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ABSTRACT

Common Knowledge of Language and Iterative Admissibility in Cheap

Talk Games

Pei-yu Lo

2006

This dissertation investigates the implications of common knowledge of language on

cheap talk games. A general framework is proposed where language is modeled as a direct

restriction on players’ strategies, and the predictions under iterative admissibility (IA) are

characterized.

In the first two chapters, we apply this framework to sender-receiver games a la Crawford

and Sobel (1982), where the Receiver takes a one-dimensional action. We incorporate two

observations about natural language into the game: 1) literal meaning – there always

exists a natural expression to induce a certain action, if that action is indeed inducible by

some message, 2) convexity – messages that are more different from each other induce

actions that are weakly more different. It is assumed to be common knowledge that the

Receiver plays only language-based strategies. Typically, there is a severe multiplicity issue

in CS games. This procedure, however, eliminates outcomes where only a small amount of

information is transmitted. Under certain regularity conditions, all equilibrium outcomes

are eliminated except the most informative one. However, with an example, we point out

that the normal form procedure does not take care of sequential rationality. To address this

issue, we propose an extensive form procedure and characterize the solution in the second



chapter.

In the third chapter we apply this framework to coordination games with complete

information to formalize the debate over the criterion that guarantees coordination. We

define a similarity relation between messages in this class of games and then apply the literal

meaning and convexity conditions described earlier. We show that self-committing alone is

not sufficient to guarantee coordinated play, while the self-committing condition combined

with the self-signaling condition are sufficient.
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Chapter 1

Introduction

Common sense suggests that speaking the same language helps with cooperation and effi-

ciency, as long as there is room for cooperation. However, this phenomenon is not quite

captured in economic analyses of communication. Game theoretic predictions do not de-

pend on whether or not the players speak the same language. This is not surprising, since

the notion of language is absent from standard models of cheap talk games. In the standard

cheap talk analysis, all messages are treated symmetrically, in that the exact labeling does

not matter. That is, two messages can have their names swapped with each other without

changing the strategy set or the equilibrium outcome. However, if players speak the same

language, convention offers a way of interpreting messages, suggesting that labeling does

indeed matter. For example, suppose a man and a woman are both native English speakers

and they have to choose between going to the opera or to a boxing match simultaneously.

Suppose before they leave for the venue, only the woman can leave the man a voicemail. It

is natural that two messages, “Opera” and “Boxing”, are either taken literally, or ignored

for strategic reasons. It is counter-intuitive that the message “Opera” would indicate going

1
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to the boxing match while the message “Boxing” would indicate going to the opera.

Language manifests itself in the asymmetry among messages. This paper attempts to

formalize the notion of language in terms of players’ strategy sets. We propose the following

general framework to incorporate language. First, we model language as a direct restriction

on players’ strategies. The restriction does not by itself shrink the set of communication

outcomes. It eliminates only strategies that are replicas of other strategies up to the

name change. We call this new game “the language game.” Second, we characterize the

predictions of the game with language under iterative admissibility, i.e., iterative deletion

of weakly dominated strategies. Applying the language assumption alone or iterative

admissibility alone does not shrink the set of outcomes, but the combination can give a

sharp prediction.

The first two chapters of this dissertation apply the aforementioned framework to Sender-

Receiver games first modeled by Crawford and Sobel (1982) and gives conditions under

which this framework guarantees information transmission. Chapter three applies this

framework to cheap talk games about intended action.



Chapter 2

Sender-Receiver Game – Normal

Form

2.1 Introduction

This chapter applies the language framework to a classic sender-receiver game as in Craw-

ford and Sobel (1982)(CS). The simple structure of CS games provides a straightforward

implication for the language assumption, which we will describe below. In a game, the

Sender (she) is the only player with private information, which is called the Sender’s type,

and is assumed to be one-dimensional. The Receiver (he), upon receiving the message, takes

a one-dimensional action, which affects the utility of both. The Sender always prefers a

different action from the Receiver. Since the Sender communicates in an attempt to influ-

ence the behavior of the Receiver, messages can be mapped to recommendations. Equating

the message space with the action space allows us to linearly order messages because the

action space is on the real line. Two observations of natural language usage are imposed as

assumptions: (i) there always exists a natural expression to induce a certain action, if that

3



2.1 Introduction 4

action is indeed inducible by some message; (ii) messages that are more different from each

other induce actions that are weakly more different, i.e., if two messages induce the same

action, any message in between the two will induce the same action. The second assump-

tion exploits the linear order on the action space. It gives more structure to language and

is important for our characterizations.

We first take the normal form approach to this multi-stage game described above. It

seems natural as language is a normal form restriction, and sequential rationality is not an

issue in standard cheap talk games, since all messages can get used with positive probability.

We find that if the players’ interests are sufficiently aligned, this procedure eliminates out-

comes where only a small amount of information is transmitted. Under certain regularity

conditions, all equilibrium outcomes, except the most informative one, are eliminated.

However, we find that the normal form approach might eliminate the most informative

equilibrium of the game without language. We show an example where our procedure yields

a unique outcome where some types receive different actions, in contrast with the original

game where babbling is the unique equilibrium and thus the most informative equilibrium

in this game. This example illustrates how normal form procedure might allow the Receiver

to take a sub-optimal action after receiving some messages, though it requires strategies to

be ex ante optimal for the Receiver with respect to his belief. This is because modeling

language as a direct restriction on the strategy sets gives language the highest priority,

overriding rationality at times. We then illustrate the tension between language, iterative

deletion of weakly dominated strategies and sequential rationality.

Our approach falls into the tradition of trying to incorporate literal meanings into cheap
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talk games. Farrell (1993), Rabin (1990) and Zapater (1997) share the assumption that

the literal meaning of a message is believed if it is credible, but they propose different

credibility criteria. Farrell (1993) uses the concept of credible literal meaning to restrict

off-equilibrium-path beliefs held by the Receiver and proposes neologism-proofness as an ap-

proach to equilibrium refinement. However, this suffers from the Stiglitz Critique, because

in establishing credibility, the Sender is assumed to be guaranteed her equilibrium payoff,

even if the equilibrium in question is not stable. Additionally, it might result in an empty

prediction. In particular, no equilibrium in a nontrivial CS game is neologism-proof.

Rabin (1990) and Zapater (1997) both use rationalizability to establish credibility. To

begin the unraveling in rationalizability, they restrict the Sender’s strategies and ask whether

that restriction is consistent with rationality and common knowledge of the restriction. In

making the restriction, certain communication outcomes are ruled out a priori. Credi-

bility assures that if it is common knowledge that this information will be transmitted,

the eliminated outcomes will not be realized. Rabin’s “credible message rationalizability”

represents the minimal amount of information the Sender can credibly transmit, while a

“credible proposal,” as defined by Zapater, represents the maximum amount. Credible

message rationalizability always yields a non-empty (if sometimes weak) prediction, while a

credible proposal is not guaranteed to exist. In particular, every CS equilibrium is credible

message rationalizable.

Our approach is closely related to Rabin’s and Zapater’s, since in a two-player setting,

rationalizability is equivalent to iterative deletion of strictly dominated strategies. Our

approach differs from the literature in two key aspects. First, we make restrictions on the
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Receiver’s strategy set instead of on the Sender’s strategy set, and hence avoid ruling out

babbling or any equilibrium outcome a priori. Our definition of language applies without

modification to the entire class of CS games, in contrast to Rabin and Zapater’s definitions,

which are not independent of the specifics of the game, such as the utility functions and

the prior, since restrictions have to be credible and credibility differs with games. Second,

looking at any message in isolation, we make no assumption about the actions the Receiver

will take. Instead, all our assumptions concern the relation between messages in terms

of the induced actions. On the other hand, Rabin and Zapater assume that the Receiver

believes credible messages and carries out credible recommendations, while the relation

between messages is roughly determined by the model. We argue that, in reality, messages

have relative meanings in addition to absolute meanings. For example, when the audience

says “good job,” they might sincerely mean that they appreciate the performance, but they

might just be polite. However, for the receiver of the comment, it is probably weakly better

than if they say “horrible.” We share with the literature the view on absolute meanings,

but stress the asymmetry among messages as an important implication of language. In

addition to equilibrium selection, our prediction then reflects the effect of the properties of

language.

Rabin (1990) and Zapater (1997) both use rationalizability to establish credibility. To

get the unraveling going in rationalizability, they restrict the Sender’s strategies and ask

whether that restriction is consistent with rationality and common knowledge of the re-

striction. In making the restriction, certain communication outcomes are ruled out a

priori. Credibility assures that if it is common knowledge that this information is go-
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ing to be transmitted, the eliminated outcomes will not be realized. Rabin’s “credible

message rationalizability” represents the minimal amount of information the Sender can

credibly transmit, while a “credible proposal” as defined by Zapater represents the maxi-

mal amount. Credible message rationalizability always yields a non-empty (if sometimes

weak) prediction, while a credible proposal is not guaranteed to exist. In particular, every

CS equilibrium is credible message rationalizable.

Our approach is closely related to Rabin’s and Zapater’s, since in a two-player setting,

rationalizability is equivalent to iterative deletion of dominated strategies. Our approach

differs from the literature in two key aspects. First, we make restrictions on the Receiver’s

strategy set instead of on the sender’s strategy set, and hence avoid ruling out babbling or

any equilibrium outcome a priori. Our definition of language applies without modification

to the entire class of CS games, in contrast to Rabin and Zapater’s definitions which are

not independent of the specifics of the game, such as the utility functions and the prior,

since restrictions have to be credible and credibility differs with games. Second, looking at

any message in isolation, we make no assumption about the actions the Receiver will take.

Instead, all our assumptions concern the relation between messages in terms of the induced

actions. On the other hand, Rabin and Zapater assume that the Receiver believes credible

messages and carries out credible recommendations, while the relation between messages

is roughly determined by the model. We argue that, in reality, messages have relative

meanings in addition to absolute meanings. For example, when the audience says “good

job,” they might sincerely mean that they appreciate the performance, but they might just

be polite. However, for the receiver of the comment, it is probably weakly better than if
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they say “horrible.” We share with the literature the view on absolute meanings, but stress

the asymmetry among messages as an important implication of language. In addition to

equilibrium selection, our prediction then reflects the effect of the properties of language.

The rest of the chapter is structured as follows. Section 2.2 provides a simple example to

motivate our approach. Section 2.3 discusses the solution concept in use and the language

assumptions. Section 2.4 outlines the setup of the game. Section 2.5 presents the results

using normal form concept and highlights the conflict with sequential rationality. Section

2.6 concludes.

2.2 Motivating Example

Consider a two-player game with one-sided pre-play communication. Rob the pirate is

planning to set sail for the treasure island. He does not know whether it is on the West

sea or the East sea. He only knows that with probability 2
3 , the treasure island is on the

West sea. The prior is common knowledge. Sally the witch, however, knows where the

treasure island is. Rob asks Sally in which direction he should go and commits to giving

Sally a commission if he finds the treasure. Their payoff matrix is as in table 2.1. The row

indicates whether the treasure island is on the West Sea or East Sea. The column indicates

the direction Rob chooses. W stands for west and E stands for east. The number on the

left is Sally’s payoff and the number on the right is Rob’s payoff. The game goes like this:

Sally tells Rob which direction to take, either west or east, and Rob chooses one direction

and sets sail. If he finds the treasure, he has to give Sally a payoff of 2. If he does not,

neither of them loses anything.
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a

W E
location of treasure West 2,1 0,0

East 0,0 2,1

Table 2.1: Treasure Hunt Game

”west” ”east”

Stubborn W W W
Stubborn E E E
Literal W E
Opposite E W

Table 2.2: Receiver Strategies in the Treasure Hunt Game

Given the true location of the treasure island, t, Sally chooses a message sS (t): either

“west” or “east.” Her strategy is therefore sS =
¡
sS (West) , sS (East)

¢
. A strategy

for Rob, denoted by sR, is a function from the message space M to the set of actions

A = {W,E}. Table 2.2 lists all of Rob’s possible strategies. Both the Stubborn W and

the Stubborn E strategies completely ignore Sally’s recommendation. Literal strategy and

Opposite strategy are essentially the same strategy up to relabeling. This is because they

both react to one message with the action W and the other with the action E.

This game has two equilibrium outcomes. One is the so-called “babbling” equilibrium,

in which Rob always choosesW and Sally “babbles”. The other equilibrium is what we call

the informative equilibrium, in which Rob’s decision changes with Sally’s recommendation

and Sally’s recommendation depends nontrivially on the true state. There is an innocuous

multiplicity here in terms of relabeling the two messages. Actually, if we relabel the

messages, we will end up with the same strategy set. The symmetry between messages

suggests that language does not play a role in standard analysis. Game theoretic predictions

for an English speaking Rob and an English speaking Sally would be the same as the
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predictions for an English speaking Rob and an alien Sally.

However, suppose Rob and Sally do share a common first tongue, say English. In the

language English, “west” means the direction where the sun falls and “east” means the

direction where the sun rises. It seems absurd that Rob and Sally would coordinate in

such a way that the message “west” induces Rob to go east and the message “east” induces

Rob to go west, if they are going to play the informative equilibrium. The issue is not

credibility: if Rob does not believe that Sally’s recommendation conveys information, Rob

would ignore the message and take the same action regardless. If Rob’s action depends

nontrivially on Sally’s message, then it seems more natural that he would go west upon

hearing the suggestion “west” and he would go east upon hearing the suggestion “east.”

Suppose it is common knowledge that Rob follows the convention of language and does

not use the Opposite strategy. That is to say, in the game with language GL, the set of

strategies for Rob is SRL ≡ {Stubborn W , Stubborn E, Literal}. Then when the true state

is West, for Sally, sending the message “east” is weakly dominated by sending the message

“west”. To see this, notice that both messages yield the same payoff if Rob plays either the

Stubborn W strategy or the Stubborn E strategy. Sally’s choice of message matters only if

Rob plays the Literal strategy. In that case, message “west” induces the action W , which

is strictly preferred by Sally when the true state is West. Similarly when the true state is

East, the message “west” is weakly dominated for Sally. In conclusion, if Sally does not

play weakly dominated strategies, then she says “west” when the true state is West and

“east” when the true state is East.

If the Receiver knows that Sally does not play weakly dominated strategies, then when
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Equilibrium IA ID
No Language babbling,informative everything everything
Language babbling,informative informative everything

Table 2.3: Predictions of Treasure Hunt Game

he receives the recommendation “west”, he knows that the true location must be West,

and when he receives the recommendation “east”, he knows that the true location must be

East. The optimal strategy then is to follow Sally’s advice and play the strategy Literal.

We therefore end up with a unique prediction that Rob and Sally play the informative

equilibrium outcome, which is what we would “expect”.

Eliminating the Opposite strategy by way of the language assumption is a key step

in getting the unique prediction. In the game without language, both strategies Literal

and Opposite belong to Rob’s strategy set. When the true state is West (East), sending

message “east” (“west”) performs better for Sally than sending message “west” (“east”) if

Rob plays the strategy Opposite, while sending ”west” (“east”) performs better if Rob plays

the strategy Literal. In short, none of Sally’s strategies are weakly dominated. Eliminating

the strategy Opposite from Rob’s strategy set gets the unraveling process going.

However, language alone does not do the trick. It is language combined with iter-

ative deletion of weakly dominated strategies that sharpens the predictions. Table 2.3

summarizes the predictions under different combinations of solution concepts and language

assumption.

IA means iterative admissibility, i.e., iterative deletion of weakly dominated strategies.

ID stands for iterative deletion of strictly dominated strategies. “Everything” means every

pair of strategies in the game except those where Rob plays Stubborn E. As long as Rob is

rational, he will not play Stubborn E because going east blindly is worse ex ante than going
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west blindly. Here the language assumption alone does not change the set of equilibrium

outcomes. It only eliminates the innocuous equilibrium multiplicity where meanings are

reversed. Comparing the prediction using IA and ID suggests that weak dominance is key

in getting rid of the babbling outcome. This is not surprising since messages are costless,

and therefore Sally does not have a strict preference for any message if she believes that

Rob will ignore it.

2.3 General Framework

The example of section 2 suggests modeling language as a direct restriction on players’

strategies. Let Γ denote a cheap talk game where a one-shot game is preceded by a

communication stage. Let I denote the set of players, and T i denote the set of types

for player i. A strategy for player i, denoted by si ∈ Si, is a mapping from player

i’s type space T i to his action plans. Write player i’s ex ante expected utility function as

U i :
¡
Si
¢
i∈E → R. That is, U i is a mapping from the set of strategy profiles to the real line.

We can represent Γ in the strategic form G =
³
I,
¡
Si
¢
i∈I ,

¡
U i
¢
i∈I
´
. Language transforms

the game into GL =
³
I,
¡
SiL
¢
i∈I ,

¡
U i
¢
i∈I
´
, which we call “the game with language”. To

make predictions about cheap talk games with language, we need to know two things:

(1) the implications of “language,” that is, which strategies belong to SiL for each i ∈ I,

and (2) given
¡
SiL
¢
i∈I , the solution to the game GL. This is a clean way to incorporate

language since all assumptions about language are embodied in
¡
SiL
¢
i∈I . By altering the

assumptions, we can understand the implications of specific properties of language. This

section first discusses the solution concept employed and then motivates a specific way to
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model language.

2.3.1 Solution Concept

The solution concept employed here is iterative admissibility (IA) when the normal form

is used and a variation when the extensive form is used. The discussion of the variation

for the extensive form analysis is deferred to section 3. Here we recall the definition of

iterative admissibility and discuss the choice of this solution concept over others.

The definitions below follow Brandenburger et al (2004).

Definition 2.1. Fix
¡
Xj
¢
j∈I ⊆

¡
Sj
¢
j∈I . A strategy s

i is weakly dominated with respect to

X−i if there exists σ̂i ∈ ∆Xi such that U i
¡
σ̂i, s−i

¢ ≥ U i ¡si, s−i¢ for every s−i ∈ X−i and
that U i

¡
σ̂i, ŝ−i

¢
> U i

¡
si, ŝ−i

¢
for some ŝ−i ∈ X−i. Otherwise, say that si is admissible

with respect to
¡
Xj
¢
j∈I . If s

i is admissible w.r.t.
¡
Sj
¢
j∈I , simply say that s

i is admissible.

Definition 2.2. Set Si (0) = Si for i ∈ I and iteratively define

Si (k + 1) =
n
si ∈ Si (k) : si is not weakly dominated with respect to ¡Si (k)¢

i∈I
o
.

Write ∩∞k=0Si (k) = Si (∞) and ∩∞k=0S (k) = S (∞). A strategy si ∈ Si (∞) is called

iteratively admissible.

Denote by ∆X the set of probability distribution on X, and by ∆+X the set of proba-

bility distribution which puts positive weight on every element of X.

Brandenburger et al (2004) show that if there are only two players, say player S and

player R, a strategy is weakly dominated if and only if it is never a best response to a

totally mixed strategy. For completeness of arguments, this equivalence result is restated
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as Lemma 2.1 below. Note that this result does not hold if there are more than two players

unless players can play correlated strategies.

Lemma 2.1 (Brandenburger et al (2004)). A strategy ŝR ∈ XR is admissible with re-

spect to XS×XR if and only if there exists σ̂S ∈ ∆+SS such that UR ¡σ̂S , ŝR¢ ≥ UR ¡σ̂S, sR¢
for every sR ∈ XR.

As our analysis of the Treasure Hunt game revealed, weak dominance is crucial to

sharpening the prediction. As noted earlier, this is not surprising since messages are

costless, and therefore senders are indifferent between messages. It is this indifference

that causes severe multiplicity. In the evolutionary approach, it is important that any

strategy that is weakly better than the current strategies gets used with strictly positive

probability and gets taken into account by opponents. This corresponds to weak dominance

in the iterative procedure instead of strong dominance, since a strategy that survives weak

dominance is a best response to a belief that puts strictly positive weight on every surviving

opponent strategy.

One reason we choose iterative admissibility over other non-equilibrium concepts em-

ploying weak dominance is its epistemic foundation. Brandenburger et al (2004) provide a

sufficient epistemic condition under which the predicted strategy profiles are characterized

by IA. More specifically, they show that if there is rationality and n-th order assumption

of rationality, where n is higher than the number of iterations needed to arrive at IA, then

players play strategies in IA. However, we are not incorporating language into the epistemic

framework provided by Brandenburger et al (2004). We simply take the solution concept

as given and apply it directly to the game transformed by our language assumption.
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By representing the original game as G = (I,
¡
Si
¢
i∈E , U), we implicitly assumed that

players make their decisions at the initial node before nature makes her move. This ex

ante interpretation implies that each player believes that different types of his opponent

hold the same belief about his behavior. Alternatively, we can think of different types

as representing different “individuals,” chosen to appear by nature, and thus assume that

players make their decisions after nature makes her move.1 This interim interpretation

implies that each player believes that different types of his opponent may hold different

beliefs about his behavior. Let’s rewrite the set of players, I, as Im ≡ ∪i∈IT i. Every

player q in Im can then be written as ti ∈ T i for some i ∈ I. Let S̃q = St
i
be the set

of action plans available to type ti of player i. Define Ũq ≡ U i∀q ∈ Im. Then iterative

admissibility in the game (I,
¡
SiL
¢
i∈I , U) under the interim interpretation is equivalent to

iterative admissibility in the game (Im,
³
S̃qL

´
q∈Im

, Ũ).

In equilibrium concepts, it does not matter whether players make their decisions before

or after nature makes her move, because in equilibrium, every type of player i holds the

correct belief about the behavior of their opponents, and thus every type of player i holds

the same belief. However, the two interpretations make a difference in nonequilibrium

solution concepts, since players are not assumed to hold the “correct” belief about the

behavior of the opponents. The interim interpretation is more appealing if we think of

private information as some hard-wired characteristics of the players. However, the ex

ante interpretation is more closely related to the equilibrium concept in that it is as if

players of different types hold the same belief about the opponents. Analysis is conducted

1See p.226 in [8].
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under both interpretations. In general, it is easier to include strategies under the interim

interpretation, while it is easier to exclude strategies under the ex ante interpretation.

Lastly, Lemma 2.2 shows that the equivalence between weak dominance and never best

response to a totally mixed belief holds under the interim interpretation with only two

players. This characterization, instead of weak dominance, is directly used in practice.

To simplify the analysis, we assume that there is only one-sided incomplete information.

Player S holds private information while player R does not. It should easily generalize

to cases with two-sided incomplete information. Under the interim interpretation, each

type of S is considered an individual player, so Lemma 2.1 does not directly apply. Let

XS ≡ ΠtXS (t). The proof for equivalence is similar to that in Pearce (1984).

Lemma 2.2. sR is weakly dominated w.r.t.
¡
ΠtX

S (t)
¢×XR if and only if there does not

exist a σS (t) ∈ ∆+XS (t) for every t such that

sR ∈ arg max
s0∈XR

UR
³¡
σS (t)

¢
t∈TS , s

0
´
.

2.3.2 Incorporating Language

Recall that language here is simply a subset of players’ strategies resembling conventional

language usage. This paper focuses on sender-receiver games where only the Sender (S)

possesses private information and only the Receiver (R) has a non-trivial one-dimensional

action space A. (In arbitrary communication games, our notion of language remains valid,

although a different set of restrictions may be appropriate.) The relative simplicity of the

communication protocol and the complete linear order on the action space A give language

more structure and generate the assumptions discussed below.
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Before talking about the implications of language for players’ strategy sets, we need to

discuss the message space. It is assumed throughout the paper that the message space

M has the same number of elements as the action space A. With that assumption in the

background, we argue that (1) language should restrict only the Receiver’s strategy set, (2)

the message space M can be identified with the action space A, i.e., M = A, and (3) every

Receiver strategy in language should satisfy the literal meaning condition and the convexity

condition. Lastly, we discuss the implications of these restrictions.

It is desirable that our definition of language itself does not restrict the set of communi-

cation outcomes in a given game, while eliminating the “innocuous” multiplicities in terms

of how messages are used. An outcome of a sender-receiver game dictates which action (or

probability distribution over actions) each type of sender induces. Messages are only means

to implement a possibly nontrivial outcome since they are costless. As pointed out in the

example in section 2.2, relabeling of messages might produce the same outcome. Language

is a restriction only insofar as these relabelings are concerned.

In particular, our definition of language itself should not rule out the babbling outcome.

This would imply that language does not place any restriction on the Sender’s strategy set.

Notice that in the babbling equilibrium, the Receiver ignores all messages and the Sender

sends every message with equal probability2. In other words, language should not force

the Sender to convey information, nor should it force the Receiver to react differently to

different messages. Thus, language includes any Receiver strategy that is a constant on the

message space. This implies that when looking at every message in isolation, any action is

2We focus on the babbling equilibrium strategy profile where every message is used with strictly positive
probability, so that Bayesian update can be performed on every message.
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possible. For a given type of Sender, every message belongs to her message space if she can

play the strategy that puts equal probability on every message. If we do not take it as a

literal assumption that there is one Sender at the initial node before nature decides on the

true state, the message sent by a given type should not be physically linked to the message

sent by another type. Therefore, the set of pure Sender strategies in language as mappings

from the type space to the message space should be the product space of M . We conclude

that language does not place any restriction on the Sender’s strategies.

To justify the simplification that the message space M is equivalent to the Receiver’s

action space A, notice that the sender talks in an attempt to induce a certain behavior from

the Receiver. Say that an action a can be induced in language SRL if there exists a Receiver

strategy sR ∈ SRL and a message m ∈ M such that sR (m) = a. Every action a ∈ A can

be induced in language since language should contain all constant sR. If the language is

rich enough, there is usually a conventional way to express the literal meaning of a. For

example, in the Treasure Hunt game, if Sally can get Rob to go east in some way, she can

successfully do so simply by saying “Go east!”

Formally, this implies that for every action â, there is at least one message m̂ that

invariably induces â whenever the Receiver is going to take â after some message. Call

such m̂ a message with literal “â”-meaning. Whether the Receiver is going to take action

â after any message is up to strategic considerations, but there is no ambiguity about the

literal meanings of messages. If the language is rich enough, there exists a canonical

message for every action, that is, for every action a in A, there exists a message m in

M with literal “a” −meaning. It is easy to show that a message cannot have different
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literal meanings. Given the assumption that the number of messages in M is the same as

the number of actions in A, we can label the message with literal “a” −meaning by “a.”

Therefore, we can simply assume that M = A, given the assumption that |M | = |A|.

We can then compare messages since M = A. It is intuitive that “similar” messages

should induce “similar” actions. For example, when a friend tells you that restaurant A

is “faaabulous” instead of telling you that it is “so-so,” it would appear that she means

that restaurant A is drastically better than average. If you know that your friend have a

tendency to exaggerate, and you wouldn’t go to restaurant A even if she told you it was

“faaabulous,” then it is unlikely that you would go to restaurant B if she told you it was

“good”. Messages that lie on the two extremes should convey weakly more information

than messages that lie in between them.

The preceding discussion leads us naturally to define language as follows.

Definition 2.3. A mapping sR :M → A is a language-based Receiver strategy, denoted by

sR ∈ SRL , if and only if

1. (literal meaning) sR (â) = â if there exists a message m̂ ∈M such that sR (m̂) = â;

2. (convexity) If sR (m1) = sR (m2) where m1 < m2, then sR (m1) = sR (m) for all m

such that m1 ≤ m ≤ m2.

Definition 2.4. The language game GL inherits all parameters from the original game G,

except that the Receiver’s pure strategy space is restricted to SRL .

The following lemma characterizes language-based Receiver strategies. The relative

meaning property says that a Receiver strategy consistent with language must be weakly
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increasing, that is, a higher message induces a weakly higher action. It follows that,

whenever a Receiver strategy consistent with language responds to two different messages

with different actions, the action taken after receiving the high message is strictly higher.

Moreover, the absolute meaning property gives a lower bound to the high action and a

higher bound to the low action and says that the higher action has to be higher than the

absolute value of the low message, and the lower action has to be lower than the absolute

value of the high message.

Lemma 2.3 (Property of strategies in language). If sR belongs to language, then

1. (relative meaning) sR is weakly increasing on M . That is, ∀m1 < m2, sR (m1) ≤

sR (m2),

2. (absolute meaning) if m1 < m2 and sR ( 1) 6= sR (m2), then sR (m1) < m2 and

sR (m2) > m1.

Proof. We first show the relative meaning property. Suppose sR is consistent with language

and sR (m2) < s
R (m1) where m1 < m2. Write sR (m2) = a2 and sR (m1) = a1. Suppose

sR (m2) < m2. By the literal meaning condition, sR (a2) = a2 and thus sR responds to the

two different messages, message a2 and message m2 with the same action. By the convexity

condition, sR responds to every message in [a2,m2] with the same action a2. Figure 2.1

shows the Receiver strategy sR as a function from the horizontal axis of recommendation

to the vertical axis of action. If sR (m1) ≤ m2, then in particular, sR responds to message

a1 with action a2. But by the literal meaning condition, sR responds to message a1 with

action a1 > a2. Contradiction! Otherwise, a1 > m2. By the literal meaning and the
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Figure 2.1: Language Property – Relative Meaning
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Figure 2.2: Language Property – Absolute Meaning
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convexity condition, sR responds to every message in [m1, a1] with the same action a1. In

particular, sR responds to message m2 with action a1. Contradiction! The case where

a2 ≥ m2 can be shown analogously.

Now we will prove the absolute meaning property. Suppose sR is consistent with

language and sR (m1) 6= sR (m2) where m1 < m2. Suppose to the contrary that sR (m1) =

a1 > m2. This is shown in figure 2.2. By the literal meaning condition, sR responds to

message a1 with action a1. By the convexity condition, sR responds to every message in

[m1, a1] with the same action a1. In particular, sR responds to message m2 with action a1.

So sR (m1) = s
R (m2). Contradiction. We can show analogously that sR (m2) > m1.

The first property reflects the relative difference in messages: a higher message induces

a weakly higher action. A deadline of tomorrow signals a more urgent deadline than one

10 days later, if they convey any information at all. The second property reflects the

absolute difference in messages: if “excellent” means something different from “good,” then

“excellent” means something at least as good as the absolute quality of being good.

Given sR and Q ⊂M , define

sR (Q) ≡ ©a|∃m ∈ Q s.t. sR (m) = aª .
That is, sR (Q) is the set of actions induced by a messagem inQ under the Receiver strategy

sR.

We began the discussion by arguing that it is desirable that a definition of language does

not a priori rule out any outcomes in the original game. Lemma 2.4 stated below confirms

that the specific way of modeling language given by definition 2.3 satisfies this condition.
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Lemma 2.4 (Completeness of Language). For all B ⊂ A, there exists a sR ∈ SRL such

that sR (M) = B.

Proof. To see this, we simply need to construct a Receiver strategy, sR, taking exactly

the actions in a given B ⊂ A. We can linearly order the elements in B and write B =

{a1, a2, ..., an} where aj < aj+1 for every j. We can construct the Receiver strategy sR by

defining

ŝR (m) ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a1

aj

an

m ∈ [0, a1]
m ∈ (aj−1, aj ], j = 2, ..., n

m ∈ [an, 1]
.

It is easy to check that ŝR satisfies definition 2.3 and ŝR (M) = B.

Corollary 2.1. Every equilibrium outcome in the game without language is also an equi-

librium outcome in the game with language.

2.4 The Setup

We apply this general framework to a discretized version of sender-receiver games as in

Crawford and Sobel (1982). There are two players, a Sender (S) and a Receiver (R). Only

the Sender has private information, represented by her type t ∈ T . The common prior on

T is π ∈ ∆T . The Sender sends a message m ∈ M , and the Receiver takes an action a in

A after receiving the message m. It is helpful to think of T = A =M = {0,∆, 2∆, ..., 1},

though all we need is that they are all finite spaces, and that A = M . Both players have

Von Neumann-Morgenstern utility function ui (t, a), i = S,R. Though the type space and

the action space are both discrete, we assume that ui can be extended to a function from

[0, 1]× [0, 1] to the real line. It is assumed that ui is twice continuously differentiable.
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As in Crawford and Sobel (1984), it is assumed throughout the paper that ∂2

∂a2
ui < 0

and ∂2

∂t∂au
i > 0 for i = S,R. Define

yi (t) := argmax
a∈A

ui (t, a) .

From the conditions on ui, yi (t) is weakly increasing in t for both i = S,R. Since A

is discretized, argmaxa∈A ui (t, a) might not be a singleton. For simplicity, assume that

yi (tS) is a singleton for all t and both i = S,R. The bias is represented by

b := min
t∈T

©
yS (t)− yR (t)ª .

To simplify the analysis, we also assume that yR (t) = t. Let E ([t1, t2]) denote the optimal

action for the Receiver if he only knows that the Sender’s type lies in the interval [t1, t2].

That is, for any t1 < t2,

E ([t1, t2]) ≡ argmax
a

X
t∈T,

t1≤t≤t2

uR (t, a)π (t) .

A pure strategy of the Receiver (sR) is a function from the message space M to the

action space A which belongs to the language, that is, sR ∈ SRL . Denote by σR a mixed

strategy of the Receiver. Under the interim interpretation, a pure strategy of the type

t Sender, sS (t), is an element in the message space M . Write sS ≡ ¡
sS (t)

¢
t∈T . Let

σS (t) ∈ ∆M denote a mixed strategy of type T Sender. In ex ante interpretation, a pure

strategy of the Sender, sS, is a function from the type space T to the message space M .

Denote a pure Sender strategy by sS and a mixed Sender strategy by σS . With some abuse
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of notation, write
¡
σS (t)

¢
t∈T as σ

S .

For ease of exposition, we restate the related CS results here. In their paper, both the

type space and the action space are the unit interval. That is, T = A = [0, 1]. They showed

that every equilibrium is characterized by a finite partition of the type space, {t0, t1, ..., tN},

where t0 = 0, tN = 1, and type ti is indifferent between being pooled with the immediately

lower step and getting the action E ([ti−1, ti]) and being pooled with the immediately higher

step and getting the action E ([ti, ti+1]). They proved that there exists a finite upper bound

N (b) on the maximum number of steps in an equilibrium, and that for every 1 ≤ n ≤ N (b),

there exists an equilibrium with n steps.

They used a monotonicity condition to conduct comparative statics. Call a sequence

τ ≡ {τ0; τ1; ...; τN} a forward solution if type τ i is indifferent between action E ([τ i−1, τ i])

and action E ([τ i, τ i+1]) for i = 1, ..., N −1. Call N the size of the forward solution τ . Say

that τ is a size-N forward solution on [τ0, τN ] and that [τ , τ̄ ] has a forward solution of size

N if there exists a forward solution {τ0; τ1; ...; τN} where τ0 = τ and τN = τ̄ . With abuse

of notation, we define

tNj ([[τ , τ̄ ]]) ≡ τ j , j = 1, ..., N − 1

where {τ0; τ1; ...; τN} is a forward solution on [τ , τ̄ ]. Write αNj ([τ , τ̄ ]) ≡ E ([τ j−1, τ j ]).

(M) If τ̂ and τ̃ are two forward solutions with τ̂0 = τ̃0 and τ̂1 > τ̃1, then τ̂ i > τ̃ i for all

i ≥ 2.

