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Propagation of Shocks over Economic Networks Introduction

Introduction

A myriad of economic interactions reflect the propagation (and
sometimes amplification) of shocks or small impulses across different
units in the economy — from one industry, firm, bank, region,
innovator, to another.

Often, it is both convenient and conceptually useful to think of the
interaction structure of the economy as a network, so that we are
looking at the propagation of shocks over networks.

The last two lectures of this course will focus on some canonical
models of such propagation in the context of production networks
(input-output economies) and financial networks.

Propagation of supply and demand shocks across industries in the
context of an input-output economy.
Estimating such propagation (and problems of causal inference).
Sources of aggregate fluctuations—from micro shocks.
Financial networks and systemic risk.
The innovation network and the propagation of ideas.
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Propagation of Shocks over Economic Networks Plan

Plan

Shocks and interactions across industries in production networks.

Empirical challenges of causal inference in networks.

Estimating the propagation of shocks over input-output networks.

Do microeconomic shocks wash out in the aggregate? Some
theoretical insights and suggestive evidence.

Systemic risk in financial networks.

The innovation network and the propagation of ideas.

Conclusion.
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Propagation of Shocks over Economic Networks Production Networks

Production Networks

Let us consider a simple model of input-output linkages.

Based on Long and Plosser (JPE, 1993), Acemoglu, Carvalho,
Ozdaglar and Tahbaz-Salehi (Econometrica, 2012), Acemoglu,
Ozdaglar and Tahbaz-Salehi, (2015), and Acemoglu, Akcigit and Kerr
(NBER Macroeconomics Annual, 2016).

The output of each sector is used by a subset of all sectors as input
(intermediate goods) for production.

A static economy (without capital) consisting of n
sectors—generalization to dynamics, including capital accumulation
relatively straightforward and omitted for simplicity.
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Propagation of Shocks over Economic Networks Production Networks

Model

Static, perfectly competitive economy with n industries.

Production function for each industry:

yi = ezi li
αi

n

∏
j=1

x
aij
ij , i ∈ {1, .., n}

xij : quantity of goods produced by industry j and used by industry i ,
li : labor,
zi : Hicks-neutral productivity shock
Cobb-Douglas: αi + ∑n

j=1 aij = 1.

Market clearing:

yi = ci +
n

∑
j=1

xji + Gi ,

ci : final consumption of output i ,
Gi : government purchases of good i , (assumed to be wasted).
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Propagation of Shocks over Economic Networks Production Networks

Preferences

Representative household’s utility:

u(c1, c2, ..., cn) =
n

∏
i=1

c1/n
i ,

Lump-sum tax, T , to finance Gi .

Budget constraint of the household:

n

∑
i=1

pici = wL− T .
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Propagation of Shocks over Economic Networks Production Networks

Supply-side Shocks

Proposition (Part A)

The full impact of sectoral supply-side (productivity) shocks dz on sector i
is

d ln yi = dzi + ∑
j

aij × d ln yj .

which can be solved as: d ln yi = dzi︸︷︷︸
own effect

+∑
j

(hij − 1j=i )× dzj︸ ︷︷ ︸
network effect

In matrix form: d ln y = Hdz ≡ (I−A)−1︸ ︷︷ ︸
Leontief inverse

dz
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Propagation of Shocks over Economic Networks Production Networks

Supply-side Shocks

Proposition (Part A)

The full impact of sectoral supply-side (productivity) shocks dz on sector i
is

d ln yi = dzi + ∑
j

aij × d ln yj .

which can be solved as: d ln yi = dzi︸︷︷︸
own effect

+∑
j

(hij − 1j=i )× dzj︸ ︷︷ ︸
network effect

In matrix form: d ln y = Hdz ≡ (I−A)−1︸ ︷︷ ︸
Leontief inverse

dz

Implication 1 :
No upstream effects, and only downstream effects

(i.e., no effect on suppliers, only on customers of affected industries).
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Propagation of Shocks over Economic Networks Production Networks

Supply-side Shocks

Proposition (Part A)

The full impact of sectoral supply-side (productivity) shocks dz on sector i
is

d ln yi = dzi + ∑
j

aij × d ln yj .

which can be solved as: d ln yi = dzi︸︷︷︸
own effect

+∑
j

(hij − 1j=i )× dzj︸ ︷︷ ︸
network effect

In matrix form: d ln y = Hdz ≡ (I−A)−1︸ ︷︷ ︸
Leontief inverse

dz

Implication 2 :
Own effect and network effect have the same level of impact.
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Propagation of Shocks over Economic Networks Production Networks

Demand-side Shocks

Proposition (Part B)

The full impact of demand-side (dG) shocks is

d ln yi =
dGi

yi︸︷︷︸
own effect

+
n

∑
j=1

aji
dpjyj
piyi︸ ︷︷ ︸

network effect

.

