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Solow Growth Model Solow Growth Model

Solow Growth Model

Develop a simple framework for the proximate causes and the
mechanics of economic growth and cross-country income differences.

Solow-Swan model named after Robert (Bob) Solow and Trevor
Swan, or simply the Solow model

Before Solow growth model, the most common approach to economic
growth built on the Harrod-Domar model.

Harrod-Domar mdel emphasized potential dysfunctional aspects of
growth: e.g, how growth could go hand-in-hand with increasing
unemployment.

Solow model demonstrated why the Harrod-Domar model was not an
attractive place to start.

At the center of the Solow growth model is the neoclassical aggregate
production function.
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Solow Growth Model Households and Production

Households and Production I

Closed economy, with a unique final good.

Discrete time running to an infinite horizon, time is indexed by
t = 0, 1, 2, ....

Economy is inhabited by a large number of households, and for now
households will not be optimizing.

This is the main difference between the Solow model and the
neoclassical growth model.

To fix ideas, assume all households are identical, so the economy
admits a representative household.
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Solow Growth Model Households and Production

Households and Production II

Assume households save a constant exogenous fraction s of their
disposable income
Same assumption used in basic Keynesian models and in the
Harrod-Domar model; at odds with reality.
Assume all firms have access to the same production function:
economy admits a representative firm, with a representative (or
aggregate) production function.
Aggregate production function for the unique final good is

Y (t) = F [K (t) , L (t) ,A (t)] (1)

Assume capital is the same as the final good of the economy, but
used in the production process of more goods.
A (t) is a shifter of the production function (1). Broad notion of
technology.
Major assumption: technology is free; it is publicly available as a
non-excludable, non-rival good.
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Solow Growth Model Households and Production

Key Assumption

Assumption 1 (Continuity, Differentiability, Positive and Diminishing
Marginal Products, and Constant Returns to Scale) The
production function F : R3

+ → R+ is twice continuously
differentiable in K and L, and satisfies

FK (K , L,A) ≡
∂F (·)

∂K
> 0, FL(K , L,A) ≡

∂F (·)
∂L

> 0,

FKK (K , L,A) ≡
∂2F (·)

∂K 2
< 0, FLL(K , L,A) ≡

∂2F (·)
∂L2

< 0.

Moreover, F exhibits constant returns to scale in K and L.

Assume F exhibits constant returns to scale in K and L. I.e., it is
linearly homogeneous (homogeneous of degree 1) in these two
variables.
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Solow Growth Model Households and Production

Review

Definition Let K be an integer. The function g : RK+2 → R is
homogeneous of degree m in x ∈ R and y ∈ R if and only if

g (λx ,λy , z) = λmg (x , y , z) for all λ ∈ R+ and z ∈ RK .

Theorem (Euler’s Theorem) Suppose that g : RK+2 → R is
continuously differentiable in x ∈ R and y ∈ R, with partial
derivatives denoted by gx and gy and is homogeneous of
degree m in x and y . Then

mg (x , y , z) = gx (x , y , z) x + gy (x , y , z) y

for all x ∈ R, y ∈ R and z ∈ RK .

Moreover, gx (x , y , z) and gy (x , y , z) are themselves
homogeneous of degree m− 1 in x and y .
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Solow Growth Model Market Structure, Endowments and Market Clearing

Market Structure, Endowments and Market Clearing I

We will assume that markets are competitive, so ours will be a
prototypical competitive general equilibrium model.
Households own all of the labor, which they supply inelastically.
Endowment of labor in the economy, L̄ (t), and all of this will be
supplied regardless of the price.
The labor market clearing condition can then be expressed as:

L (t) = L̄ (t)

for all t, where L (t) denotes the demand for labor (and also the level
of employment).
More generally, should be written in complementary slackness form.
In particular, let the wage rate at time t be w (t), then the labor
market clearing condition takes the form

L (t) ≤ L̄ (t) ,w (t) ≥ 0 and (L (t)− L̄ (t))w (t) = 0
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Solow Growth Model Market Structure, Endowments and Market Clearing

Market Structure, Endowments and Market Clearing II

But Assumption 1 and competitive labor markets make sure that
wages have to be strictly positive.

Households also own the capital stock of the economy and rent it to
firms.

Denote the rental price of capital at time t be R (t).

Capital market clearing condition:

K s (t) = K d (t)

Take households’initial holdings of capital, K (0), as given

P (t) is the price of the final good at time t, normalize the price of
the final good to 1 in all periods.

Build on an insight by Kenneth Arrow (Arrow, 1964) that it is
suffi cient to price securities (assets) that transfer one unit of
consumption from one date (or state of the world) to another.

Daron Acemoglu (MIT) Economic Growth Lectures 1-3 October 21, 23 and 28, 2014. 8 / 88



Solow Growth Model Market Structure, Endowments and Market Clearing

Market Structure, Endowments and Market Clearing III

Implies that we need to keep track of an interest rate across periods,
r (t), and this will enable us to normalize the price of the final good
to 1 in every period.

General equilibrium economies, where different commodities
correspond to the same good at different dates.

The same good at different dates (or in different states or localities)
is a different commodity.

Therefore, there will be an infinite number of commodities.

Assume capital depreciates, with “exponential form,”at the rate δ:
out of 1 unit of capital this period, only 1− δ is left for next period.

Loss of part of the capital stock affects the interest rate (rate of
return to savings) faced by the household.

Interest rate faced by the household will be r (t) = R (t)− δ.
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Solow Growth Model Firm Optimization

Firm Optimization I

Only need to consider the problem of a representative firm:

max
L(t)≥0,K (t)≥0

F [K (t), L(t),A(t)]− w (t) L (t)− R (t)K (t) .

Since there are no irreversible investments or costs of adjustments, the
production side can be represented as a static maximization problem.

Equivalently, cost minimization problem.

