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Climate Change and Technology Motivation

Motivation (I)

Consensus about climate change due greenhouse gas emissions.
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Climate Change and Technology Motivation

Motivation (II)

But also increasing recognition that most of the action will come to
transition to clean technology.
How to switch to clean technology in a “welfare maximizing”way?
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Climate Change and Technology Motivation

Motivation (III)

Empirical work: possible switch away from dirty to clean technologies
in response to changes in prices and policies.

Newell, Jaffe and Stavins (1999):

following the oil price hikes, innovation in air-conditioners towards more
energy effcient units

Popp (2002):

higher energy prices associated with a significant increase in
energy-saving innovations

Hassler, Krusell and Olovsson (2011):

trend break in energy-saving factor productivities after high oil prices

Aghion et al. (2012):

significant impact of carbon taxes on the direction of innovation in the
automobile industry.
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Climate Change and Technology Motivation

Motivation (III)

A systematic investigation necessitates:

micro model

with carbon emissions and potential climate change,
where clean and dirty technologies compete, and
research incentives (and the direction of technological change) are
endogenous.

micro data

for the modeling of competition in production and innovation,

quantitative analysis

to study the impacts of various policies.

This lecture: two models– first about the conceptual issues (less
micro and no data) and the second more about micro structure of
technology choices, estimation and quantitative analysis.
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Climate Change and Technology Motivation

Exogenous Growth Approaches

Economic analyses using computable general equilibrium models with
exogenous technology (and climatological constraints; e.g., Nordhaus,
1994, 2002).

Key issues for economic analyses: (1) economic costs and benefits of
environmental policy; (2) costs of delaying intervention (3) role of
discounting and risk aversion.

Various conclusions:
1 Nordhaus approach: intervention should be limited and gradual; small
long-run growth costs.

2 Stern/Al Gore approach: intervention needs to be large, immediate
and maintained permanently; large long-run growth costs.

3 Greenpeace approach: only way to avoid disaster is zero growth.

Daron Acemoglu (MIT) Climate Change and Technology October 2, 2014. 6 / 72



Climate Change and Technology Motivation

Endogenous and directed technology

Very different answers are possible.
1 Immediate and decisive intervention is necessary (in contrast to
Nordhaus)

2 Temporary intervention may be suffi cient (in contrast to Stern/Al Gore)
3 Long-run growth costs may actually be very limited (in contrast to all
of them).

4 Two instruments– not one– necessary for optimal environmental
regulation.
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Climate Change and Technology Motivation

Why?

Two sector model with “clean”and “dirty” inputs with two key
externalities

Environmental externality: production of dirty inputs creates
environmental degradation.

Researchers work to improve the technology depending on expected
profits and “build on the shoulders of giants in their own sector”.

→ Knowledge externality: advances in dirty (clean) inputs make their
future use more profitable.

Policy interventions can redirect technological change towards
clean technologies.
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Climate Change and Technology Motivation

Why? (Continued)

1 Immediate and decisive intervention is necessary (in contrast to
Nordhaus)
→ without intervention, innovation is directed towards dirty sectors; thus

gap between clean and dirty technology widens; thus cost of
intervention (reduced growth when clean technologies catch up with
dirty ones) increases

2 Temporary intervention may be suffi cient (in contrast to Stern/Al
Gore), long-run growth costs limited (in contrast to all of them)
→ once government intervention has induced a technological lead in clean

technologies, firms will spontaneously innovate in clean technologies (if
clean and dirty inputs are suffi ciently substitutes).

3 Two instruments, not one:
→ optimal policy involves both a carbon tax and a subsidy to clean

research to redirect innovation to green technologies
→ too costly in terms of foregone short-run consumption to use carbon

tax alone
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Climate Change and Technology Basic model

Model (1): production

Infinite horizon in discrete time (suppress time dependence for now)

Final good Y produced competitively with a clean intermediary input
Yc , and a dirty input Yd

Y =
(
Y

ε−1
ε

c + Y
ε−1

ε
d

) ε
ε−1

Most of the analysis: ε > 1, the two inputs are substitute.