In equilibrium: d ln y =
(

I− ÂT
)−1

D

(
I−1′

n

)
dG̃

where dG̃ is the vector of piGi , âij =
xij
yj

, and D = diag( 1
piyi

).
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Demand-side Shocks

Proposition (Part B)

The full impact of demand-side (dG) shocks is

d ln yi =
dGi

yi︸︷︷︸
own effect

+
n

∑
j=1

aji
dpjyj
piyi︸ ︷︷ ︸

network effect

.

In equilibrium: d ln y =
(

I− ÂT
)−1

D

(
I−1′

n

)
dG̃

where dG̃ is the vector of piGi , âij =
xij
yj

, and D = diag( 1
piyi

).

Implication 3 :
No downstream effects, and only upstream effects
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Propagation of Shocks over Economic Networks Production Networks

Demand-side Shocks

Proposition (Part B)

The full impact of demand-side (dG) shocks is

d ln yi =
dGi

yi︸︷︷︸
own effect

+
n

∑
j=1

aji
dpjyj
piyi︸ ︷︷ ︸

network effect

.

In equilibrium: d ln y =
(

I− ÂT
)−1

D

(
I−1′

n

)
dG̃

where dG̃ is the vector of piGi , âij =
xij
yj

, and D = diag( 1
piyi

).

Remark :
dG̃ has an additional impact on ALL sectors due to increased taxes. This

effect is different than what we define as “downstream effect”.
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Intuition for Supply-side Shocks

Focal sector 1 is connected to sectors
2, 3 and 4.
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Intuition for Supply-side Shocks
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Propagation of Shocks over Economic Networks Production Networks

Intuition for Supply-side Shocks

Sector 1 gets hit by a negative
productivity shock dz1 < 0.

dz1 < 0 =⇒ p1 ↑

Downstream effect:
customers are adversely affected,

y1 ↓ =⇒ x12, x14 ↓

=⇒ second round effect:
x31, x41 ↓ & p3, p4 ↑

=⇒ so on...
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Intuition for Supply-side Shocks

Why is there no upstream effect?

Because the price and quantity
effects cancel out!
p2x12 = a12p1y1
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Intuition for Supply-side Shocks

Why is there no upstream effect?

Because the price and quantity
effects cancel out!
p2x12 = a12p1y1

Daron Acemoglu (MIT) Networks October 20 and 25, 2016. 9 / 69



Propagation of Shocks over Economic Networks Production Networks

Intuition for Demand-side Shocks

Sector 1 gets hit by a negative
demand shock dG1 < 0.
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Intuition for Demand-side Shocks

dG1 < 0 =⇒ y1 ↓

Upstream effect:
suppliers are adversely affected,

y1 ↓ =⇒ x12, x14 ↓

=⇒ second round effect:
x14 ↓ =⇒ x41 ↓

=⇒ so on...
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Intuition for Demand-side Shocks

2

3

1 4

dG1 < 0 =⇒ y1 ↓

Upstream effect:
suppliers are adversely affected,

y1 ↓ =⇒ x12, x14 ↓

=⇒ second round effect:
x14 ↓ =⇒ x41 ↓

=⇒ so on...
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Propagation of Shocks over Economic Networks Production Networks

Intuition for Demand-side Shocks

2

3

1 4

Why is there no downstream effect?

Because the relative prices remain
unaffected!
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Propagation of Shocks over Economic Networks Production Networks

Ex: Downward propagation of productivity shocks

1

2

3
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Ex: Downward propagation of productivity shocks

1

2

3

d ln y1 =
dz1 + a12dz2 + a12a23dz3

1− a12a23a31
+ cons.
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Ex: Downward propagation of productivity shocks

1

2

3

d ln y1 = dz1 + a12dz2 + cons.
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Propagation of Shocks over Economic Networks Production Networks

Ex: Upstream propagation of demand-side shocks

1

2

3
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Ex: Upstream propagation of demand-side shocks

1

2

3

dỹ1 =
1

1− a12a23a31


dG̃1 + a31a23dG̃2 + a31dG̃3

− (1+a31+a31a23)
3

[
dG̃1 + dG̃2 + dG̃3

]
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Ex: Upstream propagation of demand-side shocks

1

2

3

dỹ1 = dG̃1 + a31dG̃3 −
(1 + a31)

3

[
dG̃1 + dG̃2 + dG̃3

]
,
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Propagation of Shocks over Economic Networks Production Networks

Data

Industry-level data: NBER-CES Manufacturing Industry Database
=⇒ 1991-2009.

In the first four years: 392 four-digit industries; thereafter, 384
industries for 6560 total observations.

Industry linkages: Bureau of Economic Analysis’ 1992 Input-Output
Matrix.

We compute the Leontief inverse as in theory.
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Propagation of Shocks over Economic Networks Estimating Network Effects

Identification Challenges

The difficulty of identifying are well recognized since Deaton (1990)
and Manski (1993).

Throughout, “identification” refers not to lack of identification of the
regression coefficient (of say xi or of yi on the x choices of some
neighbors/connected units), but to lack of information from an
estimation approach on the “structural” or “causal” parameters.
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Propagation of Shocks over Economic Networks Estimating Network Effects

Challenge I: Mechanical Biases

A regression of the form

yi = bownxi + bspilloverx̄i + controls + uxi , (1)

where x̄i is the average of i ’s neighbors, will not always leads to
interpretable estimates of bspillover.

