτ ≥SOSD Fρ for all F ∈ K.

Proof. See Appendix.

Theorem 1.5 equates an unobservable multi-dimensional information ordering with an

observable single-dimensional stochastic dominance relation. It is the random choice charac-

terization of more information. The general intuition is that less information results in choice

behavior that is more concentrated (i.e. deterministic) whereas more information results in

choice behavior that is more dispersed (i.e. random). By studying test functions of two

decision-makers (either two individual agents or two groups of agents), we can assess which

decision-maker is more informed. For example, in the individual interpretation, the agent
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who is more informed about her health status every year will exhibit greater dispersion in her

choice of yearly health insurance. In the group interpretation, the group with more private

information will exhibit greater variation in the distribution of health insurance choices.

What is the relationship between this random choice characterization of more informa-

tion and valuation preference relations? In DLST, more information is characterized by a

greater preference for flexibility in the valuation preference relation. This is a translation of

Blackwell’s [10, 11] results to preference relations. Given two decision-makers, we say that

one exhibits more preference for flexibility than the other iff whenever the other prefers a

set of options to a single option, the first must do so as well.

Definition. �1 has more preference for flexibility than �2 iff F �2 f implies F �1 f .

Corollary 1.3 relates our random choice characterization of more information with more

preference for flexibility.

Corollary 1.3. Let ρ and τ be represented by (µ, u) and (ν, u) respectively. Then the fol-

lowing are equivalent:

(1) Fτ ≥SOSD Fρ for all F ∈ K

(2) �ρ has more preference for flexibility than �τ

(3) µ is more informative than ν

Proof. By Theorem 1.5, (1) and (3) are equivalent. By Corollary 1.2, �ρ and �τ are repre-

sented by (µ, u) and (ν, u) respectively. Hence, by Theorem 1.2 of DLST, (2) is equivalent

to (3).

Thus, in the individual interpretation, more information manifests itself as more ex-ante

(before time 1) preference for flexibility and more ex-post (after time 1) variability in random

choice. On the other hand, in the group interpretation, more information manifests itself

as more preference for flexibility by the group and more variability in individual random
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choice. Note that by Corollary 1.2, we could have formulated Corollary 1.3 entirely in terms

of valuation preference relations.

Corollary 1.3 also summarizes the prominent role of test functions in much of our analysis.

Computing their integrals allow us to evaluate options sets while comparing them via second-

order stochastic dominance allow us to assess informativeness.

If µ is more informative than ν, then the two measures must have the same average

beliefs about S. In this case, we say that they share average beliefs.

Definition. µ and ν share average beliefs iff

�

∆S

q µ (dq) =

�

∆S

q ν (dq)

In the the individual interpretation, two agents with information µ and ν share average

beliefs iff they have the same prior about S before the arrival of information (i.e. at time

0). Note the distinction between this prior over S and the more general “prior” over the

universal space ∆S×S.21 In the the group interpretation, two groups with beliefs distributed

according to µ and ν share average beliefs iff the average belief about S in both groups are

the same. Lemma 1.2 shows that in order to determine if two decision-makers share average

beliefs or not, it is necessary and sufficient to just compare means of test functions for

singleton acts.

Lemma 1.2. Let ρ and τ be represented by (µ, u) and (ν, u) respectively. Then µ and ν

share average beliefs iff fρ and fτ share the same mean for all f ∈ H.

Proof. See Appendix.

Combined with Theorem 1.5, Lemma 1.2 implies that a necessary condition for µ being

more informative than ν is that every fρ is a mean-preserving spread of fτ . This condition

however is insufficient for assessing informativeness. It corresponds to a strictly weaker

stochastic dominance relation known as the linear concave order.22 Note that if fρ and fτ

21 Agreeing on the latter prior necessitates that both agents must have identical information structures.
22 See Section 3.5 of Muller and Stoyan [63] for more about the linear concave order.
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have the same mean, then f has the same valuation under both decision-makers. Thus, in a

sense, the random choice characterization of more information is richer than the preference

relation characterization of more information.

Finally, we end this section with an illustrative example.

Example 1.6. Let S = {s1, s2}, X = {x, y} and u (aδx + (1− a) δy) = a ∈ [0, 1]. We

associate each q ∈ ∆S with t ∈ [0, 1] such that t = qs1 . Let µ have density 6t (1− t) and

ν be the uniform distribution. Since beliefs are more dispersed under ν, we say that ν is

more informative than µ. Let ρ and τ be represented by (µ, u) and (ν, u) respectively. As in

Example 1.5, consider the set of plans F = {f, g} where u ◦ f =
�
2
5 ,

2
5

�
and u ◦ g =

�
1
4 ,

3
4

�
.

Recall that Fρ (a) = 0 for a ≤
1
4 , Fρ (a) = 1 for a ≥

3
5 and

Fρ (a) = (1− 4a)2 (1− a)

for a ∈
�
1
4 ,

3
5

�
. Now, the test function of F under τ satisfies Fτ (a) = 0 for a ≤

1
4 , Fτ (a) = 1

for a ≥
3
5 and

Fτ (a) = 2a−
1

2

for a ∈
�
1
4 ,

3
5

�
. Hence, Fρ ≥SOSD Fτ . Note that the test functions of g under ρ and τ

respectively satisfy gρ (a) = gτ (a) = 0 for a ≤
1
4 , gρ (a) = gτ (a) = 1 for a ≥

3
5 and

gρ (a) = (4a− 1)2 (1− a)

gτ (a) =
1

2
(4a− 1)

for a ∈
�
1
4 ,

3
4

�
. Hence, gτ is a mean-preserving spread of gρ and gρ ≥SOSD gτ as well.

1.5.2 Special Case: Partitional Information

In this section, we study the special case where information corresponds to events that par-

tition the state space. First, fix a probability over S and consider a collection of events that
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form a partition of S. For example, in the case of health insurance, the two events “healthy”

and “sick” form a binary partition of the state space S. At time 1, an agent receives private

information that reveals which event the true state is in. Given this information, she then

updates her belief according to Bayes’ rule. At time 2, she chooses an act from the decision-

problem using this updated belief. We call this a partitional information representation of

a RCR.

Formally, let
�
S, 2S, r

�
be a probability space for some r ∈ ∆S. We assume that r has

full support without loss of generality.23 Given an algebra F ⊂ 2S, let QF be the conditional

probability given F , that is, for s ∈ S and the event E ⊂ S,

QF (s, E) = EF [1E]

where EF is the conditional expectation operator given F . Note that we can interpret the

conditional probability as a mapping QF : S → ∆S from states to beliefs. Thus, F induces

a measure on beliefs in ∆S given by µF := r ◦ Q
−1
F
. Information corresponds to the event

consisting of all states s ∈ S where the belief is q = QF (s). These events form a natural

partition of the state space S. Note that if we let u : ∆X → R be an affine utility, then for

any f ∈ H and s ∈ S such that QF (s) = q

EF [u ◦ f ] = q · (u ◦ f)

Let (F , u) denote an algebra F and a non-constant u.

We would like to consider RCRs generated by information structures that have beliefs

distributed according to µF . However, except for the case where F is the trivial algebra, µF

is in general not regular. The following example demonstrates how violations of regularity

can create issues with our method of modeling indifferences using non-measurability.

Example 1.7. Let S = {s1, s2, s3}, X = {x, y} and u (aδx + (1− a) δy) = a ∈ [0, 1]. Let

r =
�
1
3 ,

1
3 ,

1
3

�
and F be generated by the partition {s1, s2 ∪ s3}. Let q1 := δs1 and q2 :=

23 That is rs > 0 for all s ∈ S.
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1
2δs2 +

1
2δs3 so

µF =
1

3
q1 +

2

3
q2

Consider acts f , g and h where u ◦ f = (1, 0, 0), u ◦ g = (1, 1, 0) and u ◦ h = (0, 0, 1). Now

q1 · (u ◦ h) = 0 < q1 · (u ◦ g) = 1 = q1 · (u ◦ f)

q2 · (u ◦ f) = 0 < q2 · (u ◦ g) =
1

2
= q2 · (u ◦ h)

so µF {q ∈ ∆S | q · (u ◦ f) = q · (u ◦ g)} = 1
3 . Hence, µF is not regular.

Let F := {f, g, h} and note that the model cannot distinguish between f and g one third

of the time. By similar reasoning, the model cannot distinguish between g and h two-thirds

of the time. If we use non-measurability to model indifferences, then no singleton act in F

is measurable. This approach will not be able to capture all the choice data implied by the

model. For example, it omits the fact that h will definitely not be chosen one third of the

time.

Example 1.7 illustrates that since µF violates regularity, complications arise whenever

a decision-problem contains acts that are neither always nor never equal (i.e. they have

the same random utility on some µF -measure that is strictly between zero and one). We

circumvent this problem by only considering decision-problems that do not contain such acts.

These decision-problems are called generic.

Definition. F ∈ K is generic under F iff for all {f, g} ⊂ F , q · (u ◦ f) = q · (u ◦ g) with

µF -measure zero or one.

Regularity is equivalent to requiring that all decision-problems are generic. Note that

generic decision-problems are dense in the set of all decision-problems. Moreover, any µF

can always be approximated as the limit of a sequence of regular µ’s. We now formally

present the partitional information representation of an RCR.

Definition (Partitional Information). ρ is represented by (F , u) iff for f ∈ F ∈ K where F
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is generic,

ρF (f) = r {s ∈ S | EF [u ◦ f ] ≥ EF [u ◦ g] ∀g ∈ F}

A partitional information representation is thus an information representation over generic

decision-problems where the distribution of beliefs is µF . We say a decision-problem F ∈ K

is deterministic under ρ iff ρF (f) ∈ {0, 1} for all f ∈ F . Let Dρ denote the set of all generic

decision-problems that are deterministic under ρ. Proposition 1.1 shows that in a parti-

tional information model, we can assess informativeness simply by comparing deterministic

decision-problems.

Proposition 1.1. Let ρ and τ be represented by (F , u) and (G, u) respectively. Then F ⊂ G

iff Dτ ⊂ Dρ.

Proof. See Appendix.

Thus, in the special case where information correspond to events that partition the state

space, more information is equivalent to less deterministic (i.e. more random) choice. This

captures the intuition shared by Theorem 1.5 in this special case with partitional information.

Note that Theorem 1.5 still holds in this setting. The only complication is dealing with test

functions when there are non-generic decision-problems.24

1.6 Detecting Biases

In this section, we study situations where the valuation preference relation (�) and the ran-

dom choice rule (ρ) are inconsistent. By inconsistent, we mean that the decision-maker’s

information as revealed through � is misaligned with the decision-maker’s information as

revealed through ρ. We call this detecting biases. In the individual interpretation, this mis-

alignment describes an agent whose prospective (i.e. before time 1) beliefs about information

24 One way to resolve this issue is to define the test function of F ∈ K at a ∈ [0, 1] as limb↓a Fρ (b). Since
generic decision-problems are dense, this is a well-defined cumulative distribution function. Theorem 1.5
then follows naturally.
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are misaligned with her retrospective (i.e. after time 1) beliefs about information. This is

an informational version of the naive Strotz [78] model. We call this form of informational

dynamic inconsistency subjective misconfidence.

In the group interpretation, this misalignment describes a situation where valuations of

option sets indicate a more (or less) dispersed distribution of beliefs in the group than that

implied by random choice. For example, a firm that evaluates health plans based on total

welfare for its employees may overestimate (underestimate) the dispersion of employee beliefs

and choose a more (less) flexible set of health plans than necessary. As both the individual

and group interpretations of this inconsistency are similar, for ease of exposition, we focus

exclusively on the individual interpretation of random choice in this section.

To elaborate, consider an agent who expects to receive a very informative signal at time

1. Hence, at time 0, she prefers large option sets and may be willing to pay a cost in order

to postpone choice and “keep her options open”. When we analyze time-2 random choice

however, we observe that she consistently chooses the same option. For example, in the

diversification bias, although an agent may initially prefer a large option set containing a

variety of food options, she ultimately always end up choosing the same food.25 If her choice

is driven by informational reasons, then we can infer from her behavior that at time 0, she

anticipated a more informative signal than what she ended up receiving. This could be due

to some “false hope” of better information. We call this prospective overconfidence.

On the flip side, there may be situations where time-2 choice behavior reflects greater

confidence than that implied by time-0 preferences. To elaborate, consider an agent who

expects to receive a very uninformative signal at time 1. Hence, at time 0, large option sets

are not very valuable. However, after receiving her signal, the agent becomes increasingly

convinced of its informativeness. Both good and bad signals are interpreted more extremely,

and she updates her beliefs by more than what she anticipated at time 0. For example,

25 See Read and Loewenstein [71]. Note that in our case, the uncertainty is over future beliefs and not
future tastes. Nevertheless, there could be informational reasons for why one would prefer one food over
another. A food recall scandal for a certain candy would be such an example.
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this could be induced by some confirmatory bias where consecutive good and consecutive

bad signals generate posterior beliefs that are more dispersed.26 We call this prospective

underconfidence.

Since beliefs in our model are purely subjective, we are silent as to whether time-0

or time-2 choice behavior is more “correct”. Thus, both prospective overconfidence and

underconfidence are relative comparisons involving subjective misconfidence. The theory is

completely agnostic as to what beliefs should be. We are thus detecting a form of belief

misalignment that is completely independent of the true information structure. However, as

we will show in Section 7, if we had a richer data set (such as the joint data over choices and

state realizations), then we could discern which period’s choice behavior is correct.

Formally, we define subjective misconfidence as follows. Let the pair (�, ρ) denote both

the valuation preference relation � and the RCR ρ. Recall that in the individual interpreta-

tion, � and ρ are the agent’s choice behavior from time 0 and time 2 respectively. Motivated

by Theorem 1.5, we define prospective overconfidence and underconfidence as follows.

Definition. (�, ρ) exhibits:

(1) prospective overconfidence iff Fρ ≥SOSD Fρ� for all F ∈ K

(2) prospective underconfidence iff Fρ� ≥SOSD Fρ for all F ∈ K

We now characterize subjective misconfidence as follows.

Corollary 1.4. Let � and ρ be represented by (µ, u) and (ν, u) respectively. Then the

following are equivalent:

(1) (�, ρ) exhibits prospective overconfidence (underconfidence)

(2) � has more (less) preference for flexibility than �ρ

(3) µ is more (less) informative than ν

26 See Rabin and Schrag [69] for a model and literature review of the confirmatory bias.
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Proof. By Corollary 1.2, ρ� and �ρ are represented by (µ, u) and (ν, u) respectively. The

rest follows from Corollary 1.3.

Both (1) and (2) in Corollary 1.4 are restrictions on observable behavior while (3) is an

unobservable condition on the underlying information structures. Note that by Corollary

1.3, we could have equivalently defined prospective overconfidence (underconfidence) via

more (less) preference for flexibility.

Corollary 1.4 allows us to order levels of prospective overconfidence and underconfidence

via Blackwell’s partial ordering of information structures. In other words, by studying the

choice behavior of two decision-makers, we can distinguish when one is more prospectively

overconfident (or underconfident) than the other. This provides a unifying methodology to

measure the severity of various behavioral biases, such as the diversification and confirmatory

biases.

1.7 Calibrating Beliefs

Our analysis of information so far has adopted a purely subjective treatment of beliefs. We

follow in the footsteps of the traditional models of Savage [73] and Anscombe and Aumann

[3] in remaining silent as to what beliefs should be. Thus, although our theory identifies

when observed choice behavior is consistent with some information structure, it is unable to

recognize when beliefs are incorrect. For example, our notions of prospective overconfidence

and underconfidence in the previous section are descriptions of subjective belief misalign-

ment, and we are restrained from making any statements about objective overconfidence and

underconfidence.

In this section, we incorporate additional data about the underlying state to achieve this

distinction. By studying the joint distribution over choices and state realizations, we can test

whether beliefs are objectively well-calibrated. In the individual interpretation, this implies

that the agent has rational expectations about her signals. In the group interpretation, this
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implies that agents have beliefs that are predictive of actual state realizations and suggests

that there is genuine private information in the group. In either interpretation, we call this

exercise calibrating beliefs.

If information is observable, then calibrating beliefs is a well-understood exercise in statis-

tics.27 The main result in this section allows us to calibrate beliefs even when information

is not observable. For example, in the case of health insurance, an analyst may observe a

correlation between choosing health insurance and ultimately falling sick. Even though in-

formation is not observable, we can analyze data on both choices (whether an agent chooses

health insurance or not) and state realizations (whether an agent gets sick or not) to infer if

beliefs are well-calibrated.

Formally, let r ∈ ∆S be some fixed observable distribution over states. We assume that

r has full support without loss of generality. In this section, the primitive of the model

consists of r and a conditional random choice rule (cRCR) that specifies choice frequencies

conditional on the realization of each state. Recall that Π is the set of all probability measures

on any measurable space of H. We formally define a cRCR as follows.

Definition. A Conditional Random Choice Rule (cRCR) is a (ρ,H) where ρ : S × K → Π

and (ρs,H) is a RCR for all s ∈ S.

Unless otherwise stated, ρ in this section refers to a cRCR. For s ∈ S and f ∈ F ∈ K,

we interpret ρs,F (f) as the probability of choosing the act f in the decision-problem F

conditional on the state s realizing. For example, let f and g be acts corresponding to

“forgoing health insurance” and “buying health insurance” respectively. Let s ∈ S represent

the state of falling sick. In the individual interpretation, ρs,f∪g (f) is the frequency that the

individual agent chooses to forgo health insurance in all the years in which she ultimately falls

sick. In the group interpretation, ρs,f∪g (f) is the frequency of agents who chooses to forgo

health insurance among the subgroup of agents who ultimately fall sick. The probability

that f ∈ F is chosen and s ∈ S occurs is given by the product rsρs,F (f). Since each ρs,F

27 For example, see Dawid [20].
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is a measure on (H,HF ), the measurable sets of ρs,F and ρs�,F coincide for all s and s
�. We

can thus define the unconditional RCR as

ρ̄ :=
�

s∈S

rsρs

Note that ρ̄F (f) gives the unconditional probability that f ∈ F is chosen.

The probability r in conjunction with the cRCR ρ completely specify the joint distribu-

tion over choices and state realizations. Note that the marginal distributions of this joint

distribution on choices and state realizations are ρ̄ and r respectively. In both the individual

and group interpretations, this form of state-dependent choice data is easily obtainable.28

We now address the private information of the decision-maker. As before, we assume

that this is unobservable to the analyst. Each information structure corresponds to a unique

joint distribution over beliefs about S and actual state realizations. Given s ∈ S, let µs be

the distribution of beliefs conditional on state s realizing. For example, let s ∈ S represent

the state of falling sick. In the individual interpretation, µs is the agent’s distribution

of posteriors in the years in which she falls sick. In the group interpretation, µs is the

distribution of beliefs in the subgroup of agents who fall sick.

Let µ := (µs)s∈S be the mapping from states to distributions over beliefs about S. Unless

otherwise stated, µ in this section refers to this mapping. We say that the cRCR ρ has an

information representation iff each RCR ρs has an information representation for all s ∈ S.

Recall that u : ∆X → R is an affine utility function. Let (µ, u) denote the mapping µ and

a non-constant u.

Definition. ρ is represented by (µ, u) iff ρs is represented by (µs, u) for all s ∈ S.

Note that by Theorem 1.1, a cRCR ρ has an information representation iff for every s ∈ S,

the RCR ρs satisfies Axioms 1.1 to 1.7. Even if a cRCR ρ has an information representation,

beliefs may still not be well-calibrated. Well-calibrated beliefs require µ to be consistent with

28 In the individual interpretation, this data can be easily obtained in experimental work (for example,
see Caplin and Dean [15]). In the group interpretation, this data is also readily available (for example, see
Chiappori and Salanié [17]).
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the observed frequency of states r. First, define the unconditional distribution of beliefs as

µ̄ :=
�

s∈S

rsµs

We now formally define well-calibrated beliefs as follows.

Definition. µ is well-calibrated iff for all s ∈ S and Q ∈ B (∆S),

µs (Q) =

�

Q

qs

rs
µ̄ (dq)

Well-calibration asserts that µ must satisfy Bayes’ rule. In other words, for each s ∈ S,

µs is exactly the conditional distribution of posteriors implied by µ. The following is a simple

example of a well-calibrated µ.

Example 1.8. Let S = {s1, s2} and again, we associate each q ∈ ∆S with t ∈ [0, 1] such

that t = qs1 . Let r =
�
1
2 ,

1
2

�
and µ̄ have density 6t (1− t). Let µs1 and µs2 have densities

12t2 (1− t) and 12t (1− t)2 respectively. For example, in the case of health insurance, we

interpret µs1 as the distribution of beliefs conditional on ultimately falling sick (i.e. s1

occurs). Now, for b ∈ [0, 1],

�

[0,b]

qs1

rs1

µ̄ (dq) =

�

[0,b]

12t2 (1− t) dt = µs1 [0, b]

�

[0,b]

qs2

rs2

µ̄ (dq) =

�

[0,b]

12t (1− t)2 dt = µs2 [0, b]

Thus, µs1 and µs2 correspond exactly to the conditional distributions consistent with µ̄ and

r. If we let µ := (µs1 , µs2), then µ is well-calibrated.

Suppose that a decision-maker’s cRCR ρ is represented by (µ, u) and µ is well-calibrated.

In this case, choice behavior is not only consistent with an information representation but

it also implies beliefs that agree with the observed joint distribution over choices and state

realizations. In order to see this, let f ∈ F ∈ K and Q be the set of subjective beliefs that

rank f higher than all other acts in F according to subjective expected utility. Since ρs is

represented by (µs, u), we have ρs,F (f) = µs (Q) for all s ∈ S. By the definitions of ρ̄ and µ̄,
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we also have ρ̄F (f) = µ̄ (Q). Now, the conditional probability that s ∈ S occurs given that

f ∈ F is chosen is
rsρs,F (f)

ρ̄F (f)
=

rsµs (Q)

µ̄ (Q)
=

�
Q qsµ̄ (dq)

µ̄ (Q)

Hence, the observed probabilities of state realizations conditional on f being chosen in F ex-

actly match the implied probabilities that correspond to µ. In the health insurance example,

this corresponds to the situation where the probability of getting sick conditional on buy-

ing health insurance agrees exactly with that implied by choice behavior. In the individual

interpretation, this implies that the agent has rational (i.e. correct) expectations about her

signals. In the group interpretation, this implies that all agents in the group have rational

(i.e. correct) beliefs about their future health and so there is genuine private information in

the group.

We now demonstrate how we can test for well-calibrated beliefs. Let ρ be represented by

(µ, u). Since the utility u is fixed under ρs for all s ∈ S, both the best act f and the worst

act f are well-defined for the cRCR ρ. Consider a conditional worst act which yields the

worst act f only if a particular state occurs and otherwise yields the best act f .

Definition (Conditional worst act). For s ∈ S, let f s be such that f s (s�) = f if s� = s and

f
s (s�) = f otherwise.

Given a state s ∈ S, the conditional worst act yields the worst payoff if the state s

realizes and the best payoff otherwise. Recall that we defined test functions by using test

acts f
a = af + (1− a) f that are mixtures between the best and worst acts. We now

define conditional test functions by using conditional test acts f
a
s = af

s + (1− a) f that are

mixtures between the best and conditional worst acts.

Definition. Given ρ, let F s
ρ : [0, rs] → [0, 1] be the conditional test function of F ∈ K where

for fa
s := af

s + (1− a) f and a ∈ [0, 1],

F
s
ρ (rsa) := ρs,F∪fa

s
(F )
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Conditional test functions specify conditional choice probabilities as we vary the con-

ditional test act from the best act to the conditional worst act. As in unconditional test

functions, as a increases, the conditional test act becomes less attractive so F
s
ρ increases.

Note that the domain of the conditional test function is scaled by a factor rs to [0, rs].

We say that F
s
ρ is well-defined iff F

s
ρ (rs) = 1. Thus, well-defined conditional test func-

tions are cumulative distribution functions on the interval [0, rs]. Let Ks denote the set of

decision-problems with well-defined conditional test functions. The following result allows

us to determine whether beliefs are well-calibrated.

Theorem 1.6. Let ρ be represented by (µ, u). Then µ is well-calibrated iff F
s
ρ and Fρ̄ share

the same mean for all F ∈ Ks and s ∈ S.

Proof. See Appendix.

Theorem 1.6 equates well-calibrated beliefs with the requirement that both conditional

and unconditional test functions have the same mean. It is a random choice characterization

of rational beliefs. The following example illustrates.

Example 1.9. Let S = {s1, s2} and again, we associate each q ∈ ∆S with t ∈ [0, 1] such

that t = qs1 . Following Example 1.8, let r =
�
1
2 ,

1
2

�
, µ̄ have density 6t (1− t) and µs1 have

density 12t2 (1− t). Agents can either choose a health plan g with u ◦ g =
�
1
4 ,

3
4

�
or choose

to forgo health insurance represented by h with u ◦ h = (0, 1). Let G := {g, h}. Conditional

on being sick, the probability of choosing something in G over a conditional test plan h
a for

a ∈ [0, 1] is

µ1

�
t ∈ [0, 1]

���� max

�
1− t, t

1

4
+ (1− t)

3

4

�
≥ 1− at

�

If we let Gρ1 be this conditional probability scaled by the probability of being sick 1
2 , then

Gρ1 (a) = 0 for a ≤
3
8 , Gρ1 (a) = 1 for a ≥

1
2 and

Gρ1 (a) = 1 +
1

2 (1− 4a)3
+

3

16 (1− 4a)4
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for a ∈
�
3
8 ,

1
2

�
. Now, the unconditional test function Gρ̄ satisfies Gρ̄ (a) = (3− 2a) a2 for

a ≤
1
2 , Gρ̄ (a) = (1− a) (1− 4a)2 for a ∈

�
1
2 ,

3
4

�
and Gρ̄ (a) = 1 for a ≥

3
4 . Note that

�

[0,1]

a dGρ1 =
29

64
=

�

[0,1]

a dGρ̄

so both test functions have the same mean. This follows from the fact that µ1 is well-

calibrated.

Suppose that in addition to the cRCR ρ, we also get to observe the valuation preference

relation � over all decision-problems. In this case, if the decision-maker has well-calibrated

beliefs, then any misalignment between � and ρ is no longer solely subjective. For example,

in the individual interpretation, any prospective overconfidence (underconfidence) can now

be interpreted as objective overconfidence (underconfidence) with respect to the true infor-

mation structure. Hence, by enriching choice behavior with data on state realizations, we

can make objective claims about belief misalignment. Our relative measures of subjective

misconfidence can now be interpreted as absolute measures of overconfidence or underconfi-

dence.

Finally, for completion, we summarize our results on assessing informativeness in this

richer setting with cRCRs. In his original work, Blackwell [11] mentions another method-

ology of assessing informativeness attributed to Bohnenblust, Shapley and Sherman. This

ordering concentrates on a ranking of information based on the set of state-contingent util-

ities admissible by any choice rule. We translate this result in our setting as follows. For

F ∈ K, let CF denote the set of all measurable functions c : ∆S → F . In other words,

each c ∈ CF represents a specific choice rule that maps beliefs to actual choices from the

decision-problem F . Given a belief q ∈ ∆S, the act c (q) ∈ F will be chosen under choice

rule c ∈ CF . We interpret CF as the set of all possible choice rules. Let u : ∆X → R be an

affine utility. If the state is s ∈ S, then the state-contingent utility is

u ◦ cs (q) := u (c (q) (s))
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Given a cRCR ρ that has an information representation and a decision-problem F ∈ K, we

let W (ρ, F ) denote the set of all possible conditional utilities under any choice rule.

Definition. For ρ represented by (µ, u) and F ∈ K, define

W (ρ, F ) :=
�

c∈CF

��

∆S

u ◦ cs (q)µs (dq)

�

s∈S

Blackwell shows that more information is equivalent to a larger set of admissible condi-

tional utilities. In other words, any conditional utility attainable with less information must

also be attainable with more information. We summarize these results as follows.

Corollary 1.5. Let ρ and τ be represented by (µ, u) and (ν, u) respectively where µ and ν

are well-calibrated. Then the following are equivalent:

(1) Fτ̄ ≥SOSD Fρ̄ for all F ∈ K

(2) µ̄ is more informative than ν̄

(3) W (τ, F ) ⊂ W (ρ, F ) for all F ∈ K

Proof. See Appendix.

In Corollary 1.5, only (1) relates to actual observable data. Both (2) and (3) relate to

unobservables of the model but are useful in demonstrating that Blackwell’s results translate

well in our setting. We interpret (3) to imply that if a decision-maker were to follow any

choice rule (which may not necessarily be the optimal choice rule as revealed through ρ) and

obtains a certain conditional utility, then a decision-maker with more information can also

achieve the same conditional utility. Note that Corollary 1.5 also highlights the observation

that provided beliefs are rational, analyzing unconditional RCRs is sufficient for assessing

informativeness via (1). On the other hand, if there is reason to suspect that beliefs may

not be fully rational, then studying cRCRs is necessary for calibrating beliefs.
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1.8 Random Subjective Expected Utility

In this section, we consider the general case where choice is driven by both belief and taste

(i.e. risk preference) shocks. Let RX be the space of all affine utility functions on ∆X and π

be a measure on ∆S × RX . We interpret π as the joint distribution over beliefs and tastes.

Note that the marginal distribution of π on ∆S corresponds exactly to the signal distribution

µ. The corresponding regularity condition on π is as follows.

Definition. π is regular iff q · (u ◦ f) = q · (u ◦ g) with π-measure zero or one and u is

non-constant π-a.s..

A RCR ρ has a random subjective expected utility (RSEU) representation iff the following

holds.

Definition (RSEU Representation). ρ is represented by a regular π iff for f ∈ F ∈ K,

ρF (f) = π
�
(q, u) ∈ ∆S × RX

| q · (u ◦ f) ≥ q · (u ◦ g) ∀g ∈ F
�

This is a RUM model where the random subjective expected utilities depend not only

on beliefs but tastes as well. In the individual interpretation, this describes the choice of a

decision-maker who receives unobservable shocks to both beliefs and tastes. In the group

interpretation, this describes a group with heterogeneity in both beliefs and risk aversion.

Note that in the special case where π (∆S × {u}) = 1 for some non-constant u ∈ RX , this

corresponds exactly to an information representation.

To characterize a RSEU representation, C-determinism must be relaxed. In particular,

we also need to replace S-monotonicity with a state-by-state independence axiom below. For

f ∈ H and {s1, s2} ⊂ S, define fs1,s2 ∈ H as the act such that fs1,s2 (s1) = fs1,s2 (s2) = f (s1)

and fs1,s2 (s) = f (s) for all s �∈ {s1, ss}.

Axiom (S-independence). ρF (fs1,s2 ∪ fs2,s1) = 1 for F = {f, fs1,s2 , fs2,s1}

S-independence ensures that two acts that are constant over two states will be chosen

for sure over an act that is non-constant over those states. This follows from the fact that
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non-constant acts are only chosen over constant acts when the decision-maker has state-

dependent utility. This is the random choice version of the state-by-state independence

axiom.29

Theorem 1.7 below shows that we obtain a RSEU representation if we replace C-determinism

and S-monotonicity with S-independence.

Theorem 1.7. ρ has a RSEU representation iff it satisfies Axioms 1.1-1.5 and S-independence.

Proof. See Appendix.

1.9 Related Literature

1.9.1 Relation to Existing Literature

This chapter is related to a long literature on stochastic choice. In particular, the information

representation we introduce is a special case of RUM.30 Testable implications of RUM were

first studied by Block and Marschak [12]. The model was fully characterized by McFadden

and Richter [61], Falmagne [31] and Cohen [19], who extended the exercise to arbitrary

infinite sets of alternatives. Gul and Pesendorfer [47] obtain a more intuitive characterization

of RUM by enriching the choice space with lotteries. More recently, Gul, Natenzon and

Pesendorfer [46] characterize a special class of RUM models called attribute rules that can

approximate any RUM model.

In relation to this literature, our work shows that a characterization of random expected

utility can be comfortably extended to the realm of Anscombe-Aumann acts. Thus, the

axioms of subjective expected utility yield nice analogs in random choice. Moreover, by

29 Under deterministic choice, S-independence reduces to the condition that fs1,s2 � f or fs2,s1 � f .
Theorem 1.7 implies that this is equivalent to state-by-state independence axiom in the presence of the other
standard axioms. Note that the definition of null states becomes unnecessary in this characterization.

30 RUM is used extensively in discrete choice estimation. Most models in this literature assume specific
parametrizations such as the logit, the probit, the nested logit, etc. (see Train [80]).
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allowing our RCR to be silent on acts that are indifferent, we are able to include determin-

istic choice as a special case of random choice. This is an issue that most RUM models

have difficulty with. Finally, one could interpret Theorem 1.3 as presenting an alternative

characterization of RUM via properties of its induced valuation preference relation.

