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Peer Effects over Networks Beyond Random Assignment

Beyond Random Assignment

But random assignment will not be feasible in many settings.

This raises a host of interesting issues – specifically because in the
presence of externalities, behavior will be interdependent across
individuals.

Even if there are quasi-experimental variation, how individuals will
respond to this might be different, and might be a function of their
expectations about how others are behaving.

To discuss these issues and modeling and econometric approaches to
tackle them, I will now consider a more general setting in which there
could be a richer set of interactions.

The modeling of this will be easier using the language of “networks”.
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Peer Effects over Networks Beyond Random Assignment

Network Representation

Consider the following reduced-form model in an economy consisting
of n individuals/workers.

A (nonnegative) matrix G represents the network of interactions.

This is also called the adjacency matrix or the interaction matrix– it
represents who is whose “neighbor”.

We take the network to be directed and weighted, so that the entries
of G are nonnegative numbers (normalized to be less than 1), and G
is not necessarily symmetric.

For this lecture, let us adopt the convention that the diagonal
elements of G are zero, and we denote the entries by gij and the ith
column of G by Gi .

Daron Acemoglu (MIT) Peer Effects over Networks November 4, 2014. 3 / 44



Peer Effects over Networks Beyond Random Assignment

Network Representation (continued)

Suppose that externalities take the following form

yi = αxi + γG′ix+ Z
′
iβ+ εi , (1)

where xi is a measure of the human capital of individual i (e.g.,
schooling), and yi is the outcome of interest (e.g., log earnings).

Now it is straightforward to see that equation (1) enables a
representation of the externalities and peer effects discussed over the
last four lectures.

For example:

Lucas (1988): G’s all non-diagonal elements are equal to 1 (or the
same number).
Other examples of externalities in the labor market or in schooling are
more local, and necessitate different forms of G.
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Peer Effects over Networks Beyond Random Assignment

Example

As discussed in the first lecture, Acemoglu and Angrist derived and
estimated an equation similar to (1) representing log wages (i.e., yi =
log wages) with human capital externalities at the state level.

How will individuals choose their schooling (their xi ) in this setting.

First suppose that individuals just maximize log income minus costs
of schooling. Then since log income is αxi + γG′ix+ Z

′
iβ+ εi , this

maximization problem is

max
xi

αxi + γG′ix+ Z
′
iβ+ εi − c(xi ).

The solution to this problem will be related to the cost function and
the return to schooling, captured by the parameter α:

α = c ′(xi ).

Daron Acemoglu (MIT) Peer Effects over Networks November 4, 2014. 5 / 44



Peer Effects over Networks Beyond Random Assignment

Example (continued)

But suppose that instead of maximizing log income, individuals
maximize actual income minus costs (just for illustration purposes).

max
xi
eαxi+γG′ix+Z

′
i β+εi − c(xi ).

In this case, the best-response equation of each individual– supposing
that it is interior– would be of the form:

xi = F (G′ix, ...),

thus leading to endogenous effects.

Importantly, even though we started with a model without any
endogenous effects, equilibrium behavior leads to endogenous effects.

More generally, the resulting interactions will lead to game over
networks.
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Peer Effects over Networks Games over Networks

Games over Networks

Consider an economy consisting of a set of agents N = {1, 2, ..., n},
with each agent’s outcome equation given by the following quadratic:

yi = (αi + ξ i )xi + γiG
′
ix+ φxiG′i x+ εi , (2)

where xi ≥ 0 is characteristics/choice of agent i , and εi and ξ i are
two random error terms (the role of each of them will become clear
below). Think of ξ i as a random variable.

Note also that there are no endogenous effects in this equation.

This is different from (1) in allowing:

Heterogeneous and random own effects (the coeffi cient of xi )
Heterogeneous spillovers (the coeffi cient of G′ix)
The possibility of strategic effects (strategic complements or
substitutes through via the term xiG′ix).

