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Networks: Lecture 6

Outline

Growing random networks

Power-law degree distributions: Rich-Get-Richer effects

Models:

Uniform attachment model
Preferential attachment model

Reading:

EK, Chapter 18.

Jackson, Chapter 5, Sections 5.1-5.2.
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Growing Random Networks

So far, we have focused on static random graph models in which edges
among “fixed” n nodes are formed via random rules in a static manner.

Erdös-Renyi model has small distances, but low clustering and a rapidly
falling degree distribution.
Configuration model generates arbitrary degree distributions.
Small-world model provides a tractable model that has small distances
and high clustering.

Most networks form dynamically whereby new nodes are born over time and
form attachments to existing nodes when they are born.

Example: Consider the creation of web pages.

When a new web page is designed, it includes links to existing web
pages. Over time, an existing page will be linked to by new web pages.

The same phenomenon true in many other networks:

Networks of friendships, citations, professional relationships.

Evolution over time introduces a natural heterogeneity to nodes based on
their age in a growing network.
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Emergence of Degree Distributions

These considerations motivate dynamic or generative models of networks.

These models also provide foundations for the emergence of natural linkage
structures or degree distributions.

What degree distributions are observed in real-world networks?

In social networks, degree distributions can be viewed as a measure of
“popularity” of the nodes.
Popularity is a phenomenon characterized by extreme imbalances:
while almost everyone goes through life known only to people in their
immediate social circles, a few people achieve wide visibility.

Let us focus on the concrete example of World Wide Web (WWW), i.e.,
network of web pages.

In studies over many different Web snapshots taken at different points in
time, it has been observed that the degree distribution obeys a power law
distribution, i.e., the fraction of web pages with k in-links (or out-links) is
approximately proportional to k−2.1 (or k−2.7).
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Power Law Distribution—1

Many social and biological phenomena also governed by power laws.

Population sizes of cities observed to follow a power law distribution.
Number of copies of a gene in a genome follows a power law
distribution.

Some physicists think these correspond to some “universal laws”, as
illustrated by the following quote from Barabasi that appeared in the April
2002 issue of the Scientist:

“What do proteins in our bodies, the Internet, a cool collection of
atoms, and sexual networks have in common? One man thinks he has
the answer and it is going to transform the way we view the world.”

A nonnegative random variable X is said to have a power law distribution if

P(X ≥ x) ∼ cx−α,

for constants c > 0 and α > 0. (Here f (x) ∼ g(x) represents that the limit
of the ratios goes to 1 as x grows large.)

Roughly speaking, in a power law distribution, asymptotically, the tails fall
of polynomially with power α.
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Power Law Distribution—2

Such a distribution leads to much heavier tails than other common models,
such as Gaussian and exponential distributions.

In the context of the WWW, this implies that pages with large
numbers of in-links are much more common than we’d expect in a
Gaussian distribution.
This accords well with our intuitive notion of popularity exhibiting
extreme imbalances.

One specific commonly used power law distribution is the Pareto
distribution, which satisfies

P(X ≥ x) =
(x

t

)−α
,

for some α > 0 and t > 0.

The Pareto distribution requires X ≥ t.

The density function for the Pareto distribution is f (x) = αtαx−α−1.

For a power law distribution, usually α falls in the range 0 < α ≤ 2, in which
case X has infinite variance. If α ≤ 1, then X also has infinite mean.
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Examples

A simple method for providing a quick test for whether a data-set exhibits a
power-law distribution is to plot the (complementary) cumulative
distribution function or the density function on a log-log scale.

14 The structure and function of complex networks
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FIG. 6 Cumulative degree distributions for six different networks. The horizontal axis for each panel is vertex degree k (or in-
degree for the citation and Web networks, which are directed) and the vertical axis is the cumulative probability distribution of
degrees, i.e., the fraction of vertices that have degree greater than or equal to k. The networks shown are: (a) the collaboration
network of mathematicians [182]; (b) citations between 1981 and 1997 to all papers cataloged by the Institute for Scientific
Information [351]; (c) a 300 million vertex subset of the World Wide Web, circa 1999 [74]; (d) the Internet at the level of
autonomous systems, April 1999 [86]; (e) the power grid of the western United States [416]; (f) the interaction network of
proteins in the metabolism of the yeast S. Cerevisiae [212]. Of these networks, three of them, (c), (d) and (f), appear to have
power-law degree distributions, as indicated by their approximately straight-line forms on the doubly logarithmic scales, and
one (b) has a power-law tail but deviates markedly from power-law behavior for small degree. Network (e) has an exponential
degree distribution (note the log-linear scales used in this panel) and network (a) appears to have a truncated power-law degree
distribution of some type, or possibly two separate power-law regimes with different exponents.

within domains [338].

