The Evolution of Gender Roles in Labor Markets, Education and Household Structure

David Autor, MIT and NBER 14.662 Spring 2017

Outline

1. Context – Gains along four economic margins

- Skills acquisition
- Occupational attainment
- Real wage levels
- Employment to population rates
- 2. The gender earnings gap
- 3. Gender norms and gender roles
- 4. Labor markets, marriage, children's HH structure

U.S. College Completion Rates by Birth Cohort

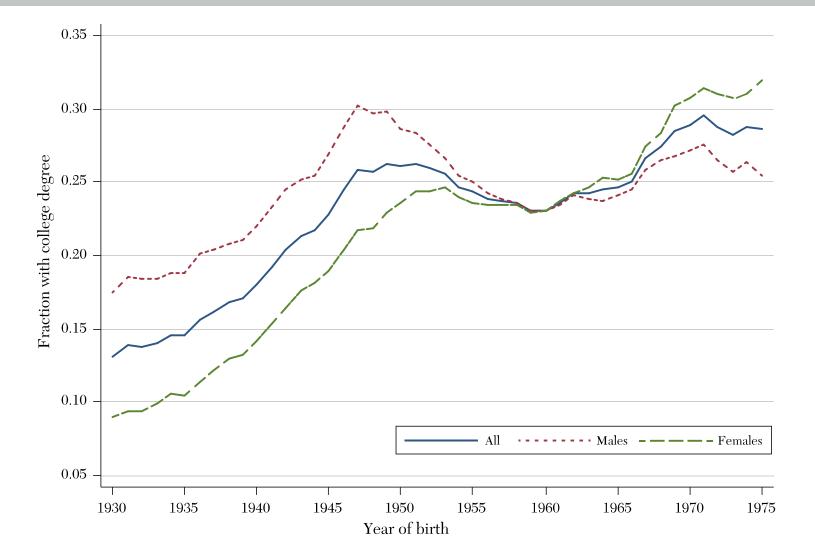
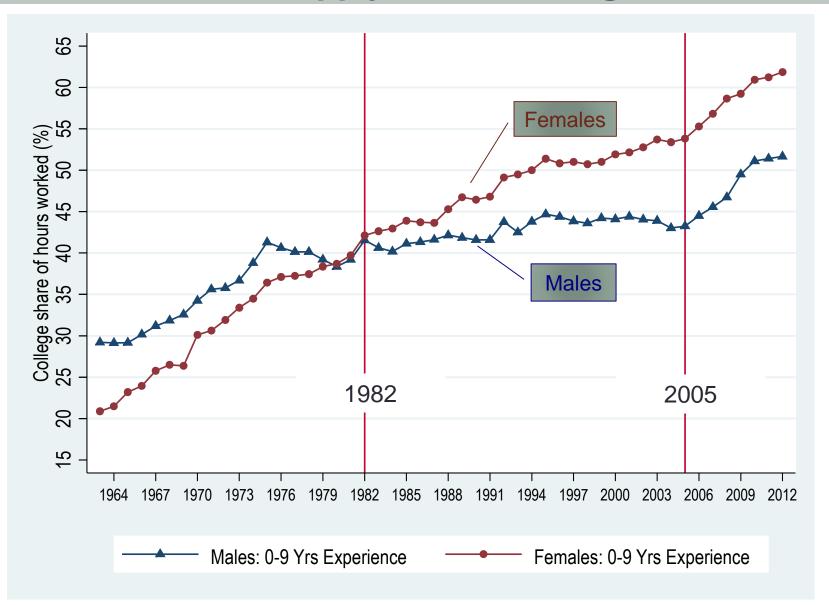
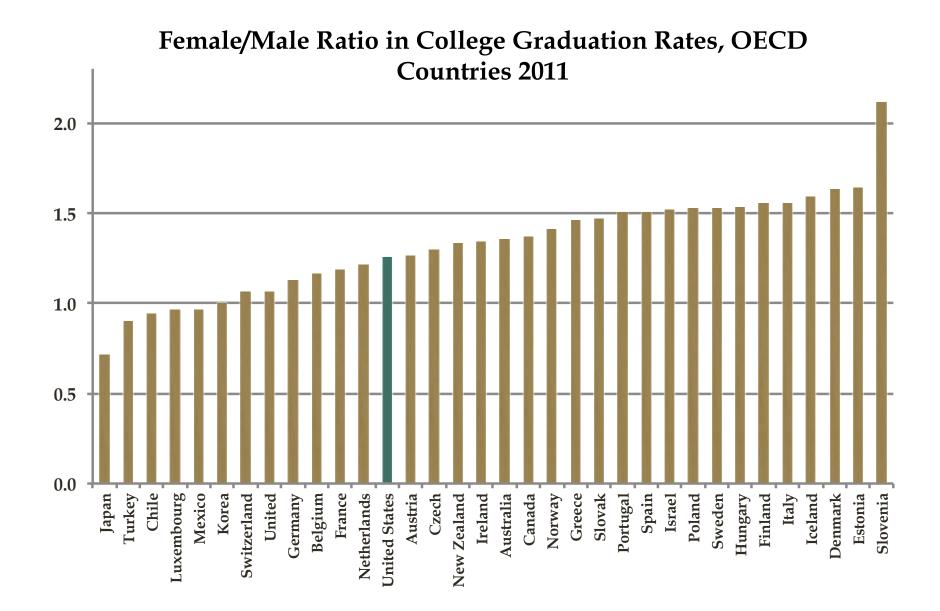



Figure 8. College Completion Rates by Birth Cohort: 1930–1975


Acemoglu and Autor 2012

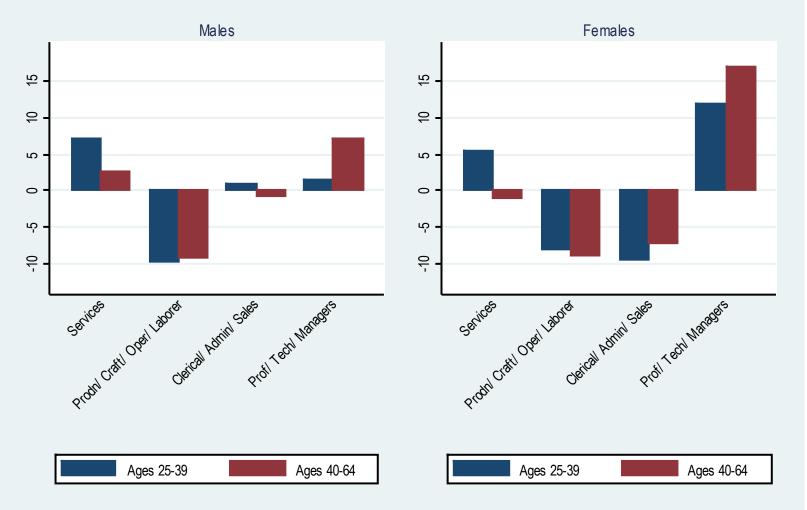
Largest Contributor to Widening Earnings Inequality: Deceleration in Supply of U.S. College Graduates

Autor, 2014

Ratio of Female/Male College Graduates among Ages 25-34 in OECD Countries in 2011

U.S. College Completion Rates by Sex, 1970-2008: Young Adults, 25 – 34

; 100556&, 1A E05W1<&(06=&LH&1/<5&+/00=N&56=&&;?FGN& KB&26<+62&<+&(96N&>3"&&:"7&

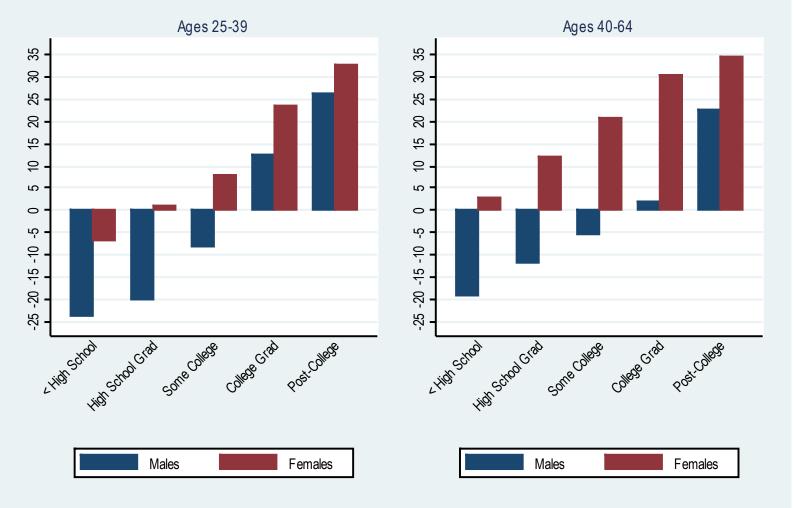


Autor and Wasserman 2013

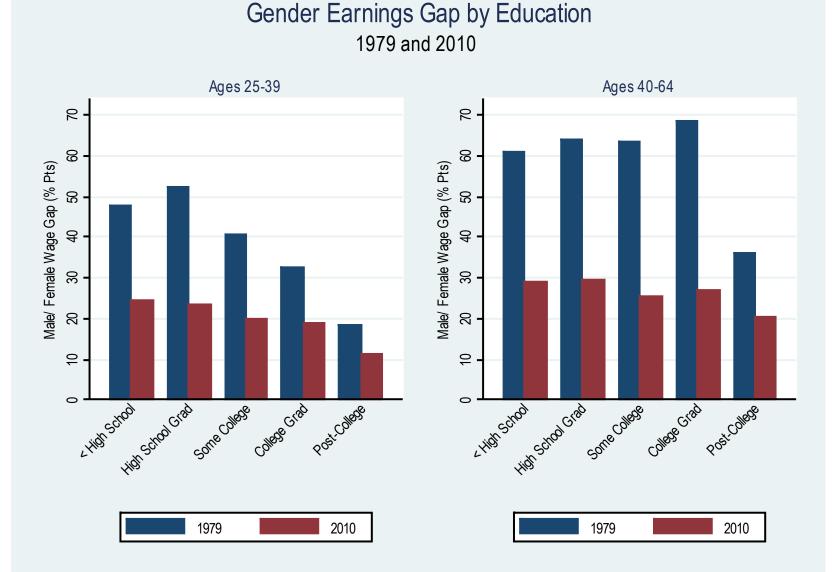
&

Females have Adapted Much More Successfully than Males to Employment 'Polarization'

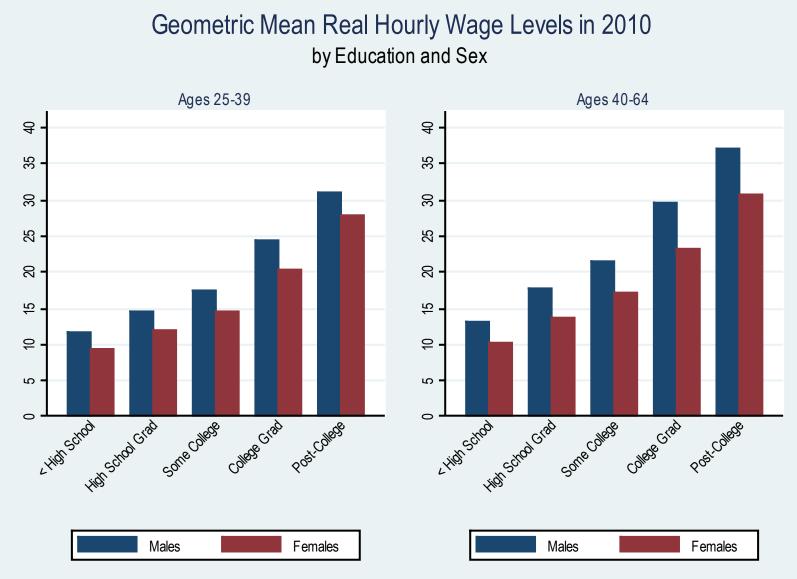
Percent Change in Employment Share 1980-2009 by Age Group and Major Occupation