We discuss non-linearities below.
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Peer Effects over Networks Games over Networks

Games over Networks (continued)

Agent i’s payoff is then obtained by introducing a quadratic cost:

Ui (xi , x−i ;G) = yi −
θ

2
x2i .

See Ballester, Calvo-Armengol, and Zenou Econometrica, 2006, or
Bramoulle, Kranton, and D’Amours, AER, 2013.
Applications (though with different functional forms):

private provision of public goods or jointly beneficial effort in networks
(Bramoulle and Kranton JET, 2007, Allouch, mimeo 2013);
education decisions in social networks (Calvo-Armengol, Patacchini,
and Zenou Review of Economic Studies, 2009)
oligopolistic competition (where the network represents substitution
patterns);
innovation networks (Bramoulle, Kranton, and D’Amours, 2013);
crime networks (Calvo-Armengol, and Zenou, International Economic
Review, 2004);
security investments against contagion (Acemoglu, Malekian, and
Ozdaglar, mimeo 2013).
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Peer Effects over Networks Games over Networks

Best Responses

Best responses are obtained straightforwardly as:

xi = max
{

αi
θ
+

φ

θ
G′i x+

ξ i
θ
, 0
}
. (3)

This equation also clarifies the role of the ξ i term in
(2)– multiplicative random terms in the outcome equation translate
into the error term in the best response equation.

If φ > 0, then this is a game of strategic complements– agents
would like to take higher actions when their neighbors are doing so.

If φ < 0, then this is a game of strategic substitutes– agents would
like to take lower actions when their neighbors are taking higher
actions.
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Peer Effects over Networks Games over Networks

Nash Equilibria

If all best responses were interior, the Nash equilibrium of this game
could be written as a solution to the following matrix equation

x = α̃+
φ

θ
G′ix+ ξ̃,

where α̃ is a column vector with elements given by αi/θ and ξ̃ is a
column vector with elements given by ξ i/θ.

Assuming that the inverse
(
I− φ

θG
′
i

)−1
exists, the unique solution is

x =
(
I−φ

θ
G′i

)−1 (
α̃+ ξ̃

)
. (4)

Thus there is a unique interior Nash equilibrium– under the
assumption that the inverse exists (or that φ/θ is not too large).
There may be multiple non-interior equilibria, however.

E.g., with strategic substitutes, when an agent’s neighbor takes a high
action, she would like to take a low action, and vice versa.
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Peer Effects over Networks Games over Networks

Nash Equilibrium and Bonacich Centrality

One popular measure of “centrality”of a node in the network is the
Katz-Bonacich centrality or simply the Bonacich centrality measure
(related to eigenvector centrality measures).

In a network with adjacency matrix G and a scalar a such that the
matrix (I− aG)−1 is well-defined and nonnegative, the vector of
Bonacich centralities of parameter a in this network is (I− aG)−1e,
where e is the vector of 1’s.
Of course,

(I− aG)−1 =
∞

∑
k=0

akGk ,

where Gk is the kth power of matrix G (with G0 = I ).
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Peer Effects over Networks Games over Networks

Nash Equilibrium and Bonacich Centrality (continued)

Intuitively, Gk measures the number of “walks”of length k, with g [k ]ij
as the number of walks of length k from i to j (think of the special
case where this is a matrix of zeros and ones.)
The parameter a is a decay factor that scales down the effect of
longer walks.

In “generalized Bonacich”centrality measure a can be negative.

Bonacich centrality of node i then counts the total number of walks
that start from node i .
This centrality measure (or its close cousins) emerge naturally in the
equilibria of many linear, log-linear or quadratic models as (4)
illustrates.

In particular, in this interior equilibrium, each agent’s action is equal to
its “generalized”Bonacich centrality measure (the appropriate entry of(
I− φ

θG
′
i

)−1
) times its own effect, αi/θ+ ξ i/θ.
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Peer Effects over Networks Games over Networks

Nash Equilibria (continued)

For the general characterization of Nash equilibria, let us call agents
choosing strictly positive xi active agents.
Without loss of any generality, take the active agents to be those
indexed A = {1, 2, ..., a}, and partition G as follows

G =
(

GA GA,N−A
GN−A,A GN−A

)
.