Some recent papers have also investigated the relationship between stochastic choice and

information. Natenzon [64] studies a model where the decision-maker (in his model, an

individual agent) gradually learns her own tastes. This is in contrast to our model where

tastes are fixed and utilities vary only as a result of learning about the underlying state.

Caplin and Dean [15] and Matejka and McKay [59] study cRCRs where the decision-maker

(individual agents in both models) exhibits rational inattention. Ellis [26] studies a similar

model with partitional information so the resulting cRCR is deterministic. In contrast,

the information structure in our model is fixed. This is closer to the standard model of

information processing and choice. Note that since the information structure in these other

models is allowed to vary with the decision-problem, the resulting random choice model is not

necessarily a RUM model. Caplin and Martin [16] do characterize and test a model where the

information structure is fixed. We can recast their model in our richer Anscombe-Aumann

setup, in which case our conditions for a well-calibrated cRCR imply their conditions. Note

that by working with a richer setup, our representation can be uniquely identified from choice

behavior.

This chapter is also related to the large literature on choice over menus (i.e. option

sets). This line of research commenced with Kreps’ [56] seminal paper on preference for

flexibility over finite alternatives. The model was extended to the lottery space by Dekel,

Lipman and Rustichini [21] (henceforth DLR) and more recently to the Anscombe-Aumann

space by DLST [23]. Our main contribution to this literature is showing that there is an

intimate link between ex-ante choice over option sets (i.e. our valuation preference relation)

and ex-post random choice from option sets. In fact, Theorem 1.4 can be interpreted as

characterizing the ex-ante valuation preference relation via properties of its ex-post random
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choice. Ahn and Sarver [1] also study this relationship although in the lottery space. Their

work connecting DLR preferences with Gul and Pesendorfer [47] random expected utility is

analogous to our results connecting DLST preferences with our random choice model. As our

choice options reside in the richer Anscombe-Aumann space, we are able to achieve a much

tighter connection between the two choice behaviors (we elaborate on this further in the

next subsection of this chapter). Fudenberg and Strzalecki [36] also analyze the relationship

between preference for flexibility and random choice but in a dynamic setting with recursive

random utilities. In contrast, in both Ahn and Sarver [1] and our model, the ex-ante choice

over option sets is static.

Nehring [65] also studies preference for flexibility in a Savage setting where he employs

Möbius inversion to characterize Kreps’ representation. Although he does not address ran-

dom choice, the same technical tool can be used to obtain a random utility from the ex-ante

valuation preference relation in this ordinal setting. Thus, in a sense, the operations in Corol-

lary 1.2 can be interpreted as the cardinal analogs of these tools in the richer Anscombe-

Aumann space. Grant, Kajii and Polak [42, 43] also study decision-theoretic models involving

information. However, they consider generalizations of the Kreps and Porteus [57] model

where the decision-maker (an individual agent) has an intrinsic preference for information

even when she is unable to or unwilling to act on that information. In contrast, in our model,

the decision-maker prefers information only as a result of its instrumental value as in the

classical sense of Blackwell.

Another strand of related literature studies the various biases in regards to information

processing. This includes the confirmatory bias (Rabin and Schrag [69]), the hot-hand

fallacy (Gilovich, Vallone and Tversky [41]) and the gambler’s fallacy (Rabin [68]). Our

model can be applied to study all these behaviors. To see this, consider the individual

interpretation of our model. First assume that at time 0, the agent is immune to these

biases and has rational beliefs about the signal that she will be receiving at time 1. However,

after receiving her signal, she becomes afflicted with the bias and exhibits time-2 random
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choice that deviates from rationality. With this setup, the confirmatory bias and the hot-

hand fallacy will yield prospective underconfidence while the gambler’s fallacy will yield

prospective overconfidence. Note that Corollary 1.4 allows us to rank the severity of these

biases via the Blackwell ordering of information structures. Finally, although not necessarily

about biased information processing, the diversification bias (Read and Loewenstein [71])

can also be studied in this setup.

In the strategic setting, Bergemann and Morris [8] study information structures in Bayes’

correlated equilibria. In the special case where there is a single bidder, our results translate

directly to their setup for a single-person game. Thus, we could interpret our model as

describing the actions of a bidder assuming that the bids of everyone else are held fixed.

Kamenica and Gentzkow [52] and Rayo and Segal [70] characterize optimal information

structures where a sender can control the information that a receiver gets. In these models,

the sender’s ex-ante utility is a function of the receiver’s random choice rule. Our results

relating random choice with valuations thus provide a technique for expressing the sender’s

utility in terms of the receiver’s utility and vice-versa.

This chapter is also related to the recent literature on testing for private information

in insurance markets. Hendren [50] uses elicited subjective beliefs from survey data to test

whether there is more private information in one group of agents (insurance rejectees) than

another group (non-rejectees). Under the group interpretation, Theorem 1.5 allows us to

perform this same test by inferring beliefs directly from choice data. Also, we can interpret

Theorem 1.6 as providing a sufficient condition for the presence of private information that

is similar to tests for private information in the empirical literature (e.g. Chiappori and

Salanié [17], Finkelstein and McGarry [34] and also Hendren [50]).

Finally, there is the literature on comparisons of information structures that traces its

lineage back to Blackwell [10, 11]. Lehmann [58], Persico [67], and Athey and Levin [4] all

study decision-problems in restricted domains that allow for information comparisons that

are strictly weaker than that of Blackwell. Although we work in a finite state space, we
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could extend our model and obtain restrictions on random choice that would correspond to

these weaker orderings.

1.9.2 Relation to Lotteries

In this section, we relate our model with that of Ahn and Sarver [1]. For both ease of

comparison and exposition, we focus on the individual interpretation of random choice in

this section. In their paper, Ahn and Sarver consider choices over lotteries and introduce

a condition called consequentialism to link choice behavior from the two time periods.31 In

the setup with Anscombe-Aumann acts, consequentialism translates into the following.

Axiom (Consequentialism). If ρF = ρG, then F ∼ G.

However, consequentialism fails as a sufficient condition for linking the two choice behav-

iors in our setup. This is demonstrated in the following example.

Example 1.10. Let S = {s1, s2}, X = {x, y} and u (aδx + (1− a) δy) = a. We associate

each q ∈ ∆S with t ∈ [0, 1] such that t = qs1 . Let µ have the uniform distribution and ν have

density 6t (1− t). Thus, µ is more informative than ν. Let � be represented by (µ, u) and

ρ be represented by (ν, u). We show that (�, ρ) satisfies consequentialism. Let F+ ⊂ F ∩G

denote the support of ρF = ρG. Since f ∈ F\F+ implies it is dominated by F
+
µ-a.s., it is

also dominated by F
+
ν-a.s. so F ∼ F

+. A symmetric analysis for G yields F ∼ F
+ ∼ G.

Thus, consequentialism is satisfied, but µ �= ν.

The reason for why consequentialism fails in the Anscombe-Aumann setup is that the

representation of DLR is more permissive than that of DLST. In the lottery setup, if conse-

quentialism is satisfied, then this extra freedom allows us to construct an ex-ante represen-

tation that is completely consistent with that of ex-post random choice. On the other hand,

information is uniquely identified in the representation of DLST, so this lack of flexibility

31 Their second axiom deals with indifferences which we resolve using non-measurability.
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prevents us from performing this construction even when consequentialism is satisfied. In

other words, a stronger condition is needed to perfectly equate choice behavior from the

two time periods. Essentially, if the test functions of two decision-problems share the same

mean, then they must be ex-ante indifferent.

Axiom (Strong Consequentialism). If Fρ and Gρ share the same mean, then F ∼ G.

The following lemma demonstrates why this is a strengthening of consequentialism.

Lemma 1.3. For ρ monotonic, ρF = ρG implies Fρ = Gρ.

Proof. See Appendix.

Thus, if strong consequentialism is satisfied, then consequentialism must also be satisfied as

ρF = ρG implies Fρ = Gρ which implies that Fρ and Gρ must have the same mean.

Finally, we show that in the Anscombe-Aumann setup, strong consequentialism delivers

the corresponding connection between ex-ante and ex-post choice behaviors that consequen-

tialism delivered in the lottery setup.

Proposition 1.2. Let � and ρ be represented by (µ, u) and (ν, v) respectively. Then (�, ρ)

is strongly consequential iff (µ, u) = (ν, αv + β) for α > 0.

Proof. See Appendix.

Note that in light of Corollary 1.2, we could have equivalently defined strong consequen-

tialism using the induced preference relation �ρ. In other words, if the integrals of Fρ and

Gρ are the same, then F ∼ G. This follows immediately from the fact that the integral of

Fρ is just one minus the mean of Fρ.
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Appendix 1A

1A.1. Representation Theorem

In this section of Appendix 1A, we prove the main representation theorem. Given a non-

empty collection G of subsets of H and some F ∈ K, define

G ∩ F := {G ∩ F |G ∈ G}

Note that if G is a σ-algebra, then G ∩ F is the trace of G on F ∈ K. For G ⊂ F ∈ K, let

GF :=
�

G⊂G�∈HF

G
�

denote the smallest HF -measurable set containing G.

Lemma (1A.1). Let G ⊂ F ∈ K.

(1) HF ∩ F = H ∩ F .

(2) GF = Ĝ ∩ F ∈ HF for some Ĝ ∈ H.

(3) F ⊂ F
� ∈ K implies GF = GF � ∩ F .

Proof. Let G ⊂ F ∈ K.

(1) Recall that HF := σ (H ∪ {F}) so H ⊂ HF implies H ∩ F ⊂ HF ∩ F . Let

G := {G ⊂ H|G ∩ F ∈ H ∩ F}

We first show that G is a σ-algebra. Let G ∈ G so G ∩ F ∈ H ∩ F . Now

G
c
∩ F = (Gc

∪ F
c) ∩ F = (G ∩ F )c ∩ F

= F\ (G ∩ F ) ∈ H ∩ F

as H ∩ F is the trace σ-algebra on F . Thus, Gc ∈ G. For Gi ⊂ G, Gi ∩ F ∈ H ∩ F so
�
�

i

Gi

�
∩ F =

�

i

(Gi ∩ F ) ∈ H ∩ F
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Hence, G is an σ-algebra

Note that H ⊂ G and F ∈ G so H ∪ {F} ⊂ G. Thus, HF = σ (H ∪ {F}) ⊂ G. Hence,

HF ∩ F ⊂ G ∩ F = {G
�
∩ F |G

� = G ∩ F ∈ H ∩ F} ⊂ H ∩ F

so HF ∩ F = H ∩ F .

(2) Since HF ∩ F ⊂ HF , we have

GF :=
�

G⊂G�∈HF

G
�
⊂

�

G⊂G�∈HF∩F

G
�

Suppose g ∈
�

G⊂G�∈HF∩F G
�. Let G� be such that G ⊂ G

� ∈ HF . Now, G ⊂ G
� ∩ F ∈

HF ∩F so by the definition of g, we have g ∈ G
� ∩F . Since this is true for all such G

�,

we have g ∈ GF . Hence,

GF =
�

G⊂G�∈HF∩F

G
� =

�

G⊂G�∈H∩F

G
�

where the second equality follows from (1). Since F is finite, we can find Ĝi ∈ H where

G ⊂ Ĝi ∩ F for i ∈ {1, . . . , k}. Hence,

GF =
�

i

�
Ĝi ∩ F

�
= Ĝ ∩ F

where Ĝ :=
�

i Ĝi ∈ H. Note that GF ∈ HF follows trivially.

(3) By (2), let GF = Ĝ ∩ F and GF � = Ĝ
� ∩ F

� for
�
Ĝ, Ĝ

�

�
⊂ H. Since F ⊂ F

�,

G ⊂ GF � ∩ F = Ĝ
�
∩ F ∈ HF

so GF ⊂ GF �∩F by the definition of GF . Now, by the definition of GF � , GF � ⊂ Ĝ∩F � ∈

HF � so

GF � ∩ F ⊂

�
Ĝ ∩ F

�

�
∩ F = Ĝ ∩ F = GF

Hence, GF = GF � ∩ F .
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Let ρ be a RCR. By Lemma 1A.1, we can now define

ρ
∗

F (G) := inf
G⊂G�∈HF

ρF (G�) = ρF (GF )

for G ⊂ F ∈ K. Going forward, we simply let ρ denote ρ
∗ without loss of generality. We

also employ the notation

ρ (F,G) := ρF∪G (F )

for {F,G} ⊂ K. We say that two acts are tied iff they are indifferent.

Definition. f and g are tied iff ρ (f, g) = ρ (g, f) = 1.

Lemma (1A.2). For {f, g} ⊂ F ∈ K, the following are equivalent:

(1) f and g are tied

(2) g ∈ fF

(3) fF = gF

Proof. We prove that (1) implies (2) implies (3) implies (1). Let {f, g} ⊂ F ∈ K. First,

suppose f and g are tied so ρ (f, g) = ρ (g, f) = 1. If ff∪g = f , then g = (f ∪ g) \fF ∈ Hf∪g

so gf∪g = g. As a result, ρ (f, g) + ρ (g, f) = 2 > 1 a contradiction. Thus, ff∪g = f ∪ g.

Now, since f ∪ g ⊂ F , by Lemma 1A.1, f ∪ g = ff∪g = fF ∩ (f ∪ g) so g ∈ fF . Hence, (1)

implies (2).

Now, suppose g ∈ fF so g ∈ gF ∩ fF . By Lemma 1A.1, gF ∩ fF ∈ HF so gF ⊂ gF ∩ fF

which implies gF ⊂ fF . If f �∈ gF , then f ∈ fF\gF ∈ HF . As a result, fF ⊂ fF\gF implying

gF = Ø a contradiction. Thus, f ∈ gF , so f ∈ gF ∩ fF which implies fF ⊂ gF ∩ fF and

fF ⊂ gF . Hence, fF = gF so (2) implies (3).

Finally, assume fF = gF so f ∪ g ⊂ fF by definition. By Lemma 1A.1 again,

ff∪g = fF ∩ (f ∪ g) = f ∪ g
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so ρ (f, g) = ρf∪g (f ∪ g) = 1. By symmetric reasoning, ρ (g, f) = 1 so f and g are tied.

Thus, (1), (2) and (3) are all equivalent.

Lemma (1A.3). Let ρ be monotonic.

(1) For f ∈ F ∈ K, ρF (f) = ρF∪g (f) if g is tied with some g
� ∈ F .

(2) Let F :=
�

i fi, G :=
�

i gi and assume fi and gi are tied for all i ∈ {1, . . . , n}. Then

ρF (fi) = ρG (gi) for all i ∈ {1, . . . , n}.

Proof. We prove the lemma in order:

(1) By Lemma 1A.2, we can find unique h
i ∈ F for i ∈ {1, . . . , k} such that

�
h
1
F , . . . h

k
F

�

forms a partition on F . Without loss of generality, assume g is tied with some g� ∈ h
1
F .

By Lemma 1A.2 again, h1
F∪g = h

1
F ∪ g and h

i
F∪g = h

i
F for i > 1. By monotonicity, for

all i

ρF

�
h
i
F

�
= ρF

�
h
i
�
≥ ρF∪g

�
h
i
�
= ρF∪g

�
h
i
F∪g

�

Now, for any f ∈ h
j
F , f ∈ h

j
F∪g and

ρF (f) = 1−
�

i �=j

ρF

�
h
i
F

�
≤ 1−

�

i �=j

ρF∪g

�
h
i
F∪g

�
= ρF∪g (f)

By monotonicity again, ρF (f) = ρF∪g (f).

(2) Let F :=
�

i fi, G :=
�

i gi and assume fi and gi are tied for all i ∈ {1, . . . , n}. From

(1), we have

ρF (fi) = ρF∪gi (fi) = ρF∪gi (gi) = ρ(F∪gi)\fi (gi)

Repeating this argument yields ρF (fi) = ρG (gi) for all i.

For {F, F �} ⊂ K, we use the condensed notation FaF
� := aF + (1− a)F �.

Lemma (1A.4). Let ρ be monotonic and linear. For f ∈ F ∈ K, let F
� := Fah and

f
� := fah for some h ∈ H and a ∈ (0, 1). Then ρF (f) = ρF � (f �) and f

�

F � = fFah.
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Proof. Note that ρF (f) = ρF � (f �) follows directly from linearity, so we just need to prove

that f
�

F � = fFah. Let g
� := gah ∈ fFah for g ∈ F tied with f . By linearity, ρ (f �

, g
�) =

ρ (g�, f �) = 1 so g
� is tied with f

�. Thus, g� ∈ f
�

F � by Lemma 1A.2 and fFah ⊂ f
�

F � . Now,

let g� ∈ f
�

F � so g
� = gah is tied with fah. By linearity again, f and g are tied so g

� ∈ fFah.

Thus, f �

F � = fFah.

We now associate each act f ∈ H with the vector f ∈ [0, 1]S×X without loss of generality.

Find {f1, g1, . . . , fk, gk} ⊂ H such that fi �= gi are tied and zi · zj = 0 for all i �= j, where

zi :=
fi−gi

�fi−gi�
. Let Z := lin {z1, . . . , zk} be the linear space spanned by all zi with Z = 0 if no

such zi exists. Let k be maximal in that for any {f, g} ⊂ H that are tied, f − g ∈ Z. Note

that Lemmas 1A.3 and 1A.4 ensure that k is well-defined. Define ϕ : H → RS×X such that

ϕ (f) := f −

�

1≤i≤k

(f · zi) zi

and let W := lin (ϕ (H)). Lemma 1A.5 below shows that ϕ projects H onto a space without

ties.

Lemma (1A.5). Let ρ be monotonic and linear.

(1) ϕ (f) = ϕ (g) iff f and g are tied.

(2) w · ϕ (f) = w · f for all w ∈ W .

Proof. We prove the lemma in order

(1) First, suppose f and g are tied so f − g ∈ Z by the definition of Z. Thus,

f = g +
�

1≤i≤k

αizi

for some α ∈ Rk. Hence,

ϕ (f) = g +
�

1≤i≤k

αizi −

�

1≤i≤k

��
g +

�

1≤j≤k

αjzj

�
· zi

�
zi

= g −

�

1≤i≤k

(g · zi) zi = ϕ (g)
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For the converse, suppose ϕ (f) = ϕ (g) so

f −

�

1≤i≤k

(f · zi) zi = g −

�

1≤i≤k

(g · zi) zi

f − g =
�

1≤i≤k

((f − g) · zi) zi ∈ Z

and f and g are tied.

(2) Note that for any f ∈ H,

ϕ (f) · zi = 0

Since W = lin (ϕ (H)) and ϕ is linear, w · zi = 0 for all w ∈ W . Thus,

w · ϕ (f) = w ·

�
f −

�

1≤i≤k

(f · zi) zi

�
= w · f

for all w ∈ W .

Lemma (1A.6). If ρ satisfies Axioms 1.1-1.4, then there exists a measure ν on W such that

ρF (f) = ν {w ∈ W |w · f ≥ w · g ∀g ∈ F}

Proof. Letm := dim (W ). Note that ifm = 0, thenW = ϕ (H) is a singleton so everything is

tied by Lemma 1A.5 and the result follows trivially. Thus, assumem ≥ 1 and let ∆m ⊂ RS×X

be them-dimensional probability simplex. Now, there exists an affine transformation T = λA

where λ > 0, A is an orthogonal matrix and T ◦ ϕ (H) ⊂ ∆m. Let V := lin (∆m) so

T (W ) = V . Now, for each finite set D ⊂ ∆m, we can find a p
∗ ∈ ∆m and a ∈ (0, 1) such

that Dap
∗ ⊂ T ◦ ϕ (H). Thus, we can define a RCR τ on ∆m such that

τD (p) := ρF (f)

where T ◦ ϕ (F ) = Dap
∗ and T ◦ ϕ (f) = pap

∗. Linearity and Lemma 1A.5 ensure that τ is

well-defined.
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Since the projection mapping ϕ is linear, Axioms 1.1-1.4 correspond exactly to the axioms

of Gul and Pesendorfer [47] on ∆m. Thus, by their Theorem 3, there exists a measure νT on

V such that for F ∈ K0

ρF (f) = τT◦ϕ(F ) (T ◦ ϕ (f))

= νT {v ∈ V | v · (T ◦ ϕ (f)) ≥ v · (T ◦ ϕ (g)) ∀g ∈ F}

Since A
−1 = A

�,

v · (T ◦ ϕ (f)) = v · λA (ϕ (f)) = λ
�
A

−1
v
�
· ϕ (f) = λ

2
T

−1 (v) · ϕ (f)

Thus,

ρF (f) = νT

�
v ∈ V |T

−1 (v) · ϕ (f) ≥ T
−1 (v) · ϕ (g) ∀g ∈ F

�

= ν {w ∈ W |w · ϕ (f) ≥ w · ϕ (g) ∀g ∈ F}

= ν {w ∈ W |w · f ≥ w · g ∀g ∈ F}

where ν := νT ◦ T is the measure on W induced by T . Note that the last equality follows

from Lemma 1A.5.

Finally, consider any generic F ∈ K, and let F0 ⊂ F be such that f ∈ F0 ∈ K0. By

Lemma 1A.3,

ρF (f) = ρF0 (f) = ν {w ∈ W |w · f ≥ w · g ∀g ∈ F0}

By Lemma 1A.5, if h and g are tied, then

w · h = w · ϕ (h) = w · ϕ (g) = w · g

for all w ∈ W . Thus,

ρF (f) = ν {w ∈ W |w · f ≥ w · g ∀g ∈ F}
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Henceforth, assume ρ satisfies Axioms 1.1-1.4 and let ν be the measure on W as specified

by Lemma 1A.6. We let ws ∈ RX denote the vector corresponding to w ∈ W and s ∈ S.

For u ∈ RX , define R (u) ⊂ RX as the set of all αu + β1 for some α > 0 and β ∈ R. Let

U :=
�
u ∈ RX

��u · 1 = 0
�
and note that R (u) ∩ U is the set of all αu for some α > 0.

A state s
∗ ∈ S is null iff it satisfies the following.

Definition. s
∗ ∈ S is null iff fs = gs for all s �= s

∗ implies ρF∪f (f) = ρF∪g (g) for all F ∈ K

Lemma (1A.7). If ρ is non-degenerate, then there exists a non-null state.

Proof. Suppose ρ is non-degenerate but all s ∈ S are null and consider {f, g} ⊂ H. Let

S = {s1, . . . , sn} and for 0 ≤ i ≤ n, define f
i ∈ H such that f

i
sj = gsj for j ≤ i and

f
i
sj = fsj for j > i. Note that f

0 = f and f
n = g. By the definition of nullity, we have

ρ (f i
, f

i+1) = 1 = ρ (f i+1
, f

i) for all i < n. Thus, f i and f
i+1 are tied for all i < n so by

Lemma 1A.2, f and g are tied. This implies ρ (f, g) = 1 for all {f, g} ⊂ H contradicting

non-degeneracy so there must exist at least one non-null state.

Lemma (1A.8). Let ρ satisfy Axioms 1.1-1.4 and S-independence. Suppose {s1, s2} ⊂ S are

non-null. Define φ : W → U × U such that

φi (w) := wsi −

�
wsi · 1

|X|

�
1

for i ∈ {1, 2} and η := ν ◦ φ−1 as the measure on U × U induced by φ. Then

(1) η ({0} × U) = η (U × {0}) = 0

(2) η {(u1, u2) ∈ U × U |u1 · r > 0 > u2 · r} = 0 for any r ∈ U

(3) η {(u1, u2) ∈ U × U |u2 ∈ R (u1)} = 1

Proof. We prove the lemma in order.

(1) Since s1 is non-null, we can find {f, g} ⊂ H such that fs = gs for all s �= s1 and f and
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g are not tied. Let fs1 = p and gs1 = q so

1 = ρ (f, g) + ρ (g, f)

= ν {w ∈ W |ws1 · p ≥ ws1 · q}+ ν {w ∈ W |ws1 · q ≥ ws1 · p}

0 = ν {w ∈ W |ws1 · r = 0} = η ({u1 ∈ U | u1 · r = 0} × U)

for r := p− q. Since we can assume η is complete, η ({0} × U) = 0. The case for s2 is

symmetric.

(2) For any {p, q} ⊂ ∆X, let {f, g, h} ⊂ H be such that fs1 = fs2 = hs1 = p, gs1 = gs2 =

hs2 = q and fs = gs = hs for all s �∈ {s1, s2}. First, suppose h is not tied with either f

nor g. Hence, by S-independence,

0 = ρ{f,g,h} (h) = ν {w ∈ W |w · h ≥ max (w · f, w · g)}

= ν {w ∈ W |ws2 · q ≥ ws2 · p and ws1 · p ≥ ws1 · q}

= ν {w ∈ W |ws1 · r ≥ 0 ≥ ws2 · r}

for r := p− q ∈ U . Note that if h is tied with g, then

1 = ρ (g, h) = ρ (h, g) = ν {w ∈ W |w · h = w · g}

= ν {w ∈ W |ws1 · r = 0}

Symmetrically, if h is tied with f , then ws2 · r = 0 ν-a.s., so we have

0 = ν {w ∈ W |ws1 · r > 0 > ws2 · r}

= ν {w ∈ W |φ1 (w) · r > 0 > φ2 (w) · r}

= η {(u1, u2) ∈ U × U |u1 · r > 0 > u2 · r}

for any r ∈ U without loss of generality.

(3) First, define the closed halfspace corresponding to r ∈ U as

Hr := {u ∈ U | u · r ≥ 0}
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and let E be the set of all finite intersection of such halfspaces. Consider a partition

P = {0}∪
�

i Ai of U where for each Ai, we can find two sequences Aij ∈ E and Āij ∈ E

such that Aij � Ai ∪ {0}, Aij ⊂ int
�
Āij

�
∪ {0} and Āij ∩ Āi�j = {0} for all i� �= i .

Note that since sets in E are η-measurable, every Aij × Ai�j� is η-measurable. By (1)

1 = η (U × U) = η

�
�

i

Ai ×

�

i

Ai

�
=

�

ii�

η (Ai × Ai�)

=
�

i

η (Ai × Ai) +
�

i� �=i

η (Ai × Ai�)

= η

�
�

i

(Ai × Ai)

�
+
�

i� �=i

lim
j

η (Aij × Ai�j)

By a standard separating hyperplane argument (Theorem 1.3.8 of Schneider [75]), we

can find some r ∈ U such that u1 · r ≥ 0 ≥ u2 · r for all (u1, u2) ∈ Āij × Āi�j. Since

Aij\ {0} ⊂ int
�
Āij

�
, we must have u1 · r > 0 > u2 · r for all (u1, u2) ∈ (Aij\ {0}) ×

(Ai�j\ {0}). By (1) and (2),

η (Aij × Ai�j) = η ((Aij\ {0})× (Ai�j\ {0}))

≤ η {(u1, u2) ∈ U × U |u1 · r > 0 > u2 · r} = 0

so η (
�

i (Ai × Ai)) = 1.

Now, consider a sequence of increasingly finer such partitions Pk := {0} ∪
�

i A
k
i such

that for any (u1, u2) ∈ U × U where u2 �∈ R (u1), there is some partition Pk where

(u1, u2) ∈ A
k
i × A

k
i� for i �= i

�. Let

Ck := {0} ∪
�

i

�
A

k
i × A

k
i

�

C0 := {(u1, u2) ∈ U × U |u2 ∈ R (u1)}

We show that Ck � C0. Since Pk� ⊂ Pk for k� ≥ k, Ck� ⊂ Ck. Note if u2 ∈ R (u1), then

u1 ∈ Hr iff u2 ∈ Hr for all r ∈ U so C0 ⊂ Ck for all k. Suppose (u1, u2) ∈ (
�

k Ck) \C0.

Since u2 �∈ R (u1), there is some k such that (u1, u2) �∈ Ck a contradiction. Hence,
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C0 =
�

k Ck so

η (C0) = lim
k

η (Ck) = 1

Theorem (1A.9). If ρ satisfies Axioms 1.1-1.5 and S-independence, then it has a RSEU

representation.

Proof. We begin with the first statement. Let ρ satisfy Axioms 1.1-1.5 and S-independence,

and ν be the measure on W as specified by Lemma 1A.6. Let S∗ ⊂ S be the set of non-null

states with some s
∗ ∈ S

∗ as guaranteed by Lemma 1A.7. Define

W0 := {w ∈ W |ws ∈ R (ws∗) ∀s ∈ S
∗
}

and note that by Lemma 1A.8,

η (W0) = η

�
�

s∈S∗

{w ∈ W |ws ∈ R (ws∗)}

�
= 1

Let Q : W0 → ∆S be such that Qs (w) := 0 for s ∈ S\S∗ and

Qs (w) :=
αs (w)�

s∈S∗ αs (w)

for s ∈ S
∗ where ws = αs (w)ws∗ +βs (w)1 for αs (w) > 0 and βs (w) ∈ R. Define Q̂ : W0 →

∆S × RX such that

Q̂ (w) := (Q (w) , ws∗)

and let π := η ◦ Q̂−1 be the measure on ∆S × RX induced by Q̂.

For s ∈ S\S∗, let {f, h} ⊂ H be such that hs =
1

|X|
1 and fs� = hs� for all s� �= s. By the

definition of nullity, f and g are tied so

1 = ρ (f, h) = ρ (h, f) = ν

�
w ∈ W

����ws · f (s) =
1

|X|
(ws · 1)

�
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Thus

ρF (f) = ν

�
w ∈ W

�����
�

s∈S

ws · f (s) ≥
�

s∈S

ws · g (s) ∀g ∈ F

�

= ν

�
w ∈ W0

�����
�

s∈S∗

ws · f (s) ≥
�

s∈S∗

ws · g (s) ∀g ∈ F

�

= π
�
(q, u) ∈ ∆S × RX

|q · (u ◦ f) ≥ q · (u ◦ g) ∀g ∈ F
�

Finally, we show that π is regular. Suppose ∃ {f, g} ⊂ H such that

π
�
(q, u) ∈ ∆S × RX

�� q · (u ◦ f) = q · (u ◦ g)
�
∈ (0, 1)

If f and g are tied, then q · (u ◦ f) = q · (u ◦ g) π-a.s. yielding a contradiction. Since f and

g are not tied, then

π
�
(q, u) ∈ ∆S × RX

�� q · (u ◦ f) = q · (u ◦ g)
�
= ρ (f, g)− (1− ρ (g, f)) = 0

a contradiction. Lemma 1A.8 implies that u is non-constant π-a.s. so π is regular. Thus, ρ

is represented by π.

Theorem (1A.10). If ρ has a RSEU representation, then it satisfies Axioms 1.1-1.5 and

S-independence.

Proof. Note that monotonicity, linearity and extremeness all follow trivially from the repre-

sentation. Note that if ρ is degenerate, then for any constant {f, g} ⊂ H,

1 = ρ (f, g) = ρ (g, f) = π
�
(q, u) ∈ ∆S × RX

��u ◦ f = u ◦ g
�

so u is constant π-a.s. a contradiction. Thus, non-degeneracy is satisfied.

To show S-independence, suppose fs1 = fs2 = hs1 , gs1 = gs2 = hs2 and fs = gs = hs for

all s �∈ {s1, s2}. Note that if h is tied with f or g, then the result follows immediately, so
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assume h is tied to neither. Thus,

ρ{f,g,h} (h) = π
�
(q, u) ∈ ∆S × RX

�� q · (u ◦ h) ≥ max (q · (u ◦ g) , q · (u ◦ g))
�

= π
�
(q, u) ∈ ∆S × RX

��u (hs2) ≥ u (hs1) and u (hs1) ≥ u (hs2)
�

Note that if u (hs2) = u (hs1) π-a.s., then h is tied with both, so by the regularity of π,

ρ{f,g,h} (h) = 0.

Finally, we show continuity. First, consider {f, g} ⊂ Fk ∈ K0 such that f �= g and

suppose q ·(u ◦ f) = q ·(u ◦ g) π-a.s.. Thus, ρ (f, g) = ρ (g, f) = 1 so f and g are tied. As ρ is

monotonic, Lemma 1A.2 implies g ∈ fFk
contradicting the fact that Fk ∈ K0. As µ is regular,

q · (u ◦ f) = q · (u ◦ g) with π-measure zero and the same holds for any {f, g} ⊂ F ∈ K0.

Now, for G ∈ K, let

QG :=
�

{f,g}⊂G, f �=g

�
(q, u) ∈ ∆S × RX

�� q · (u ◦ f) = q · (u ◦ g)
�

and let

Q̄ := QF ∪

�

k

QFk

Thus, µ
�
Q̄
�
= 0 so µ (Q) = 1 for Q := ∆S\Q̄. Let π̂ (A) = π (A) for A ∈ B

�
∆S × RX

�
∩Q.