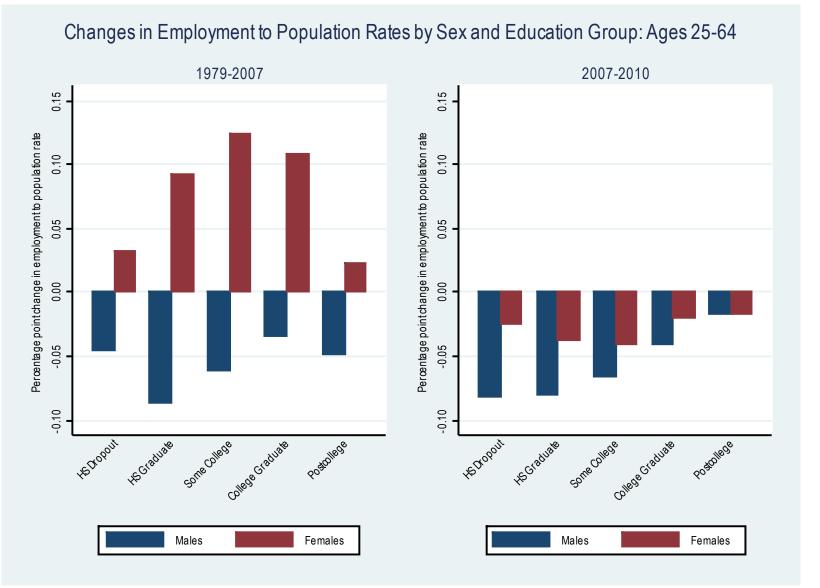

Outline

1. Context – Gains along four economic margins


- Skills acquisition
- Occupational attainment
- Real wage levels
- Employment to population rates
- 2. The gender earnings gap
- 3. Gender norms and gender roles
- 4. Labor markets, marriage, children's HH structure

Wage Gains Weak/Negative for Non-College, Much Better for Females than Males




Gender Gap in Earnings has Fallen Dramatically, Especially among Non-College

Yet Males Earn More at Every Education Level with the Largest % Advantage at Lower Education Levels

Emp/Pop Has Fallen Among Males, Esp. Among Low Education Males

Outline

1. Context – Gains along four economic margins

- Skills acquisition
- Occupational attainment
- Real wage levels
- Employment to population rates

2. The gender earnings gap

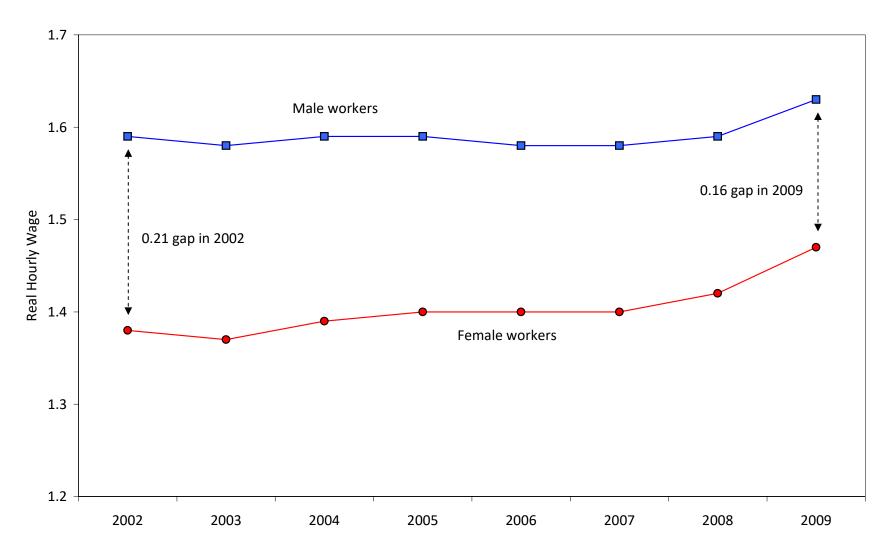
- Sorting and bargaining between and within-firms
- Occupational choice, time demands, & career interruption
- 3. Gender norms and gender roles
- 4. Labor markets, marriage, children's HH structure

Bargaining, Sorting, and the Gender Wage Gap

Card, Cardoso, Kline *QJE* '16

Question

More profitable firms may command wage premiums in a frictional labor market (e.g. Manning, 2003)

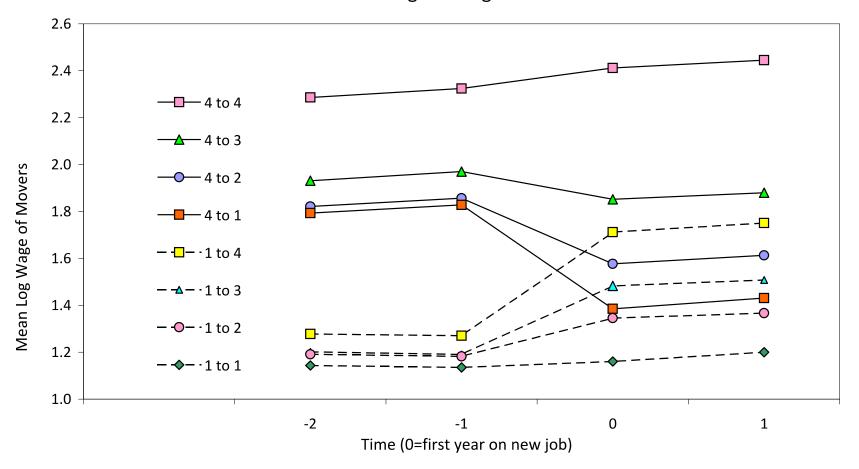

- 1. Do equally-productive men and women strike different wage bargains?
- 2. Do women sort to firms with lower premiums?
- 3. Contrast to productivity/discrimination explanations for gender wage gaps (Mulligan and Rubenstein, 2008; Becker, 1957)

Approach

- Abowd, Kramarz, Margolis (1999) approach identifies wage premiums from matched worker-firm data
 - Estimate premium distribution for men and women
 - Decompose gap into within-and between-firm components
 - Need a normalization to compare premiums across gender

Hourly Gender Pay Gap, Portugal, 2002 – 2009

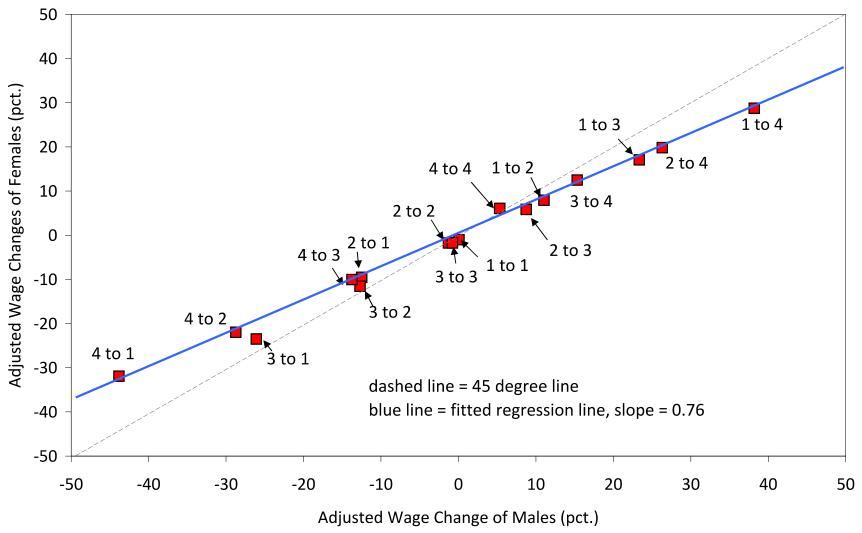
Figure 1: Trends in Real Hourly Wage of Men and Women



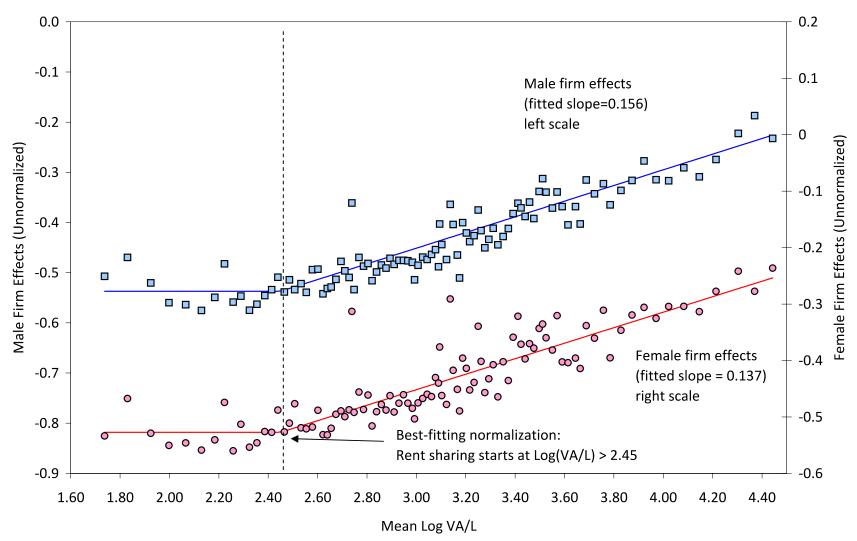
Facts about Gender Segregation in Portugal

- 1. On average, 70% of female's coworkers are female
- 2. On average, 76% of male's coworkers are male
- 3. 21% and 19% of males (females) work at all-male (all-female) firms
- 83% of women and 27% of men are in 'mainly female' occupations (mainly = above median of occupations overall)

Comparison of Wage Changes by Quartile of Wages at Origin and Destination Firms


Figure 2a: Mean Wages of Male Job Changers, Classified by Quartile of Mean Co-Worker Wage at Origin and Destination Firm

Notes: figure shows mean wages of male workers at mixed-gender firms who changed jobs in 2004-2007 and held the preceding job for 2 or more years, and the new job for 2 or more years. Each job is classified into quartiles based on mean log wage of co-workers (quartiles are based on coworker wages in last year on old job and first year on new job).


