ARTIFICIAL INTELLIGENCE AND GOVERNMENTS: THE GOOD, THE BAD, AND THE UGLY

Martin Beraja (MIT)

AEA Continuing Education, January 2023

- ► AI is a multi-faceted technology, with different features and uses
- ► Has brought opportunities and challenges, raising questions about the role of gov'ts

- ► AI is a multi-faceted technology, with different features and uses
- ► Has brought opportunities and challenges, raising questions about the role of gov'ts
 - 1. The Good: Al is a data-intensive technology. New gov't policies to foster innovation? "Data-intensive innovation and the state: Evidence from Al firms in China" (with Yang and Yuchtman)

- ► AI is a multi-faceted technology, with different features and uses
- ► Has brought opportunities and challenges, raising questions about the role of gov'ts
 - 1. The Good: Al is a data-intensive technology. New gov't policies to foster innovation? "Data-intensive innovation and the state: Evidence from Al firms in China" (with Yang and Yuchtman)
 - 2. The Bad: AI is an automation technology. Should gov'ts tax it and slow down adoption? *"Inefficient automation"* (with Zorzi)

- ► AI is a **multi-faceted** technology, with different features and uses
- ► Has brought opportunities and challenges, raising questions about the role of gov'ts
 - 1. The Good: AI is a data-intensive technology. New gov't policies to foster innovation? "Data-intensive innovation and the state: Evidence from AI firms in China" (with Yang and Yuchtman)
 - 2. The Bad: AI is an automation technology. Should gov'ts tax it and slow down adoption? *"Inefficient automation"* (with Zorzi)
 - 3. The Ugly: AI is a surveillance technology. Gov't misuse for repression and social control? *"AI-tocracy"* (with Kao, Yang and Yuchtman) *"Exporting the surveillance state via trade in AI"* (with Kao, Yang and Yuchtman)

1. The Good: Access to Government Data as Innovation Policy

2. The Bad: Inefficient Automation

3. The Ugly: AI-tocracy

- Much focus on how data collected by private firms shapes AI innovation (Agrawal et al., 2019; Jones and Tonetti, 2020)
- > Yet, throughout history, states have also collected massive quantities of data
- ► The state has a large role in many areas
 - Public security, health care, education, basic science...

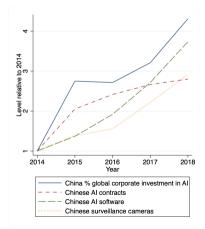
- Much focus on how data collected by private firms shapes AI innovation (Agrawal et al., 2019; Jones and Tonetti, 2020)
- > Yet, throughout history, states have also collected massive quantities of data
- ► The state has a large role in many areas
 - Public security, health care, education, basic science...

Can access to government data stimulate commercial AI innovation?

DATA-INTENSIVE INNOVATION AND THE STATE: EVIDENCE FROM AI FIRMS IN CHINA

A common way in which firms access to gov't data is by providing services to the state

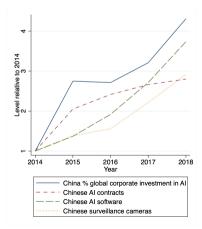
DATA-INTENSIVE INNOVATION AND THE STATE: EVIDENCE FROM AI FIRMS IN CHINA


A common way in which firms access to gov't data is by providing services to the state

- Algo's trained on video of faces from many angles
- Government units collect this data through their surveillance apparatus, and contract AI firms

A common way in which firms access to gov't data is by providing services to the state

- Algo's trained on video of faces from many angles
- Government units collect this data through their surveillance apparatus, and contract AI firms



A common way in which firms access to gov't data is by providing services to the state

- Algo's trained on video of faces from many angles
- Government units collect this data through their surveillance apparatus, and contract AI firms
- Firms gaining access to this data use it to train algorithms and provide gov't services
- If gov't data or algorithms are sharable across uses, they can be used to develop commercial AI (e.g., a facial recognition platform for retail stores)

DATA 1: LINKING AI FIRMS TO GOVT. CONTRACTS

- 1. Identify all facial recognition AI firms
 - 7,837 firms
 - Two sources: Tianyancha (People's Bank of China) and PitchBook (Morningstar)

DATA 1: LINKING AI FIRMS TO GOVT. CONTRACTS

1. Identify all facial recognition AI firms

- 7,837 firms
- Two sources: Tianyancha (People's Bank of China) and PitchBook (Morningstar)