For j ∈ {c, d}, input Yj produced with labor Lj and a continuum of
machines xji :

Yj = L1−α
j

∫ 1

0
A1−α
ji xα

ji di

Machines produced monopolistically using the final good
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Climate Change and Technology Basic model

Model (2): consumption

Constant mass 1 of infinitely lived representative consumers with
intertemporal utility:

∞

∑
t=0

1

(1+ ρ)t
u (Ct , St )

where u increasing and concave, with

lim
S→0

u (C ,S) = −∞;
∂u
∂S
(C , S̄) = 0
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Climate Change and Technology Basic model

Model (3): environment

Production of dirty input depletes environmental stock S :

St+1 = −ξYdt + (1+ δ) St if S ∈ (0, S̄) . (1)

Reflecting at the upper bound S̄ (< ∞): baseline (unpolluted) level
of environmental quality.

Absorbing at the lower bound S = 0.

δ > 0: rate of “environmental regeneration” (measures amount of
pollution that can be absorbed without extreme adverse
consequences)

S is general quality of environment, inversely related to CO2
concentration (what we do below for calibration).
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Climate Change and Technology Basic model

Model (4): innovation

At the beginning of every period scientists (of mass s = 1) work
either to innovate in the clean or the dirty sector.

Given sector choice, each randomly allocated to one machine in their
target sector.

Every scientist has a probability ηj of success (without congestion).

if successful, proportional improvement in quality by γ > 0 and the
scientist gets monopoly rights for one period, thus

Ajit = (1+ γ)Ajit−1;

if not successful, no improvement and monopoly rights in that machine
randomly allocated to an entrepreneur who uses technology

Ajit = Ajit−1.

simplifying assumption, mimicking structure in continuous time models.
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Climate Change and Technology Basic model

Model (5): innovation (continued)

Therefore, law of motion of quality of input in sector j ∈ {c , d} is:

Ajt =
(
1+ γηj sjt

)
Ajt−1

Note: knowledge externality; “building on the shoulders of giants,”
but importantly “in own sector”

Intuition: Fuel technology improvements do not directly facilitate
discovery of alternative energy sources

Assumption

Ad0 suffi ciently higher than Ac0.

Capturing the fact that currently fossil-fuel technologies are more
advanced than alternative energy/clean technologies.
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Climate Change and Technology Laissez-faire equilibrium

Laissez-faire equilibrium: direction of innovation

Scientists choose the sector with higher expected profits Πjt :

Πct

Πdt
=

ηc
ηd

(
pct
pdt

) 1
1−α

︸ ︷︷ ︸
price effect

Lct
Ldt︸︷︷︸

market size effect

Act−1
Adt−1︸ ︷︷ ︸

direct productivity effect

The direct productivity effect pushes towards innovation in the more
advanced sector
The price effect towards the less advanced, price effect stronger when ε
smaller
The market size effect towards the more advanced when ε > 1
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Climate Change and Technology Laissez-faire equilibrium

Laissez-faire equilibrium (continued)

Use equilibrium machine demands and prices in terms of technology
levels (state variables) and let ϕ ≡ (1− α) (1− ε) (< 0 if ε > 1):

Πct

Πdt
=

ηc
ηd

(
1+ γηc sct
1+ γηd sdt

)−ϕ−1 (Act−1
Adt−1

)−ϕ

.

Implications: innovation in relatively advanced sector if ε > 1
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Climate Change and Technology Laissez-faire equilibrium

Laissez-faire equilibrium production levels

Equilibrium input production levels

Yd =
1(

Aϕ
c + A

ϕ
d

) α+ϕ
ϕ

Aα+ϕ
c Ad ;

Y =
AcAd(

Aϕ
c + A

ϕ
d

) 1
ϕ

Recall that ϕ ≡ (1− α) (1− ε).

In particular, given the assumption that Ad0 suffi ciently higher than
Ac0, Yd will always grow without bound under laissez-faire

If ε > 1, then all scientists directed at dirty technologies, thus
gYd → γηd
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Climate Change and Technology Environmental disaster

Environmental disaster

An environmental “disaster”occurs if St reaches 0 in finite time.