Acemoglu and Angrist (2002): in the case where neighborhoods are
“partitioned”— i.e., neighbors are other units in the same area—even
if there are no spillovers, bspillover will be estimated to be positive
provided that OLS estimates of own effects differ from IV estimates
using group dummies (e.g., because of different local averages or
because of measurement error).

The problem is even worse when the regression takes the form

yi = bownxi + bspilloverȳi + controls + uyi (2)
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Propagation of Shocks over Economic Networks Estimating Network Effects

Challenge II: Correlated Effects

Unobserved errors are likely to be correlated between “neighbors”.

In terms of (1) or (2), uxi and uyi are likely to be correlated across i .

This is for two distinct but related reasons:

1 Suppose friendships are exogenously given. Two friends are still likely
to be influenced by similar taste shocks, information and influences
(because they are spending time together or because roommates are
affected by the same disturbances, a problem even for papers such as
Sacerdote (QJE, 2001) attempting to estimate endogenous effects
based on random assignment).

2 Suppose friendships are endogenously given. Then people choosing to
be friends are likely to share similar observed and unobserved
characteristics.

Empirical approaches outlined below will attempt to deal with both
mechanical biases and correlated effects.
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Propagation of Shocks over Economic Networks Estimating Network Effects

Empirical Approaches

Two approaches:

1 Exploit network structure.
2 “Network instruments”.

Both approaches assume that the network structure is known and
measured without error.
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Propagation of Shocks over Economic Networks Estimating Network Effects

Exploiting Network Structure

The most well-known example of exploiting network structure is the
creative paper by Bramoulle, Djebbari, and Fortin (Journal of
Econometrics, 2009).

Consider three agents i , j and k, and let us use the notation k ∈ N(j)
to denote that k is linked to (is a neighbor of) j .

Suppose that k ∈ N(j), j ∈ N(i), and k /∈ N(i)—i.e., k is j ’s
friend/neighbor and j is i ’s friend/neighbor, but k is not links to i .

Then, in terms of estimating (1) for of the impact of xj on yi , we can
use covariates of k , zk , as instruments.
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Propagation of Shocks over Economic Networks Estimating Network Effects

Exploiting Network Structure (continued)

But this identification strategy works only if error terms (1) and (2)
are orthogonal across non-neighbor agents.

Bramoulle et al. show how one might deal with some instances of a
priori known correlated effects.

If k and i have correlated error terms that are also correlated with
their characteristics (their x ’s), then k ’s covariates cannot be an
instrument for estimating j ’s endogenous effect on i .

But such correlation is likely to be endemic:

Geographic or social proximity between k and i likely to be high
because they share friends.
Unlikely that k and j are correlated, j and i are correlated, but k and i
are uncorrelated.

Additional problem: if the network is measured with error, then
neighbors k and i may appear not to be neighbors, creating a
violation of the exclusion restrictions.
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Network Instruments

Suppose that there is a variable—unrelated to the network—ci
orthogonal to uxi and uyi that can be used as an instrument for xi
absent any externalities, peer effects or network interactions.

Then this is a candidate to be a variable that is orthogonal to uxk and
uyk for all k 6= i .

In other words, if we have

cov(ci , u
x
i ) = cov(ci , u

y
i ) = 0,

then it is also plausible that (for any integer p)

cov(G ′ic , uxi ) = cov((Gp
i )
′c , uxi ) = cov(G ′ic , uyi ) = cov((Gp

i )
′c , uyi ) = 0.
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Network Instruments (continued)

But ci should ideally satisfy an additional condition: lack of
correlation over the network, i.e.,

cov(c , (Gp
i )
′)c) ≈ 0.

Why?

Because, otherwise, the correlated unobserved effects uxi and uyi could
project onto c .
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Estimating the Network

Does it matter if the network is not known?

Yes and no.

If there is no information on the network, then instead of a single
parameter φ or a well-defined local average of γi ’s, we would need to
estimate n(n− 1) parameters, which is not feasible.

But if the network is known up to some parameter δ, that parameter
(or parameter vector) can also be consistently estimated.
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Empirical Approach

We focus on four shocks:

1 import shocks from China;
2 federal spending changes;
3 TFP growth;
4 foreign patenting growth.