Thus, π̂ is the restriction of π to Q (see Exercise I.3.11 of Çinlar [18]).

Now, for each Fk, let ξk : Q → H be such that

ξk (q, u) := argmax
f∈Fk

q · (u ◦ f)

and define ξ similarly for F . Note that both ξk and ξ are well-defined as they have domain

Q. For any B ∈ B (H),

ξ
−1
k (B) = {(q, u) ∈ Q| ξk (q, u) ∈ B ∩ Fk}

=
�

f∈B∩Fk

�
(q, u) ∈ ∆S × RX

�� q · (u ◦ f) > q · (u ◦ g) ∀g ∈ Fk

�
∩Q

∈ B
�
∆S × RX

�
∩Q
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Hence, ξk and ξ are random variables. Moreover,

π̂ ◦ ξ
−1
k (B) =

�

f∈B∩Fk

π̂ {(q, u) ∈ Q| q · (u ◦ f) > q · (u ◦ g) ∀g ∈ Fk}

=
�

f∈B∩Fk

π
�
(q, u) ∈ ∆S × RX

�� q · (u ◦ f) ≥ q · (u ◦ g) ∀g ∈ Fk

�

= ρFk
(B ∩ Fk) = ρFk

(B)

so ρFk
and ρF are the distributions of ξk and ξ respectively. Finally, let Fk → F and fix

(q, u) ∈ Q. Let f := ξ (q, u) so q · (u ◦ f) > q · (u ◦ g) for all g ∈ F . Since linear functions

are continuous, there is some l ∈ N such that q · (u ◦ fk) > q · (u ◦ gk) for all k > l. Thus,

ξk (q, u) = fk → f = ξ (q, u) so ξk converges to ξ π̂-a.s.. Since almost sure convergence implies

convergence in distribution (see Exercise III.5.29 of Çinlar [18]), ρFk
→ ρF and continuity is

satisfied.

Corollary (1A.11). ρ satisfies Axioms 1.1-1.7 iff it has an information representation.

Proof. We first prove sufficiency. Note that if ρ satisfies Axioms 1.1-1.6 and S-independence,

then by Theorem 1A.9, ρ has an information representation. We show that Axioms 1.1-1.7

imply S-independence. Suppose fs1 = fs2 = hs1 , gs1 = gs2 = hs2 and fs = gs = hs for

all s �∈ {s1, s2}. Note that if h is tied with f or g, then the result follows immediately, so

assume h is tied to neither. Note that if hs1 and hs2 are tied, then S-monotonicity implies

h is tied to both, so assume ρ (hs1 , hs2) = 1 without loss of generality. By S-monotonicity

again, ρ (f, h) = 1 implying ρ (h, f) = 0. Thus, ρ{f,g,h} (h) = 0 so S-independence is satisfied.

For necessity, note that Axioms 1.1-1.5 all follow from Theorem 1A.10. C-determinism

follows trivially from the representation. To show S-monotonicity, suppose ρFs (fs) = 1 for

all s ∈ S. Thus, u (fs) ≥ u (gs) for all g ∈ F and s ∈ S which implies q · (u ◦ f) ≥ q · (u ◦ g)

for all g ∈ F . Hence, ρF (f) = 1 from the representation yielding S-monotonicity.
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1A.2. Uniqueness

In this section of Appendix 1A, we use test functions to prove the uniqueness properties of

information representations. Let Hc ⊂ H denote the set of all constant acts.

Lemma (1A.12). Let ρ be represented by (µ, u). Then for any measurable φ : R → R,
�

[0,1]

φdFρ =

�

∆S

φ

�
u
�
f
�
− supf∈F q · (u ◦ f)

u
�
f
�
− u

�
f
�

�
µ (dq)

Proof. For F ∈ K, let ψF : ∆S → [0, 1] be such that ψF (q) =
u(f)−supf∈F q·(u◦f)

u(f)−u(f)
which is

measurable. Let λ
F := µ ◦ ψ

−1
F be the image measure on [0, 1]. By a standard change of

variables (Theorem I.5.2 of Çinlar [18]),

�

[0,1]

φ (x)λF (dx) =

�

∆S

φ (ψF (q))µ (dq)

We now show that the cumulative distribution function of λF is exactly Fρ. For a ∈ [0, 1],

let fa := faf ∈ Hc. Now,

λ
F [0, a] = µ ◦ ψ

−1
F [0, a] = µ {q ∈ ∆S | a ≥ ψF (q) ≥ 0}

= µ

�
q ∈ ∆S

���� sup
f∈F

q · (u ◦ f) ≥ u (fa)

�

First, assume f
a is tied with nothing in F . Since µ is regular,

µ {q ∈ ∆S| u (fa) = q · (u ◦ f)} = 0

for all f ∈ F . Thus,

λ
F [0, a] = 1− µ {q ∈ ∆S| u (fa) ≥ q · (u ◦ f) ∀f ∈ F}

= 1− ρ (fa
, F ) = ρ (F, fa) = Fρ (a)

Now, assume f
a is tied with some g ∈ F so u (fa) = q · (u ◦ g) µ-a.s.. Thus, fa ∈ gF∪fa so

Fρ (a) = ρ (F, fa) = 1 = λ
F [0, a]
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Hence, λF [0, a] = Fρ (a) for all a ∈ [0, 1]. Note that λ
F [0, 1] = 1 = Fρ (1) so Fρ is the

cumulative distribution function of λF .

For convenience, we define the following.

Definition. F ≥m G iff
�
R xdF (x) ≥

�
R xdG (x).

Lemma (1A.13). Let ρ and τ be represented by (µ, u) and (ν, v) respectively. Then the

following are equivalent:

(1) u = αv + β for α > 0

(2) fρ = fτ for all f ∈ Hc

(3) fρ =m fτ for all f ∈ Hc

Proof. For f ∈ Hc, let û (f) :=
u(f)−u(f)

u(f)−u(f)
and note that

fρ (a) = ρ
�
f, faf

�
= 1[û(f),1] (a)

Thus, the distribution of fρ is a Dirac measure at {û (f)} so

�

[0,1]

a dfρ (a) = û (f)

and λ
f
ρ = δ

{
�
[0,1] dfρ(a)a}

. Hence, λf
ρ = λ

f
τ iff fρ =m fτ so (2) and (3) are equivalent.

We now show that (1) and (3) are equivalent. Let �c
ρ and �c

τ be the two preference

relations induced on Hc by ρ and τ respectively, and let
�
f, f

�
and

�
g, g

�
denote their

respective worst and best acts. If (1) is true, then we can take
�
f, f

�
=

�
g, g

�
. Thus, for

f ∈ Hc �

[0,1]

a dfρ (a) = û (f) = v̂ (f) =

�

[0,1]

a dfτ (a)

so (3) is true. Now, suppose (3) is true. For any f ∈ Hc, we can find {α, β} ⊂ [0, 1] such

that fαf ∼c
ρ f ∼c

τ gβg. Note that

α = û (f) =

�

[0,1]

a dfρ (a) =

�

[0,1]

a dfτ (a) = v̂ (f) = β
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so f ∼c
ρ fαf iff f ∼c

τ gαg. As a result, f �c
ρ g iff fαf �c

ρ fβf iff β ≥ α iff gαg �c
τ gβg

iff f �c
τ g. Thus, ρ = τ on Hc so u = αv + β for α > 0. Hence, (1), (2) and (3) are all

equivalent.

Theorem (1A.14). Let ρ and τ be represented by (µ, u) and (ν, v) respectively. Then the

following are equivalent:

(1) (µ, u) = (ν, αv + β) for α > 0

(2) ρ = τ

(3) ρ (f, g) = τ (f, g) for all {f, g} ⊂ H

(4) fρ = fτ for all f ∈ H

Proof. Let ρ and τ be represented by (µ, u) and (ν, v) respectively. If (1) is true, then

ρF (f) = τF (f) for all f ∈ H from the representation. Moreover, since ρ (f, g) = ρ (g, f) = 1

iff τ (f, g) = τ (g, f) = 1 iff f and g are tied, the partitions {fF}f∈F agree under both ρ and

τ . Thus, Hρ
F = Hτ

F for all F ∈ K so ρ = τ and (2) is true. Note that (2) implies (3) implies

(4) trivially.

Hence, all that remains is to prove that (4) implies (1). Assume (4) is true so fρ = fτ

for all f ∈ H. By Lemma 1A.13, this implies u = αv + β for α > 0. Thus, without loss of

generality, we can assume 1 = u
�
f
�
= v

�
f
�
and 0 = u

�
f
�
= v

�
f
�
so u = v. Now,

ψf (q) := 1− q · (u ◦ f) = 1− q · (v ◦ f)

where ψf : ∆S → [0, 1]. Let λf
ρ = µ ◦ ψ

−1
f and λ

f
τ = ν ◦ ψ

−1
f , so by the lemma above, they

correspond to the cumulatives fρ and fτ . Now, by Ionescu-Tulcea’s extension (Theorem

IV.4.7 of Çinlar [18]), we can create a probability space on Ω with two independent random

variables X : Ω → ∆S and Y : Ω → ∆S such that they have distributions µ and ν
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respectively. Let φ (a) = e
−a, and since fρ = fτ , by Lemma 1A.12,

E
�
e
−ψf (X)

�
=

�

∆S

e
−ψf (q)µ (dq)

=

�

[0,1]

e
−a

dfρ (a) =

�

[0,1]

e
−a

dfτ (a)

=

�

∆S

e
−ψf (q)ν (dq) = E

�
e
−ψf (Y )

�

for all f ∈ H. Let wf ∈ [0, 1]S be such that wf = 1−u◦f so ψf (q) = q ·wf . Since this is true

for all f ∈ H, we have E
�
e
−w·X

�
= E

�
e
−w·Y

�
for all w ∈ [0, 1]S. Since Laplace transforms

completely characterize distributions (see Exercise II.2.36 of Çinlar [18]), X and Y have the

same distribution, so µ = ν. Thus, (µ, u) = (ν, αv + β) for α > 0 and (1) is true. Hence, (1)

to (4) are all equivalent.

Lemma 1A.15 below shows that (1) every decision-problem is arbitrarily (Hausdorff) close to

some decision-problem in K0, and (2) ρ is discontinuous at precisely those decision-problems

that contain ties (indifferences).

Lemma (1A.15). Let ρ have an information representation.

(1) K0 is dense in K.

(2) f and g are not tied iff fk → f and gk → g imply ρ (fk, gk) → ρ (f, g).

Proof. Let ρ be represented by (µ, u). We prove the lemma in order:

(1) Consider F ∈ K. For each {fi, gi} ⊂ F tied and fi �= gi, let

zi := u ◦ fi − u ◦ gi

so q · zi = 0 µ-a.s.. Let q∗ ∈ ∆S be in the support of µ so q
∗ · zi = 0 for all i. Now, for

every f ∈ F̂ := {f ∈ F | fF �= f}, let εf > 0 and f
� ∈ H be such that

u ◦ f
� = u ◦ f + εfq

∗
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Since F is finite, we can assume εf �= εg for all {f, g} ⊂ F̂ such that f �= g. Suppose

f
� and g

� are tied, so µ-a.s.

0 = q · (u ◦ f
�
− u ◦ g

�) = q · (zi + (εf − εg) q
∗) = (εf − εg) q · q

∗

Thus, q · q∗ = 0 µ-a.s.. Since q
∗ · q∗ �= 0, q∗ is not in the support of µ yielding a

contradiction. If we let f
� := f for f ∈ F\F̂ , then F

� :=
�

f∈F f
� ∈ K0. Setting

ε
k
f → 0 for all f ∈ F̂ yields that F �

k → F . Thus, K0 is dense in K.

(2) First, let f and g not be tied and fk → f and gk → g. Suppose there is some

subsequence j such that all fj and gj are tied. Let

zj := u ◦ fj − u ◦ gj

and Z̄ := lin
��

j zj

�
∩ [0, 1]S. Let z := u ◦ f − u ◦ g and since f and g are not tied,

z �∈ Z̄ by linearity. Thus, z and Z̄ can be strongly separated (see Theorem 1.3.7 of

Schneider [75]), but zj → z yielding a contradiction. Hence, there is some m ∈ N such

that fk and gk are not tied for all k > m. Continuity yields ρ (fk, gk) → ρ (f, g).

Finally, suppose f and g are tied. Without loss of generality, let fε ∈ H be such that

u ◦ fε = u ◦ f − ε1

for some ε > 0. By S-monotonicity, ρ (fε, f) = ρ (fε, g) = 0. Thus, if we let ε → 0 and

fε → f , then

ρ (fε, g) → 0 < 1 = ρ (f, g)

violating continuity.
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Appendix 1B

In Appendix 1B, we prove our results relating valuations with random choice. In this section,

consider RCRs ρ such that there are
�
f, f̄

�
⊂ Hc where ρ

�
f, f

�
= ρ

�
f, f

�
= 1 for all f ∈ H

and Fρ is a cumulative distribution function for all F ∈ K. For a ∈ [0, 1], define f
a := faf .

Lemma (1B.1). For any cumulative F on [0, 1],

�

[0,1]

F (a) da = 1−

�

[0,1]

a dF (a)

Proof. By Theorem 18.4 of Billingsley [9], we have

�

(0,1]

a dF (a) = F (1)−

�

(0,1]

F (a) da

The result then follows immediately.

Lemma (1B.2). For cumulatives F and G on [0, 1], F = G iff F = G a.e..

Proof. Note that sufficiency is trivial so we prove necessity. Let λ be the Lebesgue measure

and D := {b ∈ [0, 1]|F (b) �= F (G)} so λ (D) = 0. For each a < 1 and ε > 0 such that

a+ ε ≤ 1, let Ba,ε := (a, a+ ε). Suppose F (b) �= G (b) for all b ∈ Ba,ε. Thus, Ba,ε ⊂ D so

0 < ε = λ (Ba,ε) ≤ λ (D)

a contradiction. Thus, there is some b ∈ Ba,ε such that F (b) = G (b) for all such a and

ε. Since both F and G are cumulatives, they are right-continuous so F (a) = G (a) for all

a < 1. Since F (1) = 1 = G (1), F = G.

Lemma (1B.3). Let ρ be monotonic and linear. Then
�
F ∪ f

b
�
ρ
= Fρ ∨ f

b
ρ for all b ∈ [0, 1].

Proof. Let ρ be monotonic and linear. Note that if ρ
�
f, f

�
> 0, then f and f are tied

so by Lemma 1A.3, ρ
�
f, f

�
= ρ

�
f, f

�
= 1 for all f ∈ H. Thus, all acts are tied, so

�
F ∪ f

b
�
ρ
= 1 = Fρ ∨ f

b
ρ trivially.
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Assume ρ
�
f, f

�
= 0, so linearity implies ρ

�
f
b
, f

a
�
= 1 for a ≥ b and ρ

�
f
b
, f

a
�
= 0

otherwise. Hence f
b
ρ = 1[b,1], so for any F ∈ K,

�
Fρ ∨ f

b
ρ

�
(a) =

�
Fρ ∨ 1[b,1]

�
(a) =






1 if a ≥ b

Fρ (a) otherwise

Let G := F ∪ f
b ∪ f

a so
�
F ∪ f

b
�
ρ
(a) = ρG

�
F ∪ f

b
�

First, suppose a ≥ b. If a > b, then ρ
�
f
a
, f

b
�
= 0 so ρG (fa) = 0 by monotonicity. Hence,

ρG

�
F ∪ f

b
�
= 1. If a = b, then ρG

�
F ∪ f

b
�
= 1 trivially. Thus,

�
F ∪ f

b
�
ρ
(a) = 1 for all

a ≥ b. Now consider a < b so ρ
�
f
b
, f

a
�
= 0 which implies ρG

�
f
b
�
= 0 by monotonicity.

First, suppose f
a is tied with nothing in F . Thus, by Lemma 1A.2, fa

G = f
a
F∪fa = f

a so

ρF∪fa (F ) + ρF∪fa (fa) = 1 = ρG (F ) + ρG (fa)

By monotonicity, ρF∪fa (F ) ≥ ρG (F ) and ρF∪fa (fa) ≥ ρG (fa) so ρG (F ) = ρF∪fa (F ).

Hence,

ρG

�
F ∪ f

b
�
= ρG (F ) = ρF∪fa (F ) = Fρ (a)

Finally, suppose f
a is tied with some f

� ∈ F . Thus, by Lemma 1A.3,

ρG

�
F ∪ f

b
�
= ρF∪fb

�
F ∪ f

b
�
= 1 = Fρ (a)

so
�
F ∪ f

b
�
ρ
(a) = Fρ (a) for all a < b. Thus,

�
F ∪ f

b
�
ρ
= Fρ ∨ f

b
ρ .

Definition. u is normalized iff u
�
f
�
= 0 and u

�
f
�
= 1.

Lemma (1B.4). Let ρ be monotonic and linear. Suppose �ρ and τ are represented by (µ, u).

Then Fρ = Fτ for all F ∈ K.

Proof. Let ρ be monotonic and linear, and suppose �ρ and τ are represented by (µ, u). By
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Theorem 1A.14, we can assume u is normalized without loss of generality. Let

V (F ) :=

�

∆S

sup
f∈F

q · (u ◦ F )µ (dq)

so V represents �ρ. Since test functions are well-defined under ρ, let f and f be the best

and worst acts respectively. We first show that ρ
�
f, f

�
= 0. Suppose otherwise so f and f

must be tied. By Lemma 1A.4, f b and f
a are tied for all {a, b} ⊂ [0, 1]. Thus, f b (a) = 1

for all {a, b} ⊂ [0, 1]. Hence Vρ

�
f
b
�
= Vρ (fa) so V

�
f
b
�
= V (fa) for all {a, b} ⊂ [0, 1]. This

implies

u
�
f
�
= V

�
f
1
�
= V

�
f
b
�
= u

�
f
b
�

for all b ∈ [0, 1] contradicting the fact that u is non-constant. Thus, ρ
�
f, f

�
= 0 so

�

[0,1]

f
ρ
(a) da = 0 ≤

�

[0,1]

fρ (a) da ≤ 1 =

�

[0,1]

fρ (a) da

which implies f �ρ f �ρ f . Thus, V
�
f
�
≤ V (f) ≤ V

�
f
�
for all f ∈ H so u

�
f
�
≤ u (f) ≤

u
�
f
�
for all f ∈ Hc and

�
f, f

�
⊂ Hc. Hence, we can let f and f be the worst and best acts

of τ .

Since �ρ is represented by V , we have Vρ (F ) = φ (V (F )) for some monotonic transfor-

mation φ : R → R. Now, for b ∈ [0, 1],

1− b =

�

[0,1]

f
b
ρ (a) da = Vρ

�
f
b
�
= φ

�
V
�
f
b
��

= φ (1− b)

so φ (a) = a for all a ∈ [0, 1]. Now, by Lemmas 1A.12 and 1B.1,

�

[0,1]

Fρ (a) da = Vρ (F ) = V (F )

= 1−

�

[0,1]

a dFτ (a) =

�

[0,1]

Fτ (a) da

for all F ∈ K.
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By Lemma 1B.3, for all b ∈ [0, 1],

�

[0,1]

�
F ∪ f

b
�
ρ
(a) da =

�

[0,1]

�
Fρ ∨ f

b
ρ

�
(a) da =

�

[0,1]

�
Fρ ∨ 1[b,1]

�
(a) da

=

�

[0,b]

Fρ (a) da+ 1− b

Thus, for all b ∈ [0, 1],

G (b) :=

�

[0,b]

Fρ (a) da =

�

[0,b]

Fτ (a) da

Let λ be the measure corresponding to G so λ [0, b] = G (b). Thus, by the Radon-Nikodym

Theorem (see Theorem I.5.11 of Çinlar [18]), we have a.e.

Fρ (a) =
dλ

da
= Fτ (a)

Lemma 1B.2 then establishes that Fρ = Fτ for all F ∈ K.

Lemma (1B.5). Let ρ be monotonic, linear and continuous. Suppose τ is represented by

(µ, u). Then Fρ = Fτ for all F ∈ K iff ρ = τ .

Proof. Note that necessity is trivial so we prove sufficiency. Assume u is normalized without

loss of generality. Suppose Fρ = Fτ for all F ∈ K. Let
�
f, f , g, g

�
⊂ Hc be such that for all

f ∈ H,

ρ
�
f, f

�
= ρ

�
f, f

�
= τ (g, f) = τ

�
f, g

�
= 1

Note that

τ
�
f, g

�
= f τ (0) = fρ (0) = 1

so f and g are τ -tied. Thus, by Lemma 1A.3, we can assume f = g without loss of generality.

Now, suppose u
�
f
�
> u

�
g
�
so we can find some f ∈ Hc such that u

�
f
�
> u (f) and f = fbf

for some b ∈ (0, 1). Now,

1 = τ
�
f, g

�
= fτ (1) = fρ (1) = ρ

�
f, f

�

violating linearity. Thus, u
�
f
�
= u

�
g
�
, so f and g are also τ -tied and we assume f = g
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without loss of generality.

Suppose f ∈ H and f
b are τ -tied for some b ∈ [0, 1]. We show that f

b and f are also

ρ-tied. Note that

1[b,1] (a) = fτ (a) = fρ (a) = ρ (f, fa)

Suppose f
b is not ρ-tied with g. Thus, ρ

�
f
b
, f

�
= 0. Now, for a < b, ρ (f, fa) = 0 implying

ρ (fa
, f) = 1. This violates the continuity of ρ. Thus, f b is ρ-tied with f .

Consider any {f, g} ⊂ H such that f and g are τ -tied As both ρ and τ are linear, we can

assume g ∈ Hc without loss of generality by Lemma 1A.4. Let f b be τ -tied with g, so it is

also τ -tied with f . From above, we have f b is ρ-tied with both f and g, so both f and g are

ρ-tied by Lemma 1A.2.

Now, suppose f and g are ρ-tied and we assume g ∈ Hc again without loss of generality.

Let f b be τ -tied with g. From above, f b is ρ-tied with g are thus also with f . Hence

τ (f, g) = τ
�
f, f

b
�
= fτ (b) = fρ (b) = 1

Now, let h ∈ H be such that g = fah for some a ∈ (0, 1). By linearity, we have h is ρ-tied

with g and thus also with f
b. Hence

τ (h, g) = τ
�
h, f

b
�
= hτ (b) = hρ (b) = 1

By linearity, f and g are τ -tied. Hence, f and g are ρ-tied iff they are τ -tied, so ties agree

on both ρ and τ and H
ρ
F = Hτ

F for all F ∈ K.

Now, consider f ∈ G. Note that by linearity and Lemma 1A.3, we can assume f = f
a

for some a ∈ [0, 1] without loss of generality. First, suppose f
a is tied with nothing in

F := G\fa. Thus,

ρG (f) = 1− ρG (F ) = 1− Fρ (a) = 1− Fτ (a) = τG (f)

Now, if fa is tied with some act in G, then let F
� := F\fa

G. By Lemma 1A.3, ρG (f) =

ρ (f, F �) and τG (f) = τ (f, F �) where f is tied with nothing in F
�. Applying the above on
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F
� yields ρG (f) = τG (f) for all f ∈ G ∈ K. Hence, ρ = τ .

Theorem (1B.6). Let ρ be monotonic, linear and continuous. Then the following are equiv-

alent:

(1) ρ is represented by (µ, u)

(2) �ρ is represented by (µ, u)

Proof. First suppose (1) is true and assume u is normalized without loss of generality. Let

V (F ) :=

�

∆S

sup
f∈F

q · (u ◦ F )µ (dq)

so from Lemmas 1A.12 and 1B.1,

Vρ (F ) = 1−

�

[0,1]

a dFρ (a) = 1− (1− V (F )) = V (F )

so (2) is true. Now, suppose (2) is true and let τ be represented by (µ, u) with u normalized.

By Lemma 1B.4, Fρ = Fτ for all F ∈ K. By Lemma 1B.5, ρ = τ so (1) is true.

Lemma (1B.7). Let � be dominant and ρ = ρ�. Then for all F ∈ K

(1) f � F � f

(2) F ∪ f ∼ f and F ∪ f ∼ F

Proof. Let � be dominant and ρ = ρ�. We prove the lemma in order:

(1) Since ρ = ρ�, let V : K → [0, 1] represent � and ρ (fa, F ) = dV (F∪fa)
da for fa :=

af + (1− a) f . Thus,

V (F ∪ f1)− V (F ∪ f0) =

�

[0,1]

dV (F ∪ fa)

da
da =

�

[0,1]

ρ (fa, F ) da

Now, for F = f ,

V
�
f ∪ f

�
− V

�
f
�
=

�

[0,1]

ρ
�
fa, f

�
da = 1
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Thus, V
�
f
�
= 0 and V

�
f ∪ f

�
= 1. Since f � f , by dominance,

V
�
f
�
= V

�
f ∪ f

�
= 1

so V
�
f
�
= 1 ≥ V (F ) ≥ 0 = V

�
f
�
for all F ∈ K.

(2) From (1), f � f � f for all f ∈ H. Let F = {f1, . . . , fk}. By iteration,

f ∼ f ∪ f1 ∼ f ∪ f1 ∪ f2 ∼ f ∪ F

Now, for any f ∈ F , fs � f for all s ∈ S so F ∼ F ∪ f .

Lemma (1B.8). Let ρ be monotone, linear and ρ
�
f, f

�
= 0. Then a.e.

ρ (fa, F ) = 1− Fρ (1− a) =
dVρ (F ∪ fa)

da

Proof. Let ρ be monotone, linear and ρ
�
f, f

�
= 0 and let f b := f1−b. We first show that a.e.

1 = ρ
�
f
b
, F

�
+ Fρ (b) = ρ

�
f
b
, F

�
+ ρ

�
F, f

b
�

By Lemma 1A.2, this is violated iff ρ
�
f
b
, F

�
> 0 and there is some act in f ∈ F tied with f

b.

Note that if f is tied with f
b, then f cannot be tied with f

a for some a �= b as ρ
�
f, f

�
= 0.

Thus, ρ
�
f
b
, F

�
+ Fρ (b) �= 1 at most a finite number of points as F is finite. The result

follows.

Now, by Lemma 1B.3,

Vρ (F ∪ fb) = Vρ

�
F ∪ f

1−b
�
=

�

[0,1]

�
Fρ (a) ∨

�
f
1−b

�
ρ
(a)

�
da

=

�

[0,1−b]

Fρ (a) da+ b =

�

[b,1]

Fρ (1− a) da+ b
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Since Vρ (F ∪ f0) =
�
[0,1] Fρ (1− a) da, we have

Vρ (F ∪ fb)− Vρ (F ∪ f0) = b−

�

[0,b]

Fρ (1− a) da

=

�

[0,b]

(1− Fρ (1− a)) da

Thus, we have a.e.
dVρ (F ∪ fa)

da
= 1− Fρ (1− a) = ρ (fa, F )

Theorem (1B.9). Let � be dominant. Then the following are equivalent:

(1) � is represented by (µ, u)

(2) ρ� is represented by (µ, u)

Proof. Assume u is normalized without loss of generality and let

V (F ) :=

�

∆S

sup
f∈F

q · (u ◦ f)µ (dq)

First, suppose (1) is true and let ρ = ρ� where W : K → [0, 1] represents � and

ρ (fa, F ) = dW (F∪fa)
da for fa := af + (1− a) f . Since V also represents �, W = φ ◦ V for

some monotonic φ : R → R. By Lemma 1B.7, f � F � f so u
�
f
�
≥ u (f) ≥ u

�
f
�
for all

f ∈ H. Let τ be represented by (µ, u) so f and f are the worst and best acts of τ as well.

By Lemmas 1A.12 and 1B.1,

Vτ (F ) = 1−

�

[0,1]

a dFτ (a) = 1− (1− V (F )) = V (F )

so by Lemma 1B.8, τ (fa, F ) = dV (F∪fa)
da .

Suppose ρ
�
f, f

�
> 0 so f and f are ρ-tied. Thus, by Lemma 1A.2, ρ

�
f, f

�
= ρ

�
f, f

�
= 1

so all acts are tied under ρ. Thus,

W (f1)−W (f1 ∪ f0) =

�

[0,1]

ρ (fa, f1) da = 1
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so f � f ∪ f ∼ f by Lemma 1B.7 a contradiction. Thus, ρ
�
f, f

�
= 0.

Now,

W
�
f ∪ f

�
−W

�
f
�
=

�

[0,1]

ρ
�
fa, f

�
da = 1

so W
�
f
�
= 0 and W

�
f
�
= 1 by dominance. By dominance, for b ≥ 0,

W (fb) = W (f0 ∪ fb)−W (f0 ∪ f0) =

�

[0,b]

ρ (fa, f0) da = b

By the same argument, V (fb) = b so

b = W (fb) = φ (V (fb)) = φ (b)

so W = V . By Lemma 1B.8, we have a.e.

1− Fτ (1− a) = τ (fa, F ) =
dW (F ∪ fa)

da
=

dV (F ∪ fa)

da
= 1− Fρ (1− a)

so Fτ = Fρ a.e.. By Lemma 1B.2, Fτ = Fρ so by Lemma 1B.5, ρ� = ρ = τ and (2) holds.

Now, suppose (2) is true and let ρ = ρ� where W : K → [0, 1] represents � and

ρ (fa, F ) = dW (F∪fa)
da for fa := af + (1− a) f . Suppose ρ is represented by (µ, u) and since

Vρ = V , we have ρ (fa, F ) = dV (F∪fa)
da by Lemma 1B.8. Now, by dominance,

1−W (F ) = W (F ∪ f1)−W (F ∪ f0) =

�

[0,1]

ρ (fc, F ) da

= V (F ∪ f1)− V (F ∪ f0) = 1− V (F )

so W = V proving (1).

Lemma 1B.10 shows that test functions have at most a single point of discontinuity.

Lemma (1B.10). Let ρ be represented by (µ, u). Then for a ∈ [0, 1], the following are

equivalent:

(1) f
a is tied with some f ∈ F where ρF (f) > 0

(2) Fρ is discontinuous at a ∈ [0, 1]
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(3) Vρ (F ∪ f
a) is not differentiable at a

Proof. We first show that (1) and (2) are equivalent. First, fix F ∈ K and let U := u ◦ F .

Let λ
F be the distribution corresponding to Fρ. Thus, from Lemma 1A.12, λF = µ ◦ ψ

−1
F

where

ψF (q) = 1− h (U, q)

and h (U, q) := supf∈F q · (u ◦ f) denotes the support function of U at q ∈ ∆S. Let

F
+ := {f ∈ F | ρF (f) > 0}

Now, for any h ∈ Hc, let a = u (h) and

Qa := ψ
−1
F (1− a) = {q ∈ ∆S|h (U, q) = a}

For f ∈ F
+, let

Qa (f) : = {q ∈ ∆S| q · (u ◦ f) = h (U, q) = a}

Clearly,
�

f∈F+
Qa (f) ⊂ Qa. Note that

µ



Qa\

�

f∈F+

Qa (f)



 ≤ µ
�
q ∈ ∆S| q · (u ◦ f) < h (U, q) = a ∀f ∈ F

+
�

≤ µ
�
q ∈ ∆S| q · (u ◦ g) ≥ h (U, q) for some g ∈ F\F

+
�

≤

�

g∈F\F+

ρF (g) = 0

Hence µ (Qa) = µ

��
f∈F+

Qa (f)
�
. Thus, for 1− a ∈ [0, 1],

λ
F
{1− a} = µ

�
ψ

−1
F (1− a)

�
= µ (Qa) = µ




�

f∈F+

Qa (f)





First, suppose (2) is true, so λ
F {a} > 0. Thus, there must be some f ∈ F

+ such that

0 < µ (Q1−a (f)) = µ {q ∈ ∆S| q · (u ◦ f) = h (U, q) = 1− a}
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However, since u (fa) = u
�
faf

�
= 1− a, we have

µ {q ∈ ∆S| q · (u ◦ f) = u (fa)} > 0

which implies fa is tied with f ∈ F
+ as µ is regular. Thus, (1) holds.

Now suppose (1) is true. Thus,

µ (Q1−a (f)) = µ {q ∈ ∆S| q · (u ◦ f) = h (U, q) = 1− a}

= µ {q ∈ ∆S| q · (u ◦ f) = h (U, q)} = ρF (f) > 0

Hence,

λ
F
{a} = µ




�

f∈F+

Q1−a (f)



 ≥ µ (Q1−a (f)) > 0

so Fρ is discontinuous at a ∈ [0, 1] and (2) holds.