CS proved that condition (M) implies that ex ante, the Receiver always prefers an equi-

librium with more steps. Therefore, the most informative equilibrium, i.e. the equilibrium

with the largest number of steps, gives the Receiver the highest ex ante utility. This
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condition will play an important role in some of our results.

2.5 Normal Form Iterative Admissibility

Section 2.5.1 characterizes the solution to NIAL, which is simply iterative admissibility of

the game with language. Section 2.5.2 compares NIAL with equilibria of the game without

language and discusses the caveats of NIAL.

2.5.1 Characterizations

The notation here implies the use of the interim interpretation. However, the main results

hold under both interpretations. Recall that NIAL is simply iterative admissibility in the

game with language. By the equivalence of weak dominance and never best response to a

totally mixed belief in two player incomplete information games, we rewrite the procedure

of NIAL as the following:

Definition 2.5. SR (0) = SRL . S
S (0; t) =M ∀t. Defined iteratively:

SR (k + 1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sR ∈ SR (k) |

there exists σS (t) ∈ ∆+SS (k; t) for every t such that
UR

³¡
σS (t)

¢
t∈T , s

R
´
≥ UR

³¡
σS (t)

¢
t∈T , s

0
´
for all s0 ∈ SR (k)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
and

sS (k + 1; t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m ∈ SS (k; t) |

there exists σR ∈ ∆+SR (k) such that
uS
¡
t,σR (m)

¢ ≥ uS ¡t,σR (m0)¢ for all m0 ∈ SS (k; t)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
where uS

¡
t,σR (m)

¢ ≡ PsR∈SR σ
R
¡
sR
¢
uS
¡
t, sR (m)

¢
. Write ∩∞k=0SR (k) = SR (∞) and

∩∞k=0SS (k; t) = SS (∞; t). That is, SR (∞) and SS (∞) are the limiting set of strategies
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for the Receiver and the Sender respectively under this normal form iterative procedure.

We need some more notations here.

Notation 1. l (k; t) ≡ minSS (k; t);

2. g (k; t) ≡ maxSS (k; t);

3. l−1 (k;m) ≡ max {t|l (k; t) ≤ m};

4. g−1 (k; t) ≡ min {t|g (k; t) ≥ m}.

l (k; t) and g (k; t) are respectively the smallest and the largest message that a type t

Sender might send in round k. l−1 (k;m) is the highest type t that might send a message

smaller than or equal to m in round k, while g−1 (k;m) represents the lowest type t that

might send a message greater than or equal to m in round k. Given k, if l (k; t) and g (k; t)

as functions from T to M are bijective when the range is restricted to l (k;T ) and g (k;T )

respectively, then l (k; t) and l−1 (k;m) are inverse functions to each other, while g (k; t) and

g−1 (k;m) are inverse functions to each other.

Before characterizing the solution to cases where b > 0, let’s look at the benchmark case

where players’ interests are aligned, that is, where yS (t) = yR (t) for all t. Proposition

2.1 characterizes the NIAL solution. It confirms conventional wisdom that players should

be able to coordinate on the efficient outcome if the interests are aligned and they can

communicate before playing the game.

We need the following observation for the proof. It says that if a message m is used

by some type in round k, and if every message no greater than m can only come from

types smaller than or equal to m, then any Receiver strategy that takes a higher-than-

recommended action after receiving message m is weakly dominated.
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Figure 2.3: Illustration for Observation 2.5.1

Observation If l−1 (k;m) ≤ m, and m ∈M (k), then sR (m) ≤ m for all sR ∈ SR (k + 1).

Proof. Suppose ŝR (m̂) > m̂ and l−1 (k; m̂) ≤ m̂. Let m1 be the smallest message m such

that ŝR (m) = ŝR (m̂). Such a Receiver strategy is shown in the upper graph in figure 2.3.

From the assumption that l−1 (k; m̂) ≤ m̂, according to any belief on ∆SS (k), any message

in [m1, m̂] can only come from types smaller than or equal to m̂. Then ŝR can be improved

upon by lowering the value on [m1, m̂] down to m̂. This Receiver strategy is shown in the

lower half of figure 2.3. This does not violate the language conditions. So ŝR is weakly

dominated w.r.t. S (k) and does not belong to SR (k + 1).

Proposition 2.1. If the Sender and the Receiver’s most preferred Receiver actions are the

same for every type, that is, yS
¡
tS
¢
= yR

¡
tS
¢
for all tS, then there is full communication

in S (∞), i.e. S (∞) = ©sRidªwhere sRid (a) = a for all a.
Proof. We first show that after the first round of deletion of weakly dominated strategies, the
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extreme types, type 0 and type 1, sends only recommendations equal to their types. Type

0 prefers a lower action to a higher one. In addition, she prefers action 0 the most. Recall

that from the discretization, ∆ is the second lowest message. From the relative property

of language (see Lemma 2.3 in Section 2.3.2), a lower message always induces a weakly

lower action. Therefore, in the first round, every message m ≥ ∆ is weakly dominated by

message 0 with respect to S (0) for type 0. Similarly, every message m ≤ 1−∆ is weakly

dominated by message 1 with respect to S (0) for the highest type Sender. Therefore, after

the first round of deletion, type 0 sends only message 0 and type 1 sends only message 1.

Now we’ll show that after the second round of deletion of weakly dominated strategies,

the Receiver never takes an extreme action after receiving any non-extreme message. After

the first round of deletion, the Receiver knows that any message between ∆ and 1−∆ can

only come from types in [∆, 1−∆]. Suppose to the contrary that there exists ŝR ∈ SR (2)

such that ŝR (m̂) = 0 for some m̂ > 0 and ŝR (m̂+∆) 6= 0. From the supermodularity

condition of uR, action ∆ is better than action 0 for the Receiver whatever belief he has. If

we change ŝR by changing the action taken on [∆, m̂] from 0 to ∆, we strictly improve the

Receiver’s utility with respect to any belief in ∆SS (1). Therefore, such Receiver strategy

does not belong to SR (2). Similarly, any Receiver strategy sR where sR (m) = 1 for

some m 6= 1 is weakly dominated w.r.t. S (1) and does not belong to SR (2). Therefore,

given any message in [∆, 1−∆], the extreme actions the message may induce are ∆ and

1 −∆, and the extreme types that may send messages in [∆, 1−∆] are type ∆ and type

1−∆. Since on the interval [∆, 1−∆], type ∆ prefers a lower action to a higher one, every

message m greater than ∆ is weakly dominated for type ∆ by message ∆ with respect to
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S (2) because message ∆ induces a weakly lower action in [∆, 1−∆]. The same holds here

for type 1−∆. We have thus shown that, restricting attention to messages in [∆, 1−∆],

the extreme types, type ∆ and 1−∆, may send only the extreme messages, message ∆ and

1−∆.

Likewise for all sR in SR (4), sR responds to every non-extreme message in [∆, 1−∆],

i.e, messages in [2∆, 1− 2∆] with only actions in [2∆, 1−∆]. Repeating the process

iteratively, we obtain the result that sR (m) = m for all sR ∈ SR (∞) and sS (t) = t for all

type t ∈ T .

The finiteness assumption imposed on the type space T is crucial to the proof above.

In the iterative process, we first showed that the lowest type of the Sender does not send

any message other than the lowest one, because she prefers the lowest action (action 0)

to a higher action, and message 0 induces a weakly lower action than any other message

greater than 0. In response to that, the Receiver does not take the lowest action unless

he receives the lowest message (message 0). Therefore, the lowest action a Sender will get

by sending a message higher than 0 is the action preferred by the second lowest type of

the Sender. Hence, the second lowest type Sender does not send any message higher than

her most preferred action, which is equal to her type. However, if T is dense, the second

lowest type does not exist. Therefore, this argument does not carry through. Nonetheless,

the full communication result itself does not necessarily rely on the finiteness assumption.

As a corollary to Proposition 2.4 to be stated later, when the monotonicity condition (M)

holds (defined in section 2.4), full communication is the unique outcome in the limiting set

even without the finiteness assumption. However, without the finiteness assumption, we
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do not know at this stage about convergence.

From now on, it is assumed that b > 0. It implies that b ≥ ∆ since yi is defined on the

discretized space. The case that b < 0 is done in the same way.

NIAL gives a nontrivial upper bound and lower bound on the amount of information

transmitted in a given game. Before stating the results, we need to define how we measure

the amount of information transmitted. Let Q be a subset of the message space M . Say

that an action a is inducible on Q under a Receiver strategy sR if there exists a message

m in Q such that sR (m) = a. For the Receiver to be willing to use a strategy sR that has

many different inducible actions, he has to believe that the Sender can credibly transmit

significant amounts of fine-tuned information. Let sR be in SR (∞). Define M (∞) to

be the set of messages used by some type t under some strategy in SS (∞; t). Say that a

is inducible under sR if a is inducible on M (∞) under sR. When measuring the number

of different inducible actions taken by sR, we confine the attention to the message subset

M (∞) since messages outside of M (∞) are never used by any type of the Sender, and

hence actions taken by the Receiver outside of M (∞) are irrelevant. Proposition 2.2

stated below implies a limited number of different values for sR. This is intuitive because

as the interests of the Sender and the Receiver diverge, it becomes more difficult to transmit

fine-tuned information credibly. Proposition 2.3 stated below says that if given a bias b

sufficiently small, the number of inducible actions on M (∞) under sR is at least L ≥ 2,

where L varies with the bias. In addition, L does not depend on how finely we discretize the

action space, as long as it is not greater than the bias. These two results hold whether the

interim interpretation or the ex ante interpretation is used in this incomplete information
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game.

Lemma 2.5 is the building block for these two results. It states that no type of the

Sender ever recommends an action that is smaller than what is most preferred by the

Receiver. We say that two messages are equivalent if they receive the same action under

any sR in SR (∞). Lemma 2.5 sets forth, more precisely, that the Sender always gives a

recommendation at least as high as an equivalent recommendation of her most preferred

action.

Lemma 2.5 (Sender Weak Inflation). Given any type t, the lowest message she may

send in a iterative admissible Sender strategy is at least as high as her type., that is,

l (∞; t) ≥ t for all t ∈ T . Moreover, type t Sender either sends a message at least as

high as her preferred Receiver action, i.e., l (∞; t) ≥ yS (t) or the lowest message she

sends is equivalent to the recommendation equal to her preferred Receiver action, i.e.,

sR (l (∞; t)) = sR ¡yS (t)¢ for all sR ∈ SR (∞).
Proof. The main idea is most easily understood through an example. Suppose the Sender

prefers the Receiver action which is higher than her type by 0.05, and the players’ utility

functions are given by quadratic loss functions. That is,

uS
¡
tS , aR

¢
= − ¡tS + 0.5− aR¢2

uR
¡
tS , aR

¢
= − ¡tS − aR¢2 .

We first show that, after the first round of deletion of weakly dominated strategies, the

highest group of Sender types always weakly inflate. This is illustrated by figure 2.4.

The horizontal axis represents messages, and the vertical axis represents actions if we are
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looking at Receiver strategies, and types if we are looking at Sender strategies. The dot

represents the lowest message for type 0.86 surviving the first round of deletion. By the

assumption that b = 0.5 > 0, every type above 0.95 prefers the highest action, action 1,

the most and prefers a higher action to a lower one. By the relative meaning property,

a higher message never induces a lower action, for every type above 0.95, message 1, the

highest recommendation, weakly dominates every other message. Therefore, every type

above 0.95 weakly inflates. Moreover, for every type t > 0.9, a message lower than her own

type is weakly dominated for her by the message equal to her own type. To see this, let’s

look at type 0.91. If a message m̃ lower than her own type induces an action different from

that induced by the message 0.91, then by the language properties, the action induced by

the lower message m̃ is lower than 0.91, while the highest action that the message 0.91 can

induce is the highest action 1. Since type 0.91 prefers action 1 to any action lower than

0.91, by concavity, she prefers any action between 0.91 and 1 to any action lower than 0.91.

Therefore, the lower message m̃ is weakly dominated by the message 0.91 for type 0.91.

We have thus shown that the highest group of Sender types, i.e., types weakly above 0.91,

all weakly inflate after the first round of deletion.

Now we will show that, after the second round of deletion of weakly dominated strate-

gies, the Receiver never takes an above-recommendation action after receiving any message

weakly above 0.91. After the first round of deletion of weakly dominated strategies, every

type above 0.91 weakly inflates. This implies that every message above 0.91 comes only

from types below the value of the message. Observation 2.5.1 implies that a Receiver

strategy that takes an above-recommendation action after receiving a message above 0.91 is
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weakly dominated. Moreover, after the second round of deletion, he Receiver never takes

an action above 0.91 after receiving a message below 0.91.

Now we will take a look at the strategies of the medium-high group of Sender types and

show that, after the third round of deletion of weakly dominated strateiges, the medium-

high group of Sender types all weakly inflate as well. Though every type of the Sender

prefers a Receiver action strictly above their type, and the relative meaning property of

language says that a higher message induces a weakly higher action, a type t Sender might

want to send a recommendation smaller than her most preferred action for fear of being

pooled with types that are too high and receiving too high an action. Figure 2.4 shows

that the lowest message sent by type 0.86 after the first round of deletion is lower than

0.86. To see this, note that message 0.85 is a strict best response for type 0.86 w.r.t. to the

Receiver strategy that takes the recommended action after receiving every message weakly

below 0.85 and action 1 after receiving every message above 0.85. It can be easily checked

that type 0.86 prefers action 0.85 to action 1, and action 0.85 to every action lower than

that. Thus, message 0.85 is a strict best response for type 0.86, and hence is not weakly

dominated. However, after the second round of deletion of weakly dominated strategies,

the Receiver never takes an action above 0.91 after receiving message 0.86. Since 0.91 is

the Receiver action most preferred by type 0.86, she prefers a higher action to a lower one

if the higher action is below 0.91, and thus message 0.85 neve does better than message

0.86 for type 0.85. Thus, type 0.86 always weakly inflate after the third round of deletion.

Similarly, there exists a medium high group of Sender that always weakly inflate after the

third round of deletion. After iteration, we find that every type gives a recommendation at
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Figure 2.4: Sender Weak Inflation Round 1 Deletion

least as high as her most preferred action. Therefore, it is never optimal for the Receiver

to take an action higher than the recommendation.

This sketch is a heuristic proof because an important step is omitted when we say that

message 0.85 is weakly dominated by message 0.86 for type 0.85 in the third round – we

didn’t show that there exists a Receiver strategy surviving the second round of deletion

that takes different actions after receiving messages 0.85 and 0.86. The real proof is more

complicated because we need to construct such a Receiver strategy.

We need some notations here. Write M (k) = ∪t∈TSS (k; t). M (k) is the set of

messages used by some type up to round k. Then M (∞) = ∪t∈TSS (∞; t). Define

¡
sR
¢−1

(a) ≡ ©m ∈M |sR (m) = aª .
It is the set of messages in M that induces the action a under the Receiver strategy sR.
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Figure 2.5: Sender Weak Inflation Round 3 Deletion

Now we state the two main results for NIAL.

Proposition 2.2 (Coarseness). Given any sR ∈ SR (∞), suppose a1 < a2 < a3 are

adjacent actions in the range of sR, and
¡
sR
¢−1

(a2) ∩M (∞) 6= ∅, that is, a2 might be

received by some type t Sender under some Sender strategy in SS (∞; t). Then the following

inequality holds:

a3 − a1 > a3 − y−1S (a3) ≥ b,

where y−13 (a3) is the type that prefers action a3, or the lowest type that prefers a3 to any

action lower than a3.

Proof. From the definition of SRL , s
R (aj) = aj , j = 1, 2, 3. Suppose to the contrary that

there exists ŝR ∈ SR (∞) where a1 < a2 < a3 are adjacent actions taken in ŝR and a3−a1 ≤

b . Let [m2, m̄2] be the interval on which ŝR (m) = a2. That is,
¡
sR
¢−1

(a2) = [m2, m̄2].

From Lemma 2.5, types that prefer action a3 to any lower one will send a message no smaller
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than a message which is equivalent to message a3. (Recall the definition that a message

m0 is equivalent to message m if sR (m) = sR (m0)∀sR ∈ SR (∞).) m̄2 is not equivalent to

message a3 because ŝR (a3) 6= ŝR (m̄2) and ŝR belongs to SR (∞). From the definition of b,

every type no smaller than a3 − b prefers action a3 to any lower one. Therefore, messages

in [m2, m̄2] can only come from types smaller than a3 − b. By assumption, a3 − b ≤ a1.

Then if [m2, m̄2] ∩M (∞) 6= ∅, ŝR can be improved upon by changing the action taken

on [m2, m̄2] from action a2 to action a1. Hence ŝR is weakly dominated and should not

belong to SR (∞). We need the qualifier that ¡ŝR¢−1 (a2) is used by at least one type under
some strategy because otherwise the Receiver would not care what he does on the interval¡
ŝR
¢−1

(a2).

Remark 2.1. Proposition 2.2 shows that communication cannot be perfectly informative

as long as the bias is greater than 2∆. If the bias is large, we can be sure that very

little information will be transmitted. Proposition 2.2 is parallel to Lemma 1 in Crawford

and Sobel (1984), stating that there exists ε > 0 such that any two actions induced on the

equilibrium path differ by at least ε.

Remark 2.2. The number of inducible actions under Receiver strategies in SR (∞) is less

than or equal to 2
b .

Proposition 2.3. There exists L > 0 such that the number of inducible actions on M (∞)

under any sR ∈ SR (∞) is at least L. L increases as the bias b decreases.

Proof. Lemma 2.5 shows that l (∞; t) ≥ t for all t. From observation 2.5.1, sR (m) ≤ m

for all m ∈ M (∞). We can also show that the maximum action taken by a strategy

sR ∈ SR (∞) must be greater than or equal to E ([0, 1]). If b is small enough, then



2.5 Normal Form Iterative Admissibility 38

g (∞; 0) < E ([0, 1]), which implies that there will exist some types that will never elicit the

highest action because they always send lower messages. Therefore, every sR in SR (∞)

must partition M (∞) into at least 2 subintervals. Let mq be the lowest message that

takes on maxm ŝR (m) where ŝR ∈ SR (∞). Then E ([0, 1]) ≤ ŝR (mq) = mq. Let mq−1 be

the smallest message that takes on maxm<mq ŝ
R (m), then by the same argument, mq−1 =

ŝR (mq−1) ≥ E
¡£
0, g−1 (∞;mq)

¤¢
. If b is small, then g−1

¡∞;E ¡£0, g−1 (∞;mq)¤¢¢ > 0,

that is, there will be types sending only low messages which never elicit an action higher

than the second highest one. If we stop after L steps, then we know that every Receiver

strategy sR in SR (∞) partitions M (∞) into at least L intervals.

CS showed that under the monotonicity condition (M) restated here in section 2.4, the

Receiver prefers the most informative equilibrium. They argued that focusing on the most

informative equilibrium would be natural. It is natural to ask whether NIAL provides

grounds for doing so. To relate NIAL to the equilibrium concept, we will use ex ante

interpretation, which is equivalent to assuming that different Sender types hold the same

belief about the behavior of the Receiver. Proposition 2.4 states that every equilibrium

which is not as informative as the largest equilibrium will be eliminated.

Discretization compels us to make certain assumptions. When T = [0, 1], continuity

insures that boundary types, which are indifferent between two equilibrium actions, are of

measure zero. We assume that this condition holds in the discrete case.

Assumption Given any τ < τ̄ ∈ T , every equilibrium in the game restricted to the subset

[τ , τ̄ ] ∩ T is such that no boundary types are indifferent between two equilibrium

actions.
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This assumption implies that every forward solution {τ0; τ1; ...; τn} is such that type τ i−

∆ prefers action E ([τ i−1, τ i −∆]) to action E ([τ i, τ i+1 −∆]), while type τ i prefers action

E ([τ i, τ i+1 −∆]) to action E ([τ i−1, τ i −∆]). This assumption will be carried throughout

the paper.

Proposition 2.4. Under condition (M), every Receiver strategy satisfying NIAL takes at

least as many different actions on M (∞) as the most informative equilibrium in the game

without language. That is, L ≥ N (b).

We will first show that the babbling outcome is not iteratively admissible in the language

game if the original game has an informative equilibrium. Then we will show that, if there is

an equilibrium in the original game with three different actions, every iteratively admissible

Receiver strategy takes at least three different actions on M (∞) . With induction, we

finish the proof for games with bigger-size equilibria.

We need the following lemmas for the proof.

Lemma 2.6. If there exists a forward solution of size 2 on [τ , τ̄ ], and if the monotonicity

condition (M) holds, then type τ prefers action τ to action E ([τ , τ̄ ]).

Proof. Let τ1 = τ . Since τ1 < t21 ([τ , τ̄ ]), by the monotonicity condition there exists a

forward solution of size two, {τ , τ1, τ2}. It has to be the case that τ2 ≥ τ̄ because type τ1

prefers action E ([τ1, τ̄ ]) to action E ([τ , τ1]) = τ , and by the definition of forward solution,

type τ1 is indifferent between action E ([τ1, τ2]) to action E ([τ , τ1]). This contradicts the

monotonicity condition because τ1 < t21 ([τ , τ̄ ]) while τ2 > t
2
2 ([τ , τ̄ ]).

Crawford and Sobel showed that if there exists a forward solution of size n on [τ , τ̄ ], then
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there exists a forward solution of size q on [τ , τ̄ ] for every natural number q ≤ n. Recall

that {tq0 ([τ , τ̄ ]) , tq1 ([τ , τ̄ ]) , ...tqq ([τ , τ̄ ])} denote a forward solution of size q on [τ , τ̄ ].

Lemma 2.7. If there exists a forward solution of size n+1 on [τ , τ̄ ], and if the monotonicity

condition (M) holds, then there exists a forward solution of size n on [τ , t0] for every t0 ∈£
tnn−1 ([τ , τ̄ ]) , τ̄

¤
.

Proof. Let τ1 = τ . We can find a forward solution of size n {τ , τ1, ..., τn}. If we can

show that τn ≤ tnn−1 ([τ , τ̄ ]), then from continuity of the utility functions, for every t0 ≥

tnn−1 ([τ , τ̄ ]), we can find τ1 (t0) ≥ τ such that the size-n forward solution starting with τ1 (t0)

ends with t0.

Now we will show that the forward solution {τ , τ1, ..., τn} must be such that τn ≤

tnn−1 ([τ , τ̄ ]). Suppose to the contrary that τn > tnn−1 ([τ , τ̄ ]). By the definition of forward

solution, {τ1, ..., τn} is a size-(n− 1) forward solution, and
©
τ , tn1 ([τ , τ̄ ]) , ..., t

n
n−1 ([τ , τ̄ ])

ª
is

also a size-(n− 1) forward solution. Since τ1 = τ and τn > t
n
n−1 ([τ , τ̄ ]), the monotonicity

condition (M) implies that τ2 > tn1 ([τ , τ̄ ]). We can find τn+1 such that {τ1, ..., τn, τn+1}

is a size-n forward induction. Then condition (M) implies that τn+1 > τ̄ . Since

{τ , τ1, ...τn, τn+1} and
©
τ , tn1 ([τ , τ̄ ]) , ..., t

n
n−1 ([τ , τ̄ ]) , τ̄

ª
are both forward solutions of size

(n+ 1). Then τ1 > t
n
1 ([τ , τ̄ ]) because τn+1 > τ̄ . Contradiction!

Lemma 2.8. If there exists a forward solution of size n + 1 on [τ , τ̄ ], and type t̂ prefers

action E
¡£
t̂, τ̄
¤¢
to action αnn

¡£
τ , t̂−∆¤¢, then t̂ ≥ tn+1n ([τ , τ̄ ]).

Proof. Type t̂ prefers action E
¡£
t̂, τ̄
¤¢
to action αnn

¡£
τ , t̂−∆¤¢, then there exists τ̄ 0 > τ̄

such that
©
τ , tn1

¡£
τ , t̂−∆¤¢ , ..., t̂, τ̄ 0ª is a forward solution of size n+1. Since ©τ , tn+11 ([τ , τ̄ ]) , ..., tn+1n ([τ , τ̄ ])
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is also a forward solution of size n + 1, the monotonicity condition (M) implies that

t̂ > tn+1n ([τ , τ̄ ]).

Lemma 2.9. If ŝR ∈ SR (∞), a2 is in the range of ŝR, and a1 is the largest action below

a2 in the range of ŝR, then the smallest type that may send messages weakly above message

a2, i.e. type g−1 (∞, a2) must prefer action a2 to action E
¡£
0, g−1 (∞; a2)

¤−∆¢.
Proof. Let m̂ be the largest message lower than message a2 that are iteratively admissible

for some type. If m̂ = a2 − ∆, then from observation 2.5.1 and the lemma that every

type of the Sender weakly inflates, ŝR (a2 −∆) = a1, and sR (a2 −∆) < a2 for every

iteratively admissible Receiver strategy sR which responds to message a2 and message a2−∆

with different actions. By definition of g−1, every type below g−1 (∞, a2) sends messages

strictly below a2. Therefore, sR ∈ SR (∞) and sR (a2) 6= sR (a2 −∆), then sR (a2 −∆) ≥

E
¡£
0, g−1 (∞, a2)−∆

¤¢
and sR (a2) ≥ a2. For type g−1 (∞, a2) to be willing to send

messages above a2, there has to exist sR ∈ SR (∞) such that type g−1 (∞, a2) prefers

sR (a2) to sR (a2 −∆). It follows that type g−1 (∞, a2) has to prefer action a2 to action

E
¡£
0, g−1 (∞, a2)−∆

¤¢
.

Now we will discuss the case where m̂ < a2 −∆. If sR (a2) = a2 for every iteratively

admissible Receiver strategy sR that responds differently to message a2 and message m̂,

then we are back to the previous case. Suppose to the contrary that type g−1 (∞, a2)

prefers action E
¡£
0, g−1 (∞, a2)−∆

¤¢
to action a2, then it has to be the case that she

prefers s̃R (a2) < a2 to s̃R (m̂) 6= s̃R (a2) for some s̃R ∈ SR (∞), and that she prefers action

a1 to action a2. We will show that ŝ0R (m) which is equal to ŝR except on messages in

[m̂+∆, a2 −∆] and takes on action a1 on messages in [m̂+∆, a2 −∆] belongs to SR (∞),
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and there exists a message in
£
m̂+∆, s̃R (a2)−∆

¤
which is iteratively admissible for type

g−1 (∞, a2). We have thus reached a contradiction and the proof is done.

We know that ŝ0R is consistent with language. Since s̃R ∈ SR (∞), there exists a Sender

strategy σ̂S ∈ ∆SS (∞) to which ŝR is a best response. Since no types of Sender ever sends

messages in
£
m̂+∆, s̃R (a2)−∆

¤
, ŝ0R is also a best response to σ̂S . From our assumption

that type g−1 (∞, a2) prefers action s̃R (a2) to action s̃R (m̂) and that she prefers action

a1 = ŝ0R (a2 −∆) to action a2 = ŝ0R (a2), any Sender best response ŝ0S to the Receiver

strategy (1− ε) ŝ0R + εs̃R must be such that ŝ0S
¡
g−1 (∞, a2)

¢ ∈ [m̂+∆, a2 −∆]. Since

the Sender prefers a higher action than does the Receiver, given the type of the Sender,

if she prefers the lower action, action a1, to the higher action, ction a2, then so does the

Receiver. Therefore, any best response of the Receiver to (1− ε) σ̂S + εŝ0S where ε is

sufficiently small must be takes an action lower than a2 after receiving some message in

[m̂+∆, a2 −∆], and therefore, by the relative meaning property, it must take an action

lower than a2 after receiving message m̂+∆. So there exists a Receiver strategy ŝR2 which

is equal to ŝR outside of [m̂+∆, a2 −∆], and takes an action lower than a2 after receiving

message m̂+∆. By induction, some message in [m̂+∆, a2 −∆] is iteratively admissible

for type g−1 (∞, a2), a contradiction! We have thus completed the proof.

Claim 2.1. The Babbling outcome is eliminated if there exists an informative equilibrium

in the original game.

Proof. We will first show that there exists a group of low types that never send a message

above E ([0, 1]). Recall that E ([0, 1]) is the best action for the Receiver if he knows only the

prior. If the Receiver’s utility function is a qudratic loss function, E ([0, 1]) is the average
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of Sender types. For ease of exposition, we call E ([0, 1]) the average.

By definition, if there exists a size-2 equilibrium in the original game, there exists a

size-2 foward solution on [0, 1]. By lemma 2.6, the lowest type of the Sender, type 0, must

prefer action 0 to the average action, action E ([0, 1]). Therefore, the average recommen-

dation, message E ([0, 1]), is weakly dominated in the first round of deletion for type 0 by

a slightly below-average recommendation, message E ([0, 1])−∆. To see this, notice that

every Receiver strategy consistent with language belongs to SR (0). Therefore, there are

Receiver strategies that takes different actions after receiving message E ([0, 1]) and message

E ([0, 1]) −∆. By the absolute meaning property, if a Receiver strategy responds to the

two messages with different actions, the action taken after receiving message E ([0, 1])−∆

is lower than E ([0, 1]) and the action taken after receiving message E ([0, 1]) is weakly

above E ([0, 1]). Type 0 prefers action 0 to the average action E ([0, 1]). By concavity,

type 0 Sender prefers any action between 0 and E ([0, 1]) −∆ to any action weakly above

E ([0, 1]). Therefore, the average recommendation is weakly dominated for type 0. Sim-
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ilarly, every above-average recommendation is weakly dominated for type 0. The highest

message for type 0 surviving the first round of deletion is lower than average. By continuity

of utility functions, types that are close to 0 does not send above-average recommendations

either. Therefore, the highest message for the bottom group surviving the iterative process

is strictly below average. This is shown by the graph of g (∞; t) in figure 2.6.

Now we will show that the Receiver strategy that takes the same action after receiving

every message in M (∞) is strongly dominated. Lemma 2.5 shows that every type of

the Sender weakly inflates. In particular, every above-average Sender sends an above-

average recommendation. We just showed that there exists a bottom group that never

sends any message above E ([0, 1]). Therefore, the babbling strategy, the Receiver strategy

that responds to every message with action E ([0, 1]), is strongly dominated by a different

action that takes a slightly higher action after receiving every message above E ([0, 1]), and

a slightly lower action after receiving every message below E ([0, 1]), as illustrated by the

Receiver strategy with two steps in figure 2.7. Moreover, the highest action taken after

receiving an iteratively admissible message by some Receiver action sR ∈ SR (∞) must be

higher than action E ([0, 1]), the “average” action.

Claim 2.2. Receiver strategies with only two different actions in the range are eliminated

if there is an equilibrium of size-3 in the original game.

Proof. Take any iteratively admissible Receiver strategy sR, write the highest action taken

by sR on M (∞) as a2. Figure 2.8 illustrates one such strategy. We now know that

a2 ≥ E ([0, 1]). From lemma 2.9, we know that type g−1 (∞; a2), the smallest type that

may send messages weakly above a2, must prefer action a2 to pooling with types below
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herself and getting action E
¡£
0, g−1 (∞; a2)−∆

¤¢
. Since a2 is the highest action taken by

sR, and no types smaller than g−1 (∞, a2) sends messages weakly above message a2, it has

to be the case that

a2 ≥ E
¡£
g−1 (∞; a2) , 1

¤¢
.

By concavity, type g−1 (∞, a2) prefers being pooled with types above herself and receiving

action E
¡£
g−1 (∞, a2) , 1

¤¢
to being pooled with types strictly below herself and receiving

action E
¡£
0, g−1 (∞; a2)−∆

¤¢
. By lemma 2.8, type g−1 (∞, a2) must be higher than

t21 ([0, 1]). From lemma 2.7 and the assumption that there exists a size-3 forward solution

on [0, 1], there exists a size-2 forward solution on
£
0, g−1 (∞, a2)−∆

¤
. Then type 0 must

prefer action 0 to action E
¡£
0, g−1 (∞; a2)−∆

¤¢
, and thus will not send any message above

E
¡£
0, g−1 (∞; a2)−∆

¤¢
after the first round of deletion. This observation combined with

Sender weak inflation shows that if sR is a constant on messages in
£
0, g−1 (∞; a2)−∆

¤
, sR is

strongly dominated w.r.t. SS (∞). This is the same argument as the one used to show that

babbling is eliminated whenever there is a size-2 forward solution on [0, 1]. Similarly, a1,

the highest action taken on M (∞) by sR must be weakly above α22
¡£
0, g−1 (∞; a2)−∆

¤¢
.

That is, sR (m) ≥ α22
¡£
0, g−1 (∞; a2)−∆

¤¢
for every sR ∈ SR (∞) and sR (m) is the

highest action taken by sR below a2. Then for type g−1 (∞; a2) to be willing to send a

message above a2, it has to be the case that she prefers action α22
¡£
0, g−1 (∞; a2)−∆

¤¢
to

pooling with types above her. Lemma 2.8 shows that type g−1 (∞; a2) must be weakly

above t32 ([0, 1]). We have thus shown that the range of any iteratively admissible Receiver

strategy must contain at least three different actions in the range w.r.t. to the domain

M (∞), and that the highest action must be weakly above the highest action taken in the
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size-three equilibrium.

For general cases, we employ proof by induction. The proposition follows immediately

from the following claim.

Claim 2.3. For any α̂ ∈ ŝR (M (∞)) where ŝR ∈ SR (∞) and â 6= min ŝR (M (∞)), ŝR

takes at least q different actions on M (∞)∩ [0, â−∆] if £0, g−1 (∞; â)−∆¤ has a forward
solution of size-q. Let ã ≡ max ŝR ([0, â−∆] ∩M (∞)). Then ã is greater than or equal to

the largest action on the size-q forward solution on
£
0, g−1 (∞; â)−∆¤ and g−1 (∞; aq) ≥

tqq−1
¡£
0, g−1 (∞; â)−∆¤¢ where aq is the smallest message equivalent to ã.

Proof. See the Appendix.

Remark 2.3. We prove it by showing that it is necessary for the limiting set. The argu-

ments do not depend on the finiteness assumption. As a corollary, this is also a necessary

condition for the limiting set under NIAL even if T = A =M = [0, 1]. In fact, we do not

need the assumptions we impose in the discrete case.

2.5.2 Relating NIAL to Equilibria in the Game without Language

Denote by EQ (G) the set of equilibria in G, where G represents the game without language.

Recall that NIAL is iterative admissibility in GL, the game WITH language. In general,

there is no containment between NIAL and EQ (G). As a non-equilibrium concept, NIAL

naturally gives rise to non-equilibrium outcome being contained in NIAL. Proposition 2.3

implies that NIAL may eliminate some of the less informative equilibria. However, in this

section, we present an example demonstrating that NIAL can be disjoint from EQ (G).
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types of S sending message m in SS (1) ∅ 0 1
2 , 1

sR in language \ message m “0” “12” “1” in SR (1) in SR (2)

0 0 0

0 1
2

1
2 v

1
2

1
2

1
2 v

1 1 1

0 1 1 v
1
2

1
2 1 v

0 1
2 1 v

sRnice 0 0 1 v v

Table 2.4: Receiver Strategy Set in Language

In our example, the unique equilibrium in G is the babbling equilibrium, while the unique

prediction given by NIAL is partially informative.