Our main regression equation:

∆ lnYi ,t = ψ∆ lnYi ,t−1

+βownShocki ,t−1

+βupstreamUpstreami ,t−1

+βdownstreamDownstreami ,t−1

+ηt + ε i ,t .
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Propagation of Shocks over Economic Networks Estimating Industry Production Linkages

Demand-side Shock I

China Trade Shocks

∆ Log real value added ∆ Log employment

∆ Dependent variable t-1 0.019 0.020 0.149*** 0.132***
(0.025) (0.025) (0.020) (0.019)

∆ Dependent variable t-2 0.047** 0.109***
(0.024) (0.020)

∆ Dependent variable t-3 0.033 0.089***
(0.021) (0.016)

Downstream effects t-1 -0.140 -0.124 -0.056 -0.044
(0.086) (0.081) (0.040) (0.037)

Upstream effects t-1 0.076*** 0.076*** 0.049*** 0.039***
(0.024) (0.023) (0.016) (0.015)

Own effects t-1 0.034*** 0.031*** 0.023*** 0.018***
(0.009) (0.009) (0.005) (0.004)

Observations 6560 5776 6560 5776
p-value: Upstream=Own 0.078 0.058 0.108 0.161
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Own effects t-1 0.034*** 0.031*** 0.023*** 0.018***
(0.009) (0.009) (0.005) (0.004)

Observations 6560 5776 6560 5776
p-value: Upstream=Own 0.078 0.058 0.108 0.161
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Demand-side Shock II

Federal Spending Shocks

∆ Log real value added ∆ Log employment

∆ Dependent variable t-1 0.019 0.018 0.158*** 0.135***
(0.025) (0.024) (0.021) (0.019)

∆ Dependent variable t-2 0.051** 0.116***
(0.023) (0.019)

∆ Dependent variable t-3 0.038* 0.102***
(0.021) (0.016)

Downstream effects t-1 0.017 0.023 0.007 0.013
(0.021) (0.021) (0.015) (0.012)

Upstream effects t-1 0.022** 0.020** 0.010* 0.011**
(0.009) (0.008) (0.006) (0.005)

Own effects t-1 0.004 0.008** 0.003 0.006***
(0.003) (0.004) (0.003) (0.002)

Observations 6560 5776 6560 5776
p-value: Upstream=Own 0.090 0.197 0.338 0.401
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Supply-side Shock I

TFP Shocks

∆ Log real value added ∆ Log employment

∆ Dependent variable t-1 -0.024 -0.031 0.141*** 0.118***
(0.040) (0.041) (0.021) (0.020)

∆ Dependent variable t-2 0.049** 0.118***
(0.023) (0.019)

∆ Dependent variable t-3 0.037* 0.102***
(0.020) (0.016)

Downstream effects t-1 0.060*** 0.047** 0.016* 0.011
(0.020) (0.020) (0.009) (0.009)

Upstream effects t-1 0.024** 0.020* 0.009 0.008
(0.011) (0.012) (0.006) (0.006)

Own effects t-1 0.004 0.007 0.006*** 0.007***
(0.007) (0.006) (0.002) (0.002)

Observations 6560 5776 6560 5776
p-value: Downstream=Own 0.005 0.039 0.299 0.654
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Supply-side Shock II

Foreign Patent Shocks

∆ Log real value added ∆ Log employment

∆ Dependent variable t-1 0.020 0.020 0.159*** 0.138***
(0.025) (0.025) (0.021) (0.020)

∆ Dependent variable t-2 0.051** 0.117***
(0.023) (0.020)

∆ Dependent variable t-3 0.037* 0.100***
(0.021) (0.016)

Downstream effects t-1 0.043*** 0.044*** 0.018*** 0.018***
(0.011) (0.011) (0.006) (0.006)

Upstream effects t-1 -0.000 0.000 -0.001 -0.000
(0.005) (0.005) (0.003) (0.003)

Own effects t-1 -0.006 -0.007* -0.008*** -0.006**
(0.004) (0.004) (0.003) (0.003)

Observations 6543 5761 6543 5761
p-value: Downstream=Own 0.000 0.000 0.000 0.001

Daron Acemoglu (MIT) Networks October 20 and 25, 2016. 27 / 69



Propagation of Shocks over Economic Networks Estimating Industry Production Linkages

Supply-side Shock II

Foreign Patent Shocks

∆ Log real value added ∆ Log employment

∆ Dependent variable t-1 0.020 0.020 0.159*** 0.138***
(0.025) (0.025) (0.021) (0.020)

∆ Dependent variable t-2 0.051** 0.117***
(0.023) (0.020)

∆ Dependent variable t-3 0.037* 0.100***
(0.021) (0.016)

Downstream effects t-1 0.043*** 0.044*** 0.018*** 0.018***
(0.011) (0.011) (0.006) (0.006)

Upstream effects t-1 -0.000 0.000 -0.001 -0.000
(0.005) (0.005) (0.003) (0.003)

Own effects t-1 -0.006 -0.007* -0.008*** -0.006**
(0.004) (0.004) (0.003) (0.003)

Observations 6543 5761 6543 5761
p-value: Downstream=Own 0.000 0.000 0.000 0.001

Daron Acemoglu (MIT) Networks October 20 and 25, 2016. 27 / 69



Propagation of Shocks over Economic Networks Estimating Industry Production Linkages

Supply-side Shock II

Foreign Patent Shocks

∆ Log real value added ∆ Log employment

∆ Dependent variable t-1 0.020 0.020 0.159*** 0.138***
(0.025) (0.025) (0.021) (0.020)

∆ Dependent variable t-2 0.051** 0.117***
(0.023) (0.020)

∆ Dependent variable t-3 0.037* 0.100***
(0.021) (0.016)