Proposition

Disaster.
The laissez-faire equilibrium always leads to an environmental disaster.

Proposition

The role of policy.

1 when the two inputs are strong substitutes (ε > 1/ (1− α)) and S̄ is
suffi ciently high, a temporary clean research subsidy will prevent an
environmental disaster;

2 in contrast, when the two inputs are weak substitutes
(ε < 1/ (1− α)), a temporary clean research subsidy cannot prevent
an environmental disaster.
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Climate Change and Technology Environmental disaster

Sketch of proof

Look at effect of a temporary clean research subsidy

Key role: redirecting technological change; innovation can be
redirected towards clean technology

If ε > 1, then subsequent to an extended period of taxation,
innovation will remain in clean technology

Is this suffi cient to prevent an environmental disaster?
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Climate Change and Technology Environmental disaster

Sketch of proof (continued)

Even with innovation only in the clean sector, production of dirty
inputs may increase

on the one hand: innovation in clean technology reduces labor
allocated to dirty input ⇒ Yd ↓
on the other hand : innovation in clean technology makes final good
cheaper an input to production of dirty input ⇒ Yd ↑
which of these two effects dominates, will depend upon ε.

With clean research subsidy (because ε > 1 and thus ϕ < 0):

Yd =
1(

Aϕ
c + A

ϕ
d

) α+ϕ
ϕ

Aα+ϕ
c Ad → Aα+ϕ

c

If α+ ϕ > 0 or ε < 1/(1− α), then second effect dominates, and
long run growth rate of dirty input is positive equal to
(1+ γηc )

α+ϕ − 1
If α+ ϕ < 0 or ε > 1/(1− α), then first effect dominates, so that Yd
decreases over time.
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Climate Change and Technology Environmental disaster

Cost of intervention and delay

Concentrate on strong substitutability case (ε > 1/ (1− α))

While Act catches up with Adt , growth is reduced.

T : number of periods necessary for the economy under the policy
intervention to reach the same level of output as it would have done
within one period without intervention

If intervention delayed, not only the environment gets further
degraded, but also technology gap Adt−1/Act−1 increases, growth is
reduced for a longer period.

More generally, significant welfare costs from delay (based on
calibration).
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Climate Change and Technology Environmental disaster

Undirected technical change

Compare with a model where scientists randomly allocated across
sectors so as to ensure equal growth in the qualities of clean and dirty
machines, thus gYd → γηcηd/ (ηc + ηd ) < γηd

Proposition

The role of directed technical change.
When ε > 1/ (1− α):

1 An environmental disaster under laissez-faire arises earlier with
directed technical change than in the equivalent economy with
undirected technical change.

2 However, a temporary clean research subsidy can prevent an
environmental disaster with directed technical change, but not in the
equivalent economy with undirected technical change.
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Climate Change and Technology Optimal environmental regulation

Optimal environmental regulation

Proposition

Optimal environmental regulation.
A planner can implement the social optimum through a "carbon tax" on
the use of the dirty input, a clean research subsidy and a subsidy for the
use of all machines (all taxes/subsidies are financed by lumpsum taxes).

1 If ε > 1 and the discount rate ρ is suffi ciently small, then in finite
time innovation ends up occurring only in the clean sector, the
economy grows at rate γηc and the optimal subsidy to clean research,
qt , is temporary.

2 The optimal carbon tax, τt , is temporary if ε > 1/ (1− α) but not if
1 < ε < 1/ (1− α).

Interpretation: two instruments for two margins– carbon tax for the
intra-temporal one and research subsidies for the intertemporal one.
But importantly, both are temporary.
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Climate Change and Technology Optimal environmental regulation

Carbon tax

Optimal carbon tax schedule is given by

τt =
ωt+1ξ

λtpdt
,

λt is the marginal utility of a unit of consumption at time t
ωt+1 is the shadow value of one unit of environmental quality at time
t + 1, equal to the discounted marginal utility of environmental quality
as of period t + 1.

Why temporary? If ε > 1/ (1− α), dirty input production tends
towards 0 and environmental quality St reaches S in finite time and
thus ωt → 0, carbon tax becomes null in finite time.