Companyon of Mage Changes of Maler Chale Movers by Quartile of Wages at Origin and Figure 3: Comparison of Adjusted Wage Changes of Male/Female Job Movers by Quartile of

Coworker Wages of Origin and Destination Jobs

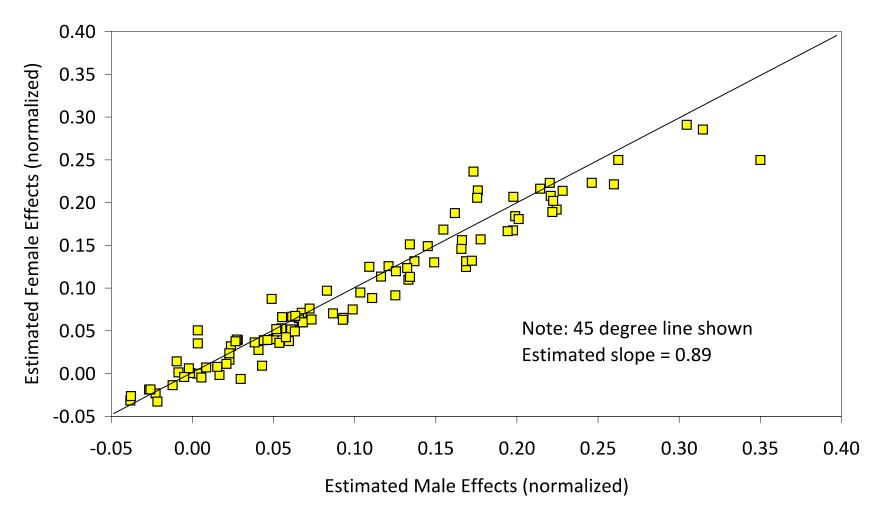

Firm Fixed Effects vs. Log Value Added/Worker

Figure 4: Firm Fixed Effects vs. Log Value Added/Worker

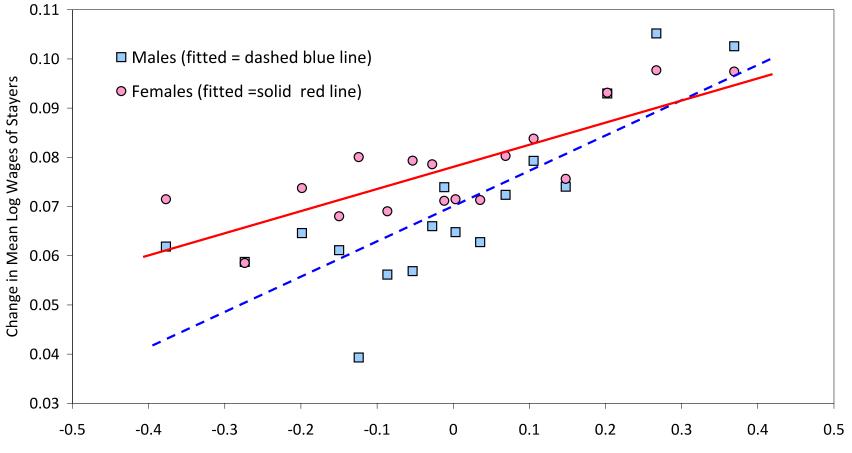

Estimated Firm Effects for Female and Male Workers. Firm Groups Based on Mean Log VA/L

Figure 5: Estimated Firm Effects for Female and Male Workers: Firm Groups Based on Mean Log VA/L

Changes in Excess Value Added and Changes in Wages of Stayers, 2006 – 2009

Figure 6: Changes in Excess Value Added and Changes in Wages of Stayers, 2006-2009

Change in Excess Value Added of Firm (vingtiles)

Note: Data for stayers are grouped into 20 cells based on changes in log value added per worker in excess of 2.45. Bottom and top vingtiles not shown.

Contribution of Firm-Based Wage Components to Male-Female Wage Gap

			Difference:	
_	Gender Group:		Males-Females	
	Males	Females	(pct. of overall gap)	
	(1)	(2)	(3)	
1. Mean log wage of group	1.715	1.481	0.234	
			(100.0)	
Means of Estimated Firm Effects:				
2. Firm Effects for Males ($\widehat{\psi}^M_{j(i,t)}$)	0.148	0.114	0.035	
			(14.9)	
3. Firm Effects for Females ($\widehat{\psi}^F_{j(i,t)}$)	0.145	0.099	0.047	
$f \not = j(i,t)$,			(19.9)	
4. Within-group Difference in Mean				
Effects for Males and Females	0.003	0.015		
(percent of overall gap)	(1.2)	(6.3)		
5. Mean Male Firm Effect Among Men -	0.049			
Among Women (Total contribution c	(21.2)			
6. Sample sizes	6,012,521	5,012,736		

Firm Fixed Effects vs. Log Value Added/Worker

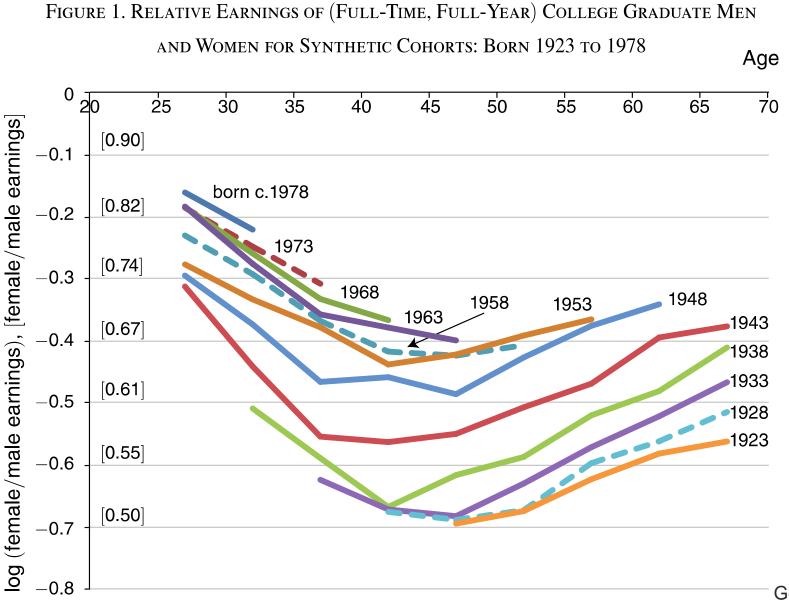
- Female employees receive ≈ 90% of wage premiums earned by men
 - Similar estimates of relative bargaining power: between-firm wage premiums (switchers) and changes in firm-specific premiums over time (stayers)
- 2. Women are less likely to work at firms that pay higher premiums to either gender
 - Sorting effects most important for low-skill workers
- 3. Bargaining and sorting effects explain about onefifth of cross-sectional gender wage gap in Portugal
 - Raw log gap: 0.234
 - Contribution of sorting: 0.035 0.047
 - Contribution of bargaining: 0.003 0.015

Progressive Company Pays Both Men And Women 78% Of What They Should Be Earning

Outline

- 1. Context Gains along four economic margins
- 2. The gender earnings gap
 - Sorting and bargaining between and within-firms
 - Occupational choice, time demands, & career interruption
- 3. Gender norms and gender roles
- 4. Labor markets, marriage, children's HH structure

A Grand Gender Convergence: Its Last Chapter


Claudia Goldin AEA Presidential Lecture January 2014

Goldin's Thesis – Time, the Final Frontier

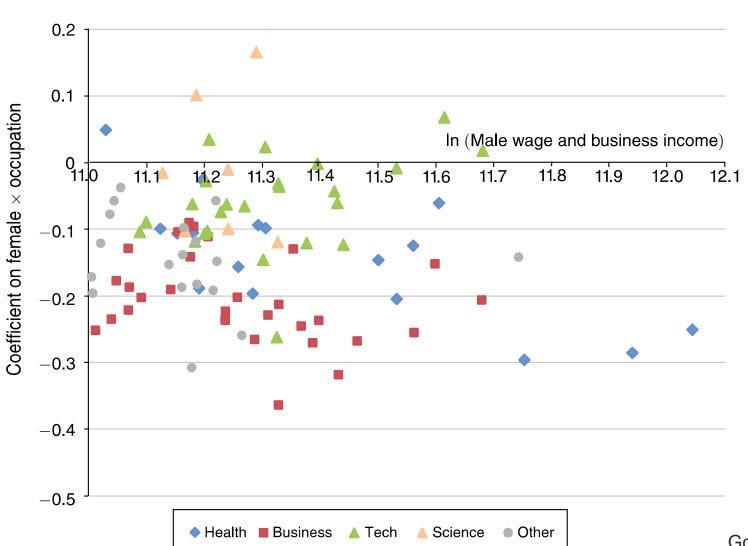
"The gender gap in pay would be considerably reduced and might vanish altogether if firms did not have an incentive to disproportionately reward individuals who labored long hours and worked particular hours. Such change has taken off in various sectors, such as technology, science, and health, but is less apparent in the corporate, financial, and legal worlds."

Goldin 2014

Female/Male Log Earnings Gap has U-Shape Over Lifecycle

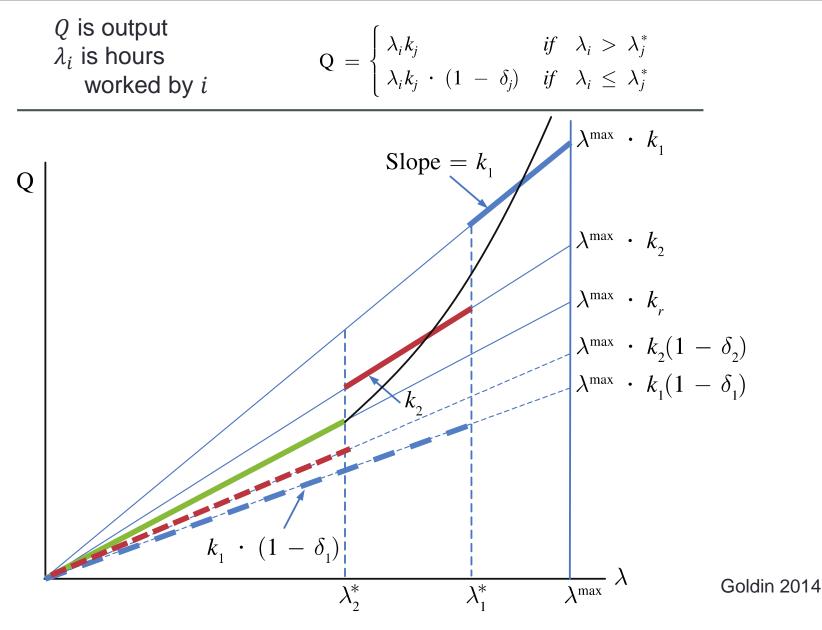
The Gender Wage Gap is Mostly a Within-Occupation Phenomenon (2009 – 2011 data)

Sample	Variables included	Coefficient on female	Standard error	R^2
Full-time	Basic	-0.248	0.00101	0.112
Full-time	Basic, time	-0.193	0.00100	0.163
Full-time	Basic, time, education	-0.247	0.000905	0.339
Full-time	Basic, time, education, occupation	-0.192	0.00104	0.453
All	Basic	-0.320	0.00105	0.102
All	Basic, time	-0.196	0.000925	0.353
All	Basic, time, education	-0.245	0.000847	0.475
All	Basic, time, education, occupation	-0.191	0.000963	0.563
Full-time, BA	Basic	-0.285	0.00159	0.131
Full-time, BA	Basic, time	-0.230	0.00159	0.131
Full-time, BA	Basic, time, education	-0.233	0.00155	0.177
Full-time, BA	Basic, time, education, occupation	-0.163	0.00158	0.374
All, BA	Basic	-0.384	0.00173	0.119
All, BA	Basic, time	-0.227	0.00175	0.119
All, BA	Basic, time, education	-0.229	0.00131	0.380
All, BA	Basic, time, education, occupation	-0.163	0.00148	0.525


TABLE 1—RESIDUAL GENDER DIFFERENCES IN EARNINGS AND THE ROLE OF OCCUPATION

Goldin 2014

Largest Gender Gaps in Highly Paid (Male) Occupations are in 'Business' Occupations


Part C. Full-time, full-year less than 45 years old for the approximately

95 highest (male) income occupations

Goldin 2014

An 'Indivisibilities' Theory of Occupational Pay Differentials:

Appear to Reward Long Hours (Occ x Hours OLS Coefficient)