Features worth noting:
1 Problem is set up in terms of aggregate variables.
2 Nothing multiplying the F term, price of the final good has normalized
to 1.

3 Already imposes competitive factor markets: firm is taking as given
w (t) and R (t).

4 Concave problem, since F is concave.
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Solow Growth Model Firm Optimization

Firm Optimization II

Since F is differentiable, first-order necessary conditions imply:

w (t) = FL[K (t), L(t),A(t)], (2)

and
R (t) = FK [K (t), L(t),A(t)]. (3)

Note also that in (2) and (3), we used K (t) and L (t), the amount of
capital and labor used by firms.

In fact, solving for K (t) and L (t), we can derive the capital and labor
demands of firms in this economy at rental prices R (t) and w (t).

Thus we could have used K d (t) instead of K (t), but this additional
notation is not necessary.
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Solow Growth Model Firm Optimization

Firm Optimization III

Proposition Suppose Assumption 1 holds. Then in the equilibrium of the
Solow growth model, firms make no profits, and in particular,

Y (t) = w (t) L (t) + R (t)K (t) .

Proof: Follows immediately from Euler Theorem for the case of
m = 1, i.e., constant returns to scale.

Thus firms make no profits, so ownership of firms does not need to be
specified.
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Solow Growth Model Firm Optimization

Second Key Assumption

Assumption 2 (Inada conditions) F satisfies the Inada conditions

lim
K→0

FK (·) = ∞ and lim
K→∞

FK (·) = 0 for all L > 0 all A

lim
L→0

FL (·) = ∞ and lim
L→∞

FL (·) = 0 for all K > 0 all A.

Important in ensuring the existence of interior equilibria.

It can be relaxed quite a bit, though useful to get us started.
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Solow Growth Model Firm Optimization

Production Functions

F(K, L, A)

K
0

K
0

Panel A Panel B

F(K, L, A)

Figure: Production functions and the marginal product of capital. The example in
Panel A satisfies the Inada conditions in Assumption 2, while the example in
Panel B does not.
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The Solow Model in Discrete Time Fundamental Law of Motion of the Solow Model

Fundamental Law of Motion of the Solow Model I

Recall that K depreciates exponentially at the rate δ, so

K (t + 1) = (1− δ)K (t) + I (t) , (4)

where I (t) is investment at time t.

From national income accounting for a closed economy,

Y (t) = C (t) + I (t) , (5)

Behavioral rule of the constant saving rate simplifies the structure of
equilibrium considerably.

Note not derived from the maximization of utility function: welfare
comparisons have to be taken with a grain of salt.
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The Solow Model in Discrete Time Fundamental Law of Motion of the Solow Model

Fundamental Law of Motion of the Solow Model II

Since the economy is closed (and there is no government spending),

S (t) = I (t) = Y (t)− C (t) .

Individuals are assumed to save a constant fraction s of their income,

S (t) = sY (t) , (6)

C (t) = (1− s)Y (t) (7)

Implies that the supply of capital resulting from households’behavior
can be expressed as

K s (t) = (1− δ)K (t) + S (t) = (1− δ)K (t) + sY (t) .
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The Solow Model in Discrete Time Fundamental Law of Motion of the Solow Model

Fundamental Law of Motion of the Solow Model III

Setting supply and demand equal to each other, this implies
K s (t) = K (t).

We also have L (t) = L̄ (t).

Combining these market clearing conditions with (1) and (4), we
obtain the fundamental law of motion the Solow growth model:

K (t + 1) = sF [K (t) , L (t) ,A (t)] + (1− δ)K (t) . (8)

Nonlinear difference equation.

Equilibrium of the Solow growth model is described by this equation
together with laws of motion for L (t) (or L̄ (t)) and A (t).
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The Solow Model in Discrete Time Definition of Equilibrium

Definition of Equilibrium I

Solow model is a mixture of an old-style Keynesian model and a
modern dynamic macroeconomic model.

Households do not optimize, but firms still maximize and factor
markets clear.

Definition In the basic Solow model for a given sequence of
{L (t) ,A (t)}∞

t=0 and an initial capital stock K (0), an
equilibrium path is a sequence of capital stocks, output
levels, consumption levels, wages and rental rates
{K (t) ,Y (t) ,C (t) ,w (t) ,R (t)}∞

t=0 such that K (t)
satisfies (8), Y (t) is given by (1), C (t) is given by (7), and
w (t) and R (t) are given by (2) and (3).

Note an equilibrium is defined as an entire path of allocations and
prices: not a static object.
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The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth and Technological
Progress I

Make some further assumptions, which will be relaxed later:
1 There is no population growth; total population is constant at some
level L > 0. Since individuals supply labor inelastically, L (t) = L.

2 No technological progress, so that A (t) = A.

Define the capital-labor ratio of the economy as

k (t) ≡ K (t)
L

, (9)

Using the constant returns to scale assumption, we can express
output (income) per capita, y (t) ≡ Y (t) /L, as

y (t) = F
[
K (t)
L

, 1,A
]

≡ f (k (t)) . (10)
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The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth and Technological
Progress II

Note that f (k) here depends on A, so I could have written f (k,A);
but A is constant and can be normalized to A = 1.

From Euler Theorem,

R (t) = f ′ (k (t)) > 0 and

w (t) = f (k (t))− k (t) f ′ (k (t)) > 0. (11)

Both are positive from Assumption 1.
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The Solow Model in Discrete Time Equilibrium

Example:The Cobb-Douglas Production Function I

Very special production function but widely used:

Y (t) = F [K (t) , L (t) ,A (t)]

= AK (t)α L (t)1−α , 0 < α < 1.

Satisfies Assumptions 1 and 2.
Dividing both sides by L (t),

y (t) = Ak (t)α ,

From equation (11),

R (t) =
∂Ak (t)α

∂k (t)
= αAk (t)−(1−α) .