Why two instruments? If gap between the two technologies is high,
relying on carbon tax to redirect technical change would reduce too
much consumption.
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Climate Change and Technology Exhaustible resources

Exhaustible resources

Polluting activities (CO2 emissions) often use an exhaustible resource
(most importantly, oil).

Dirty input produced with some exhaustible resource R:

Yd = R
α2L1−α

d

∫ 1

0
A1−α1
di xα1

di di ,

with α1 + α2 = α.

The resource stock Qt evolves according to

Qt+1 = Qt − Rt

Extracting 1 unit of resource costs c(Qt ) (with c ′ ≤ 0, c (0) finite).
As Qt decreases, extracting the resource becomes increasingly costly.
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Climate Change and Technology Exhaustible resources

Main results

With exhaustible resources, environmental disaster could be averted
without policy intervention because increasing prices of the scarce
exhaustible resources could automatically redirect technological
change.

Nevertheless, optimal policy very similar with or without exhaustible
resources.
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Climate Change and Technology Global interactions

Two-country case

Two countries: North (N), identical to the economy studied so far,
and that the South (S) imitating Northern technologies.

Thus there are two externalities:
1 environmental externality : dirty input productions by both contribute
to global environmental degradation

St+1 = −ξ
(
Y Ndt + Y

S
dt

)
+ (1+ δ) St for S ∈ (0, S̄).

2 knowledge externality : South imitates North’technologies.

Do we need global coordination to avert an environmental disasters?

In autarky, the answer is no because advances in the North will induce
the South to also switch to clean technologies.
But free trade may undermine this result by creating pollution
havens– the South specializes even more in dirty technologies because
of environmental policy in the North.
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Modeling Competition of Clean and Dirty Technologies

Modeling competition between clean and dirty technologies

Now a more micro-based model of competition between clean and
dirty technologies that can be estimated from firm-level data (for the
energy sector in the United States) on

R&D expenditures,
patents,
sales,
employment,
firm entry and exit.

Data sources:

Longitudinal Business Database and Economic Censuses,
the National Science Foundation’s Survey of Industrial R&D,
the NBER Patent Database.

Also, a more realistic model of the carbon cycle.

This will allow more systematic counterfactual policy experiments.
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Modeling Competition of Clean and Dirty Technologies Baseline Model

Preferences

Infinite-horizon economy in continuous time.

Representative household:

U =
∫ ∞

0
exp (−ρt) lnCtdt.

Inelastic labor supply, no occupational choice:

Unskilled labor: for production: measure 1, earns wut
Skilled labor: measure Ls , earns w st .

cover fixed and variable costs of R&D.

Hence the budget constraint is

Ct ≤ wut + Ls · w st +Πt

Closed economy and no investment, resource constraint: Yt = Ct .
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Modeling Competition of Clean and Dirty Technologies Baseline Model

Final Good Technology

Unique final good Yt :

lnYt = −γ (St − S̄) +
∫ 1

0
ln yitdi ,

yit : quantity of intermediate good i .

St ≥ S̄ : atmospheric carbon concentration.

S̄ > 0 : preindustrial level.
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Modeling Competition of Clean and Dirty Technologies Baseline Model

Intermediate Good Technology (I)

Intermediate good yit :

yit =


y cit with clean technology, or

ydit with dirty technology

Daron Acemoglu (MIT) Climate Change and Technology October 2, 2014. 31 / 72



Modeling Competition of Clean and Dirty Technologies Baseline Model

Intermediate Good Technology (II)

Firm f can produce intermediate i with either a clean or dirty,
j ∈ {c , d}:

y jit (f ) = q
j
it (f ) l

j
it (f )

l jit (f ) : production workers
qjit (f ) : labor productivity.

marginal cost of production is

MC jit =
(
1+ τjt

) wut
qjit

where τjt is the tax rate on technology j .
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Modeling Competition of Clean and Dirty Technologies Baseline Model

Intermediate Good Technology (III)

Produce with technology j ∈ {c , d} if(
1+ τ−jt

)
wut

q−jit
>

(
1+ τjt

)
wut

qjit

i.e., produce with dirty technology iff

qdit
qcit
>
1+ τdt
1+ τct

.
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Modeling Competition of Clean and Dirty Technologies Baseline Model

Quality Ladder

Innovations improve quality by multiples of λ > 1.

njit improvements leads to

qjit = λn
j
it ,

where qji0 = 1.