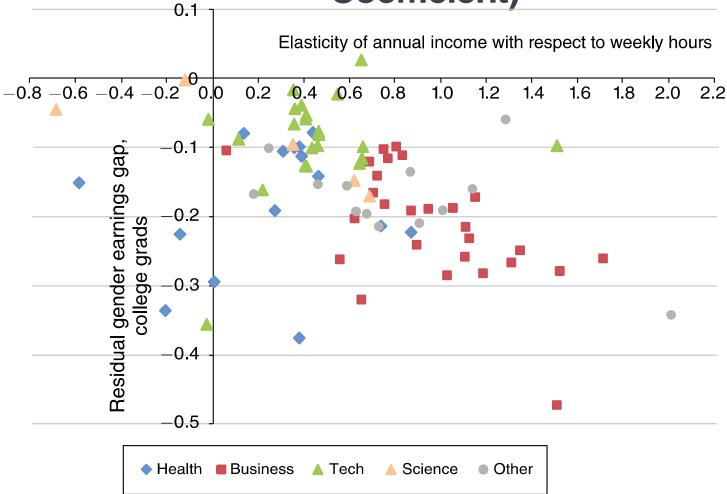


FIGURE 3. RELATIONSHIP BETWEEN THE ELASTICITY OF EARNINGS WITH RESPECT TO HOURS AND THE GENDER EARNINGS GAP

Goldin 2014

Customer Contact, Relationships, Structure, & Authority

TABLE 2—O*NET CHARACTERISTICS: MEANS (NORMALIZED) BY OCCUPATIONAL GROUP

O*Net characteristics	Technology and science	Business	Health	Law
1. Time pressure	-0.488	0.255	0.107	1.51
2. Contact with others	-0.844	0.171	0.671	0.483
3. Establishing and maintaining interpersonal relationships	-0.611	0.548	0.276	0.781
4. Structured vs. unstructured work	-0.517	0.313	0.394	1.22
5. Freedom to make decisions	-0.463	-0.00533	0.974	0.764
Number of occupations	31	28	16	1

Pressure, Customer Contact, Maintaining Relationships,

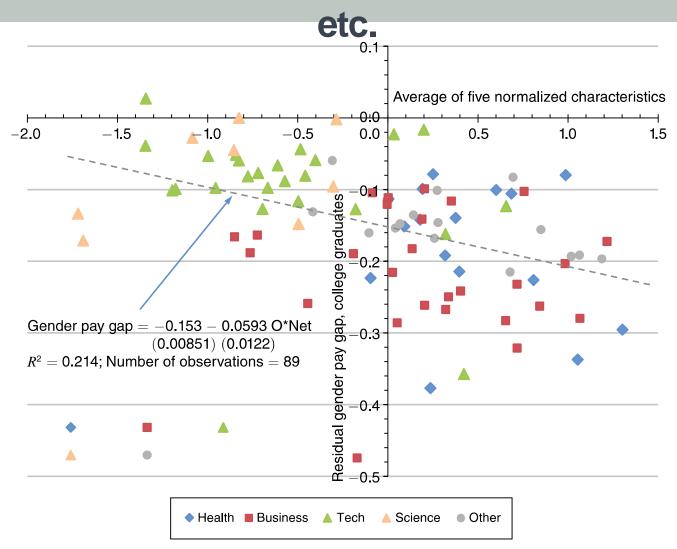
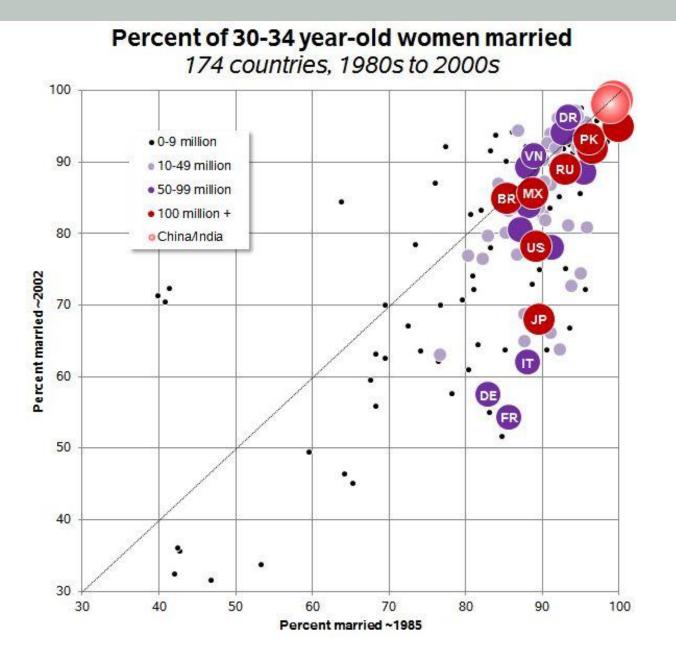
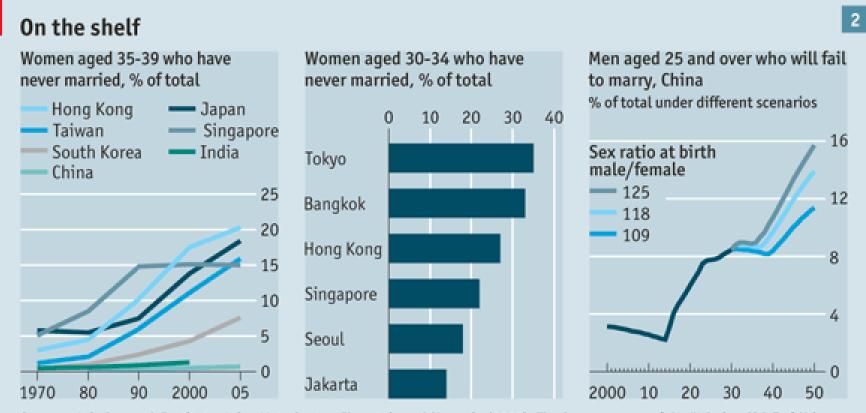


FIGURE 5. O*NET CHARACTERISTICS AND THE RESIDUAL COLLEGE GENDER EARNINGS GAP BY OCCUPATION


Goldin 2014

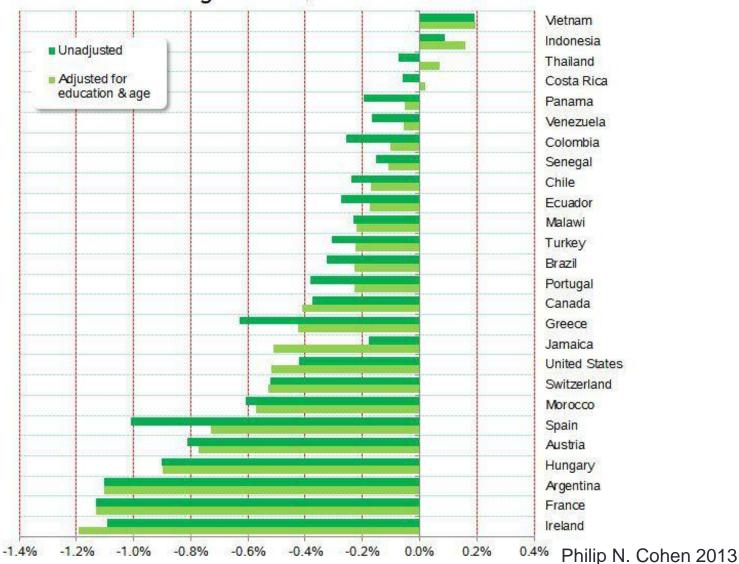
Outline


- 1. Context Gains along four economic margins
- 2. The gender earnings gap
 - Sorting and bargaining between and within-firms
 - Occupational choice, time demands, & career interruption
- 3. Gender norms and gender roles
 - Bringing home the bacon
 - Dual audience signaling
- 4. Labor markets, marriage, children's HH structure

Gender Identity and Relative Income Within Households

Marriage Rates Falling Globally




Marriage Rates Falling in Asia [Claim: Not Offset by Cohabitation, etc.]

Sources: Asia Research Institute; Asian Meta Centre; Ebenstein and Sharygin (2009): The Consequences of the "Missing Girls" of China

Marriage Rates Declining Worldwide 1980 – 2010

What Are Men and Women Looking For?

- Speed dating experiment
 - Fisman, Iyengar, Kamenica and Simonson QJE '06
 - Generate (1) random matching of subjects and
 (2) random variation in the number of potential partners
- Women
 - Put great weight on the intelligence, race of partner
 - Selectivity strongly increasing in group size
- Men
 - Respond more to physical attractiveness
 - Selectivity invariant to group size
 - Do not value women's intelligence or ambition when it exceeds their own

What Are Men and Women Looking For?

TABLE INUMBER OF PARTICIPANTS IN EACH SPEED DATING SESSION

Round #	Women	Men
1	10	10
2	16	19
3	10	10
4	18	18
5	10	10
6	16	16
7	10	10
8	20	20
9	9	9
10	21	21
11	9	10
12	18	20
13	19	18
14	14	10

Do We Have a Match? Dependent Variable {0,1}: Requests Contact Info

EFFECT OF OWN ATTRIBU	TABLE I JTES ON SUB		RIBUTE WEIG	HTS
	(1)	(2)	(3)	(4)
Ambition	0.009	0.031***	0.020**	0.030***
	(0.008)	(0.008)	(0.010)	(0.009)
Ambition \times (Ambition $>$ Own	0.012	-0.058^{***}	-0.012	-0.047^{***}
Ambition)	(0.014)	(0.013)	(0.016)	(0.016)
Attractiveness	0.113^{***}	0.134^{***}	0.097^{***}	0.136^{***}
	(0.006)	(0.007)	(0.008)	(0.009)
Attractiveness \times (Attractiveness	0.023	0.014	0.060***	0.006
> Own Attractiveness)	(0.015)	(0.013)	(0.015)	(0.014)
Intelligence	0.049^{***}	0.030***	0.041^{***}	0.044^{***}
-	(0.009)	(0.009)	(0.011)	(0.010)
Intelligence \times (Intelligence >	-0.007	-0.043^{**}	0.007	-0.064^{***}
Own Intelligence)	(0.019)	(0.018)	(0.018)	(0.020)
Subject's gender	Female	Male	Female	Male
Own attribute measure	Self-	rating	Partner	consensus
Observations	2985	2978	3031	3016
R^2	0.47	0.50	0.33	0.50

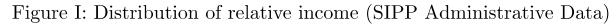
TADIE IV

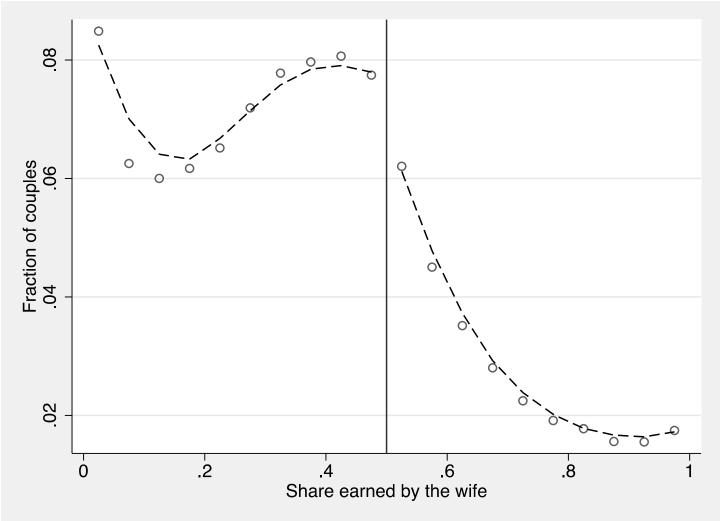
Effect of SAT Score (Undergrad College) and Zip Income Dependent Variable {0,1}: Requests Contact Info

PARTNER	s' Objectiv		BLE V TERISTICS AI	ND SUBJECT	rs' Decision	IS
	(1)	(2)	(3)	(4)	(5)	(6)
log(SAT)	0.681** (0.293)	-0.101 (0.289)	0.681** (0.288)			
log(Income)				0.088^{*} (0.053)	$0.014 \\ (0.052)$	0.088* (0.052)
log(Density)				-0.020* (0.011)	-0.022** (0.010)	-0.020* (0.011)
log(SAT) *Male			-0.782^{*} (0.409)			
log(Income) *Male						-0.074 (0.074)
log(Density) *Male						-0.001 (0.015)
Subject's gender	Female	Male	Both	Female	Male	Both
Observations R^2	$794 \\ 0.32$	$\begin{array}{c} 1120 \\ 0.27 \end{array}$	$\begin{array}{c} 1914 \\ 0.29 \end{array}$	$\begin{array}{c} 1915\\ 0.28\end{array}$	$\begin{array}{c} 2410\\ 0.30\end{array}$	$\begin{array}{c} 4325\\ 0.30\end{array}$

Linear probability model; robust standard errors in parentheses, clustered by partner. The level of observation is a subject-partner meeting. The dependent variable in all regressions is Decision, an indicator variable that takes on a value of one if a subject desired contact information for a partner. Log(SAT) is the logarithm of the median SAT score in 2003 of the partner's undergraduate institution. Log(Income) is the logarithm of median income of the partner's ZIP code in 1990, measured in dollars, based on United States census data. Log(Density) is the logarithm of the population density of the partner's ZIP code in 1990, measured in people per square mile, based on United States census data. Male is an indicator variable denoting whether a subject is male. All regressions include subject fixed effects, and all observations are weighted by the inverse of the number of observation per subject. * significant at 10 percent; *** significant at 1 percent.