Example 2.4. There are three types: type 0, 12 and 1. The common prior is such that

π (0) = 1
3 ; π

¡
1
2

¢
= 4

9 and π (1) = 2
9 . Both the Sender and the Receiver have quadratic loss

function: uR (t, a) = − (t− a)2 and uS (t, a) = − ¡t+ 1
2 − a

¢2
.

The unique equilibrium in this game without language is babbling. Because both type

1
2 and type 1 Senders prefer a higher action to a lower one, it is impossible to separate

these two types in any equilibrium. To show that there is no informative equilibria, let’s

suppose to the contrary that there is an equilibrium in which type 0 separates from type

1
2 and 1. The best action against pooling of type

1
2 and type 1 is action

1
2 , while the best

action against type 0 is action 0. However, this cannot be an equilibrium because type 0

prefers action 1
2 to action 0, and therefore would have an incentive to imitate type

1
2 and

type 1. Thus, in an equilibrium, type 0 cannot separate from type 1
2 and type 1. Since

the best action with respect to the prior is 12 , the unique equilibrium in the game without

language is babbling, where all types pool and the Receiver takes action 1
2 after receiving
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every message.

Now let’s derive the solution to this game under NIAL. Write sR as a 3-tuple of

actions taken after messages 0, 12 and 1 respectively, i.e., sR =
¡
sR (0) , sR

¡
1
2

¢
, sR (1)

¢
.

The bottom part of table 2.4 shows all the Receiver strategies in SRL . In the first round

of deletion, (0, 0, 0) and (1, 1, 1) are eliminated since the unique best response to pooling

of all types is 12 . For every other strategy ŝR, a totally mixed Sender strategy σ̂S can be

constructed such that ŝR is a best response to σ̂S . Thus no further Receiver strategies can

be eliminated in the first round.

Now we must determine the set of Sender strategies that survive the first round. Both

type 1 and type 1
2 Sender prefer a higher action to a lower one. For these two types, both

message 0 and message 12 are weakly dominated by message 1 because Receiver strategies in

SRL are weakly increasing, and hence message 1 induces the weakly highest action. A type

0 Sender prefers action 1
2 the most, and is indifferent between action 0 and action 1. Recall

that by the absolute meaning property of language, sR satisfies the following inequalities if

sR (0) 6= sR ¡12¢: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sR
¡
1
2

¢
> sR (0)

sR
¡
1
2

¢
> 0

sR (0) < 1
2

.

This implies that sR (0) = 0 and sR
¡
1
2

¢ ≥ 1
2 if s

R (0) 6= sR ¡12¢. That is, whenever message
0 and message 12 induce different actions, message 0 induces action 0 while message

1
2 induce

either action 1
2 or action 1. As the type 0 Sender weakly prefer both action

1
2 and action 1

over action 0, and strictly prefers action 1
2 over action 0, message 0 is weakly dominated by

message 1
2 for the type 0 Sender. Similarly, message 1 is weakly dominated by message

1
2
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Equilibrium IA ID
No Language sbabble everything everything
Language sbabble, snice snice everything

Table 2.5: Comparison of Predictions

for a type 0 Sender among SS (0). In conclusion, after the first round of deletion, a type 0

Sender will send only message 12 , and both type
1
2 and type 1 Sender will send only message

1. This Sender strategy, called sSnice, is shown in the first row of table 2.4.

Now we show that SR (2) =
©
sRnice

ª
where sRnice = (0, 0, 1). In the second round,

the only conjecture the Receiver can hold about the Sender’s strategy is sSnice. Under

sSnice, no type of Sender ever sends message 0. Therefore the Receiver’s predetermined

response to message 0 is irrelevant. Hence, the relevant difference among Receiver strategies¡
1
2 ,
1
2 , 1
¢
,
¡
0, 12 , 1

¢
, (0, 1, 1) and (0, 0, 1) lies only in their responses at message 1

2 . When

receiving message 12 , action 0 is the best because only type 0 sends this message. Therefore,

Receiver strategy (0, 0, 1) yields a higher utility than either strategy
¡
1
2 ,
1
2 , 1
¢
,
¡
0, 12 , 1

¢
or

(0, 1, 1). Then we need only compare sRnice with the strategy
¡
0, 12 ,

1
2

¢
. Simple calculation of

ex ante utility shows that UR
¡
sSnice, (0, 0, 1)

¢
> UR

¡
sSnice,

¡
0, 12 ,

1
2

¢¢
. So SR (2) =

©
sRnice

ª
.

The process then stops and S (∞) = ¡©
sSnice

ª
,
©
sRnice

ª¢
. Call this strategy profile snice.

NIAL predicts that type 0 Sender receives action 0 and both type 1
2 and type 1 Sender

receive action 1.

Table 2.5 summarizes this game’s predictions under different combinations of language

restriction and solution concepts. snice emerges as an equilibrium in the game with lan-

guage, though babbling is the unique equilibrium in the game without language. In arriving

at S (∞), we previously showed that sRnice is optimal with respect to sSnice among SRL . sSnice
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types of S sending message m in sSnice ∅ 0 1
2 , 1

sR \ message m “0” “12” “1” in language
sRnice 0 0 1 yes
sRcheat 0 0 1

2 no
sRignore 0 1

2
1
2 yes

Table 2.6:

is optimal among SS with respect to sRnice because every other Sender strategy is weakly

dominated by sSnice with respect to S
R
L . It follows that snice is an equilibrium in GL.

To understand why snice is not an equilibrium in G, note that according to sSnice, message

1 is transmitted by either type 1
2 or type 1. The best response against pooling of these

two types is action 1
2 , not action 1. Therefore, the strategy

¡
0, 0, 12

¢
yields a higher utility

than (0, 0, 1) with respect to sSnice. It then follows that snice is not an equilibrium in G.

Table 2.6 illustrates all the relevant strategies. To see why snice is an equilibrium in GL

but not an equilibrium in G, note that
¡
0, 0, 12

¢
does not satisfy the language assumptions,

and therefore does not belong to SRL . Recall that by the literal meaning assumption of

language (see definition 2.3), if action 1
2 belongs to the range of a strategy, action

1
2 must

be taken in response to message 1
2 . Thus, if the Receiver wants to take action 1

2 after

receiving message 1, he must choose strategy
¡
0, 12 ,

1
2

¢
. Though strategy

¡
0, 12 ,

1
2

¢
yields a

higher interim utility than strategy (0, 0, 1) when message 1 is received, it yields a lower

interim utility when message 12 is received, because only type 0 sends message
1
2 , and action

0 is the best against type 0. When deriving the solution to NIAL, we have shown that

strategy (0, 0, 1) gives a higher ex ante payoff than strategy
¡
0, 12 ,

1
2

¢
against the Sender

strategy sSnice. Therefore, (0, 0, 1) is optimal among SRL with respect to s
S
nice, though it is

not optimal among the unrestricted strategy set.
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This example points out that in a game with language, ex ante utility maximization

does not necessarily imply interim utility maximization on every information set on the

equilibrium path. We showed above that sRnice is ex ante optimal against s
S
nice. However,

sRnice takes a suboptimal action against the posterior generated by s
S
nice in response to

message 1, which is reached with positive probability by the profile snice. Thus, in the game

with language, sRnice is not interim optimal with respect to sSnice even on the equilibrium

path.

The break down of the link between ex ante optimality and interim optimality on the

equilibrium path results from the non-separability of the second-stage-action space created

by the language restriction. In the first stage of the two-stage sender-receiver game, the

Sender decides to send a message based on her private information. In the second stage,

the Receiver takes an action in response to the message from the Sender. In a standard

game, the action space available to a player at a given information set (a particular message

in a sender-receiver game) does not depend on the action the player plans to take at any

other information set. We can conceive of the second stage action space as “separable”.

The language restriction breaks the separability: the set of actions available to the Receiver

upon receiving a message depends on which actions he plans to take in response to other

messages. Although for any single message taken in isolation, language does not restrict the

Receiver to a strict subset of his action space, when holding fixed the Receiver’s responses to

other messages, language assumption does often impose restrictions on the available action

space. In Example 2.4, if the Receiver wants to respond optimally to message 1 with respect

to sSnice, he should take action
1
2 . However, if he takes action 1

2 after receiving message
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1, he must then take action 1
2 at message

1
2 by the literal meaning condition of language.

Note that our assumption prohibits the Receiver from any strategy which violates language.

Therefore, the set of actions available to the Receiver at message 1
2 is

©
1
2

ª
given that he

takes action 1
2 after receiving message 1. Thus it is often the case that when the Receiver

decides to take an optimal action in response to a message based on a conjecture he holds

about the Sender’s behavior, he will be forced to take a suboptimal action in response to

another message reached with positive probability. The Receiver gauges the gains and

losses ex ante and chooses one that maximizes his ex ante utility.

Though the language restriction does not limit strategic contents, in that EQ (G) ⊂

EQ (GL) for every sender-receiver game G, it does provide an artificial commitment device

that may make EQ (G) strictly contained in EQ (GL). As is often the case, commitment

makes the Receiver weakly better off. For example, snice gives the Receiver a higher ex

ante payoff than the babbling outcome. However, the Receiver does not really have a

commitment device. Incorporating language with a normal form approach fails to take

into account sequential rationality, since in the game with language, interim optimality

on the equilibrium path is no longer implied by ex ante optimality. This prompts us

to develop an extensive form version incorporating language, iterative admissibility and

sequential rationality.

2.6 Conclusion

This chapter is an exercise to demonstrate the power of incorporating the asymmetry im-

plied by language, when language is regarded as one way to transmit a given amount of
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information. Taking a literal approach, we model common knowledge of language by di-

rectly restricting players’ strategy sets without a priori ruling out any outcome. We then

characterize the solution to this new game under iterative admissibility. Applying the

general framework to sender-receiver games a la Crawford and Sobel (1982), we assume

that strategies satisfy “language” if and only if they satisfy the literal meaning condition

and the convexity condition. Using normal form iterative admissibility, under a regularity

condition, we show that all outcomes are at least as informative (in terms of number of

distinct actions possibly received by the sender) as the most informative equilibrium.

However, we illustrate through an example that this procedure may eliminate even

the most informative equilibrium, and we point out the tension among language, iterative

admissibility and sequential rationality. These conflicts arise because modeling language

through physically restricting a player’s strategy set gives language the highest priority.

Therefore, language always overrides interim optimality, although normal form iterative

admissibility takes care of ex ante optimality. We will make an attempt to address this

issue in the following chapter.

2.7 Appendix

2.7.1 Proofs for Section 2.3

Proof for Lemma 2.12.2. We first establish the equivalence between strong dominance and

best response. Lemma 2.1 then follows using the same method in the proof of lemma 4

in the Appendix of Pearce (1984). For the completeness of the argument, we restate the

proof below.
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Suppose that ŝR is not a best response to any σS ∈ Πt
¡
∆+XS (t)

¢
. Define

A =
©
σR ∈ ∆XR : UR

¡
σS,σR

¢
= UR

¡
σS , ŝR

¢∀σS ∈ Πt ¡∆XS (t)
¢ª
.

Let kt be the number of pure strategies in XS (t) and let k = Πt∈Tkt, and κ be the open

interval
¡
0, 1k

¢
. Define

δtε =
©
σS ∈ ∆XS (t) : σSi ≥ ε∀i = 1, 2, ..., kt

ª
,

δε = Πtκ
t
ε

Bε =
©
σR ∈ ∆XR : UR

¡
σR,σS

¢
> UR

¡
ŝR,σS

¢∀σS ∈ κε
ª
,

Wε =
©
σR ∈ ∆XR : UR

¡
σR,σS

¢ ≥ UR ¡ŝR,σS¢∀σS ∈ κε
ª
.

ŝR is not a best response to any σS ∈ Πt
¡
∆+XS (t)

¢
, so for each ε ∈ κ, ŝR is not a

best response to any σS ∈ δε. If we view δtε as set of strategies for type t Sender, then

the equivalence between strong dominance and never best response establishes that Bε is

nonempty. Since Wε is closed and nonempty, for each ε ∈ κ we can choose sRε ∈ ∆XR that

is a best response in Wε to σSε ∈ δε, where σSε (t) puts probability
1
kt
on every pure strategy

in XS (t). Notice that sRε yields player R strictly higher utility against σ
S
ε than ŝ

R, since

Bε vWε. Choose a sequence of ε0is in T converging to 0, such that
©
σRεi
ª
converges. Let

σR∗ be the limit of the sequence
©
σRεi
ª
. We will show that σR∗ weakly dominates ŝR.

Continuity of UR guarantees that σR∗ is at least as good for player R as ŝR against all

σS ∈ Π ¡∆XS (t)
¢
. It remains only to show that σR∗ /∈ A. If ∃σ0R ∈ A with σ0R = σR∗ , then

for all sufficiently small εi, σRεi gives positive weight to very pure strategy given positive
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weight by σ0R. Then λ > 0 can be chosen sufficiently small so that all components of

σ̄Rεi =
¡
σεi − λσ0R

¢ 1

1− λ

are nonnegative. For any σR ∈ δεi ,

UR
¡
σS , σ̄Rεi

¢− UR ¡σS ,σRεi¢ = λ

1− λ

£
UR

¡
σRεi ,σ

S
¢− UR ¡ŝR,σS¢¤ ≥ 0

because σRεi ∈ Wεi . Moreover, the inequality is strict when σS is such that, for every t,

σS (t) puts probability 1
kt
on every pure strategy in XS (t) (denote it by σ̃S). Thus σ̄Rεi is

in Wεi and yields player R higher utility than σRεi against σ̃
S, a contradiction.

Claim 2.5. sR is strongly dominated w.r.t.
¡
ΠtX

S (t)
¢×XR if and only if there does not

exist a σS (t) ∈ ∆XS (t) for every t such that sR ∈ argmaxs0∈XR UR
¡¡
σS (t)

¢
t
, s0
¢
.

Proof. The “only-if” part is trivial. To show the “if” part, suppose to the contrary that

ŝR is not a best response to any σS ∈ Πt
¡
∆XS (t)

¢
. Then there exists a function b :

Πt
¡
∆XS (t)

¢ → XR with UR
¡
σS , b

¡
σS
¢¢
> UR

¡
σS, ŝR

¢ ∀σS . Consider the zero-sum

game

Ḡ =
¡
T,ΠtX

S (t) ,XR, ŪS (; t) , ŪR
¢

where ŪR
¡
sS , sR

¢
= UR

¡
sS , sR

¢−UR ¡sS, ŝR¢ and ŪS ¡sS , sR; t¢ = −UR ¡sS, sR¢ ∀t. Let¡
Πtσ

S∗ (t) ,σR∗
¢
be a Bayesian Nash equilibrium of Ḡ. Since the interim interpretation

results in the same equilibria as the ex ante interpretation,

ŪS
¡
Πtσ

S
∗ (t) ,σ

R
∗
¢ ≥ ŪS ¡ΠtσS (t) ,σR∗ ¢
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for any ΠtσS (t) 6= ΠtσS∗ (t). For any σS ∈ ∆XS ,

ŪR
¡
Πtσ

S (t) ,σR∗
¢ ≥ ŪR

¡
Πtσ

S
∗ (t) ,σ

R
∗
¢

≥ ŪR
¡
Πtσ

S
∗ (t) , b

¡
Πtσ

S
∗ (t)

¢¢
= UR

¡
Πtσ

S
∗ (t) , b

¡
Πtσ

S
∗ (t)

¢¢− UR ¡ΠtσS∗ (t) , ŝR¢
> 0

So

UR
¡
Πtσ

S (t) ,σR∗
¢
> UR

¡
Πtσ

S (t) , ŝR
¢ ∀ΠtσS (t) ∈ Πt∆XS (t)

So ŝR is strongly dominated by σR∗ .

2.7.2 NIAL Results under the Interim Interpretation

To show lemma 2.5 strictly under the interim interpretation, we need the following lemmas.

Lemma 2.10. 3If yS (t) ≥ t+ b∀t, then S (k) satisfies the following properties for all k:

1. Given any messages m0,m1 where m0 < m1 ≤ yS (t) and m0 ∈ SS (k; t), then m1

belongs to SS (k; t).

2. If l (k; t) < yS (t), then [l (k; t) , yS (t)] ∈ SS (k; t);

3. ∀m0 < m1 such that m1 ∈ M (k) and ∃sR ∈ SR (k) such that sR (m0) 6= sR (m1),

there exists ŝR ∈ SR (k) such that ŝR (m0) < ŝ
R (m1) ≤ m1.

3 I have a proof for property 3 for ex ante representation. The proof for property 4 relies on interim
representation. Do not know whether it holds under ex ante representation.
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4. For all message m̂ ∈ M (k) such that there exists a strategy sR1 ∈ SR (k) where

sR1 (m̂−∆) < m̂ < sR1 (m̂), there exists another strategy s
R
2 ∈ SR (k) where

sR2 (m̂+∆) = sR1 (m̂+∆)

> sR2 (m̂) ≥ sR1 (m̂−∆) .

Proof. Prove by induction. It is obvious that properties 1 through 4 hold for k = 0.

Suppose they hold for j = 0, ..., k. Property 2 is a re-phrasing of property 1. Property 1

follows from property 4. To show property 4 holds for j = k + 1, suppose ŝR ∈ SR (k + 1)

is such that ŝR (m̂−∆) 6= ŝR (m̂). If l (k; t) > m̂ for all t > m̂, then message m̂ can

only come from types smaller or equal to m̂. m̂ ∈ M (k), so it can be shown that sR

such that sR (m̂) > m̂ cannot be a best response to any σS ∈ Πt∈T
¡
∆+SS (k; t)

¢
. So if

ŝR (m̂) 6= ŝR (m̂−∆) and ŝR ∈ SR (k + 1), then ŝR (m̂) = m̂. Property 3 is thus shown to

hold and property 4 holds automatically since there does not exist sR ∈ SR (k) such that

sR (m̂) > m̂. Now discuss the case where l (k; t) ≤ m̂ for some t > m̂. According to the

procedure, there exists σ̂S ∈ Πt∈T
¡
∆+SS (k; t)

¢
to which ŝR is a best response. Recall that

σS (.; t) ∈ ∆M . For type t > m̂, construct σ̂S2 (.; t) to be such that the weight on message

m̂ is moved to message m̂+∆, i.e.

σ̂S2 (m̂+∆; t) = σ̂S (m̂; t) + σ̂S (m̂+∆; t)

σ̂S2 (m̂; t) = 0

σ̂S2 (m; t) = σ̂S (m; t) ∀m < m̂
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Define σ̂S2 (.; t) = σ̂S (.; t) for every type t ≤ m̂. Message m̂ + ∆ belongs to SS (k; t)

∀t > m̂ if σ̂S (m̂; t) > 0 because yS (t) > t + b ≥ m̂ + b ≥ m̂ +∆ and property 2 implies

that
£
m̂, yS (t)

¤ ⊂ SS (k; t) if m̂ ∈ SS (k; t). Therefore σ̂S2 (.; t) ∈ ∆SS (k; t) ∀t. Define

σ̂Sα (.; t) ≡ (α) σ̂S2 (.; t)+ (1− α) σ̂S (.; t). Because ŝR is a best response to σ̂S and ŝR (m̂) >

m̂, it must be the case that argmaxa UR|{m̂}
¡
σ̂S , a

¢
> m̂. Since types that send message

m̂ under σ̂S2 must be smaller or equal to m̂, argmaxaU
R|{m̂}

¡
σ̂S2 , a

¢ ≤ m̂. So there exists
α̂ ∈ (0, 1) such that argmaxa UR|{m̂}

¡
σ̂Sα̂, a

¢
= m̂. This comes from the condition that

∂2u
∂a2

< 0 and can be shown by mean value theorem.

Let sRα̂ be a best response to σ̂Sα̂. Since σ̂Sα̂ (t) ∈ ∆+SS (k; t) ∀t, it follows that sRα̂ ∈

SR (k + 1). It remains to show that sRα̂ (m̂) = m̂ and s
R
α̂ (m̂+∆) ≥ ŝR (m̂+∆) for property

4 to hold for j = k + 1. If sRα̂ (m̂−∆) ≤ m̂ − ∆, then property 3 is shown to hold for

j = k + 1. Otherwise, define σ̂S3 to be such that all types smaller than m̂ send messages

smaller than m̂ and all types geater than or equal to m̂ send messages greater than or

equal to m̂. Then if s̃R is a best response to σS close to σ̂S3 , it must be the case that

s̃R (m̂−∆) ≤ m̂ −∆ and s̃R (m̂) ≥ m̂. If s̃R (m̂) = m̂ then property 3 is shown to hold.

Otherwise, s̃R (m̂) > m̂ > s̃R (m̂−∆) and we can apply the technique for ŝR again to show

that there exists s̃Rα̃ ∈ SR (k + 1) such that s̃Rα̃ (m̂) = m̂ and s̃Rα̃ (m̂−∆) ≤ m̂−∆.

Now show that sRα̂ (m̂) = m̂ and sRα̂ (m̂+∆) ≥ ŝR (m̂+∆). If sR is such that sR (m̂) =

sR (m̂+∆), then UR
¡
σ̂S2 , s

R
¢
= UR

¡
σ̂S , sR

¢
and therefore UR

¡
σ̂Sα̂, s

R
¢
= UR

¡
σ̂S , sR

¢
.

Construct a strategy φ−
¡
ŝR, m̂

¢
which is equal to ŝR except on m̂ and φ−

¡
ŝR, m̂

¢
(m̂) = m̂.

The strategy φ−
¡
ŝR, m̂

¢ ∈ SRL because ŝR (m̂) > m̂ > ŝR (m̂−∆) by construction. It’s
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easy to show that

UR
¡
σ̂Sα̂,φ−

¡
ŝR, m̂

¢¢
> UR

¡
σ̂Sα̂, ŝ

R
¢

because argmaxa UR|{m̂}
¡
σ̂Sα̂, a

¢
= m̂. From the construction that ŝR is a best response

to σ̂Sα̂,

UR
¡
σ̂Sα̂,φ−

¡
ŝR, m̂

¢¢
> UR

¡
σ̂Sα̂, ŝ

R
¢

= UR
¡
σ̂S , ŝR

¢
≥ UR

¡
σ̂S , sR

¢

for all sR such that sR (m̂) = sR (m̂+∆). Therefore, being a best response to σ̂Sα̂ by

construction, sRα̂ (m̂) 6= sRα̂ (m̂+∆) and hence s
R
α̂ (m̂) ≤ m̂. A similar argument can be

used to show that sRα̂ (m̂) = m̂ because argmaxaUR|{m̂}
¡
σ̂Sα̂, a

¢
= m̂. Now construct

a strategy φ
¡
sRα̂ , m̂, ŝ

R
¢
which is equal to sRα̂ for m ≤ m̂ and is equal to ŝR for m >

m̂. This new strategy φ
¡
sRα̂ , m̂, ŝ

R
¢
belongs to the language SRL because sRα̂ (m̂) ≤ m̂ <

ŝR (m̂+∆). For sRα̂ to be a best response to σ̂
S
α̂, it has to be the case that U

R
¡
σ̂Sα̂, s

R
α̂

¢ ≥
UR

¡
σ̂Sα̂,φ

¡
sRα̂ , m̂, ŝ

R
¢¢
. Let φ+

¡
sRα̂ , m̂

¢
be a strategy which is equal to sRα̂ except on message

m̂ and φ+
¡
sRα̂ , m̂

¢
(m̂) = sRα̂ (m̂+∆). Since s

R
α̂ (m̂+∆) > m̂, the new strategy φ+

¡
sRα̂ , m̂

¢
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belongs to SRL . Therefore,

0 ≤ UR
¡
σ̂Sα̂, s

R
α̂

¢− UR ¡σ̂Sα̂,φ ¡sRα̂ , m̂, ŝR¢¢
= UR|[m̂+∆,1]

¡
σ̂Sα̂, s

R
α̂

¢− UR|[m̂+∆,1] ¡σ̂Sα̂, ŝR¢
=

X
t≥m̂+∆

¡
σ̂S (m̂+∆; t) + α× σ̂S (m̂; t)

¢ £
uR
¡
t, sRα̂ (m̂+∆)

¢− uR ¡t, ŝR (m̂+∆)¢¤
+
X
t≤m̂

¡
σ̂S (m̂+∆; t)

¢ £
uR
¡
t, sRα̂ (m̂+∆)

¢− uR ¡t, ŝR (m̂+∆)¢¤
+

X
m≥m̂+2∆

X
t

σ̂S (m; t)
£
uR
¡
t, sRα̂ (m)

¢− uR ¡t, ŝR (m)¢¤
=

X
t

¡
σ̂S (m̂+∆; t) + σ̂S (m̂; t)

¢ £
uR
¡
t, sRα̂ (m̂+∆)

¢− uR ¡t, ŝR (m̂+∆)¢¤
+

X
m≥m̂+2∆

X
t

σ̂S (m; t)
£
uR
¡
t, sRα̂ (m)

¢− uR ¡t, ŝR (m)¢¤

−

⎧⎪⎨⎪⎩
P
t≤m̂ σ̂S (m̂; t)

£
uR
¡
t, sRα̂ (m̂+∆)

¢− uR ¡t, ŝR (m̂+∆)¢¤
+(1− α)

P
t≥m̂+∆ σ̂S (m̂; t)

£
uR
¡
t, sRα̂ (m̂+∆)

¢− uR ¡t, ŝR (m̂+∆)¢¤
⎫⎪⎬⎪⎭

= UR
¡
σ̂S ,φ

¡
ŝR, m̂−∆,φ+

¡
sRα̂ , m̂

¢¢¢− UR ¡σ̂S , ŝR¢
− ¡UR|{m̂} ¡σ̂Sα̂, sRα̂ (m̂+∆)¢− UR|{m̂} ¡σ̂Sα̂, ŝR (m̂+∆)¢¢

Thus,

UR|{m̂}
¡
σ̂Sα̂, s

R
α̂ (m̂+∆)

¢− UR|{m̂} ¡σ̂Sα̂, ŝR (m̂+∆)¢
≤ UR

¡
σ̂S ,φ

¡
ŝR, m̂−∆,φ+

¡
sRα̂ , m̂

¢¢¢− UR ¡σ̂S , ŝR¢
≤ 0

because ŝR is a best response to σ̂S . Since

argmax
a∈A

UR|{m̂}
¡
σ̂Sα̂, a

¢
= m̂ < ŝR (m̂+∆)
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and UR|{m̂}
¡
σ̂Sα̂, a

¢
as a function of a inherits the concavity from uR, we get

sRα̂ (m̂+∆) ≥ ŝR (m̂+∆)

It has now been shown that sRα̂ (m̂+∆) ≥ ŝR (m̂+∆) and sRα̂ (m̂) = m̂ ≥ ŝR (m̂−∆).

Define ηk+1 iteratively to be the largest type t̂ < ηk such that l (k; t) ≤ t. That is,

define

ηk+1 ≡ max {t < ηk|l (k; t) ≤ t}

. Define

l−1 (k;m) = max {t|l (k; t) ≤ m}

. Then by definition, l−1 (k; ηk) = ηk and l
−1 (k;m) < m for all m > ηk.

Lemma 2.11. There exists sR ∈ SR (k + 1) such that sR (ηk) 6= sR (ηk −∆), for any k.

Proof. This can be done by showing that there exists ŝS ∈ SS (k) such that ŝS (ηk) = ηk

and ŝS (t) ≤ ηk −∆ for all t ≤ ηk −∆. Then show that sR (m) ≤ m for all m ≥ ηk given

any sR ∈ CR∗ (k + 1). Then ŝR where ŝR (ηk) = ηk and ŝ
R (ηk −∆) ≤ ηk −∆ does strictly

better w.r.t. σ̂S close to ŝS than any other sR. So there exists ŝR ∈ CR∗ (k + 1) where

ŝR (ηk) = ηk and ŝ
R (ηk −∆) ≤ ηk −∆ 6= ŝR (ηk).

Now lemma 2.5 follows.

Lemma 2.12. l (∞; t) ≥ t for all t ∈ T . Moreover, either l (∞; t) ≥ yS (t) or sR (l (∞; t)) =

sR
¡
yS (t)

¢
for all sR ∈ SR (∞).
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Proof. Suppose given k, there exists a type t such that l (k; t) ≤ t. Then ηk is well

defined. So for all sR ∈ SR (k + 1), sR (ηk) ≤ ηk and there exists ŝ
R ∈ SR (k + 1) where

ηk = ŝR (ηk) 6= ŝR (ηk −∆). So for every type t where yS (t) ≥ ηk, message ηk − ∆ is

weakly dominated by message ηk, because they prefer action ηk to any smaller action. It

then follows that every message m ≤ ηk −∆ is also weakly dominated by message ηk. So

l (k + 2; t) ≥ ηk for all t where yS (t) ≥ ηk. So l (k + 2; t) ≥ ηk for all t ≥ ηk − b. It follows

that ηk+2 ≤ ηk−b and thus the process does not stop at round k. So when the process stops,

it has to be the case that l (∞; t) ≥ t for all type t. Furthermore, either l (∞; t) ≥ yS (t) or

sR (l (∞; t)) = sR ¡yS (t)¢ for all sR ∈ SR (∞) because otherwise , message l (∞; t) is weakly
dominated by message yS (t) since sR

¡
yS (t)

¢ ≤ yS (t) for all sR ∈ SR (∞) and thus type
t always prefers the action induced by message yS (t) to that induced by message l (∞; t),

which contradicts the definition of l (∞; t).

2.7.3 NIAL Results under Ex Ante Interpretation

Ex ante interpretation is equivalent to assuming that different types of Sender hold the same

belief about the behavior of the Receiver. Therefore, SS (k) is no longer a product space

of SS (k; t), and the proof under the interim interpretation does not apply. We’ll make an

assumption which is satisfied when neither type space nor action space is discretized. We

make use of the assumption in the proof when type space and action space are discretized.

Assumption For any a1 < a2 < a3 where aj ∈ A for j = 1, 2, 3 and a1 ≥ yS (0), there

exists t̂ ∈ T such that a2 = argmaxj=1,2,3 uS
¡
t̂, aj

¢
.
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Proof for Lemma 2.5

Suppose to the contrary that there exists type t̂ such that l
¡∞; t̂¢ < t̂ and l (∞; t) ≥ t for all

t > t̂. From the definition of b, we know that every type greater or equal to 1− b prefers a

higher action to a lower one. Thus, l (∞; t) = 1 for all t ≥ 1−b because any message smaller

than 1 induces a weakly smaller action. So t̂ < 1− b. l (∞; t) ≥ t for all t > t̂ implies that

l−1 (∞;m) ≤ m for all m ≥ t̂. From observation 2.5.1, we know that sR (m) ≤ m for all

sR ∈ SR (∞) andm ∈M (∞)∩£t̂, 1¤. In particular, sR ¡t̂¢ ≤ t̂ for all sR ∈ SR (∞). If there
exists s̃R ∈ SR (∞) such that s̃R ¡t̂¢ 6= s̃R

¡
t̂−∆¢, then s̃R ¡t̂¢ = t̂ > s̃R

¡
t̂−∆¢. Since

b ≥ ∆, yS ¡t̂¢ ≥ t̂+∆. Therefore, any message smaller than t̂ is weakly dominated for type
t̂ by the message t̂. This contradicts the assumption that l

¡∞; t̂¢ < t̂. Likewise, if there

exists m ∈ £t̂, yS ¡t̂¢¤ such that there exists sR ∈ SR (∞) where sR (m) 6= sR
¡
l
¡∞; t̂¢¢,

then the message l
¡∞; t̂¢ is weakly dominated by the message m. Since l ¡∞; t̂¢ < t̂, there

exists m̂ ≥ yS ¡t̂¢ such that sR (m) = sR ¡l ¡∞; t̂¢¢ for all m ∈ £l ¡∞; t̂¢ , m̂¤.
Moreover, sR

¡
l
¡∞; t̂−∆¢¢ = sR

¡
l
¡∞; t̂¢¢ for all sR ∈ SR (∞) because type t̂ − ∆

prefers action t̂ to any smaller action, due to the assumption that b ≥ ∆. So sR (m) =

sR
¡
l
¡∞; t̂−∆¢¢ for all m ∈ £l ¡∞; t̂−∆¢ , m̂¤.
Now we need to construct sS∗ ∈ SS (∞) such that the Receiver’s ex ante best response

to sS∗ must be a non-constant on the interval
£
l
¡∞; t̂−∆¢ , m̂¤, which would contradict

the construction of m̂ and we would be done. We can find such sender strategy in SS (1).

We’ll suppose we can find one in S (k), and then show that we can find one in S (k + 1).

Then by induction, we an find one in S (∞).

We first show that a separating Sender strategy exists, that is, if there exists a Sender
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strategy surviving round k where type t̂ sends a message greater than or equal to m̃ and a

Sender strategy surviving round k where type t̂ −∆ sends a message lower than m̃, then

there exists a Sender strategy surviving round k where type t̂ sends a message greater than

or equal to m̃ and type t̂−∆ sends a message lower than m̃. We will prove it for the case

where m̃ is smaller than the Receiver action most preferred by type t̂ − ∆. This is what

we’ll need for the proof of the lemma. But the other case can be shown with the same

technique.

Lemma 2.13. Given m̃ smaller than the Receiver action most preferred by type t̂ − ∆,

that is, m̃ < yS
¡
t̂−∆¢, if l ¡k; t̂−∆¢ < m̃ and g

¡
k; t̂
¢ ≥ m̃, and there exists a Receiver

strategy ŝR ∈ SR (k − 1) and a message m > m̃ such that

uS
¡
t̂, ŝR (m)

¢
> uS

¡
t̂, ŝR (m̃−∆)¢ ,

then there exists a Sender strategy sS∗k ∈ SS (k) such that sS∗k
¡
t̂
¢ ≥ m̃ and sS∗k

¡
t̂−∆¢ ≤

m̃−∆.

