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Introduction Introduction

Foundations of Neoclassical Growth

Solow model: constant saving rate.

Ramsey or Cass-Koopmans model: differs from the Solow model only
because it explicitly models the consumer side and endogenizes
savings. This model specifies the preference orderings of individuals
and derives their decisions from these preferences. It also

Enables better understanding of the factors that affect savings
decisions.
Enables to discuss the “optimality”of equilibria
Clarifies whether the (competitive) equilibria of growth models can be
“improved upon”.

Beyond its use as a basic growth model, also a workhorse for many
areas of macroeconomics.
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Introduction Preliminaries

Preliminaries

Consider an economy consisting of a unit measure of infinitely-lived
households.

I.e., an uncountable number of households: e.g., the set of households
H could be represented by the unit interval [0, 1].

Emphasize that each household is infinitesimal and will have no effect
on aggregates.

Can alternatively think of H as a countable set of the form
H = {1, 2, ...,M} with M = ∞, without any loss of generality.
Advantage of unit measure: averages and aggregates are the same

Simpler to have H as a finite set in the form {1, 2, ...,M} with M
large but finite.

Acceptable for many models, but with overlapping generations require
the set of households to be infinite.
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Introduction Preliminaries

Time Separable Preferences

Standard assumptions on preference orderings so that they can be
represented by utility functions.

In addition, time separable preferences: each household i has an
instantaneous (Bernoulli) utility function (or felicity function):

ui (ci (t)) ,

ui : R+→ R is increasing and concave and ci (t) is the consumption
of household i .

Note instantaneous utility function is not specifying a complete
preference ordering over all commodities– here consumption levels in
all dates.

Instead, household i preferences at time t = 0 are obtained by
combining this with exponential discounting.
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Introduction Preliminaries

Infinite Horizon and the Representative Household

Given by the von Neumann-Morgenstern expected utility function

Ei
0

T

∑
t=0

βti ui (ci (t)) , (1)

where βi ∈ (0, 1) is the discount factor of household i , where T < ∞
or T = ∞, corresponding to finite planning horizon (e.g., with
overlapping generations) or infinite planning horizon.
The second is often assumed because the standard approach in
macroeconomics is to impose the existence of a representative
household– costs of this to be discussed below.
Exponential discounting and time separability also ensure
“time-consistent”behavior.
A solution {x (t)}Tt=0 (possibly with T = ∞) is time consistent if:

whenever {x (t)}Tt=0 is an optimal solution starting at time t = 0,
{x (t)}Tt=t ′ is an optimal solution to the continuation dynamic
optimization problem starting from time t = t ′ ∈ [0,T ].
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Representative Household Representative Household

Challenges to the Representative Household

An economy admits a representative household if preference side can
be represented as if a single household made the aggregate
consumption and saving decisions subject to a single budget
constraint.

This description concerning a representative household is purely
positive

Stronger notion of “normative” representative household: if we can
also use the utility function of the representative household for welfare
comparisons.

Simplest case that will lead to the existence of a representative
household: suppose each household is identical.
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Representative Household Representative Household

Representative Household II

If instead households are not identical but assume can model as if
demand side generated by the optimization decision of a
representative household:
More realistic, but:

1 The representative household will have positive, but not always a
normative meaning.

2 Models with heterogeneity: often not lead to behavior that can be
represented as if generated by a representative household.

Theorem (Debreu-Mantel-Sonnenschein Theorem) Let ε > 0 be a
scalar and N < ∞ be a positive integer. Consider a set of
prices Pε =

{
p∈RN

+: pj/pj ′ ≥ ε for all j and j ′
}
and any

continuous function x : Pε → RN
+ that satisfies Walras’Law

and is homogeneous of degree 0. Then there exists an
exchange economy with N commodities and H < ∞
households, where the aggregate demand is given by x (p)
over the set Pε.
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Representative Household Representative Household

Representative Household IV

That excess demands come from optimizing behavior of households
puts no restrictions on the form of these demands.

E.g., x (p) does not necessarily possess a negative-semi-definite
Jacobian or satisfy the weak axiom of revealed preference
(requirements of demands generated by individual households).

Hence without imposing further structure, impossible to derive
specific x (p)’s from the maximization behavior of a single household.

Severe warning against the use of the representative household
assumption.

Partly an outcome of very strong income effects:

special but approximately realistic preference functions, and restrictions
on distribution of income rule out arbitrary aggregate excess demand
functions.
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Representative Household A Partial Positive Result

Gorman Aggregation

Recall an indirect utility function for household i , vi
(
p, y i

)
, specifies

(ordinal) utility as a function of the price vector p = (p1, ..., pN ) and
household’s income y i .
vi
(
p, y i

)
: homogeneous of degree 0 in p and y .

Theorem (Gorman’s Aggregation Theorem) Consider an economy
with a finite number N < ∞ of commodities and a set H of
households. Suppose that the preferences of household i ∈ H
can be represented by an indirect utility function of the form

v i
(
p, y i

)
= ai (p) + b (p) y i , (2)

then these preferences can be aggregated and represented by
those of a representative household, with indirect utility

v (p, y) =
∫
i∈H

ai (p) di + b (p) y ,

where y ≡
∫
i∈H y

idi is aggregate income.
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Representative Household A Partial Positive Result

Linear Engel Curves

Demand for good j (from Roy’s identity):

x ij
(
p, y i

)
= − 1

b (p)
∂ai (p)

∂pj
− 1
b (p)

∂b (p)
∂pj

y i .

Thus linear Engel curves.
“Indispensable” for the existence of a representative household.
Let us say that there exists a strong representative household if
redistribution of income or endowments across households does not
affect the demand side.
Gorman preferences are suffi cient for a strong representative
household.
Moreover, they are also necessary (with the same b (p) for all
households) for the economy to admit a strong representative
household.

The proof is easy by a simple variation argument.
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Representative Household A Partial Positive Result

Importance of Gorman Preferences

Gorman Preferences limit the extent of income effects and enables
the aggregation of individual behavior.

Integral is “Lebesgue integral,” so when H is a finite or countable set,∫
i∈H y

idi is indeed equivalent to the summation ∑i∈H y
i .

Stated for an economy with a finite number of commodities, but can
be generalized for infinite or even a continuum of commodities.

Note all we require is there exists a monotonic transformation of the
indirect utility function that takes the form in (2)– as long as no
uncertainty.