Here GA is the matrix of the impact of active agents on active agents,
and GN−A,A of active agents on non-active agents.
Then any Nash equilibrium is characterized by

(I−φ

θ
G′A)xA = (α̃+ ξ̃)A,

(I−φ

θ
G′N−A,A)xA ≤ (α̃+ ξ̃)N−A.

I.e., given the actions of active agents, other active agents have an
interior solution and non-active agents are happy at the corner.
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Peer Effects over Networks Games over Networks

Uniqueness

Recall that a (best-response) potential game is a game that admits a
potential function Γ, such that the derivative of this function with
respect to the strategy/action of each player gives that player’s best
response.

The game studied here is a potential game with potential function

Γ(x,G) = x′
(
α̃+ ξ̃

)
− 1
2
x′
(
I− φ

θ
G
)
x.

This can be verified by checking that indeed ∂Ui
∂xi
= ∂Γ

∂xi
for all i .
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Peer Effects over Networks Games over Networks

Uniqueness (continued)

Suffi cient condition for a unique equilibrium is a strictly concave
potential, which will lead to a unique solution to the potential
maximization problem, and thus to a unique Nash equilibrium.

The above potential function is strictly concave if the matrix(
I− φ

θG
)
is positive definite, which holds if its lowest eigenvalue is

strictly positive.

The eigenvalues of this matrix are simply given by 1 plus φ/θ times
the eigenvalues of the matrix G.
Hence, a suffi cient condition for uniqueness is |λmin(G)| < θ/φ
(where λmin(G) is the smallest eigenvalue of G).
Thus, if |λmin(G)| < θ/φ, then there is a unique Nash equilibrium.

Daron Acemoglu (MIT) Peer Effects over Networks November 4, 2014. 15 / 44



Peer Effects over Networks Games over Networks

Conceptual Problems with Endogenous Effects

The best response equation, (3), clarifies that once we specify games
over networks, endogenous effects are unavoidable.

These best responses link one agent’s choice of xi to another’s choice.
Thus this is equivalent to endogenous effects now in x’s.
This is even though there were no endogenous effects in the original
model.

But does it make conceptual sense to say that my choice today
depends on your choice today? How can something that has not been
realized yet influence what you have chosen?

Two answers to this:

This is what game theory predicts. But it’s not the actual choice of
yours that matters, but my anticipation of your choice.
Dynamics and stationary distributions.. . .
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Peer Effects over Networks Games over Networks

Endogenous Effects and Stationary Distributions

Consider the following dynamic variation:

yi ,t = (αi + ξ i )xi ,t + γiG
′
ixt + φxi ,tG′ixt + εi ,t ,

where the environment is not changing, but decisions are potentially
time-varying.
Suppose that agents best respond to the distribution of actions
among other agents in the previous period.
Then, the best-response equation is replaced by the following
counterpart:

xi ,t = max
{

αi
θ
+

φ

θ
G′ixt−1+

ξ i
θ
, 0
}
.

This defines a dynamical system, and is easy to interpret– your
decision from yesterday impacts my decision from today, so that it’s
only pre-determined variables that affect current choices.
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Peer Effects over Networks Games over Networks

Endogenous Effects and Stationary Distributions
(continued)

Moreover, under the suffi cient condition for uniqueness, i.e.,
|λmin(G)| < θ/φ, but in fact more generally, this dynamical system
converges to a stationary distribution, which will be given exactly by
the best response equation, (3).