From the Euler Theorem,

w (t) = y (t)− R (t) k (t) = (1− α)Ak (t)α .
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The Solow Model in Discrete Time Equilibrium

Example:The Cobb-Douglas Production Function II

Alternatively, in terms of the original Cobb-Douglas production
function,

R (t) = αAK (t)α−1 L (t)1−α

= αAk (t)−(1−α) ,

and similarly, from (11),

w (t) = (1− α)AK (t)α L (t)−α

= (1− α)Ak (t)α ,

verifying the Euler Theorem in this case.
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The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth and Technological
Progress I

The per capita representation of the aggregate production function
enables us to divide both sides of (8) by L to obtain:

k (t + 1) = sf (k (t)) + (1− δ) k (t) . (12)

Since it is derived from (8), it also can be referred to as the
equilibrium difference equation of the Solow model
The other equilibrium quantities can be obtained from the
capital-labor ratio k (t).

Definition A steady-state equilibrium without technological progress
and population growth is an equilibrium path in which
k (t) = k∗ for all t.

The economy will tend to this steady state equilibrium over time (but
never reach it in finite time).
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The Solow Model in Discrete Time Equilibrium

Steady-State Capital-Labor Ratio

k(t+1)

k(t)

45°

sf(k(t))+(1–δ)k(t)
k*

k*0

Figure: Determination of the steady-state capital-labor ratio in the Solow model
without population growth and technological change.
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The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth and Technological
Progress II

Thick curve represents (12) and the dashed line corresponds to the
45◦ line.

Their (positive) intersection gives the steady-state value of the
capital-labor ratio k∗,

f (k∗)
k∗

=
δ

s
. (13)

There is another intersection at k = 0, because the figure assumes
that f (0) = 0.

Will ignore this intersection throughout:
1 If capital is not essential, f (0) will be positive and k = 0 will cease to
be a steady state equilibrium

2 This intersection, even when it exists, is an unstable point
3 It has no economic interest for us.
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The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth and Technological
Progress III

k(t+1)

k(t)

45°

k*

k*

ε

sf(k(t))+(1−δ)k(t)

0

Figure: Unique steady state in the basic Solow model when f (0) = ε > 0.
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The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth and Technological
Progress IV

Alternative visual representation of the steady state: intersection
between δk and the function sf (k). Useful because:

1 Depicts the levels of consumption and investment in a single figure.
2 Emphasizes the steady-state equilibrium sets investment, sf (k), equal
to the amount of capital that needs to be “replenished”, δk .
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The Solow Model in Discrete Time Equilibrium

Consumption and Investment in Steady State

output

k(t)

f(k*)

k*

δk(t)

f(k(t))

sf(k*)
sf(k(t))

consumption

investment

0
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The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth and Technological
Progress V

Proposition Consider the basic Solow growth model and suppose that
Assumptions 1 and 2 hold. Then there exists a unique steady
state equilibrium where the capital-labor ratio k∗ ∈ (0,∞) is
given by (13), per capita output is given by

y ∗ = f (k∗) (14)

and per capita consumption is given by

c∗ = (1− s) f (k∗) . (15)
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The Solow Model in Discrete Time Equilibrium

Proof

The preceding argument establishes that any k∗ that satisfies (13) is
a steady state.

To establish existence, note that from Assumption 2 (and from
L’Hospital’s rule), limk→0 f (k) /k = ∞ and limk→∞ f (k) /k = 0.
Moreover, f (k) /k is continuous from Assumption 1, so by the
Intermediate Value Theorem there exists k∗ such that (13) is satisfied.

To see uniqueness, differentiate f (k) /k with respect to k, which
gives

∂ [f (k) /k ]
∂k

=
f ′ (k) k − f (k)

k2
= − w

k2
< 0, (16)

where the last equality uses (11).

Since f (k) /k is everywhere (strictly) decreasing, there can only exist
a unique value k∗ that satisfies (13).

Equations (14) and (15) then follow by definition.
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The Solow Model in Discrete Time Equilibrium

Non-Existence and Non-Uniqueness

k(t+1)

k(t)

45°

sf(k(t))+(1–δ)k(t)

0

k(t+1)

k(t)

45°

sf(k(t))+(1–δ)k(t)

0

k(t+1)

k(t)

45°

sf(k(t))+(1–δ)k(t)

0

0
Panel A Panel B Panel C

Figure: Examples of nonexistence and nonuniqueness of interior steady states
when Assumptions 1 and 2 are not satisfied.
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The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth and Technological
Progress VI

Comparative statics with respect to s, a and δ straightforward for k∗

and y ∗.
But c∗ will not be monotone in the saving rate (think, for example, of
s = 1).
In fact, there will exist a specific level of the saving rate, sgold ,
referred to as the “golden rule” saving rate, which maximizes c∗.
But cannot say whether the golden rule saving rate is “better” than
some other saving rate.
Write the steady state relationship between c∗ and s and suppress the
other parameters:

c∗ (s) = (1− s) f (k∗ (s)) ,
= f (k∗ (s))− δk∗ (s) ,

The second equality exploits that in steady state sf (k) = δk.
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The Solow Model in Discrete Time Equilibrium

Equilibrium Without Population Growth and Technological
Progress X

Differentiating with respect to s,

∂c∗ (s)
∂s

=
[
f ′ (k∗ (s))− δ

] ∂k∗

∂s
. (17)

sgold is such that ∂c∗ (sgold ) /∂s = 0. The corresponding steady-state
golden rule capital stock is defined as k∗gold .