Contains some commonly-used preferences in macroeconomics.

Gorman preferences also imply the existence of a normative
representative household, i.e., a representative household such that
if it prefers an allocation to another, then the former allocation
Pareto dominates the latter.
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Welfare Theorems

Welfare Theorems I

There should be a close connection between Pareto optima and
competitive equilibria.
Start with models that have a finite number of consumers, so H is
finite.
However, allow an infinite number of commodities.
Results here have analogs for economies with a continuum of
commodities, but focus on countable number of commodities.
Let commodities be indexed by j ∈N and x i≡

{
x ij
}∞

j=0
be the

consumption bundle of household i , and ωi≡
{

ωi
j

}∞

j=0
be its

endowment bundle.
Most relevant interpretation for us is that at each date j = 0, 1, ...,
each individual consumes a finite dimensional vector of products.
Also use the notation x ≡

{
x i
}
i∈H and ω ≡

{
ωi
}
i∈H to describe the

entire consumption allocation and endowments in the economy.
Feasibility requires that x ∈ X.
Let u ≡

{
ui
}
i∈H be the set of utility functions.
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Welfare Theorems

Welfare Theorems II

Production side: finite number of firms represented by F
Each firm f ∈ F is characterized by production set Y f , specifies
levels of output firm f can produce from specified levels of inputs.

E.g., if there were only labor and a final good, Y f would include pairs
(−l , y) such that with labor input l the firm can produce at most y .

Let Y ≡∏f ∈F Y
f represent the aggregate production set and

y ≡
{
y f
}
f ∈F such that y

f ∈ Y f for all f , or equivalently, y ∈ Y.
Ownership structure of firms: if firms make profits, they should be
distributed to some agents

Assume there exists a sequence of numbers (profit shares)

θ ≡
{

θif

}
f ∈F ,i∈H

such that θif ≥ 0 for all f and i , and ∑i∈H θif = 1

for all f ∈ F .
θif is the share of profits of firm f that will accrue to household i .
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Welfare Theorems

Welfare Theorems III

An economy E is described by E ≡ (H,F ,u,ω,Y,X, θ).
An allocation is (x, y) such that x and y are feasible, that is, x ∈ X,
y ∈ Y, and ∑i∈H x

i
j ≤ ∑i∈H ωi

j +∑f ∈F y
f
j for all j ∈N.

A price system is a sequence p≡{pj}∞
j=0, such that pj ≥ 0 for all j .

We can choose one of these prices as the numeraire and normalize it
to 1.

Also define p · x as the inner product of p and x , i.e.,
p · x ≡ ∑∞

j=0 pjxj .

Definition Household i ∈ H is locally non-satiated if at each x i , ui
(
x i
)

is strictly increasing in at least one of its arguments at x i

and ui
(
x i
)
< ∞.
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Welfare Theorems

Welfare Theorems IV

Definition A competitive equilibrium for the economy
E ≡ (H,F ,u,ω,Y,X, θ) is given by an allocation(
x∗ =

{
x i∗
}
i∈H , y

∗ =
{
y f ∗
}
f ∈F

)
and a price system p∗

such that
1 The allocation (x∗, y∗) is feasible and market clearing,
i.e., x i∗ ∈ X i for all i ∈ H, y f ∗ ∈ Y f for all f ∈ F and

∑
i∈H

x i∗j = ∑
i∈H

ωi
j + ∑

f ∈F
y f ∗j for all j ∈N.

2 For every firm f ∈ F , y f ∗ maximizes profits, i.e.,

p∗ · y f ∗ ≥ p∗ · y for all y ∈ Y f .
3 For every consumer i ∈ H, x i∗ maximizes utility, i.e.,

ui
(
x i∗
)
≥ ui (x) for all x s.t. x ∈ X i and p∗ · x ≤ p∗ · x i∗.
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Welfare Theorems

Welfare Theorems V

Establish existence of competitive equilibrium with finite number of
commodities and standard convexity assumptions is straightforward.

With infinite number of commodities, somewhat more diffi cult and
requires more sophisticated arguments.

Definition A feasible allocation (x, y) for economy
E ≡ (H,F ,u,ω,Y,X, θ) is Pareto optimal if there exists no
other feasible allocation (̂x, ŷ) such that x̂ i ∈ X i , ŷ f ∈ Y f
for all f ∈ F ,

∑
i∈H

x̂ ij ≤ ∑
i∈H

ωi
j + ∑

f ∈F
ŷ fj for all j ∈N,

and
ui
(
x̂ i
)
≥ ui

(
x i
)
for all i ∈ H

with at least one strict inequality.
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Welfare Theorems

Welfare Theorems VI

Theorem (First Welfare Theorem I) Suppose that (x∗, y∗, p∗) is a
competitive equilibrium of economy
E ≡ (H,F ,u,ω,Y,X, θ) with H finite. Assume that all
households are locally non-satiated. Then (x∗, y∗) is Pareto
optimal.
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Welfare Theorems

Proof of First Welfare Theorem I

To obtain a contradiction, suppose that there exists a feasible (̂x, ŷ)
such that ui

(
x̂ i
)
≥ ui

(
x i
)
for all i ∈ H and ui

(
x̂ i
)
> ui

(
x i
)
for all

i ∈ H′, where H′ is a non-empty subset of H.
Since (x∗, y∗, p∗) is a competitive equilibrium, it must be the case
that for all i ∈ H,

p∗·x̂ i ≥ p∗ · x i∗ (3)

= p∗ ·
(

ωi + ∑
f ∈F

θif y
f ∗
)

and for all i ∈ H′,

p∗·x̂ i > p∗ ·
(

ωi + ∑
f ∈F

θif y
f ∗
)
. (4)
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Welfare Theorems

Proof of First Welfare Theorem II

Second inequality follows immediately in view of the fact that x i∗ is
the utility maximizing choice for household i , thus if x̂ i is strictly
preferred, then it cannot be in the budget set.

First inequality follows with a similar reasoning. Suppose that it did
not hold.

Then by the hypothesis of local-satiation, ui must be strictly
increasing in at least one of its arguments, let us say the j ′th
component of x .

Then construct x̂ i (ε) such that x̂ ij (ε) = x̂
i
j and x̂

i
j ′ (ε) = x̂

i
j ′ + ε.