Note that the equivalence of (1) and (2) imply that Fρ cannot be discontinuous at more

than one point. Assume otherwise so f
a is tied with some f ∈ F and f

b is tied with some

g ∈ F for some {a, b} ⊂ [0, 1] where ρF (f) > 0 and ρF (g) > 0. By Lemma 1A.3 and

monotonicity, ρ
�
f
a
, f

b
�
> 0 and ρ

�
f
b
, f

a
�
> 0 so f

a and f
b are tied. Thus, a = b. Now, by

Lemma 1B.3,
�
F ∪ f

b
�
ρ
(a) = Fρ (a)1[0,b) (a) + 1[b,1] (a)

so
�
F ∪ f

b
�
ρ
is continuous at every point other than b ∈ [0, 1]. Hence, by Theorem 7.11 of

Rudin [72]

Vρ

�
F ∪ f

b
�
=

�

[0,b]

Fρ (a) da+ 1− b

is differentiable at every point other than b. Thus, (1), (2) and (3) are all equivalent.
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Appendix 1C

1C.1. Assessing Informativeness

In this section of Appendix 1C, we prove our result on assessing informativeness.

Theorem (1C.1). Let ρ and τ be represented by (µ, u) and (ν, u) respectively. Then the

following are equivalent:

(1) µ is more informative than ν

(2) Fτ ≥SOSD Fρ for all F ∈ K

(3) Fτ ≥m Fρ for all F ∈ K

Proof. Let ρ and τ be represented by (µ, u) and (ν, u) respectively and we assume u is

normalized without loss of generality. We show that (1) implies (2) implies (3) implies (1).

First, suppose µ is more informative than ν. Fix F ∈ K and let U := u ◦ F and h (U, q)

denote the support function of U at q ∈ ∆S. Let ψF (q) := 1 − h (U, q), and since support

functions are convex, ψF is concave in q ∈ ∆S.32 Let φ : R → R be increasing concave, and

note that by Lemma 1A.12,

�

[0,1]

φdFρ =

�

∆S

φ ◦ ψF (q)µ (dq)

Now for α ∈ [0, 1], ψF (qαr) ≥ αψF (q) + (1− α)ψF (r) so

φ (ψF (qαr)) ≥ φ (αψF (q) + (1− α)ψF (r))

≥ αφ (ψF (q)) + (1− α)φ (ψF (r))

32 See Theorem 1.7.5 of Schneider [75] for elementary properties of support functions.
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so φ ◦ ψF is concave. By Jensen’s inequality,

�

∆S

φ ◦ ψF (q)µ (dq) =

�

∆S

�

∆S

φ ◦ ψF (p)K (q, dp) ν (dq)

≤

�

∆S

φ ◦ ψF

��

∆S

p K (q, dp)

�
ν (dq)

≤

�

∆S

φ ◦ ψF (q) ν (dq)

so
�
[0,1] φdFρ ≤

�
[0,1] φdFτ and Fτ ≥SOSD Fρ for all F ∈ K.

Since ≥SOSD implies ≥m, (2) implies (3) is trivially. Now, suppose Fτ ≥m Fρ for all

F ∈ K. Thus, if we let φ (x) = x, then

�

∆S

ψF (q)µ (dq) =

�

[0,1]

a dFρ (a)

≤

�

[0,1]

a dFτ (a) =

�

∆S

ψF (q) ν (dq)

Thus, �

∆S

h (u ◦ F, q)µ (dq) ≥

�

∆S

h (u ◦ F, q) ν (dq)

for all F ∈ K. Hence, by Blackwell [10, 11], µ is more informative than ν .

Lemma (1C.2). Let ρ and τ be represented by (µ, u) and (ν, v) respectively. Then fρ =m fτ

for all f ∈ H iff µ and ν share average beliefs and u = αv + β for α > 0.

Proof. Let ρ and τ be represented by (u, µ) and (v, ν) respectively. We assume u is normal-

ized without loss of generality. Let ψf (q) := 1− q · (u ◦ f) so by Lemma 1A.12,

�

[0,1]

a dfρ (a) =

�

∆S

ψf (q)µ (dq)

First, suppose µ and ν share average beliefs and u = v without loss of generality. Thus,

�

∆S

ψf (q)µ (dq) = ψf

��

∆S

q µ (dq)

�

= ψf

��

∆S

q ν (dq)

�
=

�

∆S

ψf (q) ν (dq)

so fρ =m fτ for all f ∈ H. Now assume fρ =m fτ for all f ∈ H so by Lemma 1A.13,
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u = αv + β for α > 0. We assume u = v without loss of generality so

ψf

��

∆S

q µ (dq)

�
=

�

∆S

ψf (q)µ (dq)

=

�

∆S

ψf (q) ν (dq) = ψf

��

∆S

q ν (dq)

�

If we let rµ =
�
∆S q µ (dq) and rν =

�
∆S q ν (dq), then

1− rµ · (u ◦ f) = 1− rν · (u ◦ f)

0 = (rµ − rν) · (u ◦ f)

for all f ∈ H. Thus, w · (rµ − rν) = 0 for all w ∈ [0, 1]S implying rµ = rν . Thus, µ and ν

share average beliefs.

Lemma 1C.3 below shows that our definition of “more preference for flexibility than” coin-

cides with that of DLST.

Lemma (1C.3). Let �1 and �2 have subjective learning representations. Then �1 has more

preference for flexibility than �2 iff F �2 f implies F �1 f .

Proof. Let �1 and �2 be represented by V1 and V2 respectively. Suppose g �2 f implies

g �1 f . Let f and f be the worst and best acts under V2 and assume V2

�
f
�
= 0 and

V2

�
f
�
= 1 without loss of generality. Now, g ∼2 f implies g ∼1 f . If we let g ∼2 faf for

some a ∈ [0, 1], then V2 (g) = a and

V1 (g) = aV1

�
f
�
+ (1− a)V1

�
f
�
=

�
V1

�
f
�
− V1

�
f
��

V2 (g) + V1

�
f
�

for all g ∈ H. Thus, �1 and �2 coincide on singletons. Note that the case for g �1 f implies

g �2 f is symmetric.

First, suppose �1 has more preference for flexibility than �2. Let F �2 f and F ∼2 g

for some g ∈ H. Thus, F �1 g and since g �2 f , g �1 f . Hence, F �1 f . For the converse,

suppose F �2 f implies F �1 f . Let F �2 f and note that if F �2 f , then the result follows

so assume F ∼2 f . Let g ∼1 F for some g ∈ H so g �2 F . Thus, g �2 f so g �1 f which

84



implies F �1 f so �1 has more preference for flexibility than �2.

1C.2. Partitional Information Representations

In this section of Appendix 1C, we consider partitional information representations. Given

an algebra F on S, let QF (S) :=
�

s∈S QF (s). For each q ∈ QF (S), let

E
F

q := {s ∈ S|QF (s) = q}

and let PF :=
�
E

F
q

�
q∈QF (S)

be a partition on S. Also define

CF := conv (QF (S))

Lemma (1C.4). σ (PF) = F .

Proof. Let q ∈ QF (S) and note that since QF (·, {s�}) is F -measurable for all s� ∈ S,

E
F

q =
�

s�∈S

{s ∈ S|QF (s, {s�}) = qs�} ∈ F

Thus, EF
q ∈ F for all q ∈ QF (S) so PF ⊂ F . Now, let A ∈ F and note that

1A (s) = EF [1A] = QF (s, A)

so QF (s, A) = 1 for s ∈ A and QF (s, A) = 0 for s �∈ A. Since PF is a partition of S, let

PA ⊂ PF be such that

A ⊂ E :=
�

E∈PA

E

Suppose ∃s ∈ E\A for some E ∈ PA. Thus, we can find an s
� ∈ A ∩ E so QF (s) = QF (s�).

However, QF (s�, A) = 1 > 0 = QF (s, A) a contradiction. Thus, A = E ∈ σ (PF) so

PF ⊂ F ⊂ σ (PF). This proves that σ (PF) = F (see Exercise I.1.10 of Çinlar [18]).

Lemma (1C.5). EF
q = {s ∈ S| qs > 0} for q ∈ QF (S).
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Proof. Let q = QF (s) for some s ∈ S. Since E
F
q ∈ F , QF

�
s
�
, E

F
q

�
= 1EF

q
(s�) for all s� ∈ S.

Note that since s ∈ E
F
q , q

�
E

F
q

�
= 1 for all q ∈ QF (S). Thus, qs > 0 implies s ∈ E

F
q .

Suppose s ∈ E
F
q but qs = 0. Now,

rs = E
�
EF

�
1{s}

��
= E [QF (s�, {s})]

=
�

q�∈QF (S)

r
�
E

F

q�
�
q
�

s = r
�
E

F

q

�
qs = 0

contradicting the fact that r has full support. Thus, EF
q = {s ∈ S| qs > 0}.

Lemma (1C.6). ext (CF) ⊂ QF (S).

Proof. Suppose q ∈ Q̄F := ext (CF) ⊂ CF but q �∈ QF (S). If q ∈ conv (QF (S)), then

q =
�

i αipi for αi ∈ (0, 1),
�

i αi = 1 and pi ∈ QF (S) ⊂ CF . However, this contradicts

the fact that q ∈ ext (CF), so q �∈ conv (QF (S)) = CF another contradiction. Thus, Q̄F ⊂

QF (S).

Proposition (1C.7). Let ρ and τ be represented by (F , u) and (G, u) respectively. Then the

following are equivalent:

(1) Dτ ⊂ Dρ

(2) CF ⊂ CG

(3) F ⊂ G

Proof. Let ρ and τ be represented by (F , u) and (G, u) respectively. Assume u is normalized

without loss of generality. We show that (1) implies (2) implies (3) implies (1).

First, suppose (1) is true but CF �⊂ CG and let p ∈ CF\CG. Note that CG is compact (see

Theorem 1.1.10 of Schneider [75]). Thus, by a separating hyperplane argument (Theorem

1.3.4 of Schneider [75]), there is a a ∈ R, ε > 0 and v ∈ RS such that for all q ∈ CG,

q · v ≥ a+ ε > a− ε ≥ p · v

Note that since CG ⊂ ∆S and p ∈ ∆S, we can assume v ∈ [0, 1]S without loss of generality.

Let f ∈ H be such that u ◦ f = v. Note that (a− ε, a+ ε) ⊂ [0, 1], and since both QF (S)
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and QG (S) are finite, we can find

b ∈ (a− ε, a+ ε) \
�

q∈QF (S)∪QG(S)

q · v

Thus, b �= q · v for all q ∈ QF (S) ∪QG (S). Let h ∈ Hc such that u (h) = b so

u (h) �= q · (u ◦ f)

for all q ∈ QF (S) ∪QG (S). Thus, {f, h} is generic under both F and G. Since q · (u ◦ f) >

b = u (h) for all q ∈ CG, we have

τ (f, h) = µG {q ∈ ∆S| q · (u ◦ f) ≥ u (h)} = 1

so {f, h} ∈ Dτ . However, u (h) > p · (u ◦ f) for some p ∈ CF . If q · (u ◦ f) ≥ u (h) for all

q ∈ QF (S), then q · (u ◦ f) ≥ u (h) for all q ∈ CF a contradiction. Thus, ∃q ∈ QF (S) such

that u (h) > q · (u ◦ f). On the other hand, if u (h) > q · (u ◦ f) for all q ∈ QF (S), then

QG (s) · (u ◦ f) > b > QF (s) · (u ◦ f)

for all s ∈ S. Thus, EG [u ◦ f ]− EF [u ◦ f ] > ε
� for some ε

�
> 0. Taking expectations yield

E [EG [u ◦ f ]− EF [u ◦ f ]] = E [u ◦ f ]− E [u ◦ f ] = 0

a contradiction. Thus, ∃ {s, s�} ⊂ S such that u (h) > QF (s) · (u ◦ f) and QF (s�) · (u ◦ f) ≥

u (h). Since we assume r has full support,

ρ (h, f) = µF {q ∈ ∆S| u (h) ≥ q · (u ◦ f)} ≥ rs > 0

ρ (f, h) = µF {q ∈ ∆S| q · (u ◦ f) ≥ u (h)} ≥ rs� > 0

so {f, h} �∈ Dρ contradicting (1). Thus, (1) implies (2).

Now, assume (2) is true. Let q ∈ QF (S) so q ∈ CF ⊂ CG. Since ext (CG) ⊂ QG (S)

from Lemma 1C.6, Minkowski’s Theorem (Corollary 1.4.5 of Schneider [75]) yields that q =
�

i αip
i for αi > 0,

�
i αi = 1 and p

i = QG (si). Note that by Lemma 1C.5,
�

s∈EF
q
qs = 1.
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If pis > 0 for some s �∈ E
F
q , then qs > 0 a contradiction. Thus,

�
s∈EF

q
p
i
s = 1 for all pi. Now,

by Lemma 1C.5 again, for each p
i,

E
G

pi =
�
s ∈ S| p

i
s > 0

�
⊂ E

F

q

so
�

i E
G

pi ⊂ E
F
q . Moreover, if s ∈ E

F
q then qs > 0 so ∃pi such that p

i
s > 0 which implies

s ∈
�

i E
G

pi . Thus, E
F
q =

�
i E

G

pi ∈ G so PF ⊂ G. Hence F ⊂ G so (2) implies (3).

Finally, assume (3) is true so F ⊂ G and let F ∈ Dτ . Since F is generic under τ , for all

{f, g} ⊂ F ,

r {s ∈ S|EG [u ◦ f ] = EG [u ◦ g]} ∈ {0, 1}

Thus, EG [u ◦ f − u ◦ g] = 0 or EG [u ◦ f − u ◦ g] �= 0. Since F ⊂ G, by repeated conditioning

(see Theorem IV.1.10 of Çinlar [18]),

EF [EG [u ◦ f − u ◦ g]] = EF [u ◦ f − u ◦ g]

so EF [u ◦ f − u ◦ g] = 0 or EF [u ◦ f − u ◦ g] �= 0 . Thus, F is generic under ρ. Since F is

deterministic under τ , we can find a f ∈ F such that

1 = τF (f) = r {s ∈ S|EG [u ◦ f ] ≥ EG [u ◦ g] ∀g ∈ F}

By repeated conditioning again, EF [u ◦ f − u ◦ g] ≥ 0 for all g ∈ F so

1 = ρF (f) = r {s ∈ S|EF [u ◦ f ] ≥ EF [u ◦ g] ∀g ∈ F}

so F ∈ Dρ. Hence Dτ ⊂ Dρ so (3) implies (1).

Appendix 1D

In Appendix 1D, we prove our results for calibrating beliefs.

Lemma (1D.1). Let ρs be represented by (µs, u) and ρs

�
f
s
, f

�
= 0.
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(1) qs > 0 µs-a.s..

(2) For F ∈ Ks,

�

[0,ps]

a dF
s
ρ (a) =

�

∆S

rs

qs

�
1− sup

f∈F
q · (u ◦ f)

�
µs (dq)

Proof. Assume u is normalized without loss of generality. We prove the lemma in order:

(1) Note that

0 = ρs

�
f
s
, f

�
= µs

�
q ∈ ∆S| q ·

�
u ◦ f

s
�
≥ 1

�

= µs {q ∈ ∆S| 1− qs ≥ 1} = µs {q ∈ ∆S| 0 ≥ qs}

Thus, qs > 0 µs-a.s..

(2) Define ψ
s
F (q) := rs

qs

�
1− supf∈F q · (u ◦ f)

�
and let λ

F
s := µs ◦ (ψs

F )
−1 be the image

measure on R. By a change of variables,

�

R
xλ

F
s (dx) =

�

∆S

ψ
s
F (q)µs (dq)

Note that by (1), the right integral is well-defined. We now show that the cumulative

distribution function of λF
s is exactly F

s
ρ . For a ∈ [0, 1], let fa

s := f
s
af and first assume

f
a
s is tied with nothing in F . Thus,

λ
F
s [0, rsa] = µs ◦ (ψ

s
F )

−1 [0, rsa] = µs {q ∈ ∆S| rsa ≥ ψ
s
F (q)}

= µs

�
q ∈ ∆S| sup

f∈F
q · (u ◦ f) ≥ 1− aqs

�

= µs

�
q ∈ ∆S| sup

f∈F
q · (u ◦ f) ≥ q · (u ◦ f

a
s )

�
= ρs (F, f

a
s ) = F

s
ρ (rsa)

Now, if fa
s is tied with some g ∈ F , then

F
s
ρ (rsa) = ρs (F, f

s
a) = 1 = µs

�
q ∈ ∆S| sup

f∈F
q · (u ◦ f) ≥ q · (u ◦ f

s
a)

�
= λ

F
s [0, rsa]
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Thus, λF
s [0, rsa] = F

s
ρ (rsa) for all a ∈ [0, 1]. Since F ∈ Ks,

1 = F
s
ρ (rs) = λ

F
s [0, rs]

so F
s
ρ is the cumulative distribution function of λF

s .

Lemma (1D.2). Let ρ be represented by (µ, u).

(1) ρ̄ is represented by (µ̄, u) where µ̄ :=
�

s rsµs.

(2) For s ∈ S, qs > 0 µ̄-a.s. iff qs > 0 µs�-a.s. for all s� ∈ S.

Proof. Let ρ be represented by (µ, u). We prove the lemma in order:

(1) Recall that the measurable sets of ρs,F and ρ̄F coincide for each F ∈ K. Note that ρs

is represented by (µs, us) for all s ∈ S. Since the ties coincide, we can assume us = u

without loss of generality. For f ∈ F ∈ K, let

Qf,F := {q ∈ ∆S| q · (u ◦ f) ≥ q · (u ◦ f) ∀g ∈ F}

Thus

ρ̄F (f) = ρ̄F (fF ) =
�

s

rsρs,F (fF ) =
�

s

rsµs (Qf,F ) = µ̄ (Qf,F )

so ρ̄ is represented by (µ̄, u).

(2) Let s ∈ S and

Q : =
�
q ∈ ∆S| q ·

�
u ◦ f

s
�
≥ u

�
f
��

= {q ∈ ∆S| 1− qs ≥ 1}

= {q ∈ ∆S| qs ≤ 0}

For any s
� ∈ S, we have ρs�

�
f, f

s
�
= 1 = ρ̄

�
f, f

s
�
where the second inequality follows

from (1). Thus, f s is either tied with f or µs� (Q) = µ (Q) = 0. In the case of the

former, µs� (Q) = µ (Q) = 1. The result thus follows.
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Theorem (1D.3). Let ρ be represented by (µ, u). If F s
ρ =m Fρ̄, then µ is well-calibrated.

Proof. Let S+ :=
�
s ∈ S| ρs

�
f
s
, f

�
= 0

�
⊂ S. Let s ∈ S+ so qs > 0 µs-a.s. by Lemma 1D.1.

Define the measure νs on ∆S such that for all Q ∈ B (∆S),

νs (Q) :=

�

Q

rs

qs
µs (dq)

We show that µ = νs. Since F
s
ρ =m Fρ̄ and by Lemmas 1D.1 and 1D.2, we have

�

[0,1]

adFρ̄ (a) =

�

[0,ps]

adF
s
ρ (a)

�

∆S

�
1− sup

f∈F
q · (u ◦ f)

�
µ̄ (dq) =

�

∆S

rs

qs

�
1− sup

f∈F
q · (u ◦ f)

�
µs (dq)

=

�

∆S

�
1− sup

f∈F
q · (u ◦ f)

�
νs (dq)

for all F ∈ Ks.

Let G ∈ K and Fa :=
�
Gaf

�
∪f

s for a ∈ (0, 1). Since f s
∈ F , ρs

�
Fa, f

s
�
= 1 so Fa ∈ Ks.

Let

Qa :=

�
q ∈ ∆S

����� sup
f∈Gaf

q · (u ◦ f) ≥ q ·
�
u ◦ f

s
�
�

and note that

sup
f∈Gaf

q · (u ◦ f) = h
�
a (u ◦G) + (1− a) u

�
f
�
, q
�

= 1− a (1− h (u ◦G, q))

where h (U, q) denotes the support function of the set U at q. Thus,

�

∆S

�
1− sup

f∈Fa

q · (u ◦ f)

�
µ̄ (dq) =

�

Qa

(a (1− h (u ◦G, q))) µ̄ (dq) +

�

Qc
a

qsµ̄ (dq)

so for all a ∈ (0, 1),

�

Qa

(1− h (u ◦G, q)) µ̄ (dq) +

�

Qc
a

qs

a
µ̄ (dq) =

�

Qa

(1− h (u ◦G, q)) νs (dq) +

�

Qc
a

qs

a
νs (dq)
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Note that qs > 0 µ̄-a.s. by Lemma 1D.2, so by dominated convergence

lim
a→0

�

Qa

(1− h (u ◦G, q)) µ̄ (dq) = lim
a→0

�

∆S

(1− h (u ◦G, q))1Qa∩{qs>0} (q) µ̄ (dq)

=

�

∆S

(1− h (u ◦G, q)) lim
a→0

1{qs≥a(1−h(u◦G,q))}∩{qs>0} (q) µ̄ (dq)

=

�

∆S

(1− h (u ◦G, q))1{qs>0} (q) µ̄ (dq)

=

�

∆S

(1− h (u ◦G, q)) µ̄ (dq)

For q ∈ Q
c
a,

1− qs = q · (u ◦ f
s) > 1− a (1− h (u ◦G, q))

qs

a
< 1− h (u ◦G, q) ≤ 1

so
�
Qc

a

qs
a µ̄ (dq) ≤

�
∆S 1Qc

a
(q) µ̄ (dq). By dominated convergence again,

lim
a→0

�

Qc
a

qs

a
µ̄ (dq) ≤ lim

a→0

�

∆S

1Qc
a
(q) µ̄ (dq)

≤

�

∆S

lim
a→0

1{qs<a(1−h(u◦G,q))} (q) µ̄ (dq)

≤

�

∆S

1{qs=0} (q) µ̄ (dq) = 0

By a symmetric argument for νs, we have

�

∆S

(1− h (u ◦G, q)) µ̄ (dq) =

�

∆S

(1− h (u ◦G, q)) νs (dq)

for all G ∈ K. Letting G = f yields 1 = µ̄ (∆S) = νs (∆S) so νs is a probability measure on

∆S and �

∆S

sup
f∈G

q · (u ◦ f) µ̄ (dq) =

�

∆S

sup
f∈G

q · (u ◦ f) νs (dq)

Thus, µ̄ = νs for all s ∈ S by the uniqueness properties of the subjective learning represen-

tation (Theorem 1 of DLST). As a result,

�

Q

qs

rs
µ̄ (dq) =

�

Q

qs

rs
νs (dq) = µs (Q)
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for all Q ∈ B (∆S) and s ∈ S+.

Finally, for s �∈ S+, ρs
�
f
s
, f

�
= 1 so qs = 0 µs-a.s.. By Lemma 1D.2, qs = 0 µ-a.s.. Let

Q0 :=




q ∈ ∆S

������

�

s �∈S+

qs = 0






and note that µ (Q0) = 1. Now,

�

s∈S+

rs =
�

s∈S+

�

∆S

qsµ̄ (dq) =

�

Q0

�

s∈S+

qsµ̄ (dq)

=

�

Q0

�
�

s∈S

qs

�
µ̄ (dq) = µ̄ (Q0) = 1

which implies
�

s �∈S+
rs = 0 a contradiction. Thus, S+ = S and µ is well-calibrated.

Theorem (1D.4). Let ρ be represented by (µ, u). If µ is well-calibrated, then F
s
ρ =m Fρ̄.

Proof. Note that the measurable sets and ties of ρs and ρ̄ coincide by definition. As above,

let S+ :=
�
s ∈ S| ρs

�
f
s
, f

�
= 0

�
⊂ S. Thus, s �∈ S+ implies f s and f are tied and qs = 0

a.s. under all measures. By the same argument as the sufficiency proof above, letting

Q0 :=
�
q ∈ ∆S|

�
s �∈S+

qs = 0
�
yields

�

s∈S+

rs =
�

s∈S+

�

∆S

qsµ̄ (dq) =

�

Q0

�
�

s∈S

qs

�
µ̄ (dq) = 1

a contradiction. Thus, S+ = S.

Let F ∈ Ks and s ∈ S. Since ρs

�
f
s
, f

�
= 0, by Lemmas 1A.12 and 1D.1 and the fact

that µ is well-calibrated,

�

[0,ps]

adF
s
ρ (a) =

�

∆S

rs

qs

�
1− sup

f∈F
q · (u ◦ f)

�
µs (dq)

=

�

∆S

rs

qs

�
1− sup

f∈F
q · (u ◦ f)

�
qs

rs
µ̄ (dq)

=

�

∆S

�
1− sup

f∈F
q · (u ◦ f)

�
µ̄ (dq) =

�

[0,1]

adFρ̄ (a)

so F
s
ρ =m Fρ̄.
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Corollary (1D.5). Let ρ and τ be represented by (µ, u) and (ν, u) respectively where µ and

ν are well-calibrated. Then the following are equivalent:

(1) Fτ̄ ≥SOSD Fρ̄ for all F ∈ K

(2) µ̄ is more informative than ν̄

(3) W (τ, F ) ⊂ W (ρ, F ) for all F ∈ K

Proof. Note that the equivalence of (1) and (2) follows directly from Theorem 1C.1. We now

show the equivalence of (2) and (3). For F ∈ K, let c∗ : ∆S → F such that for q ∈ ∆S,

q · (u ◦ c
∗) (q) ≥ q · v

for all v ∈ u ◦ F . Note that c∗ ∈ CF . Note that since µ is well-calibrated, for c ∈ CF ,

�

s

rs

�

∆S

u ◦ cs (q)µs (dq) =

�

∆S

�

s

rsu (cs (q))
qs

rs
µ̄ (dq)

=

�

∆S

q · (u ◦ c) (q) µ̄ (dq)

Now

�

s

rs

�

∆S

u ◦ c
∗

s (q)µs (dq) =

�

∆S

q · (u ◦ c
∗) (q) µ̄ (dq)

≥

�

∆S

q · (u ◦ c) (q) µ̄ (dq) =
�

s

rs

�

∆S

u ◦ cs (q)µs (dq)

for all c ∈ CF . Since W (ρ, F ) is closed and convex,

sup
w∈W (ρ,F )

r · w = sup
c∈CF

�

s

rs

�

∆S

u ◦ cs (q)µs (dq)

=

�

∆S

q · (u ◦ c
∗) (q) µ̄ (dq) =

�

∆S

sup
f∈F

q · (u ◦ f) µ̄ (dq)

First, suppose (3) is true so W (τ, F ) ⊂ W (ρ, F ) for all F ∈ K. Thus,

�

∆S

sup
f∈F

q · (u ◦ f) µ̄ (dq) = sup
w∈W (ρ,F )

r · w ≥ sup
w∈W (τ,F )

r · w =

�

∆S

sup
f∈F

q · (u ◦ f) ν̄ (dq)

which implies (2) via Theorem 1C.1. Now, suppose (2) is true. Let T : [0, 1]S → RS be
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an affine transformation and for F ∈ K, let G ∈ K and {a, b} ⊂ (0, 1) such that u ◦ G =

aT (u ◦ F ) + (1− a) {b1}. Now,

W (ρ,G) =
�

c∈CG

��

∆S

u ◦ cs (q)µs (dq)

�

s∈S

=
�

c∈CF

��

∆S

[aTs (u ◦ c (q)) + (1− a) b]µs (dq)

�

s∈S

= aT (W (ρ, F )) + (1− a) {b1}

Thus,

sup
w�∈W (ρ,G)

r · w
� = sup

w∈W (ρ,F )
r · (aT (w) + (1− a) b1)

= a

�
sup

w∈W (ρ,F )
T (r) · w

�
+ (1− a) b

By Theorem 1C.1 again,

a

�
sup

w∈W (ρ,F )
T (r) · w

�
+ (1− a) b = sup

w�∈W (ρ,G)
r · w

�

≥ sup
w�∈W (τ,G)

r · w
� = a

�
sup

w∈W (τ,F )
T (r) · w

�
+ (1− a) b

so supw∈W (ρ,F ) T (r) · w ≥ supw∈W (τ,F ) T (r) · w for all such T . Hence W (τ, F ) ⊂ W (ρ, F )

for all F ∈ K so (2) and (3) are equivalent.

Appendix 1E

In Appendix 1E, we relate our results to those of Ahn and Sarver [1].

Lemma (1E.1). For ρ monotonic, ρF = ρG implies Fρ = Gρ.

Proof. Let ρ be monotonic and define F
+ := {f ∈ H| ρF (f) > 0}. We first show that
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F
+
ρ = Fρ. Let F 0 := F\F+ and for a ∈ [0, 1], monotonicity yields

0 = ρF

�
F

0
�
≥ ρF∪fa

�
F

0
�

Note that by Lemma 1A.2, {F 0
, F

+} ∈ HF . First, suppose f
a is tied with nothing in F .

Hence,

ρF+∪fa

�
F

+
�
+ ρF+∪fa (fa) = 1 = ρF∪fa

�
F

+
�
+ ρF∪fa (fa)

By monotonicity, ρF+∪fa (F+) ≥ ρF∪fa (F+) and ρF+∪fa (fa) ≥ ρF∪fa (fa) so

F
+
ρ (a) = ρF+∪fa

�
F

+
�
= ρF∪fa

�
F

+
�
= ρF∪fa (F ) = Fρ (a)

Now, if fa is tied with some act in F , then by Lemma 1A.3 and monotonicity,

1 = ρF

�
F

+
�
= ρF∪fa

�
F

+
�
≤ ρF+∪fa

�
F

+
�

Thus, F+
ρ (a) = 1 = Fρ (a) so F

+
ρ = Fρ.

Now, suppose ρF = ρG for some {F,G} ⊂ K. Since ρF (f) > 0 iff ρG (f) > 0, F+ = G
+.

We thus have

Fρ = F
+
ρ = G

+
ρ = Gρ

Proposition (1E.2). Let � and ρ be represented by (µ, u) and (ν, v) respectively. Then the

following are equivalent:

(1) (�, ρ) satisfies strong consequentialism

(2) F � G iff F �ρ G

(3) (µ, u) = (ν, αv + β) for α > 0

Proof. Note that the equivalence of (2) and (3) follows from Theorem 1B.6 and the unique-

ness properties of the subjective learning representation (see Theorem 1 of DLST). That (2)

implies (1) is immediate, so we only need to prove that (1) implies (2).
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Assume (1) is true. Since �ρ is represented by (ν, v), we have F ∼ρ G implies F ∼ G.

Without loss of generality, we assume both u and v are normalized. First, consider only

constant acts and let f and f be the worst and best acts under v. Now, for any f ∈ Hc, we

can find a ∈ [0, 1] such that faf ∼ρ f which implies faf ∼ f . Thus

v (f) = v
�
faf

�
= 1− a

and

u (f) = au
�
f
�
+ (1− a) u

�
f
�
= (1− v (f)) u

�
f
�
+ v (f) u

�
f
�

=
�
u
�
f
�
− u

�
f
��

v (f) + u
�
f
�

for all f ∈ Hc. Thus, u = αv+ β where α := u
�
f
�
− u

�
f
�
and β := u

�
f
�
. Since f ∪ f ∼ρ f

implies f ∪ f ∼ f , we have u
�
f
�
≥ u

�
f
�
so α ≥ 0. If α = 0, then u = β contradicting the

fact that u is non-constant. Thus, α > 0.

We can now assume without loss of generality that �ρ is represented by (ν, u). Now,

given any F ∈ K, we can find f ∈ Hc such that F ∼ρ f which implies F ∼ g. Thus,

�

∆S

sup
f∈F

q · (u ◦ f) ν (dq) = u (g) =

�

∆S

sup
f∈F

q · (u ◦ f)µ (dq)

so �ρ and � represent the same preference which implies (2). Thus, (1), (2) and (3) are all

equivalent.
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2 Random Ambiguity

2.1 Introduction

Ambiguity aversion has been useful in various contexts to explain phenomena that cannot be

easily addressed using risk aversion alone. Consider first the case where rare shocks trigger

massive uncertainty (i.e. ambiguity) about the environment, resulting in extreme behavior

that eludes simple explanations involving only risk. In Caballero and Krishnamurthy [14]

for example, during surprise defaults or bank runs, investors are faced with an enlarged

set of potential priors, compelling them to scramble toward safer assets in a phenomenon

termed “flight to quality”. A second case where ambiguity aversion has been informative is in

explaining the observed non-participation in financial markets, a behavior that is inconsistent

with standard models of optimal portfolio choice. In these models, standard investors remain

in the market while investors with high levels of uncertainty aversion choose not to participate

(see Easley and O’Hara [25] and Dow and Werlang [24]).