Downstream effects t-1 0.043*** 0.044*** 0.018*** 0.018***
(0.011) (0.011) (0.006) (0.006)

Upstream effects t-1 -0.000 0.000 -0.001 -0.000
(0.005) (0.005) (0.003) (0.003)

Own effects t-1 -0.006 -0.007* -0.008*** -0.006**
(0.004) (0.004) (0.003) (0.003)

Observations 6543 5761 6543 5761
p-value: Downstream=Own 0.000 0.000 0.000 0.001

Daron Acemoglu (MIT) Networks October 20 and 25, 2016. 27 / 69



Propagation of Shocks over Economic Networks Aggregate Volatility

Aggregate Implications

Let us now return to the model introduced above, and first arrive its
aggregate implications.

The most important observation is that log GDP or real value added
is given as a convex combination of sectoral shocks:

y ≡ log(GDP) = v′z,

where z ≡ [z1, . . . , zn]′ is the vector of sectoral shocks, and v the
influence vector or the vector of Domar weights or the vector of
Bonacich centrality indices defined as

vi ≡
n

∑
j=1

βjhji ,

where hij denotes entries of the Leontief inverse.
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Aggregate Implications

As originally observed by Hulten (Review of Economic Studies, 1978)
and Gabaix (Econometrica, 2011), v is also the “sales vector” of the
economy, with its elements given by

vi =
pixi

∑n
j=1 pjxj

.

In fact representation with Domar weights is true with any constant
returns to scale production function (but not the representation in
terms of Leontief inverses).
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Aggregate Volatility

Let us go back to the general framework presented above and
consider aggregate volatility—meaning the volatility of log
GDP—measured as.

σagg ≡
√

var y .

Recall that
y ≡ log(GDP) = v′z,

Hence, assuming that sectoral shocks are independent (thus
approximating idiosyncratic shocks):

σagg =

√
n

∑
i=1

σ2
i v

2
i .

From this expression, the “conventional wisdom”—e.g., as articulated
by Lucas (Theories of Business Cycles, 1984)—can be understood:

suppose vi ≈ 1
n and n is large (the economy is “well diversified”), then

σagg is trivial—no aggregate fluctuations without aggregate shocks.
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Some Theoretical Results

We first start with some simple theoretical observations questioning
the above “diversification argument” and then link the structure of
the input-output network to aggregate volatility.

We next turn to a structural empirical strategy to shed more light on
the relationship between aggregate volatility and sectoral shocks.

Finally, we provide sharper results by studying “large” (highly
diversified) economies—i.e., those with n large.
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Macroeconomic Irrelevance of Micro Shocks

We say that the network is regular if di = d for each i , where
di = ∑n

j=1 aji .

That is, each sector has a similar degree of importance as a supplier to
other sectors.

Examples of regular networks:

rings: the most “sparse” input-output matrix, where each sector grows
all of its inputs from a single other sector.
complete graphs: where each sector equally draws inputs from all
other sectors.
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Irrelevance of Micro Shocks (continued)

Suppose also that
σi = σ for each i .

Then we have that for all regular networks:

σagg =
σ√
n

(see also Dupor, Journal of Monetary Economics,1999).

Intuition: with the (log) linearity implied by the Cobb-Douglas
technologies, shocks average out exactly provided that all sectors
have the same degree.

This result is particularly interesting because rings are often
conjecture to be unstable or prone to “domino effects” (or other
types of contagion).
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Asymmetric Networks Are Fragile

However, this irrelevance is not generally correct.

In particular, Lucas’s argument is incorrect when vi ’s are far from
1/n, which happens when the network is highly asymmetric—in terms
of degrees.

The extreme example is the star network, with degrees summing to
1− α:
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Asymmetric Networks Are Fragile (continued)

In fact, it can be shown that the highest level of aggregate volatility is
generated by the star network and is equal to

σagg =
σ√

1−
(
n−1
n

)
α (1− α)

,

which is much greater than σ/
√
n when n is large.

In fact, this is not just high volatility, but systemic volatility (≈
“system-wide” volatility: shocks to the central sector spread to the
rest, creating system-wide co-movement—we return to systemic
volatility below.

Intuition: the shock to the central sector of the star does not “wash
out”.

More general result: unequal degrees—or asymmetric
networks—create additional volatility.
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What Does the US Input-Output Network Look Like?

Intersectoral network corresponding to the US input-output matrix in 1997.

For every input transaction above 5% of the total input purchases of the

destination sector, a link between two vertices is drawn.
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Asymptotic Results

To obtain sharper theoretical results, consider a sequence of
economies with input-output matrix An and n→ ∞.

So we will be looking at “law of large numbers”-type results.

Suppose that σi ∈ (σ, σ).
Then the greatest degree of “stability” or “robustness” (least
systemic risk) corresponds to

σagg ∼ 1/
√
n

(as in standard law of large numbers for independent variables).