For ε ↓ 0, x̂ i (ε) is in household i’s budget set and yields strictly
greater utility than the original consumption bundle x i , contradicting
the hypothesis that household i was maximizing utility.

Note local non-satiation implies that ui
(
x i
)
< ∞, and thus the

right-hand sides of (3) and (4) are finite.
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Welfare Theorems

Proof of First Welfare Theorem III

Now summing over (3) and (4), we have

p∗· ∑
i∈H

x̂ i > p∗ · ∑
i∈H

(
ωi + ∑

f ∈F
θif y

f ∗
)
, (5)

= p∗ ·
(

∑
i∈H

ωi + ∑
f ∈F

y f ∗
)
,

Second line uses the fact that the summations are finite, can change
the order of summation, and that by definition of shares ∑i∈H θif = 1
for all f .

Finally, since y∗ is profit-maximizing at prices p∗, we have that

p∗ · ∑
f ∈F

y f ∗ ≥ p∗ · ∑
f ∈F

y f for any
{
y f
}
f ∈F

with y f ∈ Y f for all f ∈ F .

(6)
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Welfare Theorems

Proof of First Welfare Theorem IV

However, by market clearing of x̂ i (Definition above, part 1), we have

∑
i∈H

x̂ ij = ∑
i∈H

ωi
j + ∑

f ∈F
ŷ fj ,

Therefore, by multiplying both sides by p∗ and exploiting (6),

p∗ · ∑
i∈H

x̂ ij ≤ p∗ ·
(

∑
i∈H

ωi
j + ∑

f ∈F
ŷ fj

)

≤ p∗ ·
(

∑
i∈H

ωi
j + ∑

f ∈F
y f ∗j

)
,

Contradicts (5), establishing that any competitive equilibrium
allocation (x∗, y∗) is Pareto optimal.
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Welfare Theorems

Welfare Theorems VI

Proof of the First Welfare Theorem based on two intuitive ideas.
1 If another allocation Pareto dominates the competitive equilibrium,
then it must be non-affordable in the competitive equilibrium.

2 Profit-maximization implies that any competitive equilibrium already
contains the maximal set of affordable allocations.

Note it makes no convexity assumption.

Also highlights the importance of the feature that the relevant sums
exist and are finite.

Otherwise, the last step would lead to the conclusion that “∞ < ∞”.

That these sums exist followed from two assumptions: finiteness of
the number of individuals and non-satiation.
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Welfare Theorems

Welfare Theorems VII

Theorem (First Welfare Theorem II) Suppose that (x∗, y∗, p∗) is a
competitive equilibrium of the economy
E ≡ (H,F ,u,ω,Y,X, θ) with H countably infinite. Assume
that all households are locally non-satiated and that
p∗ ·ω∗ = ∑i∈H ∑∞

j=0 p
∗
j ωi

j < ∞. Then (x∗, y∗, p∗) is Pareto
optimal.

Proof:

Same as before but now local non-satiation does not guarantee
summations are finite (5), since we sum over an infinite number of
households.
But since endowments are finite, the assumption that
∑i∈H ∑∞

j=0 p
∗
j ωij < ∞ ensures that the sums in (5) are indeed finite.
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Welfare Theorems

Welfare Theorems VIII

Second Welfare Theorem (converse to First): whether or not H is
finite is not as important as for the First Welfare Theorem.

But requires assumptions such as the convexity of consumption and
production sets and preferences, and additional requirements because
it contains an “existence of equilibrium argument”.

But with an infinite horizon (infinite number of commodities),
additional technical issues arise. One has to make sure that
preferences don’t depend too much on things that will happen in the
future.

Discounting ensures that, and the Second Welfare Theorem holds in
all of the economies we will focus on and discourse, but I will not go
through its statement, which requires more notation and care.
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Neoclassical Growth Model Environment

Preferences, Technology and Demographics I

Infinite-horizon, continuous time.
Representative household with instantaneous utility function

u (c (t)) , (7)

Assumption u (c) is strictly increasing, concave, twice continuously
differentiable with derivatives u′ and u′′, and satisfies the
following Inada type assumptions:

lim
c→0

u′ (c) = ∞ and lim
c→∞

u′ (c) = 0.

Suppose representative household represents set of identical
households (normalized to 1).
Each household has an instantaneous utility function given by (7).
L (0) = 1 and

L (t) = exp (nt) . (8)
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Neoclassical Growth Model Environment

Preferences, Technology and Demographics II

All members of the household supply their labor inelastically.
Objective function of each household at t = 0:

U (0) ≡
∫ ∞

0
exp (− (ρ− n) t) u (c (t)) dt, (9)

where c (t)=consumption per capita at t, and ρ=subjective discount
rate, and effective discount rate is ρ− n.
Continues time analogue of ∑∞

t=0 βti ui (ci (t)).
Objective function (9) embeds:

Household is fully altruistic towards all of its future members, and
makes allocations of consumption (among household members)
cooperatively.
Strict concavity of u (·)

Thus each household member will have an equal consumption

c (t) ≡ C (t)
L (t)
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Neoclassical Growth Model Environment

Preferences, Technology and Demographics III

Utility of u (c (t)) per household member at time t, total of
L (t) u (c (t)) = exp (nt) u (c (t)).
With discount at rate of exp (−ρt), obtain (9).

Assumption 4′.
ρ > n.

Ensures that in the model without growth, discounted utility is finite
(otherwise infinite utility and not well behaved equilibrium). Will
strengthen it in model with growth.
Start model without any technological progress.
Factor and product markets are competitive.
Production possibilities set of the economy is represented by

Y (t) = F [K (t) , L (t)] ,

Standard constant returns to scale and Inada assumptions still hold.
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Neoclassical Growth Model Environment

Preferences, Technology and Demographics IV

Per capita production function f (·)

y (t) ≡ Y (t)
L (t)

= F
[
K (t)
L (t)

, 1
]

≡ f (k (t)) ,

where, as before,

k (t) ≡ K (t)
L (t)

. (10)

Competitive factor markets then imply:

R (t) = FK [K (t), L(t)] = f
′ (k(t)). (11)

and
w (t) = FL[K (t), L(t)] = f (k (t))− k (t) f ′ (k(t)). (12)
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Neoclassical Growth Model Environment

Preferences, Technology and Demographics V

Denote asset holdings of the representative household at time t by
A (t). Then,

Ȧ (t) = r (t)A (t) + w (t) L (t)− c (t) L (t)

r (t) is the risk-free market flow rate of return on assets, and
w (t) L (t) is the flow of labor income earnings of the household.
Defining per capita assets as

a (t) ≡ A (t)
L (t)

,

we obtain:

ȧ (t) = (r (t)− n) a (t) + w (t)− c (t) . (13)

Household assets can consist of capital stock, K (t), which they rent
to firms and government bonds, B (t).
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Neoclassical Growth Model Environment

Preferences, Technology and Demographics VI

With uncertainty, households would have a portfolio choice between
K (t) and riskless bonds.