In both cases discussed above, the crucial modelling device driving the narrative is vary-

ing ambiguity aversion. In the first case, ambiguity attitudes vary across payoff-relevant

states, while in the second, they vary across different individuals in the market. Both exam-

ples suggest a probabilistic model of ambiguity aversion where the magnitude of ambiguity

aversion depends on the relevant state or individual. In particular, if data on individual or

state-specific behavior are scarce or difficult to obtain, then a model of random choice be-

comes especially useful. Motivated by the above, this chapter characterizes a random utility

model where the only source of probabilistic or random choice is varying attitudes toward

ambiguity aversion. Owing to the central role played by ambiguity aversion, peripheral fac-

tors which do not have much to contribute to the story, such as taste or risk preferences, are

held constant.

Consider a decision-maker who exhibits traditional ambiguity aversion. One of the most

popular and widely applied models of ambiguity is the multiple priors model of Gilboa

98



and Schmeidler [40]. In this model, a decision-maker ranks each Anscombe-Aumann act f

according to its maxim expected utility

UK (f) := min
p∈K

p · (u ◦ f)

where u is a von Neumann-Morgenstern utility index andK is some non-empty closed convex

set of priors on the objective state space.33 Thus, a decision-maker with maxmin preferences

evaluates each act assuming the worst possible prior in the set of priors K. In applications,

this is consistent with the widespread use of worst-case scenario analysis by many financial

firms.

Within the context of maxmin preferences, a natural and common way of modelling

different degrees of uncertainty aversion is by enlarging or shrinking the set of priors K. We

consider the simplest parametrization of such priors. For t ∈ [0, 1], let

Kt := tK + (1− t)K

be a mixture of two sets of priors K ⊂ K.34 Note that higher values of t correspond to

larger priors and result in behavior more skewed by ambiguity aversion. Since K ⊂ Kt for

all t ∈ [0, 1], K can be interpreted as a common set of priors. This agrees with our original

focus on modelling varying ambiguity attitudes and not the more general issue of updating

beliefs.

Given a finite set of acts F and a specific act f ∈ F , let ρF (f) be the probability that f

is chosen in F . A random ambiguity model specifies that

ρF (f) = µ {Kt | UKt (f) ≥ UKt (g) ∀g ∈ F}

where µ is some distribution on the parametrized priors Kt. In other words, the probability

that f is chosen in F is exactly the measure of the set of priors that rank f higher than

33 We let u ◦ f ∈ RS denote the utility vector for the act f .
34 The Minkowski mixture tK+(1− t)K is defined as the set of priors of the form tp+(1− t) q for p ∈ K

and q ∈ K.
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everything else in F . Random ambiguity thus belongs to the class of random utility models

where choice frequencies are determined by a distribution over utility functions. Here, our

random utilities are maxmin expected utilities and we can interpret µ as the distribution of

ambiguity aversion. Note that the standard deterministic maxmin model obtains if K = K

is a singleton.

The individual interpretation is that the decision-maker is hit by stochastic shocks that

affect her ambiguity aversion. Each t ∈ [0, 1] thus represents a particular state of the envi-

ronment. Sometimes the set of subjective priors may be small while other times, Murphy’s

law seems to prevail. When faced with a set containing only objective risk however, the

decision-maker’s choice behavior remains deterministic. Thus, random choice arises only as

a result of varying attitudes toward ambiguity aversion. Note that the individual in this in-

terpretation is either naively unaware of or powerless against (as in the case of Caballero and

Krishnamurthy [14]) these shocks to ambiguity aversion. This approach contrasts with that

of Epstein and Kopylov [28], where the decision-maker exhibits a preference for commitment

in anticipation of these “cold feet” contingencies.

In the group interpretation, random choice is reflective of heterogeneity in a popula-

tion. Here, each t ∈ [0, 1] represents an individual, and µ is interpreted as the distribution

of ambiguity aversion in the population. In the case where individual choice behavior is

unobservable, characterizing aggregate random choice behavior from a group is useful for

identifying µ. There are several papers that highlight the significance of heterogeneity in

this context. Easley and O’Hara [25] study the role of regulation in a heterogeneous popula-

tion with different levels of uncertainty aversion. Bose, Ozdenoren and Pape [13] investigate

varying ambiguity attitudes in an auction setting. Epstein and Schneider [29] review various

limited participation problems that are addressed using heterogeneous ambiguity attitudes.

The parametrization of the sets of priors above also includes ε-contamination models as

a special case (if K0 is a singleton). These have been widely used in robust statistics and

were even suggested by Ellsberg [27] as a simple functional form to address his namesake
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paradox. This chapter thus provides an axiomatic foundation for ε-contamination models

using random choice. Deterministic characterizations include Kopylov [55] and Gajdos et.

al. [37]. The former uses observable deferred choice while the latter uses objective sets of

priors.

In the benchmark random expected utility model of Gul and Pesendorfer [47], the prob-

ability of choosing a lottery p from the set D is given by

ρD (p) = µ {u ∈ U |u · p ≥ u · q ∀q ∈ D}

where µ is some measure on U , the space of all normalized von Neumann-Morgenstern

utility indices. Note that in addition to being on the domain of Anscombe-Aumann acts,

random ambiguity crucially differs from random expected utility in that the random utilities

are non-linear. In general, any random linear utility on a mixture space must satisfy two

axioms: linearity and extremeness. The former is the stochastic equivalent of the standard

independence axiom and states that choice frequencies remain unchanged when mixed with

singletons. The second axiom is unique to random linear utility and asserts that extreme

options are chosen with certainty.

That linearity and extremeness are not particularly desirable descriptive properties is

supported by the experimental literature. For example, Kahneman and Tversky [51] demon-

strate classic violations of linearity in the lottery space while violations of extremeness have

been noted very early by Becker, DeGroot and Marschak [7]. Since the maxmin expected

utilities in random ambiguity are non-linear, the resulting random choice need not be lin-

ear or extreme. In the absence of any ambiguity aversion, a random utility model over

Anscombe-Aumann acts would necessarily satisfy extremeness. In random ambiguity, mix-

tures are chosen with the probability at which ambiguity aversion is powerful enough so that

they become more attractive than other more extreme acts. Thus, by introducing uncer-

tainty aversion into a random utility model, we obtain a relaxation of both linearity and
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extremeness.

2.2 Random Choice Rules

We now describe the main primitive (i.e. choice data) of our model. The setup is identical

to that of Chapter 1, but for completeness, we reproduce it here as well. Formally, let S

and X be finite sets. We interpret S as an objective state space and X as a set of possible

prizes. Let ∆S and ∆X be their respective probability simplexes. We interpret ∆S as the

set of beliefs about the state space and ∆X as the set of lotteries over prizes. Following the

setup of Anscombe and Aumann [3], an act is a mapping f : S → ∆X that specifies a payoff

in terms of a lottery on X for each realization of s ∈ S. Let H be the set of all acts. A

decision-problem is a finite non-empty subset of H. Let D be the set of all decision-problems,

which we endow with the Hausdorff metric.35 The object of our analysis is a random choice

rule (RCR) that specifies the probabilities that acts are chosen in every decision-problem.

For notional convenience, we also let f denote the singleton set {f} whenever there is no

risk of confusion.

In the classic model of rational choice, if a decision-maker prefers one option over another,

then this preference is revealed via her choice of the preferred option. If the two options are

indifferent (i.e. they have the same utility), then the model is silent about which option the

decision-maker will choose. We introduce an analogous innovation to address indifferences

under random choice and random utility. Consider the decision-problem F = f ∪ g. If

the two acts f and g are “indifferent” (i.e. they have the same random utility), then we

declare that the random choice rule is unable to specify choice probabilities for each act in

the decision-problem. For instance, it could be that the decision-maker ultimately chooses

35 For two sets F and G, the Hausdorff metric is given by

dh (F,G) := max

�
sup
f∈F

inf
g∈G

|f − g| , sup
g∈F

inf
f∈G

|f − g|

�
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f over g half the time, but ex-ante, it impossible to say what that probability will be. Any

probability would be perfectly consistent with the model. Thus, similar to how the classic

model is silent about which act the decision-maker will choose, the random choice model

is silent about what the individual choice probabilities are. In both cases, we can interpret

indifferences as choice behavior that is beyond the scope of the model.36

Let H be some algebra on H. Formally, we model indifference as non-measurability with

respect to H. For example, if H is the Borel algebra, then this corresponds to the benchmark

case where every act is measurable. In general though, H can be coarser than the Borel

algebra. Note that given a decision-problem, the decision-problem itself must measurable.

This is because we know the decision-maker will choose something in the decision-problem.

For F ∈ D, let HF be the algebra generated by H∪{F}.37 Let Π be the set of all measures

on any measurable space of H. We now formally define a random choice rule.

Definition. A random choice rule (RCR) is a (ρ,H) where ρ : D → Π and ρ (F ) is a

measure on (H,HF ) with support F ∈ K.

We use the notation ρF to denote the measure ρ (F ). A RCR thus assigns a probability

measure on (H,HF ) for each decision-problem F ∈ D such that ρF (F ) = 1. Note that the

definition of HF ensures that ρF (F ) is well-defined. We interpret ρF (G) as the probability

that the decision-maker will choose some act in G ∈ HF given the decision-problem F ∈ D.

For ease of exposition, we denote RCRs by ρ with the implicit understanding that it is

associated with some H. We also use the notation ρ (f, F ) := ρF∪f (f) for any f ∈ H and

F ∈ D.

If G ⊂ F is not HF -measurable, then ρF (G) is not well-defined. To address this, let

ρ
∗

F (G) := inf
G⊂G�∈HF

ρF (G�)

36 In fact, we could easily distinguish choice data that is beyond the scope of our model by discontinuities
in the RCR. See our definition of continuity below.

37 This definition imposes a form of common measurability across all decision-problems. It can be relaxed
if we strengthen the monotonicity axiom.
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be the measure of the smallest measurable set containing G.38 Note that ρ∗F is exactly the

outer measure of ρF . Both ρF and ρ
∗

F coincide on HF -measurable sets. Going forward, we

let ρ denote ρ
∗ without loss of generality.

A RCR is deterministic iff all choice probabilities are either zero or one. What follows

is an example of a deterministic RCR. The purpose of this example is to highlight (1) the

use of non-measurability to model indifferences and (2) the modeling of classic deterministic

choice as a special case of random choice.

Example 2.1. Let S = {s1, s2} and X = {x, y}. Without loss of generality, we can let

f = (a, b) ∈ [0, 1]2 denote the act f ∈ H where

f (s1) = aδx + (1− a) δy

f (s2) = bδx + (1− b) δy

Let H be the algebra generated by sets of the form B × [0, 1] where B is a Borel set on

[0, 1]. Consider the RCR (ρ,H) where ρF (f) = 1 iff f1 ≥ g1 for all g ∈ F . This describes a

decision-maker who ranks acts solely based on how likely she will receive prize x if state s1

realizes. If we let F = f ∪ g be such that f1 = g1, then neither f nor g is HF -measurable. In

other words, the decision-maker is unable to specify individual choice probabilities for f or

g. This is because regardless of which act she chooses, the decision-maker will receive x with

the same probability in state s1. The two acts are “indifferent”. Observe that ρ corresponds

exactly to classic deterministic choice where f is preferred to g iff f1 ≥ g1.

We now address continuity for RCRs. Given a RCR, let D0 ⊂ D be the set of decision-

problems where every act in the decision-problem is measurable. To be explicit, F ∈ D0

iff f ∈ HF for all f ∈ F . Let Π0 be the set of all Borel measures on H, endowed with

the topology of weak convergence. Since all acts in F ∈ D0 are HF -measurable, we can set

ρF ∈ Π0 for F ∈ D0 without loss of generality.39 We say ρ is continuous iff it is continuous

on the restricted domain D0.
38 Lemma 2A.1 in the Appendix ensures that this is well-defined.
39 We can easily complete ρF so that it is Borel measurable.

104



Definition. ρ is continuous iff ρ : D0 → Π0 is continuous

IfH is the Borel algebra, thenD0 = D. In this case, our continuity axiom condenses to the

standard one. In general though, the RCR is not continuous over all decision-problems. In

fact, the RCR is discontinuous at precisely those decision-problems that contain indifferences.

In other words, choice data that is beyond the scope of our model can be distinguished

by their discontinuities with respect to the RCR. In our model, every decision problem is

arbitrarily (Hausdorff) close to some decision-problem in D0. Thus, continuity is preserved

over almost all decision-problems.

2.3 Random Ambiguity Utility

We now describe random ambiguity utility. Let K be the set of compact, convex and non-

empty subsets of ∆S. We interpret K ∈ K as a set of priors reflecting uncertainty about

the underlying state. Let K ⊂ K be two sets of priors, and for t ∈ T := [0, 1], consider the

following parametrization of beliefs

Kt := tK + (1− t)K

Let KT ⊂ K be the set of all Kt and let µ be a probability measure on KT . Here, K

represents a baseline set of priors with uncertainty growing affinely at rate t. We adopt this

affine parametrization as it offers a simple one-dimensional model of random uncertainty.

It is highly tractable as the entire model is completely specified by two sets of beliefs and

a scalar distribution on T . Note that we can also interpret Kt as the set of priors that

are “close” to K according to some divergence measurement.40 In this case, t serves as a

measurement of the dispersion of beliefs from the set of common priors K.

40 In particular, Kt has an affine parametrization if the divergence is linear; that is, if r is equidistant from p

and q, then it is also equidistant from ap+(1− a) r and aq+(1− a) r for a ∈ [0, 1]. The ε-Gini-contamination
for example satisfies this property (see Grant and Kajii [44]).
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Let u : ∆X → R be an affine utility function. For Kt ∈ KT , let

UKt (f) := min
p∈Kt

p · (u ◦ f)

We interpret UKt (f) as the maxmin expected utility of the act f ∈ H conditional on perceiv-

ing uncertainty as reflected by the set of priors Kt. By the additivity of support functions41,

we can rewrite the random utility as

UKt = tUK + (1− t)UK

In this interpretation, the decision-maker has two sets of priors in mind but chooses randomly

depending on how attractive either premise is. We can also rearrange and interpret t as an

affine parametrization of the magnitude of uncertainty aversion. In the special case where

K is a singleton, the random utility decomposes to expected utility plus a random cost of

uncertainty aversion with distribution corresponding to µ.

Given µ, we say it is regular iff the utilities of any two acts are either always are never

equal.

Definition. µ is regular iff UKt (f) = UKt (g) with µ-measure zero or one.

Let (µ, u) consist of a regular µ and a non-constant u. We are now ready to introduce

the relationship between stochastic sets of priors and the observable random choice rule.

Definition (Random Ambiguity). ρ is represented by (µ, u) iff for f ∈ F ∈ D

ρF (f) = µ {Kt ∈ KT | UKt (f) ≥ UKt (g) ∀g ∈ F }

Thus, we can view ρF as an induced distribution on H by µ. In particular, the probability

that an act is chosen is precisely the measure of the set of posteriors that maximize the utility

of that act in the decision problem.

In traditional random utility models, indifferences in the random utility must necessarily

occur with probability zero. For example, in Gul and Pesendorfer [47], their definition of

41 For elementary properties of support functions, see Theorem 1.7.5 of Schneider [75]
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regularity requires that random utilities are never equal.42 Here, since not all singletons

are necessarily measurable, we can relax this by allowing acts to have the same utility with

probability one. In fact, acts that have the same utility µ-a.s. correspond exactly to non-

measurable acts. The following example demonstrates.

Example 2.2. Let S = {s1, s2, s3}, K = r =
�
1
3 ,

1
3 ,

1
3

�
and K = Bε (r) ∩ ∆S where Bε (r)

is the ball with radius ε > 0 centered at r. Let X = {x1, x2} and u (aδx1 + (1− a) δx2) =

a ∈ [0, 1]. Let u ◦ f1 = (1, 0, 0) and u ◦ f2 = (0, 1, 0). If we let ε be small enough, then

UK (fi) =
1
3 and UK (fi) =

1−ε
√
6

3 for i ∈ {1, 2}. Hence,

UKt (f1) =
1

3
−

ε
√
6

3
t = UKt (f2)

for all t ∈ [0, 1]. Thus, f1 and f2 are indifferent.

Our definition of regularity enables us to circumvent these issues by allowing for just

enough flexibility so that we can model indifferences using non-measurability. Note that the

standard subjective expected utility representation obtains as a special case for µ
�
K = K

�
=

1, if we generalize regularity in this fashion. Note that regularity still imposes certain re-

strictions on µ. For example, multiple mass points are not allowed if µ is regular.

Theorem 2.1 highlights the uniqueness properties of random ambiguity. The main high-

light is that studying binary choices is enough to completely identify the distribution of

ambiguity attitudes.

Theorem 2.1. Let ρ and τ be represented by (µ, u) and (ν, v) respectively. Then the following

are equivalent

(1) ρ (f, g) = τ (f, g) for all f and g

(2) ρ = τ

(3) (µ, u) = (ν, αv + β) for α > 0

Proof. See Appendix.

42 Also see Block and Marschalk [12] for the case of finite alternatives.
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We end this section with a simple example of random ambiguity.

Example 2.3. Let S = {s1, s2}, X = {x1, x2} and u (aδx1 + (1− a) δx2) = a ∈ [0, 1].

Let K =
�
1
3 ,

2
3

�
, K =

��
1
3 + k,

2
3 − k

� ��k ∈
�
0, 12

��
and µ be uniform. Note that each act

corresponds to a specific point in the unit square and for u ◦ f = (a, b) ∈ [0, 1]2,

UKt (f) = min
p∈[ 13 ,

1
3+t 12 ]

(ap+ (1− p) b) =






a+2b
3 if a ≥ b

a+2b
3 + a−b

3 t if a < b

Let ρ be represented by (µ, u). In the region a ≥ b, ρ is deterministic with indifference lines

b = κ −
1
2a. For a < b, the indifference lines are b = κ −

1+t
2−ta with t distributed uniformly

on T . This RCR describes a decision-maker whose set of priors on s1 range uniformly from
�

1
3

�
to

�
1
3 ,

5
6

�
. In this case, since the s1 prior is bounded below by 1

3 , the only factor driving

random choice is the stochastic upper bound on the prior.

2.4 Random Non-Linearity

Before we proceed to the characterization of random ambiguity, we first explore some of the

non-linear properties of random ambiguity in its stochastic context. In random expected

utility [47], two necessary conditions are linearity and extremeness. We present these two

conditions in our setting. First, given two decision-problems F and G, let aF + (1− a)G

denote the Minkowski mixture of the two sets for a ∈ [0, 1].43

Definition. ρ is linear iff ρF (f) = ρaF+(1−a)g (af + (1− a) g) for f ∈ F and a ∈ (0, 1).

An act f ∈ F is extreme in F iff it is not in the interior of the convex hull of F . Let

extF ⊂ F denote the extreme points of the decision problem F .

Definition. ρ is extreme iff ρF (extF ) = 1.

43 The Minkowski mixture for {F,G} ⊂ D and a ∈ [0, 1] is defined as aF + (1− a)G :=
{af + (1− a) g| (f, g) ∈ F ×G}.
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Linearity is the stochastic equivalent of the standard independence axiom. In particu-

lar, it is the version of the standard independence axiom that is actually tested in many

experimental settings (such as in Kahneman and Tversky [51]). If we impose linearity on

the random utility, then linearity of the induced RCR follows as a natural consequence. On

the other hand, extremeness is a condition that is unique to random choice. It requires

that extreme acts of a decision problem are always chosen, or vice-versa, interior acts are

never chosen. Since random linear utilities admit indifference sets that are hyperplanes, the

resulting RCR must be extreme (ignoring indifferences).

Given that random ambiguity utility is non-linear, one would expect the induced RCR

to permit violations of both linearity and extremeness. The following example provides

confirmation.

Example 2.4. We return to the setup in Example 2.3 above. Let u◦f = (0, 1), u◦g = (1, 0)

and h = 1
2f + 1

2g. Letting λ be the Lebesgue measure on T , we have

ρ (f, g) = λ {t ∈ T | 2− t ≥ 1} = 1

ρ (f, h) = λ

�
t ∈ T | 2− t ≥

3

2

�
=

1

2

Since 1
2 {f, g} + 1

2f = {f, h}, we have ρ (f, g) > ρ (f, h) violating linearity. If we let F :=

{f, g, h}, then

ρF (h) = λ

�
t ∈ T |

3

2
≥ max (1, 2− t)

�
=

1

2
> 0

violating extremeness. Note that since g exhibits less uncertainty than either f or h, ambi-

guity aversion suggests that g should be chosen with some probability.

As the example above illustrates, violations of extremeness is precisely the behavior

that characterizes uncertainty aversion. We now introduce a property that exactly captures

this fact. First note that although maxmin expected utility is non-linear, it does satisfy

quasiconcavity. Under static choice, a utility is quasiconcave iff the preference relation it

represents is convex.44 In the realm of random choice, quasiconcavity of the random utility

44 A preference relation � is convex iff f � h implies af + (1− a)h � h for a ∈ (0, 1).
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is directly related to a property of its induced RCR which we will aptly call convexity.

Definition. ρ is convex iff ρF (f) = ρF∪g (f) for af + (1− a) g ∈ F and a ∈ (0, 1).

Let f and g be two acts and h = af + (1− a) g be any mixture of the two for some

a ∈ (0, 1). Convexity requires that for any decision problem that already includes h, adding

g will not affect the probability that f is chosen. In other words, acts are immune to the

addition of new acts provided that some mixture act already exists in the original decision

problem. The following example illustrates.

Example 2.5. We again return to the setup of Example 2.3. Let u◦f = (0, 1) , u◦g =
�
1, 14

�

and h = 1
2f + 1

2g. Now,

ρ (f, h) = λ

�
t ∈ T | 2− t ≥

14− t

8

�
=

2

7

If we let F = {f, g, h}, then

ρF (f) = λ

�
t ∈ T | 2− t ≥ max

�
14− t

8
,
3

2

��

=
2

7
= ρ (f, h)

so convexity is satisfied in this case.

Finally, we conclude this section by providing some justification for our choice of convex-

ity. Let V be the set of all measurable v : H → R and let µ be a probability measure on

V . For ease of exposition, we assume that µ has no indifferences. Thus, for all {f, g} ⊂ H,

v (f) = v (g) with µ-measure zero. We now define quasiconcavity and quasiconvexity for

random utilities.

Definition. µ is quasiconcave iff for all {f, h} ⊂ H and a ∈ (0, 1),

v (fah) ≥ min (v (f) , v (h))

µ-a.s.. It is quasiconvex iff

v (fah) ≤ max (v (f) , v (h))
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µ-a.s..

Definition. ρ is represented by µ iff for all f ∈ F ∈ D,

ρF (f) = µ {v ∈ V| v (f) ≥ v (g) ∀g ∈ F}

Proposition 2.1. Let ρ be represented by µ. Then µ is quasiconcave (quasiconvex) iff ρ is

convex (extreme).

Proof. See Appendix.

Thus, convexity and extremeness are the relevant stochastic properties of random choice

for characterizing quasiconcavity and quasiconvexity respectively. Note that since random

linear utility is both quasiconcave and quasiconvex, it follows that its induced RCR must be

both convex and extreme.

2.5 Characterization

We now provide a complete characterization of random ambiguity. We say f ∈ H is constant

iff f (s) is the same for all s ∈ S. A decision-problem is constant iff it contains constant acts

only. Given an act f and a state s ∈ S, let fs ∈ H denote the constant act that yields the

lottery f (s) ∈ ∆X in every state. For F ∈ D, let Fs :=
�

f∈F fs be the constant decision

problem consisting of fs for all f ∈ F .

The first five conditions below are the stochastic counterparts to the original axioms of

maxmin expected utility under static choice. In what follows, assume f ∈ F ∈ D.

Axiom 2.1. (C-linearity) ρF (f) = ρaF+(1−a)ag (af + (1− a) g) for constant g and a ∈ (0, 1).

Axiom 2.2. (Continuity) ρ is continuous.

Axiom 2.3. (S-monotonicity) ρFs (fs) = 1 for all s ∈ S implies ρF (f) = 1.
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Axiom 2.4. (Convexity) ρ is convex.

Axiom 2.5. (Non-degeneracy) ρ (f, g) = 0 for some constant f and g.

Certainty-linearity (or C-linearity) imposes linearity only for mixtures with constant acts.

It is a weakening of linearity that directly corresponds to C-independence, the weakening of

the standard independence axiom under deterministic maxmin. The continuity condition is

standard albeit adjusted for the measurability issues discussed above. State-monotonicity (or

S-monotonicity) is the stochastic analog of the monotonicity axiom in maxmin preferences. It

is both necessary and sufficient for any random utility that satisfies state-wise monotonicity.

Convexity serves the same purpose as the uncertainty aversion condition in static maxmin

by enforcing quasiconcavity. Thus, in the context of random ambiguity, convexity can be

interpreted as the stochastic version of uncertainty aversion. Finally, non-degeneracy ensures

that the RCR is non-trivial and plays the same role as its counterpart in the deterministic

model.

The last two conditions are particular to random choice. First, note that in any random

utility model, the probability of an act being chosen decreases as the decision problem is

enlarged. This property called monotonicity is necessary (but not sufficient) for any RCR

induced by a random utility. Since random ambiguity is a random utility model, we naturally

include monotonicity as a condition.

Axiom 2.6. (Monotonicity) F ⊂ G implies ρF (f) ≥ ρG (f).

One interesting implication of monotonicity in collaboration with convexity is that an act is

chosen less frequently as other acts converge linearly toward it. To illustrate this, let f ∈ F

and h = af + (1− a) g for some a ∈ (0, 1). Thus, h is closer to f than g is to f . Now, by

monotonicity and convexity,

ρF∪g (f) ≥ ρF∪g∪h (f) = ρF∪h (f)

Thus, f become less prominent in choice as other acts move toward it. This is an observable

characteristic of random quasiconcave utility that is completely unique to random choice.
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Before we present the final condition, we first consider a special class of random utility

models known as Luce rules. One feature of Luce rules is that they satisfy an appealing form

of stochastic independence which we present here in our context.

Definition. ρ is independent iff ρ (f,G) ≥ ρ (g,G) implies ρ (f, F ) ≥ ρ (g, F )

Gul, Natenzon and Pesendorfer [46] show that under a richness condition, independence

completely characterizes the Luce rule. Random ambiguity however, is in general not a Luce

rule as the following example illustrates.

Example 2.6. Return to the setup of Example 2.3 above. Let u ◦ f = (0, 1), u ◦ h =
�
1
2 ,

1
2

�
,

g = 1
2f + 1

2h and u ◦ h� =
�
2
5 ,

2
5

�
. Now,

ρ (f, h) = λ

�
t ∈ T

���� 2− t ≥
3

2

�
=

1

2
= λ

�
t ∈ T

����
7

4
−

1

2
t ≥

3

2

�
= ρ (g, h)

However,

ρ (f, h�) = λ

�
t ∈ T

���� 2− t ≥
6

5

�
=

4

5
< 1 = λ

�
t ∈ T

����
7

4
−

1

2
t ≥

6

5

�
= ρ (g, h�)

violating independence.

Nevertheless, random ambiguity does satisfy a weakened form of independence called

certainty-dominance (or C-dominance) which we present as our last condition.

Axiom 2.7. (C-dominance) If ρ (f, h) > ρ (g, h) = 0 and 1 = ρ (f, h�) > ρ (g, h�) for

constants h and h
�, then ρ (f, F ) ≥ ρ (g, F ) for all F ∈ D.

C-dominance specifies sufficient conditions for when an act f stochastically dominates

another act g i.e. for any set F , f is chosen more often in F ∪f than g is in F ∪g. Let h and

h
� be two constant acts. Suppose f is chosen sometimes over h while g is never chosen, while

f is always chosen over h� while g is not always chosen. Then it must be that f stochastically

dominates`g. The restrictions in the premise that g is never chosen over h and that f is

always chosen in over h� are important. They ensure that the comparisons between f and g

are stark enough for f to stochastically dominate g. Put in another way, there are constant
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acts h and h
� such that ρ (f, h) > ρ (g, h) and ρ (f, h�) > ρ (g, h�) but ρ (f, F ) < ρ (g, F ) for

some F ∈ K. The following illustrates an example of C-dominance at work.

Example 2.7. Returning once again to the setup of Example 2.3, let u ◦ f =
�
1
2 , 1

�
, u ◦ g =

�
1
4 ,

3
4

�
, u ◦ h =

�
3
4 ,

3
4

�
, and u ◦ h� =

�
1
2 ,

1
2

�
. Now,

ρ (f, h) = λ

�
t ∈ T

����
5

2
−

1

2
t ≥

9

4

�
=

1

2
> 0 = λ

�
t ∈ T

����
7

4
−

1

2
t ≥

9

4

�
= ρ (g, h)

and

ρ (f, h�) = λ

�
t ∈ T

����
5

2
−

1

2
t ≥

3

2

�
= 1 >

1

2
= λ

�
t ∈ T

����
7

4
−

1

2
t ≥

3

2

�
= ρ (g, h�)

so by C-dominance, ρ (f, F ) ≥ ρ (g, F ) for any F ∈ D. Note that this must hold since ∀t ∈ T ,

UKt (f) =
10− 2t

4
>

7− 2t

4
= UKt (g)

We now present the representation result. Note that this representation is unique as per

Theorem 2.1 above.

Theorem 2.2. ρ satisfies Axioms 2.1-2.7 iff it is has a random ambiguity representation.

Proof. See Appendix.

Necessity of Axioms 2.1-2.7 follow easily from the representation. To understand the

necessity of C-dominance, note that the affine parametrization of Kt restricts the random

utilities to be affine functions on T . The premise of C-dominance then implies that the

utility of f must be greater than that of g so the desired implication follows.

We now offer a brief outline of the sufficiency argument. First, note that the lower

contour sets in maxmin expected utility are translated convex cones. If we consider the

affine subspace containing some act f and two distinct constant acts, then the random

utilities are linear for all decision problems in this subspace. The crux of the argument

rests on showing that convexity and C-linearity in conjunction with the other conditions

are sufficient for establishing a random expected utility representation in this subspace. C-

dominance then allows us to map all decision problems into this particular subspace and
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thus admit a random utility representation. Finally, C-dominance also restricts the class of

random maxmin expected utilities to precisely those with a regular µ as desired in random

ambiguity.

In this final section, we introduce a notion of comparative uncertainty aversion in the

context of random choice.

Definition. ρ is more uncertainty averse than τ iff ρF (f) ≥ τF (f) for all constant f

Thus, if ρ exhibits more uncertainty aversion than τ , then constant acts (which are free

of uncertainty) are chosen more often under ρ than τ . The following definition extends

first-order stochastic dominance to distributions over sets.

Definition. ν � µ iff ν {K ⊂ L} ≥ µ {K ⊂ L} for all L ∈ K.

Hence, if ν � µ, then µ puts less weight on smaller sets of priors than ν. In other words,

µ is more uncertain than ν. The following proposition characterizes greater uncertainty

under random ambiguity.

Proposition 2.2. Let ρ and τ be represented by (µ, u) and (ν, v) respectively. Then ρ is

more uncertainty averse than τ iff ν � µ and u = α + βv for β > 0.

Proof. See Appendix.

This result thus allows for comparisons between distributions of ambiguity aversion solely

based on choice frequencies. It is the random equivalent of corresponding results under

deterministic choice.45

2.6 Summary

We introduce a model of random ambiguity where stochastic levels of uncertainty aversion

drive probabilistic choice. We provide a full characterization of the representation and show

45 See Theorem 17(ii) of Ghirardato and Marinacci [39].
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that the distribution of the random set of priors is uniquely determined by the observable

choice probabilities. This scalar parametrization of uncertainty aversion is tractable and

generalizes models which employ idiosyncratic shocks to uncertainty aversion or exhibit

heterogeneous ambiguity aversion. Finally, by relaxing linearity and extremeness, we have

extended non-expected utility to the realm of random choice.
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Appendix 2A

The first part of this appendix follows closely to that of Appendix 1A. We include it for

completion. Given a collection of sets G and F ∈ D, let

G ∩ F := {G ∩ F |G ∈ G}

Note that if G is an algebra, then G ∩F is the trace algebra of G on F ∈ D. For G ⊂ F ∈ D,

let

GF :=
�

G⊂G�∈HF

G
�

denote the smallest HF -measurable set containing G.

Lemma (2A.1). Let G ⊂ F ∈ D.

(1) HF ∩ F = H ∩ F

(2) GF = Ĝ ∩ F ∈ HF for some Ĝ ∈ H

(3) F ⊂ F
� ∈ D implies GF = GF � ∩ F

Proof. See proof of Lemma 1A.1.