Define the coefficient of variation of degrees (of an economy with
n sectors) as

CVn ≡
1

davg

[
1

n− 1

n

∑
i=1

(di − davg)

]1/2

,

where davg = 1
n ∑i di is the average degree.
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First-Order Results

Just considering the first-order downstream impacts,

σagg = Ω
(

1√
n
+

CVn√
n

)
.

The Ω notation implies σagg → 0 as n→ 0 no faster than 1+CVn√
n

.

For regular networks, CVn = 0, so σagg → 0 could (should) go to
zero at the rate 1√

n
.

For the star network, CVn 6→ 0 as n→ 0, so σagg 6→ 0 and the law of
large numbers fails.

cn = Ω(bn)⇐⇒ lim infn→∞ cn/bn > 0

CVn = 0 CVn = 0 CVn ∼
√
n
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First-Order Results (continued)

We can also make these results easier to apply.

We say that the degree distribution for a sequence of economies has
power law tail if, there exists β > 1 such that for each n and for
large k,

Pn (k) ∝ k−β,

where Pn (k) is the counter-cumulative distribution of degrees and β
is the shape parameter.

It can be shown that if a sequence of economies has power law tail
with shape parameter β ∈ (1, 2), then

σagg = Ω
(
n
− β−1

β −ε
)

where ε > 0 is arbitrary.

A smaller β corresponds to a “thicker” tail and thus higher coefficient
of variation, and greater fragility.
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Higher-Order Results

In the same way that first-order downstream effects do not capture
the full implications of negative shocks to a sector, the degree
distribution does not capture the full extent of asymmetry/inequality
of “connections”.

Two economies with the same degree distribution can have very
different structures of connections and very different nature of
volatility:

2 3 d1 2 3 d

1
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Higher-Order Results (continued)

We define the second-order interconnectivity coefficient as

τ2(An) ≡
n

∑
i=1

∑
j 6=i

∑
k 6=i ,j

ajiakidjdk .

This will be higher when high degree sectors share “upstream
parents”:

dH dL dH dL

low τ2

dH dH dL dL

high τ2
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Higher-Order Results (continued)

It can be shown that

σagg = Ω

(
1√
n
+

CVn√
n
+

√
τ2(An)

n

)
.

2 3 d1

τ2 = 0

2 3 d

1

τ2 ∼ n2
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Higher-Order Results (continued)

Define second-order degree as

qi ≡
n

∑
j=1

djaji .

For a sequence of economies with a power law tail for the
second-order degree with shape parameter ζ ∈ (1, 2), we have

σagg = Ω
(
n−

ζ−1
ζ −ε

)
,

for any ε > 0.

If both first and second-order degrees have power laws, then

σagg = Ω
(
n−

ζ−1
ζ −ε + n

− β−1
β

)
,

i.e., dominant term: min {β, ζ}.
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When Network Structure Does Not Matter

We say that a sequence of economies is balanced if maxi di < c for
some c .

This is clearly much weaker than regularity.

It can be shown that, for any sequence of balanced economies,

σagg ∼
1√
n

.

Once again rings and complete networks are equally stable
(emphasizing that sparseness of the input-output matrix has little to
do with aggregate volatility).
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Another Look at the US Input-Output Network

Empirical counter-cumulative distribution of first-order and
second-order degrees
Linear tail in the log-log scale −→ power law tail
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Higher-Order Results (continued)

Average (across years) estimates: β̂ = 1.38 , ζ̂ = 1.18.

ζ̂ < β̂: second-order effects dominate first-order effects.

Average (annual) standard deviation of total factor productivity
across 459 four-digit (SIC) manufacturing industries between 1958
and 2005 is 0.058.

Since manufacturing is about 20% of the economy, for the entire
economy this corresponds to 5× 459 = 2295 sectors at a comparable
level of disaggregation.

Had the structure been balanced: σagg = 0.058/
√

2295 ' 0.001.

But from the lower bound from the second-order degree distribution:

σagg ∼ σ/
√
n ≈ 0.018.
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Financial Contagion

An at-first surprising implication of the analysis so far is the result
that aggregate volatility is the same in complete and ring networks.

Is this a general result?

The answer is no, and underscores that the implications of different
network structures crucially depend on what types of interactions are
taking place over the network.

In particular, the linearity (log-linearity) is responsible for this
result—positive and negative shocks cancel out when all units have
similar “influence”.

But linearity may be a good approximation for input-output that
works, but not for finance—where, in the presence of debt-like
contracts, default (and bankruptcy) creates a major nonlinearity.
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A Simple Model of Counterparty Relations

Based on Acemoglu, Ozdaglar and Tahbaz-Salehi (mimeo, 2013). See
also Allen and Gale (JPE, 2000) and Elliott, Golub and Jackson
(mimeo, 2013) on a non-linear financial model due to cross-firm
shareholdings and bankruptcy.

Consider a network of banks (financial institutions) potentially
borrowing and lending to each other (as well as from outside creditors
and senior creditors).

All borrowing and lending is through short-term, uncollateralized debt
contracts.

Suppose that all contracts are signed at date t = 0.

Banks have long-term assets that will pay out at date t = 2, but are
illiquid, and cannot be liquidated at date t = 1.