Therefore, empirical equations that involve endogenous effects can
alternatively be interpreted as representing the stationary distribution
of a dynamic model.
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Peer Effects over Networks Games over Networks

Generalizations

Games over networks can be specified with fairly general non-linear
payoffs.
A general treatment is in Allouch (2013).
Most qualitative insights generalize to this non-linear setup; e.g.,
other centrality-type measures become important in this case.
Uniqueness and stability condition can be generalized to

1+
1

λmin(N(δ))
<

(
∂xi

∂G′ix

)−1
< 1.

Most importantly, estimation can be performed using non-linear
methods using the structure of the game in a way that parallels the
structural approach in the linear-quadratic case we discuss below.
Similarly, incomplete information (especially about network structure)
can also be introduced into this framework– see Galeotti, Goyal,
Jackson, and Yariv (Review of Economic Studies, 2010).
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Peer Effects over Networks Identification Challenges

Challenge I: Correlated Effects

Consider the regressions

yi = bownxi + bspilloverx̄i + controls+ uxi , (5)

yi = bownxi + bspilloverȳi + controls+ uyi , (6)

where x̄i is the average of i’s neighbors, and ȳi is defined similarly.
But unobserved errors are likely to be correlated between “neighbors”.
Or in terms of (5) or (6), uxi and u

y
i are likely to be correlated across

i .
This is for two distinct but related reasons:

1 Suppose friendships are exogenously given. Two friends are still likely
to be influenced by similar taste shocks, information and influences
(the common shocks discussed above).

2 Suppose friendships are endogenously given. Then people choosing to
be friends are likely to share similar observed and unobserved
characteristics.
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Peer Effects over Networks Identification Challenges

Challenge II: Endogenous Choices

Somewhat less obvious, the fact that x’s are choices makes
identification of certain parameters impossible– without taking a
more “structural” approach.
For this, take the best response equation of player i , (3) which,
ignoring the corner solution, can be written as

xi =
αi
θ
+

φ

θ
G′i x+

ξ i
θ
.

Substitute this into the outcome equation, (2), which is

yi = (αi + ξ i )xi + γiG
′
ix+ φxiG′i x+ εi .

We obtain
yi = θx2i + γiG

′
i x+ εi . (7)

Thus given endogenous choices, the crucial parameters of (2), in
particular own effect (the average of αi’s) and the strategic effect (φ),
cannot be identified.
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Peer Effects over Networks Identification Challenges

Challenge III: Endogenous Choices (continued)

(Here, “identification” refers not to lack of identification of the
regression coeffi cient (of say xi or of yi on the x choices of some
neighbors), but to lack of information from an estimation approach
on the “structural” or “causal”parameters).

But all of these effects can be identified if (3) and (2) are estimated
together:

The estimation of (2) identifies the spillover effects– the average of
γi’s– and the cost parameter θ.

Knowing θ, the estimation of (3) identifies φ from the slope of the
endogenous effects, and the average of the αi’s is identified from the
intercept.

This underscores the importance of estimating the endogenous and
contextual effects together when these relationships are derived from
game-theoretic interactions (over networks).
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Empirical Approaches

Two approaches beyond the full random assignment (recall that with
full random assignment and full compliance, there are no endogenous
choices, so the issues discussed here are less relevant):

1 Exploit network structure.
2 “Network instruments”.

Both approaches assume that the network structure is known and
measured without error.
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Peer Effects over Networks Empirical Approaches

Estimation Problem

Consider the two equations of interest– which might be jointly
estimated.
These do not include covariates, but αi’s could be specified as
functions of covariates and “excluded instruments”. In particular,
suppose that

αi = h(z′iβx +ωci ),

where h(·) is a potentially non-linear function.
Then

xi =
φ

θ
G′i x+

1
θ
h (z′iβx+ωci)+ ξ̃ i , (8)

where ξ̃ i = ξ i/θ.
The covariates zi can also be included in the outcome equation to
obtain (for example, by specifying εi = z′iβy+ε̃i ).

yi = θx2i + γiG
′
ix+ z

′
iβy+ε̃i . (9)
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Exploiting Network Structure

The most well-known example of exploiting network structure is the
creative paper by Bramoulle, Djebbari, and Fortin (Journal of
Econometrics, 2009).