Hence
qdit
qcit
= λnit

nit ≡ ndit − ncit .
Define µn : fraction of n-step industries.
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Modeling Competition of Clean and Dirty Technologies Baseline Model

Carbon Tax

For tractability, tax rates are:

1+ τjt = λm
j
t .

Hence:
1+ τdt
1+ τct

= λmt ,

where mt ≡ mdt −mct .
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Modeling Competition of Clean and Dirty Technologies Baseline Model

Production Decision

Produce with technology j = dirty if

qdit
qcit
>
1+ τdt
1+ τct

⇐⇒
λnit > λmit

⇐⇒
nit > mt .
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Modeling Competition of Clean and Dirty Technologies Baseline Model

Innovation, the Quality Ladder and Dynamics

0 1

product line
j

Tax adjusted productivity

j

jq
τ+1
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Modeling Competition of Clean and Dirty Technologies Baseline Model

Firms and R&D (I)

Firm f : collection of leading-edge technologies (Klette & Kortum,
2004).

ujft : # of leading-edge technologies.

Poisson flow rate of X jt innovations:

X jt = θ
(
H jt
)η (

ujt
)1−η

,

H jt : number of scientists
η ∈ (0, 1), and θ > 0.

Fixed R&D cost of utFI scientists for operation.
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Modeling Competition of Clean and Dirty Technologies Baseline Model

Firms and R&D (II)

Total cost:

Ct
(
ut , x

j
t

)
=
(
1− s jIt

)
w st ut

[(
x jt
) 1

η
θ
− 1

η + FI

]
,

x jt ≡ X jt /ujt : innovation intensity.
s jIt : government subsidy.
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Modeling Competition of Clean and Dirty Technologies Baseline Model

Firms and R&D (III)

Innovations are directed across technologies,

yet undirected within technologies.

A successful innovation

adds a new product line to the firm’s portfolio, and
leads to one of two types of innovation:

1 incremental with probability 1− α
2 breakthrough with probability α.

incremental innovation improves quality by λ > 1.

breakthrough makes the firm leapfrog the frontier technology.
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Modeling Competition of Clean and Dirty Technologies Baseline Model

Innovation, the Quality Ladder and Dynamics

0 1

product line
j

quality level

q
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Modeling Competition of Clean and Dirty Technologies Baseline Model

Incremental Innovation

0 1

product line
j

quality level

q
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Modeling Competition of Clean and Dirty Technologies Baseline Model

Radical Innovation

0 1

product line
j

quality level

q
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Modeling Competition of Clean and Dirty Technologies Baseline Model

Free Entry

Endogenously determined mass of entrants E jt invests in R&D by

paying fixed cost FE and the variable cost
(
X jEt
) 1

η
θ
− 1

η in terms of

skilled labor and enter at the rate X jEt .
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Modeling Competition of Clean and Dirty Technologies Baseline Model

The Carbon Cycle

Dirty production ydit emits κ units of carbon per intermediate output,
so total amount of carbon emission is

Kt =
∫ 1

0
κydit di .

The atmospheric carbon concentration St is (Golosov et al., 2011)

St =
∫ t−T

0
(1− dl )Kt−ldl , (2)

where the amount of carbon emitted l years ago still left in the
atmosphere is:

dl = (1− ϕP )
[
1− ϕ0e

−ϕl
]

ϕP ∈ (0, 1) : share of permanent emission
(1− ϕP ) ϕ0 : transitory component that remains in the first period
ϕ ∈ (0, 1) : the rate of decay of carbon concentration over time.
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Modeling Competition of Clean and Dirty Technologies Baseline Model

Equilibrium Profits (I)

Unit elastic demand. Thus the profits are

πcit = Ỹt
λ−1

λ πdit = 0 if mit > nit
πcit = 0 πdit = Ỹt

λ−1
λ if mit < nit

πcit = 0 πdit = 0 if mit = nit

where Ỹt ≡ Yt exp (γ (St − S̄)) is net aggregate output.
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Modeling Competition of Clean and Dirty Technologies Baseline Model

Equilibrium Profits (II)

Not every successful innovation leads to profitable production for two
reasons:

1 innovation occurs in technology j which is behind technology −j ,
2 potential zero markup if the tax-adjusted labor productivities are the
same with the two technologies.