Proposition In the basic Solow growth model, the highest level of
steady-state consumption is reached for sgold , with the
corresponding steady state capital level k∗gold such that

f ′
(
k∗gold

)
= δ. (18)
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The Solow Model in Discrete Time Equilibrium

The Golden Rule

consumption

savings rate

(1–s)f(k*gold)

s*gold 10

Figure: The “golden rule” level of savings rate, which maximizes steady-state
consumption.
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The Solow Model in Discrete Time Equilibrium

Dynamic Ineffi ciency

When the economy is below k∗gold , higher saving will increase
consumption; when it is above k∗gold , steady-state consumption can be
increased by saving less.

In the latter case, capital-labor ratio is too high so that individuals are
investing too much and not consuming enough (dynamic ineffi ciency).

But no utility function, so statements about “ineffi ciency”have to be
considered with caution.

Such dynamic ineffi ciency will not arise once we endogenize
consumption-saving decisions.
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics

Summing up: the Discrete-Time Solow Model

Per capita capital stock evolves according to

k (t + 1) = sf (k (t)) + (1− δ) k (t) .

The steady-state value of the capital-labor ratio k∗ is given by

f (k∗)
k∗

=
δ

s
.

Consumption is given by

C (t) = (1− s)Y (t)

And factor prices are given by

R (t) = f ′ (k (t)) > 0 and

w (t) = f (k (t))− k (t) f ′ (k (t)) > 0.
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics

Steady State Equilibrium

k(t+1)

k(t)

45°

sf(k(t))+(1–δ)k(t)
k*

k*0

Figure: Steady-state capital-labor ratio in the Solow model.
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics

Transitional Dynamics

Equilibrium path: not simply steady state, but entire path of capital
stock, output, consumption and factor prices.

In engineering and physical sciences, equilibrium is point of rest of
dynamical system, thus the steady state equilibrium.
In economics, non-steady-state behavior also governed by optimizing
behavior of households and firms and market clearing.

Need to study the “transitional dynamics”of the equilibrium
difference equation (12) starting from an arbitrary initial capital-labor
ratio k (0) > 0.

Key question: whether economy will tend to steady state and how it
will behave along the transition path.
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics

Transitional Dynamics: Review I

Consider the nonlinear system of autonomous difference equations,

x (t + 1) = G (x (t)) , (19)

x (t) ∈ Rn and G : Rn → Rn.
Let x∗ be a fixed point of the mapping G (·), i.e.,

x∗ = G (x∗) .

x∗ is sometimes referred to as “an equilibrium point”of (19).
We will refer to x∗ as a stationary point or a steady state of (19).

Definition A steady state x∗ is (locally) asymptotically stable if there
exists an open set B (x∗) 3 x∗ such that for any solution
{x (t)}∞

t=0 to (19) with x (0) ∈ B (x∗), we have x (t)→ x∗.
Moreover, x∗ is globally asymptotically stable if for all
x (0) ∈ Rn, for any solution {x (t)}∞

t=0, we have x (t)→ x∗.
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics

Transitional Dynamics: Review II

Simple Result About Stability

Let x (t) , a, b ∈ R, then the unique steady state of the linear
difference equation x (t + 1) = ax (t) + b is globally asymptotically
stable (in the sense that x (t)→ x∗ = b/ (1− a)) if |a| < 1.
Suppose that g : R→ R is differentiable at the steady state x∗,
defined by g (x∗) = x∗. Then, the steady state of the nonlinear
difference equation x (t + 1) = g (x (t)), x∗, is locally asymptotically
stable if |g ′ (x∗)| < 1. Moreover, if |g ′ (x)| < 1 for all x ∈ R, then
x∗ is globally asymptotically stable.
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics

Transitional Dynamics in the Discrete Time Solow Model

Proposition Suppose that Assumptions 1 and 2 hold, then the
steady-state equilibrium of the Solow growth model
described by the difference equation (12) is globally
asymptotically stable, and starting from any k (0) > 0, k (t)
monotonically converges to k∗.
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics

Proof of Proposition: Transitional Dyamics I

Let g (k) ≡ sf (k) + (1− δ) k. First observe that g ′ (k) > 0 for all k.

Next, from (12),
k (t + 1) = g (k (t)) , (20)

with a unique steady state at k∗.

From (13), the steady-state capital k∗ satisfies δk∗ = sf (k∗), or

k∗ = g (k∗) . (21)

Recall that f (·) is concave and differentiable from Assumption 1 and
satisfies f (0) ≥ 0 from Assumption 2.
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics

Proof of Proposition: Transitional Dyamics II

For any strictly concave differentiable function,

f (k) > f (0) + kf ′ (k) ≥ kf ′ (k) , (22)

The second inequality uses the fact that f (0) ≥ 0.
Since (22) implies that δ = sf (k∗) /k∗ > sf ′ (k∗), we have
g ′ (k∗) = sf ′ (k∗) + 1− δ < 1. Therefore,

g ′ (k∗) ∈ (0, 1) .

The Simple Result then establishes local asymptotic stability.
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics

Proof of Proposition: Transitional Dyamics III

To prove global stability, note that for all k (t) ∈ (0, k∗),

k (t + 1)− k∗ = g (k (t))− g (k∗)

= −
∫ k ∗

k (t)
g ′ (k) dk,

< 0

First line follows by subtracting (21) from (20), second line uses the
fundamental theorem of calculus, and third line follows from the
observation that g ′ (k) > 0 for all k.
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics

Proof of Proposition: Transitional Dyamics IV

Next, (12) also implies

k (t + 1)− k (t)
k (t)

= s
f (k (t))
k (t)

− δ

> s
f (k∗)
k∗

− δ

= 0.

Moreover, for any k (t) ∈ (0, k∗ − ε), this is uniformly so.
Second line uses the fact that f (k) /k is decreasing in k (from (22)
above) andlast line uses the definition of k∗.
These two arguments together establish that for all k (t) ∈ (0, k∗),
k (t + 1) ∈ (k (t) , k∗).
An identical argument implies that for all k (t) > k∗,
k (t + 1) ∈ (k∗, k (t)).
Therefore, {k (t)}∞

t=0 monotonically converges to k
∗ and is globally

stable.
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics

Transitional Dynamics III

Stability result can be seen diagrammatically in the Figure:

Starting from initial capital stock k (0) < k∗, economy grows towards
k∗, capital deepening and growth of per capita income.
If economy were to start with k ′ (0) > k∗, reach the steady state by
decumulating capital and contracting.