2. Obtain universe of government contracts

- 2,997,105 contracts
- Source: Chinese Govt. Procurement Database (Ministry of Finance)

DATA 1: LINKING AI FIRMS TO GOVT. CONTRACTS

- 1. Identify all facial recognition AI firms
 - 7,837 firms
 - Two sources: Tianyancha (People's Bank of China) and PitchBook (Morningstar)
- 2. Obtain universe of government contracts
 - 2,997,105 contracts
 - Source: Chinese Govt. Procurement Database (Ministry of Finance)
- 3. Link government buyers to AI suppliers
 - 10,677 AI contracts issued by public security arms of government (e.g., local police department)

Registered with Min. of Industry and Information Technology

Categorize by intended customers (with RNN model using tensorflow):

- 1. **Commercial:** e.g., visual recognition system for smart retail;
- 2. Government: e.g., smart city real time monitoring system on main traffic routes;
- 3. General: e.g., a synchronization method for multi-view cameras based on FPGA chips.

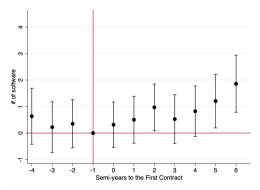
Within AI public security contracts: variation in the data collection capacity of the public security agency's local surveillance network

- 1. Identify non-AI contracts: police department purchases of street cameras
- 2. Measure quantity of advanced cameras in a prefecture at a given time
- 3. Categorize public security contracts as coming from "high" or "low" camera capacity prefectures

Regional variation in contracts

Empirical strategy

Triple diff: software releases before and after firm receives 1st data-rich contract (relative to data-scarce)


$$y_{it} = \sum_{T} \beta_{1T} T_{it} \mathsf{Data}_i + \sum_{T} \beta_{2T} T_{it} + \alpha_t + \gamma_i + \sum_{T} \beta_{3T} T_{it} X_i + \epsilon_{it}$$

- T_{it} : 1 if T semi-years before/since firm *i*'s 1st contract
- **Data**_i: 1 if firm *i* receives "data rich" contract
- X_i pre-contract controls: age, size, and software prod

Regional variation in contracts

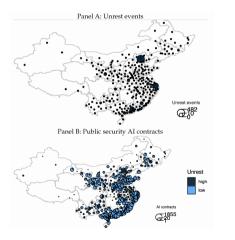
Cumulative commercial software releases

Magnitude: 2 new products over 3 years

1. The Good: Access to Government Data as Innovation Policy

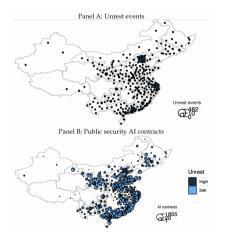
2. The Bad: Inefficient Automation

3. The Ugly: AI-tocracy

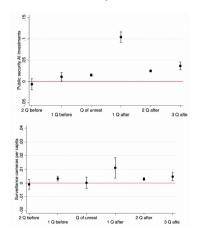

- As a technology of prediction, gov'ts may use AI for repression and social control (Zuboff, 2019; Tirole, 2021; Acemoglu, 2021)
- ► Facial recognition AI, in particular, is a technology of **surveillance** (and dual-use)

- As a technology of prediction, gov'ts may use AI for repression and social control (Zuboff, 2019; Tirole, 2021; Acemoglu, 2021)
- ► Facial recognition AI, in particular, is a technology of **surveillance** (and dual-use)

Evidence from China?


AI-TOCRACY

Unrest and gov't procurement of AI



AI-TOCRACY

Unrest and gov't procurement of AI

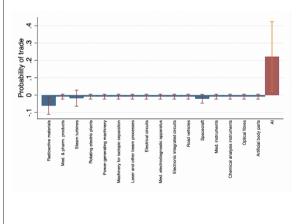
Unrest \longrightarrow Gov't buys AI and cameras

EXPORTING THE SURVEILLANCE STATE VIA TRADE IN AI

Democracies: Polity Score 7 or greater, Autocracies and weak democracies: Polity Score below 7

EXPORTING THE SURVEILLANCE STATE VIA TRADE IN AI

Orem AN Electric Microsoft and With (HP) 10 des (Hp) 10 des (Hp) 10 des (Hp)