Probabilities of positive return to a successful innovation:

Γct ≡ ∑n≤m µnt + α
(
1−∑n≤m µnt

)
I(m≥0)

Γdt ≡ ∑n≥m µnt + α
(
1−∑n≥m µnt

)
I(m≤0)
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Modeling Competition of Clean and Dirty Technologies Baseline Model

Equilibrium Innovation Decision (I)

Full model: forward-looking innovation decisions.

Here, let us focus on the cases which firms are myopic and maximize
instantaneous profits.

Define the expected value of a successful innovation as

v̄ jt = Γjtπ
j
it

Thus equilibrium incumbent innovation decision for j ∈ {c , d}:

max
X jt≥0

{
X jt v̄

j
t −

(
1− s jIt

)
w st

[(
X jt
) 1

η
θ
− 1

η

(
ujt
) η−1

η
+ I

(X jt>0)
ujtFI

]}
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Modeling Competition of Clean and Dirty Technologies Baseline Model

Equilibrium Innovation Decision (II)

Conditional on investing in R&D, the equilibrium innovation rate is

x jIt =

 v̄ jt ηθ
1
η(

1− s jIt
)
w st


η
1−η

=

Γjt
λ− 1

λ
Ỹt

ηθ
1
η

w st
(
1− s jIt

)


η
1−η

.

Similar for entrant innovation. Increasing in:
Higher net output

(
Ỹt
)
,

higher markups (λ)
lower scientists wages (w st )
policy: subsidies to research increase clean innovation

(
scIt
)
.

Through the Γjt’s,
1 carbon taxes

(
τd
)
increase clean innovation (reduce dirty innovation).

2 innovation is path-dependent:
large technology gaps =⇒ ∑n≤m µnt very small =⇒ Γct very small
=⇒ discouraging clean innovation
Hence clean innovation will naturally self-reinforce over time.
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Modeling Competition of Clean and Dirty Technologies Quantitative Analysis

Empirical Strategy

Focus on the model would forward-looking behavior.

The model has 14 parameters/variables to be determined:

{ρ, S̄ ,γ, ϕ, ϕ0, ϕP , κ, L
s , α, η, θ,λ,FI ,FE } and {µn0}

∞
n=−∞

Proceed in four steps:
1 external calibration: ρ, S̄ ,γ, ϕ, ϕ0, ϕP , κ
2 direct estimation from micro data: Ls , α, η.
3 match patent data to generate initial distribution: µn
4 simulated method of moments: θ,λ,FI ,FE
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Modeling Competition of Clean and Dirty Technologies Quantitative Analysis

Data & Sample (I)

Data:

Longitudinal Business Database and Economic Censuses,
National Science Foundation’s Survey of Industrial R&D,
NBER Patent Database.

Sample:

Innovators in the US Energy Sector
Build unbalanced panel with six periods: 1975-1979, . . . , 2000-2004
Firms must be innovative in first period observed
Collect operating data, R&D expenditures, and innovations by period
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Modeling Competition of Clean and Dirty Technologies Quantitative Analysis

Data & Sample (II)

Energy sector

start with the patent data,
classify patents into energy-related patents,
classify patents as dirty vs clean using 150,000 USPCs,
match patents to firms using name-location matching algorithm,
classify firms as dirty vs clean using their patent portfolio,
using 400 SIC3, construct dirty and clean patent stock.
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Modeling Competition of Clean and Dirty Technologies Quantitative Analysis

Data & Sample (III)