Proof. Define

m0 := max
©
SS
¡
k; t̂−∆¢ ∩ [0, m̃−∆]ª

and

m1 := min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m ∈ SS ¡k; t̂¢ |

there exists sR ∈ SR (k) where
uS
¡
t̂, sR (m)

¢
> uS

¡
t̂, sR

¡
t̂−∆¢¢

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .
We can assume w.l.o.g. that messagem1 is not equivalent to messagem1−∆ nor to message

m1+∆ for type t̂. By definition, there exists sR,h, sR,l ∈ SR (k − 1) such that type t̂ prefers
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sR,h
¡
m1
¢
to sR,h

¡
m1 +∆

¢
, and type t̂ prefers sR,l

¡
m1
¢
to sR,l

¡
m1 −∆¢. If m1 ≤ yS ¡t̂¢,

then

m1 ∈ argmax
m
uS
³
t̂, sR,h (m)

´
and for ε sufficiently small,

m1 = argmax
m
uS
³
t̂,
³
(1− ε) sR,h + εsR,l

´
(m)

´

and uS
¡
t̂,
¡
(1− ε) sR,h + εsR,l

¢
(m)

¢
is decreasing on

£
m1, 1

¤
. Otherwise, m1 > yS

¡
t̂
¢
,

then

m1 ∈ argmax
m
uS
³
t̂, sR,l (m)

´
and for ε sufficiently small,

m1 = argmax
m
uS
³
t̂,
³
(1− ε) sR,l + εsR,h

´
(m)

´

and uS
¡
t̂,
¡
(1− ε) sR,l + εsR,h

¢
(m)

¢
is decreasing on

£
m1, 1

¤
. We conclude that there exists

σR,1 ∈ ∆SR (k − 1) such that

m1 = argmax
m
uS
¡
t̂,σR,1 (m)

¢

and uS
¡
t̂,σR,1 (m)

¢
is decreasing on

£
m1, 1

¤
. If

m0 ≤ argmax
m
uS
¡
t̂−∆,σR,1 (m)¢ ,

then uS
¡
t̂−∆,σR,1 (m)¢ is increasing on [0,m0]. Likewise, there exists σR,0 ∈ ∆SR (k − 1)
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such that

m0 = argmax
m
uS
¡
t̂−∆,σR,0 (m)¢

and uS
¡
t̂−∆,σR,0 (m)¢ is increasing on £0,m0

¤
and uS

¡
t̂,σR,0 (m)

¢
is decreasing on [m00, 1]

for any m00 ≥ argmaxm uS
¡
t̂,σR,0 (m)

¢
. If either

argmax
m
uS
¡
t̂−∆,σR,1 (m)¢ ≤ m̃−∆

or

argmax
m
uS
¡
t̂,σR,0 (m)

¢ ≥ m̃,
then we are done. Otherwise, define

m+ := min

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
m ≥ m̃|

uS
¡
t̂−∆,σR,1 (m)¢ ≥ uS ¡t̂−∆,σR,1 ¡t̂−∆¢¢ ;

either m ∈ SS ¡k; t̂−∆¢ ,
or there exists sR ∈ SR (k − 1)

such that uS
¡
t̂−∆, sR (m)¢ > uS ¡t̂−∆, sR (m̃−∆)¢

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
and

m− := max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩m ≤ m̃−∆|
uS
¡
t̂,σR,0 (m̃)

¢ ≤ uS ¡t̂,m¢ ;
there exists sR ∈ SR (k − 1)

such that uS
¡
t̂, sR (m)

¢
> uS

¡
t̂, sR (m̃)

¢
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .
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Then

uS
¡
t̂,σR,0

¡
m−

¢¢ ≥ uS
¡
t̂,σR,0

¡
m+

¢¢
uS
¡
t̂−∆,σR,0 ¡m−¢¢ > uS

¡
t̂−∆,σR,0 ¡m+

¢¢
uS
¡
t̂,σR,1

¡
m−

¢¢
< uS

¡
t̂,σR,1

¡
m+

¢¢
uS
¡
t̂−∆,σR,1 ¡m−¢¢ ≤ uS

¡
t̂,σR,1

¡
m+

¢¢
;

both uS
¡
t̂,σR,1 (m)

¢
and uS

¡
t̂,σR,0 (m)

¢
are decreasing on

£
m1, 1

¤
and increasing on

£
0,m0

¤
,

while both uS
¡
t̂−∆,σR,1 (m)¢ and uS ¡t̂−∆,σR,0 (m)¢ are both increasing on £0,m0¤ and

decreasing on
£
m1, 1

¤
. And

uS
¡
t̂−∆,σR,1 (m)¢ ≤ uS ¡t̂−∆,σR,1 (m̃−∆)¢

for every m ∈ [m̃,m+ −∆] and

uS
¡
t̂,σR,0 (m)

¢ ≤ uS ¡t̂,σR,0 (m̃)¢

for every m ∈ [m− +∆, m̃−∆]. By the single crossing condition,

uS
¡
t̂,σR,1

¡
m+

¢¢− uS ¡t̂,σR,1 ¡m−¢¢
> uS

¡
t̂−∆,σR,1 ¡m+

¢¢− uS ¡t̂−∆,σR,1 ¡m−¢¢
≥ 0
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and

0

≤ uS
¡
t̂,σR,0

¡
m+

¢¢− uS ¡t̂,σR,0 ¡m−¢¢
< uS

¡
t̂−∆,σR,0 ¡m+

¢¢− uS ¡t̂−∆,σR,0 ¡m−¢¢

and

uS
¡
t̂,
¡
ασR,1 + (1− α)σR,0

¢ ¡
m+

¢¢
−uS ¡t̂, ¡ασR,1 + (1− α)σR,0

¢ ¡
m−

¢¢
> uS

¡
t̂−∆, ¡ασR,1 + (1− α)σR,0

¢ ¡
m+

¢¢
−uS ¡t̂−∆, ¡ασR,1 + (1− α)σR,0

¢ ¡
m−

¢¢

for every α in [0, 1]. Then by intermediate value theorem, there exists α̂ such that

uS
¡
t̂−∆, ¡α̂σR,1 + (1− α̂)σR,0

¢ ¡
m+

¢¢
−uS ¡t̂−∆, ¡α̂σR,1 + (1− α̂)σR,0

¢ ¡
m−

¢¢
= 0.
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Then there exists α∗ slightly below α̂ such that

uS
¡
t̂,
¡
α∗σR,1 + (1− α∗)σR,0

¢ ¡
m+

¢¢
−uS ¡t̂, ¡α∗σR,1 + (1− α∗)σR,0

¢ ¡
m−

¢¢
> 0

> uS
¡
t̂−∆, ¡α∗σR,1 + (1− α∗)σR,0

¢ ¡
m+

¢¢
−uS ¡t̂−∆, ¡α∗σR,1 + (1− α∗)σR,0

¢ ¡
m−

¢¢
.

Since uS
¡
t̂,
¡
α∗σR,1 + (1− α∗)σR,0

¢
(m)

¢
and uS

¡
t̂−∆, ¡α∗σR,1 + (1− α∗)σR,0

¢
(m)

¢
are

both decreasing on
£
m1, 1

¤
and increasing on

£
0,m0

¤
, any maximizer for both functions in

m must be in
£
m0,m1

¤
. We worry if both maximizers are on the same side of m̃. If they

are both to the right ot m̃, then define

σR,11 := α∗σR,1 + (1− α∗)σR,0

and

m+
1 := min

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
m ≥ m̃|

uS
³
t̂−∆,σR,11 (m)

´
≥ uS

³
t̂−∆,σR,11

¡
t̂−∆¢´ ;

either m ∈ SS ¡k; t̂−∆¢ ,
or there exists sR ∈ SR (k − 1)

such that uS
¡
t̂−∆, sR (m)¢ > uS ¡t̂−∆, sR (m̃−∆)¢

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

Since type t̂ − ∆ prefers σR,1 (m̃−∆) to σR,1 (m) and σR,0 (m̃−∆) to σR,0 (m) for any

m ∈ [m̃,m+ −∆], it has to be the case that m+
1 > m

+. Define m−1 in the analygous way

if both maximizers are to the left of m̃−∆. Likewise, m−1 < m−. Do this iteratively. It
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has to stop when either m−j = m
0 or m+

j = m
1. We are done.

Definition 2.6. Say that property * holds for j if there exists m ∈ SS ¡j; t̂¢ ∩ £t̂, m̂−∆¤
and σR ∈ ∆SR (j − 1) such that uS ¡t̂,σR (m)¢ > uS ¡t̂,σR ¡t̂−∆¢¢.

Suppose k is such that property * holds for j = 1, 2, ..., k. Let

mk1 ≡ min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m ∈ SS ¡k; t̂¢ ∩ £t̂, m̂−∆¤ |
∃σR ∈ ∆SR (k − 1) s.t.

uS
¡
t̂,σR (m)

¢
> uS

¡
t̂,σR

¡
t̂−∆¢¢

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

Let sS0 ∈ SS (∞) be such that sS0
¡
t̂−∆¢ ≤ t̂−∆. Then there exists σS0 ∈ ∆+SR (∞)

to which sS0 is a best response. Define

m̄k = max
©
SS
¡
k; t̂−∆¢ ∩ £0, t̂−∆¤ª .

Step 1 Show that it cannot be the case that sR∗k−1 (m̂+∆) = s
R
∗k−1

¡
sS∗k−1

¡
t̂
¢¢
and type t̂

prefers sR∗k−1 (m̃) to s
R
∗k−1

¡
sS∗k−1

¡
t̂
¢¢
for some m̃ ≤ m̄k−1.

Proof. Suppose the opposite is true. Since sR∗k−1 (m̄k−1) ≤ t̂ − ∆, type t̂ must also pre-

fer sR∗k−1 (m̄k−1) to sR∗k−1
¡
sS∗k−1

¡
t̂
¢¢
. Then it has to be the case that sR∗k−1 (m̂+∆) ≤

sS∗k−1
¡
t̂
¢
, because otherwise, it is strictly better off to take action t̂ after receiving mes-

sage sS∗k−1
¡
t̂
¢
against sS∗k−1, which contradicts the construction that s

R
∗k−1 is a best re-

sponse to sS∗k−1. It also has to be the case that sR∗k−1
¡
sS∗k−1

¡
t̂
¢¢
> yS

¡
t̂
¢
. Let k̃ be

the largest k0 < k − 1 such that mk0
1 < sR∗k

¡
sS∗k−1

¡
t̂
¢¢
. Then mk̃

1 < sR∗k
¡
sS∗k−1

¡
t̂
¢¢
and

mk̃+1
1 ≥ sR∗k

¡
sS∗k−1

¡
t̂
¢¢
. Then we have sS∗k̃

¡
t̂
¢ ≤ mk̃−11 and sS∗k̃

¡
t̂−∆¢ = m̄k̃. Then there
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exists

ŝR∗k̃ ∈ BRR
³
(1− ε) sS∗k−1 + εsS∗k̃

´
∩ SR

³
k̃ + 1

´
where ε is sufficiently small such that

ŝR∗k̃
¡
sS∗k−1

¡
t̂
¢¢

= sR∗k−1
¡
sS∗k−1

¡
t̂
¢¢
> yS

¡
t̂
¢

ŝR∗k̃
³
sS∗k̃
¡
t̂
¢´

= t̂

ŝR∗k̃ (m̄k−1) = sR∗k−1 (m̄k−1) ≤ t̂−∆

ŝR∗k̃
¡
m̄k̃

¢ ≤ t̂−∆

because

sS∗k−1 (T ) ∩
£
m̄k−1 +∆, sS∗k−1

¡
t̂
¢−∆¤ = ∅.

Therefore, type t̂ must prefer action t̂ to action sR∗k−1 (m̄k−1). By assumption, type t̂ prefers

action sR∗k−1 (m̄k−1) to action sR∗k−1
¡
sS∗k−1

¡
t̂
¢¢
. It follows that type t̂ prefers action t̂ to

action ŝR∗k̃
¡
sS∗k−1

¡
t̂
¢¢
. So

argmax
m
uS
³
t̂, ŝR∗k̃ (m)

´
⊂ £m̄k̃ +∆, sS∗k−1 ¡t̂¢−∆¤

If

max
m
uS
³
t̂, ŝR∗k̃ (m)

´
6= uS

³
t̂, ŝR∗k̃

³
sS∗k̃
¡
t̂
¢´´

,

then

max
m
uS
³
t̂, ŝR∗k̃ (m)

´
> uS

³
t̂, ŝR∗k̃

³
sS∗k̃
¡
t̂
¢´´
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and thus

argmax
m
uS
³
t̂, ŝR∗k̃ (m)

´
⊂
h
sS∗k̃
¡
t̂
¢
+∆, sS∗k−1

¡
t̂
¢−∆i .

It follows that there exists

m∗ ∈ SS
³
k̃ + 1; t̂

´
∩
h
sS∗k̃
¡
t̂
¢
+∆, sS∗k−1

¡
t̂
¢−∆i

where

uS
³
t̂, ŝR∗k̃ (m

∗)
´

> uS
³
t̂, ŝR∗k̃

³
sS∗k̃
¡
t̂
¢´´

≥ uS
³
t̂, ŝR∗k̃

¡
t̂−∆¢´ .

Thus mk̃+1
1 ≤ sS∗k−1

¡
t̂
¢−∆, contradiction! Therefore, it has to be the case that
max
m
uS
³
t̂, ŝR∗k̃ (m)

´
= uS

³
t̂, ŝR∗k̃

³
sS∗k̃
¡
t̂
¢´´

= uS
¡
t̂, t̂
¢
.

Then

argmax
m
uS
³
t̂−∆, ŝR∗k̃ (m)

´
= argmax

m
uS
³
t̂, ŝR∗k̃ (m)

´
⊂ £

m̄k̃ +∆, s
S
∗k−1

¡
t̂
¢−∆¤ .

If £
m̄k̃ +∆, t̂−∆

¤ ∩ argmax
m
uS
³
t̂, ŝR∗k̃ (m)

´
∩ SS

³
k̃ + 1, t̂

´
6= ∅,

then define m̃ to be the largest message of that set. Let m̃j be the largest message greater
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than m̃j such that there exists s̃Rj ∈ SR (j) such that sR (m̃) 6= sR (m̃j). It follows that

argmax
m
uS
³
t̂, (1− ε) ŝR∗k̃ + εs̃Rj

´
⊂ £

m̄k̃ +∆, m̃j −∆
¤

⊂
h
m̄k̃ +∆, s

S
∗k̃
¡
t̂
¢−∆i

for every j ≤ k̃, and message m is equivalent to message m̃j w.r.t. SR (j) for every m ∈

[m̃+∆, m̃j −∆]. Therefore,

argmax
m
uS
³
t̂−∆, (1− ε) ŝR∗k̃ + εs̃Rj

´
∩ SS ¡j + 1, t̂−∆¢ ∩ £m̄k̃ +∆, m̃

¤ 6= ∅
for every j ≤ k̃. But then

∅ 6= SS
³
k̃ + 1, t̂−∆

´
∩ £m̄k̃ +∆, m̃¤

⊂ SS
³
k̃ + 1, t̂−∆

´
∩ £m̄k̃ +∆, t̂−∆¤ .

Contradiction! Therefore,

£
m̄k̃ +∆, t̂−∆

¤ ∩ argmax
m
uS
³
t̂, ŝR∗k̃ (m)

´
∩ SS

³
k̃ + 1, t̂

´
= ∅.

And thus

argmax
m
uS
³
t̂, ŝR∗k̃ (m)

´
⊂ £t̂, sS∗k−1 ¡t̂¢−∆¤ .

It follows that mk̃+11 < sS∗k−1
¡
t̂
¢
, which contradicts the construction of k̃. Done!

Step 2 Show that there exists

m∗ ∈
³
argmax

m
uS
¡
t̂, sR∗k (m)

¢´ ∩ SS ¡k + 1; t̂¢ ∩ £t̂, 1¤
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where there exists σ∗R ∈ ∆SR (k) such that

uS
¡
t̂,σ∗R (m∗)

¢
> uS

¡
t̂,σ∗R

¡
t̂−∆¢¢ .

Proof. Suppose to the contrary that, for every sR∗k in

BRR
¡
sS∗k
¢ ∩ SR (k) ,

and every m̃ in

argmax
m
uS
¡
t̂, sR∗k (m)

¢ ∩ SS ¡k + 1; t̂¢ ,
either

m̃ ≤ t̂−∆

or

uS
¡
t̂, sR (m̃)

¢
= uS

¡
t̂, sR

¡
t̂−∆¢¢

for every sR ∈ SR (k).

We will first show that m̄k−1 = maxt∈[0,t̂−∆] max
¡
SS (k − 1; t) ∩ £0, t̂−∆¤¢.

If SS
¡
k + 1; t̂

¢ ∩ £m̄k−1 +∆, t̂−∆
¤
= ∅, then either sR∗k−1

¡
sS∗k−1

¡
t̂
¢¢ 6= sR∗k−1 (m̂+∆)

which implies that sR∗k−1
¡
sS∗k−1

¡
t̂
¢¢
= t̂ and

argmax
m
uS
¡
t̂, sR∗k−1 (m)

¢ ⊂ £t̂, sS∗k−1 ¡t̂¢¤

and we are done, or sR∗k−1
¡
sS∗k−1

¡
t̂
¢¢
= sR∗k−1 (m̂+∆), then Step 2 implies that

argmax
m
uS
¡
t̂, sR∗k−1 (m)

¢ ⊂ £t̂, sS∗k−1 ¡t̂¢¤ .
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We are done!

Now we discuss the case that

SS
¡
k + 1; t̂

¢ ∩ £m̄k−1 +∆, t̂−∆¤ 6= ∅.
Then there exists s̃S ∈ SS (k + 1) such that s̃S ¡t̂¢ ∈ £m̄k−1 +∆, t̂−∆

¤
. Let

mup = min
¡
SS
¡
k + 1; t̂+∆

¢ ∩ £t̂+∆, 1¤¢ .
Using the technique in Step 1, we can show that there exists s̃0S ∈ SS (k + 1) such that

s̃0S
¡
t̂
¢
= s̃S

¡
t̂
¢ ∈ £

m̄k−1 +∆, t̂−∆
¤
and s̃0S

¡
t̂+∆

¢ ≥ t̂. Then for every sR∗k−1 ∈

BRR
¡
(1− ε) sS∗k−1 + εs̃0S

¢
where ε is sufficiently small,

sR∗k−1
¡
s̃
¡
t̂
¢¢

= t̂

sR∗k−1 (m̄k−1) ≤ t̂−∆.

From the assumption,

argmax
m
uS
¡
t̂, sS∗k−1 (m)

¢ ∩ £m̄k−1 +∆, t̂−∆¤ 6= ∅.
Then Step 1 implies that

max
m
uS
¡
t̂, sR∗k−1 (m)

¢
= uS

¡
t̂, sR∗k−1

¡
s̃S
¡
t̂
¢¢¢

= uS
¡
t̂, sR∗k−1

¡
sS∗k−1

¡
t̂
¢¢¢

= uS
¡
t̂, t̂
¢
.
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Therefore,

argmax
m
uS
¡
t̂−∆, sR∗k−1 (m)

¢ ⊂ [m̄k−1 +∆, m̂] .

Since s̃S ∈ SS (k + 1), there exists s̃R ∈ SR (k) such that

uS
¡
t̂, s̃R

¡
s̃S
¡
t̂
¢¢¢

> uS
¡
t̂, s̃R

¡
s̃S
¡
t̂
¢
+∆

¢¢
.

Then

argmax
m
uS
¡
t̂−∆, ¡(1− ε) sR∗k−1 + εs̃R

¢
(m)

¢ ⊂ £
m̄k−1 +∆, s̃S

¡
t̂
¢¤

⊂ £
m̄k−1 +∆, t̂−∆

¤
.

So £
m̄k−1 +∆, t̂−∆

¤ ∩ SS ¡k + 1; t̂−∆¢ 6= ∅.
Contradiction!

Therefore,

argmax
m
uS
¡
t̂,
¡
(1− ε)σR0 + εsR∗k

¢
(m)

¢ ⊂ £t̂, m̂¤
and

max
m
uS
¡
t̂,
¡
(1− ε)σR0 + εsR∗k

¢
(m)

¢
> uS

¡
t̂,
¡
(1− ε)σR0 + εsR∗k

¢ ¡
t̂−∆¢¢ .

We have thus shown that property ∗ holds for k+1. By induction, it holds for SS (∞) and

we are done!



Chapter 3

Sender-Receiver Game –

Extensive Form

To resolve this tension presented in example 2.4 of Chapter One , we propose a notion of

weak sequential rationality with language and an extensive form iterative procedure. The

key observation motivating our definition of weak sequential rationality is that the Sender

does not distinguish between messages that induce the same action, and hence the Receiver

does not either. We view messages as a coordination device to achieve a mapping from types

to actions, which is called an outcome. We decompose a strategy profile into the usage of

messages and the induced outcome. In order to capture the idea that language takes care

of the usage of messages, while rationality concerns determine the set of possible outcomes,

we define a concept of sequential rationality in terms of the outcome induced by a strategy

profile, instead of the strategy profile itself. This extensive form iterative procedure always

yields a nonempty limiting set. When the original game has multiple equilibria, it eliminates

some of the less informative outcomes like the normal form procedure. When babbling is

78
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the unique equilibrium in the original game, it also yields babbling as the unique prediction.

The Rest of the chapter is organized as follows. Section 3.1 motivates and defines weak

sequential rationality and the procedure for EIAL. Section 3.2 characterizes the solution

to EIAL.

3.1 Weak Sequential Rationality and the Extensive Form

Procedure

Sequential rationality is not a novel issue, and a natural first step is to add the requirement

into the iterative procedure. Recall the standard definition of sequential rationality. A

Receiver strategy σR is sequentially rational with respect to a belief σS if and only if σR (m)

is optimal at every message m according to the Bayesian update of σS . However, with

a simple opposing-interest example, we show that this definition may clash with language

combined with iterative admissibility. We argue that a weaker notion of sequential ratio-

nality, in terms of the induced outcome instead of the strategy profile, can better capture

the idea of language, because messages serve only as coordination device. We then develop

the extensive form procedure EIAL. Example 2.4 is revisited to show the predictions of

IA combined with different sequential rationality notion. It is shown that the limiting set

of EIAL is nonempty.

3.1.1 The Opposing-interest Game

Let’s look at the game in figure 3.1 where the Sender and the Receiver have opposing

interest. When the true state is West, the Receiver wants to take action W while the

Sender wants the Receiver to take action E and vice versa when the true state is East. The
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a

West East
t West 0,1 2,0
East 2,0 0,1

Table 3.1: Opposing Interest Game

probability that the true state is West is 23 and the probability that the true state is East

is 13 . If the players cannot communicate before the Receiver takes an action, it’s optimal

for the Receiver to take action W . This game has a unique babbling equilibrium. NIAL

gives a unique solution where the Receiver takes action W to both messages, which is the

same as in the babbling equilibrium.

We derive the solution to NIAL in this game as follows. The bottom part of table

3.2 shows all the Receiver strategies in GL, the game with language. In the first round

of deletion, the strategy Stubborn E is eliminated because it is strongly dominated by

Stubborn W since taking action W is optimal without communication. Nothing else can

further be eliminated for the Receiver. For type West Sender, sending message “west” is

weakly dominated by sending message “east,” because typeWest prefers action E to action

W , and either both messages lead to the same action, or message “west” leads to action

W and message “east” leads action E. Similarly, for type East Sender, sending message

“east” is weakly dominated by sending message “west.” In summary, the only strategy

that survives the first round of deletion for each type of Sender is to utter the desired action.

Call it sSprefer. That is, s
S
prefer (West) = “east” and s

S
prefer (East) = “west”. In the second

round of deletion, the only conjecture the Receiver can have about the Sender’s behavior is

sSprefer. Stubborn W strategy strictly dominates Literal strategy with respect to sSprefer.

The two strategies differ only on the actions taken after receiving message “east.” At round
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types of Sender sending m in sSprefer East West

sR\message “West” “East”
Stubborn W W W
Stubborn E E E
Literal W E

Table 3.2: Language in Opposing Interest Game

2, message “east” can only come from a typeWest Sender, and Stubborn W strategy takes

actionW there, which is better against typeWest than action E, the action taken by Literal

strategy. Therefore, we end up with a unique prediction S (∞) =
n
sSprefer, Stubborn W

o
,

which gives the babbling outcome.

However, Stubborn W is not interim optimal with respect to sSprefer when the Receiver

receives message “west”, even though NIAL prediction is equal to the unique equilibrium

outcome in the original game. The top row in table 3.2 illustrates the correspondence

between messages and types under the sender strategy sSprefer. As is shown, message

“west” can only come from type East. But when the true state is East, the optimal action

is action E , not actionW which is taken by the Stubborn W strategy. The unique strategy

which is sequentially rational with respect to sSprefer is the Opposite strategy (E,W ). But

(E,W ) does not belong to language, and therefore is physically unavailable. Since sSprefer

is the only conjecture the Receiver can have in the second round, none of the strategies in

language satisfies standard sequential rationality in the second round. Therefore, imposing

standard sequential rationality in the iterative procedure would yield an empty set.

3.1.2 Weak Sequential Rationality

To see what drives this result and how to tackle it, it might be worthwhile to look at

sequential rationality by its components. In this two-stage game, sequential rationality
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can be broken down into ex ante rationality and interim rationality. Ex ante rationality

means utility maximization at the hypothetical initial node, before the receiver receives the

message. Interim rationality means utility maximization at every information set in the

second stage, after receiving the message. Interim rationality implies ex ante rationality. In

the game without language, ex ante rationality implies interim rationality. We showed that

the latter does not hold in the game with language. While ex ante rationality is taken care

of by normal form analysis, the problem lies in interim rationality. The above discussion

shows that no Receiver strategy in language is sequentially rational with respect to sSprefer.

This is because no Receiver strategy in language is interim rational with respect to sSprefer.

Since every outcome can be achieved in the game with language by some strategy profile,

and thus any information can be successfully transmitted by some message usage specified

by language, we wonder what sSprefer represents in the game with language: is it meant to

convey information?

This project focuses on the set of outcomes: language specifies how messages are used

to achieve a given set of outcomes. But standard interim rationality is defined in terms

of strategy profiles, not outcomes. In addition, it is sensitive to the number of messages

employed to convey the given information. Consider the opposing-interest game without

language. We want to find the smallest set of strategy profiles which satisfies the following

two properties: 1) it contains all babbling strategies; 2) it contains all pure strategies getting

positive weight in the set; 2) it is closed under standard interim rationality. Suppose the

message space is trivial and contains only one message. Then the smallest such set contains

only babbling outcome. But if there are two messages in the message space, then one
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babbling strategy for each type of the sender is to randomize over the two messages. Then

to contain all supporting pure strategies, this set needs to contain the two sender strategies

where type West sends one message and type East sends the other message. One such

strategy is sSprefer, where typeWest utters “east” and type East says “west.” Let’s call the

other strategy sShonest. Then to contain Receiver strategies that are interim rational with

respect to these two sender strategies, this set needs to contain both Literal and Opposite,

where the Receiver takes different actions after receiving different messages. This set then

has to contain two separating outcomes. However, if we look at interim rationality in terms

of outcomes, ignoring altogether how messages are used, we’ll avoid this dependence. Since

we use language to take care of how messages are used, it might be natural to look for a

notion of sequential rationality that deals only with the outcomes.

Given a Receiver strategy sR and a belief σS. Typically we say that the profile
¡
sR,σS

¢
gives rise to an outcome which is a mapping from the type space to distributions over the

action space. From the Receiver’s point of view, however, the profile
¡
σS , sR

¢
gives rise

to an association between actions in the range of sR and distributions over the type space.

Let β(σS ,sR) denote the association induced by the profile
¡
σS , sR

¢
and sR (M) denote the

range of sR. Then, β(σS ,sR) : s
R (M)→ ∆T is defined by

β(σS ,sR) (a) (t) =

P
m∈(sR)−1(a) σ

S (m; t)P
t0
P
m∈(sR)−1(a) σ

S (m; t0)
,

which is simply a Bayesian update. For each action a that the Receiver takes in response

to some message m ∈ M , β(σS ,sR) associates with it a probability distribution on the type

space T , which represents the distribution of the types of the Sender that might receive
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this action a under the profile
¡
σS, sR

¢
. Standard interim rationality looks at

¡
σS , sR

¢
.

We propose checking interim rationality from the point of view of β(σS ,sR). It is formally

stated as follows:

Definition 3.1 (Outcome Interim Rationality). Let B denote a subset of A. Say that

β : B → ∆T is outcome interim rational if and only if

a ∈ argmax
a0∈A

X
t

β (a) (t)uR
¡
t, a0

¢

for all a ∈ B.

Definition 3.2 (Weak Interim Rationality). Say that sR is weakly interim rational

with respect to σS if and only if β(σS ,sR) is outcome interim rational.

It is easy to see that Stubborn W is weakly interim rational with respect to sSprefer.

Actually, Stubborn W is weakly interim rational with respect to every σS ∈ ∆SS . In

general, for every σS ∈ ∆SS, there exists a sR in language that is weakly interim rational

with respect to σS. Using outcome interim rationality, we avoid the problem that there

might exist some conjectures σS with respect to which no Receiver strategy in language

is interim rational. However, unlike standard interim rationality, weak interim rationality

does not necessarily imply ex ante rationality. Given a belief σS , there are typically many

Receiver strategies that are weakly interim rational with respect to σS and can be Pareto

ranked. The idea of sequential rationality is that strategies that are not “rational” at

the interim stage are not credible. This motivates a weaker notion of ex ante rationality:

compare ex ante payoff among only “credible” Receiver strategies. More precisely, given

σS , only strategies that are weakly interim rational with respect to σS are credible. Ex
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ante, the Receiver picks among these “credible” strategies one that gives him the highest

ex ante payoff. We combine the weaker notion of ex ante rationality and weak interim

rationality analogously to define weak sequential rationality. Breaking standard sequential

rationality into the two parts and putting them back this way does not alter the implication,

since every Receiver strategy that is interim rational with respect to a conjecture σS is ex

ante payoff equivalent to each other.

Definition 3.3 (Weak Sequential Rationality). Let XR ⊂ SR. Say that sR is weakly

sequentially rational among XR with respect to σS if and only if sR is ex ante optimal with

respect to σS among Receiver strategies that are weakly interim rational with respect to σS.

That is,

sR ∈ arg max
sR0∈XR

sR0 is weakly interim optimal
w.r.t. σS

UR
¡
σS , sR0

¢
.

Call
¡
σS ,σR

¢
a weak sequential equilibrium if and only if σS is sequentially rational

with respect to σR and sR is weakly sequentially rational with respect to σS for every sR

in the support of σR. Let WSEQ (G) denote the set of weak sequential equilibrium in

the game without language and WSEQ (GL) denote the set of weak sequential equilibrium

in the game with language. Then WSEQ (G) = WSEQ (GL). Recall that in Example

2.4, where NIAL selects a unique informative outcome while the unique equilibrium in

the original game is babbling, the set of equilibrium outcomes in the game with language

strictly contain the set of equilibrium outcomes in the game without language. That is,

EQ (G) $ EQ (GL). It is then not that surprising that NIAL, being iterative admissibility

on GL, does not select any equilibrium in EQ (G). Imposing weak sequential rationality

restores the equilibrium outcomes in GL to the equilibrium outcomes in G. This gives us
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hope that this definition might work.

The motivation for outcome interim rationality is that, instead of truly conveying infor-

mation, sSprefer might simply be a supporting pure strategy of the mixed babbling sender

strategy. But in the second round, sSprefer is the only conjecture the Receiver can hold.

If sSprefer represents only a supporting pure strategy of the mixed babbling strategy, the

other supporting pure strategy should also be contained as a possible conjecture held by

the Receiver.

We now explain how the combination of language and weak dominance selects
n
sSprefer

o
as the unique conjecture the Receiver can hold in the second round and why it is more

properly viewed as a pure strategy supporting the mixed babbling sender strategy. In the

first round, we eliminated all sender strategies except sSprefer. The elimination takes place

because the sender takes into account the possibility of the strategy Literal being used.

Suppose instead that the sender believes that Literal is not going to be used in the game

with language, and therefore the Receiver always ignores messages. Then the two messages

have exactly the same implication to the Sender, and therefore she might as well randomize.

No message is weakly dominated for either type, and all sender strategies are possible. This

points to the well-known force of weak dominance: the reason for eliminating one strategy

might later be eliminated. To show the role language plays, consider the game without

language. If the sender takes into account all four strategies, she is not sure which one

induces her preferred action more often. The two messages again look the same to her,

though she might prefer one message under some conjecture, while another under another

conjecture. We’ll end up with everything in the prediction, which is not clear whether it
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represents no information transmission, or simply no predicting power.

Language gives a bite by specifying the asymmetry. Though it does not rule out

any outcome, weak dominance forces the sender to take into account all communication

outcomes. Babbling is present in every cheap talk game because it is self-fulfilling: if the

receiver always takes the same action, and the sender wholeheartedly believes that, then

the sender sees the two messages as the same and might very well randomize between the

two. This in turn makes it optimal for the Receiver to treat the two messages equally

and therefore always take the same action. Language and weak dominance breaks out of

this by making the sender take into account all outcomes. But the danger lies in going

to the other extreme and taking into account outcomes that cannot happen in the game

in question. This gives rise to selecting
n
sSprefer

o
as the unique sender strategy profile

in a babbling outcome, because the sender takes into account even outcomes that are not

possible in the situation.

3.1.3 The Procedure for the Extensive Iterative Admissibility with Lan-

guage (EIAL)

The idea is to let language take care of how messages are used and use weak sequential

rationality to take care of rationality. That WSEQ (GL) = WSEQ (G) is encouraging.

We then define the iterative procedure in an analogous way. We call this procedure extensive

form iterative admissibility with language (EIAL).

Let ESS (0; t) =M , ∀t and ESR (0) = SRL .

Procedure 1. sR ∈ ESR (k + 1) iff

a. sR ∈ ESR (k)
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b. there exists a totally mixed conjecture σS ∈ Πt∈T
¡
∆+ESS (k; t)

¢
such that

sR is weakly sequentially rational with respect to σS .

2. sS (t) ∈ ESS (k + 1; t) iff

a. sS (t) ∈ ESS (k; t)

b. there exists a totally mixed conjecture σR ∈ ∆+ESR (k) such that sS (t) is

a best response among ESS (k + 1; t) with respect to σR.

Definition 3.4. Write ∩∞k=0ESi (k) = ESi (∞) and ES (k) =
¡
ESS (k) , ESR (k)

¢
.

It is easy to see that EIAL gives the same prediction as NIAL in the opposing interest

game. Now let’s look at the prediction of EIAL on the game in example 2.4 in section

2.5.2.

Example 1 Revisited There are three types: type 0, 12 and 1. The common prior is such

that π (0) = 1
3 ; π

¡
1
2

¢
= 4

9 and π (1) = 2
9 . Both the Sender and the Receiver have

quadratic loss function: uR (t, a) = − (t− a)2 and uS (t, a) = − ¡t+ 1
2 − a

¢2.
Recall that the unique equilibrium in the game without language is babbling, while

NIAL selects a unique informative strategy
¡
sSnice, s

R
nice

¢
. Table 2.4 shows all the Receiver

strategies in language. The first round of deletion is the same as in the normal form

procedure: for the Receiver, every strategy in language except (0, 0, 0) and (1, 1, 1) are

retained; for each type of the Sender, only sSnice (t) is retained. The second round of the

extensive form procedure is different from that of NIAL. Suppose sR survives the second

round of deletion. Then it is necessary for sR to be weakly interim rational with respect

to sSnice, which is the only conjecture the Receiver can hold at the second round. It is then
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Language No Language
EQ sRbabble, s

R
nice sRbabble

WSEQ sRbabble sRbabble
IA sRnice everything
IA+Standard Sequential Rationality empty everything
Weak IA+Weak Sequential Rationality sRbabble everything

necessary that sR takes the same action at both message 1
2 and message 1. Suppose to

the contrary that sR
¡
1
2

¢ 6= sR (1), then by the assumption of language, sR (1) = 1. From

the first two rows in table 2.4, we can see that both type 1
2 and type 1 senders send only

message 1. Since sR (1) 6= sR ¡12¢, action 1 is associated with a posterior belief that puts
probability 2

3 on type
1
2 and probability

1
3 on type 1. The best action given this distribution

is action 1
2 , not action 1. So s

R is not weakly interim rational with respect to sSnice. We’ve

then shown that to be weakly interim rational with respect to sSnice, it is necessary to take

the same action at both message 1
2 and message 1. Then every type receives the same

action since all types of the Sender send either message 12 or message 1. Thus
¡
0, 12 ,

1
2

¢
and¡

1
2 ,
1
2 ,
1
2

¢
are both weakly sequentially rational with respect to sSnice. The unique outcome

predicted by EIAL is that all types of the Sender receive action 1
2 , which is the same as

the babbling outcome.