Exports of AI: China v. US

Democracies: Polity Score 7 or greater, Autocracies and weak democracies: Polity Score below 7

Democracies: Polity Score 7 or greater, Autocracies and weak democracies: Polity Score below 7

Autocracies and weak democracies are more likely to import Al from China

1. The Good: Access to Government Data as Innovation Policy

2. The Bad: Inefficient Automation

3. The Ugly: AI-tocracy

> Past automation (robots) has displaced workers and lowered their earnings

Acemoglu and Restrepo, 2020, 2022; Humlum, 2021

Past automation (robots) has displaced workers and lowered their earnings Acemoglu and Restrepo, 2020, 2022; Humlum, 2021

- Two economic arguments for slowing down automation based on:
 - 1. Equity considerations (Guerreiro et al, 2022; Costinot and Werning, 2022)
 - 2. Efficiency considerations (Beraja and Zorzi, 2023)

Past automation (robots) has displaced workers and lowered their earnings Acemoglu and Restrepo, 2020, 2022; Humlum, 2021

► Two economic arguments for slowing down automation based on:

- 1. Equity considerations (Guerreiro et al, 2022; Costinot and Werning, 2022)
- 2. Efficiency considerations (Beraja and Zorzi, 2023)

Are these arguments as strong for AI (e.g., LLMs) as they were for robots?

Continuous time $t \ge 0$

Continuous time $t \ge 0$

Occupations

Continuous time $t \ge 0$

Occupations

h = A (degree $\alpha \ge 0$) or h = N

Continuous time $t \ge 0$

Occupations

h = A (degree $\alpha \ge 0$) or h = N

$$y^{A}= extsf{F}\left(\mu^{A},lpha
ight)$$
 , $y^{N}= extsf{F}^{\star}\left(\mu^{N}
ight)\equiv extsf{F}\left(\mu^{N},0
ight)$

Continuous time $t \ge 0$

Occupations

h = A (degree $\alpha \ge 0$) or h = N

$$\mathbf{y}^{\mathrm{A}}=\mathbf{F}\left(\mu^{\mathrm{A}},\alpha
ight)$$
 , $\mathbf{y}^{\mathrm{N}}=\mathbf{F}^{\star}\left(\mu^{\mathrm{N}}
ight)\equiv\mathbf{F}\left(\mu^{\mathrm{N}},0
ight)$

Final good producer

$$G^{\star}\left(\boldsymbol{\mu}^{\mathsf{A}},\boldsymbol{\mu}^{\mathsf{N}};\boldsymbol{\alpha}\right)\equiv G\left(\left\{\boldsymbol{y}^{\mathsf{h}}\right\}\right)-\mathcal{C}\left(\boldsymbol{\alpha}\right)$$

Continuous time $t \geq 0$

Occupations

h = A (degree $\alpha \ge 0$) or h = N

$$\mathbf{y}^{\mathrm{A}}=\mathbf{F}\left(\mu^{\mathrm{A}},\alpha
ight)$$
 , $\mathbf{y}^{\mathrm{N}}=\mathbf{F}^{\star}\left(\mu^{\mathrm{N}}
ight)\equiv\mathbf{F}\left(\mu^{\mathrm{N}},0
ight)$

Final good producer

$$G^{\star}\left(\mu^{A},\mu^{N};\alpha\right)\equiv G\left(\left\{y^{h}\right\}\right)-\mathcal{C}\left(\alpha\right)$$

Automation

 $\partial_{\mathsf{A}} G^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\pmb{lpha}
ight)\downarrow \mathrm{in}\;\pmb{lpha}\;(\mathrm{labor-displacing})$

 $G^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\pmb{\alpha}
ight)$ concave in α (costly)

Continuous time $t \ge 0$

Occupations

h = A (degree $\alpha \ge 0$) or h = N

 $y^{\!\!A}=\mu^{\!\!A}+lpha$, $y^{\!\!N}=\mu^{\!\!N}$

Final good producer

$$G^{\star}\left(\mu^{A},\mu^{N};\alpha\right) \equiv \left[\left(\alpha+\mu^{A}\right)^{\frac{\nu-1}{\nu}}+\left(\mu^{N}\right)^{\frac{\nu-1}{\nu}}\right]^{\frac{\nu}{\nu-1}}-\mathcal{C}\left(\alpha\right)$$