Sample properties

6228 observations from 1576 firms
19% of all U.S. R&D industrial expenditures
70% of industrial patents for the energy sector
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Modeling Competition of Clean and Dirty Technologies Quantitative Analysis

Parameters

Par. Value target

ρ 1% and 0.1% Nordhaus and Stern
S̄ 581 GtC Preindustrial carbon stock
γ 5.3 x 10−5 GtC−1 4oC increase about 4-5% GDP drop

ϕP 20% Permanent emission IPCC (2007)
ϕ
ϕ0

}
0.006636
0.4576

carbon’s half life of 30 years
Evolution of carbon stock 1900-2000

Ls 5.5% S&E workers in energy sector
η 45% Reg R&D$ and Scientist count on SIC#
α 4% prob of major entry patent (>90 percentile)

µn see figure patent stock count by SICs
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Modeling Competition of Clean and Dirty Technologies Quantitative Analysis

Carbon Cycle Match

We use the following to match the carbon concentration:

St =
∫ t−1900

0
(1− dl )Kt−ldl + S1900, t ∈ [1900, 2008] .

where
dl = (1− ϕP )

[
1− ϕ0e

−ϕl
]
.
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Modeling Competition of Clean and Dirty Technologies Quantitative Analysis

Initial Distribution of Technology Gaps
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Clean lead in 6%, and dirty lead in 60% of product lines, but in some
cases by quite a lot.
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Modeling Competition of Clean and Dirty Technologies Quantitative Analysis

Simulated Method of Moments Estimates

Four parameters estimated from four moments (three from microdata
and one aggregate):

Simulated Method of Moments

Parameter Description Value
θ Innovation productivity 0.500
λ Innovation step size 1.075
FI Fixed cost of incumbent R&D 0.002
FE Fixed cost of entry 0.035
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Modeling Competition of Clean and Dirty Technologies Quantitative Analysis

Moments in the Data and Model

Moment Matching

Moments Model Data
Entry Share 0.013 0.013
Exit Rate 0.018 0.018

Average R&D/Sales 0.066 0.066
Aggregate Sales/Worker Growth 0.007 0.012
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Modeling Competition of Clean and Dirty Technologies Quantitative Analysis

Non-targeted Moments

Comparison of Growth Distribution

Employment Growth Probability
Change over 5-Years: Model Data
Decrease 75% or more 0.17 0.11
Decrease 50% or more 0.20 0.15
Decrease 25% or more 0.27 0.25
Increase 25% or more 0.24 0.31
Increase 50% or more 0.17 0.20
Increase 75% or more 0.15 0.14
Increase 100% or more 0.08 0.11
Notes: Table compares non-targeted moments in model and data.

Daron Acemoglu (MIT) Climate Change and Technology October 2, 2014. 59 / 72



Modeling Competition of Clean and Dirty Technologies Results

Climate Dynamics in the Laissez-faire Economy (I)
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Modeling Competition of Clean and Dirty Technologies Results

Climate Dynamics in the Laissez-faire Economy (II)

Formula to compute the temperature changes:

∆temperature =
λ (ln St − ln S̄)

ln 2
.
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Modeling Competition of Clean and Dirty Technologies Policy Analysis

Optimal Policy (I)

We consider two policies

Carbon tax: τdt

multiples of the innovation step size λ =⇒ 1+ τdt = λmt .

Clean R&D subsidy: sct .

It is a continuous variable sct ∈ [0, 1].
Same subsidy rate for both entrants

(
scEt
)
and incumbents

(
scIt
)
.

We use two baseline discount rates for social planner.