Let ρ be a RCR. By Lemma 2A.1, we can now define

ρ
∗

F (G) := inf
G⊂G�∈HF

ρF (G�) = ρF (GF )

for G ⊂ F ∈ D. Going forward, we simply let ρ denote ρ
∗ without loss of generality. We

also employ the notation

ρ (F,G) := ρF∪G (F )

Definition. f and g are tied iff ρ (f, g) = ρ (g, f) = 1

Lemma (2A.2). For {f, g} ⊂ F ∈ D, the following are equivalent.

(1) f and g are tied

(2) g ∈ fF
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(3) fF = gF

Proof. See proof of Lemma 1A.2.

Lemma (2A.3). Let ρ be monotonic.

(1) For f ∈ F ∈ D, ρF (f) = ρF∪g (f) if g is tied with some g
� ∈ F

(2) Let F :=
�

i fi, G :=
�

i gi and assume fi and gi are tied for all i ∈ {1, . . . , n}. Then

ρF (fi) = ρG (gi) for all i ∈ {1, . . . , n}.

Proof. See proof of Lemma 1A.3.

For {F, F �} ⊂ D, we use the condensed notation FaF
� := aF + (1− a)F �.

Lemma (2A.4). Let ρ be monotonic and linear. For f ∈ F ∈ D, let F
� := Fah and

f
� := fah for some h ∈ H and a ∈ (0, 1). Then ρF (f) = ρF � (f �) and f

�

F � = fFah.

Proof. See proof of Lemma 1A.4.

Proposition (2A.5). Let ρ be represented by µ. Then µ is quasiconcave (quasiconvex) iff ρ

is convex (extreme).

Proof. First assume ρ is convex. Thus, for a ∈ (0, 1)

0 = ρ (f, fah)− ρ (f, fah ∪ h)

= µ {v ∈ V| v (f) ≥ v (fah)} − µ {v ∈ V| v (f) ≥ max (v (fah) , v (h))}

= µ {v ∈ V| v (h) > v (f) ≥ v (fah)}

and by symmetric argument, µ {v ∈ V| v (h) > v (f) ≥ v (fah)} = 0. Since µ has no ties, it

must be quasiconcave. For the converse, suppose µ is quasiconcave and let {f, fah} ⊂ F so

ρF (f)− ρF∪h (f) =µ {v ∈ V| v (f) ≥ v (g) ∀g ∈ F}

− µ {v ∈ V| v (f) ≥ max {v (g) , v (h)} ∀g ∈ F}

=µ {v ∈ V| v (h) > v (f) ≥ v (g) ∀g ∈ F}
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Since fah ∈ F and there are no ties, ρF (f) = ρF∪h (f).

Now, assume ρ is extreme. Note that if µ is not quasiconvex, then there are {f, h} ⊂ H

such that

0 < µ {v ∈ V| v (fah) ≥ max (v (f) , v (h))} = ρ (fah, f ∪ h)

contradicting extremeness. Finally, assume µ is quasiconvex. Let f ∈ F ∈ D where f �∈

E := extF . Thus, by Minkowski’s theorem (Corollary 1.4.5 of Schneider [75]), we can find

ai ∈ (0, 1) and fi ∈ E such that h0 = f0, hi = hi−1aifi and hk = f . By quasiconvexity,

v (hi) ≤ max (v (hi−1) , v (fi))

µ-a.s. so by iteration, v (f) ≤ maxi v (fi) µ-a.s.. Thus,

ρF (f) = µ {v ∈ V| v (f) ≥ v (g) ∀g ∈ F}

≤ µ {v ∈ V| v (f) ≥ v (fi) ∀i} = 0

as µ has no ties. As a result, ρ is extreme.

Appendix 2B

In what follows, assume ρ satisfies Axioms 2.1-2.7. Let Hc ⊂ H denote the set of all constant

acts

Lemma (2B.1). ρF (f) ∈ {0, 1} for constant F

Proof. Suppose F ∈ D is constant but ρF (f) ∈ (0, 1). Thus, we can find a g �∈ fF such that

ρF (g) ∈ (0, 1). By Lemma 2A.2, f and g are not tied, so by monotonicity, ρ (f, g) ∈ (0, 1).

By non-degeneracy and C-linearity, let {f �
, g

�} ⊂ Hc be s.t. ρ (f �
, f) = ρ (g, g�) = 0 without

loss of generality. Note that since as ρ (f, g) ∈ (0, 1), by Lemma 2A.3, f cannot by tied with

g
� and g cannot be tied with f

�. Thus, by continuity, we can find f
� and g

� close enough

to f and g respectively such that ρ (f, g�) > 0 = ρ (g, g�) and ρ (f, f �) = 1 > ρ (g, f �). By
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C-dominance, ρF (f) ≥ ρF (g) for any F ∈ D. However, we can find h close to f such that

by continuity, ρ (f, h) = 0 < ρ (g, h) a contradiction. Hence ρF (f) ∈ {0, 1} for constant

F ∈ D.

Lemma (2B.2). There exists a non-constant and affine u : ∆X → R such that for any

constant f ∪ g, ρ (f, g) = 1 iff u (f) ≥ u (g).

Proof. Define the binary relation � on Hc such that f � g iff ρ (f, g) = 1. Note that if

f �� g, then ρ (f, g) = 0 so ρ (g, f) = 1 by Lemma 2B.1. Thus, � is complete. Note that

f ∼ g iff f and g are tied. Now, assume f � g � h but h � f so ρ (f, h) = 0. If f ∼ g, then

by Lemma 2A.3, 0 = ρ (f, h) = ρ (g, h) a contradiction. If g ∼ h, then 0 = ρ (f, h) = ρ (f, g)

again a contradiction. Thus, f � g � h � f . If we let F := {f, g, h}, then by monotonicity,

ρF (g) = ρF (f) = ρF (h) = 0

Thus, ρF (F ) = 0 a contradiction. Therefore, � is both complete and transitive.

We now show that � has an expected utility representation. Suppose f � g so ρ (f, g) = 1

and ρ (g, f) = 0. Linearity implies ρ (fah, gah) = 1 and ρ (gah, fah) = 0 so fah � gah

for a ∈ (0, 1). Hence � satisfies the standard independence axiom. If f � g � h, then

ρ (f, g) = ρ (g, h) = 1 and ρ (g, f) = ρ (h, g) = 0. Since � is transitive, f � h so ρ (f, h) = 1

and ρ (h, f) = 0. Now, suppose ∃a ∈ (0, 1) such that fah and g are tied. If ∃b ∈ (0, 1) \a such

that fbh and g are tied, then by Lemma 2A.2, fah and fbh are tied, contradicting linearity.

Thus, we can apply continuity and find {a, b} ⊂ (0, 1) such that ρ (fah, g) = ρ (g, fbh) = 1

and ρ (g, fah) = ρ (fbh, g) = 0. By the Mixture Space theorem (see Theorem 8.4 of Fishburn

[35]), there is an affine u : ∆X → R that represents �. Finally, by non-degeneracy, ρ (f, g) =

0 for some {f, g} ⊂ Hc. Thus, u (f) < u (g) so u is non-constant.

Since u is non-constant, we can choose
�
f, f

�
⊂ Hc such that u

�
f
�
≥ u (f) ≥ u

�
f
�

for all f ∈ Hc with at least one inequality strict. Moreover, without loss of generality, let
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u
�
f
�
= 1 and u

�
f
�
= 0. Let

�
f, f

�
:=

�
faf

�� a ∈ [0, 1]
�
and

H0 :=
�
h ∈ H|h (s) ∈

�
f, f

�
∀s ∈ S

�

Note that there is an isomorphism between H0 and u ◦H0 = [0, 1]S so we can associate each

f ∈ H0 with its utility vector u ◦ f ∈ [0, 1]S without loss of generality.

Suppose there exists some h∗ ∈ H0\
�
f, f

�
such that h∗ is not tied with any act in

�
f, f

�
.

Let W ∗ := lin {u ◦ h∗
, 0,1} and

W
∗

+ := {w ∈ W
∗
|w

∗
· w ≥ 0}

for some w
∗ ∈ W

∗ such that w∗ · 1 = 0 and w
∗ · (u ◦ h∗) ≥ 0. Thus, W ∗

+ is the halfspace of

W
∗ containing u ◦ h∗. If no such h

∗ exists, then let W ∗
+ := W

∗ := lin {0,1}. Let H∗ ⊂ H0

be such that

u ◦H
∗ = W

∗

+ ∩ [0, 1]S

Note that dim (u ◦H∗) ∈ {1, 2}. We say H
∗ is degenerate iff dim (u ◦H∗) = 1. Let D∗ ⊂ D

be the set of decision problems consisting only of acts in H
∗.

Lemma (2B.3). The following holds

(1) D∗ ⊂ D0

(2) ρ is linear on D∗

(3) ρ is extreme on D∗

Proof. Note that all results follow trivially if H∗ is degenerate, so assume dim (u ◦H∗) = 2.

We prove the lemma in order.

(1) Let f ∈ F ∈ D∗ and suppose g ∈ fF for some g �= f . Thus, by Lemma 2A.2, f

and g are tied. By C-linearity, we can assume f = h
∗ and g ∈

�
f, f

�
without loss of

generality, contradicting the definition of h∗. Thus, D∗ ⊂ D0

(2) Let f ∈ F ∈ D∗, h ∈ H
∗ and a ∈ (0, 1). Let f

� := fah and F
� := Fah. Let

{f1, f2} ⊂
�
f, f

�
and b ∈ (0, 1) such that faf1 = f

�
bf2 without loss of generality by
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C-linearity. Thus,

faf1 = b (af + (1− a)h) + (1− b) f2

= abf + (1− ab)

�
b− ab

1− ab
h+

1− b

1− ab
f2

�

= f (ab)

�
h

�
b− ab

1− ab

�
f2

�
= f (ab)h�

for h� := h
�
b−ab
1−ab

�
f2 ∈ H

∗. Now,

f (ab)h� = af + (1− a) f1 = abf + (1− ab)

�
a− ab

1− ab
f +

�
1−

a− ab

1− ab

�
f1

�

= f (ab)

�
f

�
a− ab

1− ab

�
f1

�

so h
� = f

�
a−ab
1−ab

�
f1. Let G := Faf1 and G

� := F
�
bf2. Now, for g ∈ F\f

(gah) bf2 = b (ag + (1− a)h) + (1− b) f2

= abg + (1− ab)h� = abg + (1− ab)

�
a− ab

1− ab
f +

�
1−

a− ab

1− ab

�
f1

�

= abg + (1− b) af + (1− a) f1 = (gaf1) b (faf1)

Thus, by convexity,

ρG� (f �
bf2) = ρG� (faf1) = ρG�∪(gaf1) (faf1)

Since this is true for all g ∈ F\f , by C-linearity and monotonicity, we have

ρF � (f �) = ρG� (f �
bf2) = ρG�∪G (faf1) ≤ ρG (faf1) = ρF (f)

for all f ∈ F . Thus, by (1), ρF � (f �) = ρF (f) so (2) is true.

(3) Let F ∈ D∗, f ∈ F\extF and suppose ρF (f) > 0. Now, by Minkowski’s Theorem, we

can find ai ∈ (0, 1) and fi ∈ extF such that h0 = f0, hi = hi−1aifi and hk = f . If we

let F � := F ∪ (
�

i hi), then by monotonicity and (1),

1 > ρF (F\f) ≥ ρF � (F\f)
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Thus ρF �
��

i≤k hi

�
> 0 so there is some hi = hi−1aifi such that ρF � (hi) > 0. By

monotonicity, ρ (hi, fi ∪ hi−1) > 0. By (2) and convexity, ρ (hi−1, fi) = ρ (hi−1, hi) =

ρ (hi−1, fi ∪ hi) and ρ (fi, hi−1) = ρ (fi, hi) = ρG (fi, hi ∪ hi−1) so

ρ (hi−1, fi ∪ hi) + ρ (fi, hi ∪ hi−1) = ρ (hi−1, fi) + ρ (fi, hi−1) = 1

However, this implies ρ (hi, fi ∪ hi−1) = 0 a contradiction. Thus, ρ is extreme on D∗.

Define Z∗ := {w ∈ W
∗|w · 1 = 1}. Note that dim (Z∗) ∈ {0, 1}, and dim (Z∗) = 0 iff H

∗

is degenerate.

Proposition (2B.4). There exists a measure µ
∗ on Z

∗ such for any F ∈ D∗,

ρF (f) = µ
∗
{z ∈ Z

∗
| z · (u ◦ f) ≥ z · (u ◦ g) ∀g ∈ F}

Proof. Note that if H∗ is degenerate, then the result follows trivially so assume otherwise.

Let ∆ be the two-dimensional probability simplex. Now, there exists an affine transformation

L = λA where λ > 0, A is an orthogonal matrix and L (u ◦H∗) ⊂ ∆. Note that L (W ∗) =

V := lin (∆). For each finite set D ⊂ ∆, we can find a r ∈ ∆ and a ∈ (0, 1) such that

Dar ⊂ L (u ◦H∗). Thus, we can define a RCR τ on ∆ such that

τD (p) := ρF (f)

where L (u ◦ F ) = Dar and L (u ◦ f) = par. Linearity ensures this is well-defined. By

Lemma 2B.3, D∗ ⊂ D0 and τ is monotone, linear, extreme and continuous. Hence, by

Theorem 3 of Gul and Pesendorfer [47], there exists a measure µ0 on V such that

ρF (f) = τL(u◦F ) (L (u ◦ f))

= µ0 {v ∈ V | v · (L (u ◦ f)) ≥ v · (L (u ◦ g)) ∀g ∈ F}
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for all F ∈ D∗. Since A
−1 = A

�,

v · (L (u ◦ f)) = v · λA (u ◦ f) = λ
�
A

−1
v
�
· (u ◦ f) = λ

2
L
−1 (v) · (u ◦ f)

so

ρF (f) = µ0

�
v ∈ V |L

−1 (v) · (u ◦ f) ≥ L
−1 (v) · (u ◦ g) ∀g ∈ F

�

= µ1 {w ∈ W
∗
|w · (u ◦ f) ≥ w · (u ◦ g) ∀g ∈ F}

where µ1 := µ0 ◦ L is the measure on W
∗ induced by L. Finally, note that

0 = ρ
�
f.f

�
= ν1 {w ∈ W

∗
| 0 ≥ w · 1}

so w · 1 > 0 µ1-a.s.. Since w ∈ W
∗ implies w

w·1 ∈ Z
∗, we have

ρF (f) = µ1

�
w ∈ W

∗
|

w

w · 1
· (u ◦ f) ≥

w

w · 1
· (u ◦ g) ∀g ∈ F

�

= µ
∗
{z ∈ Z

∗
| z · (u ◦ f) ≥ z · (u ◦ g) ∀g ∈ F}

where µ
∗ is the induced measure on Z

∗.

For each f ∈ H, define

f
− := argmax

�
u (h)|h ∈

�
f, f

�
, ρ (f, h) = 1

�

f
+ := argmin

�
u (h)|h ∈

�
f, f

�
, ρ (h, f) = 1

�

Lemma (2B.5). f− and f
+ are well-defined for all f ∈ H

Proof. Let f ∈ H. First note that if f is tied with any g ∈
�
f, f

�
, then by Lemma 2A.3, f− =

f
+ = g. Hence, assume f is not tied with any act in

�
f, f

�
. We first show that f− is well-

defined. By S-monotonicity, if ρ
�
f, f

�
< 1, then ρ

�
fs, f

�
< 1 for some s ∈ S contradicting

the definition of f . Thus, ρ
�
f, f

�
= 1. Let u− := sup

�
u (h)|h ∈

�
f, f

�
, ρ (f, h) = 1

�
and

g := f (u−) f so u (g) = u
−. Now, there are h ∈

�
f, f

�
arbitrarily close to g with u (h) < u (g)

and ρ (f, h) = 1. By continuity, ρ (f, g) = 1 so g = f
−. To show that f+ is well-defined, first
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note that ρ
�
f, f

�
= 1 by S-monotonicity. Let u+ := inf

�
u (h)|h ∈

�
f, f

�
, ρ (h, f) = 1

�
and

g := f (u+) f so u (g) = u
+. By symmetric argument, g = f

+. Thus, both f
− and f

+ are

well-defined.

Lemma (2B.6). (f−
, f

+) = (g−, g+) iff f and g are tied.

Proof. Note that necessity is trivial so we prove sufficiency. First, suppose f is tied with

some h ∈
�
f, f

�
so f

− = g
− = f

+ = g
+ = h. Since g can at most be tied with a single act

in
�
f, f

�
, by continuity, g is tied with h and hence f as well. Thus, we assume that both f

and g are tied with any act in
�
f, f

�
. Define Hf and H

g as the corresponding H
∗ for h∗ = f

and h
∗ = g respectively. Moreover, define Df and Dg as the corresponding D∗ so by Lemma

2B.3, ρ is linear on both Df ⊂ D0 and Dg ⊂ D0.

Let {f1, f2} ⊂ H
f and {g1, g2} ⊂ H

g be such that for some ε > 0,

ε1 = u ◦ f1 − u ◦ f = u ◦ f − u ◦ f2

= u ◦ g1 − u ◦ g = u ◦ g − u ◦ g2

Thus, by linearity, ρ (f1, f) = ρ (f, f2) = ρ (g1, g) = ρ (g, g2) = 1. For ε small enough,

linearity yields ρ (f1, g+) > 0 = ρ (g2, g+) and 1 = ρ (f1, g−) > ρ (g2, g−). By C-dominance,

ρ (f1, g2) ≥ ρ (g2, g2) = 1. By symmetric argument, ρ (g1, f2) ≥ ρ (f2, f2) = 1. Note that if

f1 and g2 are tied, then

1 = ρ
�
f1, g

−
�
= ρ

�
g2, g

−
�
< 1

a contradiction. Symmetrically, g1 and f2 cannot be tied so by continuity, ρ (f, g) = ρ (g, f) =

1. Hence, f and g are tied.

Define U : Z∗ ×H → R such that

Uz (f) :=
z · (u ◦ f ∗)− (1− a) u (h0)

a

where f
∗ ∈ H

∗ is tied with fah0 for some a ∈ (0, 1] and h0 := f
1
2f .
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Lemma (2B.7). Uz is well-defined, continuous and

ρF (f) = µ
∗
{z ∈ Z

∗
|Uz (f) ≥ Uz (g) ∀g ∈ F}

Proof. We first show that Uz is well defined. Note that by C-linearity, for each f ∈ H, we can

find a a ∈ (0, 1] such that there is a f
∗ ∈ H

∗ where (fah0)
− = (f ∗)− and (fah0)

+ = (f ∗)+.

By Lemma 2B.6, fah0 and f
∗ are tied. Suppose there is some other b ∈ (0, 1] where g∗ ∈ H

∗

is tied with fbh0. Without loss of generality, assume b < a so

fbh0 = (fah0)
b

a
h0

Thus, f ∗ b
ah0 is tied with g

∗ so g
∗ = f

∗ b
ah0 by Lemma 2B.3. Hence,

z · (u ◦ g∗)− (1− b) u (h0)

b
=

b
az · (u ◦ f ∗) +

�
1− b

a

�
u (h0)− (1− b) u (h0)

b

=
z · (u ◦ f ∗)− (1− a) u (h0)

a

so Uz is well-defined.

Now, let f ∗ ∈ H
∗ be tied with fah0 for all f ∈ F for some a ∈ (0, 1). By Lemma 2A.3

and Proposition 2B.4,

ρF (f) = ρFah0 (fah0) = ρF ∗ (f ∗)

= µ
∗
{z ∈ Z

∗
| z · (u ◦ f

∗) ≥ z · (u ◦ g
∗) ∀g

∗
∈ F

∗
}

= µ
∗
{z ∈ Z

∗
|Uz (f) ≥ Uz (g) ∀g ∈ F}

Finally, we show that Uz is continuous. Let fk → f , and first, suppose f
−

< f
+. Let

fδ ∈
�
f, f

�
be such that u (fδ) = u (f−)+δ for δ > 0 such that ρ (f, fδ) ∈ (0, 1). Suppose fk is

tied with fδ for all k > k̄ for some k̄ ∈ N. If we let fε ∈
�
f, f

�
be such that u (fε) = u (f−)+ε

for some ε > δ such that ρ (f, fε) ∈ (0, 1), then by continuity,

0 = ρ (fk, fε) = ρ (f, fε)

a contradiction. Thus, by continuity, ρ (fk, fδ) → ρ (f, fδ). Since this is true for all δ > 0, we
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have (fk)
−
→ f

−. By symmetric argument, (fk)
+
→ f

+ so f
∗

k → f
∗ and Uz (fk) → Uz (f).

Now, if f− = f
+ = f

∗, then by similar argument, ρ (fk, fδ) → 1 and ρ (fk, fε) → 0 for

{fδ, fε} ⊂
�
f, f

�
such that u (fδ) = u (f ∗) + δ and u (fε) = u (f ∗) − ε for some δ > 0 and

ε > 0. Thus, we again have f
∗

k → f
∗ so Uz (fk) → Uz (f). Thus, Uz is continuous.

Lemma (2B.8). For all z ∈ Z
∗,

(1) Uz (fbg) = bUz (f) + (1− b)Uz (g) for b ∈ (0, 1) and constant g

(2) Uz (f) > Uz (g) > Uz (h) implies there are {a, b} ⊂ (0, 1) such that Uz (fah) > Uz (g) >

Uz (fbh)

(3) Uz (f) > Uz (g) for some f and g

Proof. Let z ∈ Z
∗. Note that (2) follows directly from the continuity of Uz (Lemma 2B.7)

and (3) follows immediately from the fact that Uz

�
f
�
= u

�
f
�
> u

�
f
�
= Uz

�
f
�
. We now

show (1). Let {f ∗
, h

∗
, g

∗} ⊂ H
∗ be tied with fah0, hah0 and gah0 respectively where h = fbg

for b ∈ (0, 1) and constant g. First, suppose g ∈
�
f, f

�
so by C-linearity, h∗ = f

∗
bg

∗ and

Uz (h) =
z · (u ◦ h∗)− (1− a) u (h0)

a
= bUz (f) + (1− b)Uz (g)

Now, for any constant g, let ĝ ∈
�
f, f

�
be such that u ◦ g = u ◦ ĝ so u ◦ (fbg) = u ◦ (fbĝ).

By S-monotonicity, g is tied with ĝ and fbg is tied with fbĝ so

Uz (fbg) = Uz (fbĝ) = bUz (f) + (1− b)Uz (ĝ)

= bUz (f) + (1− b)Uz (g)

Lemma (2B.9). For every {f, g} ⊂ H, there exists Zfg ⊂ Z
∗ such that µ∗ (Zfg) = 1 and for

all z ∈ Zfg,

(1) Uz (fbg) ≥ min {Uz (f) , Uz (g)} for all b ∈ (0, 1)

(2) Uz (fs) ≥ Uz (gs) for all s ∈ S implies Uz (f) ≥ Uz (g)
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Proof. Let {f, g} ⊂ H and b ∈ (0, 1). First, suppose f and g are not tied and let

Z
1
fg (b) := {z ∈ Z

∗
|Uz (fbg) ≥ min {Uz (f) , Uz (g)}}

By convexity,

0 = ρ (f, fbg)− ρ (f, (fbg) ∪ g)

= µ
∗
{z ∈ Z

∗
|Uz (f) ≥ Uz (fbg)} − µ

∗
{z ∈ Z

∗
|Uz (f) ≥ max (Uz (fbg) , Uz (g))}

= µ
∗
{z ∈ Z

∗
|Uz (g) > Uz (f) ≥ Uz (fbg)}

and by symmetric argument, µ∗ {z ∈ Z
∗|Uz (f) > Uz (g) ≥ Uz (fbg)} = 0. Since f and g are

not tied,

µ
∗
{z ∈ Z

∗
|Uz (f) = Uz (g)} = 0

so µ
∗
�
Z

1
fg (b)

�
= 1.

Now, suppose f and g are tied. Let fk ∈ H be such that fk → f and

u ◦ f = u ◦ fk + εk1

for εk > 0. Now, by C-linearity from Lemma 2B.8, Uz (f) > Uz (fk) for all z ∈ Z
∗ so

Uz (g) > Uz (fk) for all z ∈ Z
∗ as f and g are tied. Thus, g and fk are not tied, so by the

above, µ∗
�
Z

1
fkg

(b)
�
= 1 for all k. Now define

Z
1
fg (b) :=

�

k

Z
1
fkg

(b)

so µ
∗
�
Z

1
fg (b)

�
= 1. For z ∈ Z

1
fg (b), Uz (fkbg) ≥ min {Uz (fk) , Uz (g)} for all k so by the

continuity of Uz, Uz (fbg) ≥ min {Uz (f) , Uz (g)}.

Thus, for each b ∈ (0, 1), we can find a Z
1
fg (b) ⊂ Z

∗ such that µ
∗
�
Z

1
fg (b)

�
= 1 and

Uz (fbg) ≥ min {Uz (f) , Uz (g)} for all z ∈ Z
1
fg (b). Now, let Q(0,1) be all the rationals on

(0, 1) and

Z
1
fg :=

�

b∈Q(0,1)

Z
1
fg (b)
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Note that µ∗
�
Z

1
fg

�
= 1 and the continuity of Uz ensures that (1) is satisfied for all z ∈ Z

1
fg.

Finally, note that u (hs) = Uz (hs) for all h ∈ H and z ∈ Z
∗. Define

Z
2
fg := {z ∈ Z

∗
|Uz (f) ≥ Uz (g)}

if u (fs) ≥ u (gs) for all s ∈ S and Z
2
fg := Z

∗ otherwise. Let

Zfg := Z
1
fg ∩ Z

2
fg

First, suppose u (fs) ≥ u (gs) for all s ∈ S so

1 = µ
∗
{z ∈ Z

∗
|Uz (fs) ≥ Uz (gs)} = ρ (fs, gs)

for all s ∈ S. By S-monotonicity, 1 = ρ (f, g) = µ
∗
�
Z

1
fg

�
. Thus, µ∗ (Zfg) = 1 and both (1)

and (2) are satisfied for all z ∈ Zfg. Now, if there is some s ∈ S such that u (fs) < u (gs),

then Zfg = Z
1
fg so again µ

∗ (Zfg) = 1 and both (1) and (2) are satisfied for all z ∈ Zfg. Note

that in the case of the latter, (1) is trivially satisfied.

For K ∈ K, define

UK (f) := min
q∈K

q · (u ◦ f)

Lemma (2B.10). There is a K : Z → K for some Z ⊂ Z
∗ such that µ∗ (Z) = 1 and

ρF (f) = µ
∗
{z ∈ Z|UKz (f) ≥ UKz (g) ∀g ∈ F}

Moreover, f and g are tied iff UKz (f) = UKz (g) for all z ∈ Z.

Proof. Let Hq ⊂ H be a countable dense subset of H. For example, Hq could be the set of

all acts with rational lotteries. Let Zfg ⊂ Z
∗ be defined as in Lemma 2B.9 so µ

∗ (Zfg) = 1.

Let

Z0 :=
�

(f,g)∈Hq×Hq

Zfg

so µ
∗ (Z0) = 1. Let z ∈ Z0 and {f, g} ⊂ H. Since Hq is dense in H, we can find fk → f

and gk → g for (fk, gk) ∈ Hq ×Hq for all k. Since z ∈ Z0, both conditions of Lemma 2B.9
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are satisfied for all fk and gk. The continuity of Uz then ensures that both conditions are

again satisfied for f and g. Thus, all the conditions of Lemmas 2B.8 and 2B.9 are satisfied

for all z ∈ Z0. Note that they correspond exactly to the six axioms of maxmin expected

utility, so by Theorem 1 of Gilboa and Schmeidler [40], for each z ∈ Z0, there is a Kz ∈ K

and non-constant affine vz : ∆X → R such that

Uz (f) = φz

�
min
q∈Kz

q · (vz ◦ f)

�

for some increasing monotone transformation φz : R → R. By Lemma 2B.7 as µ∗ (Z0) = 1,

ρF (f) = µ
∗
{z ∈ Z

∗
|Uz (f) ≥ Uz (g) ∀g ∈ F}

= µ
∗

�
z ∈ Z0|min

q∈Kz

q · (vz ◦ f) ≥ min
q∈Kz

q · (vz ◦ g) ∀g ∈ F

�

Now, without loss of generality, assume vz
�
f
�
= 0 and vz

�
f
�
= 1 for all z ∈ Z0. For every

f ∈ Hc, we can find af ∈ [0, 1] such that f and faff are tied. Since minq∈Kz q · (vz ◦ f) =

vz (f), we have

1 = µ
∗
�
z ∈ Z0| vz (f) = vz

�
faff

�
= af

�

Let Zf := {z ∈ Z0| vz (f) = af} so µ
∗ (Zf ) = 1 for all f ∈ Hc. Define

Z1 := Z0 ∩

�

f∈Hc∩Hq

Zf

so µ
∗ (Z1) = 1. Moreover, by the continuity of vz, vz (f) = af for all z ∈ Z1 and f ∈ Hc. If

we fix a z1 ∈ Z1 and let v := vz1 , then

vz (f) = af = v (f)

for all z ∈ Z1. Thus, by Lemma 2B.2, v = αu+ β for some α > 0. Hence,

ρF (f) = µ
∗
{z ∈ Z1|UKz (f) ≥ UKz (g) ∀g ∈ F}

with µ
∗ (Z1) = 1.
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Finally, for {f, g} ⊂ H, define

Zfg := {z ∈ Z1|UKz (f) = UKz (g)}

Let H
f and H

g be the corresponding H
∗ for h

∗ = f and h
∗ = g respectively and let

(f ∗
, g

∗) ∈ H
f ×H

g be such that f ∗ and g
∗ are tied. Define

Z :=
�

(f,g)∈Hq×Hq

Zf∗g∗

Since f
∗ and g

∗ are tied iff µ
∗ (Zf∗g∗) = 1, we have µ

∗ (Z) = 1. Thus, from above,

ρF (f) = µ
∗
{z ∈ Z|UKz (f) ≥ UKz (g) ∀g ∈ F}

Note that UKz (f) = UKz (g) for all z ∈ Z implies f and g are tied. For the converse, suppose

f and g are tied and let z ∈ Z. Since we can always find f̂ ∈ Hq ∩ H
f and ĝ ∈ Hq ∩ H

g,

let f̂
∗ ∈ H

f and ĝ
∗ ∈ H

g be tied. As z ∈ Z, UKz

�
f̂
∗

�
= UKz (ĝ

∗). Thus, by C-linearity,

UKz (f) = UKz (g).

Theorem (2B.11). If ρ satisfies Axioms 2.1-2.7, then it is has a random ambiguity repre-

sentation.

Proof. First, note that if H∗ is degenerate, then Z ⊂ Z
∗ is a singleton and the result follows

trivially. Thus, assume H
∗ is not degenerate. Fix h

∗ ∈ H
∗ and let

�
h, h

�
:=

�
(h∗)− , (h∗)+

�

so u (h) < u
�
h
�
. Note that

1 = ρ (h∗
, h) = µ

∗
{z ∈ Z|UKz (h

∗) ≥ u (h)}

= ρ
�
h, h

∗
�
= µ

∗
�
z ∈ Z| u

�
h
�
≥ UKz (h

∗)
�

Thus, if we let

Ẑ :=
�
z ∈ Z| u (h) ≤ UKz (h

∗) ≤ u
�
h
��

then µ
∗

�
Ẑ

�
= 1.
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Now, for each z ∈ Ẑ, let λ : Ẑ → [0, 1] be such that

UKz (h
∗) = λzu

�
h
�
+ (1− λz) u (h)

Consider {x, y} ⊂ Ẑ such that λx ≤ λy so UKx (h
∗) ≤ UKy (h

∗). For f ∈ H, let h∗
ah0 be tied

with fbh for {a, b} ⊂ [0, 1] and h ∈
�
f, f

�
. By Lemma 2B.10 and C-linearity,

aUKz (h
∗) + (1− a) u (h0) = UKz (h

∗
ah0)

= UKz (fbh) = bUKz (f) + (1− b) u (h)

for all z ∈ Ẑ. Since UKx (h
∗) ≤ UKy (h

∗), we have UKx (f) ≤ UKy (f) for all z ∈ Ẑ and

f ∈ H. Thus, λx ≤ λy implies Ky ⊂ Kx for all {x, y} ⊂ Ẑ.

Hence Ky ⊂ Kx or Kx ⊂ Ky for all {x, y} ⊂ Ẑ. We can now let
�
K,K

�
⊂ K be such

that UK (f) = u (f+) and UK (f) = u (f−) for all f ∈ H. Let t : Ẑ → [0, 1] be such that

UKz (h
∗) = tzUK (h∗) + (1− tz)UK (h∗) = UtzK+(1−tz)K (h∗)

For f ∈ H, as before, let h := h
∗
ah0 be tied with g := fbh for {a, b} ⊂ [0, 1] and h ∈

�
f, f

�
.