As a consequence:

Proposition Suppose that Assumptions 1 and 2 hold, and k (0) < k∗,
then {w (t)}∞

t=0 is an increasing sequence and {R (t)}
∞
t=0 is

a decreasing sequence. If k (0) > k∗, the opposite results
apply.

Thus far Solow growth model has a number of nice properties, but no
growth, except when the economy starts with k (0) < k∗.
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Transitional Dynamics in the Discrete Time Solow Model Transitional Dynamics

Transitional Dynamics in Figure

45°

k*

k*k(0) k’(0)0

k(t+1)

k(t)

Figure: Transitional dynamics in the basic Solow model.
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The Solow Model in Continuous Time Towards Continuous Time

From Difference to Differential Equations I

Start with a simple difference equation

x (t + 1)− x (t) = g (x (t)) . (23)

Now consider the following approximation for any ∆t ∈ [0, 1] ,

x (t + ∆t)− x (t) ' ∆t · g (x (t)) ,

When ∆t = 0, this equation is just an identity. When ∆t = 1, it gives
(23).

In-between it is a linear approximation, not too bad if
g (x) ' g (x (t)) for all x ∈ [x (t) , x (t + 1)]
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The Solow Model in Continuous Time Towards Continuous Time

From Difference to Differential Equations II

Divide both sides of this equation by ∆t, and take limits

lim
∆t→0

x (t + ∆t)− x (t)
∆t

= ẋ (t) ' g (x (t)) , (24)

where

ẋ (t) ≡ dx (t)
dt

Equation (24) is a differential equation representing (23) for the case
in which t and t + 1 is “small”.
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The Solow Model in Continuous Time Steady State in Continuous Time

The Fundamental Equation of the Solow Model in
Continuous Time I

Nothing has changed on the production side, so (11) still give the
factor prices, now interpreted as instantaneous wage and rental rates.

Savings are again
S (t) = sY (t) ,

Consumption is given by (7) above.

Introduce population growth,

L (t) = exp (nt) L (0) . (25)

Recall

k (t) ≡ K (t)
L (t)

,
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The Solow Model in Continuous Time Steady State in Continuous Time

The Fundamental Equation of the Solow Model in
Continuous Time II

Implies

k̇ (t)
k (t)

=
K̇ (t)
K (t)

− L̇ (t)
L (t)

,

=
K̇ (t)
K (t)

− n.

From the limiting argument leading to equation (24),

K̇ (t) = sF [K (t) , L (t) ,A(t)]− δK (t) .

Using the definition of k (t) and the constant returns to scale
properties of the production function,

k̇ (t)
k (t)

= s
f (k (t))
k (t)

− (n+ δ) , (26)
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The Solow Model in Continuous Time Steady State in Continuous Time

The Fundamental Equation of the Solow Model in
Continuous Time III

Definition In the basic Solow model in continuous time with population
growth at the rate n, no technological progress and an initial
capital stock K (0), an equilibrium path is a sequence of
capital stocks, labor, output levels, consumption levels,
wages and rental rates
[K (t) , L (t) ,Y (t) ,C (t) ,w (t) ,R (t)]∞t=0 such that L (t)
satisfies (25), k (t) ≡ K (t) /L (t) satisfies (26), Y (t) is
given by the aggregate production function, C (t) is given by
(7), and w (t) and R (t) are given by (11).

As before, steady-state equilibrium involves k (t) remaining constant
at some level k∗.
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The Solow Model in Continuous Time Steady State in Continuous Time

Steady State With Population Growth

output

k(t)

f(k*)

k*

f(k(t))

sf(k*)
sf(k(t))

consumption

investment

0

(δ+n)k(t)

Figure: Investment and consumption in the steady-state equilibrium with
population growth.
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The Solow Model in Continuous Time Steady State in Continuous Time

Steady State of the Solow Model in Continuous Time

Equilibrium path (26) has a unique steady state at k∗, which is given
by a slight modification of (13) above:

f (k∗)
k∗

=
n+ δ

s
. (27)

Proposition Consider the basic Solow growth model in continuous time
and suppose that Assumptions 1 and 2 hold. Then there
exists a unique steady state equilibrium where the
capital-labor ratio is equal to k∗ ∈ (0,∞) and is given by
(27), per capita output is given by

y ∗ = f (k∗)

and per capita consumption is given by

c∗ = (1− s) f (k∗) .

Similar comparative statics to the discrete time model.
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Transitional Dynamics in the Continuous Time Solow Model Dynamics in Continues Time

Transitional Dynamics in the Continuous Time Solow
Model I

Simple Result about Stability In Continuous Time Model

Let g : R→ R be a differentiable function and suppose that there
exists a unique x∗ such that g (x∗) = 0. Moreover, suppose g (x) < 0
for all x > x∗ and g (x) > 0 for all x < x∗. Then the steady state of
the nonlinear differential equation ẋ (t) = g (x (t)), x∗, is globally
asymptotically stable, i.e., starting with any x (0), x (t)→ x∗.
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Transitional Dynamics in the Continuous Time Solow Model Dynamics in Continues Time

Simple Result in Figure

k(t)

f(k(t))

k(t)

k(t)
s –(δ+g+n)

k*
0 k(t)
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Transitional Dynamics in the Continuous Time Solow Model Dynamics in Continues Time

Transitional Dynamics in the Continuous Time Solow
Model II

Proposition Suppose that Assumptions 1 and 2 hold, then the basic
Solow growth model in continuous time with constant
population growth and no technological change is globally
asymptotically stable, and starting from any k (0) > 0,
k (t)→ k∗.