2. Maximum degree

The maximum degree kmax of a vertex in a network
will in general depend on the size of the network. For
some calculations on networks the value of this maxi-
mum degree matters (see, for example, Sec. VIII.C.2).
In work on scale-free networks, Aiello et al. [8] assumed
that the maximum degree was approximately the value
above which there is less than one vertex of that degree in
the graph on average, i.e., the point where npk = 1. This
means, for instance, that kmax ∼ n1/α for the power-law
degree distribution pk ∼ k−α. This assumption however
can give misleading results; in many cases there will be
vertices in the network with significantly higher degree
than this, as discussed by Adamic et al. [6].

Given a particular degree distribution (and assuming
all degrees to be sampled independently from it, which
may not be true for networks in the real world), the prob-
ability of there being exactly m vertices of degree k and
no vertices of higher degree is

(
n
m

)
pm

k (1−Pk)n−m, where

Pk is the cumulative probability distribution, Eq. (7).
Hence the probability hk that the highest degree on the
graph is k is

hk =
n∑

m=1

(
n

m

)
pm

k (1− Pk)n−m

= (pk + 1− Pk)n − (1− Pk)n, (10)

and the expected value of the highest degree is kmax =∑
k khk.
For both small and large values of k, hk tends to zero,

and the sum over k is dominated by the terms close to the
maximum. Thus, in most cases, a good approximation
to the expected value of the maximum degree is given
by the modal value. Differentiating and observing that
dPk/dk = pk, we find that the maximum of hk occurs
when
(

dpk

dk
− pk

)
(pk +1−Pk)n−1 + pk(1−Pk)n−1 = 0, (11)

or kmax is a solution of

dpk

dk
# −np2

k, (12)

Figure: Cumulative degree distributions for six different networks (degree k vs.
the cumulative probability distribution) [Newman 03].
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History of Power Laws—1

Power laws had been observed in a variety of fields for some time.

The earliest apparent reference is to the work by Pareto in 1897, who
introduced the Pareto distribution to describe income distributions.

When studying wealth distributions, Pareto observed power law
features, where there were many more individuals who had large
amounts of wealth than would appear in Gaussian or other
distributions.

Power laws also appeared in the work of Zipf in 1916, in describing word
frequencies in documents and city sizes.

The empirical principle, known as Zipf’s Law, states that the frequency
of the jth most common word in English (or other common languages)
is proportional to j−1.

These ideas were further developed in the work of Simon in 1955, who
showed that power laws arise when “the rich get richer”, when the amount
you get goes up with the amount you already have.
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History of Power Laws—2

Recall the examples:

A city grows in proportion to its current size as a result of people
having children.
Gene copies arise in large part due mutational events in which a
random segment of the DNA is accidentally duplicated (a gene which
already has many copies more likely to be in a random stretch of DNA)

All of these examples exhibit rich get richer effects.

Rich get richer effects quite fragile, there is great sensitivity to unpredictable
initial fluctuations.

Empirically studied by Salganik, Dodds and Watts (2006): They
created a music download site with 48 obscure songs. A visitor to the
site can listen to the songs and also is shown the “current” download
count for each song.
Each visitor at random is assigned to 8 “parallel copies” of the site,
which started out identically.
Market share of different songs varied considerably across different
copies.
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History of Power Laws—3

In 1965, Price applied these ideas to networks, with a particular focus on
citation networks.

Price studied the network of citations between scientific papers and found
that the in degrees (number of times a paper has been cited) have power
law distributions.

His idea was that an article would gain citations over time in a manner
proportional to the number of citations the paper already had.

This is consistent with the idea that researchers find some article (e.g. via
searching for keywords on the Internet) and then search for additional papers
by tracing through the references of the first article.

The more citations an article has, the higher the likelihood that it will be
found and cited again.

Price called this dynamic link formation process cumulative advantage.

Today it is known under the name preferential attachment after the
influential work of Barabasi and Albert in 1999.
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Uniform Attachment Model

Before studying the preferential attachment model, we discuss a dynamic
variation on the Erdös-Renyi model, in which nodes are born over time and
form edges to existing nodes at the time of their birth.

Index the nodes by the order of their birth, i.e., node i is born at date i ,
i = 0, 1, . . ..

A node forms undirected edges to existing nodes when it is born. Let di (t)
be the degree of node i at time t.

Start the network with m + 1 nodes (born at times 0, . . . , m) all connected
to one another.

Thus, the first newborn node is the one born at time m + 1.

Assume that each newborn node uniformly randomly selects m nodes from
the existing set of nodes and links to them (ignore repetitions).
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Evolution of Expected Degrees

We will use a continuous-time mean-field analysis to track the evolution of
the “expected degrees of nodes”.

We have the initial condition di (i) = m for all i , every node has m links at
their birth.