With incomplete markets, bonds allow households to smooth
idiosyncratic shocks. But for now no need.

Thus, market clearing ⇒

a (t) = k (t) .

No uncertainty depreciation rate of δ implies

r (t) = R (t)− δ. (14)
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Neoclassical Growth Model Environment

The Budget Constraint

The differential equation

ȧ (t) = (r (t)− n) a (t) + w (t)− c (t)

is a flow constraint

Not suffi cient as a proper budget constraint unless we impose a lower
bound on assets.

Three options:
1 Lower bound on assets such as a (t) ≥ 0 for all t
2 Natural debt limit.
3 No Ponzi Game Condition.

The last two equivalent as long of the natural debt limit is specified
properly. Let us focus on the latter.
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Neoclassical Growth Model Environment

The No Ponzi Game Condition

Infinite-horizon no Ponzi game condition is:

lim
t→∞

a (t) exp
(
−
∫ t

0
(r (s)− n) ds

)
≥ 0. (15)

Transversality condition ensures individual would never want to have
positive wealth asymptotically, so no Ponzi game condition can be
strengthened to (though not necessary in general):

lim
t→∞

a (t) exp
(
−
∫ t

0
(r (s)− n) ds

)
= 0. (16)
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Neoclassical Growth Model Environment

Understanding the No Ponzi Game Condition

Why?
Write the single budget constraint of the form:∫ T

0
c (t) L(t) exp

(∫ T

t
r (s) ds

)
dt +A (T ) (17)

=
∫ T

0
w (t) L (t) exp

(∫ T

t
r (s) ds

)
dt +A (0) exp

(∫ T

0
r (s) ds

)
.

Differentiating with respect to T and dividing L(t) gives (13).
Now imagine that (17) applies to a finite-horizon economy .
Flow budget constraint (13) by itself does not guarantee that
A (T ) ≥ 0.
Thus in finite-horizon we would simply impose (17) as a boundary
condition.
The no Ponzi game condition is the infinite horizon equivalent of this
(obtained by dividing by L (t) and multiplying both sides by

exp
(
−
∫ T
0 r (s) ds

)
and taking the limit as T → ∞).
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Characterization of Equilibrium Definition of Equilibrium

Definition of Equilibrium

Definition A competitive equilibrium of the Ramsey economy consists
of paths [C (t) ,K (t) ,w (t) ,R (t)]∞t=0, such that the
representative household maximizes its utility given initial
capital stock K (0) and the time path of prices
[w (t) ,R (t)]∞t=0, and all markets clear.

Notice refers to the entire path of quantities and prices, not just
steady-state equilibrium.

Definition A competitive equilibrium of the Ramsey economy consists
of paths [c (t) , k (t) ,w (t) ,R (t)]∞t=0, such that the
representative household maximizes (9) subject to (13) and
(15) given initial capital-labor ratio k (0), factor prices
[w (t) ,R (t)]∞t=0 as in (11) and (12), and the rate of return
on assets r (t) given by (14).
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Characterization of Equilibrium Household Maximization

Household Maximization I

Maximize (9) subject to (13) and (16).

First ignore (16) and set up the current-value Hamiltonian:

Ĥ (a, c , µ) = u (c (t)) + µ (t) [w (t) + (r (t)− n) a (t)− c (t)] ,

Maximum Principle ⇒ “candidate solution”

Ĥc (a, c, µ) = u′ (c (t))− µ (t) = 0

Ĥa (a, c, µ) = µ (t) (r (t)− n)
= −µ̇ (t) + (ρ− n) µ (t)

lim
t→∞

[exp (− (ρ− n) t) µ (t) a (t)] = 0.

and the transition equation (13).

Notice transversality condition is written in terms of the current-value
costate variable.
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Characterization of Equilibrium Household Maximization

Household Maximization II

For any µ (t) > 0, Ĥ (a, c , µ) is a concave function of (a, c) and
strictly concave in c .

The first necessary condition implies µ (t) > 0 for all t.

Therefore, Suffi cient Conditions imply that the candidate solution is
an optimum (is it unique?)

Rearrange the second condition:

µ̇ (t)
µ (t)

= − (r (t)− ρ) , (18)

First necessary condition implies,

u′ (c (t)) = µ (t) . (19)
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Characterization of Equilibrium Household Maximization

Household Maximization III

Differentiate with respect to time and divide by µ (t),

u′′ (c (t)) c (t)
u′ (c (t))

ċ (t)
c (t)

=
µ̇ (t)
µ (t)

.

Substituting into (18) gives

ċ (t)
c (t)

=
1

εu (c(t))
(r (t)− ρ) (20)

where

εu (c (t)) ≡ −
u′′ (c (t)) c (t)
u′ (c (t))

(21)

is the elasticity of the marginal utility u′ (c(t)) or the inverse of the
intertemporal elasticity of substitution.
Consumption will grow over time when the discount rate is less than
the rate of return on assets.
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Characterization of Equilibrium Household Maximization

Household Maximization IV

Integrating (18),

µ (t) = µ (0) exp
(
−
∫ t

0
(r (s)− ρ) ds

)
= u′ (c (0)) exp

(
−
∫ t

0
(r (s)− ρ) ds

)
,

Substituting into the transversality condition,

0 = lim
t→∞

[
exp (− (ρ− n) t) a (t) u′ (c (0)) exp

(
−
∫ t

0
(r (s)− ρ) ds

)]
0 = lim

t→∞

[
a (t) exp

(
−
∫ t

0
(r (s)− n) ds

)]
.

Thus the “strong version”of the no-Ponzi condition, (16) has to hold.
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Characterization of Equilibrium Household Maximization

Household Maximization V

Since a (t) = k (t), transversality condition is also equivalent to

lim
t→∞

[
exp

(
−
∫ t

0
(r (s)− n) ds

)
k (t)

]
= 0

Notice term exp
(
−
∫ t
0 r (s) ds

)
is a present-value factor: converts a

unit of income at t to a unit of income at 0.