Proof: Follows immediately from the Theorem above by noting
whenever k < k∗, sf (k)− (n+ δ) k > 0 and whenever k > k∗,
sf (k)− (n+ δ) k < 0.

Figure: plots the right-hand side of (26) and makes it clear that
whenever k < k∗, k̇ > 0 and whenever k > k∗, k̇ < 0, so k
monotonically converges to k∗.
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A First Look at Sustained Growth Sustained Growth

A First Look at Sustained Growth I

Cobb-Douglas already showed that when α is close to 1, adjustment
to steady-state level can be very slow.

Simplest model of sustained growth essentially takes α = 1 in terms
of the Cobb-Douglas production function above.

Relax Assumptions 1 and 2 and suppose

F [K (t) , L (t) ,A (t)] = AK (t) , (28)

where A > 0 is a constant.

So-called “AK”model, and in its simplest form output does not even
depend on labor.

Results we would like to highlight apply with more general constant
returns to scale production functions,

F [K (t) , L (t) ,A (t)] = AK (t) + BL (t) , (29)
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A First Look at Sustained Growth Sustained Growth

A First Look at Sustained Growth II

Assume population grows at n as before (cfr. equation (25)).

Combining with the production function (28),

k̇ (t)
k (t)

= sA− δ− n.

Therefore, if sA− δ− n > 0, there will be sustained growth in the
capital-labor ratio.

From (28), this implies that there will be sustained growth in output
per capita as well.
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A First Look at Sustained Growth Sustained Growth

A First Look at Sustained Growth III

Proposition Consider the Solow growth model with the production
function (28) and suppose that sA− δ− n > 0. Then in
equilibrium, there is sustained growth of output per capita at
the rate sA− δ− n. In particular, starting with a
capital-labor ratio k (0) > 0, the economy has

k (t) = exp ((sA− δ− n) t) k (0)

and
y (t) = exp ((sA− δ− n) t)Ak (0) .

Note no transitional dynamics.
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A First Look at Sustained Growth Sustained Growth

Sustained Growth in Figure

45°

(A−δ−n)k(t)
k(t+1)

k(0)0
k(t)

Figure: Sustained growth with the linear AK technology with sA− δ− n > 0.
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A First Look at Sustained Growth Sustained Growth

A First Look at Sustained Growth IV

Unattractive features:
1 Knife-edge case, requires the production function to be ultimately
linear in the capital stock.

2 Implies that as time goes by the share of national income accruing to
capital will increase towards 1.

3 Technological progress seems to be a major (perhaps the most major)
factor in understanding the process of economic growth.
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Solow Model with Technological Progress Balanced Growth

Balanced Growth I

Production function F [K (t) , L (t) ,A (t)] is too general.

May not have balanced growth, i.e. a path of the economy consistent
with the Kaldor facts (Kaldor, 1963).

Kaldor facts:

while output per capita increases, the capital-output ratio, the interest
rate, and the distribution of income between capital and labor remain
roughly constant.
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Solow Model with Technological Progress Balanced Growth

Historical Factor Shares
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Figure: Capital and Labor Share in the U.S. GDP.
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Solow Model with Technological Progress Balanced Growth

Balanced Growth II

Note capital share in national income is about 1/3, while the labor
share is about 2/3.

Ignoring land, not a major factor of production.

But in poor countries land is a major factor of production.

This pattern often makes economists choose AK 1/3L2/3.

Main advantage from our point of view is that balanced growth is the
same as a steady-state in transformed variables

i.e., we will again have k̇ = 0, but the definition of k will change.

But important to bear in mind that growth has many non-balanced
features.

e.g., the share of different sectors changes systematically.
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Solow Model with Technological Progress Balanced Growth

Types of Neutral Technological Progress I

For some constant returns to scale function F̃ :
Hicks-neutral technological progress:

F̃ [K (t) , L (t) ,A (t)] = A (t) F [K (t) , L (t)] ,

Relabeling of the isoquants (without any change in their shape) of the
function F̃ [K (t) , L (t) ,A (t)] in the L-K space.

Solow-neutral technological progress,

F̃ [K (t) , L (t) ,A (t)] = F [A (t)K (t) , L (t)] .

Capital-augmenting progress: isoquants shifting with technological
progress in a way that they have constant slope at a given labor-output
ratio.

Harrod-neutral technological progress,

F̃ [K (t) , L (t) ,A (t)] = F [K (t) ,A (t) L (t)] .

Increases output as if the economy had more labor: slope of the
isoquants are constant along rays with constant capital-output ratio.
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Solow Model with Technological Progress Balanced Growth

Isoquants with Neutral Technological Progress
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Figure: Hicks-neutral, Solow-neutral and Harrod-neutral shifts in isoquants.
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Solow Model with Technological Progress Balanced Growth

Types of Neutral Technological Progress II

Could also have a vector valued index of technology
A (t) = (AH (t) ,AK (t) ,AL (t)) and a production function

F̃ [K (t) , L (t) ,A (t)] = AH (t) F [AK (t)K (t) ,AL (t) L (t)] ,

Nests the constant elasticity of substitution production function
introduced in the Example above.

But even this is a restriction on the form of technological progress,
A (t) could modify the entire production function.

Balanced growth necessitates that all technological progress be labor
augmenting or Harrod-neutral.
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Solow Model with Technological Progress Uzawa’s Theorem

Uzawa’s Theorem I

Focus on continuous time models.

Key elements of balanced growth: constancy of factor shares and of
the capital-output ratio, K (t) /Y (t).
By factor shares, we mean

αL (t) ≡
w (t) L (t)
Y (t)

and αK (t) ≡
R (t)K (t)
Y (t)

.