The change at time t > i of the expected degree of node i is given by

d di (t)
dt

=
m

t
,

since each new node at each time spreads its m new links randomly over the
t existing nodes at time t.

This differential equation has a solution

di (t) = m + m log
( t

i

)
.

From this solution, we derive an approximation to the degree distribution.

12



Networks: Lecture 6

“Expected” Degree Distribution

We first note that the expected degrees of nodes are increasing over time.

If we ask how many nodes have degree ≤ 100 and we know that a
node born at time τ has degree = 100 at time t, then we are
equivalently asking how many nodes were born on or after time τ.
This implies that at time t, the fraction of nodes having degree less
than or equal to 100 would be t−τ

t .

For any d and any time t, let i(d) be a node such that di(d)(t) = d . The

resulting cumulative distribution function then is Ft(d) = 1− i(d)
t .

Applying this technique to the uniform attachment model, we solve for i(d)
such that

d = m + m log
( t

i(d)

)
, which yields

i(d)
t

= e−
d−m

m ,

and therefore the distribution function Ft(d) = 1− e−
d−m

m .

This is an exponential distribution with support from m to infinity and a
mean degree of 2m.
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Preferential Attachment Model

Nodes are born over time and indexed by their date of birth.

Assume that the system starts with a group of m nodes all connected to one
another.

Each node upon birth forms m (undirected) edges with pre-existing nodes.

Instead of selecting m nodes uniformly at random, it attaches to nodes with
probabilities proportional to their degrees.

For example, if an existing node has 3 times as many links as some
other existing node, then it is 3 times as likely to be linked to by the
newborn node.

Thus, the probability that an existing node i receives a new link to the
newborn node at time t is m times i ’s degree relative to the overall degree
of all existing nodes at time t, or

m
di (t)

∑t
j=1 dj (t)

.
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Preferential Attachment Model

Since there are tm total links at time t in the system, it follows that

∑t
j=1 dj (t) = 2tm. Therefore, the probability that node i gets a new link in

time t is
di (t)
2t .

Hence, we can write down the evolution of expected degrees in continuous
time as

d di (t)
dt

=
di (t)

2t
,

with initial condition di (i) = m (assuming degree is a continuous variable).

This equation has a solution:

di (t) = m
( t

i

)1/2
.

As before, expected degrees of nodes are increasing over time.

Hence to find the fraction of nodes with degrees below a certain level d at
time t, we need to identify which node is exactly at level d at time t.

Let i(d) be the node that has degree d at time t, or di(d)(t) = d .
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Preferential Attachment Degree Distribution

From the degree expression, this yields

i(d)
t

=
(m

d

)2
,

leading to the distribution function

F (d) = 1−m2d−2,

with a corresponding density function

P(d) = 2m2d−3.

Thus, the (expected) degree distribution is a power law with exponent −3.

This is the argument given by Barabasi and Albert (1999).

Networks generated by preferential attachment look very different from
earlier models with similar average degree.
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Master Equation Method—1

In subsequent work, Dorogovstev, Mendes and Samukhin (2000), took a
different approach, using what they call the “master equation” to obtain
rigorous asymptotics for the mean degree of the nodes.

Let pk denote the fraction of nodes in the network with degree k.

The probability that a new edge attaches to a node of degree k is

kpk

∑d dpd
=

kpk

2m
,

since the mean degree of the network is 2m (there are m edges added for
each node, and each edge contributes two ends to the degrees of nodes).

Thus, the mean number of nodes of degree k that gain an edge when a

single new node with m edges is added is m kpk
2m = kpk

2 .

The number of nodes with degree k , given by npk , thus decreases by this
amount (since the nodes that get new edges become nodes with degree
k + 1).
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Master Equation Method—2

The number of nodes with degree k also increases because of influx from
nodes of degree k − 1 that have just acquired a new edge (except for nodes
of degree m, which have an influx of exactly equal to 1 due to the addition
of the new node with m edges).

Let pk,n denote the value of pk when the graph has n nodes.

Then we can write the dynamics as

(n + 1)pk,n+1 − npk,n =
1

2
(k − 1)pk−1,n −

1

2
kpk,n, for k > m,

(n + 1)pm,n+1 − npm,n = 1− 1

2
mpm,n, for k = m.

Focusing on stationary solutions pk,n+1 = pk,n = pk , it follows that

pk =
{

1
2 (k − 1)pk−1 − 1

2kpk for k > m,

1− 1
2mpm for k = m.
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Master Equation Method—3

Rearranging for pk , we find pm = 2/(m + 2) and
pk = pk−1(k − 1)/(k + 2), or

pk =
(k − 1)(k − 2) · · ·m

(k + 2)(k + 1) · · · (m + 3)
pm =

2m(m + 1)
(k + 2)(k + 1)k

.

In the limit of large k , this gives a power law degree distribution pk ∼ k−3.
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