Banks are hit by liquidity shocks at date t = 1 and also receive and
make payments on their interbank contracts.
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A Simple Model of Counterparty Relations (continued)

More specifically, banks lend to one another at t = 0 through
standard debt contracts to be repaid at t = 1.

Face values of debt of bank j to bank i : yij .

{yij} defines a financial network.

yij

i

j

Related problem: chains of trade credit—Kiyotaki and Moore
(mimeo, 1997) for theory and Jacobson and von Schedvin (mimeo,
2013) for evidence.
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A Simple Model of Counterparty Relations (continued)

Bank i invests in a project with returns at t = 1, 2.

Random return of zi at t = 1.

Deterministic return of A at t = 2 if the entire project is held to
maturity.

In addition, bank i has senior obligations in the amount v > 0.

If the bank cannot meet its obligations, it will be in bankruptcy and
has to liquidate its project with ζA.

If it still has insufficient funds, the bank will have to default on its
creditors, which will be paid on pro rata basis.

Simplify the discussion here by assuming that ζ ≈ 0, so that
liquidation of long-term assets is never sufficient to stave off default.
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Payment Equilibrium

From the above description, we have that bank j ’s actual payments
are:

xij =


yij if zj + ∑s xjs ≥ v + ∑s ysj

yij
∑s ysj

(zj − v + ∑s xjs) if v ≤ zj + ∑s xjs < v + ∑s ysj

0 if zj + ∑s xjs < v .

The first branch is when the bank is not in default.

The second is when the bank is in default but senior creditors are not
hurt.

The third is when senior creditors are not paid in full (and the rest are
not paid at all).
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Payment Equilibrium (continued)

A payment equilibrium is a fixed point {xij} of the above set of
equations (one for each bank j).

A payment equilibrium exists and is generically unique.

This generalizes Eisenberg and Noe (Mathematics of Operations
Research, 2001).
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Volatility in the Financial Network

To discuss volatility in this financial network, let us focus on the case
in which:

The financial network is regular, i.e., ∑s ysj = y for all j . (We know
from our analysis of input-output networks that asymmetries in this
quantity create one source of stemic volatility, so we are abstracting
from this).
zj = a or zj = a− ε, so that banks are potentially hit by a negative
liquidity shock at time t = 1.
Suppose also that only one bank in the network is hit by the negative
liquidity shock, −ε.
Throughout, focus on the network of size n (i.e., no asymptotic
results).
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Volatility in the Financial Network (continued)

How to quantify volatility?

The following observation gives us a simple way:

Social surplus = na− ε + number of defaults)− A.

Thus social surplus clearly related to how systemic the shock that hits
one bank becomes, suggesting a natural measure of volatility and
stability in this financial network.

We say that a network is less stable than another if it has greater
number of expected defaults.
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Small Shock vs. Large Shock Regimes

It will turn out that the size of the negative shock (or more generally
the size and the number of shocks) will matter greatly for what types
of networks are stable.

For this, let us call a regime in which ε < ε∗ the small shock regime,
and the regime in which ε > ε∗ the large shock regime.
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Stability in the Small Shock Regime

Suppose that ε < ε∗ and y > y ∗ (so that the liabilities of banks are
not too small). Then:
The complete financial network is the most stable network.
The ring financial network is the least stable network.
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Stability in the Small Shock Regime (continued)

In addition, it can be shown that if we take a γ convex combination
of the complete and the ring networks (so that

yij = (1− γ)y ring
ij + γy complete

ij ), then as γ increases, the network
becomes more stable.
Intuition: more links out from a bank implies that liabilities of that
bank are held in a more diversified manner, and losses of that bank
can be better absorbed by the financial system.
The ring is the least diversified network structure, leading to the
greatest amount of systemic volatility/instability.
In the linear/log-linear case, positive shocks and negative shocks in
different parts of the regular network canceled out. This no longer
happens because of default.
Rather, default creates domino effects.
If a bank is negatively hit, then it is unable to make payments on its
debt, and this puts its creditors (that are highly exposed to it) in
potential default, and so on.
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Stability in the Large Shock Regime

The picture is sharply different in the large shock regime.
We say that a financial network δ-connected if there exists a subset
M of banks such that the linkages between this subset and its
complement is never greater than δ—i.e., yij ≤ δ for any to banks
from this upset and its complement.
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Stability in the Large Shock Regime (continued)

Suppose that ε > ε∗ and y > y ∗. Then:

The complete and the ring financial networks are the least stable
networks.

For δ sufficiently small, a δ-connected network is more stable than the
complete and the ring networks.

Daron Acemoglu (MIT) Networks October 20 and 25, 2016. 59 / 69



Propagation of Shocks over Economic Networks Financial Contagion

Stability in the Large Shock Regime (continued)

This is a type of phase transition—meaning that the network
properties and comparative statics change sharply at a threshold
value.

Network Intuition: When shocks are large, they cannot be contained
even with full diversification and spread through the network like an
“epidemic”. In that case, insulating parts of the network from others
increases stability.