Effect of Group Size: Number of Speed Date Meetings Experienced Dependent Variable {0,1}: Requests Contact Info

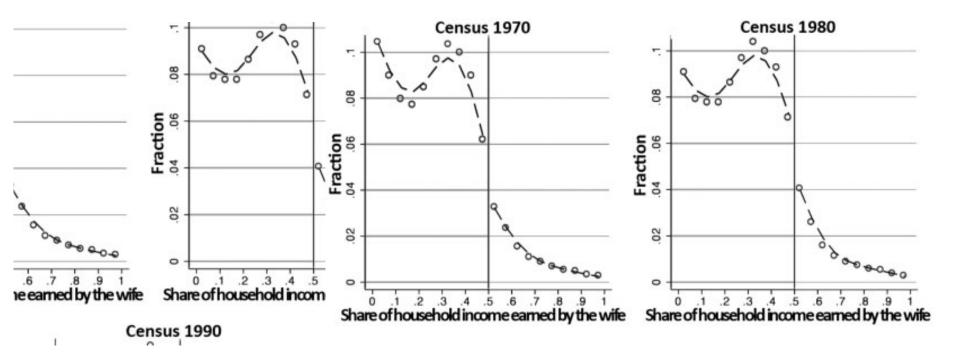

	(1)	(2)	(3)
Group size	-0.013^{**} (0.005)	0.003 (0.005)	-0.036 (0.036)
Male			-0.166^{*} (0.092)
Group size* Male			0.018** (0.007)
Subject's gender	Female	Male	Both
Round FE	No	No	Yes
Observations	200	200	400
R^2	0.05	0.00	0.11

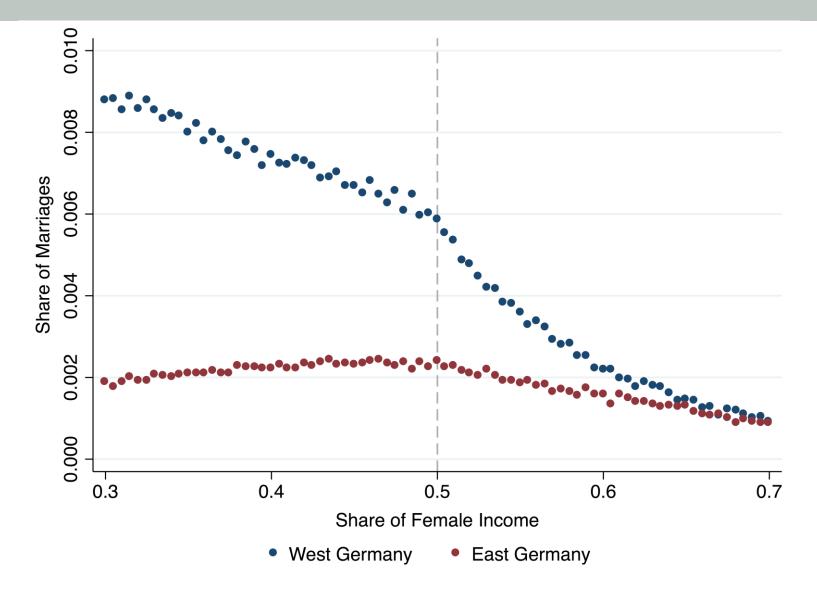

TABLE VII EFFECT OF GROUP SIZE ON SELECTIVITY

Robust standard errors are in parentheses. Regressions are at the subject level. The dependent variable in all regressions is the fraction of partners for whom the subject desired contact information. Group size is the number of meetings experienced by a subject. Male is an indicator variable denoting whether the subject is male. * significant at 10 percent; ** significant at 5 percent; *** significant at 1 percent.

Gender Identity and Relative Income Within Households

The Gender Cliff in Household Earnings: Administrative Data




The Gender Cliff in Household Earnings: Survey Data

The Gender Cliff in Household Earnings: Survey Data

Some Quasi-Supportive Evidence from West Germany

Nikolaus Hildebrand 2017

Relative Earnings in 'Marriage Markets' and Marriage Rates

Defining marriage markets

- 1. Race groups: non-Hispanic whites, non-Hispanic blacks, and Hispanics
- Age groups: 22–31 for women and 24–33 for men; 32–41 for women and 34–43 for men; and 42–51 for women and 44–53 for men
- 3. Education groups: high school degree or less; some college or more
- 4. State of residence

Basic pattern

- Overall likelihood that a randomly chosen woman earns more than a randomly chosen man is about 25%
- It's rising: 17–20% in 1980 to about 31–33% in 2010

Fraction Married Lower Where Women are Predicted to Earn More than Men

TATION OF A DAMAGE	Number of Males (ner million)	Number of Females (per million)	ידמנה דו היאלה בהדות הדות העונו	Male Average Years of Education	Female Average Years of Education		Male Incarceration Rate		Female Incarceration Rate		Sex Ratio		In Average Men's Income		ln Average Women's Income		PrWomanEarnsMore	Income measure:				
		n			cation							[0.032]	0.023	[0.030]	0.055*	[0.075]	-0.080			(1)		
												[0.070]	-0.092	[0.071]	× 0.171**	[0.080]	-0.046		Actual	(2)	OTENTIAL	
0.005	0.005	0.001	0.010	_0.031***	0.009	[0.089]	0.433^{***}	[0.241]	-0.369	[0.007]	-0.030***	[0.073]	0.005	[0.074]	0.088	[0.074]	-0.209***			(3)	LELATIVE IN	TA
												[0.053]	-0.001	[0.036]	0.066^{*}	[0.068]	-0.266***	Dependen	Ì	(4)	COME AND MA	TABLE I
												[0.084]	-0,201**	[0, 108]	0.266^{**}	[0.066]	-0.252***	Dependent variable: shareMarried	Predicted	(5)	Potential Relative Income and Marriage Rates	
0.00 <u>4</u> [0.006]	[0.006] 0.009	0.003	0.008	-0.023**	0.005	[0.071]	0.210^{***}	[0.232]	-0.292	[0.007]	-0.027***	[0.093]	-0.063	[0.108]	0.151	[0.062]	-0.236***	areMarried		(6)		
												[0.140]	0,114	[0.177]	0.270	[0.189]	-0,515***		İ	(\mathbf{T})		
												[0.292]	-0.558*	[0.333]	0.943***	[0.183]	* -0.343*		Bartik	(8)		
[0,007]	0.008	-0.003	0.007	-0.010	-0.002	[0.069]	0.056	[0.172]	-0.048	[0.007]	-0.006	[0.348]	-0.097	[0.371]	* 0.461	[0.181]	-0,351*			(9)		

Bertrand, Kamenica, Pan QJE 2015

Fra	actio	n M	arrie	ed l		ver	Wh	ere	W	om	en	are	
Predicted	to Ea	Irn I	More	e th	an	Me	n (E	Dep	Va	r: S	Sha	re Ma	rried)
	Π				-				3				
	mber of	mber of	le Aver	hale Av	le Incar	nale Inc	: Ratio	Average	Average	VomanH	ome me		
	Males (Female	age Year	Average Ye	Incarceration Rate	Incarceration Rate		Men's Income	Women's	VomanEarnsMore	measure:		
	of Males (per million)	mber of Females (per million)	Average Years of Education	Years of Education	Rate	on Rate		ncome	's Income	re			σ
		on)	tion	cation								1	ertrand,
							[0.032]	0.023	0.055^{*}	-0.080		(1)	Bertrand, Kamenica, Pan
							[0.070]	-0.092	0.171^{**}	-0.046		(2) Actual	ca, Pan Q
	0.004 [0.005]	[0.010] 0.001 [0.005]	[0.008] -0.031***	0.009	[0.241] 0.433***	[0.007] -0.369	[0.073] -0.030***	[0.074]		-0.209***		(3)	

Fraction Married Lower Where Women are Predicted to Earn More than Men (Dep Var: Share Married)

																		-				=					_						
	Number		Number		Male Average	Female Average	±	Male Inc		Female I														<u>.</u>		<u></u>	` *	3)* **	ıdent			
	Number of Males (per million)		Number of Females (per million)		erage Years			Incarceration Rate		Incarceration														[0.084]	-0.201^{**}	[0.108]	0.266^{**}	[0.066]	-0.252***	variable: shareMarried	Predicted	(5)	
	er million)	ŕ	(per million		Years of Education	Years of Education		Rate		$1 \operatorname{Rate}^{[0.006]}$	0.002	[0.006]	0.003	[0.008]	-0.023**	[0.007]	0.005	[0.071]	0.210^{***}	[0.232]	-0.292	[0.007]	-0.027***	[0.093]	-0.063	[0.108]	0.151	[0.062]	-0.236***	ureMarried		(6)	Bertrand
				Ì	on	tion	•																	[0.140]	0.114	[0.177]	0.270	[0.189]	-0.515***			(7)	l, Kamenic
																								[0.292]	-0.558*	[0.333]	0.943^{***}	[0.183]	-0.343^{*}		Bartik	(8)	Bertrand, Kamenica, Pan QJE 2015
[0.005]	0.004	[0.005]	0.001	[0.010]	_0.031***	0.009	[0.089]	0.433^{***}	[0.241]	$\begin{bmatrix} 0.0077 \\ -0.369 \end{bmatrix}$	$0.005_{0.71}$	[0.008]	-0.003	[0.007]	-0.010	[0.007]	-0.002	[0.069]	0.056	[0.172]	-0.048	[0.007]	-0.006	[0.348]	-0.097	[0.371]	0.461	[0.181]	-0.351*			(9)	E 2015

Wives Predicted to Earn More than Husband's Current Earnings are Less Likely to be in the Labor Force

			TABLE II		
	Pote	Potential Relative Income and Wife's Labor Force Participation	e and Wiffe's La	bor Force Part	ICIPATION
		(1)	(2)	(3)	(4)
			Depend	lent variable: V	Dependent variable: Wife in the labo
PrWifeEarnsMore		-0,178***	-0.142*** [0 004]	-0.139***	-0,143*** 10 0041
Observations			7,384,176	., 1 76	
R-squared		0.097	0.103	0.104	0.145
Additional controls:					
Cubic in InHusbIncome		N0	yes	yes	yes
InMedianWifePotential × InHusbIncome	usbIncome	no	110	yes	yes
anyChildren		no	110	no	yes
Wife's demographic group × Husband's	Husband's	110	N0	no	yes
demographic group PrWifeEarnsMore AtMarriage		110	NO	no	no
Vigintiles of the wife's and the husband's	le husbanc	ľs no	110	no	110
potential income at marriage Marriage duration fixed effects	5	no	no	NO	110
Sample restriction		none	none	none	none

What Makes for a Happy Marriage? (Data: *National Survey of Family and Households*)