Table 3.1.3 summarizes the predictions of the game in example 3.1 under different pro-

cedures.

We now establish nonemptiness of the limit. We need one notation here. Define

ε
¡
σS,σS0

¢
: T → ∆M by ε

¡
σS,σS0

¢
(t) ≡ (1− ε)σS (t) + εσS0 (t).

Lemma 3.1. ES (∞) is nonempty.

Proof. Since SL =
¡
SS , SRL

¢
is finite, the elimination process must stop after finite steps.
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It suffices to show that ES (k + 1) is nonempty if ES (k) is nonempty. It is obvious

from the iterative procedure that ESS (k + 1) is nonempty, since SL is finite and for every

σR ∈ ∆+ESR (k), there exists sS ∈ ESS (k) which attains the maximum payoff among

Sender strategies in ESS (k). To show that ESR (k + 1) is nonempty, it suffices to show

that there exists a totally mixed conjecture on ESS (k), i.e. σS ∈ ∆+ESS (k), such that

there exists sR in ESR (k) which is weakly interim rational with respect to σS . It is

obvious that for every σS ∈ ∆+ESS (0) = ∆+SS, there exists sR ∈ ESR (0) = SR which

is weakly interim rational with respect to σS , since a constant sR which plays the best

action against the prior is weakly interim rational with respect to σS. Let us pick any

σSk−1 ∈ ∆+ESS (k − 1). Since ESS (k) ⊂ ESS (k − 1), ε ¡σSk ,σSk−1¢ ∈ ∆+ESS (k − 1) for
any σSk in ES

S (k). To shorten the notation, write ε
¡
σSk ,σ

S
k−1
¢
simply as σSk,ε. Lemma

3.2 implies that for every ε small enough,

©
sR ∈ ESR (k − 1) : sR is weakly interim rational with respect to σSk,ε

ª
⊂ ©

sR ∈ ESR (k) : sR is weakly interim rational with respect to σSk
ª
.

By hypothesis, the set

©
sR ∈ ESR (k − 1) : sR is weakly interim rational with respect to σSk,ε

ª

is nonempty. Since ESR (k − 1) is finite, there exists a Receiver strategy sR ∈ ESR (k − 1)

which attains the maximum expected utility among all strategies that are weakly interim
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rational with respect to σSk,ε. Therefore, the set

©
sR ∈ ESR (k) : sR is weakly sequentially rational with respect to σSk

ª

is nonempty. The proof is then completed by induction.

Lemma 3.2. Given any σS ∈ ∆SS, there exists ε̄ > 0 such that for all σS0 ∈ ∆SS and

ε < ε̄,

©
sR ∈ SR|sR is weakly sequentially rational with respect to ε

¡
σS ,σS0

¢ª
⊂ ©

sR ∈ SR|sR is weakly sequentially rational with respect to σS
ª
.

The proof is left to the Appendix.

3.2 Characterization

The extensive form procedure (EIAL) is motivated by the example illustrating that NIAL

might not select any equilibrium outcome of the original game. We showed that EIAL

restores babbling as the unique prediction in that example. In this section, we show that

this result is general, i.e., EIAL selects babbling as the unique outcome when babbling is

the unique equilibrium in the original game. However, we are able to show that EIAL

contains at least one equilibrium outcome in the original game only under monotonicity

condition (M) (defined in section 2.4) and with the interim interpretation. On the other
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hand, with EIAL, we are able to show the lower bound on the amount of information

transmission only under ex ante interpretation. We do not have a tight characterization

when the monotonicity condition (M) is satisfied. Showing inclusion of strategies under

interim representation is easier, while showing exclusion of strategies under ex ante repre-

sentation is easier. Therefore, our current results under EIAL depend on whether interim

representation or ex ante representation is employed.

Proposition 3.1. If babbling is the unique equilibrium, then babbling is the only outcome

under EIAL.

Proof. Say that X ⊂ S contains an informative outcome if there exists ¡sS, sR¢ ∈ X such

that there are two different types t1 6= t2 where sR
¡
sS (t1)

¢ 6= sR
¡
sS (t2)

¢
. We show

that if ES (k) contains an informative outcome, then the iterative process does not stop,

i.e., ES (k + 1) $ ES (k). Since we have shown that the limiting set is nonempty, it is

necessary that ES (∞) contains no informative outcomes. Thus EIAL predicts that every

type receives the same action. Since the strictly best constant strategy is to play the best

action against the prior, we get the babbling outcome.

To see why the iterative process does not stop when ES (k) contains an informative

outcome, note that for babbling to be the unique equilibrium in the original game, it has to

be the case that every type t prefers to be pooled with all higher types than with all lower

types. Whenever it is not the case that all messages induce the same action, some type t

will want to discard a message which always receives the lowest action.

The details of the proof is left to the Appendix.
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Proposition 3.2. If condition (M) holds, then the most informative equilibrium outcome

is contained in EIAL under the interim interpretation.

We prove it by showing that if every type exaggerates the most they want and sends the

highest message they might use in ESS (∞), the best the Receiver can do without violating

either language or weak interim rationality is to play the most informative equilibrium

strategy. The details are left in the Appendix.

When ex ante interpretation is employed, however, we need to make sure that there

exists one single Receiver strategy with respect to which every type of the Sender wants

to exaggerate the most. Therefore, the proof of proposition 3.2 does not carry through

directly. Under the interim interpretation, different types are allowed to hold different

beliefs about the behavior of the Receiver. Therefore, it is easier to construct a sender

strategy profile in the limiting set, and therefore easier to show that a Receiver strategy

belongs to the limiting set.

Now we state the result of the lower bound on the amount of information transmission.

Proposition 3.3 says that every Receiver strategy in the limit partitions the set of messages

used in the limit into at least L intervals.

Proposition 3.3. With ex ante interpretation, under EIAL, there exists a nontrivial lower

bound on the number of different actions taken on ESR (∞). Specifically, if the game admits

a non-babbling equilibrium, then the number of different actions taken in ESR (∞) is at least

2.

Proof. A Receiver strategy sR partitions the message space. If sR is weakly interim rational

with respect to σS , then a partition determines sR. A finer partition is unambiguously
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better. However, a finer partition might violate the language restriction. We show that a

Receiver strategy cannot have a step that is too wide, because otherwise there exists a finer

partition that satisfies language and is weakly interim rational. The same logic is used to

attain a lower bound.

We need the following two observations to proceed with the proof. The first claim relates

the minimum action the Receiver might take at message m −∆ to the value m. It

holds only under ex ante interpretation. The second claim gives a relation between

the lowest type that might send messages in [m, 1] to the value m.

sR (m−∆) ≥ E ([0, ρ (m)]) for all sR ∈ ESR (1) such that sR (m) 6= sR (m−∆).

Claim Type g−1 (∞;m) prefers action a = m to action E
¡£
0, g−1 (∞;m)−∆¤¢.

In particular, g−1
¡∞;E ¡£t21, 1¤¢¢ ≥ t21. Given any σS ∈ ∆SS , define

sRsep2 (m) ≡

⎧⎪⎨⎪⎩ argmaxa U
R|[0,E([t21,1])−∆]

¡
σS , a

¢
argmaxa U

R|[E([t21,1]),1]
¡
σS, a

¢ m ∈ £0, E ¡£t21, 1¤¢−∆¤
m ∈ £E ¡£t21, 1¤¢ , 1¤

It is obvious that sRsep2 is weakly interim rational with respect to σS . To show that

sRsep2 belongs to language, we need to show that

argmax
a
UR|[0,E([t21,1])−∆]

¡
σS , a

¢ ≤ E
¡£
t21, 1

¤¢−∆ (3.1)

argmax
a
UR|[E([t21,1]),1]

¡
σS , a

¢ ≥ E
¡£
t21, 1

¤¢
. (3.2)

Ex ante interpretation implies that every pure Sender strategy sS ∈ ESS (1) is weakly

increasing in t. Therefore, argmaxaUR|[0,m]
¡
sS , a

¢ ≤ E ([0, 1]) for everym and every
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sS ∈ ESS (1). It follows that argmaxa UR|[0,m]
¡
σS , a

¢ ≤ E ([0, 1]) for every m and

every σS ∈ ∆ESS (1). Thus,

argmax
a
UR|[0,E([t21,1])−∆]

¡
σS, a

¢ ≤ E ([0, 1])

< E
¡£
t21, 1

¤¢
.

This gives us inequality 3.1. We showed that the smallest type that can send any

message higher than or equal to message E
¡£
t21, 1

¤¢
is greater than t21−∆. Therefore,

E
¡£
g−1

¡∞;E ¡£t21, 1¤¢¢ , 1¤¢ ≥ E ¡£t21, 1¤¢. Inequality 3.2 then follows. So a constant
Receiver strategy cannot be weakly sequentially rational with respect to σS , because

sRsep2 is weakly interim rational with respect to σS and gives a higher ex ante payoff

than a constant Receiver strategy.

Therefore, sR must partition M (∞) into at least two intervals. Let {a1, ..., aq} be

the set of actions taken by sR on M (∞), where aj < aj+1. Let mj be the smallest

message on which sR takes the value aj . Let

m̂q ≡ max
©
m ∈M |E ¡£g−1 (∞;m) , 1¤¢ ≤ mª .

It follows that m̂q ≥ E
¡£
t21, 1

¤¢
.

Claim aq ≥ m̂q or aq is such that

g (∞; ρ (ak)) ≥ E
¡£
ρ (ak) , g

−1 (∞; m̂q)−∆
¤¢
. (3.3)
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To show this, define

sRsep2 (m) ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
argmaxa U

R|[mq,E([t21,1])−∆]
¡
σS , a

¢
argmaxa U

R|[E([t21,1]),1]
¡
σS , a

¢
sR (m)

.

m ∈ [mq, m̂q −∆]
m ∈ [m̂q, 1]

otherwise

.

For sR to be weakly interim rational with respect to σS, it has to be the case that

g
³
∞; ρ[0,1] (aq)

´
≥ mq. If g (∞; ρ (ak)) < E

¡£
ρ (ak) , g

−1 (∞; m̂q)−∆
¤¢
, then

mq ≤ g (∞; ρ (ak))

< E
¡£
ρ (ak) , g

−1 (∞; m̂q)−∆
¤¢

≤ argmax
a
UR|[mq,E([t21,1])−∆]

¡
σS , a

¢
.

Therefore sRsep2 satisfies language. Since s
R
sep2 is weakly interim rational w.r.t. σS by

construction, we have thus reached a contradiction.

The above claim gives a lower bound on aq. This in turn gives a lower bound on

argmaxaU
R|[0,mq−∆]

¡
σS, a

¢
. Look at σS restricted on the interval [0,mq −∆]. We

can then apply the same argument and get a lower bound on aq−1.

Define ψ (τ1) to be the longest forward solution with an initial condition τ1. That

is, ψ (τ1) ≡ {0, τ1,ψ2,ψ3, ...,ψn} is a forward solution on [0,ψn] where ψn ≤ 1, and

there does not exist a forward solution
©
0, τ1,ψ

0
2, ...,ψ

0
n0
ª
where ψ0n0 ≤ 1 and n0 > n.

Define λ (τ1) ≡ n where n is the size of the forward solution ψ (τ1). A necessary

condition is that either λ (ρ (ak)) = 1 or ψ2 (ρ (aq)) ≥ t21 ([0, 1]). So when there is a

size-2 forward solution on
£
0, t21 ([0, 1])

¤
, q−1 ≥ 2. A lower bound of the lower bound
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on aq−1 can be interpreted this way by restricting types to the subset [0, ρ (ak)−∆].

So if there is a size-2 forward solution on
£
0, t21

¡£
0, t21 ([0, 1])

¤¢¤
, then q−2 ≥ 2. Define

f1 ≡ t21 ([0, 1]), and fj+1 ≡ t21 ([0, fj ]) whenever [0, fj ] has a size-2 forward solution.

The process ends when we reach [0, fl] where there is no size-2 forward solutions on

it.

3.3 Appendix

3.3.1 Proof for Lemma 3.2

Proof. The idea is that, if sR2 is not σ
S − compatible, then there must exist an action a2

taken by sR2 exactly on some interval I2 such that a2 does not maximize expected utility

conditional on I2. If ε is small enough, UR|I2
¡
ε
¡
σS ,σS0

¢
, a
¢
is very close to UR|I2

¡
σS , a

¢
as a function of a, then a2 cannot maximize expected utility conditional on I2, hence sR2 is

not ε
¡
σS ,σS0

¢− compatible either.
uR is bounded, so

D̄R ≡ max
(t,a),(t0,a0)∈T×A

¯̄
uR (t, a)− uR ¡t0, a0¢¯̄

is well-defined. Then for any
¡
σS1 ,σ

R
1

¢
,
¡
σS2 ,σ

R
2

¢ ∈ ∆SL,
¯̄
UR

¡
σS1 ,σ

R
1

¢− UR ¡σS2 ,σR2 ¢¯̄
≤ D̄R

Given an interval I ⊂M , let UR|I be the expected Receiver utility conditional on receiving

a message in I. Let a denote both action a ∈ A and the constant strategy which reacts to
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every message with action a. Then

¯̄
UR|I

¡
σS , a

¢− UR|I ¡σSε ¡σS0¢ , a¢¯̄
=

¯̄
UR|I

¡
σS , a

¢− (1− ε)UR|I
¡
σS, a

¢− εUR|I
¡
σS0, a

¢¯̄
= ε

¯̄
UR|I

¡
σS , a

¢− UR|I ¡σS0, a¢¯̄
≤ εD̄R

The bound is does not depend on σS ,σS0, a or I. AR is finite, so a best response a ∈ A

to any conjecture σS gives a strictly higher expected utility than any non-best response a0.

Let dI,σS denote the difference in expected utility conditional on I against conjecture σ
S

between the best action and the second best action. Formally, define

dI,σS ≡ min
a2 /∈argmaxa0 UR|I(σS ,a0)

µµ
max
a00

UR|I
¡
σS, a00

¢¶− UR|I ¡σS , a2¢¶

Then dI,σS > 0.

For all ε < 1
2

d
I,σS

D̄R , a /∈ argmaxa0 UR|I
¡
σS , a0

¢
and a∗ ∈ argmaxa0 UR|I

¡
σS , a0

¢
,

UR|I
¡
ε
¡
σS ,σS0

¢
, a
¢− UR|I ¡ε ¡σS ,σS0¢ , a∗¢

= UR|I
¡
ε
¡
σS ,σS0

¢
, a
¢− UR|I ¡σS, a¢+ UR|I ¡σS, a¢− UR|I ¡σS , a∗¢

+UR|I
¡
σS , a∗

¢− UR|I ¡ε ¡σS ,σS0¢ , a∗¢
≤ εD̄R − dI,σS + εD̄R

<
dI,σS

2
− dI,σS +

dI,σS

2
= 0
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So

argmax
a
UR|I

¡
ε
¡
σS,σS0

¢
, a
¢ ⊂ argmax

a
UR|I

¡
σS , a

¢
(3.4)

Define

ε̄σS ≡ min
I⊂M

dI,σS

SinceM is finite, ε̄σS is well defined. So the containment relation 3.4 holds for any ε < ε̄σS ,

and for any σS0 ∈ ∆SS . If sR1 is ε
¡
σS,σS0

¢
for some ε < ε̄σS , then for any m̂ which is sent

by some type with strictly positive probability given the conjecture ε
¡
σS ,σS0

¢
, and for the

interval Im̂ on which sR1 takes the same value as s
R
1 (m̂),

sR1 (m̂) ∈ argmax
a
UR|Im̂

¡
ε
¡
σS ,σS0

¢
, a
¢

⊂ argmax
a
UR|Im̂

¡
σS, a

¢

Since ε
¡
σS ,σS0

¢
(t) = (1− ε)σS (t) + εσS0 (t) for all t, any message that receives positive

probability given the conjecture σS (t) also receives positive probability under ε
¡
σS ,σS0

¢
(t),

it is just shown that sR1 is also σ
S − compatible.

3.3.2 Proof for Proposition 3.1

Proof. Assume to the contrary there exist m1 < m2 ∈ M (k − 1) which receive different

reactions under some sR ∈ SR (k), i.e. sR (m1) 6= sR (m2). Consider m̂k being such that

m̂k always attains the minimum on M (k − 1) for any sR ∈ SR (k) and that there exists

sR ∈ SR (k) such that sR (m̂k) 6= sR (m̂k). Suppose t̂ is the highest type that sends messages

smaller or equal to m̂k. Then since m̂k always takes on the minimum of sR for any sR in

C∗R (k), the highest values m̂k and m̂k+∆ can take on when sR (m̂k) 6= sR (m̂k +∆) would
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be E
¡£
0, t̂k

¤¢
and E

¡£
t̂k +∆, 1

¤¢
respectively. But since there is only babbling equilibria,

for every Sender type t, she prefers being thought of as pooling with all higher types than

pooling with all lower types. So t̂k would prefer E
¡£
t̂k +∆, 1

¤¢
to E

¡£
0, t̂k

¤¢
, where

E
¡£
0, t̂k

¤¢
is the best t̂k can hope for from sending message m̂k (because E

¡£
0, t̂k

¤¢ ≤ t̂k
is on the increasing part of t̂k’s utility curve) and E

¡£
t̂k +∆, 1

¤¢
is the worst t̂k would

anticipate from sending message m̂k +∆ when m̂k induces a different action from m̂k +∆.

So sending message m̂k is weakly dominated by sending message m̂k+∆ for type t̂k. Hence

in Πt∈TSS (k + 1; t), the highest type that sends messages smaller or equal to m̂k would

be strictly smaller than t̂k and thus Πt∈TSS (k + 1; t) $ Πt∈TSS (k − 1; t) (in particular,

SS
¡
k + 1; t̂

¢
$ SS

¡
k − 1; t̂¢) and the process does not stop at round k.

Formally, define

m̂k := min

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

m ∈M (k − 1) |
∃sR ∈ SR (k) such that
m ∈ argminm0∈M(k) sR (m0)

and sR (m) 6= sR (m+∆)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
From the definition, sR (m̂k) = minm0∈M(k−1) sR (m0) for all sR ∈ SR (k) and there exists

ŝR ∈ SR (k) such that ŝR (m̂k) 6= ŝR (m̂k +∆). From weak monotonicity of ŝR and the

construction,

ŝR (minM (k − 1)) = min
m0∈M(k−1)

ŝR
¡
m0¢

= ŝR (m̂k)

6= ŝR (m̂k)
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That is, the interval that ŝR takes on the same value as on m̂k is [minM∗ (k − 1) , m̂k].

Let the interval that ŝR takes on the sme value as on m̂k +∆ be [m̂k +∆, m̄k]. By the

procedure, there exists σ̂S ∈ Πt∈T
¡
∆+SS (k − 1; t)¢ to which ŝR is σ̂S − compatible. It

then follows that

ŝ (m̂k) ∈ argmax
a∈A

UR|[minM(k−1),m̂k]

¡
σ̂S, a

¢

UR|[minM(k−1),m̂k]

¡
σ̂S, a

¢
=

X
sS∈Πt∈TSS(k−1;t)

σ̂S
¡
sS
¢ X

t∈T :
sS(t)∈[minM(k−1),m̂k]

π (t)uR (t, a)

=
X

sS∈Πt∈TSS(k−1;t)

X
t≤

sS(t)∈[minM∗(k−1),m̂k]

σ̂S
¡
sS
¢

3.3.3 Proof for Proposition 3.2

Proposition 3.2 follows immediately from the following claim.

Claim For all k, there exists sR ∈ SR such that.

1. sR ∈ ESR (k), and sR (M (k)) =
©
α1, ..., aN(b)

ª
where αi = E ([ti−1, ti −∆]);

2. ∀m ∈ [αi,αi+1 −∆], either there exists m0 < m such that uS
¡
ti −∆, sR (m)

¢ ≤
uS
¡
ti −∆, sR (m0)

¢
for all sR ∈ ESR (k), or sR (m) = αi−1.

Proof Show by induction. Suppose they hold for k. Then there exists ŝR ∈ ESR (k)

satisfying condition 1 and 2. From the definition that
©
t0, ..., tN(b)

ª
is a forward
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solution and that αi = E ([ti−1, ti −∆]) ∀i = 1, ..., N (b), every type t ∈ [ti−1, ti −∆]

strictly prefers action αi the most in the range of ŝR. Therefore, there exists one

message m such that ŝR (m) = αi and m ∈ ESS (k + 1; t). Since ŝR (αi+1) = αi+1 >

αi, such message must be smaller than αi+1−∆. Thus l (k + 1; t) ≤ αi+1−∆ for all

t ∈ [ti−1, ti −∆]. Therefore, we can define

sSbig (t) ≡ max

⎧⎪⎨⎪⎩ m ∈ ESS (k + 1; t) ,m ≤ αi+1 −∆
where i is such that t ∈ [ti−1, ti −∆]

⎫⎪⎬⎪⎭ ∀t.
By definition, sSbig ∈ ESS (k + 1), and thus sSbig ∈ ESS (k).

Claim sSbig is increasing in t.

Proof Given t̂. Let i be such that t̂+∆ ∈ [ti−1, ti −∆]. To show that sSbig
¡
t̂+∆

¢ ≥
sSbig

¡
t̂
¢
, it suffices to show that

£
sSbig

¡
t̂
¢
,αi+1 −∆

¤ ∩ESS ¡t̂+∆; k¢ 6= ∅.
We break the discussion into two cases.

Case 1 ŝR
³
sSbig

¡
t̂
¢´ ≤ αi − ∆. Then

¡
ŝR
¢−1

(αi) ⊂
h
sSbig

¡
t̂
¢
+∆,αi+1 −∆

i
by the construction of ŝR and the assumption that ŝR

³
sSbig

¡
t̂
¢´ ≤ αi −∆.

Since ¡
ŝR
¢−1

(αi) ∩ESS
¡
k; t̂+∆

¢ 6= ∅,
we know that

£
sSbig

¡
t̂
¢
+∆,αi+1 −∆

¤ ∩ESS ¡k; t̂+∆¢ 6= ∅.
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Case 2 ŝR
³
sSbig

¡
t̂
¢´ ≥ αi. Then ŝR

³
sSbig

¡
t̂
¢´
= αi, because t̂ ≤ ti −∆ and by

construction of sSbig, s
S
big

¡
t̂
¢ ≤ αi+1−∆, and the assumption that ŝR satisfies

condition 2. Let σ̃R ∈ ∆+ESR (k − 1) such that

sSbig
¡
t̂
¢ ∈ argmax

m
US

¡
t̂, σ̃R (m)

¢
.

(Existence is guaranteed by the definition of sSbig
¡
t̂
¢
) Then by super modu-

larity of US and weak monotonicity of sR in the support of σ̃R,

US
¡
t̂+∆, σ̃R

¡
sSbig

¡
t̂
¢¢¢

> US
¡
t̂+∆, σ̃R (m)

¢

for all m < sSbig
¡
t̂
¢
. Since ŝR

³
sSbig

¡
t̂
¢´

= αi, we know that sSbig
¡
t̂
¢ ∈

argmaxmU
S
¡
t̂+∆, ŝR (m)

¢
. Therefore, for ε very small,

argmax
m
US

¡
t̂+∆,

¡
(1− ε) ŝR + εσ̃R

¢
(m)

¢
⊂ £

sSbig
¡
t̂
¢
,αi+1 −∆

¤
.

Since (1− ε) ŝR + εσ̃R belongs to ∆+ESR (k − 1),

argmax
m
US

¡
t̂+∆,

¡
(1− ε) ŝR + εσ̃R

¢
(m)

¢ ∩ESS ¡k; t̂+∆¢
6= ∅

and thus £
sSbig

¡
t̂
¢
,αi+1 −∆

¤ ∩ESS ¡k; t̂+∆¢ 6= ∅.
Lemma 3.2 implies that ESR (k + 1) must contain one Receiver strategy that is
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weakly sequentially rational with respect to sSbig. Suppose

sRbig ∈ arg max
sR∈SR

sR is interim rational
w.r.t. sSbig

UR
¡
sSbig, s

R
¢
,

then sRbig
³
sSbig (t)

´
is increasing in t because sRbig is increasing and s

S
big (t) is in-

creasing in t. Therefore, sRbig partitions the type space into {τ0, ..., τn} where

τ0 = 0 and τn = 1. By definition,

sRbig
¡
sSbig (t)

¢
= sRbig

¡
sSbig

¡
t0
¢¢

if and only if t and t0 both belong to the same step [τ i−1, τ i −∆] for some i and

sRbig
¡
sSbig (τ i−1)

¢
= E ([τ i−1, τ i −∆])

for i = 1, ..., n.

Claim [0, τ i+1 −∆] has a forward solution of size i+ 1 and τ i ≤ ti+1i ([0, τ i+1 −∆])

for i = 1, ..., n.

Proof Show by induction. Suppose [0, τ j+1 −∆] has a forward solution of size j+1

and τ j ≤ tj+1j ([0, τ j+1 −∆]) for all j = 1, ..., i− 1. Condition (M) implies that

τ j+1 > tj for all j = 1, ..., i − 1 because ©t0, ..., tN(b)ª is the largest forward
solution on [0, 1]. First we want to show that type τ i −∆ must weakly prefer

action E ([τ i−1, τ i −∆]) to action E ([τ i, τ i+1 −∆]).

Case 1 τ i 6= tq for any q.

Therefore, there exists q such that τ i −∆, τ i ∈ [tq−1, tq −∆]. By construc-
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tion, sSbig (τ i) < αq+1 −∆. By the construction of ŝR, ŝR
³
sSbig (τ i)

´
= αq.

Suppose to the contrary that type τ i − ∆ prefers action E ([τ i, τ i+1 −∆])

to action E ([τ i−1, τ i −∆]). By the definition of {τ0, τ1, ...τn} and the con-

struction that sRbig is sequentially rational w.r.t. s
S
big, we know that

sRbig
¡
sSbig (τ i)

¢
= E ([τ i, τ i+1 −∆])

and

sRbig
¡
sSbig (τ i −∆)

¢
= E ([τ i−1, τ i −∆]) .

Therefore, given the Receiver strategy sRbig, type τ i − ∆ prefers message

sSbig (τ i) to message s
S
big, and

argmax
m
US

¡
τ i −∆,

¡
(1− ε) ŝR + εsRbig

¢
(m)

¢
⊂ £

sSbig (τ i −∆) +∆,αi+1 −∆
¤
.

Since sRbig ∈ ESR (k + 1) ⊂ ESR (k),

£
sSbig (τ i −∆) +∆,αi+1 −∆

¤ ∩ESS (k + 1; τ i −∆)
6= ∅.

But this contradicts the construction of sSbig (τ i −∆).

Case 2 τ i = tq for some q.

We’ve shown that τ i > ti−1. So q ≥ i. Suppose q > i. But then sRbig can

be improved upon by partitioning [0, τ i] as {0, t1, ..., tq} by the monotonic-
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ity condition (M), and there exists a Receiver strategy that is interim ra-

tional w.r.t. sSbig which does that partition. So q = i. But then by

the same argument, τ j = tj for all j < i. In particular, τ i−1 = ti−1.

Suppose to the contrary, type ti −∆ prefers action E ([ti, τ i+1 −∆]) to ac-

tion E ([ti−1, ti −∆]). Then it has to be the case that E ([ti, τ i+1 −∆]) <

E ([ti, ti+1 −∆]) = αi+1. By the literal condition of the language assump-

tion, sRbig (E ([ti, τ i+1 −∆])) = E ([ti, τ i+1 −∆]). Therefore, given sRbig, type

ti −∆ prefers message E ([ti, τ i+1 −∆]) to message sSbig (ti −∆). So there

exists some message m ≥ E ([ti, τ i+1 −∆]) such that m ∈ ESS (k; ti −∆).

Since E ([ti, τ i+1 −∆]) ≤ αi+1 − ∆, from the assumption that condition 2

holds for k, ŝR (E ([ti, τ i+1 −∆])) = αi. So

argmax
m
US

¡
ti −∆,

¡
(1− ε) ŝR + εsRbig

¢
(m)

¢
⊂ £

sSbig (ti −∆) +∆,αi+1 −∆
¤
.

And it follows that

£
sSbig (ti −∆) +∆,αi+1 −∆

¤ ∩ESS (k + 1; τ i −∆)
6= ∅.

A contradiction.

By assumption, τ i−1 ≤ tii−1 ([0, τ i −∆]). So E ([τ i−1, τ i −∆]) ≤ αii ([0, τ i −∆]).

We have just shown that type τ i−∆ prefers E ([τ i−1, τ i −∆]) toE ([τ i, τ i+1 −∆]).

Thus, type τ i −∆ must prefer action αii ([0, τ i −∆]) to action E ([τ i, τ i+1 −∆])
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because

E ([τ i−1, τ i −∆]) ≤ αii ([0, τ i −∆]) < τ i ≤ E ([τ i, τ i+1 −∆]) .

So there exists t̄ ∈ [τ i, τ i+1 −∆] such that type τ i−∆ prefers action αii ([0, τ i −∆])

to action E ([τ i, t̄]) and type τ i prefers action E ([τ i, t̄]) to action αii ([0, τ i −∆]).

By definition of t̄, τ i = ti+1i ([0, t̄]). By the monotonicity condition (M),

ti+1i ([0, t̄]) ≤ ti+1i ([0, τ i+1 −∆])

because t̄ ≤ τ i+1 −∆. It follows that τ i ≤ ti+1i ([0, τ i+1 −∆]). Moreover, [0, t̄]

has a forward solution of size i + 1, so [0, τ i+1] has a forward solution of size

i+ 1.

Claim 3.3.3 implies that

τn−1 ≤ tnn−1 ([0, τn −∆]) = tnn−1 ([0, 1])

and that [0, 1] has a forward solution of size n. Since N (b) is the maximum of

the size of a forward solution on [0, 1], n ≤ N (b). So τ i ≤ ti for all i = 1, ..., n.

Condition (M) implies that

UR
¡
sSbig, s

R
big

¢ ≤ UR ¡sSbig, ŝR¢

because ŝR
³
sSbig

´
partitions the type space into

©
0, t1, ..., tN(b)−1, 1

ª
and this

is a better partition. But by assumption, ŝR ∈ ESR (k) where ŝR (M (k)) =
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©
α1, ..., aN(b)

ª
and αi = E ([ti−1, ti −∆]) for i = 1, ..., N (b). ŝR is weakly

interim rational with respect to sSright, so

max
sR∈ESR(k);

sR is weakly interim rational
w.r.t. sSbig

UR
¡
sSbig, s

R
¢ ≥ UR ¡sSbig, ŝR¢ .

Therefore, equality holds and for any s̃R ∈ ESR (k + 1) such that s̃R is weakly se-

quentially rational w.r.t. sSbig, s̃
R partitions the type space into

©
0, t1, ..., tN(b)−1, 1

ª
.

Supposem ∈ [αi,αi+1 −∆] is such that there exists s̃R belongs to ESR (k + 1) where

uS
¡
ti −∆, s̃R (m)

¢
> uS

¡
ti −∆, s̃R (m−∆)

¢
.

Since statement 2 holds for k, ŝR (m) = αi. So

argmax
m
US

¡
ti −∆,

¡
(1− ε) ŝR + s̃R

¢
(m)

¢ ⊂ [m,αi+1 −∆] .
Therefore,

ESS (k + 1; ti −∆) ∩ [m,αi+1 −∆] 6= ∅.

It follows that sSbig (ti −∆) ≥ m and therefore

sRbig (m) ≤ sRbig
¡
sSbig (ti −∆)

¢
= αi.

We have thus shown that statement 2 holds for k + 1.



Chapter 4

Coordination Games

4.1 Introduction

This chapter applies the idea of common knowledge of language to complete-information

games with one-sided communication. There is a debate in the literature over what criterion

for a cheap talk statement makes it credible. Farrell (1988) argues that a cheap talk

statement about one’s planned behavior is credible if it is self-committing, that is, if the

speaker believes that the statement will be believed, she will have the incentive to carry it

out. A self-committing statement should be believed because, if the speaker is sure that it

will be believed, the speaker will indeed carry it out. Aumann (1990), on the other hand,

argues that self-committing criterion is not enough; a credible cheap talk statement about

one’s planned behavior has to be self-signalling as well, that is, the speaker would want it

to be believed only if she indeed plans to carry it out.

The difficulty in formalizing the credibility criterion lies in how to incorporate the strat-

egy of the hypothetical speaker who intends to not carry out her statement into the analysis

. Baliga and Morris (2002) tackle this problem by expanding the original game into one

109
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in which the Sender has private information. In this expanded game, each action that the

Sender may take in the original game is the dominant action of one Sender type. Given

any claim about planned behavior, every type of Sender whose dominant action is not

equal to this claimed action represents a hypothetical speaker who intends not to carry

out her claim. This transforms the question of when the Sender could credibly transmit

information about her intended action into the question of when a fully-separating Perfect

Bayesian equilibrium exists, i.e. an equilibrium where the informed player fully reveals her

type. Since the common prior puts positive weight on every Sender type, the strategy of

every Sender type has to be taken into consideration by the Receiver in a perfect Bayesian

equilibrium. Baliga and Morris (2002) show that the self-committing condition alone is

not sufficient criterion for establishing a credible Sender claim by demonstrating that there

is no communication in a class of games which are self-committing but not self-signaling.

In this class of games, the Receiver has only two actions. The self-signaling condition is

violated in this class of games because the Sender’s preference of the Receiver’s actions is

independent of her own actions.

We notice that every Sender action in the original stage game that is not strictly dom-

inated is associated with a belief about the Receiver’s actions. We notice that every

rationalizable Sender action is a best response to a possibly mixed Receiver action. In

addition, if the Receiver puts positive weight on every belief that the Sender holds, the

Receiver has to take into account the strategy of every hypothetical Sender with different

intentions. Iterative admissibility is a solution concept with this property.