When r (s) = r , factor would be exp (−rt). More generally, define an
average interest rate between dates 0 and t given by 1

t

∫ t
0 r (s) ds.
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Characterization of Equilibrium Equilibrium Prices

Equilibrium Prices

Equilibrium prices given by (11) and (12).

Thus market rate of return for consumers, r (t), is given by (14), i.e.,

r (t) = f ′ (k (t))− δ.

Substituting this into the consumer’s problem, we have

ċ (t)
c (t)

=
1

εu (c (t))

(
f ′ (k (t))− δ− ρ

)
(22)
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Optimal Growth Optimal Growth

Optimal Growth I

In an economy that admits a representative household, optimal
growth involves maximization of utility of representative household
subject to technology and feasibility constraints:

max
[k (t),c (t)]∞t=0

∫ ∞

0
exp (− (ρ− n) t) u (c (t)) dt,

subject to
k̇ (t) = f (k (t))− (n+ δ)k (t)− c (t) ,

and k (0) > 0.

Versions of the First and Second Welfare Theorems for economies
with a continuum of commodities: solution to this problem should be
the same as the equilibrium growth problem.

But straightforward to show the equivalence of the two problems.
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Optimal Growth Optimal Growth

Optimal Growth II

Again set up the current-value Hamiltonian:

Ĥ (k , c, µ) = u (c (t)) + µ (t) [f (k (t))− (n+ δ)k (t)− c (t)] ,

Candidate solution from the Maximum Principle:

Ĥc (k, c, µ) = 0 = u′ (c (t))− µ (t) ,

Ĥk (k , c, µ) = −µ̇ (t) + (ρ− n) µ (t)

= µ (t)
(
f ′ (k (t))− δ− n

)
,

lim
t→∞

[exp (− (ρ− n) t) µ (t) k (t)] = 0.

Suffi ciency Theorem ⇒ unique solution (Ĥ and thus the maximized
Hamiltonian strictly concave in k).
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Optimal Growth Optimal Growth

Optimal Growth III

Repeating the same steps as before, these imply

ċ (t)
c (t)

=
1

εu (c (t))

(
f ′ (k (t))− δ− ρ

)
,

which is identical to (22), and the transversality condition

lim
t→∞

[
k (t) exp

(
−
∫ t

0

(
f ′ (k (s))− δ− n

)
ds
)]

= 0,

which is, in turn, identical to (16).
Thus the competitive equilibrium is a Pareto optimum and that the
Pareto allocation can be decentralized as a competitive equilibrium.

Proposition In the neoclassical growth model described above, with
standard assumptions on the production function
(assumptions 1-4′), the equilibrium is Pareto optimal and
coincides with the optimal growth path maximizing the
utility of the representative household.
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Steady-State Equilibrium Steady State

Steady-State Equilibrium I

Steady-state equilibrium is defined as an equilibrium path in which
capital-labor ratio, consumption and output are constant, thus:

ċ (t) = 0.

From (22), as long as f (k∗) > 0, irrespective of the exact utility
function, we must have a capital-labor ratio k∗ such that

f ′ (k∗) = ρ+ δ. (23)

Pins down the steady-state capital-labor ratio only as a function of
the production function, the discount rate and the depreciation rate.

Modified golden rule: level of the capital stock that does not
maximize steady-state consumption, because earlier consumption is
preferred to later consumption.
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Steady-State Equilibrium Steady State

Steady-State Equilibrium II

c(t)

kgold0
k(t)

k(0)

c’(0)

c’’(0)

c(t)=0

k(t)=0

k*

c(0)

c*

k

Figure: Steady state in the baseline neoclassical growth model

Daron Acemoglu (MIT) Economic Growth Lectures 5-7 November 8, 13 & 15, 2018 45 / 83



Steady-State Equilibrium Steady State

Steady-State Equilibrium III

Given k∗, steady-state consumption level:

c∗ = f (k∗)− (n+ δ)k∗, (24)

Given Assumption 4′, a steady state where the capital-labor ratio and
thus output are constant necessarily satisfies the transversality
condition.

Proposition In the neoclassical growth model described above, with
Assumptions 1, 2, assumptions on utility above and
Assumption 4′, the steady-state equilibrium capital-labor
ratio, k∗, is uniquely determined by (23) and is independent
of the utility function. The steady-state consumption per
capita, c∗, is given by (24).

Comparative statics again straightforward.
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Steady-State Equilibrium Steady State

Steady-State Equilibrium IV

Instead of the saving rate, it is now the discount factor that affects
the rate of capital accumulation.
Loosely, lower discount rate implies greater patience and thus greater
savings.
Without technological progress, the steady-state saving rate can be
computed as

s∗ =
δk∗

f (k∗)
. (25)

Rate of population growth has no impact on the steady state
capital-labor ratio, which contrasts with the basic Solow model.

result depends on the way in which intertemporal discounting takes
place.

k∗ and thus c∗ do not depend on the instantaneous utility function
u (·).

form of the utility function only affects the transitional dynamics
not true when there is technological change,.
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Dynamics Transitional Dynamics

Transitional Dynamics I

Equilibrium is determined by two differential equations:

k̇ (t) = f (k (t))− (n+ δ)k (t)− c (t) (26)

and
ċ (t)
c (t)

=
1

εu (c (t))

(
f ′ (k (t))− δ− ρ

)
. (27)

Moreover, we have an initial condition k (0) > 0, also a boundary
condition at infinity,

lim
t→∞

[
k (t) exp

(
−
∫ t

0

(
f ′ (k (s))− δ− n

)
ds
)]

= 0.
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Dynamics Transitional Dynamics

Transitional Dynamics II

Appropriate notion of saddle-path stability:

consumption level (or equivalently µ) is the control variable, and c (0)
(or µ (0)) is free: has to adjust to satisfy transversality condition
since c (0) or µ (0) can jump to any value, need that there exists a
one-dimensional manifold tending to the steady state (stable arm).
If there were more than one path equilibrium would be indeterminate.

Economic forces are such that indeed there will be a one-dimensional
manifold of stable solutions tending to the unique steady state.

See Figure.