Relative Income and Marital Satisfaction

	(1)	(2)	(3)	(4)
Panel A: dependent variable: happyMarri	age			
wifeEarnsMore	0	-0.060*	-0.070*	-0.065*
	[0.031]	[0.032]	[0.036]	[0.037]
Observations	$7,\!659$	7,659	$7,\!659$	7,659
R-squared	0.025	0.026	0.025	0.025
Panel B: dependent variable: marriageTre	ouble			
wifeEarnsMore	0.082^{***}	0.078***	0.079**	0.086**
	[0.027]	[0.029]	[0.033]	[0.034]
Observations	$7,\!520$	7,520	$7,\!520$	$7,\!520$
R-squared	0.047	0.048	0.047	0.048
Panel C: dependent variable: discussSepa	ration			
wifeEarnsMore	0.068^{***}	0.064^{***}	0.060**	0.065**
	[0.024]	[0.024]	[0.028]	[0.028]
Observations	$7,\!507$	7,507	$7,\!507$	$7,\!507$
R-squared	0.034	0.034	0.034	0.034
Additional controls:				
Cubic in <i>lnWifeIncome</i> and <i>lnHusbIncome</i>	e no	yes	no	no
relativeIncome	no	no	yes	yes
Wife-Husb Income Rank	no	no	no	yes

What Makes for a Happy Marriage? Relative Income and Pr[Divorced] Fives Years Later (Mean Divorced = 0.12)

Relative Income and Divorce

	(1)	(2)	(3)	(4)
	De	ependent varia	able: <i>divorce</i>	d
wifeEarnsMore	0.062** [0.025]	0.060** [0.026]	0.048 [0.030]	0.051^{*} $[0.030]$
Observations <i>R</i> -squared	$3,439 \\ 0.080$	$3,439 \\ 0.086$	$3,439 \\ 0.080$	$3,439 \\ 0.080$
Additional controls: Cubic in <i>lnWifeIncome</i> and <i>lnHusbIncome</i>	no	yes	no	no
relativeIncome Wife-Husb Income Rank	no no	no no	yes no	yes yes

1. Nonmarket work hours

 Wives with potential earnings > spouse do more work at home

2. Longitudinal data

- LFP
- Divorce
- Home production

Outline

- 1. Context Gains along four economic margins
- 2. The gender earnings gap
- 3. Gender norms and gender roles
 - Bringing home the bacon
 - Dual audience signaling
- 4. Labor markets, marriage, children's HH structure

'Acting Wife:' Marriage Market Incentives and Labor Market Investments

Bursztyn, Fujiwara and Pallais NBER Working Paper, January 2017

Women Appear to Shade Desired Compensation When Info May be Publicly Observed

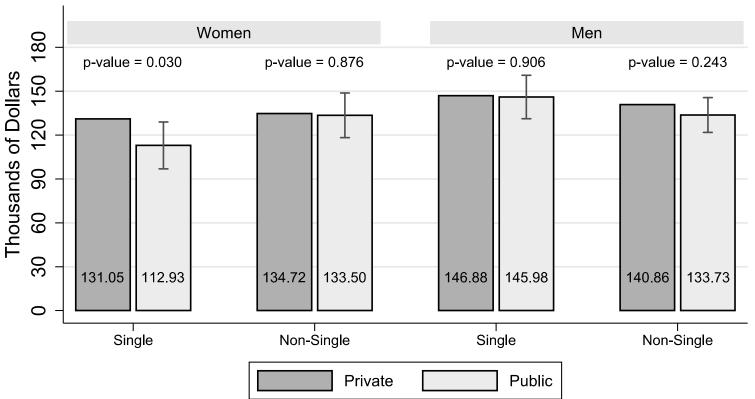
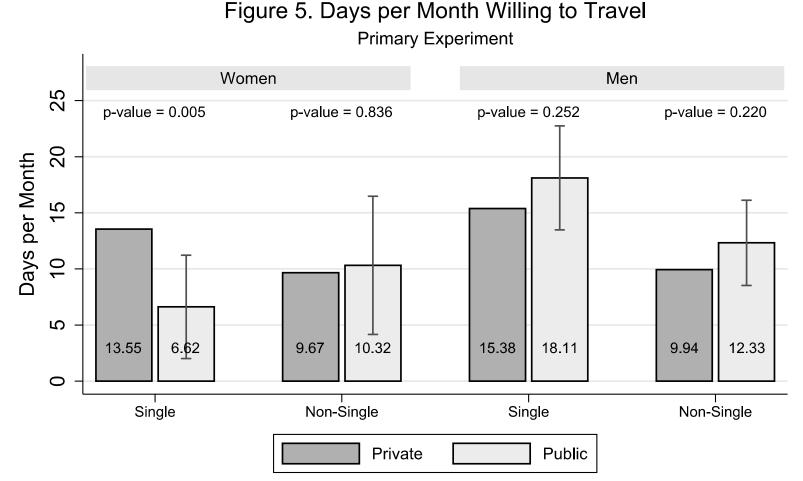
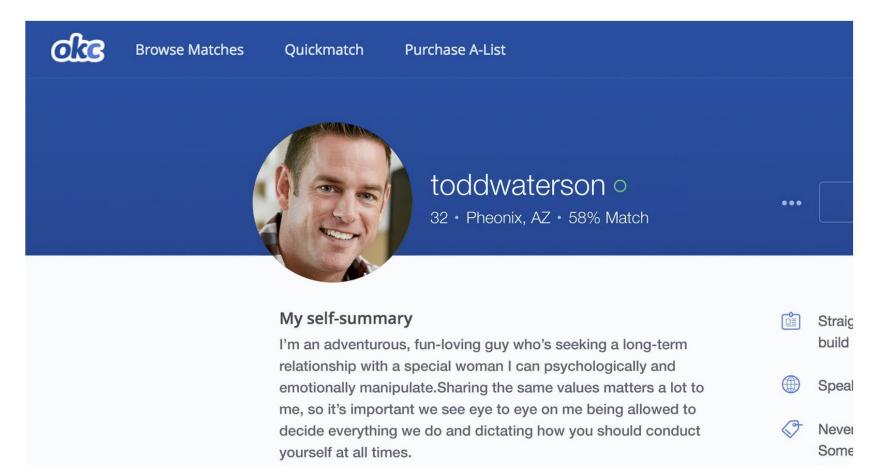



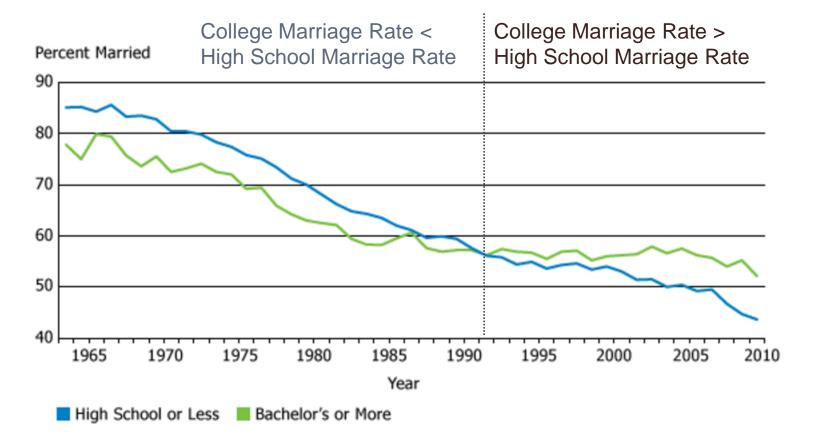
Figure 4. Desired Compensation Primary Experiment

Notes: Students were asked their desired compensation in their first year after graduation, including base pay, performance pay, and equity, but excluding signing bonus. Desired compensation is coded as the midpoint of the chosen range, except for "under \$75,000" (coded as \$62,500) and "above \$250,000" (coded as \$262,500). Some respondents chose two or more consecutive answers. Their responses are coded as the midpoint of the full range chosen. Whiskers show the 95% confidence interval calculated from regressions of desired compensation on an indicator for being in the public treatment using robust standard errors. Non-single respondents are in a serious relationship, cohabiting, engaged, or married.


Women Appear to Shade Desired Compensation When Info May be Publicly Observed

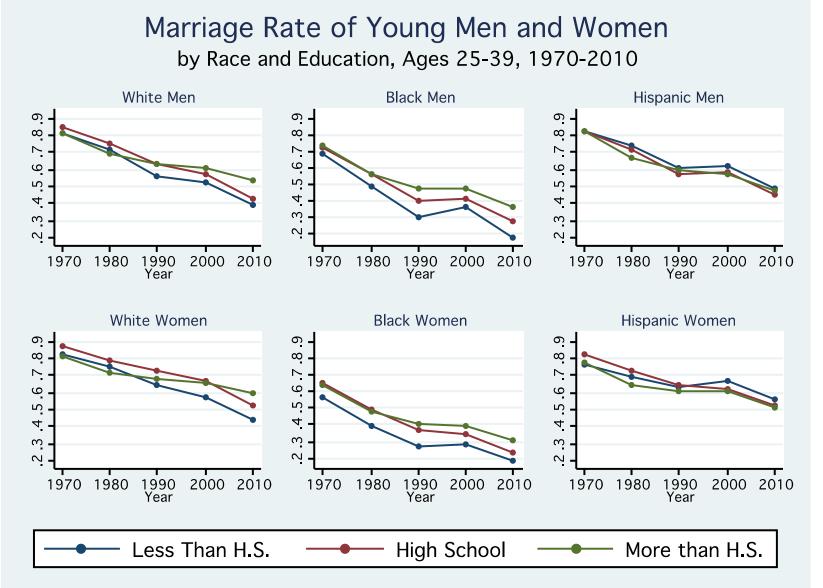
Notes: Students were asked how often they are willing to travel for work. Willingness to travel is coded as the midpoint of the chosen range, except for "rather not travel" (coded as 0) and "as much as necessary" (coded as 30). Whiskers show the 95% confidence interval calculated from regressions of the number of days per month the respondent was willing to travel on an indicator for being in the public treatment using robust standard errors. Non-single respondents are in a serious relationship, cohabiting, engaged, or married.

Dating Profile Flatly States Man Looking For Someone He Can Control


Doesi

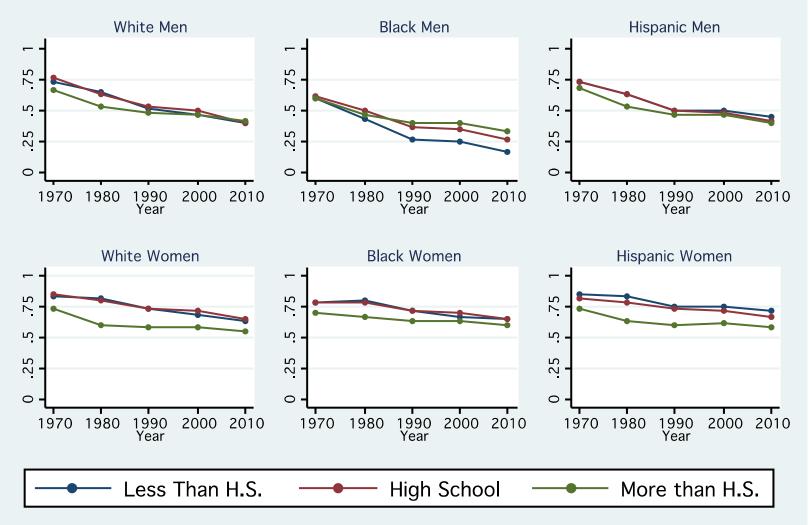
Outline

- 1. Context Gains along four economic margins
- 2. The gender earnings gap
- 3. Gender norms and gender roles
 - Bringing home the bacon
 - Dual audience signaling
- 4. Labor markets, marriage, children's HH structure

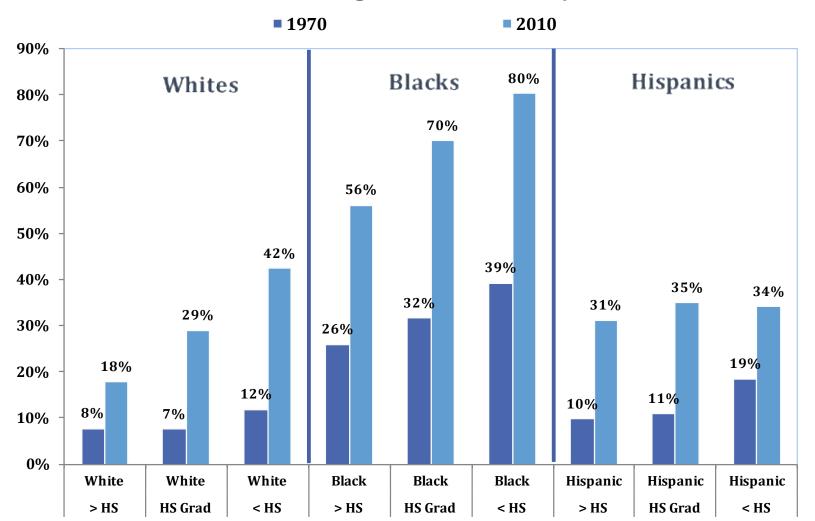

Marriage Rates Diverging by Education After Mid-1980s

Marriage Rates Among Young Adults Ages 25-34, 1965-2010 (Percent)

Source: U.S. Census Bureau, 2000 Census and American Community Survey.

