6.207/14.15: Networks Lecture 4: Erdös-Renyi Graphs and Phase Transitions

Daron Acemoglu and Asu Ozdaglar MIT

September 21, 2009

Outline

- Phase transitions
- Connectivity threshold
- Emergence and size of a giant component
- An application: contagion and diffusion

Reading:

Jackson, Sections 4.2.2-4.2.5, and 4.3.

Phase Transitions for Erdös-Renyi Model

- **Erdös-Renyi model is completely specified by the link formation probability** $p(n)$.
- \bullet For a given property A (e.g. connectivity), we define a threshold function $t(n)$ as a function that satisfies:

$$
\mathbb{P}(\text{property } A) \to 0 \quad \text{if } \frac{p(n)}{t(n)} \to 0 \text{, and}
$$
\n
$$
\mathbb{P}(\text{property } A) \to 1 \quad \text{if } \frac{p(n)}{t(n)} \to \infty.
$$

- This definition makes sense for "monotone or increasing properties," i.e., properties such that if a given network satisfies it, any supernetwork (in the sense of set inclusion) satisfies it.
- When such a threshold function exists, we say that a phase transition occurs at that threshold.
- Exhibiting such phase transitions was one of the main contributions of the seminal work of Erdös and Renyi 1959.

Threshold Function for Connectivity

Theorem

(Erdös and Renyi 1961) A threshold function for the connectivity of the Erdös and Renyi model is $t(n) = \frac{\log(n)}{n}$.

- To prove this, it is sufficient to show that when $p(n) = \lambda(n) \frac{\log(n)}{n}$ $\frac{2\pi n}{n}$ with $\lambda(n) \to 0$, we have $\mathbb{P}(\text{connectivity}) \to 0$ (and the converse).
- However, we will show a stronger result: Let $p(n) = \lambda \frac{\log(n)}{n}$ $\frac{3\langle H\rangle}{n}$.

If
$$
\lambda < 1
$$
, $\mathbb{P}(\text{connectivity}) \to 0$, (1)

$$
\text{If } \lambda > 1, \qquad \mathbb{P}(\text{connectivity}) \to 1. \tag{2}
$$

Proof:

We first prove claim [\(1\)](#page-3-0). To show disconnectedness, it is sufficient to show that the probability that there exists at least one isolated node goes to 1.

Proof (Continued)

 \bullet Let I_i be a Bernoulli random variable defined as

$$
I_i = \left\{ \begin{array}{ll} 1 & \text{if node } i \text{ is isolated,} \\ 0 & \text{otherwise.} \end{array} \right.
$$

We can write the probability that an individual node is isolated as

$$
q = \mathbb{P}(l_i = 1) = (1 - p)^{n-1} \approx e^{-pn} = e^{-\lambda \log(n)} = n^{-\lambda}, \tag{3}
$$

where we use $\lim_{n\to\infty}\left(1-\frac{a}{n}\right)^n=e^{-a}$ to get the approximation.

- Let $X = \sum_{i=1}^n I_i$ denote the total number of isolated nodes. Then, we have $\mathbb{E}[X] = n \cdot n^{-\lambda}$. (4)
- For $\lambda < 1$, we have $\mathbb{E}[X] \to \infty$. We want to show that this implies $P(X = 0) \rightarrow 0.$
	- In general, this is not true.
	- Can we use a Poisson approximation (as in the example from last lecture)? No, since the random variables I_i here are dependent.
	- \bullet We show that the variance of X is of the same order as its mean.

Proof (Continued)

• We compute the variance of X , var (X) :

var(X) =
$$
\sum_{i} \text{var}(I_i) + \sum_{i} \sum_{j \neq i} \text{cov}(I_i, I_j)
$$

\n= $\text{nvar}(I_1) + n(n-1)\text{cov}(I_1, I_2)$
\n= $\text{n}q(1-q) + n(n-1) \Big(\mathbb{E}[I_1 I_2] - \mathbb{E}[I_1] \mathbb{E}[I_2] \Big)$,

where the second and third equalities follow since the I_i are identically distributed Bernoulli random variables with parameter q (dependent).

o We have

$$
\mathbb{E}[I_1 I_2] = \mathbb{P}(I_1 = 1, I_2 = 1) = \mathbb{P}(\text{both 1 and 2 are isolated})
$$

$$
= (1 - p)^{2n - 3} = \frac{q^2}{(1 - p)}.
$$

• Combining the preceding two relations, we obtain

var(X) =
$$
nq(1-q) + n(n-1) \left[\frac{q^2}{(1-p)} - q^2 \right]
$$

= $nq(1-q) + n(n-1) \frac{q^2 p}{1-p}$.