Daron Acemoglu (MIT) Economic Growth Lectures 5-7 November 8, 13 & 15, 2018 49 / 83



Dynamics Transitional Dynamics

Transitional Dynamics III

c(t)

kgold0
k(t)

k(0)

c’(0)

c’’(0)

c(t)=0

k(t)=0

k*
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k

Figure: Transitional dynamics in the baseline neoclassical growth model
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Dynamics Transitional Dynamics

Transitional Dynamics: Suffi ciency

Why is the stable arm unique?
Three different (complementary) lines of analysis

1 Suffi ciency Theorem
2 Global Stability Analysis
3 Local Stability Analysis

Suffi ciency Theorem: solution starting in c (0) and limiting to the
steady state satisfies the necessary and suffi cient conditions, and thus
unique solution to household problem and unique equilibrium.

Proposition In the neoclassical growth model described above, with
Assumptions 1, 2, assumptions on utility above and
Assumption 4′, there exists a unique equilibrium path
starting from any k (0) > 0 and converging to the unique
steady-state (k∗, c∗) with k∗ given by (23). Moreover, if
k (0) < k∗, then k (t) ↑ k∗ and c (t) ↑ c∗, whereas if
k (0) > k∗, then k (t) ↓ k∗ and c (t) ↓ c∗ .
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Dynamics Transitional Dynamics

Global Stability Analysis

Alternative argument:

if c (0) started below it, say c ′′ (0), consumption would reach zero,
thus capital would accumulate continuously until the maximum level of
capital (reached with zero consumption) k̄ > kgold . This would violate
the transversality condition. Can be established that transversality
condition necessary in this case, thus such paths can be ruled out.
if c (0) started above this stable arm, say at c ′ (0), the capital stock
would reach 0 in finite time, while consumption would remain positive.
But this would violate feasibility (a little care is necessary with this
argument, since necessary conditions do not apply at the boundary).
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Dynamics Transitional Dynamics

Local Stability Analysis I

Linearize the set of differential equations, and looking at their
eigenvalues.

Recall the two differential equations:

k̇ (t) = f (k (t))− (n+ δ)k (t)− c (t)

and
ċ (t)
c (t)

=
1

εu (c (t))

(
f ′ (k (t))− δ− ρ

)
.

Linearizing these equations around the steady state (k∗, c∗), we have
(suppressing time dependence)

k̇ = constant+
(
f ′ (k∗)− n− δ

)
(k − k∗)− c

ċ = constant+
c∗f ′′ (k∗)

εu (c∗)
(k − k∗) .

Daron Acemoglu (MIT) Economic Growth Lectures 5-7 November 8, 13 & 15, 2018 53 / 83



Dynamics Transitional Dynamics

Local Stability Analysis II

From (23), f ′ (k∗)− δ = ρ, so the eigenvalues of this two-equation
system are given by the values of ξ that solve the following quadratic
form:

det

(
ρ− n− ξ −1
c ∗f ′′(k ∗)

εu (c ∗)
0− ξ

)
= 0.

Since c∗f ′′ (k∗) /εu (c∗) < 0, there are two real eigenvalues, one
negative and one positive.

Thus local analysis also leads to the same conclusion, but can only
establish local stability.
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Dynamics Transitional Dynamics

Neoclassical Growth Model in Discrete Time

Economically, nothing is different in discrete time.

Mathematically, a few details need to be sorted out.

Sometimes discrete time will be more convenient to work with, and
sometimes continuous time.

See recitation for details of the discrete time model.
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Technological Change Technological Change

Technological Change and the Neoclassical Model

Extend the production function to:

Y (t) = F [K (t) ,A (t) L (t)] , (28)

where
A (t) = exp (gt)A (0) .

A consequence of Uzawa Theorem.: (28) imposes purely
labor-augmenting– Harrod-neutral– technological change.

Continue to adopt all usual assumptions, and Assumption 4′ will be
strengthened further in order to ensure finite discounted utility in the
presence of sustained economic growth.
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Technological Change Technological Change

Technological Change II

Define

ŷ (t) ≡ Y (t)
A (t) L (t)

= F
[

K (t)
A (t) L (t)

, 1
]

≡ f (k (t)) ,

where

k (t) ≡ K (t)
A (t) L (t)

. (29)

Also need to impose a further assumption on preferences in order to
ensure balanced growth.
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Technological Change Technological Change

Technological Change III

Define balanced growth as a pattern of growth consistent with the
Kaldor facts of constant capital-output ratio and capital share in
national income.

These two observations together also imply that the rental rate of
return on capital, R (t), has to be constant, which, from (14), implies
that r (t) has to be constant.

Again refer to an equilibrium path that satisfies these conditions as a
balanced growth path (BGP).

Balanced growth also requires that consumption and output grow at a
constant rate. Euler equation

ċ (t)
c (t)

=
1

εu (c (t))
(r (t)− ρ) .
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Technological Change Technological Change

Technological Change IV

If r (t)→ r ∗, then ċ (t) /c (t)→ gc is only possible if
εu (c (t))→ εu , i.e., if the elasticity of marginal utility of
consumption, which determines the intertemporal elasticity of
substitution, is asymptotically constant.

Thus balanced growth is only consistent with utility functions that
have asymptotically constant elasticity of marginal utility of
consumption, so that the way that individuals substitute consumption
today vs. consumption tomorrow does not change with the level of
consumption (i.e., as the economy grows).

Proposition Balanced growth in the neoclassical model requires that
asymptotically (as t → ∞) all technological change is purely
labor augmenting and the elasticity of intertemporal
substitution, εu (c (t)), tends to a constant εu .
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Technological Change Technological Change

Example: CRRA Utility I

Recall the Arrow-Pratt coeffi cient of relative risk aversion for a
twice-continuously differentiable concave utility function U (c) is

R = −U
′′ (c) c
U ′ (c)

.

Constant relative risk aversion (CRRA) utility function satisfies the
property that R is constant.
Integrating both sides of the previous equation, setting R to a
constant, implies that the family of CRRA utility functions is given by

U (c) =

{
c1−θ−1
1−θ if θ 6= 1 and θ ≥ 0
ln c if θ = 1

,

with the coeffi cient of relative risk aversion given by θ.
CRRA utility functions are useful precisely because they imply
constant intertemporal elasticity of substitution.
Details: see recitation.
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Technological Change Technological Change

Technological Change V

Given the restriction that balanced growth is only possible with a
constant elasticity of intertemporal substitution, start with

u (c (t)) =

{
c (t)1−θ−1
1−θ if θ 6= 1 and θ ≥ 0
ln c(t) if θ = 1

,

Elasticity of marginal utility of consumption, εu , is given by θ.