ρ = 1% : similar to Nordhaus (1994, 2008).
ρ = 0.1% : similar to Stern (2007)

private discount rate is always 1%.
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Modeling Competition of Clean and Dirty Technologies Policy Analysis

Optimal Policy (II)

We consider two alternatives
1 Constant policy: τdt = τd and sct = s

c .
2 Time-varying policy: 3 time cutoffs and 4 policy levels:

τdt =


τd1 for t ∈ [0, tτ

1 )
τd2 for t ∈ [tτ

1 , t
τ
2 )

τd3 for t ∈ [tτ
2 , t

τ
3 )

τd4 for t ∈ [tτ
3 ,∞)

and
(

τdt , s
c
t

)
=


sc1 for t ∈ [0, ts1 )
sc2 for t ∈ [ts1 , ts2 )
sc3 for t ∈ [ts2 , ts3 )
sc4 for t ∈ [ts3 ,∞)
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Modeling Competition of Clean and Dirty Technologies Policy Analysis

Optimal Constant Policy (I)

Optimal Constant Policy

ρsp = 1% ρsp = 0.1%
τ 16% 44%
s 61% 95%
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Modeling Competition of Clean and Dirty Technologies Policy Analysis

Optimal Constant Policy (II)

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

Number of Years

Innovation Rates

xc: ρsp=1%

xc: ρsp=0.1%

xd: ρsp=1%

xd: ρsp=0.1%

Daron Acemoglu (MIT) Climate Change and Technology October 2, 2014. 65 / 72



Modeling Competition of Clean and Dirty Technologies Policy Analysis

Optimal Constant Policy (III)
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Modeling Competition of Clean and Dirty Technologies Counterfactual Policy Analysis

Counterfactual Policy Analysis (I)

3 counterfactual exercises:
1 Carbon tax only: policymaker uses only time-varying carbon tax.
2 50 year delay: policymaker plans to take action starting in 50 years
with both time-varying policies.

3 Business as usual: we keep the current policies in place forever.
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Modeling Competition of Clean and Dirty Technologies Counterfactual Policy Analysis

Welfare Costs

Carbon Tax Only 50-year Delay

ρsp = 1% ρsp = 0.1% ρsp = 1% ρsp = 0.1%
4.2% 3.4% 8.0% 16.6 %

Avoiding R&D subsidiy has a significant welfare cost.

Delaying policy intervention is even worse, particularly for low
discount rate.
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Modeling Competition of Clean and Dirty Technologies Counterfactual Policy Analysis

Implications of US “Business-as-Usual”Policies (I)

Estimate of current subsidy:

In our sample period of 30 years, 49% of clean R&D and 11% of dirty
R&D is federally funded. We take the current subsidy as

1− s = 1− 49%
1− 11% =⇒ s = 43%.

Estimate of current carbon tax:

Policy makers estimate the social cost of carbon as $143 per ton of
carbon dioxide.
Total emission is around 1.58 billion tons of carbon dioxide.
Total sales around $1 trillion.
Hence the estimated tax is

τ =
143× 1.58× 109

1012
≈ 24%.
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Modeling Competition of Clean and Dirty Technologies Counterfactual Policy Analysis

Implications of US “Business-as-Usual”Policies (II)

Welfare Costs

τ = 24%, s = 43% τ = 0, s = 43%

ρsp = 1% ρsp = 0.1% ρsp = 1% ρsp = 0.1%
18% 8% 100% 100%

Too much carbon tax and too little R&D subsidy compared to
optimal constant policy: τd = 16% and sc = 61%.
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Conclusion

Conclusion

Optimal policy in the presence of endogenous and directed
technological change may rely heavily on R&D subsidy as well as
carbon tax.

Intuition:

carbon tax generates static distortion: Leads to reallocation into less
productive technology =⇒ Loss of current consumption
R&D subsidy generates dynamic distortion: innovate without any
growth for a while until clean takes over.

Current policy estimates are overtaxing carbon and undersubsidizing
R&D.

Avoiding R&D subsidy has sizable welfare costs (3.4%-4.2%)

Delaying policy intervention by 50 years has very large welfare costs
(8%-16.6%)
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Conclusion

Are These Conclusions too Optimistic?

Perhaps. Only more empirical work can tell.

But things to watch out for:

Research subsidies may be ineffective→then more reliance on carbon
tax
Research might be much lower→then more reliance on carbon tax
There is in practice a lot of uncertainty associated with new
technologies→then more reliance on carbon tax
There may be less room for “building on the shoulders of giants’" in
green technologies→then more reliance on carbon tax
Elasticity of substitution may be lower→then more reliance on carbon
tax
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Conclusion

In Conclusion
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