Automation

 $\partial_{\mathsf{A}}G^{\star}\left(\mu^{\mathsf{A}},\mu^{\mathsf{N}};\pmb{\alpha}
ight)\downarrow\mathsf{in}\;\pmb{\alpha}\;(\mathsf{labor-displacing})$

 $G^{\star}\left(\mu^{A},\mu^{N};\pmb{lpha}
ight)$ concave in lpha (costly)

Continuous time $t \ge 0$

Occupations

h = A (degree $\alpha \ge 0$) or h = N

$$\mathbf{y}^{\mathrm{A}}=\mathbf{F}\left(\mu^{\mathrm{A}},\alpha
ight)$$
 , $\mathbf{y}^{\mathrm{N}}=\mathbf{F}^{\star}\left(\mu^{\mathrm{N}}
ight)\equiv\mathbf{F}\left(\mu^{\mathrm{N}},0
ight)$

Final good producer

$$G^{\star}\left(\mu^{A},\mu^{N};\alpha\right)\equiv G\left(\left\{y^{h}\right\}\right)-\mathcal{C}\left(\alpha\right)$$

Automation

 $\partial_{\mathsf{A}} \mathsf{G}^{\star} \left(\mu^{\mathsf{A}}, \mu^{\mathsf{N}}; \alpha \right) \downarrow \operatorname{in} \alpha$ (labor-displacing)

 $G^{\star}\left(\mu^{A},\mu^{N};\pmb{lpha}
ight)$ concave in lpha (costly)

Profit maximization

$$\max_{\alpha\geq 0}\int_{0}^{+\infty}Q_{t}\Pi_{t}\left(\alpha\right)dt$$

$$\Pi_{t}(\alpha) \equiv \max_{\mu^{A}, \mu^{N} \ge 0} G^{\star}\left(\mu^{A}, \mu^{N}; \alpha\right) - \mu^{A} W_{t}^{A} - \mu^{N} W_{t}^{N}$$

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

Budget constraint

$$da_t^h = \left[\mathcal{Y}_t^{h,\star} + r_t a_t^h - c_t^h\right] dt$$

WORKERS

Preferences

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

$$\left(\mu_{t}^{\text{A}},\mu_{t}^{\text{N}}
ight) egin{cases} = 1/2 & ext{in } t=0 \\ & & \\$$

Budget constraint

$$da_t^h = \left[\mathcal{Y}_t^{h,\star} + r_t a_t^h - c_t^h\right] dt$$

Two frictions

1. Reallocation (neoclassical)

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

Budget constraint

$$da_t^h = \left[\mathcal{Y}_t^{h,\star} + r_t a_t^h - c_t^h\right] dt$$

Two frictions

- 1. Reallocation (neoclassical)
 - Random opportunities arrive at rate λ

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

Budget constraint

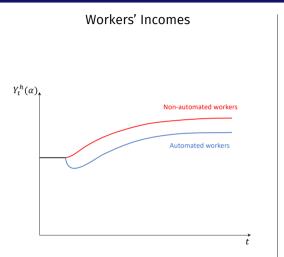
$$da_t^h = \left[\mathcal{Y}_t^{h,\star} + r_t a_t^h - c_t^h\right] dt$$

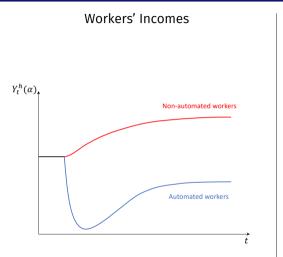
Two frictions

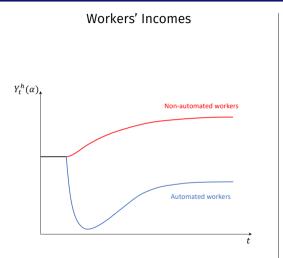
- 1. Reallocation (neoclassical)
 - Random opportunities arrive at rate λ
 - Unempl. / retrain. exit at rate κ

$$U_0 = \int \exp\left(-\rho t\right) \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