Economic Intuition: weakly connected networks make better use of
the liquidity of senior creditors.

The complete network uses the excess liquidity of non-distressed
banks, a− v > 0, very effectively, but does not use the resources of
senior creditors at all. Weakly connected networks do not utilize the
liquidity of non-distressed banks much, but do make good use of the
resources of senior creditors when needed.
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Further issues in financial networks

Endogenous networks.

The response of financial networks to policy (Erol, 2016).

Network of overlapping assets and fire sales.

Optimal intervention.

Overlapping markets (e.g., counterparty risk in interbank relations,
overlapping loan networks entry point directions).

Empirical applications.
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Innovation Networks

In addition to input-output and financial pathways, shocks the one
part of the economy propagate to the rest because of the innovation
network.

Ideas in one part of the economy (in one sector, process or technology
class) become the basis of innovation or technological improvement in
some other part of the economy—“building on the shoulders of
giants”.

Suppose, for example, that we represent innovation relations as a
network between n “technology classes” G (again with Gi denoting
the ith row of this matrix).

In the data, G corresponds to the matrix given by citation patterns.
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Innovation Networks (continued)

Then let us posit the following relationship:

xi ,t = αixi ,t−1 + φG′ixt−1+ε i ,

where xi ,t is the innovation rate in technology class i at time t and xt
denotes the vector of xi ,t ’s.

This implies that successful innovations in sectors that i cites
translate into higher innovations in the future by sector i .

In practice, important to estimate G from past data (to avoid
mechanical biases).
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The US Innovation Network

Acemoglu, Akcigit and Kerr (mimeo, 2014) perform this task using
US citation data for the baseline period, 1975-1984.

First construct the matrix G as

gjj ′ = ∑
k 6=j

Citations1975−1984
j→j

′

Citations1975−1984
j→k

where Citations1975−1984
j→k is the citation during this period from

technology class j to k—thus ideas flowing from k to j .

the denominator leaves out “self-cites”—cites from j to j .
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The US Innovation Network at the Two-Digit Level

Fig. 2: Innovation network 1975-1984. 
Network mapping of patent system using 
technology subcategories. Nodes of similar 
color are pulled from the same category of 
the USPTO system. The width of connecting 
lines indicates the strength of technological 
flows, with arrows being used in cases of 
strong asymmetry. Connections must 
account for at least 0.5% of out-bound 
citations made by a technological 
subcategory. Supplemental Fig. S1-S6 show 
variations and network properties. 

Daron Acemoglu (MIT) Networks October 20 and 25, 2016. 65 / 69



Propagation of Shocks over Economic Networks Innovation Networks

Predicting Innovation

To predict innovation using the innovation network, it is also useful to
take account of the citation lags (thus corresponding to a separate G
matrix for each citation time gap). For this purpose, construct

FlowRate1975−1984
j→j ′,a = Flow1975−1984

j→j ′,a /Patent1975−1984
j ′ ,

where Flow1975−1984
j→j ′,a is the total number of cites from technology

class j ′ to j that takes place a years after the patent from j is issued,
and Patent1975−1984

j ′ is the number of patents in cited field j ′.
Compute expected patents in sector j at the three-digit technology
class level (corresponding to 484 classes):

ExpectPatents1995−2004
j ,t = ∑

j ′ 6=j
∑

a=1,10

FlowRate1975−1984
j→j ′,a Patents1985−1994

j ′,t=t0+a .

This only takes into account a 10-year citation window and sums over
all sectors citing j , using FlowRate1975−1984

j→j ′,a as weights (and j → j
excluded).
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Predicting Innovation (continued)

The relationship between expected patents and actual patents
(second panel taking out technology class and year fixed effects).
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Interpretation and Current Work

This descriptive exercise provides fairly strong (albeit reduced-form)
evidence that ideas and innovations spread through the
citation/innovation network.

This supports the view that innovation is a cumulative process
building on innovation in other fields.

This evidence would also plausibly suggest that medium-term
propagation of “idea shocks” will be through the innovation network.

One use of this relationship is as a potential source of variation in
technology.

If ExpectPatentsj ,t is high for some sector relative to others, then we
can expect that sector to have a greater number of new innovations
and thus a greater improvement in technology.

Acemoglu, Akcigit and Kerr (2014) use this source of variation to
investigate the relationship between technology and employment at
the city and industry level.
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Conclusion

Networks are also useful vehicle for the study of propagation of shocks
at the micro or the microeconomic level across various different units.

This brief lecture focused on propagation of shocks across sectors,
financial institutions and different types of innovations/technology
classes.

Other important linkages would include geographic areas, labor
markets, firms, and countries.

This is another area open for new theoretical and empirical work.

Daron Acemoglu (MIT) Networks October 20 and 25, 2016. 69 / 69


	Propagation of Shocks over Economic Networks
	Introduction
	Plan
	Production Networks
	Estimating Network Effects
	Estimating Industry Production Linkages
	Aggregate Volatility
	Asymptotic Results
	Another Look at the Data
	Financial Contagion
	Innovation Networks
	Conclusion