In this expanded game, an instruction is actually a recommendation for the Receiver to
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take an action in a specified subset. Thus, an opposite instruction is then a recommen-

dation of actions in the complement of that subset. An instruction is more precise if the

recommended subset of Receiver actions is smaller. We assume that the language is rich

enough to contain every possible sequence of instructions with increasing precision. Two

such sequences may share the first several instructions. So, we can think of the common

instructions as the common ancestor of the original sequences. Roughly speaking, if the

common ancestor of a pair of such messages contains the common ancestor of another pair

as a subsequence, we say that the former pair is more similar to each other than the latter

pair. With this relationship, we can then apply the language assumptions in Chapter one:

(1) literal meaning condition, i.e.: if the Receiver reacts to a message with a specific action,

then he reacts with the same action to the related messages that literally recommends that

specific action; (2) convexity condition, i.e.: if the Receiver takes the same action after

receiving two different messages, then he takes that same action after any message that

may have been delivered with some component of the original message. Our language

assumption combined with weak dominance enables messages to convey some information

about the Sender’s preference regarding the actions of the Receiver.

We focus on stage games where the best response correspondences are functions. So,

the stage game is self-signaling when the Sender always prefers the Receiver to take his

best response, and the stage game is self-committing if the Receiver should take an action

whenever one is recommended, given that the Sender believes that the recommendation will

be followed. With these definitions in mind, we find that if the stage game is self-committing

and strongly self-signalling, there is a unique iterative admissible outcome of the language
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game which gives the Sender her Stackelberg payoff. On the other hand, if the stage game

is self-committing, but the Sender’s preference over the Receiver’s actions does not depend

her own action, every rationalizable action profile is the outcome of an iterative admissible

strategy profile in the language game.

The rest of this chapter is structured as follows. Section 4.2 provides three simple

examples to illustrate the role of the self-signalling condition and to motivate the language

assumption. Section 4.3 describes the model and the language assumptions. Section 4.4

presents our main results described above. Section 4.5 briefly reviews the main results in

Baliga and Morris (2002) and compares theirs with ours. Section 4.6 concludes.

4.2 Motivating Examples

The main idea of this chapter is best understood through examples. The battle-of-the-

sex game example in section 4.2.1 illustrates that self-signalling is sufficient to guarantee

Stackleberg payoff for the speaker. The investment game example in section 4.2.2 shows

that a severe violation of the self-signalling criterion makes communication ineffective. The

partial-common-interest game in section 4.2.3 motivates the hierarchical messages and lan-

guage assumptions formally described in section 4.3.1.

4.2.1 Coordination without positive spillovers

In the Battle-of-the-Sexes game in table 4.2.1, there are two Nash equilibria: both go to the

Opera and both go to the Club. The Sender prefers the first equilibrium and the Receiver

prefers the second. The promise “I will go to the opera” is self-committing because if

the Sender believes that the Receiver will believe this statement and play his best response
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Receiver’s actions
Opera Club

Sender’s actions Opera 2,1 0,0
Club 0,0 1,2

Table 4.1: Battle of Sex Game

“opera” “club”
Always Opera Opera Opera
Always Club Club Club
Literal Opera Club
Perverse Club Opera

Table 4.2: Receiver’s Strategies in Battle-of-the-Sex Game

Opera, the Sender would prefer to go to the Opera and carry out her promise. The promise

is self-signalling as well because had the Sender not intended to go to the Opera, i.e. had

she intended to go to the Club, she would prefer the Receiver to go to the Club instead of

the Opera and hence she would not want the Receiver to believe the promise “I will go to

the Opera”.

Suppose M = {“opera”, “club”}. It can be interpreted as a promise to carry out a

certain action, or a recommended action for the Receiver. The Sender sends a message

m ∈M , and then plays an action aS ∈ AS in the stage game. The set of strategies for the

Sender is thus

SS :=

⎧⎪⎨⎪⎩ (“Opera”, Opera) , (“Club”, Club) ,

(“Opera”, Club) , (“Club”, Opera)

⎫⎪⎬⎪⎭ ,
while the set of strategies for the Receiver is listed in table 4.2.1. As in the motivating

example of chapter 1, both the Always Opera and Always Club strategies ignore the

messages completely. Literal strategy and Opposite strategy both respond to a message

by going to the Opera and the other message by going to the Club, and hence are essentially

the same up to their renaming.
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In addition, We can see from table 4.2.1 that message “opera” and message “club”

are complete symmetric in the sense that if we swap the names of these two messages,

we end up with exactly the same strategy set SR as in table 4.2.1. This should not be

surprising because in traditional economic models of communication, messages have no

inherent meanings – the meaning is determined by the equilibrium.

However, the idea that messages have no inherent meanings is counter-intuitive. If the

Receiver does respond differently to the two messages “opera” and “club,” it’s generally

common knowledge how he is going to respond. Suppose, the Sender says the messages

in a very sincere and literal way, it is natural that if the Receiver responds differently to

different messages, he will use the Literal strategy, not the Opposite strategy. Suppose,

to the contrary, the Sender says ”You’d better go to the Opera” in a sarcastic way. If this

sarcasm is commonly understood by the Sender and the Receiver, possibly through the tone

or the gesture, then it is natural that there is common knowledge that the Receiver would

use the Opposite strategy if he decides to respond differently to the two different messages.

If we assume that the two players are both native English speakers and come from

the same cultural background, and thus they perfectly understand the meaning that the

other person tries to convey from the words uttered, the tone, and the body language, then

it is without loss of generality to consider only the sincere tone. Suppose it is common

knowledge that the Receiver follows the convention of language and never uses Opposite.

We are thus describing a different game which I call the language game GL, where the set

of strategies for the Receiver is

SRL := {Always Opera,Always Club, Literal} .
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We will show that the unique outcome that survive three rounds of deletion of weakly

dominated strategies is for both players to go to the Opera.

In the first round of deletion of weakly dominated strategies, sending the message

“opera” and going to the Club is weakly dominated for the Sender by sending the mes-

sage “club” and going to the Club. This is because if the Sender is going to the Club,

she prefers the Receiver to go to the Club. If what the Sender says affect what the Re-

ceiver does, she gets her preferred action only if she says “club.” Likewise, the strategy

(“ {Club} ”, Opera) is weakly dominated for the Sender by the strategy (“ {Club} ”, Opera).

Therefore, in the second round of deletion of weakly dominated strategies, the strategy

Always Opera is weakly dominated by the strategy Literal, and the strategy Always Club

is weakly dominated by Literal strategy. The only Receiver strategy that survives the

second round is thus the Literal strategy.

In the third round, the Sender knows that if she says “club,” the Receiver will go to

the Club and thus it’s best for her to go to the Club, and if she says “opera”, the Receiver

will go to the Opera and thus it’s best for her to go to the Opera as well. Since she likes

(Opera,Opera) better than (Club, Club), the optimal strategy for her is to say “opera”

and go the the Opera. Thus, we obtain the unique outcome that they coordinate on the

Sender’s preferred equilibrium.

4.2.2 Coordination with positive spillovers

To understand the role of the self-signalling criterion, let’s look at the Investment game in

figure 4.2.2. As in the Battle-of-the-Sexes game, there are two Nash equilibria in this game:

(Invest, Invest) and (Not,Not). The promise “I’m going to invest” is self-committing
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Receiver
Invest NotInvest

Sender’s actions Invest 2, 2 −1, 1
NotInvest 1,−1 0, 0

Table 4.3: Investment Game

“invest” “not”

Always Invest Invest Invest
Never Invest Not Not
Literal Invest Not
Opposite Not Invest

Table 4.4: Receiver’s Strategies in Investment Game

because if the Sender believes that the Receiver is going to believe the statement and play

his best response, it is optimal for the Sender to carry out the promise and play the strategy

Invest. In Farrell’s point of view, this message is thus credible and should be believed.

Aumann argues that this promise is not self-signalling and hence is not credible. Even if

the Sender intends to play Not, possibly due to lack of confidence that Receiver is really

going to Invest, she still prefers the Receiver to use the strategy Invest. Therefore, she

would like the Receiver to believe her promise regardless of her intended action. If she

is pessimistic about the effect of communication and believes that, with high probability,

the Receiver is going to Not Invest regardless of what she says, then she would prefer

to Not Invest. However, if the probability that the Receiver uses the strategy Invest is

higher after hearing the promise ”I’m going to invest”, the Sender would like to make that

promise even though she does not intend to carry it out.

Let’s look at the cheap talk extension game in detail. Suppose M = {“invest”, “not”}.

Then the set of strategies for the Sender is

SS := {(“invest”, Invest) , (“not”, Not) , (“invest”, Not) , (“not”, Invest)} ,
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while the set of strategies for the Receiver is listed in table 4.2.2. Suppose it is common

knowledge that the Receiver follows the language convention and never uses the strategy

Opposite. In the transformed game GL, the set of strategies for the Receiver is thus

SRL := {Always Invest,Never Invest, Literal} .

We will now show that every outcome remains after one round of deletion of weakly

dominated strategies, when the iterative process stops. Sending the message “not” and

using the strategy Invest is weakly dominated by sending the message “invest” and using

the strategy Invest, because when the Sender invests, she prefers the Receiver to invest,

and whenever talking affects the outcome, she gets her preferred action only by saying

“invest.” Since the Sender has the same preference over the Receiver’s actions regardless of

the action she takes, the same argument shows that (“not”, Not) is weakly dominated by

(“invest”, Not). Thus, after the first round of deletion, only the message “invest” survives.

The process of iterative deletion of weakly dominated strategies stops after the first round,

because the Receiver, after receiving the message, still does not know what the Sender is

going to play, and thus might play Never Invest if he is pessimistic about the Sender’s

intention, and either Literal or Always Invest if he is optimistic. After the first round of

deletion, the two Receiver strategies, Literal and Always Invest, are payoff-equivalent for

the Receiver because they differ only in the action taken after the message “not”, which is

reached with probability zero.

Unlike in the Battle-of-the-Sexes game, when there are positive spillovers, pre-game

communication does not eliminate strategic uncertainties. These two examples illustrate
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the role of the self-signalling criterion.

4.2.3 Partial Common Interest

The Fighting-Couple game in table 4.5 shows that communication can help players avoid

bad equilibria, even though their preferences are not fully aligned. The game has one pure

strategy equilibrium: (Home,Home). In one of the two mixed strategy equilibria, both

go to the Opera with probability 1
2 and go to the Club with probability

1
2 . In the other

mixed strategy equilibrium, both go to the Opera with probability 1
8 , go to the Club with

probability 1
8 and stay Home with probability

3
4 . The mixed-strategy equilibrium where

both staying Home with probability 0 is the efficient one. Both going to the Opera and

going to the Club is consistent with going out, as opposed to staying home. One prefers

to stay Home if and only if the other stays Home. Moreover, avoiding staying Home

and restricting themselves to the submatrix {Opera,Club} × {Opera,Club} is mutually

beneficial for both players.

Now suppose the Sender has an opportunity to leave a voice message before they play

the one-shot game in table 4.5. She cannot possibly persuade the Receiver to go to the

Opera, nor can she persuade the Receiver to go to the Club, because they have conflict of

interest regarding the two actions. However, it is self-committing for her to say “you should

go out,” in the sense that if the Receiver is persuaded and goes out, the Sender will go out,

i.e., she will choose to either go to the Opera or go to the Club, in which case, the Receiver

prefers to go out. In addition, the suggestion “you should go out” is also self-signalling in

the sense that the Sender prefers the Receiver to go out only if she plans to go out herself.

Consider the suggestion “Definitely go out tonight, dear. Regarding where to go, you
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should go to the opera.” We can write this suggestion as a 2-sequence of decreasing subset:

{Opera,Club} {Opera}. The suggestion “Definitely go out tonight, dear. Regarding

where to go, you should go to the club” is slightly different from the previous one. Another

possible suggestion, “You should stay home,” on the other hand, is drastically different from

the previous two. We can write this message as “ {Home} ”. If the Receiver plays the same

action after receiving both suggestions “ {Opera,Club} {Opera} ” and “ {Home} ”, then the

Receiver ignores the first layer of literal distinction between going out and staying home.

Intuitively, the fine literal difference between the two messages “ {Opera,Club} {Opera} ”

and “ {Opera,Club} {Club} ” should also be ignored by the Receiver. That is, the Receiver

should play exactly the same action after receiving the message “ {Opera,Club} {Club} ”,

the messages “ {Opera,Club} {Opera} ” and “ {Home} ”. Suppose the set of messages is

M = {“ {Opera,Club} {Opera} ”, “ {Opera,Club} {Club} ”, “ {Fight} ”} .

Then the preceding discussion suggests the type of language assumption that restricts the

Receiver’s strategies to those in table 4.6.

We will now show that, in the language game GL, no player uses the action Home after

three rounds of deletion of weakly dominated strategies. In the first round of deletion, the

strategy (“{Opera,Club}{Opera}”,Home) is weakly dominated by (“ {Home} ”,Home)

for the Sender. And both (“ {Home} ”, Opera) and (“ {Opera,Club} {Opera} ”, Opera)

are weakly dominated by (“ {Opera,Club} {Club} ”, Opera) for the Sender. Therefore,

after the first round of deletion of weakly dominated strategies, if the Sender suggests any

non-violent action (either Opera or Club), she definitely plans to not fight; if the Sender
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Receiver’s actions
Opera Club Home

Sender’s actions Opera 2,4 4,2 0,0
Club 4,2 2,4 0,0
Home 0,0 0,0 1,1

Table 4.5: Fighting-Couple Game

suggests to fight, she definitely plans to fight. Thus, it is weakly dominated for the Receiver

to fight after a non-violent suggestion; it is also weakly dominated for the Receiver to play a

non-violent action after the suggestion to fight. However, it is also weakly dominated in the

second round of deletion for the Receiver to play the Completely Literal strategy, because

they have opposing interests when restricting the game to {Opera,Club}× {Opera,Club}.

It can be easily checked that the set of strategies that survive the second round of deletion

of weakly dominated strategies is thus{Opera Home,Club Home}. Therefore, the Sender

can be guaranteed a non-violent response if she says either “ {Opera,Club} {Opera} ” or

“ {Opera, club} {Club} ”. Since she prefer any outcome in the submatrix {Opera,Club} ×

{Opera,Club} to anyone outside of that matrix, the strategy (“ {Fight} ”, F ight) is strictly

dominated in the third round.

The strategy set for the Sender that survives iterative admissibility is

{(“ {Opera,Club} {Opera} ”, Club) , (“ {Opera,Club} {Club} ”, Opera)} ,

while the strategy set for the Receiver that survives iterative admissibility is

{Opera Home, Club Home} .

Pregame communication guarantees both players a payoff of at least 2.
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“{opera,club}{opera}” “{opera,club}{club}” “{home}”
Always Opera Opera Opera Opera
Always Club Club Club Club
Always Home Home Home Home
Opera & Home Opera Opera Home
Club & Home Club Club Home
Completely Literal Opera Club Home

Table 4.6: Receiver’s Strategies in the Fighting Couple Game

4.3 The Model

In this chapter, we apply the general framework described in chapter one to one-sided

communication in finite two-player games with complete information. The Sender (S)

and the Receiver (R) simultaneously choose an action aS , aR from a finite set AS and AR

respectively. Their payoffs are given by gS : AS × AR → R and gR : AS × AR → R

respectively. Write g =
¡
gS , gR

¢
. We will abuse the notation and denote the stage game

also by g. In the one-sided cheap talk extension game G, the Sender gets to send a message

from a finite set M before they play the stage game g. A strategy for the Sender in the

reduced-form cheap talk extension game G, denoted by sS, is a message m ∈ M and an

action aS ∈ AS. A strategy for the Receiver in G, denoted by sR, is a mapping from M to

AR. To apply the general framework, we first transform the cheap talk game G into the

language game GL by directly restricting the set of strategies for the Receiver. We need

to modify the language assumptions in chapter one because in the class of games we deal

with here, there is no natural order on the set of actions. After the language assumptions

are laid out, we apply normal form iterative admissibility to the language game GL.

In this chapter, we will focus on games where changing exactly one player’s action in the

action profile changes the payoff. That is, games such that gi
¡
aS , aR

¢ 6= gi ¡a0S, aR¢ and
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gi
¡
aS , aR

¢ 6= gi
¡
aS, a0R

¢
for every aS 6= a0S , aR 6= a0R, and i = S,R. This implies that,

in particular, the best response correspondences for both players are well-defined functions.

This condition is weaker than genericity, which is a common assumption, and does not

exclude any of the motivating games in section 4.2.

4.3.1 Incorporating Language

Consider a language L. Suppose L contains an expression for a subset of Receiver actions

B. Denote this expression by ξ0. If L also contains an expression for logical negation

“not,” then L contains an expression for the idea “do not do B.” Denote this expression by

ξ1. In another language L
0, the expression ξ0 may mean “please do B,” while the expression

ξ1 may mean ”please do not do B.” Since messages are costless and are only means to

convey information, it does not matter which language the Sender and the Receiver are

speaking, as long as it is common knowledge that they speak the same language. Suppose

the common language that the Sender and the Receiver speak is L. If the Receiver decides

to ignore the Sender’s messages, whatever the Sender says does not matter and the Receiver

takes the same action regardless. If the Receiver decides to respond to ξ0 and ξ1 differently

because he thinks the Sender conveys information through her messages, he refers to his

own knowledge L and responds to message ξ0 with action B while to message ξ1 with an

action not in B.

Some may argue that the Receiver would want to take the Opposite strategy in a match-

ing penny game i.e.: the strategy that takes the action opposite to its meaning according

to L. However, if the Sender knows the payoff structure of a matching penny game, and

if she knows that the Receiver uses language L0 in a matching penny game, she will give
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recommendations according to L0, thereby destroying the incentive for the Receiver to use

language L0. In this case, one may argue that the Receiver randomizes his actions after re-

ceiving a message. This could be achieved by randomizing between the Always B strategy,

and the Never B strategy.

Some also argue that the Receiver plays the Literal and Opposite strategies at the

same time. This argument is supported by observing the game being played many times.

Throughout these observations, there are incidents where the Receiver takes action B after

message ξ0 and after message ξ1. There are also incidents where the Receiver takes action

not in B after message ξ0 and after message ξ1. These observations do not refute the

hypothesis that the Receiver does not play the Opposite strategy because all of the afore-

mentioned outcomes may be realizations of a Receiver strategy that randomizes between

Always B and Never B. Finally, in a matching penny game, the Receiver actually has

no incentive to respond differently with the Sender’s messages, because he knows that the

Sender will not convey any information about her intention.

In the Battle-of-the-Sexes game, if we let B refer to going to the opera, then “not B,”

i.e. “not go to the opera,” is equivalent to “go to the club,” since this is the only choice

other than going to the opera. In the Fighting-Couple game, the expression, “go out”, is

saying exactly the same thing as, “go to the opera or go to the club”, and the expression,

“do not go out”, says the same thing as, ”go home”. If the Receiver responds differently to

the two recommendations, “go out”, and, “go home”, then we see from previous discussion

that he responds to, “go out”, by going out. However, the Receiver still has to decide

whether to go to the opera or the club. Carrying this idea forward, lets suppose that
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the subset of Receiver actions B contains a strict subset B2, and the language L contains

an expression for B2. Suppose further that L contains an expression ξ00 that is simply

a concatenation of ξ0 and the expression for B2. Then with the expression for logical

negation, L contains an expression ξ01 which is the concatenation of ξ0 meaning ,“do not

do B”, and the expression for, “within B1, do not do B2”. That the receiver may decide

that the messages, “go out”, and, “go home”, convey separate information, but decide to

ignore the finer differences between, “go out; furthermore, go to the opera”, and “go out;

and then go to the club’. Then the Receiver takes the same action after receiving both

message ξ00 and ξ01. However, if the Receiver decides not to ignore the finer difference

between the recommendations ξ00 and ξ01, he refers to his knowledge of L and responds to

message ξ00 with action B2 and to message ξ01 with an action in B1 but not in B2.

Let M denote every message that the Sender could possibly utter. We also assume

that the language L the players commonly speak contains an expression for every subset of

Receiver actions, an expression for logical negation, and an expression for concatenation.

Then, the language L contains an expression for every strictly decreasing sequence of subsets

of Receiver actions A1A2...An. As a convention, let A0 = AR and An+1 = ∅. Each

sequence can be seen as a sequence of instructions with finer and finer details. The set of all

such sequences where the last subset has only one element is called the set of hierarchical

recommendations, denoted by Mh. Given a hierarchical recommendation m = A1...An,

we call Aj the jth level of instruction. Define M (A1...Aj) to be the set of all messages

that start with the strictly decreasing sequence A1...Aj . Every message m in M (A1...Aj)

express the same idea of “Do A1. Further more, take an action in A2. ....To be even more
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precise, do Aj”.

Let sR be a mapping from the set of messages M to the set of Receiver actions AR, and

m = A1...An a hierarchical recommendation. Let aR = sR (m). Let γ be the highest level

of instruction the action aR is consistent with according to m. That is, aR ∈ Aγ\Aγ+1.

Therefore, within the subset of Aγ , the action aR is “opposite to” the instruction of Aγ+1.

Our previous discussion suggests that, if sR is a language-based Receiver strategy, then

either sR takes the same action after both expressions for A1...Aγ (Aγ+1) and expressions

for A1...Aγ (Aγ\Aγ+1), or sR responds to expressions for A1...Aγ (Aγ+1) with actions in

Aγ+1 and expressions for A1...Aγ (Aγ\Aγ+1) with actions in Aγ\Aγ+1. Therefore, if sR

is language-based and sR (m) ∈ Aγ\Aγ+1, sR must ignore differences between Aγ+1 and

Aγ\Aγ+1, and takes the same action after both expressions for A1...Aγ (Aγ+1) and expres-

sions for A1...Aγ (Aγ\Aγ+1). That is, sR takes the “opposite” action to the instruction

Aγ+1. The preceding discussion suggests that, if sR is a language-based Receiver strategy,

then

sR
¡
m0¢ = sR (m)

for every message m0 ∈M (A1...AγAγ+1) ∪M (A1...Aγ (Aγ\Aγ+1)). Call the set

M (A1...AγAγ+1) ∪M (A1...Aγ (Aγ\Aγ+1))

the constrained message set given message m and action aR. Formally, given m ∈M and
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aR ∈ AR, define

M cstr
¡
m,aR

¢ ≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

M (A1...AγAγ+1)

∪M (A1...Aγ (Aγ\Aγ+1))

m

if m ∈Mh and γ such that

aR ∈ Aγ\Aγ+1

otherwise

.

Now we formally define our language assumptions.

Definition 4.1. sR :M → A is a language-based Receiver strategy, denoted by sR ∈ SRL , if

and only if sR is constant on Mcstr
¡
m, sR (m)

¢
, for every m ∈M .

This definition is best illustrated with graphs. Suppose AR = {A,B,C,D}. Figure

4.2 shows some hierarchical recommendations in this game. There are many different ways

to group AR. The first level of instruction can be about taking action D or not taking

action D, as shown by the two branches {D} and {A,B,C} that diverge from each other.

The first layer of instruction can also tell you whether to take actions in {A,C} or not, as

shown by the two branches {A,C} and {B,D}. Given a first-layer instruction {A,B,C},

the second layer of instruction could be about whether to take action A or not, as shown

by the two branches {A} and {B,C} that diverge one node on the branch of {A,B,C}.

In general , expressions that are “opposite to” each other at some level of instruction are

drawn to diverge from the same node. We call all the messages that diverge from the same

node a message bundle. For example, all the messages in the circle in figure 4.2 constitutes

one message bundle. There can be several parallel message bundles on a branch, which

represent different ways to subdivide the set of Receiver actions relevant for the branch.

Suppose we choose the branch of {A,B,C} and then choose {B}, we end up with

the message “ {A,B,C} {B}.” The set M ({A,B,C} {A,C}) consists of two messages:
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“ {A,B,C} {A,C} {A} ” and “ {A,B,C} {A,C} {C}.” Within the broad instruction {A,B,C},

these two messages are both “opposite to” message “ {A,B,C} {B}.”

Given message {A,B,C} {B} and Receiver action C, we first find that action C belongs

to the subset {A,B,C} but not to the subset {B}. According to the definition, the

constrained message set given m and aR is thus the following set of messages:

{“ {A,B,C} {B} ”, “ {A,B,C} {A,C} {A} ”, “ {A,B,C} {A,C} {C} ”} .

If a language-based Receiver strategy sR responds to message “ {A,B,C} {B} ” with ac-

tion C, then by definition, sR takes action C after receiving message {A,B,C} {B},”

“ {A,B,C} {A,C} {A} ” and “ {A,B,C} {A,C} {C}.”

Alternatively, we could start by defining the set of messages that are “in between” two

different messages, and define language by literal meaning condition and convexity condition

as in the first chapter. Lemma 4.1 shows that these two approaches are equivalent.

Suppose mA and mB are two different hierarchical recommendations. They can be

represented on a tree as in figure 4.2. We can trace the messages up along the branches

they come from and find the first common branch that they both belong to. For example,

message “ {D} ” and message “ {A,B,C} {A,C} {C} ” belong to the main branch (or rather,

the trunk) {A,B,C,D}. Furthermore, they belong to two subbranches that diverge from

the same node on the branch of {A,B,C,D}. We call the set of all message that belong

to either of the two subbranches the set of messages “in between” message mA and mB. It

is not always the case that two messages belong to two different subbranches that diverge

from the same node. If they belong to two different message bundles on a branch, as
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message “ {A,C,D} {A,C} {C} ” and “ {A,C} {A} ” do, or if one of the two messages is

not a hierarchical recommendation, we say that the only messages “in between” mA and

mB are the messages mA and mB themselves.

Let Conv (mA,mB) denote the set of messages that are “in between” message mA and

message mB. It is formally defined as follows.

Definition 4.2. Let mA and mB be two messages in M . If mA and mB are both hierar-

chical recommendations, written as A1...AnA and B1...BnB respectively, and if there exists

a positive integer λ such that Aj = Bj for every level of instruction j = 1, ...,λ − 1 and

Bλ = Aλ−1\Aλ, then define

Conv (mA,mB) =M (A1...Aλ) ∪M (B1...Bλ) ;

otherwise, define

conv (mA,mB) = {mA,mB} .

A pair of messages are more different from each other than the other pair if the convex

hull of the previous pair contains the convex hull of the latter pair. For example, in

figure 4.2, the messages “ {A,B,C} {B} ” and “ {A,B,C} {A,C} {A} ” are “in between”

the messages “ {B} ” and “ {A,B,C} {A,C} {C} ”.

Lemma 4.1. sR :M → AR belongs to SRL iff it satisfies the following two conditions:

1. (Literal Meaning) If sR (m̂) = âR for some m̂ ∈ M , then sR (m̃) = âR for every

m̃ ∈M cstr
¡
m̂, âR

¢
where l (m̂) = âR;

2. (Convexity) if sR (mA) = sR (mB), then sR (m) = sR (mA) for every m “in between”
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mA and mB, that is, for every m in Conv (mA,mB).

Proof. We first prove the “only if” part. If sR is a language-based Receiver strategy, then

sR|Mcstr(m,sR(m)) = s
R (m) for every m ∈ M . The literal meaning condition is thus easily

satisfied. Suppose sR (mA) = s
R (mB). If conv (mA,mB) = {mA,mB}, then the convexity

condition trivially holds. Otherwise, write mA = A1...AnA and mB = B1...BnB , and let λ

be such that Aj = Bj for j = 1, ...,λ− 1 and Bλ = Aλ−1\Bλ. Then either sR (mA) ∈ Aλ

or sR (mA) ∈ Bλ = Aλ−1\Aλ. W.l.o.g. assume sR (mA) ∈ Bλ. Therefore,

Mcstr
¡
mA, s

R (mA)
¢
= M (A1...Aλ) ∪M (A1...Aλ−1 (Aλ−1\Aλ))

= conv (mA,mB) ,

and sR (m0) = sR (mA) for every m0 ∈ conv (mA,mB) by the language assumptions.

Now we prove the “if” part. Given a message m /∈ Mh or m ∈ Mh but l (m) =

sR (m), then Mcstr
¡
m, sR (m)

¢
= {m}, so sR|Mcstr(m,sR(m)) = sR (m). If m ∈ Mh and

l (m) 6= sR (m), then write m = A1...AjAj+1..An where sR (m) ∈ Aj\Aj+1. Let m̃ =

A1...Aj (Aj\Aj+1)
©
sR (m)

ª
. Then m̃ ∈ Mcstr

¡
m, sR (m)

¢
and l (m̃) = sR (m). By the

literal meaning condition, sR (m̃) = sR (m). Since message m and m̃ diverge from the same

node on the branch of A1...Aj ,

conv (m, m̃) = M (A1...AjAj+1) ∪M (A1...Aj (Aj\Aj+1))

= Mcstr
¡
m, sR (m)

¢
.

The convexity condition thus implies that sR|Mcstr(m,sR(m)) = s
R (m).
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4.4 Results

We can generalize the intuition gained from the contrast between the Battle-of-the-Sex game

and the Investment game as follows. Section 4.4.1 gives sufficient conditions for one-sided

pre-game communication to guarantee coordinated play in a coordination game. Section

4.4.2 shows that, when the Sender’s preference over the Receiver’s actions is independent

of the action she takes, every rationalizable outcome in the stage game is possible.

4.4.1 A Sufficient Condition to Guarantee Stackelberg Payoff for the

Sender

In Farrell’s definition, messages are about intended actions. In this chapter, we focus on

messages that serve as recommendations of actions to the Receiver. We can easily translate

a message about the speaker’s intended action into a recommendation for the Receiver, since

the payoff matrix of the stage game is common knowledge, and thus the Receiver can infer

from the speaker’s claim about her intended action what the speaker wants the Receiver to

do. For example, the message, “I will take action aS”, is equivalent to a recommendation

for the Receiver to take his best response to aS.

Let bi denote the best reply correspondence for player i in the stage game, , i = S,R.

Since we focus on games where changing only one player’s action changes both players’

payoff, the aforementioned best response correspondence bi is in fact a function.

For ease of comparison, we re-write the formal definition of the condition of self-committing

by Baliga and Morris (2002) in the following. We then give our version of the definition.

Definition 4.3 (Baliga and Morris (2002)). Claim about intended action aS is self-
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committing if bS
¡
bR
¡
aS
¢¢
= aS.

Definition 4.4. Recommendation aR ∈ AR is self-committing if bR ¡bS ¡aR¢¢ = aR.
Definition 4.5. The stage game g is self-committing if every recommendation aR ∈ AR is

self-committing.

It is straightforward to see that the recommendation aR is self-committing if and only

if the claim about intended action bS
¡
aR
¢
is self-committing because bS

¡
bR
¡
bS
¡
aR
¢¢¢

=

bS
¡
aR
¢
.

The definition Aumann (1990) gives for self-signalling criterion is as follows. A state-

ment is self-signalling if the speaker would want it to be believed only if it is true. We

can thus say that a recommendation is self-signalling if the speaker would want it to be fol-

lowed only if she plans to take the action which makes the recommendation optimal for the

Receiver. This definition implies that the speaker would NOT want her recommendation

bR
¡
aS
¢
to be followed if her planned action would not make this recommendation optimal

for the Receiver, that is, if she planned to take an action different from aS . This suggests

that the self-signalling condition is a property on the stage game as whole, not one about

individual actions.

Baliga and Morris formalizes the definition as follows.

Definition 4.6 (Baliga and Morris (2002)). The game g is self-signalling (for the

Sender) if gS
¡
aS , bR

¡
aS
¢¢
> gS

¡
aS, aR

¢
for every aS ∈ AS, and aR ∈ AR where aR 6=

bR
¡
aS
¢
.

The following theorem gives a sufficient condition for the Sender to be guaranteed her

Stackelberg payoff.
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Receiver’s actions
A B C

Sender’s actions a 2, 3 1, 2 −1,−9
b 0, 0 4, 3 −1, 2
c 1,−9 2, 2 3, 3

Table 4.7: A Stage Game with Three Receiver Actions

Proposition 4.1. If the stage game g is self-signalling and self-committing, then any strat-

egy profile
¡¡
m,aS

¢
, sR

¢
that survives iterative deletion of weakly dominated strategies in

the language game gives the Sender her Stackelberg payoff, that is,

gS
¡
aS , aR

¢
= max

aS
uS
¡
aS, bR

¡
aS
¢¢

for every
¡¡
m,aS

¢
, sR

¢ ∈ SL (∞).
An Example

To see the main idea behind the proof, it is easy to start with a simple example. The game

is shown in table 4.7. This game has three pure strategy Nash-equilibria: (a,A) , (b,B) and

(c, C). Payoffs for both players change if only one player changes the action taken. It is

obvious that every recommendation is self-committing, and this game is self-signaling.

For ease of exposition, we will assume that the Sender can only give hierarchical recom-

mendations that start with either “{B}” or “{A,C}.” The top half of figure 4.1 lists every

such message. The bottom half of the left panel of figure 4.1 tabulates every Sender strat-

egy that survives the first, third, and fifth round of deletion of weakly dominated strategies.
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{B}

{A,C}

{A} {C}

Completely Literal

Completely Literal

Always C

Always A

Completely Literal

First Layer and C

First Layer and A

Always C

Always B

Always A

BBB

AAA
S (0)

Receiver 
strategies

CCC

AAB

CCB

CAB

AAA

CAB

CAB
S (4)

CCCS (2)

R

R

R

a

c

a,
b,
c

S (1)
Sender 
strategies

cab

bS (5)

S (3)

S

S

S

Figure 4.1: The Iterative Process for a Game with Three Receiver Actions
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Action a is listed in the cell at the intersection of row SS (1) and column “ {A,C} {A} ”,

while action b and c is not listed in that cell. This indicates that taking action a after

sending the recommendation “ {A,C} {A} ” survives the first round of deletion of weakly

dominated strategies, while taking action b or action c after sending the recommendation

“ {A,C} {A} ” does not. The right panel in figure “ {A,C} {A} ” lists Receiver strategies

that survive the 0th, the second and the fourth round of deletion of weakly dominated strate-

gies. For example, the Receiver strategy, First Layer and A, shown in the fourth row

in the right panel of figure 4.1, responds to message “ {B} ” with action B, and to both

message “ {A,C} {A} ” and message “ {A,C} {C} ” with action A. By definition, every

language-based Receiver strategy survives the 0th round of deletion of weakly dominated

strategies in the language game.

We will first show why the Sender strategy that takes action c after sending the recom-

mendation “ {A,C} {A} ” does not survive the first round of elimination for the Sender. By

the self-signalling condition, the Sender prefers the Receiver action C to any other Receiver

action if the Sender is going to take action c. The table in the middle of figure 4.1 shows

that, in the language game, message “ {A,C} {A} ” and message “ {A,C} {C} ” solicit differ-

ent actions from the Receiver only if the Receiver plays the Literal strategy, where message

“ {A,C} {A} ” induces action A and message “ {A,C} {C} ” induces action C. It follows

that taking action c after sending the recommendation “ {A,C} {A} ” is weakly dominated

by taking the same action c while sending the recommendation “ {A,C} {C} ”.