Since h and g are tied, by Lemma 2B.6, (h−
, h

+) = (g−, g+) so UK (h) = UK (g) and

UK (h) = UK (g). Now, by C-linearity,

UKz (h) = UKz (h
∗
ah0) = aUKz (h

∗) + (1− a) u (h0)

= a (tzUK (h∗) + (1− tz)UK (h∗)) + (1− a) u (h0)

= tzUK (h) + (1− tz)UK (h)

Thus, by Lemma 2B.10,

UKz (g) = UKz (h) = tzUK (g) + (1− tz)UK (g)

By C-linearity again, UKz (f) = tzUK (f) + (1− tz)UK (f) = UKtz
(f) where Ktz := tzK +
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(1− tz)K. If we let µ := µ
∗ ◦ (Ktz)

−1 be the distribution on K induced by Ktz , then

ρF (f) = µ
∗

�
z ∈ Ẑ

���UKz (f) ≥ UKz (g) ∀g ∈ F

�

= µ {Kt ∈ KT |UKt (f) ≥ UKt (g) ∀g ∈ F}

Theorem (2B.12). If ρ has a random ambiguity representation, then it satisfies Axioms

2.1-2.7.

Proof. Let ρ be represented by (µ, u). We prove that it satisfies Axioms 2.1-2.7 in order.

(1) Note that for constant h and a ∈ (0, 1), UKt (fah) = aUKt (f) + (1− a)UKt (h) so

C-linearity follows immediately from the representation.

(2) Let Fk → F for {Fk, F} ⊂ D0 for all k. First, consider {f, g} ⊂ Fk such that f �= g

and suppose UKt (f) = UKt (g) µ-a.s. so f and g are tied. As ρ is monotone (see (6)

below), Lemma 2A.2 implies g ∈ fFk
contradicting the fact that Fk ∈ K0. Hence, as µ

is regular, UKt (f) = UKt (f) with µ-measure zero and the same holds for {f, g} ⊂ F .

Now, for G ∈ D, let

KG :=
�

{f,g}⊂G, f �=g

{Kt ∈ KT |UKt (f) = UKt (f)}

and let

K̂ := KF ∪

�

k

KFk

Thus, µ
�
K̂

�
= 0 so µ

�
K̄
�
= 1 for K̄ := KT\K̂. Let µ̄ (A) = µ (A) for A ∈ B (KT )∩ K̄.

Thus, µ̄ is the restriction of µ to K̄ (see Exercise I.3.11 of Çinlar [18]).

Now, for each Fk, let ξk : K̄ → H be such that

ξk (Kt) := argmax
f∈Fk

UKt (f)

and define ξ similarly for F . Note that both ξk and ξ are well-defined. For any
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B ∈ B (H),

ξ
−1
k (B) =

�
Kt ∈ K̄

�� ξk (Kt) ∈ B ∩ Fk

�

=
�

f∈B∩Fk

{Kt ∈ KT |UKt (f) > UKt (g) ∀g ∈ Fk} ∩ K̄ ∈ B (KT ) ∩ K̄

Hence, ξk and ξ are random variables with respect to B (KT ) ∩ K̄. Moreover,

µ̄ ◦ ξ
−1
k (B) =

�

f∈B∩Fk

µ̄
�
Kt ∈ K̄

��UKt (f) > UKt (g) ∀g ∈ Fk

�

=
�

f∈B∩Fk

µ {Kt ∈ KT |UKt (f) ≥ UKt (g) ∀g ∈ Fk}

= ρFk
(B ∩ Fk) = ρFk

(B)

so ρFk
and ρF are the distributions of ξk and ξ respectively. Finally, let Fk → F

and fix Kt ∈ K̄. Let f := ξ (Kt) so UKt (f) > UKt (g) for all g ∈ F . Since UKt is

continuous, there is some l ∈ N such that UKt (fk) > UKt (gk) for all k > l. Thus,

ξk (Kt) = fk → f = ξ (Kt) so ξk converges to ξ µ̄-a.s.. Since almost sure convergence

implies convergence in distribution (see Exercise III.5.29 of Çinlar [18]), ρFk
→ ρF and

continuity is satisfied.

(3) Suppose ρFs (fs) = 1 for all s ∈ S. Thus, u (fs) ≥ u (gs) for all g ∈ F and s ∈ S which

implies

UKt (f) = min
q∈Kt

q · (u ◦ f) ≥ min
q∈Kt

q · (u ◦ g) = UKt (g)

for all g ∈ F . Hence, ρF (f) = 1.

(4) Let {f, fah} ⊂ F for a ∈ (0, 1). Now,

ρF (f)− ρF∪h (f) =µ {Kt ∈ KT |UKt (f) ≥ UKt (g) ∀g ∈ F}

− µ {Kt ∈ KT |UKt (f) ≥ UKt (g) ∀g ∈ F ∪ h}

=µ {Kt ∈ KT |UKt (h) > UKt (f) ≥ UKt (g) ∀g ∈ F}
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Since fah ∈ F and UKt is concave, UKt (f) ≥ UKt (fah) implies

UKt (f) ≥ UKt (fah) ≥ aUKt (f) + (1− a)UKt (h)

so UKt (f) ≥ UKt (h) µ-a.s.. Thus, ρF (f) = ρF∪h (f).

(5) Let {f, g} ⊂ Hc be such that u (f) > u (g) as u is non-constant. Thus

ρ (g, f) = µ {Kt ∈ KT |UKt (g) ≥ UKt (f)} = 0

(6) Monotonicity follows immediately from the random utility representation.

(7) Note that

UKt (f) = tUK (f) + (1− t)UK (f) = UK (f) + t (UK (f)− UK (f))

Thus, if we let af := UK (f), bf := UK (f)−UK (f) and ν := µ ◦Kt be the measure on

T induced by Kt, then

ρF (f) = µ {Kt ∈ KT |UKt (f) ≥ UKt (g) ∀g ∈ F}

= ν {t ∈ T | af + bf t ≥ ag + bgt}

Note that since K ⊂ K, bf ≤ 0. Moreover, if f is constant, then bf = 0. Now, let

h and h
� be constant and suppose ρ (f, h) > ρ (g, h) = 0 and 1 = ρ (f, h�) > ρ (g, h�).

Thus, ah ≥ ag + bgt and af + bf t ≥ ah� ν-a.s. while af + bf t ≥ ah and ah� ≥ ag + bgt

with strictly positive ν-measure. Hence, ah > ah� and since bf ≤ 0 and bg ≤ 0, we have

af + bf t ≥ ag + bgt ν-a.s.. Thus, ρ (f, F ) ≥ ρ (g, F ) for all F ∈ D.

Theorem (2B.13). Let ρ and τ be represented by (µ, u) and (ν, v) respectively. Then the

following are equivalent

(1) (µ, u) = (ν, αv + β) for α > 0

(2) ρ = τ
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(3) ρ (f, g) = τ (f, g) for all {f, g} ⊂ H

Proof. Let ρ and τ be represented by (µ, u) and (ν, v) respectively. If (1) is true, then

ρF (f) = τF (f) for all f ∈ H from the representation. Moreover, since ρ (f, g) = ρ (g, f) = 1

iff τ (f, g) = τ (g, f) = 1 iff f and g are tied, the partitions {fF}f∈F agree under both ρ and

τ . Thus, Hρ
F = Hτ

F for all F ∈ D so ρ = τ and (2) is true. Note that (2) implies (3) trivially.

We now show that (3) implies (1). By Theorem 2B.12, ρ and τ both satisfy Axioms

2.1-2.7. Thus, by Lemma 2B.2, u = αv + β for α > 0. Without loss of generality, we can

assume 1 = u
�
f
�
= v

�
f
�
and 0 = u

�
f
�
= v

�
f
�
so u = v. Let H∗

ρ be defined for ρ. Note

that if H∗
ρ is degenerate, then ρ is deterministic and µ (K1) = 1 for some K1 ∈ K. By (3),

τ is also deterministic so ν (K2) = 1 for some K2 ∈ K. By the uniqueness properties of

maxmin expected utility (Theorem 1 of Gilboa and Schmeidler [40]), K1 = K2 so µ = ν.

Now, assume H
∗
ρ is not degenerate. Let h∗ ∈ H

∗
ρ so by (3), H∗ = H

∗
ρ = H

h∗
τ is also not

degenerate. Thus, let µ
∗ and ν

∗ be the measures induced on Z
∗ by µ and ν respectively.

Note that we can assume Z
∗ ⊂ ∆S and for any F ∈ D∗,

ρF (f) = µ
∗
{z ∈ Z

∗
| z · (u ◦ f) ≥ z · (u ◦ g) ∀g ∈ F}

τF (f) = ν
∗
{z ∈ Z

∗
| z · (u ◦ f) ≥ z · (u ◦ g) ∀g ∈ F}

By Ionescu-Tulcea’s extension (Theorem IV.4.7 of Çinlar [18]), we can create a probability

space on Ω with two independent random variables X : Ω → Z
∗ and Y : Ω → Z

∗ such that

they have distributions µ
∗ and ν

∗ respectively. For f ∈ H, let ψf : Z∗ → R be such that

ψr (z) := z · (u ◦ f). Let µ∗

f = µ
∗ ◦ ψ

−1
f and ν

∗

f = ν
∗ ◦ ψ

−1
f . Note that for a ∈ [0, 1], by (3),

µ
∗

f (−∞, a) = µ
∗
◦ ψ

−1
f (−∞, a) = µ

∗
�
z ∈ Z

∗
| z · (u ◦ f) ≤ u

�
faf

��

= ρ
�
f, faf

�
= τ

�
f, faf

�
= ν

∗

f (−∞, a)
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so µ
∗

f = ν
∗

f for all f ∈ H. Now, for all f ∈ H,

E
�
e
−(u◦f)·X

�
=

�

Z∗
e
−(u◦f)·z

µ
∗ (dz) =

�

[0,1]

µ
∗

f (da) e
−a

=

�

[0,1]

e
−a
ν
∗

f (da) =

�

Z∗
e
−(u◦f)·z

ν
∗ (dz) = E

�
e
−(u◦f)·Y

�

Since this is true for all f ∈ H, we have E
�
e
−w·X

�
= E

�
e
−w·Y

�
for all w = u ◦ f ∈ [0, 1]S.

As Laplace transforms completely characterize distributions (see Exercise II.2.36 of Çinlar

[18]), X and Y have the same distribution, so µ
∗ = ν

∗. Thus,

µ = µ
∗
◦ (Ktz)

−1 = ν
∗
◦ (Ktz)

−1 = ν

so (1) is true. Thus, (1), (2) and (3) are all equivalent.

Proposition (2B.14). Let ρ and τ be represented by (µ, u) and (ν, v) respectively. Then ρ

is more uncertainty averse than τ iff ν � µ and u = α + βv for β > 0.

Proof. We first show necessity. Assume u = v without loss of generality and ν � µ. If

f �∈ F , then ρF (f) = τF (f) = 0 trivially so assume f ∈ F for some f ∈ Hc. Now

ρF (f) = µ {Kt ∈ KT | u (f) ≥ UKt (g)} = 1− µ {K ∈ K|K ⊂ Kt̄}

for some t̄ ∈ [0, 1]. Since µ � ν, ν {K ⊂ Kt̄} ≥ µ {K ⊂ Kt̄} so

τF (f) = 1− ν {K ⊂ Kt̄}

≤ 1− µ {K ⊂ Kt̄} = ρF (f)

so ρ is more uncertainty averse than τ .

Now assume ρ is more uncertainty averse than τ . Suppose u �= α + βv for β > 0 so we

can find {f, g} ⊂ Hc such that τ (f, g) = τ (g, f) = 1 but 0 = ρ (f, g) < ρ (g, f) = 1. Thus

ρ (f, g) ≥ τ (f, g) contradicting the fact that ρ is more uncertainty averse than τ . Hence, we

can assume u = v without loss of generality. Set L ∈ K and let

t̄ := sup {t ∈ T |Kt ⊂ L}
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Note that

{Kt ∈ KT |Kt ⊂ Kt̄} = {Kt ∈ KT | t ≤ t̄} ⊂ {Kt ∈ KT |Kt ⊂ L}

If Kt ∈ {Kt ∈ KT |Kt ⊂ L}, then t ≤ t̄ so Kt ∈ {Kt ∈ KT |Kt ⊂ Kt̄}. Thus,

{K ⊂ L} = {Kt ∈ KT |Kt ⊂ Kt̄}

Now, for K ∈ K, let

S (K, v) := K ∩

�
q ∈ ∆S|min

p∈K
p · v = q · v

�

denote the support set of K at v ∈ [0, 1]S. Let

S (K) :=
�

v∈[0,1]S

S (K, v)

be the union of all the support sets of K. Fix h0 := f
1
2f and for each q ∈ S (Kt̄), let fq ∈ H

be such that

UKt̄
(fq) = q · (u ◦ fq) = u (h0)

Let F := {fq ∈ H| q ∈ S (Kt̄)} and let F0 ⊂ F be a countable dense subset of F . Now, we

can find Fk ⊂ F and Fk ∈ D such that Fk ⊂ Fk+1 and Fk � F0. Thus,

ρ (h0, Fk) = µ {Kt ∈ KT |UKt̄
(f) = u (h0) ≥ UKt (f) ∀f ∈ Fk}

≥ τ (h0, Fk) = ν {Kt ∈ KT |UKt̄
(f) = u (h0) ≥ UKt (f) ∀f ∈ Fk}

For G ⊂ H, let

KG := {Kt ∈ KT |UKt̄
(f) < UKt (f) ∀f ∈ G}

so µ (KFk
) ≤ ν (KFk

) for all k. Since G ⊂ G
� implies KG� ⊂ KG, Fk � F0 implies KFk

� KF0

so

µ (KF0) = lim
k

µ (KFk
) ≤ lim

k
ν (KFk

) = ν (KF0)
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Since F0 is dense in F and UKt is continuous, we have µ (KF ) ≤ ν (KF ). Hence, from above,

µ {K ⊂ L} = µ {Kt ∈ KT |Kt ⊂ Kt̄}

≤ ν {Kt ∈ KT |Kt ⊂ Kt̄} = ν {K ⊂ L}

so ν � µ.
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3 Belief Persistence and the Disposition Effect

3.1 Introduction

One of the most robust findings in behavioral finance is the disposition effect. This refers

to the tendency of individual investors to oversell stocks that have gone up in value (i.e.

price) and to undersell stocks that gone down. Although suboptimal, this behavior has been

well-documented in many situations and in various markets around the world.46 Moreover,

similar observations have also been recorded in other contexts, such as the housing market

or in the exercise of executive stock options.47

In this chapter, we consider a belief-based explanation for the disposition effect. In par-

ticular, we study a model of heterogeneous beliefs where beliefs differ only along a single

dimension measuring persistence. For example, some agents may believe that earnings infor-

mation from this quarter will be highly correlated with earnings information from the next

quarter (high persistence). On the other hand, others may believe that the earnings informa-

tion from both quarters are completely uncorrelated (no persistence). In equilibrium, agents

who believe in the least persistence decrease their holdings of the stock when prices rise and

increase their holdings when prices fall; in essence, they exhibit the disposition effect. On

the other hand, those who believe in the most persistence exhibit the opposite behavior;

they employ a trading strategy based on stock price momentum and exhibit a form of the

house-money effect.48

To be concrete, suppose that institutional investors pay close attention to certain financial

indicators after each earnings release which they believe to be highly correlated with future

earnings information. Individual investors on the other hand, believe these indicators to be

noisy and ignore them when placing their trades. In equilibrium, our model predicts that

46 Studies by Odean [66] in the U.S., Grinblatt and Keloharju [45] in Finland and Feng and Seasholes [32]
in China confirm that the disposition effect is a global phenomenon that transcends both institutional and
cultural divisions.

47 See Genesove and Mayer [38] and Heath, Huddart and Lang [49] respectively.
48 The house-money effect refers to the tendency of gamblers to increase their bets after a gain and to

decrease their bets after a loss (see Thaler and Johnson [79]).

140



individual investors will exhibit the disposition effect while institutional investors will engage

in momentum trading.49

Much of the existing research has focused on providing a preference-based explanation to

rationalize the disposition effect.50 Our results show that by introducing belief heterogeneity

in a model with equilibrium trading, we can obtain behavior that exhibits the disposition

effect while still retaining the standard assumption of expected utility preferences. While our

approach does not insist that a belief-based equilibrium model is the only explanation for the

disposition effect, it does suggest that in many cases, a careful study of the disposition effect

should also take into account investor beliefs and how they interact with equilibrium forces.

We leave the more practical exercises of testing different explanations of the disposition effect

as avenues for future research.

Formally, we consider a simple two-period model where agents form beliefs about the

state space S in each period. For example, S could represent all the financial information

available after each earnings release. We assume that agents share the same correct prior

about S, but have different beliefs about the transition probabilities between the two time

periods. We model these beliefs as Markov kernels on S. For example, some agents may

believe that state realizations in the two periods are highly correlated (i.e. high persistence)

while others may believe that there is little correlation (i.e. low persistence). We say that

the distribution of beliefs in a population has a persistence representation iff each agent’s

belief corresponds to a Markov kernel

K = λK + (1− λ)K

where K is the constant kernel, K is some other fixed kernel and λ ∈ [0, 1]. Thus, all agents

in the population can be parametrized by some λ ∈ [0, 1] measuring each agent’s belief of

state persistence. For example, an agent with λ = 0 believes in zero persistence. In the case

49 This is somewhat consistent with the empirical evidence suggesting that the disposition effect is much
more pronounced for investors who are financially less sophisticated (see Dhar and Zhu [22] for example).

50 See Barberis and Xiong [5], Strahilevitz, Odean and Barber [77] and Barberis and Xiong [6] for expla-
nations based on prospect theory, emotional regret and realization utility respectively.
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where S is finite, K is simply the λ-mixture of the two matrices K and K. Note that this is

not a model of asymmetric information; after the first period, all agents observe the realized

state s ∈ S but form their own individual beliefs about what that means for second period

state realizations.

We consider an equilibrium where agents trade claims to two securities: a risky “stock”

that yields a payoff contingent on the realization of the state s ∈ S and a risk-free “bond”

that yields the same payoff regardless of which state is realized. To simplify the exposition,

we assume that all agents have the same endowment in each state and that they share the

same CARA utility index. An equilibrium is ordered iff all agents can be ranked according to

the degree of disposition effect they exhibit. Our first main result shows that any equilibrium

under a persistence representation is ordered. In this case, those who believe in the least

persistence (i.e. smallest λ) exhibit the disposition effect while those who believe in the most

persistence (i.e. largest λ) exhibit the opposite behavior (i.e. momentum trading or a form

of the house-money effect). Thus, in our model, the disposition effect emerges as equilibrium

behavior induced by belief heterogeneity.

We then study a special case where beliefs are Gaussian. There are two distinct groups

in the population: the first group believes that states are independent and identically dis-

tributed (i.i.d.) while the second believes that states are correlated. This CARA-Gaussian

setup is easily tractable and allows for simple expressions for both prices and trading strate-

gies. In equilibrium, a simple inequality characterizes when stock prices will increase (or

decrease) and when agents in the first group (i.e. those who believe in no persistence) will

decrease (or increase) their stock holdings. We then proceed to analyze some of the com-

parative statics. We show that increasing the proportion of agents in the second group (i.e.

those who believe in persistence) will inflate prices in “good” states (i.e. states where prices

rise) and deflate prices in “bad” states (i.e. states where prices fall). Thus, introducing be-

lief heterogeneity in our model does not uniformly increase prices and may result in greater

dispersion (i.e. higher volatility) of stock prices.
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Lastly, we consider the uniqueness properties of the persistence representation. In general,

beliefs in a population are not uniquely specified given equilibrium prices and strategies.

However, by varying the payoffs of the stock and observing the resulting equilibrium behavior,

we can completely identify the distribution of beliefs in a population.51 We show that without

loss of generality, beliefs in a population has a persistence representation if and only if any

equilibrium is ordered by the same disposition ranking over agents. In other words, for any

other representation, there exists some stock where the disposition ranking is reversed in

some states. One agent exhibits a greater disposition effect than another agent under one

equilibrium but not in another. Thus, the persistence representation is the only distribution

of beliefs that permits a consistent disposition ranking of agents in all equilibria. This is

a complete characterization of the persistence representation. It also allows us to equate

observable equilibrium prices and trading strategies with the unobservable beliefs of agents

in a population.

This chapter is related to a long literature on the disposition effect. Shefrin and Statman

[76] first used the term the “disposition effect” to describe this behavior. Odean [66] provided

the first comprehensive study of the disposition effect and ruled out various explanations

including portfolio re-balancing, trading costs and tax considerations. Other studies include

Grinblatt and Keloharju [45] in Finland and Feng and Seasholes [32] in China. Weber and

Camerer [81] demonstrated that the effect is robust even in experimental studies where

subjects behave in a manner inconsistent with Bayesian updating. Barberis and Xiong [5]

illustrated that under certain parametric assumptions, the prospect theory of Kahneman

and Tversky [51] could explain the disposition effect although under other assumptions the

theory predicts the opposite effect. Other preference-based explanations include emotional

regret by Strahilevitz, Odean and Barber [77] and realization utility by Barberis and Xiong

[6]. In contrast, our belief-based model can be viewed as the “dual” approach to addressing

the disposition effect, analogous to how the dual theory of Yaari [82] addresses violations of

51 This approach is similar in spirit to that of Savage [73] where one varies the state-contingent payoffs
(i.e. “acts”) to uniquely identify beliefs under individual decision-making.
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expected utility under individual decision-making.

This chapter also fits in the large literature on heterogeneous beliefs. Harrison and Kreps

[48] introduce belief heterogeneity to obtain speculative pricing. Morris [62] relates belief

heterogeneity with short-term IPO overpricing while Scheinkman and Xiong [74] study het-

erogeneous beliefs with Gaussian learning. Eyster and Piccione [30] consider a model where

agents have incomplete knowledge but are all convinced about their own “theories” about

how states transition. In all these models, risk-neutrality and the absence of short-selling of

the risky security imply that belief heterogeneity generates inflated prices. In contrast, our

model allows for both risk-aversion and short-selling. As a result, the implications on prices

are more subtle as demonstrated in our Gaussian special case.

3.2 The Persistence Representation

Let S be a Polish space and let Π be the set of all probability measures on (S,F). Consider a

simple two-period model S×S. We assume that all agents share the same prior belief p ∈ Π

on S at time 0. However, after the realization of some s ∈ S at time 1, agents update their

beliefs differently and may have various posterior beliefs about the realization of s ∈ S at

time 2. For example, S could represent earnings information about a company where agents

differ in their beliefs about how correlated earnings are over time.

Formally, we model these conditional beliefs as Markov kernels K : S × F → [0, 1] that

have p as the invariant measure.52

Definition. The Markov kernel K : S × F → [0, 1] is p-invariant iff Ks is absolutely

continuous with respect to p and for all A ∈ F

p (A) =

�

S

p (ds)Ks (A)

52 Given p ∈ Π and measurable f : S → R, we use the notation
�
S p (ds) f (s) to denote its integral if it

exists.
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If K is p-invariant, then each Ks has a density κs with respect to p. In what follows,

almost surely (a.s.) always mean almost surely with respect to the measure p.53 We say that

a p-invariant Markov kernel exhibits persistence iff the conditional density of the same state

occurring is greater than unity.

Definition. K exhibits persistence iff κs (s) ≥ 1 a.s.

For example, if S is finite, then persistence implies that Ks {s} ≥ p {s} for all s ∈ S.

In other words, after observing the realization of s ∈ S at time 1, all agents increase their

beliefs about s ∈ S occurring again at time 2.

Let K denote the set of all p-invariant kernels that exhibit persistence. Since we are

interested in beliefs that differ only in the degree of persistence they exhibit, we only consider

kernels in K. One extreme example is the constant kernel K ∈ K such that Ks = p for all

s ∈ S. Thus, K corresponds to believing that realizations of s ∈ S in both time periods

are completely independent and identically distributed (i.i.d.). This is an example of zero

persistence.

Consider a population with heterogeneous beliefs about persistence. Formally, we model

this as a probability measure µ on K with finite support. Each K ∈ K such that µ {K} > 0

represents the belief of an agent (or group of agents with the same belief) in the population.

A persistence representation is a linear one-dimensional parametrization of the degree of

persistence in the population.

Definition. µ has a persistence representation iff there is some K ∈ K such that for all

µ {K} > 0, there is some λ ∈ [0, 1] where a.s.

K = λK + (1− λ)K

Under a persistence representation, each agent’s belief K ∈ K is characterized by a

parameter λ ∈ [0, 1] which specifies the level of persistence of S over time. For example, if λ =

53 This is without loss of generality since we only consider measures that are absolutely continuous with
respect to p.
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0, then K = K is the constant kernel and there is no persistence. Note that µ is completely

characterized by a scalar distribution on [0, 1] representing persistence. Hence, beliefs in

the population are heterogeneous only along this dimension measuring the persistence level

of realizations of S. Note that the model is completely agnostic as to what beliefs should

be, that is, the true distribution of states are irrelevant. Moreover, there is no asymmetric

information. For example, an agent with belief K also observes realizations of S in time 1

but believes they are irrelevant and chooses to ignore them.

We end this section with two examples of persistence representations.

Example 3.1. Let S = {s1, s2, s3}, p =
�
1
3 ,

1
3 ,

1
3

�
and K be the identity matrix. Note that

pK = p so K is p-invariant. Also, for all s ∈ S,

Ks {s}

p {s}
= 3 ≥ 1

so K ∈ K. In fact, K is the identity kernel representing full persistence. Let K := 1
2K + 1

2K

and

µ : =
1

3
δK +

1

3
δK +

1

3
δK

Thus, µ is a persistence representation with equal masses on three beliefs of increasing

persistence: K, K and K.

Example 3.2 (Gaussian Case). Let S = R and suppose that an agent believes that the

joint distribution on S × S is Gaussian (or normal). Let p be a Gaussian distribution with

mean m and variance σ
2. If we let τ be the correlation coefficient, then for s ∈ S, Ks is

Gaussian with mean m (1− τ) + τs and variance (1− τ
2) σ2. Thus,

p (ds�)κs (s
�) = Ks (ds

�) = ds
�

1

σ
�
2π (1− τ 2)

e
−
(s�−m(1−τ)−τs)2

2(1−τ2)σ2

Note that

p (ds�) = ds
�

1

σ
√
2π

e
−
(s�−m)2

2σ2
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Hence, for s = s
�, we have

κs (s) =
1

√
1− τ 2

e
( s−m

σ )
2 τ
1+τ ≥ 1

iff τ ≥ 0. Thus, K ∈ K. Let K = K and µ := 1
2δK + 1

2δK̄ . This represents a population

where half of the agents believe that realizations of S over time are completely uncorrelated

while the other half of agents believe that realizations of S over time are correlated with

correlation τ ≥ 0.

3.3 Trading Equilibrium

We now consider the trading equilibrium for a population with beliefs distributed according

to µ. Let I ⊂ N be finite and for each i ∈ I, let Ki ∈ K be such that µ {Ki} > 0. Thus,

each i ∈ I represents an agent (or group of agents) with belief Ki ∈ K about the realization

of S in both time periods.

Let Z0 denote the set of all bounded and measurable z : S → R+. We interpret each

z ∈ Z0 as a security that gives payoff z (s) if s ∈ S is realized. For example, 1 ∈ Z0 and we

call this risk-free security that pays one unit in every s ∈ S a “bond”. Let Z denote the set

of all securities that have non-zero variance.54 We call any z ∈ Z a “stock” and note that

1 �∈ Z.

Fix some stock z ∈ Z. Consider a trading equilibrium where at time 0, agents trade

claims to both the stock and bond. We let s0 �∈ S represent the initial state at time 0 and

S0 := {s0}∪S. The price density be given by a measurable function ψ : S0 → R2. For s ∈ S0,

we interpret ψ0 (s) and ψ1 (s) as the price densities for the bond and stock respectively. Note

that ψ (s0) is the price vector for both the stock and the bond at time 0.

Let Θ denote the set of all measurable functions θ : S0 → R2. Each θ ∈ Θ represents a

54 That is, the variance of z with respect to the measure p. Note that this is equivalent to requiring that
z is not constant a.s..
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trading strategy. For s ∈ S0, we interpret θ0 (s) and θ1 (s) as the holdings for the bond and

stock respectively. As before, θ (s0) represents the initial holdings for both the stock and the

bond at time 0.

Given a price ψ, the pricing functional Ψ : Θ → R is given by

Ψ (θ) := ψ (0) · θ (0) +

�

S

p (ds)ψ (s) · θ (s)

for all θ ∈ Θ. Hence, Ψ (θ) specifies the total price for executing the trading strategy θ ∈ Θ.

We assume that agents have constant endowment 1 in all states. Thus, the budget set given

price ψ is

B (ψ) := {θ ∈ Θ | Ψ(θ) ≤ Ψ(1)}

Let u be a CARA utility index with constant risk aversion ρ > 0 and let δ ∈ (0, 1) denote

the discount rate.55 We let z := (1, z) denote the asset vector. The utility of an agent with

belief K ∈ K is given by the function UK : Θ → R where

UK (θ) :=

�

S

p (ds) u (θ (s0) · z (s)) + δ

�

S

p (ds)

�

S

Ks (ds
�) u (θ (s) · z (s�))

Thus, an agent with belief K ∈ K and chooses trading strategy θ ∈ Θ obtains utility UK (θ).

We say θ ∈ B (ψ) is optimal for K ∈ K iff UK (θ) ≥ UK (θ�) for all θ� ∈ B (ψ). For i ∈ I, we

let θi ∈ B (ψ) be optimal for Ki ∈ K.

An allocation is a probability ν on Θ. We let (ψ, ν) denote the price and allocation pair.

We now define an equilibrium given a stock z and a distribution of beliefs µ as follows.

Definition. (ψ, ν) is an equilibrium for (z, µ) iff ν {θi} = µ {Ki} for all i ∈ I and a.s.

�

i∈I

ν
�
θ
i
�
θ
i (s) = 1

Thus, in an equilibrium, all agents elect their optimal strategies and all claim markets

clear. Note that since µ has finite support, ν must also have finite support on Θ.

Given a price ψ, we can consider the normalized price density ψ̄ : S0 → R such that for

55 The CARA utility index is given by u (x) = −e
−ρx for some ρ > 0.
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all s ∈ S0

ψ̄ (s) :=
ψ1 (s)

ψ0 (s)

The normalized price density gives the relative price of the stock to the bond in every

realization of s ∈ S.56 We interpret this as the interest-adjusted price of the stock.

We now address the behavioral characteristics of an equilibrium. Let � be a complete

binary relation on I.

Definition. An equilibrium (ψ, ν) is ordered by � iff a.s. the following are equivalent:

(1) i � j

(2) ψ̄ (s0) ≥ ψ̄ (s) iff θ
i
1 (s) ≥ θ

j
1 (s)

We say an equilibrium is ordered iff it is ordered by some �. To illustrate this definition,

consider two agents i and j such that i � j. Now, in all states where the normalized price

decreases (increases), agent i has greater (less) stock holdings than agent j. In other words,

agent i exhibits a greater disposition effect than agent j. If an equilibrium is ordered, then

this ranking on I is complete. In other words, all agents can be ranked according to the

degree of disposition effect that they exhibit. Note that this is a behavioral characterization

of the equilibrium that is completely observable.

Theorem 3.1 below asserts that every µ with a persistence representation has an ordered

equilibrium.

Theorem 3.1. If µ has a persistence representation, then any equilibrium of (z, µ) is ordered

by some �. Moreover, λi ≤ λ
j iff i � j for all {i, j} ⊂ I.

Proof. See Appendix.

In an equilibrium where µ has a persistence representation, agents who exhibit the great-

est disposition effect are exactly those who have beliefs that exhibit the least persistence.

This is because at time 0, all agents share the same prior on S so they all hold the same

56 Lemma 3A.1 in the Appendix ensures that we can always define ψ̄ without loss of generality.
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amount of the stock. In states where the price of the stock increases (decreases), the agent

with the least persistent belief holds the most (least) amount of stock in equilibrium. Market

clearing ensures that this agent exhibits the disposition effect.

On the other hand, agents with beliefs that have the greatest persistence exhibit the

opposite of the disposition effect. They increase stock holdings when prices rise and decrease

holdings when prices fall. Thus, they trade based on stock price momentum. Note that this

is exactly the house-money effect if we consider the limit case where prices are constant.57

Agents who believe in any state persistence increase holdings of the stock after “good”

realizations of s ∈ S and decrease their holdings after “bad” realizations.