When θ = 0, these represent linear preferences, when θ = 1, we have
log preferences, and as θ → ∞, infinitely risk-averse, and infinitely
unwilling to substitute consumption over time.

Assume that the economy admits a representative household with
CRRA preferences∫ ∞

0
exp (−(ρ− n)t) c̃ (t)

1−θ − 1
1− θ

dt, (30)
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Technological Change Technological Change

Technological Change VI

c̃ (t) ≡ C (t) /L (t) is per capita consumption.
Refer to this model, with labor-augmenting technological change and
CRRA preference as given by (30) as the canonical model

Euler equation takes the simpler form:

·
c̃ (t)
c̃ (t)

=
1
θ
(r (t)− ρ) . (31)

Steady-state equilibrium first: since with technological progress there
will be growth in per capita income, c̃ (t) will grow.
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Technological Change Technological Change

Technological Change VII

Instead define

c (t) ≡ C (t)
A (t) L (t)

≡ c̃ (t)
A (t)

.

This normalized consumption level will remain constant along the
BGP:

ċ (t)
c (t)

≡
·

c̃ (t)
c̃ (t)

− g

=
1
θ
(r (t)− ρ− θg) .
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Technological Change Technological Change

Technological Change VIII

For the accumulation of capital stock:

k̇ (t) = f (k (t))− c (t)− (n+ g + δ) k (t) ,

where k (t) ≡ K (t) /A (t) L (t).
Transversality condition, in turn, can be expressed as

lim
t→∞

{
k (t) exp

(
−
∫ t

0

[
f ′ (k (s))− g − δ− n

]
ds
)}

= 0. (32)

In addition, equilibrium r (t) is still given by (14), so

r (t) = f ′ (k (t))− δ
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Technological Change Technological Change

Technological Change IX

Since in steady state c (t) must remain constant:

r (t) = ρ+ θg

or
f ′ (k∗) = ρ+ δ+ θg , (33)

Pins down the steady-state value of the normalized capital ratio k∗

uniquely.

Normalized consumption level is then given by

c∗ = f (k∗)− (n+ g + δ) k∗, (34)

Per capita consumption grows at the rate g .
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Technological Change Technological Change

Technological Change X

Because there is growth, to make sure that the transversality
condition is in fact satisfied substitute (33) into (32):

lim
t→∞

{
k (t) exp

(
−
∫ t

0
[ρ− (1− θ) g − n] ds

)}
= 0,

Can only hold if ρ− (1− θ) g − n > 0, or alternatively :
Assumption 4:

ρ− n > (1− θ) g .

Remarks:

Strengthens Assumption 4′ when θ < 1.
Alternatively, recall in steady state r = ρ+ θg and the growth rate of
output is g + n.
Therefore, equivalent to requiring that r > g + n.
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Technological Change Technological Change

Technological Change XI

Proposition Consider the neoclassical growth model with labor
augmenting technological progress at the rate g and
preferences given by (30). Suppose that Assumptions 1, 2,
assumptions on utility above hold and ρ− n > (1− θ) g .
Then there exists a unique balanced growth path with a
normalized capital to effective labor ratio of k∗, given by
(33), and output per capita and consumption per capita
grow at the rate g .

Steady-state capital-labor ratio no longer independent of preferences,
depends on θ.

Positive growth in output per capita, and thus in consumption per
capita.
With upward-sloping consumption profile, willingness to substitute
consumption today for consumption tomorrow determines
accumulation and thus equilibrium effective capital-labor ratio.
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Technological Change Technological Change

Transitional Dynamics with Technological Change

c(t)
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Figure: Transitional dynamics in the neoclassical growth model with technological
change.
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Technological Change Technological Change

Technological Change XII

Steady-state effective capital-labor ratio, k∗, is determined
endogenously, but steady-state growth rate of the economy is given
exogenously and equal to g .

Proposition Consider the neoclassical growth model with labor
augmenting technological progress at the rate g and
preferences given by (30). Suppose that Assumptions 1, 2,
assumptions on utility above hold and ρ− n > (1− θ) g .
Then there exists a unique equilibrium path of normalized
capital and consumption, (k (t) , c (t)) converging to the
unique steady-state (k∗, c∗) with k∗ given by (33).
Moreover, if k (0) < k∗, then k (t) ↑ k∗ and c (t) ↑ c∗,
whereas if k (0) > k∗, then c (t) ↓ k∗ and c (t) ↓ c∗.
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Technological Change Technological Change

Example: CRRA and Cobb-Douglas

One solvable case: CRRA (or even better log) preferences and
Cobb-Douglas production function, given by
F (K ,AL) = K α (AL)1−α, so that

f (k) = kα.

See recitation.
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Technological Change The Role of Policy

The Role of Policy I

Growth of per capita consumption and output per worker (per capita)
are determined exogenously.
But level of income, depends on 1/θ, ρ, δ, n, and naturally the form
of f (·).
Proximate causes of differences in income per capita: here explain
those differences only in terms of preference and technology
parameters.
Link between proximate and potential fundamental causes:

e.g. intertemporal elasticity of substitution and the discount rate can
be as related to cultural or geographic factors.

But an explanation for cross-country and over-time differences in
economic growth based on differences or changes in preferences is
unlikely to be satisfactory.
More appealing: link incentives to accumulate physical capital (and
human capital and technology) to the institutional environment.
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Technological Change The Role of Policy

The Role of Policy II

Simple way: through differences in policies.

Introduce linear tax policy: returns on capital net of depreciation are
taxed at the rate τ and the proceeds of this are redistributed back to
the consumers.

Capital accumulation equation remains as above:

k̇ (t) = f (k (t))− c (t)− (n+ g + δ) k (t) ,

But interest rate faced by households changes to:

r (t) = (1− τ)
(
f ′ (k (t))− δ

)
,
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Technological Change The Role of Policy

The Role of Policy III

Growth rate of normalized consumption is then obtained from the
consumer Euler equation, (31):

ċ (t)
c (t)

=
1
θ
(r (t)− ρ− θg) .

=
1
θ

(
(1− τ)

(
f ′ (k (t))− δ

)
− ρ− θg

)
.