In a similar way, we show why the Sender strategy that takes action b after sending

the recommendation “ {A,C} {A} ” is weakly dominated by the Sender strategy that takes
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action b but sends the recommendation “ {B}.” First, the Completely Literal strategy

responds to message “ {A,C} {A} ” and message “ {B} ” differently. By the self-signalling

condition, the Sender prefers the Receiver action B to every other Receiver action if the

Sender is going to take action b. If the Receiver plays a language-based strategy that

responds to message “ {B} ” and message “ {A,C} {A} ” with different actions, the Receiver

must respond to message “ {B} ” with action B, while responding to message “ {A,C} {A} ”

with either action A or C. Therefore, the Sender strategy that takes action b after sending

message “ {A,C} {A} ” is weakly dominated by the Sender strategy that takes action b after

sending message “ {B}.” In other words, giving the recommendation “ {A,C} {A} ” while

taking any action other action a, is weakly dominated for the Sender. Similarly, giving

the recommendation “ {A,C} {C} ” while taking any action other than action c, is weakly

dominated for the Sender.

However, it is not the case that every Sender strategy that takes an action which makes

the recommendation suboptimal for the Receiver is weakly dominated in the first round

of deletion. For example, taking action c after giving the recommendation “ {B} ” is not

weakly dominated in the first round. We will show why it is not weakly dominated by the

Sender strategy that, takes action c but gives the recommendation “ {A,C} {C} ” instead of

the recommendation “ {B}.” It suffices to notice that message “ {B} ” yields action B while

message “ {A,C} {C} ” yields action A under the receiver strategy First Layer and A, and

that holding the Sender’s action fixed at action c, the Sender prefers the Receiver to play

action B over playing action A.

To show that the Sender strategy (“ {B} ”, c) survives the first round of deletion of
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weakly dominated strategies, we have to show that it is not weakly dominated by any other

Sender strategy. As the action space grows bigger, the set of hierarchical recommendations

grows bigger as well, and this becomes a daunting task. Instead, we invoke lemma 2.1 and

construct a totally mixed belief that the Sender can hold about the Receiver’s language-

based strategies to which (“ {B} ”, c) is a best response. For example, to show that the

Sender strategy (“ {A,C} {C} ”, c) survives the first round of deletion of weakly dominated

strategies, we show that it is a best response to the totally mixed Receiver strategy

(1− ε)Always C + ε (1− ε)Literal + ε2σR

where ε is very small and σR is some totally mixed Receiver strategy in SRL .

Proceeding to the second round of deletion, the Receiver strategy, First Layer and B,

is weakly dominated by the Receiver strategy, Literal, in the second round, because 1)

these two strategies are not equivalent since they differ only in their response to message

“ {A,C} {A} ” and message “ {A,C} {A} ” is used by a Sender strategy in SS (1), and 2)

every Sender strategy in SS (1) that uses message “ {A,C} {A} ” involves taking action a,

and Receiver action A does strictly better than Receiver action C given that the Sender

plays action a. Similarly, the Receiver strategy First Layer and A is dominated by the

Receiver strategy Completely Literal.

We can now show that the Sender strategy (“ {B} ”, c) is weakly dominated by the Sender

strategy (“ {A,C} {C} ”, c) in the third round of deletion. From the self-signaling condition,

if the Sender is going to take action c, the recommendation “ {A,C} {C} ” would be better

for her than any other message as long as the Receiver were to follow this recommendation
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fully, that is, if the Receiver were to take the ultimately recommended action C. However, if

the Receiver follows the recommendation “ {A,C} {C} ” halfway and takes action A, which

is consistent with the first layer of recommendation but not with the last layer, the Sender

would prefer message “ {B} ” which elicits her second preferred Receiver action when she

intends to take action c. However, after the second round of deletion, the Receiver strat-

egy that follows the recommendation “ {A,C} {C} ” halfway is eliminated. Furthermore,

the Receiver strategy Completely Literal remains, and thus message “ {A,C} {C} ” and

message “ {B} ” are not equivalent w.r.t. S (2). Therefore, the Sender strategy (“ {B} ”, c)

is weakly dominated by (“ {A,C} {C} ”, c) in the third round of deletion. Similarly, the

Sender strategy (“ {B} ”, a) does not survive the third round of deletion.

The Sender strategy (“ {B} ”, b) survives the third round of deletion because it is a best

response to the Receiver strategy

(1− ε)Completely Literal + ε2σR

where ε is very small and σR is any totally mixed Receiver strategy in SR (2). Therefore, in

the fourth round of deletion, the Receiver strategy Always C is weakly dominated by the

Receiver strategy Literal, because given that the Sender sends message “ {B} ”, the Sender

must intend to take action b, to which B is the best action for the Receiver, and given that

the Sender sends message “ {A,C} {A} ”, the Sender must intend to take action a, to which

A is the best action for the Receiver. Similarly, the Receiver strategy Always A is weakly

dominated by the Receiver strategy Completely Literal.

It follows that, after four rounds of deletion of weakly dominated strategies, the message
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“ {B} ” will certainly induce action B. Since the strategy profile (b,B) gives the Sender her

highest payoff, the Sender strategy that sends message “ {B} ” and takes action b strictly

dominates any other Sender strategy remaining after four rounds of deletion of weakly

dominated strategies. Therefore, the unique outcome surviving iterative deletion of weakly

dominated strategies gives the Sender her Stackelberg payoff.

This example illustrates two points. First, Sender strategies which use a message

whose ultimate recommended action is not optimal for the Receiver given the Sender’s in-

tention may still survive the first round of deletion, even though the stage game is a pure

coordination game. One such Sender strategy in this particular example is (“ {B} ”, c).

This is because the Sender is afraid that the Receiver may follow those layered recommen-

dations only halfway. Once those Receiver strategies that follow recommendations like

“ {A,C} {C} ” halfway are eliminated, those Sender strategies that do not recommend the

Receiver’s best response to the Sender’s intention may subsequently have a chance to be

eliminated. Second, to continue the iterative process and eliminate those Sender strate-

gies, we need to show that a Sender strategy that serves as a dominator remains when those

Receiver strategies that follow only halfway are eliminated.

The Proof

Denote the size of the set of Receiver strategies AR by N . We can arbitrarily order Receiver

actions and write

AR =
©
aR1 , ..., a

R
N

ª
.
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Define aSi to be
¡
bR
¢−1 ¡

aRi
¢
. Let φ denote a permutation of {1, 2, ..., N} and Φ the set of

all permutations of {1, ..., N}, with id being the identity permutation. Define

mφ(N−k) = A1...AN−k−1
n
aRφ(N−k)

o

where Aj = Aj−1\
n
aRφ(j)

o
for j = 1, ..., N − k − 1. Define Mφ(N−k) to be the set of

hierarchical messages that share in common the first N − k − 1 levels of instruction which

eliminates one action at a time from the previous level according to φ. Formally, define

MφN−k :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

m = A1...AN−kAN−k+1...An|
Aj % Aj+1, ∀j = 1, ..., n− 1;

Aj = Aj−1\
n
aRφ(j)

o
∀j = 1, ...,N − k

n ≥ N − k

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

Figure 4.2 shows a partial set of hierarchical recommendations. Let φ be such that aRφ(1) =

D, aRφ(2) = B, aRφ(3) = C and aRφ(4) = D. Then the messages in the circle of figure 4.2

constitute the set Mφ(1), while the message “ {D} ” is the message mφ(1).

Given a Receiver strategy sR and a message subset F , let sR|F denote the mapping from

F to AR that is equal to sR conditional on F .

Denote the language-based cheap-talk extension game where
¯̄
AR
¯̄
= N by GL (N).

There is a one-to-one correspondence between the message subset Mφ(N−k) in the game

GL (N) and the set of hierarchical recommendations in the game GL (k), where the set of

Receiver actions is
n
aRφ(N−k+1), ..., a

R
φ(N)

o
. If we identify Receiver strategies in GL (N)

that are equal on Mφ(N−k) as equivalent, and if we identify Receiver strategies in GL (k)

that are equal on the set of hierarchical recommendations, then there is also a one-to-
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{D} {A,B,C}

{A} {B,C}

{B} {C}

{A,C}

{A} {C}

{B} {A,B}

{A} {B}

{C}

{A,C} {B,D}

{A} {C} {A} {C}

{A,C} {B,D}

{A} {C} {A} {C}

Figure 4.2: Partial Set of Hierarchical Recommendations, AR = {A,B,C,D}.

one correspondence between the equivalent classes of Receiver strategies in GL (N) non-

constant on mφ(N−k)∪Mφ(N−k), and the equivalent classes of Receiver strategies in GL (k).

The correspondence is follows. Let sR be a Receiver strategy in GL (N) non-constant on

mφ(N−k) ∪Mφ(N−k). It can be easily checked that a sR|Mφ(N−k) is a Receiver strategy in

GL (k) restricted to the set of hierarchical recommendations. Let s̃R be a Receiver strategy

in GL (k), then there exists a Receiver strategy sR in GL (N) such that s̃R restricted to the

set of hierarchical recommendations is equal to sR restricted to Mφ(N−k).

Take a stage game g where the Receiver has N actions
©
aR1 , ..., a

R
N

ª
. Denote by gφ(N−k)

the truncated game which has the same payoff matrix but the Receiver can only use actions

in
n
aRφ(N−k+1), ..., a

R
φ(N)

o
, while the Sender can only use actions to which the Receiver’s

best response belong to
n
aRφ(N−k+1), ..., a

R
φ(N)

o
. Denote the language-based cheap talk

extension game of g and gφ(N−k) by GL and G
φ(N−k)
L respectively. Identify Mφ(N−k) with

the hierarchical recommendation set in Gφ(N−k)
L . Since Gφ(N−k)

L is a language-based cheap-
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talk extension game with
¯̄
AR
¯̄
= N − k, according to previous discussion, we can identify

Receiver strategies in Gφ(N−k)
L with Receiver strategies in GL non-constant on Mφ(N−k).

Lemma 4.2 says that a Sender strategy is eliminated in the first round of deletion if it uses

a message in Mφ(N−k) but takes an action whose Receiver best action does not belong ton
aRφ(N−k+1), ..., a

R
φ(N)

o
. Therefore, the pure strategy set after the first round of deletion

in the game GL restricted to the message subset Mφ(N−k) is very much related to that in

the game Gφ(N−k)
L . This is roughly why we could generalize the intuition gained from the

Battle-of-the-Sexes game and the Investment game into coordination games with finitely

many Receiver actions.

Lemma 4.2. Given any q < N − k, the Sender strategy
³
mφ(N−k), aSφ(q)

´
is weakly domi-

nated in the first round.

Proof. According to the self-signaling condition, he Sender prefers bR
³
aSφ(q)

´
= aRφ(q) to any

other Receiver actions. If a language-based Receiver strategy responds to message mφ(q)

and mφ(N−k) with different actions, it responds to message mφ(q) with action aRφ(q), and to

message mφ(N−k) with some action aRj where j > q. In addition, there are language-based

Receiver strategies that respond to mφ(q) and mφ(N−k) with different actions. It follows

that the Sender strategy
³
mφ(N−k), aSφ(q)

´
is weakly dominated by the Sender strategy³

mφ(q), a
S
φ(q)

´
.

Given a Receiver mixed strategy σR in SRL and a message bundle B, a Sender action

aS , define
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χ
¡
σR, B, aS

¢ ≡ X
sR constant

on B

σR
¡
sR
¢
gS
¡
aS , sR (B)

¢
+

X
sR non-constant

on B

σR
¡
sR
¢
gS
¡
aS , bR

¡
aS
¢¢
.

Lemma 4.3 and lemma 4.4 give conditions under which there exists a mapping ψd : S
R (j)→

SR (j) such that ψd
¡
sR
¢
is equal to sR outside of some message bundle B, and sR behaves

in a certain way on B, for every sR in the domain which is non-constant on the smallest

message bundle containing B. Based on these two lemmas, lemma 4.5 and lemma 4.6 both

establish the existence of dominator Sender strategies. Lemma 4.7 combined with claim 4.1

shows that sR (m) = bR
¡
aS
¢
for every Sender strategy

¡
m,aS

¢ ∈ SS (∞) and every Receiver
strategy sR ∈ SR (∞). The proof of the proposition shows that if ¡m,aS¢ ∈ SS (∞), then
aS is a Stackelberg action for the Sender.

Lemma 4.3. Suppose Sender strategies
¡
m1, a

S
1

¢
and

¡
m2, a

S
2

¢
both belong to SS (k) and

there exists a Receiver strategy that is a best response to both Sender strategies, that is,

Mcstr
¡
m1, b

R
¡
aS1
¢¢ ∩M cstr

¡
m2, b

R
¡
aS2
¢¢
= ∅.

Let B be a message bundle that contains both Mcstr
¡
m1, b

R
¡
aS1
¢¢
and M cstr

¡
m2, b

R
¡
aS2
¢¢
.

Then for every j ≤ k+1, there exists a mapping ψd : SR (j)→ SR (j) such that ψd
¡
sR
¢
= sR

for every Receiver strategy sR constant on B, while for every sR non-constant on B, ψd
¡
sR
¢

is equal to sR outside of B, but is a best response to both Sender strategy
¡
m1, a

S
1

¢
and Sender

strategy
¡
m2, a

S
2

¢
.
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Proof. Let sR ∈ SR (j) be non-constant on B. Let σS be a totally mixed Sender strategy

in SS (j − 1) to which sR is a best response. Let σS|M̃ denote the probability distribution

over Sender strategies conditional on the message sent being in M̃ . Then every Receiver

strategy which is a best response to

1−ε
2

¡
m1, a

S
1

¢
+ 1−ε

2

¡
m2, a

S
2

¢
+εσS|M\(Mcstr(m1,bR(aS1 ))∪Mcstr(m2,bR(aS2 )))

exhibits the desired properties. Moreover, at least one best response survives the deletion

of weakly dominated strategies in that round. We can then define ψd
¡
sR
¢
to be one such

best response in SR (j). This completes the proof.

Lemma 4.4. Let F1, F2, and F3 be three parallel message bundles, and B be the smallest

message bundle that strictly contains F1. If
¡
m1, a

S
1

¢ ∈ SS (j − 1) where
M cstr

¡
m1, b

R
¡
aS1
¢¢ ⊂ F1,

SS (j − 1) contains Sender strategies that use messages in F2 and F3 respectively, and SR (j)

contains Receiver strategies sR2 and s
R
3 non-constant on B such that either s

R
2 |F2 or sR3 |F3 is

not equivalent for the Receiver to a constant of bR
¡
aS1
¢
w.r.t. SS (j − 1), then there exists

a mapping ψd : S
R (j) → SR (j) such that ψd

¡
sR
¢
= sR for every Receiver strategy sR

constant on B, while for every sR non-constant on B, ψd
¡
sR
¢
is equal to sR outside of

F1 ∪ F2 ∪ F3, equal to sRi on Fi for i = 2, 3, and is a best response to the Sender strategy¡
m1, a

S
1

¢
.

Proof. See the Appendix.
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Lemma 4.5. Let E be a message bundle inMφ(N−l), where l is an integer between 3 and N .

Let F1 and F2 be two other parallel message bundles in Mφ(N−l). Suppose a Sender strategy¡
m̂, âS

¢
belongs to SS (k) for some iteration k where m̂ ∈ E, and there exists sR ∈ SR (k)

non-constant on mφ(N−l) ∪Mφ(N−l) such that sR (m̂) 6= bR
¡
âS
¢
. Let σ̂R be a totally mixed

strategy in SR (k − 1) to which ¡m̂, âS¢ is a best response. Then there exists two Sender

strategies
¡
m1, a

S
1

¢
,
¡
m2, a

S
2

¢
in SS (k) where message m1 belongs to F1, message m2 belongs

to F2, and Sender actions aS1 and a
S
2 both maximize

χ
¡
σ̂R,mφ(N−l) ∪Mφ(N−l), aS

¢

over
n
aSφ(i) : i > N − l

o
.

Proof. See the Appendix.

Lemma 4.6. Given natural numbers k and N − l 6= q where
³
mφ(N−l), aSφ(q)

´
survives the

kth round of deletion of weakly dominated strategies, if

1. (Non-exclusiveness). a Sender strategy that uses a message in mφ(N−l) ∪Mφ(N−l)

and takes an action other than aSφ(q) also survives the k
th round of deletion of weakly

dominated strategies, but

2. (Always Incorrect). no Sender strategy that takes the action aSφ(q) while using a

message in Mφ(N−l) survives the kth round of deletion,

then

1.
³
mφ(N−l), aSφ(q)

´
cannot be an action-strict best response to any σR ∈ ∆SR (k − 1)
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which puts positive weights only on Receiver strategies constant on mφ(N−l)∪Mφ(N−l),

and

2. for every Receiver strategy σR ∈ ∆SR (k − 1) to which the Sender strategy

³
mφ(N−l), aSφ(q)

´

is a best response, there exists a Sender action âS not equal to aSφ(q) and a message m̂

in Mφ(N−l) such that the Sender strategy
¡
m̂, âS

¢
is a best response to σR and survives

the kth round of deletion as well. In addition,

χ
³
σR,mφ(N−l) ∪Mφ(N−l), aSφ(q)

´
≤ χ

¡
σR,mφ(N−l) ∪Mφ(N−l), âS

¢

Proof. See the Appendix.

Lemma 4.7. Given any Sender strategy
¡
m,aS

¢
surviving the (4k − 1)th round of deletion,

where m ∈ Mφ(N−k−1), any Sender strategy surviving the (4k − 1)th round of deletion that

uses a message in MSC
¡
m, bR

¡
aS
¢¢
must take the action aS. That is,

SS (4k − 1) ∩ ¡MSC
¡
m, bR

¡
aS
¢¢×AS¢

= SS (4k − 1) ∩ ¡MSC
¡
m, bR

¡
aS
¢¢× ©aSª¢ .

Lemma 4.8. Given any Sender strategy
¡
m,aS

¢
surviving the (4k − 1)th round of deletion,

where m ∈ Mφ(N−k−1), any Sender strategy surviving the (4k − 1)th round of deletion that
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uses a message in Mcstr
¡
m, bR

¡
aS
¢¢
must take the action aS. That is,

SS (4k − 1) ∩ ¡M cstr
¡
m, bR

¡
aS
¢¢×AS¢

= SS (4k − 1) ∩ ¡M cstr
¡
m, bR

¡
aS
¢¢× ©aSª¢ .

Proof. It is trivially true for k = 1 becauseMφ(N−2) =
©
mφ(N−1),mφ(N)

ª
, and if the Sender

strategy
¡
mφ(N−1), aS

¢
belongs to SS (1), then aS = aSφ(N−1).

Suppose it is true for k = 1, ..., k̄.

Claim 4.1. Given any sR ∈ SR ¡4k̄¢ non-constant on
mφ(N−k̄−1) ∪Mφ(N−k̄−1),

and any
¡
m,aS

¢ ∈ SS ¡4k̄¢ where m belongs to Mφ(N−k̄−1), it has to be the case that

sR (m) = bR
¡
aS
¢
.

Proof. By assumption,

SS
¡
4k̄ − 1¢ ∩ ¡M cstr

¡
m, bR

¡
aS
¢¢×AS¢

= SS
¡
4k̄ − 1¢ ∩ ¡M cstr

¡
m, bR

¡
aS
¢¢× ©aSª¢

for any Sender strategy
¡
m,aS

¢ ∈ SS ¡4k̄ − 1¢ where m ∈ Mφ(N−k̄−1). Therefore, given

any number of Sender strategies

¡
m1, a

S
1

¢
,
¡
m2, a

S
2

¢
, ...,

¡
mn, a

S
n

¢ ∈ SS ¡4k̄ − 1¢
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where all the messages belong to Mφ(N−k̄−1) and no two actions are the same,

Mcstr
¡
mi, a

S
1

¢ ∩M cstr
¡
mj , a

S
2

¢
= ∅

for any i 6= j. Thus, given any sR non-constant on mφ(N−k̄−1) ∪Mφ(N−k̄−1), there exists

ψ
¡
sR
¢
consistent with language such that

ψ
¡
sR
¢
(m) =

⎧⎪⎨⎪⎩ bR
¡
aS
¢

sR (m)

if m ∈Mφ(N−k̄−1) and
¡
m,aS

¢ ∈ SS ¡4k̄ − 1¢
if m /∈Mφ(N−k̄−1)

.

It can be easily seen that

uR
¡¡
m,aS

¢
, sR

¢
= uR

¡¡
m,aS

¢
,ψ
¡
sR
¢¢

for m /∈Mφ(N−k̄−1). If m ∈Mφ(N−k̄−1) and
¡
m,aS

¢ ∈ SS ¡4k̄ − 1¢, then
uR
¡¡
m,aS

¢
,ψ
¡
sR
¢¢

= gR
¡
aS, bR

¡
aS
¢¢

≥ gR
¡
aS, sR (m)

¢
= uR

¡¡
m,aS

¢
, sR

¢

where strict inequality holds if sR (m) 6= bR
¡
aS
¢
. Therefore, if sR non-constant on

Mφ(N−k̄−1) survives the (4k)
th round of deletion, it cannot be weakly dominated by ψ

¡
sR
¢
.

Thus it has to be the case that sR (m) = bR
¡
aS
¢
for every

¡
m,aS

¢ ∈ SS ¡4k̄ − 1¢ where
m ∈Mφ(N−k̄−1).



4.4 Results 148

Claim 4.2. If, after the
¡
4k̄ − 1¢th round of deletion, two different actions are possible

following messages in Mφ(N−k̄−1), for some permutation φ, then there exists a Receiver

strategy sR non-constant onmφ(N−k̄−1)∪Mφ(N−k̄−1) suriviving the
¡
4k̄
¢th round of deletion.

Proof. If SS
¡
4k̄ − 1¢ contains ¡m1, a

S
1

¢
and

¡
m2, a

S
2

¢
where m1,m2 ∈Mφ(N−k̄−1) and a

S
1 6=

aS2 , then

SS
¡
4k̄ − 1¢ ∩ ¡Mcstr

¡
m1, a

S
1 ∩M cstr

¡
m2, a

S
2

¢¢×AS¢
= SS

¡
4k̄ − 1¢ ∩ ¡Mcstr

¡
m1, a

S
1

¢×AS¢ ∩ ¡Mcstr
¡
m2, a

S
2

¢×AS¢
= SS

¡
4k̄ − 1¢ ∩ ¡Mcstr

¡
m1, a

S
1

¢× ©aS1ª¢ ∩ ¡M cstr
¡
m2, a

S
2

¢× ©aS2ª¢
= ∅.

Since SS
¡
4k̄ − 1¢ 6= ∅, and AS 6= ∅, it has to be the case that

M cstr
¡
m1, a

S
1 ∩M cstr

¡
m2, a

S
2

¢¢
= ∅.

Let σS ∈ ∆+SS ¡4k̄ − 1¢. Then for ε sufficiently small, any best response to
1− ε

2

¡
m1, a

S
1

¢
+
1− ε

2

¡
m2, a

S
2

¢
+ εσS

must respond to message m1 with action bR
¡
aS1
¢
, message m2 with action bR

¡
aS2
¢
, and

therefore is non-constant on Mφ(N−k−1).

Claim 4.3. Given any Sender strategy
¡
m,aS

¢
surviving the

¡
4k̄ + 1

¢th round of dele-
tion, where m ∈ mφ(N−k̄−1) ∪Mφ(N−k̄−1), a

S is also the only possible action surviving the
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¡
4k̄ + 1

¢th round of deletion following a message in M cstr
¡
m, bR

¡
aS
¢¢
. That is,

SS (4k + 1) ∩ ¡Mcstr
¡
m, bR

¡
aS
¢¢×AS¢

= SS (4k + 1) ∩ ¡Mcstr
¡
m, bR

¡
aS
¢¢× ©aSª¢ .

Proof. Let
¡
m,aS

¢
belong to SS (4k + 1). If m ∈Mφ(N−k̄−1), then

SS (4k + 1) ∩ ¡M cstr
¡
m, bR

¡
aS
¢¢×AS¢

⊂ SS (4k − 1) ∩ ¡M cstr
¡
m, bR

¡
aS
¢¢×AS¢

= SS (4k − 1) ∩ ¡M cstr
¡
m, bR

¡
aS
¢¢× ©aSª¢

, and therefore

SS (4k + 1) ∩ ¡Mcstr
¡
m, bR

¡
aS
¢¢×AS¢

= SS (4k + 1) ∩ ¡Mcstr
¡
m, bR

¡
aS
¢¢× ©aSª¢ .

We worry only if there exists
³
mφ(N−k̄−1), a

S
φ(q)

´
∈ SS ¡4k̄ + 1¢ where q 6= N − k̄ − 1,

and at least two actions following messages in mφ(N−k̄−1) ∪Mφ(N−k̄−1) are possible after

the
¡
4k̄ + 1

¢th round of deletion. We know from the characterization of SS (1) that q ≥

N − k̄−1. Then from lemma 4.6, given any σRq ∈ ∆SR
¡
4k̄
¢
, there exists a Sender strategy¡

m̂, âS
¢ ∈ SS ¡4k̄ + 1¢where and m̂ ∈Mφ(N−k̄−1) such that

χ
³
σRq ,mφ(N−k̄−1) ∪Mφ(N−k̄−1), â

S
´

≥ χ
³
σRq ,mφ(N−k̄−1) ∪Mφ(N−k̄−1), a

S
φ(q)

´
.
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But from claim 4.1, sR (m̂) = bR
¡
âS
¢
for every sR ∈ SR ¡4k̄¢ non-constant on mφ(N−k̄−1)∪

Mφ(N−k̄−1), and from claim 4.2, there exists sR ∈ SR ¡4k̄¢ non-constant on mφ(N−k̄−1) ∪

Mφ(N−k̄−1). It follows that

uS
¡¡
m̂, âS

¢
,σRq

¢
= χ

³
σRq ,mφ(N−k̄−1) ∪Mφ(N−k̄−1), â

S
´

≥ χ
³
σRq ,mφ(N−k̄−1) ∪Mφ(N−k̄−1), a

S
φ(q)

´
> uR

³³
mφ(N−k̄−1), a

S
φ(q)

´
,σRq

´
,

which contradicts the construction of σRq .

Claim 4.4. Given any Receiver strategy sR non-constant on Mφ(N−k̄−2), surviving the

(4k + 2)th round of deletion, and any Sender strategy
¡
m,aS

¢
surviving the (4k + 1)th round

of deletion where m ∈ mφ(N−k̄−1) ∪Mφ(N−k̄−1), s
R (m) = bR

¡
aS
¢
.

Proof. The proof is analogous to that of claim 4.1.

Claim 4.5. Given any pair of Sender strategies surviving the (4k + 3)th round of deletion,¡
m1, a

S
1

¢
,
¡
m2, a

S
2

¢
, where m1,m2 ∈Mφ(N−k−2) and aS1 6= aS2 , it has to be the case that

Mcstr
¡
m1, b

R
¡
aS1
¢¢ ∩M cstr

¡
m2, b

R
¡
aS2
¢¢
= ∅.

Proof.

Mcstr
¡
m1, b

R
¡
aS1
¢¢ ∩M cstr

¡
m2, b

R
¡
aS2
¢¢
= ∅.

if m1 and m2 both belong to mφ(N−k̄−1) ∪Mφ(N−k̄−1), or if m1 and m2 belong to different
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parallel message subsets in Mφ(N−k̄−2). We need only worry if m1 and m2 belong to the

same parallel message set E in Mφ(N−k̄−2). Suppose to the contrary that

Mcstr
¡
m1, b

R
¡
aS1
¢¢ ∩M cstr

¡
m2, b

R
¡
aS2
¢¢ 6= ∅.

Then from lemma 4.5, given σR1 ∈ SR
¡
4k̄ + 2

¢
, there exists

¡
m̂, âS

¢ ∈ SS ¡4k̄ + 3¢ where
m̂ ∈ mφ(N−k̄−1) ∪Mφ(N−k̄−1) and

χ
³
σR1 ,mφ(N−k̄−2) ∪Mφ(N−k̄−2), â

S
´

≥ χ
³
σR1 ,mφ(N−k̄−2) ∪Mφ(N−k̄−2), a

S
1

´
.

But from the previous claim, sR (m̂) = bR
¡
âS
¢
for every sR ∈ SR ¡4k̄ + 2¢ non-constant on

Mφ(N−k̄−2). Therefore,

uS
¡¡
m̂, âS

¢
,σR1

¢
= χ

³
σR1 ,mφ(N−k̄−2) ∪Mφ(N−k̄−2), â

S
´

≥ χ
³
σR1 ,mφ(N−k̄−2) ∪Mφ(N−k̄−2), â

S
´

> uR
¡¡
m1, a

S
1

¢
,σR1

¢

if σR1 ∈ ∆+SR
¡
4k̄ + 2

¢
. This contradicts the construction that of σR1 .

Proof of Proposition. Denote by ASStackelberg the set of Sender actions that maximize

gS
¡
aS , bR

¡
aS
¢¢
.



4.4 Results 152

Define

ΠS (k) ≡ ©uS ¡sS, sR¢ : ¡sS , sR¢ ∈ S (k)ª .
Step 1 Given any k, any pair of Sender strategies

¡
m∗, aS∗

¢
,
¡
m̂, âS

¢
in SS (k) where aS∗ ∈

ASStackelberg but â
S /∈ ASStackelberg, it cannot be the case that

¡
m∗, aS∗

¢
is weakly domi-

nated by
¡
m̂, âS

¢
w.r.t. S (k).

Proof. Since
¡
m∗, aS∗

¢ ∈ SS (k), there exists sR∗ ∈ SR (k) where sR∗ (m∗) = bR ¡aS∗ ¢. Thus,
uS
¡¡
m∗, aS∗

¢
, sR∗

¢
= uS

¡
aS∗ , b

R
¡
aS∗
¢¢

> uS
¡
âS , bR

¡
âS
¢¢

≥ uS
¡
âS , sR∗ (m̂)

¢
≥ uS

¡¡
m̂, âS

¢
, sR∗

¢
.

So
¡
m∗, aS∗

¢
is not weakly dominated by

¡
m̂, âS

¢
.

Step 2 If
¡
m1, a

S
1

¢
,
¡
m2, a

S
2

¢ ∈ SS (∞), then gS ¡aS1 , bR ¡aS1 ¢¢ = gS ¡aS2 , bR ¡aS2 ¢¢. There-

fore, minΠS (∞) = maxΠS (∞).

Proof. Suppose to the contrary that gS
¡
aS1 , b

R
¡
aS1
¢¢
> gS

¡
aS2 , g

R
¡
aS2
¢¢
. Lemma 4.7

combined with claim 4.1 tells us that sR (m) = bR
¡
aS
¢
for every

¡
m,aS

¢ ∈ SS (∞) and
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sR ∈ SR (∞). Therefore,

uS
¡¡
m1, a

S
1

¢
, sR

¢
= uS

¡
aS1 , b

R
¡
aS1
¢¢

> uS
¡
aS2 , b

R
¡
aS2
¢¢

= uS
¡¡
m2, a

S
2

¢
, sR

¢
.

Therefore
¡
m2, a

S
2

¢
is weakly dominated by

¡
m1, a

S
1

¢
w.r.t. S (∞). Contradiction!

Step 3 maxΠS (∞) = maxaS uS
¡
aS , bR

¡
aS
¢¢
.

Proof. Suppose to the contrary that maxΠ (∞) < maxaS gS
¡
aS , bR

¡
aS
¢¢
. Then

M ×ASStackelberg ∩ SS (∞) = ∅.

Let
¡
m̂, âS

¢
be one of the last strategies inM×ASStackelberg to be eliminated by the iterative

process. LetK be such that
¡
m̂, âS

¢
belongs to SS (K) but not to SS (K + 1). So

¡
m̂, âS

¢
is

weakly dominated by some
¡
m∗, aS∗

¢ ∈ SS (K + 1). By construction ofK, aS∗ /∈ ASStackelberg.

But this contradicts the conclusion from 4.4.1.

Based on the previous three steps, we conclude that

minΠS (∞) = maxΠS (∞)

= max
aS

gS
¡
aS , bR

¡
aS
¢¢
.

So the Sender is guaranteed her Stackelberg payoff.
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4.4.2 Games with Positive Spillovers

The self-signalling criterion implies that the Sender’s preference over the Receiver’s actions

differ with her own intention. Our language assumption combined with iterative admis-

sibility connects different messages with different preferences. This then separates one

intention from the other and guarantees the Sender her Stackleberg payoff.

It seems natural then that the Sender cannot convey any information about her intention

through cheap talk if the Sender’s preference over the Receiver’s actions is invariant with

her own intention.

If the stage game is self-committing, then for every aR ∈ AR, bR
¡
bS
¡
aR
¢¢
= aR.

Therefore, AR (∞) = AR.

Proposition 4.2. If the stage game is self-committing and the Sender’s preference over the

Receiver’s actions is independent of her own action, then for every
¡
aS, aR

¢ ∈ A (∞), there
exists

¡
m,aS

¢ ∈ SS (∞) and sR ∈ SR (∞) such that sR (m) = aR.
Proof. Since AR (∞) = AR, it is easy to see that AS (∞) = AS (1). Define

M (k) := supp
¡
SS (k)

¢ |M .
So M (k) is the set of messages that are used in SS (k).

Step 1 First, we show that SS (1) =M (1)×AS (1). This implies that any message that

is used in SS (1) could be uttered with any intention in AS (1). Suppose
¡
m̂, âS

¢ ∈
SS (1). Then

¡
m̂, âS

¢
is not weakly dominated by

¡
m0, âS

¢
for any m0 6= m̂. Write

m̂ = A1...An. Then there exists āj ∈ Aj and aj ∈ Aj−1\Aj where gS
¡
âS, āj

¢
>
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gS
¡
âS , aj

¢
, because otherwise,

¡
m̂, âS

¢
would be weakly dominated by every m0 ∈

M (A1...Aj−1 (Aj−1\Aj)).

Define a partial relation > on A by the preference order of the Sender. That is,

aR2 > a
R
1 iff u

S
¡
aS , aR2

¢
> uS

¡
aS , aR1

¢
. Define

sR1 (m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ā1

a1

minA

m ∈M (A1)

m ∈M (Ac1)

otherwise

and

sRj (m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

āj

aj

sRj−1 (m)

minAj−1

m ∈M (A1...Aj−1Aj)

m ∈M (A1...Aj−1 (Aj−1\Aj))
m /∈M (A1...Aj−1)

otherwise

for j = 2, ..., n. It follows that

uS
¡¡
m̂, âS

¢
, sRj

¢
= gS

¡
âS, āj

¢
> gS

¡
âS, aj

¢
= uS

¡¡
m, âS

¢
, sRj

¢

for every m ∈M (A1...Aj−1 (Aj−1\Aj)). It follows that

uS
¡¡
m̂, aS

¢
, sRj

¢
> uS

¡¡
m,aS

¢
, sRj

¢
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for every aS and every m ∈M (A1...Aj−1 (Aj−1\Aj)). Define

σ̂Rε :=
n−1X
j=1

εj−1 (1− ε) sRj + εn−1sRn .