Initial allocation

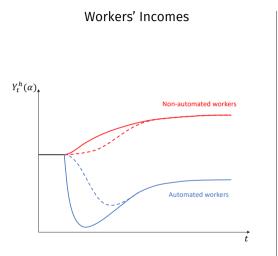

Budget constraint


$$da_t^h = \left[\mathcal{Y}_t^{h,\star} + r_t a_t^h - c_t^h\right] dt$$

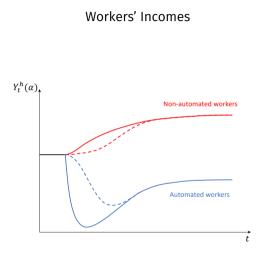

Two frictions

- 1. Reallocation (neoclassical)
 - Random opportunities arrive at rate λ
 - Unempl. / retrain. exit at rate κ
- 2. Borrowing

 $a_t^h \geq \underline{a}$ for some $\underline{a} \leq 0$



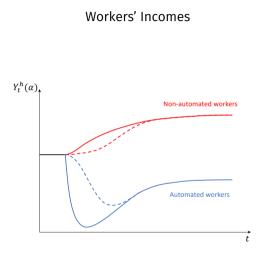
Ricardian workers (ample savings, borrow easily)


$$\mathcal{L}_{t}^{h}=eta_{t} imes\int_{0}^{\infty}e^{-\int_{0}^{\mathrm{s}}r_{\mathrm{v}}d\mathrm{v}}\mathcal{Y}_{\mathrm{s}}^{h}\left(lpha
ight)d\mathrm{s}$$

▶ Non-auto. better-off; Auto. worse-off

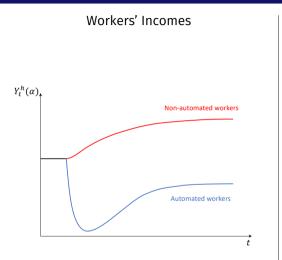
Ricardian workers (ample savings, borrow easily)

- ► Non-auto. better-off; Auto. worse-off
- Equity rationale for taxing automation
 Permanent income redistribution


Ricardian workers (ample savings, borrow easily)

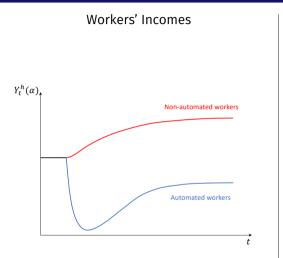
$$c_{t}^{h}=eta_{t} imes\int_{0}^{\infty}e^{-\int_{0}^{s}r_{\mathrm{v}}d\mathrm{v}}\mathcal{Y}_{\mathrm{s}}^{h}\left(lpha
ight)d\mathrm{s}$$

- ► Non-auto. better-off; Auto. worse-off
- Equity rationale for taxing automation
 Permanent income redistribution


But firm automation is efficient

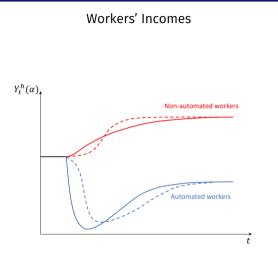
Maximize output PDV. Income timing irrelevant

Ricardian workers (ample savings, borrow easily)


- ► Non-auto. better-off; Auto. worse-off
- Equity rationale for taxing automation
 Permanent income redistribution
- But firm automation is efficient
 Maximize output PDV. Income timing irrelevant
- In practice, workers may be financially vulnerable...

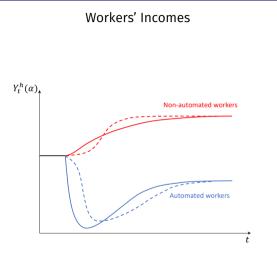
HtM workers (no savings, cannot borrow)

 $c_{t}^{h}=\mathcal{Y}_{t}^{h}\left(\alpha\right)$


• Timing of \mathcal{Y}_t^h matters. Not just PDV

HtM workers (no savings, cannot borrow)

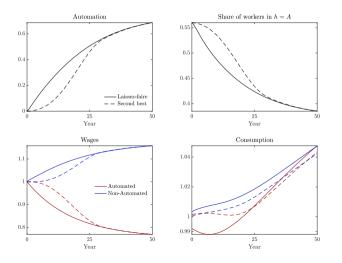
 $c_{t}^{h}=\mathcal{Y}_{t}^{h}\left(\alpha\right)$


- Timing of \mathcal{Y}_t^h matters. Not just PDV
- Firms fail to internalize that automation lowers *Y*^{Auto}_t early on