3.4 Special Case: Gaussian Beliefs

In this section, we consider a special case where beliefs are Gaussian. Let S = R and assume

that p is Gaussian with mean m and variance σ
2
> 0. Recall from Example 3.2 that if we

let τ ∈ (−1, 1) be the correlation coefficient between the two periods, then for every s ∈ S,

Ks is Gaussian with mean m (1− τ) + τs and variance (1− τ
2) σ2.

Definition. K ∈ K is Gaussian iff there is some τ ≥ 0 such that Ks is a Gaussian distribu-

tion with mean m (1− τ) + τs and variance (1− τ
2) σ2.

Note that the constant kernel K ∈ K is Gaussian with τ = 0. Suppose that the measure

µ only puts strictly positive mass on the constant kernel K and some other Gaussian kernel

K ∈ K. We call such a µ simple Gaussian.

Definition. µ is simple Gaussian iff there is some Gaussian K ∈ K and α ∈ [0, 1] such that

µ = (1− α) δK + αδK

Thus, a population with a simple Gaussian µ consists of agents (α proportion) who

believe in that S is correlated with coefficient τ while the rest (1−α proportion) believe that

57 For example, by assuming that µ {K} → 1.
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there is no correlation. Note that µ is trivially a persistence representation. Moreover, since

mixtures of Gaussian distributions are in general not Gaussian, any µ that has a persistence

representation and only puts weight on Gaussian beliefs must be simple Gaussian.

Now, suppose the stock is given by z (s) = s. In other words, payoffs are increasing in

s ∈ S. The Proposition below characterizes the equilibrium prices and strategies for the

stock.

Proposition 3.1. Let µ be simple Gaussian and θ be the equilibrium strategy for K ∈ K.

Then for all s ∈ S,

ψ̄ (s) =
ατ (s− (1− τ)m) + (1− τ

2) (m− ρσ
2)

1− (1− α) τ 2

θ1 (s) =
ρσ

2 + (s−m) (1− α) τ

ρ (1− (1− α) τ 2) σ2

Proof. See Appendix.

This immediately implies the following corollary below.

Corollary 3.1. Let µ be simple Gaussian and θ be the equilibrium strategy for K ∈ K. Then

the following are equivalent for all s ∈ S.

(1) s ≥ m− τρσ
2

(2) ψ̄ (s) ≥ ψ̄ (s0)

(3) θ1 (s) ≤ θ1 (s0)

Proof. See Appendix.

Corollary 3.1 provides a very precise illustration of Theorem 3.1. A realization s ∈ S at

time 1 is considered “good” for the stock iff s ≥ m − τρσ
2 and the price density increases.

In this case, agents who believe that is no persistence (τ = 0) decrease their holdings of

the stock. Vice-versa, a realization s ∈ S at time 1 is considered “bad” for the stock

iff s ≤ m − τρσ
2, the price density decreases and the agents who believe in no persistence
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increase their holdings. This is exactly the disposition effect in this special case with Gaussian

beliefs.

Corollary 3.2 below summarizes some comparative statistics of pricing in this model.

Corollary 3.2. If µ is simple Gaussian, then

(1) ψ̄ is increasing in α iff s ≥ m− τρσ
2

(2) ψ̄ is decreasing in ρ

Proof. Follows directly from Proposition 3.1.

Thus, as more agents believe in persistence, the stock prices increase under “good” states

and decrease under “bad” states. In other words, increasing the relative mass of agents in

the population who believe in persistence results in prices that are more dispersed. This is in

contrast to many other models of heterogeneous beliefs where introducing belief heterogeneity

uniformly increases prices. In our model, risk aversion and the absence of any short-sale

constraints result in a more subtle interaction between belief heterogeneity and prices. Note

that on the other hand, increasing risk aversion uniformly lowers stock prices.

3.5 Characterization and Uniqueness

In this section, we consider the uniqueness properties of persistence representations. First,

note that we can also view each kernel K ∈ K as an operator K : Π → Π where for any

q ∈ Π, K (q) ∈ Π is the measure that satisfies

(K (q)) (A) =

�

S

q (ds)Ks (A)

for all A ∈ F . Since K is p-invariant, p is a fixed point of this operator. We say K is generic

iff the operator is injective. If S is finite, then this is equivalent to requiring that all Ks are

linearly independent. Thus, in this case, an agent with a generic kernel possesses conditional
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beliefs with enough persistence that they span the entire probability simplex. For example,

the matrix corresponding to the kernel K in Example 3.1 is invertible so K is generic. We

say µ is generic iff it puts strictly positive mass on some generic kernel.

Definition. µ is generic iff µ {K} > 0 for some generic K ∈ K.

If µ is generic, then there is at least some non-trivial proportion of agents in the population

we exhibit enough variation and persistence in beliefs. The following is an example of a non-

generic µ.

Example 3.3. Let S = {s1, s2, s3}, p =
�
1
3 ,

1
3 ,

1
3

�
and

K :=





2
3

1
6

1
6

1
3

1
3

1
3

0 1
2

1
2





Note that pK = p so K is p-invariant. Also, for all s ∈ S,

Ks {s}

p {s}
∈

�
2, 1,

3

2

�

so K is persistent and K ∈ K. However, note that K is not an invertible matrix so it is not

generic. This is because an agent with belief K does not update her beliefs if s2 occurs. If

we let

µ : =
1

2
δK +

1

2
δK

then µ is not generic.

Fix some z ∈ Z and consider the equilibrium (ψ, ν) for some (z, µ). Clearly, there are

cases where we can find some other µ� such that (ψ, ν) is also the equilibrium for (z, µ�). In

other words, µ is not unique given its equilibrium. However, suppose we were able to vary

the security z and observe the equilibria for (z, µ) for each z ∈ Z. We say all the equilibria

of µ are ordered by some � iff � ranks all agents by the degree of disposition effect they

exhibit for all z ∈ Z.
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Definition. The equilibria of µ are ordered by � iff a.s. for all z ∈ Z, the following are

equivalent:

(1) i � j

(2) ψ̄ (0) ≥ ψ̄ (s) iff θ
i
1 (s) ≥ θ

j
1 (s)

As before, we say that equilibria of µ are ordered iff it is ordered by some �. Theorem

3.2 below asserts that persistence representations are the only representations that ensure

that all equilibria of µ are ordered by the same �.

Theorem 3.2. The equilibria of a generic µ are ordered iff µ has a persistence representa-

tion.

Proof. See Appendix.

Thus, if µ is generic, then observing a consistent disposition ranking � for all equilibria

completely characterizes persistence representations. For any other representation of µ,

we can find some z ∈ Z such that the disposition ranking is violated. This allows us to

completely identify the unobservable µ with observable characteristics of equilibrium prices

and strategies. By varying the stock payoffs z ∈ Z, we can uniquely pin down the distribution

of beliefs in the population.

3.6 Summary

We introduce a model where beliefs are heterogeneous along a single dimension measuring

persistence. In equilibrium, agents can all be ordered by the degree of disposition effect they

exhibit. In particular, those who hold the most persistent beliefs exhibit the disposition

effect while those who hold the least persistent beliefs engage in momentum trading (a form

of the house-money effect). Although we only consider a simple two-period trading model,

our results could be generalized to a dynamic infinite-period setup with Markov trading

strategies.
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Appendix 3A

In this appendix, we prove the main results for the model.

Lemma (3A.1). If (ψ, ν) is an equilibrium for (z, µ), then ψ0 (s0) > 0 and ψ0 (s) > 0 a.s.

Proof. Consider K ∈ K such that µ {K} > 0 and let θ ∈ Θ be optimal for K. First,

suppose ψ0 (s0) ≤ 0 and consider θ̂ ∈ Θ such that θ̂ (s) = θ (s) for all s ∈ S and θ̂ (s0) =

(θ0 (s0) + ε, θ1 (s0)) for some ε > 0. Now,

Ψ
�
θ̂

�
= ψ0 (s0) ε+Ψ(θ) ≤ Ψ(1)

so θ̂ ∈ B (ψ). Since u is CARA,

UK

�
θ̂

�
− UK (θ) =

�

S

p (ds) [u (θ (s0) · z (s) + ε)− u (θ (s0) · z (s))]

=
�
e
−ρε

− 1
� �

S

p (ds) u (θ (s0) · z (s))

Since z is bounded, UK

�
θ̂

�
> UK (θ) contradicting the fact that θ is optimal. Hence,

ψ0 (s0) > 0.

Define

E := {s ∈ S | ψ0 (s) ≤ 0}

and suppose p (E) > 0. Let θ̂ ∈ B (ψ) be such that θ̂ (s) = θ (s) if s ∈ {s0} ∪ (S\E) and

θ̂ (s) = (θ0 (s) + ε, θ1 (s)) if s ∈ E for some ε > 0. Now,

Ψ
�
θ̂

�
= Ψ(θ) + ε

�

E

p (ds)ψ0 (s) ≤ Ψ(1)

so θ̂ ∈ B (ψ). Again, as u is CARA,

UK

�
θ̂

�
− UK (θ) = δ

�
e
−ρε

− 1
� �

E

p (ds)

�

S

Ks (ds
�) u (θ (s) · z (s�))

Let

ζ (s) :=

�

S

Ks (ds
�) u (θ (s) · z (s�))
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and note that since z is bounded, ζ (s) < 0 for all s ∈ S. For η > 0, let

Eη := {s ∈ E | ζ (s) < −η}

Now, for all η > 0, �

E

p (ds) ζ (s) ≤ −p (Eη) η

Suppose p (Eη) = 0 for all η > 0. As η → 0, Eη � E so p (Eη) → p (E) > 0 a contradiction.

Thus, ∃η > 0 such that p (Eη) > 0 so
�
E p (ds) ζ (s) < 0. Hence, UK (b) > UK (a) again

contradicting the optimality of θ. We thus have ψ0 (s) > 0 a.s..

Lemma 3A.1 ensures that we can define the normalized price density ψ̄ : S0 → R such

that

ψ̄ (s) :=
ψ1 (s)

ψ0 (s)

For ease of notation, we let Eq denote the expectation operator with respect to the measure

q ∈ Π. For q = K
i
s, we let Ei

s := EKi
s . Let Π0 be the set of probability measures on S

absolutely continuous with respect to p. Note that by definition, K ∈ K implies Ks ∈ Π0

for all s ∈ S. Fix z ∈ Z and let ξ : Π0 × R → R be such that

ξ (q, a) :=
Eq [u (az) z]

Eq [u (az)]

Note that since z is bounded and u is CARA, Eq [u (az)] < 0 so ξ is well-defined.

Lemma (3A.2). Fix z ∈ Z.

(1) ξ is strictly decreasing in a

(2) lima→∞ ξ (q, a) = sups∈S z (s) and lima→−∞ ξ (q, a) = infs∈S z (s)

(3) If ξ (q, a) = ξ (r, a), then ξ (λq + (1− λ) r, a) = ξ (q, a) for all λ ∈ [0, 1].

Proof. Fix z ∈ Z. We prove the lemma in order.

(1) Since u is CARA,
∂u (az)

∂a
= u

� (az) z = −ρu (az) z
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As z is bounded, by Theorem 16.8 of Billingsley [9], ξ is differentiable in a and

∂ξ

∂a
= −ρ

Eq [u (az) z2]

Eq [u (az)]
+ ρ

�
Eq [u (az) z]

Eq [u (az)]

�2

For a ∈ R, define qa ∈ Π such that

qa (A) :=
Eq [1Au (az)]

Eq [u (az)]

for all A ∈ F . Now,

∂ξ

∂a
= ρ (Eqa [z])2 − ρEqa

�
z
2
�
= −ρEqa

�
(z − Eqa [z])2

�
≤ 0

If the last inequality is an equality, then z = Eqa [z] a constant qa-a.s.. Note that since

q ∈ Π0, p (A) = 0 implies q (A) = 0 which implies qa (A) = 0. Hence, qa ∈ Π0 for all

a ∈ R so z is non-constant qa-a.s.. Thus, ξ must be strictly decreasing in a.

(2) Since z is measurable, we can approximate z by a sequence of increasing simple func-

tions. In other words, z = limn zn where the zn are increasing and

zn =
�

t

c
n
t 1An

t

for An
t ∈ F . Now,

Eq [u (azn) zn]

Eq [u (azn)]
=

�
t q (A

n
t ) u (ac

n
t ) c

n
t�

t q (A
n
t ) u (ac

n
t )

=

�
t q (A

n
t ) e

−ρacnt c
n
t�

t q (A
n
t ) e−ρacnt

Clearly, if c̄nt = sups∈S zn (s), then

lim
a→∞

Eq [u (azn) zn]

Eq [u (azn)]
= c̄

n
t = sup

s∈S
zn (s)

By dominated convergence (see Theorem I.4.16 of Çinlar [18]),

ξ (q, a) =
Eq [u (az) z]

Eq [u (az)]
= lim

n

Eq [u (azn) zn]

Eq [u (azn)]
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Hence,

lim
a→∞

ξ (q, a) = lim
n

lim
a→∞

Eq [u (azn) zn]

Eq [u (azn)]
= lim

n
sup
s∈S

zn (s)

= sup
s∈S

lim
n

zn (s) = sup
s∈S

z (s)

The case for limα→−∞ ξ (q, α) = infs∈S z (s) is symmetric.

(3) Suppose ξ (q, a) = ξ (r, a) = ξ
∗ for {r, q} ⊂ Π0 and a ∈ R. Thus,

Eq [u (az) (z − ξ
∗)] = Er [u (az) (z − ξ

∗)] = 0

If we let qλ := λq + (1− λ) r for λ ∈ [0, 1], then

Eqλ [u (az) (z − ξ
∗)] = 0

which implies

ξ
∗ =

Eqλ [u (az) z]

Eqλ [u (az)]
= ξ (qλ, a)

Lemma (3A.3). Let qj = λq
i + (1− λ) qk for some λ ∈ (0, 1), and suppose

ξ
�
q
k
, a

k
�
= ξ

�
q
j
, a

j
�
= ξ

�
q
i
, a

i
�

Then a
k = a

i implies a
k = a

j = a
i and a

k
> a

i implies a
k
> a

j
> a

i.

Proof. Let

ξ
∗ := ξ

�
q
k
, a

k
�
= ξ

�
q
j
, a

j
�
= ξ

�
q
i
, a

i
�

First, suppose a := a
i = a

k. Thus, from Lemma 3A.2, ξ (qj, a) = ξ
∗ and a = a

j.

Now, assume a
k
> a

i. Again, by Lemma 3A.2,

ξ
�
q
k
, a

i
�
> ξ

∗
> ξ

�
q
i
, a

k
�
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Suppose a
j
> a

k so ξ
�
q
j
, a

k
�
> ξ

∗. By continuity, we can find some γ ∈ (0, 1) such that

ξ
∗ = ξ

�
γq

j + (1− γ) qi, ak
�
= ξ

�
q
k
, a

k
�

Now, if we let γ̂ := λ
λ+(1−γ)(1−λ) , then

γ̂
�
γq

j + (1− γ) qi
�
+ (1− γ̂) qk = λq

i + (1− λ) qk = q
j

Thus, by Lemma 3A.2, ξ∗ = ξ
�
q
j
, a

k
�
which implies aj = a

k a contradiction. The case for

a
i
> a

j is symmetric, so we have a
k ≥ a

j ≥ a
i. Lastly, suppose a := a

k = α
j so by Lemma

3A.2,

ξ
∗ = ξ

�
q
i
, a

i
�
> ξ

�
q
i
, a
�
=

Eqi [u (az) z]

Eqi [u (az)]

Thus,

Eqi [u (az) (z − ξ
∗)] > 0 = Eqk [u (az) (z − ξ

∗)]

= Eqj [u (az) (z − ξ
∗)]

However, qj = λq
i + (1− λ) qk for λ ∈ (0, 1) yielding a contradiction. The case for ai = a

j

is symmetric, so a
k
> a

j
> a

i.

Theorem (3A.4). If µ has a persistence representation, then any equilibrium of (z, µ) is

ordered by some �. Moreover, λi ≤ λ
j iff i � j for all {i, j} ⊂ I.

Proof. Let µ have a persistence representation and (ψ, ν) be an equilibrium for (z, µ). From

the optimality conditions and the fact that u is CARA, we have for all i ∈ I,

ψ̄ (s0) =
ψ1 (s0)

ψ0 (s0)
=

Ep [u� (θi (s0) · z) z]

Ep [u� (θi (s0) · z)]

=
Ep [u (θi1 (s0) z) z]

Ep [u (θi1 (s0) z)]
= ξ

�
p, θ

i
1 (s0)

�

Thus, by Lemma 3A.2, θi1 (s0) is the same for all i ∈ I so by market clearing, θi1 (s0) = 1 for
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all i ∈ I. Note that by similar reasoning, we have a.s.

ψ̄ (s) =
ψ1 (s)

ψ0 (s)
=

Ei
s [u (θ

i
1 (s) z) z]

Ei
s [u (θ

i
1 (s) z)]

= ξ
�
K

i
s, θ

i
1 (s)

�

Define i � j iff λ
i ≤ λ

j iff i ≤ j for all {i, j} ⊂ I. We show that (z, µ) is ordered by �.

Let {1, n} ⊂ I be such that 1 ≤ i ≤ n for all i ∈ I. Let

E :=
�
s ∈ S

�� ψ̄ (s0) ≥ ψ̄ (s) and θ
1
1 (s) < 1

�

and suppose p (E) > 0. For s ∈ E, the Lemma 3A.2 ensures that we can always find some

as ∈ R such that ξ (p, as) = ψ̄ (s). Note that we can assume ψ̄ (s) = ξ (Ki
s, θ

i
1 (s)) for all

i ∈ I without loss of generality, so

ξ
�
p, θ

1
1 (s)

�
> ξ (p, 1) = ψ̄ (0) ≥ ψ̄ (s) = ξ (p, as) = ξ

�
K

1
s , θ

1
1 (s)

�
= ξ (Kn

s , θ
n
1 (s))

By Lemma 3A.2 and 3A.3, we have as ≥ 1 > θ
1
1 (s) so as > θ

1
1 (s) > θ

n
1 (s) as K

1
s =

λ
1
p + (1− λ

1)Kn
s . Since this is true for all s ∈ E, we have 1 > θ

i
1 (s) for all i ∈ I on a

set of strictly positive measure, contradicting market clearing. Thus, ψ̄ (s0) ≥ ψ̄ (s) implies

θ
1
1 (s) ≥ 1 which implies θ

i
1 (s) ≥ θ

j
1 (s) for j ≥ i a.s.. By symmetric argument, we have

ψ̄ (s0) ≤ ψ̄ (s) implies θi1 (s) ≤ θ
j
1 (s) for j ≥ i a.s.. Thus, ψ̄ (s0) ≥ ψ̄ (s) iff θ

i
1 (s) ≥ θ

j
1 (s) for

j ≥ i a.s. so (z, µ) is ordered by �.

Lemma (3A.5). Suppose Ls = λp + (1− λ)Ks a.s. for {K,L} ⊂ K and λ ∈ (0, 1). Then

K is generic iff L is generic.

Proof. First, suppose K is generic. Let {r, q} ⊂ Π be such that

�

S

q (ds)Ls (A) =

�

S

r (ds)Ls (A)

for all A ∈ F . Now,

�

S

q (ds) (λp (A) + (1− λ)Ks (A)) =

�

S

r (ds) (λp (A) + (1− λ)Ks (A))
�

S

q (ds)Ks (A) =

�

S

r (ds)Ks (A)
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implying q = r so L is generic. If L is generic, then let {r, q} ⊂ Π be such that

�

S

q (ds)Ks (A) =

�

S

r (ds)Ks (A)
�

S

q (ds) (λp (A) + (1− λ)Ks (A)) =

�

S

r (ds) (λp (A) + (1− λ)Ks (A))

for all A ∈ F . Thus, r = q and K is generic.

For {q, r} ⊂ Rd where d ∈ N, define

[q, r] :=
�
qλ+ (1− λ) r ∈ Rd

�� λ ∈ [0, 1]
�

Similarly, for {q, r} ⊂ Π0, define

[q, r] := {qλ+ (1− λ) r ∈ Π0 | λ ∈ [0, 1]}

Lemma (3A.6). If µ has a persistence representation, then its equilibria are ordered.

Proof. Suppose µ has a persistence representation, and for any z ∈ Z, define Ez ⊂ S such

that s ∈ Ez iff i � j is equivalent to ψ̄ (s0) ≥ ψ̄ (s) iff θ
i
1 (s) ≥ θ

j
1 (s). By Theorem 3A.4,

p (Ez) = 1. Now, let S̄ ⊂ S be the set such that s ∈ S̄ iff for all z ∈ Z, i � j is equivalent

to ψ̄ (s0) ≥ ψ̄ (s) iff θ
i
1 (s) ≥ θ

j
1 (s). Note that

S̄ =
�

z∈Z

Ez

Let Z∗ ⊂ Z be some dense countable subset of Z so

�

z∈Z

Ez ⊂

�

z∈Z∗

Ez

Now, let s ∈
�

z∈Z∗ Ez. Thus, for all z ∈ Z
∗, i � j is equivalent to ψ̄ (s0) ≥ ψ̄ (s) iff

θ
i
1 (s) ≥ θ

j
1 (s). By the continuity of prices and holdings, we have i � j is equivalent to

ψ̄ (s0) ≥ ψ̄ (s) iff θ
i
1 (s) ≥ θ

j
1 (s) for all z ∈ Z. Thus, s ∈ S̄ so S̄ is measurable. Hence,

p
�
S̄
�
= p

�
�

z∈Z∗

Ez

�
= 1
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Theorem (3A.7). The equilibria of a generic µ are ordered iff µ has a persistence represen-

tation.

Proof. Note that necessity follows from Lemma 3A.6, so we prove sufficiency. Let µ be

generic with equilibria ordered by �. Without loss of generality, let 1 � i � i+1 � n for all

i ∈ I. Define S̄ ⊂ S to be the a.s. set such that s ∈ S̄ iff for all z ∈ Z, i � j is equivalent to

ψ̄ (s0) ≥ ψ̄ (s) iff θ
i
1 (s) ≥ θ

j
1 (s).

Fix s ∈ S̄ and first consider i � j � k for {i, j, k} ⊂ I. Let {A1, . . . , Ad} be a measurable

partition of S for some d ∈ N and c ∈ Rd
+. Let z =

�
t 1Atct for t ∈ {1, . . . , d}. Note

that θ
i
1 (s) ≥ θ

j
1 (s) ≥ θ

k
1 (s) or θ

i
1 (s) ≤ θ

j
1 (s) ≤ θ

k
1 (s). Assume the former without loss of

generality. Let qi := K
i
s for all i ∈ I and note that also without loss of generality

ψ̄ (s) = ξ
�
q
i
, θ

i
1 (s)

�
= ξ

�
q
j
, θ

j
1 (s)

�
= ξ

�
q
k
, θ

k
1 (s)

�

If we let ac := θ
j
1 (s) and ξc := ψ̄ (s), then by the lemma above,

ξ
�
q
i
, ac

�
≤ ξc = ξ

�
q
j
, ac

�
≤ ξ

�
q
k
, ac

�

Thus,

Eqi [u (acz) (z − ξc)] ≥ 0 = Eqj [u (acz) (z − ξc)] ≥ Eqk [u (acz) (z − ξc)]

If we let vc (t) = u (acct) (ct − ξc) for all t ∈ {1, . . . ,m}, then q
i · vc ≥ q

j · vc ≥ q
k · vc where

{qi, vc} ⊂ Rm.

For c = 1t,

q
i
· vc = q

i (t) u (ac) (1− ξz) +
�
1− q

i (t)
�
u (0) (−ξz)

If qi (t) = q
k (t), then q

j (t) = q
i (t). Otherwise, we can find a t

� ∈ {1, . . . , d} such that

q
i (t) > q

k (t) and q
i (t�) < q

k (t�) without loss of generality. By continuity, there is some

ĉ = β1t + (1− β)1t� such that qi · vĉ = q
j · vĉ = q

k · vĉ. Note that we can always find m− 2

such ĉ where vĉ are linearly independent. Since
�

t q
i (t) = 1, we must have q

j ∈
�
q
i
, q

k
�
.
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Since this is true for all {i, j, k} ⊂ I, we must have qi ∈ [q1, qn] for all i ∈ I. If p �∈ [q1, qn],

we can find some c such that ξc ≥ ψ̄ (s0) and Eqi [u (az) (z − ξc)] ≥ Ep [u (az) (z − ξc)] for all

i ∈ I where ξ (p, a) = ξc. Hence,

ξ
�
q
i
, a
�
≤ ξ (p, a) = ξ

�
q
i
, θ

i
1 (s)

�
= ξc ≥ ψ̄ (s0) = ξ (p, 1)

Thus, θi1 (s) ≤ a ≤ 1 contradicting market clearing. Hence, p ∈ [q1, qn].

Suppose qj �∈
�
q
i
, q

k
�
. By a standard Separating Hyperplane Theorem (see Theorem 5.61

of Aliprantis and Border [2]), we can find some measurable ζ : S → R such that

Eqj [ζ] �∈
�
Eqi [ζ] , Eqk [ζ]

�

Since ζ is measurable, it is the limit of a sequence of increasing simple functions. Hence,

ζ = liml ζl where

ζl =
�

t

b
l
t1Al

t

Now, for each ζl, we have

Eqj [ζl] =
�

t

b
l
tq

j
�
A

l
t

�
= λ

�

t

b
l
tq

i
�
A

l
t

�
+ (1− λ)

�

t

b
l
tq

k
�
A

l
t

�

so Eqj [ζl] ∈
�
Eqi [ζl] , Eqk [ζl]

�
for all ζl. By monotone convergence, we must have Eqj [ζ] ∈

�
Eqi [ζ] , Eqk [ζ]

�
a contradiction. By similar argument, p ∈ [q1, qn].

Thus, we have p ∈ [K1
s , K

n
s ] a.s.. Hence, we have a.s.

p (ds�) = λsK
1
s (ds

�) + λsK
n
s (ds�)

= p (ds�)κ1
s (s

�)λs + p (ds�)κn
s (s

�) (1− λs)

Hence, we have κ
1
s (s)λs + κ

n
s (s) (1− λs) = 1 a.s.. Since {K1

, K
n} ⊂ K we have κ

1
s (s) ≥ 1

and κ
n
s (s) ≥ 1 so λs ∈ {0, 1} a.s.
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Now, consider Ki ∈ [p,Kn] so for all A ∈ F ,

p (A) =

�

S

p (ds)Ki
s (A) =

�

S

p (ds)
�
λ
i
sp (A) +

�
1− λ

i
s

�
K

n
s (A)

�

= p (A)

�

S

p (ds)λi
s + p (A)−

�

S

p (ds)Kn
s (A)λi

s

Note that if λi
s = 0 a.s. then K

i
s = p a.s.. Hence, suppose the λ

i
s > 0 on some set of strictly

positive p-measure. We can now define p
i ∈ Π such that

p
i (A) :=

�

A

p (ds)λi
s�

S p (ds)λ
i
s

so

p (A) =

�

S

p
i (ds)Kn

s (A) =

�

S

p (ds)Kn
s (A)

Since µ is generic, by Lemma 3A.5, Kn is generic. Hence, p = p
i so by the Radon-Nikodym

Theorem (Theorem I.5.11 of Çinlar [18]), we have

1 =
dp

i

dp
=

λ
i
s�

S p (ds)λ
i
s

a.s. so λ
i
s = λ

i a.s.. The case for Ki ∈ [p,K1] is symmetric, so we have λ
i
s = λ

i for all i ∈ I.

Thus, µ has a persistence representation.

Appendix 3B

In this appendix, we prove the results for Gaussian model. Let z ∈ Z be such that z (s) = s.

Lemma (3B.1). Let q ∈ Π be Gaussian distributed with mean m and variance σ
2
> 0. Then

Eq [u (az)] = u

�
ma− ρ

σ
2

2
a
2

�

Eq [u (az) z] = u

�
ma− ρ

σ
2

2
a
2

��
m− aρσ

2
�
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Proof. A simple computation yields

Eq [u (az)] = −e
−ρa

�
m−aρσ2

2

�

Eq [u (az) z] = −e
−ρa

�
m−aρσ2

2

� �
m− aρσ

2
�

The result then follows from the definition of u.

Proposition (3B.2). Let µ be simple Gaussian and θ be the equilibrium strategy for K ∈ K.

Then for all s ∈ S,

ψ̄ (s) =
ατ (s− (1− τ)m) + (1− τ

2) (m− ρσ
2)

1− (1− α) τ 2

θ1 (s) =
ρσ

2 + (s−m) (1− α) τ

ρ (1− (1− α) τ 2) σ2

Proof. Let K ∈ K be Gaussian and θ be optimal for K. Fix s ∈ S and let a = θ1 (s). Now,

by Lemma 3B.1,

ψ̄ (s) = ξ (Ks, a) =
EKs [u (az) z]

EKs [u (az)]

= m (1− τ) + τs− aρ
�
1− τ

2
�
σ
2

Thus, we have

θ1 (s) = a =
m (1− τ) + τs− ψ̄ (s)

ρ (1− τ 2) σ2

Note that if τ = 0, then θ1 (s) =
m−ψ̄(s)

ρσ2 . Since θ1 (s0) = 1 by market clearing, we have

ψ̄ (s0) = m− ρσ
2

Also by market clearing,

1 = αθ
τ
1 (s) + (1− α) θ01 (s) = α

m (1− τ) + τs− ψ̄ (s)

ρ (1− τ 2) σ2
+ (1− α)

m− ψ̄ (s)

ρσ2

Hence

ψ̄ (s) =
ατ (s− (1− τ)m) + (1− τ

2) (m− ρσ
2)

1− (1− α) τ 2
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Substituting the formula for ψ̄ yields

θ1 (s) =
ρσ

2 + (s−m) (1− α) τ

ρ (1− (1− α) τ 2) σ2

Corollary (3B.3). Let µ be simple Gaussian and θ be the equilibrium strategy for K ∈ K.

Then the following are equivalent for all s ∈ S

(1) s ≥ m− τρσ
2

(2) ψ̄ (s) ≥ ψ̄ (s0)

(3) θ1 (s) ≤ θ1 (s0)

Proof. From Proposition 3B.2, we have ψ̄ (s) ≥ ψ̄ (s0) iff

ατ (s− (1− τ)m) +
�
1− τ

2
� �

m− ρσ
2
�
≥

�
1− (1− α) τ 2

� �
m− ρσ

2
�

s ≥ m− τρσ
2

so (1) and (2) are equivalent. Since it also follows readily that θ1 (s) ≥ 1 iff s ≥ m − τρσ
2

we have (1), (2) and (3) are all equivalent.

166



References

[1] D. Ahn and T. Sarver. Preference for flexibility and random choice. Econometrica,
81(1):341–361, 2013.

[2] C. Aliprantis and K. Border. Infinite Dimensional Analysis. Springer, 2006.

[3] F. Anscombe and R. Aumann. A definition of subjective probability. The Annals of

Mathematical Statistics, 34(1):199–205, 1963.

[4] S. Athey and J. Levin. The value of information in monotone decision problems. Mimeo,
2001.

[5] N. Barberis and W. Xiong. What drives the disposition effect? an analysis of a long-
standing preference-based explanation. The Journal of Finance, 64(2):751–784, 2009.

[6] N. Barberis andW. Xiong. Realization utility. Journal of Financial Economics, 104:251–
271, 2012.

[7] G. Becker, M. DeGroot, and J. Marschak. An experimental study of some stochastic
models for wagers. Behavioral Science, 8:199–202, 1963.

[8] D. Bergemann and S. Morris. Bayes correlated equilibrium and the comparison of
information structures. Mimeo, 2013.

[9] P. Billingsley. Probability and Measure. John Wiley and Sons, Inc., second edition,
1986.

[10] D. Blackwell. Comparison of experiments. In Proceedings of the Second Berkeley Sym-

posium on Mathematical Statistics and Probability, pages 93–102, 1951.

[11] D. Blackwell. Equivalent comparisons of experiments. The Annals of Mathematical

Statistics, 24(2):265–272, 1953.

[12] H. Block and J. Marschak. Random orderings and stochastic theories of response.
In I. Olkin, editor, Contributions to Probability and Statistics, pages 97–132. Stanford
University Press, 1960.

[13] S. Bose, E. Ozdenoren, and A. Pape. Optimal auctions with ambiguity. Theoretical

Economics, 1(4):411–438, 2006.

[14] R. Caballero and A. Krishnamurthy. Collective risk management in a flight to quality
episode. The Journal of Finance, 63:2195–2230, 2008.

[15] A. Caplin and M. Dean. Rational inattention and state dependent stochastic choice.
Mimeo, 2013.

[16] A. Caplin and D. Martin. A testable theory of imperfect perception. Mimeo, 2013.

167
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