Identical argument to that before implies

f ′ (k∗) = δ+
ρ+ θg
1− τ

. (35)

Higher τ, since f ′ (·) is decreasing, reduces k∗.
Higher taxes on capital have the effect of depressing capital
accumulation and reducing income per capita.
But have not so far offered a reason why some countries may tax
capital at a higher rate than others.

Daron Acemoglu (MIT) Economic Growth Lectures 5-7 November 8, 13 & 15, 2018 73 / 83



Technological Change Comparative Dynamics

Comparative Dynamics I

Comparative statics: changes in steady state in response to changes
in parameters.

Comparative dynamics look at how the entire equilibrium path of
variables changes in response to a change in policy or parameters.

Look at the effect of a change in tax on capital (or discount rate ρ)

Consider the neoclassical growth in steady state (k∗, c∗).

Tax declines to τ′ < τ.

From Propositions above, after the change there exists a unique
steady state equilibrium that is saddle path stable.

Let this steady state be denoted by (k∗∗, c∗∗).

Since τ′ < τ, k∗∗ > k∗ while the equilibrium growth rate will remain
unchanged.
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Technological Change Comparative Dynamics

Comparative Dynamics II

Figure: drawn assuming change is unanticipated and occurs at some
date T .

At T , curve corresponding to ċ/c = 0 shifts to the right and laws of
motion represented by the phase diagram change.

Following the decline c∗ is above the stable arm of the new dynamical
system: consumption must drop immediately

Then consumption slowly increases along the stable arm

Overall level of normalized consumption will necessarily increase, since
the intersection between the curve for ċ/c = 0 and for k̇/k = 0 will
necessarily be to the left side of kgold .
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Technological Change Comparative Dynamics

Comparative Dynamics III

c(t)

kgold0
k(t)

k*

c(t)=0

k(t)=0

k**

c**

c*

k

Figure: The dynamic response of capital and consumption to a decline in capital
taxation from τ to τ′ < τ.
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Technological Change A Quantitative Evaluation

A Quantitative Evaluation I

Does the neoclassical growth model help us understand/account for
cross-country growth or income differences? Not growth differences,
since all countries have the same growth rate. What about income
differences?
Consider a world consisting of a collection J of closed neoclassical
economies (with the caveats of ignoring technological, trade and
financial linkages across countries
Each country j ∈ J admits a representative household with identical
preferences and no population growth,∫ ∞

0
exp (−ρt)

C 1−θ
j − 1
1− θ

dt. (36)

Equation (36) imposes that all countries have the same discount rate
ρ.
All countries also have access to the same production technology
given by the Cobb-Douglas production function

Yj = K 1−α
j (AHj )

α , (37)

Hj is the exogenously given stock of effective labor (human capital).
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Technological Change A Quantitative Evaluation

A Quantitative Evaluation II

The accumulation equation is

K̇j = Ij − δKj .

The only difference across countries is in the budget constraint for the
representative household,

(1+ τj ) Ij + Cj ≤ Yj , (38)

τj is the tax on investment: varies across countries because of policies
or differences in institutions/property rights enforcement.

1+ τj is also the relative price of investment goods (relative to
consumption goods): one unit of consumption goods can only be
transformed into 1/ (1+ τj ) units of investment goods.

The right-hand side variable of (38) is still Yj : assumes that τj Ij is
wasted, rather than simply redistributed to some other agents.
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Technological Change A Quantitative Evaluation

A Quantitative Evaluation III

Euler equation of the representative household

Ċj
Cj
=
1
θ

(
(1− α)

(1+ τj )

(
AHj
Kj

)α

− δ− ρ

)
.

Steady state: because A is assumed to be constant, Ċj/Cj = 0. Thus,

Kj =
(1− α)1/α AHj

[(1+ τj ) (ρ+ δ)]1/α

Thus countries with higher taxes on investment will have a lower
capital stock, lower capital per worker, and lower capital output ratio.
Substituting into (37), and comparing two countries with different
taxes (but the same human capital):

Y (τ)
Y (τ′)

=

(
1+ τ′

1+ τ

) 1−α
α

(39)
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Technological Change A Quantitative Evaluation

A Quantitative Evaluation V

For differences in τ’s across countries there is no obvious answer:

popular approach: obtain estimates of τ from the relative price of
investment goods (as compared to consumption goods)
data from the Penn World tables suggest there is a large amount of
variation in the relative price of investment goods.

E.g., countries with the highest relative price of investment goods
have relative prices almost eight times as high as countries with the
lowest relative price.
Plausible value for α from the labor share in national income is
α = 2/3, so equation (39) implies:

Y (τ)
Y (τ′)

≈ 81/2 ≈ 3.

Thus, even very large differences in taxes or distortions are unlikely to
account for the large differences in income per capita that we observe.
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Technological Change A Quantitative Evaluation

A Quantitative Evaluation VI

Parallels discussion of the Mankiw-Romer-Weil approach:

differences in income per capita unlikely to be accounted for by
differences in capital per worker alone.
need sizable differences in the effi ciency with which these factors are
used, absent in this model.

But many economists have tried (and still try) to use versions of the
neoclassical model to go further.

Motivation is simple: if instead of using α = 2/3, we take α = 1/3

Y (τ)
Y (τ′)

≈ 82 ≈ 64.

Thus if there is a way of increasing the responsiveness of capital or
other factors to distortions, predicted differences across countries can
be made much larger.
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Technological Change A Quantitative Evaluation

A Quantitative Evaluation VII

To have a model in which α = 1/3, must have additional
accumulated factors, while still keeping the share of labor income in
national product roughly around 2/3.

E.g., include human capital, but human capital differences appear to
be insuffi cient to explain much of the income per capita differences
across countries.

Or introduce other types of capital or perhaps technology that
responds to distortions in the same way as capital.
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Conclusions

Conclusions

Major contribution: open the black box of capital accumulation by
specifying the preferences of consumers.

Also by specifying individual preferences we can explicitly compare
equilibrium and optimal growth.

Paves the way for further analysis of capital accumulation, human
capital and endogenous technological progress.

Did our study of the neoclassical growth model generate new insights
about the sources of cross-country income differences and economic
growth relative to the Solow growth model? Largely no.

This model, by itself, does not enable us to answer questions about
the fundamental causes of economic growth.

But it clarifies the nature of the economic decisions so that we are in
a better position to ask such questions.
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