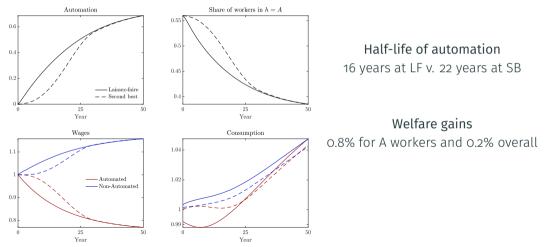
HtM workers (no savings, cannot borrow)

 $c_{t}^{h}=\mathcal{Y}_{t}^{h}\left(\alpha\right)$

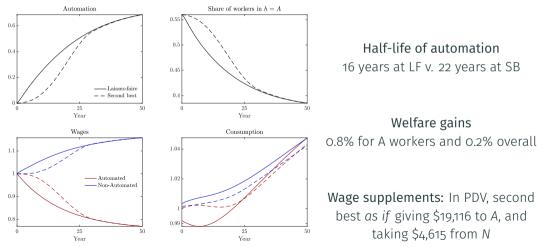
- Timing of \mathcal{Y}_t^h matters. Not just PDV
- Firms fail to internalize that automation lowers *Y*^{Auto}_t early on
- Efficiency rationale for taxing autom. As firms and workers disagree on how they value income over time


HtM workers (no savings, cannot borrow)

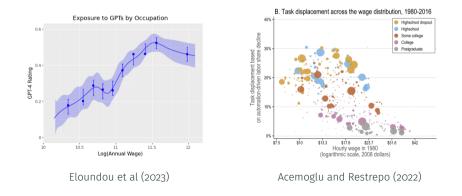
 $c_{t}^{h}=\mathcal{Y}_{t}^{h}\left(\alpha\right)$


- Timing of \mathcal{Y}_t^h matters. Not just PDV
- Firms fail to internalize that automation lowers *Y*^{Auto}_t early on
- Efficiency rationale for taxing autom. As firms and workers disagree on how they value income over time
- ► No Efficiency v. Equity trade-off

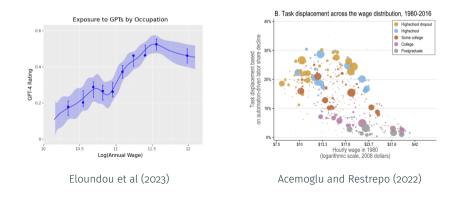
Adds: gradual autom. + idiosync. risk (Huggett-Aiyagari) + gross flows (McFadden)


► Adds: gradual autom. + idiosync. risk (Huggett-Aiyagari) + gross flows (McFadden)

► Adds: gradual autom. + idiosync. risk (Huggett-Aiyagari) + gross flows (McFadden)

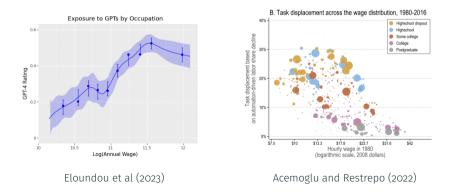

► Adds: gradual autom. + idiosync. risk (Huggett-Aiyagari) + gross flows (McFadden)

$ROBOTS \neq AI$ (generative, LLMs)


Robots \neq AI (generative, LLMs)

- **Equity** rationale seems much weaker for AI than it was for robots
 - Robots automate routine, low-to-middle-wage jobs (car manuf)
 - Al (likely) automates cognitive, middle-to high-wage jobs (lawyers, journos, soft devs)

Robots \neq AI (generative, LLMs)


- Efficiency rationale seems much weaker too
 - Lawyers, journos, and soft devs not the first that come to mind as "financially vulnerable"
 - Call centers? College debt?

Robots \neq AI (generative, LLMs)

- Efficiency rationale seems much weaker too
 - Lawyers, journos, and soft devs not the first that come to mind as "financially vulnerable"
 - ► Call centers? College debt?

► Weaker rationale for **slowing down AI** due to job automation. AI **alignment** concerns?

- ► AI is a new technology with many different features and uses
- ▶ Touches on issues across fields: macro (growth, innovation, labor), pol. econ, IO

- ► AI is a new technology with many different features and uses
- ► Touches on issues across fields: macro (growth, innovation, labor), pol. econ, IO
- ▶ We have a **responsibility** to study the benefits, risks, and policy implications of AI
 - Otherwise, we leave the task to...
- We have only started to scratch the surface. More questions as AI is widely adopted.