By Assumption 1 and Euler Theorem αL (t) + αK (t) = 1.
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Solow Model with Technological Progress Uzawa’s Theorem

Uzawa’s Theorem II

Theorem

(Uzawa I) Suppose L (t) = exp (nt) L (0),

Y (t) = F̃ (K (t) , L (t) , Ã (t)),

K̇ (t) = Y (t)− C (t)− δK (t), and F̃ is CRS in K and L.
Suppose for τ < ∞, Ẏ (t) /Y (t) = gY > 0, K̇ (t) /K (t) = gK > 0 and
Ċ (t) /C (t) = gC > 0. Then,

1 gY = gK = gC ; and
2 for any t ≥ τ, F̃ can be represented as

Y (t) = F (K (t) ,A (t) L (t)) ,

where A (t) ∈ R+, F : R2
+ → R+ is homogeneous of degree 1, and

Ȧ (t) /A (t) = g = gY − n.
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Solow Model with Technological Progress Uzawa’s Theorem

Implications of Uzawa’s Theorem

Corollary Under the assumptions of Uzawa Theorem, after time τ
technological progress can be represented as Harrod neutral
(purely labor augmenting).

Remarkable feature: stated and proved without any reference to
equilibrium behavior or market clearing.

Also, contrary to Uzawa’s original theorem, not stated for a balanced
growth path but only for an asymptotic path with constant rates of
output, capital and consumption growth.

But, not as general as it seems;

the theorem gives only one representation.
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Solow Model with Technological Progress Uzawa’s Theorem

Stronger Theorem

Theorem

(Uzawa’s Theorem II) Suppose that all of the hypothesis in Uzawa’s
Theorem are satisfied, so that F̃ : R2

+ ×A → R+ has a representation of
the form F (K (t) ,A (t) L (t)) with A (t) ∈ R+ and
Ȧ (t) /A (t) = g = gY − n. In addition, suppose that factor markets are
competitive and that for all t ≥ T, the rental rate satisfies R (t) = R∗ (or
equivalently, αK (t) = α∗K ). Then, denoting the partial derivatives of F̃ and
F with respect to their first two arguments by F̃K , F̃L, FK and FL, we have

F̃K
(
K (t) , L (t) , Ã (t)

)
= FK (K (t) ,A (t) L (t)) and (30)

F̃L
(
K (t) , L (t) , Ã (t)

)
= A (t) FL (K (t) ,A (t) L (t)) .

Moreover, if (30) holds and factor markets are competitive, then
R (t) = R∗ (and αK (t) = α∗K ) for all t ≥ T.
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Solow Model with Technological Progress Uzawa’s Theorem

Intuition

Suppose the labor-augmenting representation of the aggregate
production function applies.

Then note that with competitive factor markets, as t ≥ τ,

αK (t) ≡
R (t)K (t)
Y (t)

=
K (t)
Y (t)

∂F [K (t) ,A (t) L (t)]
∂K (t)

= α∗K ,

Second line uses the definition of the rental rate of capital in a
competitive market

Third line uses that gY = gK and gK = g + n from Uzawa Theorem
and that F exhibits constant returns to scale so its derivative is
homogeneous of degree 0.
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Solow Model with Technological Progress Uzawa’s Theorem

Intuition for the Uzawa’s Theorems

We assumed the economy features capital accumulation in the sense
that gK > 0.
From the aggregate resource constraint, this is only possible if output
and capital grow at the same rate.
Either this growth rate is equal to n and there is no technological
change (i.e., proposition applies with g = 0), or the economy exhibits
growth of per capita income and capital-labor ratio.
The latter case creates an asymmetry between capital and labor:
capital is accumulating faster than labor.
Constancy of growth requires technological change to make up for
this asymmetry
But this intuition does not provide a reason for why technology
should take labor-augmenting (Harrod-neutral) form.
But if technology did not take this form, an asymptotic path with
constant growth rates would not be possible.
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Solow Model with Technological Progress Uzawa’s Theorem

Interpretation

Distressing result:

Balanced growth is only possible under a very stringent assumption.
Provides no reason why technological change should take this form.

But when technology is endogenous, intuition above also works to
make technology endogenously more labor-augmenting than capital
augmenting.

Not only requires labor augmenting asymptotically, i.e., along the
balanced growth path.

This is the pattern that certain classes of endogenous-technology
models will generate.
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Solow Model with Technological Progress Uzawa’s Theorem

Implications for Modeling of Growth

Does not require Y (t) = F [K (t) ,A (t) L (t)], but only that it has a
representation of the form Y (t) = F [K (t) ,A (t) L (t)].

Allows one important exception. If,

Y (t) = [AK (t)K (t)]
α [AL(t)L(t)]

1−α ,

then both AK (t) and AL (t) could grow asymptotically, while
maintaining balanced growth.

Because we can define A (t) = [AK (t)]
α/(1−α) AL (t) and the

production function can be represented as

Y (t) = [K (t)]α [A(t)L(t)]1−α .

Differences between labor-augmenting and capital-augmenting (and
other forms) of technological progress matter when the elasticity of
substitution between capital and labor is not equal to 1.
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Solow Model with Technological Progress Uzawa’s Theorem

Further Intuition

Suppose the production function takes the special form
F [AK (t)K (t) ,AL (t) L (t)].

The stronger theorem implies that factor shares will be constant.

Given constant returns to scale, this can only be the case when
AK (t)K (t) and AL (t) L (t) grow at the same rate.

The fact that the capital-output ratio is constant in steady state (or
the fact that capital accumulates) implies that K (t) must grow at
the same rate as AL (t) L (t).

Thus balanced growth can only be possible if AK (t) is asymptotically
constant.
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Solow Model with Technological Progress Solow Growth Model with Technological Progress

The Solow Growth Model with Technological Progress:
Continuous Time I

From Uzawa Theorem, production function must admit representation
of the form

Y (t) = F [K (t) ,A (t) L (t)] ,

Moreover, suppose
Ȧ (t)
A (t)

= g , (31)

L̇ (t)
L (t)

= n.