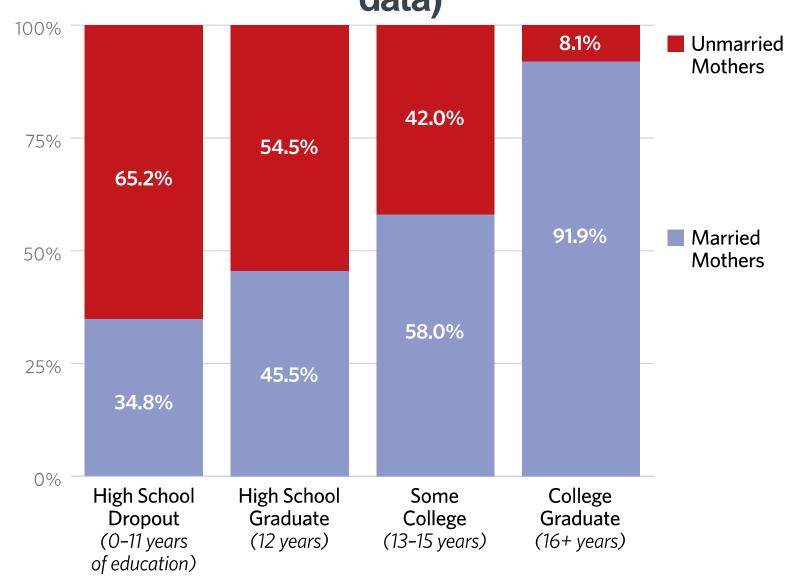

Marriage Rates Fell Substantially b/w1970 – 2010, and by More Among Less Educated

Autor and Wasserman 2013


$\begin{array}{l} \mbox{Marriage Has Declined but Fertility has not Changed} \\ \mbox{Much} \rightarrow \mbox{Males not Cohabiting with Kids} \end{array}$

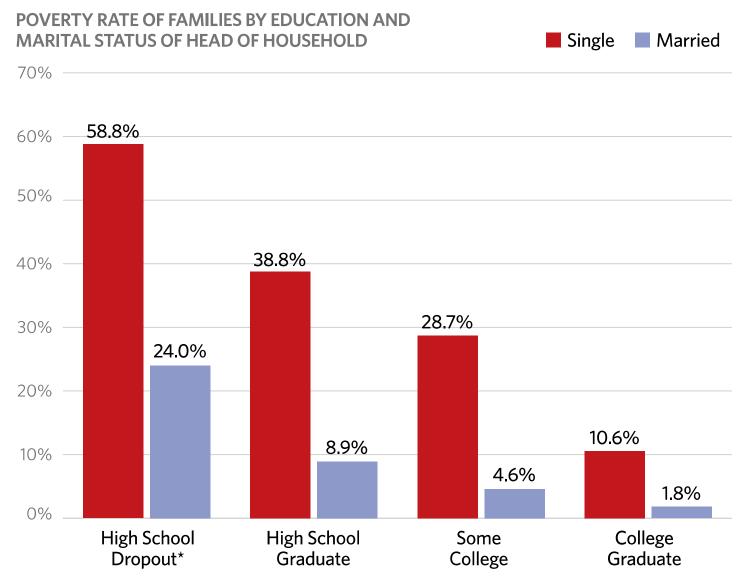
Fraction of Young Men and Women Reporting at least One Child at Home by Race and Education, Ages 25-39, 1970-2010

Autor and Wasserman 2013


A Rising Fraction of Kids Grows Up in Single-Headed Households

U.S. Children < 18 Living with Mother Only: 1970 & 2010

Autor and Wasserman, 2013


Much Higher among Non-College Women (2008 data)

MOTHER'S EDUCATION LEVEL

Rector 2012

Single & Poor: Poverty Far Higher Among Single-Headed Households at Every Education Level (2008 data)

Rector 2012

Relevant Work

Daniel Patrick Moynihan '65

• The Negro Family: The Case For National Action

William Julius Wilson '87

The Truly Disadvantage

Akerlof, Yellen and Katz '96

 "An Analysis of Out-of-Wedlock Childbearing in the United States"

William Julius Wilson '96

• When Work Disappears

Charles Murray '12

• Coming Apart: The State of White America 1960 – 2010

When Work Disappears, William Julius Wilson, 1996

The World of the New Urban Poor

WILLIAM JULIUS WILSON

Wilson's masterwork . . . the agenda for the nation in the generation shead ---Senator Denish Petrick Moynihan "A neighborhood in which people are poor but employed is different from a neighborhood in which people are poor and jobless. Many of today's problems in the inner-city ghettos—crime, family dissolution, welfare, low levels of social organization, and so on are fundamentally a consequence of the disannoaranco of work "

Crisis J.D. Vance, 2016

Hillbilly Elegy

A Memoir of a Family and Culture in Crisis

J.D. VANCE

letter and tell him that he had described my home perfectly. That it resonated so personally is odd, however, because he wasn't writing about the hillbilly transplants from Appalachia—he was writing about black people in the inner cities."

"Wilson's book spoke to

me. I wanted to write him a

When Work Disappears: Manufacturing Decline and the Falling Marriage-Market Value of Men

Autor, Dorn and Hanson NBER Working Paper February 2017

Approach (Manufacturing Decline and Marriage-Market Value of Men)

- Estimate causal effect of trade shocks on *employment, earnings, and non-market outcomes*
- Identify gender-specific employment shocks
 - Trade shocks that differentially affect men, women
- Tracing impacts of local labor market shocks to
 - 1. Employment and earnings by sex
 - 2. Marriageable men and missing men
 - 3. Marital status
 - 4. Birth outcomes
 - 5. Children's household structures

Manufacturing Decline and Marriage-Market Value of Men

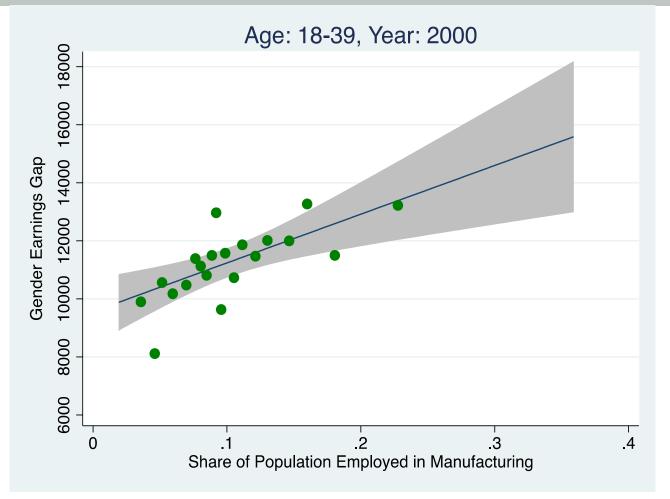
- 1. Trade and manufacturing
- 2. Empirical approach
- 3. A simple model
- 4. Results

Manufacturing Provides 'Good' Jobs (Especially for Males)

Annual Wage + Salary Income: 2000 Census IPUMS

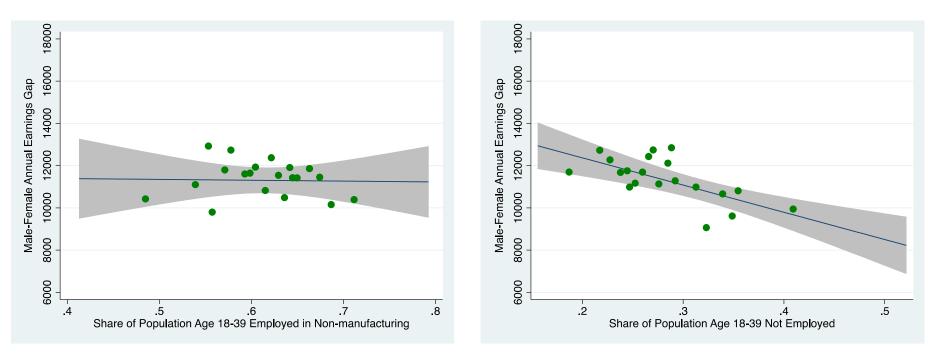
						a	ta									
		og /		Wa	ge and	Sala	- é	ome		Ann	ual Wa	ge a		ary l		2
	(1)		(2)		(3)		(4)		(1)		(2)		(3)		(4)	
Male x Employed in Manufacturing	0.18 (0.02)	**	0.19 (0.02)	**	0.19 (0.01)	**	0.20 (0.01)	**	1,334 (291)	**	1,890 (277)	**	1,879 (265)	**	2,153 (268)	**
Female x Employed in Manufacturing	0.13 (0.02)	**	0.20 (0.02)	**	0.20 (0.02)		0.21 (0.02)	**	508 (319)		1,464 (273)	**	1,483 (268)		1,764 (280)	**
Mean (S.D.) Outcome Var Males / Females		9.12 (1.28) 8.79 (1.29)					20,781 (23,171) 15,518 (19,795)									
				()	. /											
Age x Gender	yes		yes		yes		yes		yes		yes		yes		yes	
Education x Gender			yes		yes		yes				yes		yes		yes	
Race/Nativity x Gender					yes		yes						yes		yes	
CZone Fixed Effects							yes								yes	

Notes: N=243,071 (130,181 male and 112,890 female workers). 5% IPUMS 2000 Census, individuals age 18-39 w/positive wage and salary income and not self-employed, unpaid family members, or residing in institutional group quarters. Control vector in column 4 includes a gender dummy interacted with 22 indicators for age in years, 9 indicators for eduction levels, 3 indicators for race and ethnicity, and an indicator for foreign-born individuals. All models include 721 CZ indicators. Regressions weighted by the product of Census person weight and weighting factor that attributes individuals from Census PUMAs to CZs. Standard errors are clustered by state. $\sim p \le 0.10$, * $p \le 0.05$, ** $p \le 0.01$.