Therefore,

uS
¡¡
m̂, aS

¢
, σ̂Rε

¢
> uS

¡¡
m,aS

¢
, σ̂Rε

¢
for every m 6= m̂, every aS and every ε sufficiently small. Let aR denote also the

constant Receiver strategy that takes the action aR upon receiving every message. Let

α ∈ ∆AR also denote the Receiver strategy that puts weights α ¡aR¢ on the constant
strategy aR. Then for ε sufficiently small,

uS
³¡
m̂, ãS

¢
, (1− ε)

¡
bS
¢−1 ¡

ãS
¢
+ εσ̂Rε

´
> uS

¡
m,aS

¢

for every
¡
m,aS

¢ 6= ¡m̂, ãS¢, for every ãS. We have thus established that ¡m̂, aS¢ ∈
SS (1) for every aS ∈ AS (1).

Step 2 It remains to show that, if SR (k) = SRL and S
S (k) = SS (1), then SR (k + 1) = SRL

and SS (k + 1) = SS (1). Since SR (k) = SRL , the set of Sender best responses to mixed

strategies in SR (k) is equal to SS (1) ⊂ SS (k). It follows that SS (k + 1) = SS (1).

Now we will show that SR (k + 1) = SRL . Pick an arbitrary ŝR ∈ SRL . Define an

equivalence relation ∼ on M as follows. m1 is equivalent to m2 if either m1 belongs

toMcstr
¡
m2, ŝ

R (m2)
¢
or m2 belongs toM cstr

¡
m1, ŝ

R (m1)
¢
. It is easy to verify that

this definition forms an equivalence relation. We can partition M (k) by ∼. For
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every m ∈M (k), pick h (m) ∈ argmax m0∼m
m0∈M(k)

Mcstr
¡
m0, ŝR (m0)

¢
. Let hmik denote

the set of m0 in M (k) that is equivalent to m. Then

M cstr
¡
h (m) , ŝR (h (m))

¢
= hmik

for every m ∈M (k). By definition of this equivalence relation, and the construction

that ŝR ∈ SRL , ŝR must be constant on hmik for every m ∈M (k). Define

σ̂S :=
X

m∈M(k)

1P
m∈M(k) |hmik|

³
h (m) ,

¡
bR
¢−1 ¡

ŝR (m)
¢´
.

Then for ε sufficiently small, for every σS ∈ ∆+SS (k), ŝR is a best response to

(1− ε) σ̂S + εσS . To see this, note that by definition, ŝR (m) is the best action

to
¡
bR
¢−1 ¡

ŝR (m)
¢
. If m0 ∈ M (k) where sR (m0) 6= ŝR (m0), then sR (h (m0)) 6=

ŝR (h (m0)) because ŝR is a constant on M cstr
¡
h (m0) , ŝR (h (m0))

¢
. Then

uR
¡
σ̂s, sR

¢
< uR

¡
σ̂S, ŝR

¢
.

Since SRL is finite, and the inequality is strict for every s
R which is not equal to ŝR at

some message m ∈M (k), there exists ε small enough such that

uR
¡
(1− ε) σ̂S + εσS, sR

¢
< uR

¡
(1− ε) σ̂S + εσS, ŝR

¢

for every sR which is not equal to ŝR at some message m ∈ M (k), and every σS ∈

∆+SS (1). We are done!
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Receiver’s Action
Invest Not

Sender’s Invest 10+x,10+x -90,x
Action Not x,-90 0,0

Table 4.8: leading example in Baliga Morris (2002)

4.5 Comparison with Baliga and Morris

To formally formulate the role of the self-signalling criterion, Baliga and Morris (2002)

transforms the complete information game into a coordination game with incomplete infor-

mation, and use the solution concept of perfect Bayesian equilibrium. The counterfactual

“what would the Sender have said had she intended to play action a0 instead of a” does

not really have a role in the solution concept of Nash equilibrium in complete informa-

tion games. However, the solution concept of perfect Bayesian equilibrium addresses the

question “what would the Sender have said were she of type t0.?

The easiest way to see the comparison is to look at the leading example in Baliga and

Morris (2002). The game is shown in table 4.8.

In this stage game, both action Invest and action Not are self-committing. So the rec-

ommendation “invest” and “not invest” are both self-committing. If x < 0, the stage-game

is self-signalling, while the game exhibits positive spillovers if x > 0. To formally study the

role of self-signalling, Baliga and Morris (2002) study the following incomplete information

game where with probability 1 − p the Sender is of Low Cost and with probability p > 0

the Sender is of High Cost. The Low Cost type has the same payoff matrix as in the

complete information game of table 4.8. However, the High Cost Sender has a dominant

strategy to not invest. The Receiver’s payoff depends only on the action taken by the

Sender, not on the Sender’s type. Therefore, the Receiver cares about the type of the
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Receiver’s Action
Invest Not

Sender’s Invest 10+x,10+x -90,x
Action Not x,-90 0,0

Low Cost

Receiver’s Action
Invest Not

Sender’s Invest -10+x,10+x -110,x
Action Not x,-90 0,0

High Cost

Table 4.9: Incomplete Information Investment Game

Sender only insofar as it conveys information about the action the Sender would take. For

example, if the Receiver knew that the Sender is of High Cost, the Receiver would infer

that the Sender would not invest, and thus his best response would be to not invest. Hence,

the hypothetical Sender who intends to not invest is equated with the High Cost Sender

who has a dominant strategy to not invest. Since the prior puts strictly positive weight

on the High Cost type, the strategy of the High Cost type, or equivalently, the strategy

of the hypothetical Sender who intends to not invest, has to be taken into account by the

Receiver.

They show that when x < 0, there exists a perfect Bayesian equilibrium where the

Low Cost Sender sends a different message from the High Cost Sender and both the Sender

and the Receiver invest when the Sender is of Low Cost, while neither of them invest when

the Sender is ofHigh Cost. However, when x > 0, there can be no perfect Bayesian equilib-

rium where the outcomes are type-dependent. Conditional on the Sender being Low Cost

type, when x < 0, there exists an equilibrium where the outcome is (Invest, Invest). On

the other hand, when x > 0, conditional on the Sender being Low Cost type, the unique

equilibrium outcome is (Not,Not) if the probability of the High Cost type (p) is greater

than 1
10 , while the equilibrium outcome could be either (Invest, Invest) or (Not,Not) if

p < 1
10 . Since the stage-game is self-signalling only when x < 0, this illustrates the role of
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the self-signalling criterion.

When x < 0, our approach predicts that the unique outcome is (Invest, Invest), which

coincides with the prediction of Baliga and Morris (2002). When x > 0, our approach

predicts that every action profile is possible. This is natural because there is not a fixed

probability attached to the pessimistic Sender who is going to not invest, and players may

have incorrect belief about each other.

The formal model in Baliga and Morris (2002) is as follows. The Sender is one of a

finite set of possible types T . The Sender’s utility function is g̃S : AS ×AR × T → R; the

Receiver’s utility function is gR : AS × AR → R. For ease of comparison, I rewrite the

positive result in Baliga and Morris (2002) in the following:

Proposition 4.3 (Baliga and Morris (2002)). If (1) for each aS ∈ AS, there exists a

type τ
¡
aS
¢ ∈ T such that aS the dominant strategy for the Sender in the game gS (., t); and

(2) for each action aR ∈ AR, there exists aS ∈ AS such that aR = bR ¡aS¢, then there exists
a full revelation perfect Bayesian equilibrium in the one-sided cheap talk game if and only

if

1. aS is a self-committing action for the Sender in the game gS
¡
., τ
¡
aS
¢¢
;

2. aS is the Stackelberg action for the Sender in the game gS
¡
., τ
¡
aS
¢¢
;

3. aS is self-signalling for the Sender in the game gS
¡
., τ
¡
aS
¢¢
.

Let’s take the complete information stage game g =
¡
AS , AR, gS , gR

¢
where AR =©

bR
¡
aS
¢
: aS ∈ ASª. Let T = AS . For clarity, let τ be the bijective function from AS to

T . Let aS∗ = argmaxaS gS
¡
aS , bR

¡
aS
¢¢
. Then aS∗ is the Stackleberg action for the Sender
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in the game G. Define

d̄ := max
(aS ,aR)6=(a0S ,a0R)

¯̄
gS
¡
aS, aR

¢− gS ¡a0S , a0R¢¯̄ .
d̄ is thus the maximum payoff difference for the Receiver. Expand the utility function

gS : AS×AR → R into g̃S : AS×AR×T → R as follows. g̃S
¡
., τ
¡
aS∗
¢¢
= g (.), and for every

aS 6= aS∗ , g̃S
¡
aS, a0R, τ

¡
aS
¢¢
= gS

¡
aS, a0R

¢
for every a0R ∈ AR, and g̃S ¡a0S, a0R, τ ¡aS¢¢ =

gS
¡
a0S, a0R

¢− 2d̄, for every a0S 6= aS and every a0R ∈ AR. Denote the one-sided cheap talk
extension game of g with language by GL, and the one-sided cheap talk extension game

of g̃ by G̃. Then proposition 4.3 implies that G̃ has a full revelation prefect Bayesian

equilibrium if and only if the complete information stage game g is self-signalling and every

action aS for the Sender is self-committing. In this equilibrium, the type τ
¡
aS∗
¢
, whose

payoff matrix is g, gets her Stackelberg payoff. Our positive result equivalently states

that if every aS in g is self-committing and g is strongly self-signalling, the unique iterative

admissible outcome in GL gives the Sender her Stackelberg payoff. The negative result in

Baliga and Morris (2002) says that there is no communication in any equilibrium of G̃ if g

exhibits binary action positive spillovers. Equilibrium outcomes of G̃ in such games depend

on the common prior over T . If there is no common prior, and we allow any prior over

T , we can span every rationalizable outcome. Our negative result relaxes the condition

to any finite games with positive spillovers, and states that every rationalizable outcome is

consistent with iterative admissibility in GL.
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4.6 Conclusion

By adjusting our language assumption to games where there is no natural order in actions

and applying our general framework, we formalize the idea of self-committing and self-

signalling within the framework of complete information games. We show that, if the stage

game is self-committing and strongly self-signalling, every iterative admissible outcome in

the language game gives the Sender her Stackelberg payoff. On the other hand, if the

stage game is self-committing but the Sender’s preference for the Receiver’s actions does

not depend on her intended action, every rationalizable stage game outcome is also an

iteratively admissible outcome in the language game.

4.7 Appendix

4.7.1 Proof for lemma 4.4

Let σSi be a totally mixed Sender strategy in S
S (j − 1) to which sRi is a best response, for

i = 2, 3. Let σS |F̃ denote the mixed Sender strategy that is the probability distribution of

σS conditional on sending messages in F̃ . Given sR ∈ SR (j) non-constant on B, let σS be

a totally mixed Sender strategy in SS (j − 1) to which sR is a best response. Then for ε

sufficiently small, there exists a Receiver best response to

(1− ε)
¡
m1, a

S
1

¢
+

ε (1− ε)

2
σS2 |F2 +

ε (1− ε)

2
σS3 |F3 + ε2σS|M\(F2∪F3) (4.1)

which responds to message m1 with action aS1 , is equal to s
R
i on Fi for i = 2, 3, and is

equal to Receiver strategy sR outside of F1 ∪ F2 ∪ F3. Since the Sender strategy in line

4.1 is totally mixed on SS (j − 1), any Receiver strategy as described above which is a best
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response to expression 4.1 belongs to SR (j). To see this, notice that

uS
¡¡
m1, a

S
1

¢
, bR

¡
aS1
¢¢
> uS

¡¡
m1, a

S
1

¢
, sR

¢

for any Receiver strategy that responds to message m1 with an action not equal to bR
¡
aS1
¢
.

4.7.2 Proof for lemma 4.5

It is easy to see that the statement holds for every integer l between 3 and N , for k =

1. Suppose the statement is true for every integer l between 3 and N , for k = 1, ..., k̄.

Suppose SS
¡
k̄ + 1

¢
contains a Sender strategy

¡
m̂, âS

¢
where m̂ belongs to a message

bundle E inMφ(N−l) for some l ∈ {3, 4, ...N} and there exists s0R ∈ SR
¡
k̄
¢
non-constant on

mφ(N−l)∪Mφ(N−l) such that s0R (m̂) 6= bR
¡
âS
¢
. Let Amax denote the set of Sender actions

in
n
aSφ(i) : i > N − l

o
that maximize

χ
¡
σ̂R,mφ(N−l) ∪Mφ(N−l), aS

¢

over
n
aSφ(i) : i > N − l

o
. Given any two message bundles F1 and F2 parallel to E, by

assumption, there exist two Sender strategies
¡
m1, a

S
1

¢
,
¡
m2, a

S
2

¢
in SS

¡
k̄
¢
where message

m1 belongs to F1, message m2 belongs to F2, and Sender actions aS1 and a
S
2 both belong

to Amax. It suffices to show that SS
¡
k̄ + 1

¢
contains a Sender strategy

¡
m1∗, aS1∗

¢
where

m1∗ ∈ F1 and aS1∗ ∈ Amax. We would be done if
¡
m1, a

S
1

¢ ∈ SS ¡k̄ + 1¢. Therefore, suppose¡
m1, a

S
1

¢
/∈ SS ¡k̄ + 1¢.

Claim 4.6. SR
¡
k̄
¢
contains a Receiver strategy sR non-constant on mφ(N−l) ∪Mφ(N−l).
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Proof. Suppose not, then

uS
¡¡
m1, a

S
1

¢
, σ̂R

¢
= χ

¡
σ̂R,mφ(N−l) ∪Mφ(N−l), aS1

¢
≥ χ

¡
σ̂R,mφ(N−l) ∪Mφ(N−l), âS

¢
= uS

¡¡
m̂, âS

¢
, σ̂R

¢
.

Therefore,
¡
m1, a

S
1

¢
is a best response to σ̂R. Since σ̂R is a totally mixed Receiver strategy

in SR
¡
k̄
¢
, it follows that

¡
m1, a

S
1

¢
belongs to SS

¡
k̄ + 1

¢
. We have thus arrived at a

contradiction.

Claim 4.7. Given any
¡
m̃, ãS

¢ ∈ SS ¡k̄¢ where ãS ∈ Amax and m̃ ∈ E∪F1∪F2, there exists
sR
wrong,(m̃,ãS)

∈ SR ¡k̄¢ non-constant on mφ(N−l) ∪Mφ(N−l) such that sRwrong,(m̃,ãS) (m̃) 6=

bR
¡
ãS
¢
. Given any

¡
m̃, ãS

¢ ∈ SS ¡k̄¢ where ãS ∈ Amax and m̃ ∈ E ∪ F2, there exists
ψd,(m̃,ãS) : S

R
¡
k̄
¢→ SR

¡
k̄
¢
such that ψd

¡
sR
¢
= sR for every Receiver strategy sR constant

on mφ(N−l) ∪Mφ(N−l), while for every sR non-constant on mφ(N−l) ∪Mφ(N−l), ψd
¡
sR
¢
is

equal to sR outside of E ∪ F1 ∪ F2, responds to message m1 with action bR
¡
aS1
¢
, and to

message m̃ with an action other than bR
¡
ãS
¢
.

Proof. From claim 4.7, there exists sRwrong ∈ SR
¡
k̄
¢
non-constant on mφ(N−l) ∪Mφ(N−l)

such that sR
wrong,(m̃,ãS)

(m̃) 6= bR
¡
ãS
¢
. The proof for this claim is broken down into two

cases.

First, suppose |Amax| = 1. By construction, both ãS and aS1 belong to A
max. Since

|Amax| = 1, ãS = aS1 . Therefore, sRwrong (m̃) 6= bR
¡
aS1
¢
. The claim follows immediately by
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lemma 4.4.

Now suppose otherwise. If sR
wrong,(m̃,ãS)

6= bR ¡aS1 ¢, then again the claim immediately

follows from lemma . Otherwise, first consider the situation where m̃ ∈ F2 and âS = aS1 .

In that case, s0R (m̂) 6= bR
¡
aS1
¢
. The claim again follows from lemma 4.4. If m̃ ∈ F2

and âS 6= aS1 , then let ŝ
R be a Receiver strategy in SR

¡
k̄
¢
which is a best response to

1
2

¡
m1, a

S
1

¢
+ 1

2

¡
m̂, âS

¢
. It is easy to see that ŝR is non-constant on mφ(N−l) ∪Mφ(N−l),

and ŝR is not a constant of bR
¡
aS1
¢
on E since ŝR (m̂) = bR

¡
âS
¢ 6= bR

¡
aS1
¢
. Again the

claim follows from lemma 4.4. If m̃ ∈ E, and aS2 = aS1 , then sRwrong,(m2,aS2 )
(m2) 6= bR

¡
aS1
¢
,

then we have sR
wrong,(m2,aS2 )

and sR
wrong,(m̃,ãS)

satisfy the conditions of lemma 4.4 and the

claim follows. Otherwise, m̃ ∈ E and aS2 6= aS1 . We know that SR
¡
k̄
¢
contains a Receiver

strategy sR2 that is a best response to
1
2

¡
m1, a

S
1

¢
+ 1

2

¡
m2, a

S
2

¢
. It has to be the case that

sR2 is not a constant of b
R
¡
aS1
¢
on F2 since sR2 (m2) = b

R
¡
aS2
¢
. Then sR2 and s

R
wrong,(m̃,ãS)

together satisfy the conditions of lemma 4.4 and the claim follows.

Following this claim, we can then define Td : SR
¡
k̄
¢ → SR

¡
k̄
¢
where Td

¡
sR
¢
puts

strictly positive probability on every strategy in the set

n
ψd,(m̃,ãS) :

¡
m̃, ãS

¢ ∈ E ∪ F2 ×Amax ∩ SS ¡k̄ + 1¢o .
Note that Td

¡
sR
¢
(m1) = b

R
¡
aS1
¢
for every sR non-constant on mφ(N−l) ∪Mφ(N−l). Then
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for every Sender strategy
¡
m,aS

¢
where m /∈ E ∪ F1 ∪ F2,

uS
¡¡
m,aS

¢
, Td

¡
σ̂R
¢¢

= uS
¡¡
m,aS

¢
, σ̂R

¢
≤ uS

¡¡
m̂, âS

¢
, σ̂R

¢
< χ

¡
σ̂R,mφ(N−l) ∪Mφ(N−l), âS

¢
≤ χ

¡
σ̂R,mφ(N−l) ∪Mφ(N−l), aS1

¢
= uS

¡¡
m1, a

S
1

¢
, Td

¡
σ̂R
¢¢
.

If m ∈ E ∪ F2, then

uS
¡¡
m,aS

¢
, Td

¡
σ̂R
¢¢

≤ χ
¡
σ̂R,mφ(N−l) ∪Mφ(N−l), aS

¢
(4.2)

≤ χ
¡
σ̂R,mφ(N−l) ∪Mφ(N−l), aS1

¢
(4.3)

= uS
¡¡
m1, a

S
1

¢
, Td

¡
σ̂R
¢¢
.

If aS /∈ Amax, then strictly inequality holds for inequality 4.3. If aS ∈ Amax and ¡m,aS¢ ∈
SS
¡
k̄ + 1

¢
, then strictly inequality holds on inequality 4.2, because from claim 4.8 and

the construct that σ̂R is totally mixed on SR
¡
k̄
¢
, σ̂R puts positive probability on Receiver

strategies non-constant on mφ(N−l) ∪Mφ(N−l), and from the definition of Td, Td
¡
σ̂R
¢
puts

positive probability on Receiver strategies non-constant on mφ(N−l)∪Mφ(N−l) that respond

to message m with an action other than bR
¡
aS
¢
. If m ∈ F1 but aS /∈ Amax, then it follows

that

uS
¡¡
m,aS

¢
, Td

¡
σ̂R
¢¢
< uS

¡¡
m1, a

S
1

¢
, Td

¡
σ̂R
¢¢
.
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Therefore, if
¡
m∗, aS∗

¢
is a best response to Td

¡
σ̂R
¢ ∈ ∆SR ¡k̄¢, it has to be the case that

either message m∗ ∈ F1 and Sender action aS∗ ∈ Amax or
¡
m,aS

¢
/∈ SS ¡k̄ + 1¢. Since

at least one Sender best response to Td
¡
σ̂R
¢
survives the k̄th round of deletion of weakly

dominated strategies, one that survives must be such that the message belongs to F1 and

the action belongs to Amax. We have thus completed the proof of the lemma.

4.7.3 Proof for lemma 4.6

Proof. Both statements are true for k = 1, for all N − l 6= q. From the characterization

we also know that N − l ≤ q for any
³
mφ(N−l), aSφ(q)

´
∈ SS (k) where k ≥ 1. Suppose

both statements are true for every N − l 6= q, for k = 1, ..., k̄. Let
³
mφ(N−l), aSφ(q)

´
be a

Sender strategy that survives the
¡
k̄ + 1

¢th round of deletion where N − l 6= q. From the

characterization of SS (1), we know that q > N − l. Suppose
³
mφ(N−l), aSφ(q)

´
satisfies

both the Non-exclusiveness condition and the Always Incorrect condition.

Proof of Statement 1

Suppose to the contrary that the Sender strategy
³
mφ(N−l), aSφ(q)

´
is an action-strict

best response to a mixed Receiver strategy σRflat ∈ ∆SR
¡
k̄ − 1¢ which puts positive weights

only on Receiver strategies constant on mφ(N−l)∪Mφ(N−l). By the assumption that both

statements are true for every k ≤ k̄, we induce that there exists m̂ in Mφ(N−l) such that³
m̂, aSφ(q)

´
survives the k̄th round of deletion. By the assumption that the Non-exclusiveness

condition holds, SS
¡
k̄ + 1

¢
contains a Sender strategy

³
m̃, aSφ(r)

´
where m̃ ∈Mφ(N−l) and

r 6= q.
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Claim 4.8. There exists Receiver strategies in SR
¡
k̄
¢
non-constant on the message bundle

mφ(N−l) ∪Mφ(N−l).

Proof. If not, then every message in the message bundle mφ(N−l)∪Mφ(N−l) is equivalent to

each other. However,
³
m̂, aSφ(q)

´
is eliminated at the

¡
k̄ + 1

¢th round while ³mφ(N−l), aSφ(q)
´

survives the
¡
k̄ + 1

¢th round of deletion, which implies that message m̂ ∈ Mφ(N−l) is not

equivalent to message mφ(N−l). We have arrived at a contradiction.

Claim 4.9. SS
¡
k̄
¢
contains a Sender strategy

³
m̂2, a

S
φ(q)

´
where m̂2 ∈ Mφ(N−l) and there

exists a language-based Receiver strategy that is a best response to both
³
m̂2, a

S
φ(q)

´
and³

m̃, aSφ(r)

´
. That is,

M cstr
³
m̂2, b

R
³
aSφ(q)

´´
∩M cstr

³
m̃, aSφ(r)

´
= ∅.

Proof. If

M cstr
³
m̂, bR

³
aSφ(q)

´´
∩M cstr

³
m̃, aSφ(r)

´
= ∅, (4.4)

then we are done by the construction of m̂. Otherwise, any Receiver strategy that is a

best response to
³
m̃, aSφ(r)

´
responds to message m̂ with an action different from bR

³
aSφ(q)

´
.

Suppose that the claim does not hold. Let j be the last round after which this statement

is still true, and let
³
m̂2, a

S
φ(q)

´
be a Sender strategy in SS (j) where

M cstr
³
m̂2, a

S
φ(q)

´
∩M cstr

³
m̃, aSφ(r)

´
= ∅.

Let σ̂R be a totally mixed strategy in SR
¡
k̄ − 1¢ to which ³m̂, aSφ(q)´ is a best response.

By lemma 4.3, there exists a mapping ψd : S
R (j) → SR (j) such that ψd

¡
sR
¢
= sR for
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every Receiver strategy sR constant on mφ(N−l)∪Mφ(N−l), while for every sR non-constant

on mφ(N−l) ∪Mφ(N−l), ψd
¡
sR
¢
is equal to sR outside of B, but takes on action bR

³
aSφ(q)

´
after receiving message m̂2 and action aSφ(r) after receiving message m̃2.

Since
³
mφ(N−l), aSφ(q)

´
is an action-strict best response to σRflat, for ε sufficiently small,

any Sender best respone to

(1− ε)σRflat + εψd
¡
σ̂R
¢

involves taking action aSφ(q). By the definition of ψd, message m̂2 either yields the same

Receiver action as any other message in the bundlemφ(N−l)∪Mφ(N−l), or m̂2 yields Receiver

action bR
³
aSφ(q)

´
. By the self-signalling condition, the Sender prefers the Receiver action

bR
³
aSφ(q)

´
the most given that she intends to take action aSφ(q). From claim 4.2 and the

construction that σ̂R is totally mixed in SR
¡
k̄ − 1¢, σ̂R puts positive probability on Receiver

strategies non-constant on mφ(N−l) ∪Mφ(N−l). Therefore,

uS
³³
m̂2, a

S
φ(q)

´
, (1− ε)σRflat + εψd

¡
σ̂R
¢´

> uS
³³
m̂, aSφ(q)

´
,σRflat

´
≥ uS

³³
m,aSφ(q)

´
,σRflat

´
= uS

³³
m,aSφ(q)

´
, (1− ε)σRflat + εψd

¡
σ̂R
¢´

for every m /∈ mφ(N−l) ∪Mφ(N−l). Therefore, given any
³
m∗, aSφ(q)

´
∈ SS (j + 1) which

is a best response to (1− ε)σRflat + εψd
¡
σ̂R
¢
, m∗ belongs to mφ(N−l) ∪ Mφ(N−l) and it

has to be the case that ψd
¡
sR
¢
(m∗) = bR

³
aSφ(q)

´
for every sR ∈ SR (j) nonconstant on
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mφ(N−l) ∪Mφ(N−l). It follows that

Mcstr
³
m∗, bR

³
aSφ(q)

´´
∩M cstr

³
m̃, bR

³
aSφ(r)

´´
= ∅.

we have thus reached a contradiction.

Claim 4.10. The Always Incorrect condition cannot hold.

Proof. Following Claim 4.9, we know from lemma 4.3 that there exists ψd : S
R
¡
k̄
¢→ SR

¡
k̄
¢

such that ψd
¡
sR
¢
= sR if sR is constant on mφ(N−l)∪Mφ(N−l), while given a Receiver strat-

egy sR nonconstant on mφ(N−l) ∪Mφ(N−l), ψd
¡
sR
¢
takes action bR

³
aSφ(q)

´
after receiving

message m̂2 and action bR
³
aSφ(r)

´
after receiving message m̃. By the language assumptions,

sR
¡
mφ(N−l)

¢
= aRφ(N−l) for every Receiver strategy s

R non-constant on mφ(N−l) ∪Mφ(N−l).

It follows that

ψd
¡
sR
¢ ¡
mφ(N−l)

¢
= sR

¡
mφ(N−l)

¢
6= aRφ(N−l) (4.5)

for every Receiver strategy sR non-constant on mφ(N−l) ∪Mφ(N−l). By construction, the

Sender strategy
³
mφ(N−l), aSφ(q)

´
belongs to SS

¡
k̄ + 1

¢
. Therefore, there exists a totally

mixed Receiver strategy σ∗R ∈ ∆+SR ¡k̄¢ to which ³mφ(N−l), aSφ(q)
´
is a best response.

From claim 4.8, the construction that σ∗R is totally mixed, and the construction that

ψd
¡
sR
¢
(m̂2) = b

R
³
aSφ(q)

´
for any Receiver strategy sR nonconstant on mφ(N−l) ∪Mφ(N−l),
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it follows that

uS
³³
m̂2, a

S
φ(q)

´
, (1− ε)σRflat + εψd

¡
σ∗R

¢´
> uS

³³
mφ(N−l), aSφ(q)

´
, (1− ε)σRflat + εσ∗R

´
≥ uS

³³
m,aSφ(q)

´
, (1− ε)σRflat + εσ∗R

´
= uS

³³
m,aSφ(q)

´
, (1− ε)σRflat + εψd

¡
σ∗R

¢´
(4.6)

for every message m outside of the message bundle mφ(N−l) ∪Mφ(N−l).

Since
³
mφ(N−l), aSφ(q)

´
is an action-strict best response to σRflat ∈ ∆SR

¡
k̄
¢
, for ε suffi-

ciently small, any Sender best response to

(1− ε)σRflat + εψd
¡
σ∗R

¢

involves taking action aSφ(q). Inequality 4.5 implies that

uS
³³
m̂2, a

S
φ(q)

´
, (1− ε)σRflat + εψd

¡
σ∗R

¢´
> uS

³³
mφ(N−l), aSφ(q)

´
, (1− ε)σRflat + εψd

¡
σ∗R

¢´
.

It follows that every Sender best response to

(1− ε)σRflat + εψd
¡
σ∗R

¢

involves taking action aSφ(q) and sending a message in Mφ(N−l). Therefore, the Always

Incorrect condition does not hold.

We have thus arrived at contradiction. The proof for statement 1 is then complete.
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Proof for Statement 2

Since
³
mφ(N−l), aSφ(q)

´
∈ SS ¡k̄ + 1¢, there exists a totally mixed Receiver strategy σ̂R

in SR
¡
k̄
¢
to which

³
mφ(N−l), aSφ(q)

´
is a best response. We just proved that statement 1

holds for k = k̄ + 1. Therefore, σ̂R must put positive probability on Receiver strategies

that are non-constant on mφ(N−l) ∪Mφ(N−l). Suppose to the contrary that there exists no

Sender strategy
¡
m∗, aS∗

¢ ∈ SS ¡k̄ + 1¢ where m∗ ∈Mφ(N−l) and

χ
¡
σ̂R,mφ(N−l) ∪Mφ(N−l), aS∗

¢
≥ χ

³
σ̂R,mφ(N−l) ∪Mφ(N−l), aSφ(q)

´
.

Let j be the last round of deletion after which a Sender strategy
¡
m,aS

¢
remains where

message m belongs to Mφ(N−l) and aS is either equal to aSφ(q) or maximizes

χ
¡
σ̂R,mφ(N−l) ∪Mφ(N−l), aS

¢

over
n
aSφ(i) : i > N − l

o
. Let

¡
m̂, âS

¢
be such a Sender strategy in SS (j). Let E denote

the message bundle in Mφ(N−l) that contains message m̂.

Claim 4.11 (Non-exclusiveness of set E). Given every
¡
m̃, ãS

¢ ∈ SS (j) where m̃ ∈
Mφ(N−l) and either ãS is equal to aSφ(q) or ã

S maximizes

χ
¡
σ̂R,mφ(N−l) ∪Mφ(N−l), aS

¢

over
n
aSφ(i) : i > N − l

o
, there exists a Receiver strategy s̃R ∈ SR (j) non-constant on

mφ(N−l) ∪Mφ(N−l) where s̃R (m̃) 6= bR
¡
ãS
¢
.
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Proof. Suppose this is not true for some
¡
m̃, ãS

¢
. Then every Receiver strategy in SR (j)

that is non-constant on mφ(N−l)∪Mφ(N−l) responds to message m̂i with action bR
³
aSφ(ri)

´
.

Therefore,

uS
¡¡
m̃, ãS

¢
, σ̂R

¢
= χ

¡
σ̂R,mφ(N−l) ∪Mφ(N−l), ãS

¢
≥ χ

³
σ̂R,mφ(N−l) ∪Mφ(N−l), aSφ(q)

´
> uS

³³
mφ(N−l), aSφ(q)

´
, σ̂R

´
.

The last inequality holds strictly because σ̂R puts positive probability on Receiver strate-

gies non-constant on mφ(N−l) ∪ Mφ(N−l), and message mφ(N−l) yields an action other

than bR
³
aSφ(q)

´
under such Receiver strategies. This contradicts the construction that³

mφ(N−l), aSφ(q)
´
is a best response to σ̂R.

It follows that there exists sR
wrong,(m̂,âS)

∈ SR (j) non-constant on mφ(N−l) ∪Mφ(N−l)

such that sR
wrong,(m̂,âS)

(m̂) 6= bR ¡âS¢. From the characterization of SS (1), it has to be the

case that l ≥ 3. Therefore, there are at least three parallel message bundles in Mφ(N−l).

Let F1 and F2 be two parallel message bundles in Mφ(N−l) different from E. From lemma

4.5, SS (j) contains
¡
m1, a

S
1

¢
and

¡
m2, a

S
2

¢
where m1 ∈ F1, m2 ∈ F2 and both aS1 and

aS2 maximize χ
¡
σ̂R,mφ(N−l) ∪Mφ(N−l), aS

¢
over

n
aSφ(i) : i > N − l

o
. From claim 4.11, for

i = 1, 2, there exists sR
wrong,(mi,aSi )

∈ SR (j) non-constant on mφ(N−l) ∪Mφ(N−l) such that

sR
wrong,(mi,aSi )

(mi) 6= bR
¡
aSi
¢
. Then either aSi 6= âS , and thus there exists sRi ∈ SR (j)

non-constant on mφ(N−l) ∪ Mφ(N−l) such that sRi (mi) = bR
¡
aSi
¢
and thus sRi |Fi is not

equivalent to a constant of bR
¡
âS
¢
, or sR

wrong,(mi,aSi )
(mi) 6= bR

¡
âS
¢
, and sR

wrong,(mi,aSi )
|Fi
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is not equivalent to a constant of bR
¡
âS
¢
since

uR
³¡
mi, a

S
i

¢
, sR
wrong,(mi,aSi )

´
= gR

³
aSi , s

R
wrong,(mi,aSi )

(mi)
´

6= gR
¡
aSi , b

R
¡
âS
¢¢
.

It follows from lemma 4.4 that there exists ψd : S
R (j) → SR (j) such that ψd

¡
sR
¢
= sR

for Receiver strategies constant on mφ(N−l) ∪Mφ(N−l), and for Receiver strategies noncon-

stant on mφ(N−l) ∪Mφ(N−l), ψd
¡
sR
¢
is equal to sR outside of mφ(N−l) ∪Mφ(N−l), while

ψd
¡
sR
¢
(m̂) = bR

¡
âS
¢
for sR non-constant on mφ(N−l) ∪Mφ(N−l). ψd

¡
σ̂R
¢
puts positive

probability on Receiver strategies non-constant on mφ(N−l) ∪Mφ(N−l) because σ̂R does.

Therefore,

uS
¡¡
m̂, âS

¢
,ψd

¡
σ̂R
¢¢

≥ χ
³
σR,mφ(N−l) ∪Mφ(N−l), aSφ(q)

´
> uS

³³
mφ(N−l), aSφ(q)

´
,ψd

¡
σ̂R
¢´

= uS
³³
mφ(N−l), aSφ(q)

´
, σ̂R

´
≥ uS

¡¡
m,aS

¢
, σ̂R

¢
= uS

¡¡
m,aS

¢
,ψd

¡
σ̂R
¢¢

for every Sender strategy
¡
m,aS

¢
where m /∈ Mφ(N−l). Therefore, if

¡
m∗, aS∗

¢
is a best
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response to ψd
¡
σ̂R
¢
, it has to be the case that m∗ ∈Mφ(N−l) and aS∗ maximizes

χ
¡
σR,mφ(N−l) ∪Mφ(N−l), aS

¢

over
n
aSφ(i) : i > N − l

o
. Since at least one such Sender strategy survives the (j + 1)th

round of deletion, this contradicts the construction of j. We have thus completed the proof

for statement 2.
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