Consider three agents i , j and k, and let us use the notation k ∈ N(j)
to denote that k is linked to (is a neighbor of) j .

Suppose that k ∈ N(j), j ∈ N(i), and k /∈ N(i)– i.e., k is j’s
friend/neighbor and j is i’s friend/neighbor, but k is not links to i .

Then, in terms of estimating (8) for of the impact of xj on xi , we can
use covariates of k, zk , as instruments.
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Peer Effects over Networks Empirical Approaches

Exploiting Network Structure (continued)

But this identification strategy works only if error terms in the best
response and the outcome equations, (8) and (9)– ξ̃ i and
ε̃i– orthogonal across non-neighbor agents.

Bramoulle et al. show how one might deal with some instances of a
priori known correlated effects.

If k and i have correlated error terms that are also correlated with
their characteristics (their x’s), then k’s covariates cannot be an
instrument for estimating j’s endogenous effect on i .
But such correlation is likely to be endemic:

Geographic or social proximity between k and i likely to be high
because they share friends.
Unlikely that k and j are correlated, j and i are correlated, but k and i
are uncorrelated.

Additional problem: if the network is measured with error, then
neighbors k and i may appear not to be neighbors, creating a
violation of the exclusion restrictions.

Daron Acemoglu (MIT) Peer Effects over Networks November 4, 2014. 26 / 44
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Network Instruments

Suppose that there is a variable– unrelated to the network– ci
orthogonal to ξ̃ i and ε̃i that can be used as an instrument for xi
absent any externalities, peer effects or network interactions.

Then this is a candidate to be a variable that is orthogonal to ξ̃k and
ε̃k for all k 6= i .
In other words, if we have

cov(ci , ξ̃ i ) = cov(ci , ε̃i ) = 0,

then it is also plausible that (for any integer p)

cov(G′ic, ξ̃ i ) = cov((G
p
i )
′c, ξ̃ i ) = cov(G

′
ic, ε̃i ) = cov((G

p
i )
′c, ε̃i ) = 0.
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Network Instruments (continued)

But ci should ideally satisfy an additional condition: lack of
correlation over the network, i.e.,

cov(c, (Gpi )
′)c) ≈ 0.

Why?

Because, otherwise, the correlated unobserved effects ξ̃ i and ε̃i could
project onto c.
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Estimating the Network

Does it matter if the network is not known?

Yes and no.

If there is no information on the network, then instead of a single
parameter φ or a well-defined local average of γi’s, we would need to
estimate n(n− 1) parameters, which is not feasible.
But if the network is known up to some parameter δ, that parameter
(or parameter vector) can also be consistently estimated.
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Peer Effects over Networks Empirical Approaches

Estimation

Finally, estimation could be performed by instrumental-variables
separately on (8) and (9).

But additional effi ciency can be gained by estimating these equations
jointly by GMM or other methods.

This is particularly true if there is a parameter of the network, δ, also
to be estimated.
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An Application

The only application is from a non-peer effects setting, from
Acemoglu, Garcia-Jimeno, and Robinson (2013).

xi= state capacity (presence of state agencies and employees) at the
municipality level in Colombia.

yi= prosperity, poverty etc. at the municipality level.

G(δ) = the municipality network given by distances and variance of
elevation between municipalities (with the parameter δ corresponding
to the weighing of distances and elevation).

ci= historical variables on where the Spanish set up the colonial state
and also on the road network they constructed built on income roads,
which later disappeared.

zi= various controls, including population.
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Context

General agreement that the weakness of the state and lack of
economic integration has been a major problem in Colombian history
and economic development.
Country split by the Andes creating relatively isolated subregions.
Colonial state concentrated in a few places and absent from much of
the rest of the country.
In the 19th century, number of public employees relative to
population about 1/10 of contemporary US level.
Rufino Gutierrez in 1912:

“...in most municipalities there was no city council, mayor,
district judge, tax collector... even less for road-building boards,
nor whom to count on for the collection and distribution of rents,
nor who may dare collect the property tax or any other
contribution to the politically connected...”