Again using the constant saving rate

K̇ (t) = sF [K (t) ,A (t) L (t)]− δK (t) . (32)
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Solow Model with Technological Progress Solow Growth Model with Technological Progress

The Solow Growth Model with Technological Progress:
Continuous Time II

Now define k (t) as the effective capital-labor ratio, i.e.,

k (t) ≡ K (t)
A (t) L (t)

. (33)

Slight but useful abuse of notation.
Differentiating this expression with respect to time,

k̇ (t)
k (t)

=
K̇ (t)
K (t)

− g − n. (34)

Output per unit of effective labor can be written as

ŷ (t) ≡ Y (t)
A (t) L (t)

= F
[

K (t)
A (t) L (t)

, 1
]

≡ f (k (t)) .
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Solow Model with Technological Progress Solow Growth Model with Technological Progress

The Solow Growth Model with Technological Progress:
Continuous Time III

Income per capita is y (t) ≡ Y (t) /L (t), i.e.,

y (t) = A (t) ŷ (t) (35)

= A (t) f (k (t)) .

Clearly if ŷ (t) is constant, income per capita, y (t), will grow over
time, since A (t) is growing.

Thus should not look for “steady states”where income per capita is
constant, but for balanced growth paths, where income per capita
grows at a constant rate.

Some transformed variables such as ŷ (t) or k (t) in (34) remain
constant.

Thus balanced growth paths can be thought of as steady states of a
transformed model.
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Solow Model with Technological Progress Solow Growth Model with Technological Progress

The Solow Growth Model with Technological Progress:
Continuous Time IV

Hence use the terms “steady state”and balanced growth path
interchangeably.

Substituting for K̇ (t) from (32) into (34):

k̇ (t)
k (t)

=
sF [K (t) ,A (t) L (t)]

K (t)
− (δ+ g + n) .

Now using (33),

k̇ (t)
k (t)

=
sf (k (t))
k (t)

− (δ+ g + n) , (36)

Only difference is the presence of g : k is no longer the capital-labor
ratio but the effective capital-labor ratio.
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The Solow Growth Model with Technological Progress:
Continuous Time V

Proposition Consider the basic Solow growth model in continuous time,
with Harrod-neutral technological progress at the rate g and
population growth at the rate n. Suppose that Assumptions
1 and 2 hold, and define the effective capital-labor ratio as in
(33). Then there exists a unique steady state (balanced
growth path) equilibrium where the effective capital-labor
ratio is equal to k∗ ∈ (0,∞) and is given by

f (k∗)
k∗

=
δ+ g + n

s
. (37)

Per capita output and consumption grow at the rate g .
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The Solow Growth Model with Technological Progress:
Continuous Time VI

Equation (37), emphasizes that now total savings, sf (k), are used for
replenishing the capital stock for three distinct reasons:

1 depreciation at the rate δ.
2 population growth at the rate n, which reduces capital per worker.
3 Harrod-neutral technological progress at the rate g .

Now replenishment of effective capital-labor ratio requires
investments to be equal to (δ+ g + n) k .
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The Solow Growth Model with Technological Progress:
Continuous Time VII

Proposition Suppose that Assumptions 1 and 2 hold, then the Solow
growth model with Harrod-neutral technological progress and
population growth in continuous time is asymptotically
stable, i.e., starting from any k (0) > 0, the effective
capital-labor ratio converges to a steady-state value k∗

(k (t)→ k∗).

Now model generates growth in output per capita, but entirely
exogenously.
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Comparative Dynamics I

Comparative dynamics: dynamic response of an economy to a change
in its parameters or to shocks.

Different from comparative statics in Propositions above in that we
are interested in the entire path of adjustment of the economy
following the shock or changing parameter.

For brevity we will focus on the continuous time economy.

Recall
k̇ (t) /k (t) = sf (k (t)) /k (t)− (δ+ g + n)
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Comparative Dynamics in Figure

0

k(t)

f(k(t))

k(t)

k(t)
s

k*
k(t)

k**

f(k(t))
k(t)

s’ –(δ+g+n)

–(δ+g+n)

Figure: Dynamics following an increase in the savings rate from s to s ′. The solid
arrows show the dynamics for the initial steady state, while the dashed arrows
show the dynamics for the new steady state.Daron Acemoglu (MIT) Economic Growth Lectures 1-3 October 21, 23 and 28, 2014. 86 / 88
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Comparative Dynamics II

One-time, unanticipated, permanent increase in the saving rate from
s to s ′.

Shifts curve to the right as shown by the dotted line, with a new
intersection with the horizontal axis, k∗∗.
Arrows on the horizontal axis show how the effective capital-labor ratio
adjusts gradually to k∗∗.
Immediately, the capital stock remains unchanged (since it is a state
variable).
After this point, it follows the dashed arrows on the horizontal axis.

s changes in unanticipated manner at t = t ′ , but will be reversed
back to its original value at some known future date t = t ′′ > t ′.

Starting at t ′, the economy follows the rightwards arrows until t ′.
After t ′′, the original steady state of the differential equation applies
and leftwards arrows become effective.
From t ′′ onwards, economy gradually returns back to its original
balanced growth equilibrium, k∗.
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Conclusions

Conclusions

Simple and tractable framework, which allows us to discuss capital
accumulation and the implications of technological progress.

Solow model shows us that if there is no technological progress, and
as long as we are not in the AK world, there will be no sustained
growth.

Generate per capita output growth, but only exogenously:
technological progress is a blackbox.

Capital accumulation: determined by the saving rate, the depreciation
rate and the rate of population growth. All are exogenous.

Need to dig deeper and understand what lies in these black boxes.
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