Proof (Continued)

• For large *n*, we have $q \rightarrow 0$ [cf. Eq. [\(3\)](#page-4-0)], or $1 - q \rightarrow 1$. Also $p \rightarrow 0$. Hence,

$$
\begin{array}{rcl}\n\text{var}(X) & \sim & nq + n^2 q^2 \frac{p}{1-p} \sim nq + n^2 q^2 p \\
& = & n n^{-\lambda} + \lambda n \log(n) n^{-2\lambda} \\
& \sim & n n^{-\lambda} = \mathbb{E}[X],\n\end{array}
$$

where $a(n) \sim b(n)$ denotes $\frac{a(n)}{b(n)} \to 1$ as $n \to \infty$.

• This implies that

$$
\mathbb{E}[X] \sim \text{var}(X) \ge (0 - \mathbb{E}[X])^2 \mathbb{P}(X = 0),
$$

and therefore,

$$
\mathbb{P}(X=0) \leq \frac{\mathbb{E}[X]}{\mathbb{E}[X]^2} = \frac{1}{\mathbb{E}[X]} \to 0.
$$

• It follows that $\mathbb{P}(\text{at least one isolated node}) \rightarrow 1$ and therefore, P (disconnected) \rightarrow 1 as $n \rightarrow \infty$, completing the proof.

Converse

- We next show claim [\(2\)](#page-3-1), i.e., if $p(n) = \lambda \frac{\log(n)}{n}$ $\frac{\delta^{(H)}}{n}$ with $\lambda > 1$, then $\mathbb{P}(\text{connectivity}) \to 1$, or equivalently $\mathbb{P}(\text{disconnectivity}) \to 0$.
- From Eq. [\(4\)](#page-4-1), we have $\mathbb{E}[X] = n \cdot n^{-\lambda} \to 0$ for $\lambda > 1$.
- This implies probability of having isolated nodes goes to 0. However, we need more to establish connectivity.
- \bullet The event "graph is disconnected" is equivalent to the existence of k nodes without an edge to the remaining nodes, for some $k \leq n/2$.
- **o** We have

$$
\mathbb{P}(\{1,\ldots,k\} \text{ not connected to the rest}) = (1-p)^{k(n-k)},
$$

and therefore,

$$
\mathbb{P}(\exists \text{ k nodes not connected to the rest}) = {n \choose k} (1-p)^{k(n-k)}.
$$

Converse (Continued)

Using the union bound [i.e. $\mathbb{P}(\cup_i A_i) \leq \sum_i \mathbb{P}(A_i)$], we obtain

$$
\mathbb{P}\left(\text{disconnected graph}\right) \leq \sum_{k=1}^{n/2} \binom{n}{k} (1-p)^{k(n-k)}.
$$

Using Stirling's formula $k! \sim \left(\frac{k}{e}\right)^k$, which implies $\binom{n}{k} \leq \frac{n^k}{\binom{k}{2}}$ $\frac{h^n}{(\frac{k}{e})^k}$ in the preceding relation and some (ugly) algebra, we obtain

 P (disconnected graph) \rightarrow 0,

completing the proof.

Phase Transitions — Connectivity Threshold

Figure: Emergence of connectedness: a random network on 50 nodes with $p = 0.10$.

Giant Component

- We have shown that when $p(n)<< \frac{\log(n)}{n}$, the Erdös-Renyi graph is disconnected with high probability.
- In cases for which the network is not connected, the component structure is of interest.
- We have argued that in this regime the expected number of isolated nodes goes to infinity. This suggests that the Erdös-Renyi graph should have an arbitrarily large number of components.
- We will next argue that the threshold $p(n) = \frac{\lambda}{n}$ plays an important role in the component structure of the graph.
	- For $\lambda < 1$, all components of the graph are "small".
	- For $\lambda > 1$, the graph has a unique giant component, i.e., a component that contains a constant fraction of the nodes.

- We will analyze the component structure in the vicinity of $p(n) = \frac{\lambda}{n}$ using a branching process approximation.
- We assume $p(n) = \frac{\lambda}{n}$.
- Let $B(n,\frac{\Lambda}{n})$ denote a binomial random variable with n trials and success probability $\frac{\lambda}{n}$.
- Consider starting from an arbitrary node (node 1 without loss of generality), and exploring the graph.

(a) Erdos-Renyi graph process.

(b) Branching Process Approx.

- We first consider the case when *λ* < 1.
- Let Z_k^G and Z_k^B denote the number of individuals at stage k for the graph process and the branching process approximation, respectively.
- In view of the "overcounting" feature of the branching process, we have

$$
Z_k^G \leq Z_k^B \qquad \text{for all } k.
$$

• From branching process analysis (see Lecture 3 notes), we have

$$
\mathbb{E}[Z_k^B] = \lambda^k,
$$

(since the expected number of children is given by $n \times \frac{\lambda}{n} = \lambda$).

- \bullet Let S_1 denote the number of nodes in the Erdös-Renyi graph connected to node 1, i.e., the size of the component which contains node 1.
- **•** Then, we have

$$
\mathbb{E}[S_1] = \sum_{k} \mathbb{E}[Z_k^G] \le \sum_{k} \mathbb{E}[Z_k^B] = \sum_{k} \lambda^k = \frac{1}{1 - \lambda}.
$$

• The preceding result suggests that for $\lambda < 1$, the sizes of the components are "small".