The same seems to be true today even if to a lesser extent.
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Model Setup

Identical to the game over networks presented above with the
adjacency matrix given by

gij =

{
0 if j /∈ N(i)
fij if j ∈ N(i)

where
fij =

1
1+ δ1dij (1+ δ2eij )

.

N(i) is the set of neighbors of i , dij is geodesic distance between i
and j , eij is variability in altitude along the geodesic.

The rest of the model is the same and our identification strategy will
be the same as the one described above.

Daron Acemoglu (MIT) Peer Effects over Networks November 4, 2014. 33 / 44



Peer Effects over Networks Applications

Instruments

Colonial state presence, measured either by the number of colonial
state agencies or employees.

Highly concentrated around key cities and resources, including military
aims in strategic places.
In gold mining regions, colonial state presence related to taxation.
In high native population regions, related to control of the population,
legal adjudication, etc.
Gold mining, native populations and those military aims are no longer
relevant. So the direct effect of colonial state presence is by creating
the infrastructure for current state presence.

Royal roads were one of the few investments in infrastructure
(building upon pre-colonial roads).

The presence of royal roads is a good indicator of where the colonial
state was interested in reaching out, and controlling territory.
But most of these royal roads were subsequently abandoned as
transportation infrastructure.

Daron Acemoglu (MIT) Peer Effects over Networks November 4, 2014. 34 / 44



Peer Effects over Networks Applications

The Correlation Matrix

These measures are not geographically correlated (reflecting the
specific Spanish colonial strategy).
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Estimates of the Best Response Equation

Fix δ the specific value, here (1, 1), and estimate the two equations
separately by linear IV or by GMM (also estimating δ).

The suffi cient condition for uniqueness are always satisfied.

Robust evidence for strategic complementarities, i.e., φ > 0.
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Estimates of the Best Response Equation
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Estimates of the Outcome Equation
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Quantitative Magnitudes

One advantage of estimating the structural model is the ability to
perform counterfactual exercises, taking equilibrium into account.

The larger effects in Panel Ib because of “network effects” (and
strategic complementarities).
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Endogenous Networks

A large literature studies the endogenous formation of (social)
networks– e.g., Jackson and Wolinsky (JET, 1996), Bala and Goyal
(Econometrica, 2000).
Endogeneity of networks makes externalities and peer effects more
interesting but also more complicated conceptually and more diffi cult
to estimate.
Application: Carrell, Sacerdote, and West (Econometrica, 2013).
Estimate peer effects across cadets within squadrons using random
assignment from the U.S. Air Force Academy.
These peer effects were non-linear:

Low (baseline) ability students appeared to benefit significantly from
being in the same squadron has high-ability students with
limitednegative effect on high-ability students from such mixin.

This suggests that optimally manipulating the composition of
squadrons can lead to significant gains.
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Endogenous Networks: Intervention Gone Wrong

The authors convinced the U.S. Air Force Academy to allow such
manipulation, and constructed “optimally designed” squadrons– in
which the exposure of low-ability cadets to high-ability ones was
maximized by creating “bimodal”squadrons.

However, instead of the hypothesized gains, there were losses among
low-ability cadets. Why?

The authors hypothesize, and provides some evidence in favor of, the
following story:

The real peer groups– the friendship networks– probably changed as a
result of the intervention: low-ability and high-ability cadets may have
stopped working and being friends together in the bimodal squadrons.
As a result, the peer effects from high-ability to low-ability cadets
weakened or disappeared, leading to negative results.

A cautionary tale on the endogeneity of social networks with respect
to interventions.
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Endogenous Networks: Bimodal Treatment
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Endogenous Networks: Prediction Vs. Realization
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Endogenous Networks: A Possible Explanation?
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