Theorem

Let $p(n) = \frac{\lambda}{n}$ and assume that $\lambda < 1$. For all (sufficiently large) a > 0 , we have

$$
\mathbb{P}\Big(\max_{1\leq i\leq n}|S_i|\geq a\log(n)\Big)\to 0 \quad \text{as } n\to\infty.
$$

Here $|S_i|$ is the size of the component that contains node i.

- **•** This result states that for $\lambda < 1$, all components are small [in particular they are of size $O(log(n))$].
- Proof is beyond the scope of this course.

- We next consider the case when $\lambda > 1$.
- We claim that $Z_k^G \approx Z_k^B$ when $\lambda^k \leq O(\sqrt{n}).$
- The expected number of conflicts at stage $k + 1$ satisfies

 $\mathbb{E}[\text{number of conflicts at stage } k+1] \leq np^2 \mathbb{E}[Z_k^2] = n \frac{\lambda^2}{n^2}$ $\frac{\lambda}{n^2} \mathbb{E}[Z_k^2].$

We assume for large n that Z_k is a Poisson random variable and therefore $\mathsf{var}(Z_k) = \lambda^k$. This implies that

$$
\mathbb{E}[Z_k^2] = \text{var}(Z_k) + \mathbb{E}[Z_k]^2 = \lambda^k + \lambda^{2k} \approx \lambda^{2k}.
$$

• Combining the preceding two relations, we see that the conflicts become Combining the preceding two relation.
non-negligible only after $\lambda^k \approx \sqrt{n}$.

- Hence, there exists some $c > 0$ such that $\mathbb{P}(\textsf{there exists a component with size }\geq c$ √ \overline{n} nodes) $\rightarrow 1$ as $n \rightarrow \infty$.
- Moreover, between any two components of size \sqrt{n} , the probability of having a link is given by

 $\mathbb{P}(\text{there exists at least one link}) = 1 - (1 - \frac{\lambda}{\lambda})$ $\frac{\lambda}{n}$ ⁿ $\approx 1-e^{-\lambda}$,

i.e., it is a positive constant independent of n.

This argument can be used to see that components of size \leq √ n connect to each other, forming a connected component of size qn for some $q > 0$, a giant component.

Size of the Giant Component

- \bullet Form an Erdös-Renyi graph with $n-1$ nodes with link formation probability $p(n) = \frac{\lambda}{n}, \lambda > 1.$
- Now add a last node, and connect this node to the rest of the graph with probability $p(n)$.
- Let q be the fraction of nodes in the giant component of the $n-1$ node network. We can assume that for large n , q is also the fraction of nodes in the giant component of the *n*-node network.
- \bullet The probability that node *n* is not in the giant component is given by

P(node *n* not in the giant component) = $1 - q \equiv \rho$.

 \bullet The probability that node *n* is not in the giant component is equal to the probability that none of its neighbors is in the giant component, yielding

$$
\rho = \sum_{d} P_{d} \rho^{d} \equiv \Phi(\rho).
$$

• Similar to the analysis of branching processes, we can show that this equation has a fixed point $\rho^* \in (0,1)$.

An Application: Contagion and Diffusion

- \bullet Consider a society of *n* individuals.
- A randomly chosen individual is infected with a contagious virus.
- Assume that the network of interactions in the society is described by an Erdös-Renyi graph with link probability p .
- **•** Assume that any individual is immune with a probability π .
- We would like to find the expected size of the epidemic as a fraction of the whole society.
- The spread of disease can be modeled as:
	- Generate an Erdös-Renyi graph with n nodes and link probability p .
	- Delete πn of the nodes uniformly at random.
	- Identify the component that the initially infected individual lies in.
- We can equivalently examine a graph with $(1 \pi)n$ nodes with link probability p.

An Application: Contagion and Diffusion

- We consider 3 cases:
- $p(1 \pi)n < 1$:

 $\mathbb{E}[\text{size of epidemic as a fraction of the society}] \leq \frac{\log(n)}{n}$ $\frac{\partial}{\partial n} \approx 0.$

 \bullet 1 < $p(1 - \pi)n$ < $log((1 - \pi)n)$:

$$
\mathbb{E}[\text{size of epidemic as a fraction of the society}] \\
= \frac{qq(1-\pi)n + (1-q)\log((1-\pi)n))}{n} \approx q^2(1-\pi),
$$

where q denotes the fraction of nodes in the giant component of the graph with $(1-\pi)n$ nodes, i.e., $q=1-e^{-q(1-\pi)n p}.$

$$
\bullet \ \ p>\frac{\log((1-\pi)n)}{(1-\pi)n}.
$$

E[size of epidemic as a fraction of the society] = $(1 - \pi)$.