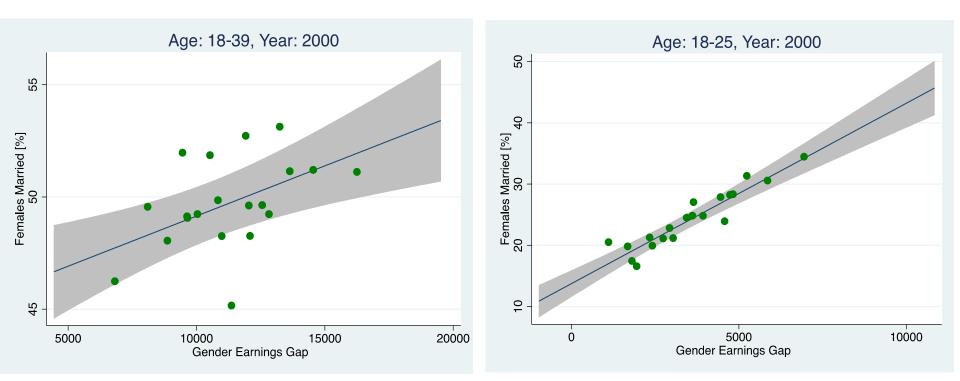

Manufacturing Provides 'Good' Jobs (Especially for Males)

Wage + Hour Regressions: 2000 Census IPUMS Data

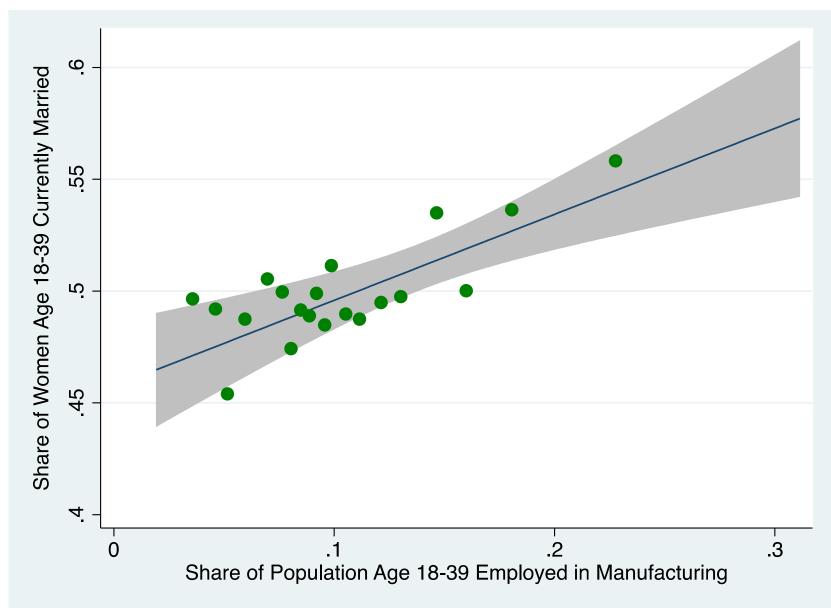
	I. Log Hourly Wage					II. Log Annual Work Hours										
	(1)		(2)		(3)		(4)		(1)		(2)		(3)		(4)	
Male x Employed in Manufacturing	0.05 (0.01)	**	0.06 (0.01)	**	0.06 (0.01)	**	0.08 (0.01)	**	0.13 (0.01)	**	0.13 (0.01)	**	0.13 (0.01)	**	0.12 (0.01)	**
Female x Employed in Manufacturing	0.02 (0.01)		0.06 (0.01)	**	0.06 (0.01)		0.07 (0.01)	**	0.12 (0.02)	**	0.14 (0.02)	**	0.14 (0.02)		0.13 (0.01)	**
Mean (S.D.) Outcome Var Males / Females		2.34 (0.76) 2.19 (0.77)					6.79 (0.99) 6.60 (1.03)									
Age x Gender Education x Gender	yes		yes yes		yes yes		yes yes		yes		yes yes		yes yes		yes yes	
Race/Nativity x Gender CZone Fixed Effects					yes		yes yes						yes		yes yes	


Notes: N=243,071 (130,181 male and 112,890 female workers). 5% IPUMS 2000 Census, individuals age 18-39 w/positive wage and salary income and not self-employed, unpaid family members, or residing in institutional group quarters. Control vector in column 4 includes a gender dummy interacted with 22 indicators for age in years, 9 indicators for eduction levels, 3 indicators for race and ethnicity, and an indicator for foreign-born individuals. All models include 721 CZ indicators. Regressions weighted by the product of Census person weight and weighting factor that attributes individuals from Census PUMAs to CZs. Standard errors are clustered by state. $\sim p \le 0.10$, * $p \le 0.05$, ** $p \le 0.01$.

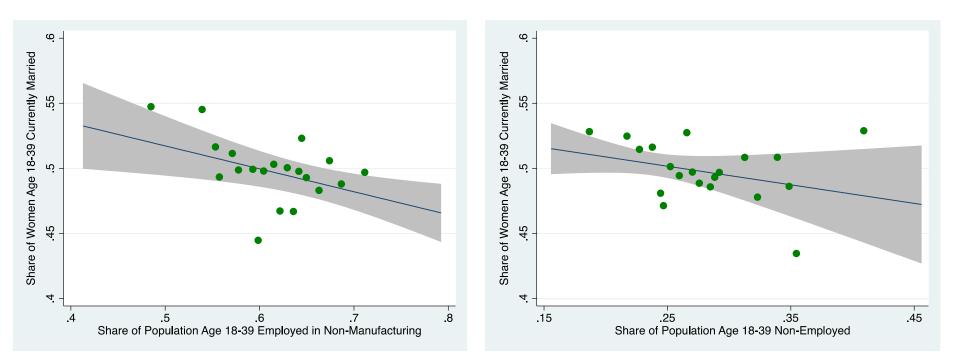
Gender Earnings Gap Positively Correlated with Manufacturing Employment as a Share of Pop


- 722 Commuting Zones (in 20 bins of equal population size)
- Fraction of population age 18-39 employed in manufacturing
- Gap between unconditional male and female median earnings in the CZ
- → Gender earnings gaps are greater in CZs with larger manufacturing share

Gender Earnings Gap Uncorrelated w/Non-Manufacturing Employment, Correlated w/Non-Employment


- 722 Commuting Zones (in 20 bins of equal population size)
- Fraction of pop age 18-39 employed in non-manufacturing or not employed
- Gap between unconditional male and female median earnings in the CZ

Marriage Rates Correlate with Gender Earnings Gap



- 722 Commuting Zones (in 20 bins of equal population size)
- Fraction of women currently married (age 18-39 or 18-25)
- Gap between median male and median female unconditional earnings in the CZ
- Strong correlation between marital status and gender earnings gap

Marriage Rates Correlated with Manufacturing Employment

Marriage Rate Weakly or Negatively Correlated w/Non-Manufacturing Employment, Non-Employment

- 722 Commuting Zones (in 20 bins of equal population size)
- Fraction of pop age 18-39 employed in non-manufacturing or not employed
- Gap between unconditional male and female median earnings in the CZ

Manufacturing Decline and Marriage-Market Value of Men

- 1. Trade and manufacturing
- 2. Empirical approach
- 3. A simple model
- 4. Results

China's 2001 WTO Accession a Major Adverse Shock to U.S. Manufacturing Jobs (> 1mil lost)

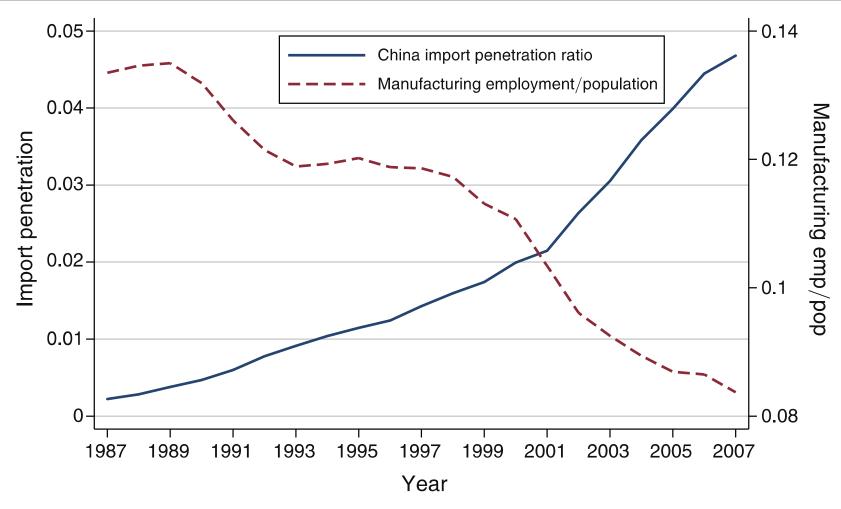
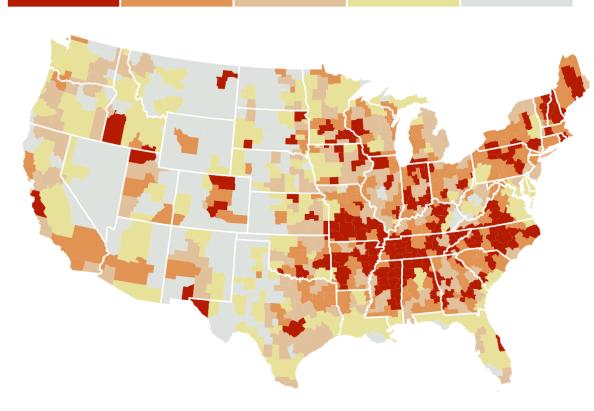


FIGURE 1. IMPORT PENETRATION RATIO FOR US IMPORTS FROM CHINA (*left scale*), AND SHARE OF US WORKING-AGE POPULATION EMPLOYED IN MANUFACTURING (*right scale*)

Autor, Dorn, Hanson 2013

Local Labor Market Import Exposure


Most-affected areas of the U.S.

Colors show which areas were most affected by China's rise, based on the increase in Chinese imports per worker in each area from 1990 to 2007. Hovering over each area on the map will show a demographic breakdown of that area, below, and its most-affected industries, at right.

Most-affected 20% Second-highest 20%

20% Middle 20%

Second-lowest 20% Least-affected 20%

Most-affected industries

Most-affected i based on numb	Impact per worker†	
Furniture and fix	ctures	
	196 areas	\$44k
Games, toys, an	d children's vehic	les
	114 areas	\$488k
Sporting and atl	nletic goods	
	106 areas	\$82k
Electronic comp	onents	
87	7 areas	\$65k
Plastics product	:S	
84	areas	\$11k
Motor-vehicle p	arts and accessor	ies
	areas	\$12k
Electronic comp	uters	
60	~~~	ゆつつつと

Autor-Dorn-Hanson and Wall Street Journal '16

Labor Market Effects of Chinese Import Competition

- Growing literature finds negative impacts of Chinese imports on U.S. employment and wages
 - Bernard, Jensen, Schott '06; ADH '13; Ebenstein, Harrison, McMillan, Phillips '14; Autor, Dorn, Hanson, Song '14; Pierce, Schott '15; Caliendo, Dvorkin, Parro '15; AADHP '16

Impacts concentrated in

- Import-exposed manufacturing industries
- Local labor markets specialized in these industries
- Workers initially employed in these industries

Labor Market Effects of Chinese Import Competition

Empirical approach

- 1. Measure product-specific growth of U.S. imports from China
- 2. Link product-specific imports to industries
- 3. Link industries to local labor markets
- 4. Approximate gender-specific component of import competition using local male-female industry employment shares

Data Sources

1. Trade shock

- UN Comtrade: Value of imports by detailed product code
- Concorded to 397 4-digit manufacturing industries
- 2. Industry/gender composition
 - County Business Patterns 1980, 1990, 2000: Employment by CZ in 397 4-digit manufacturing industries
 - Census 1980, 1990, 2000: Gender composition by CZ in 76 3-digit manufacturing industries

3. Outcomes

- Census 1990 and 2000, ACS 2006-08
- Vital Statistics Birth and Mortality Records
- Note: no comprehensive U.S. flow data on marriage and divorce

Local Labor Market Import Exposure

Two steps

- 1. Compute import penetration by industry *j*
- 2. Then compute average import penetration by Commuting Zone *i* based on *i*'s initial industry employment mix

$$\Delta IP_{j\tau} = \frac{\Delta M_{j\tau}^{ch,us}}{Y_{j91} + M_{j91} - X_{j91}}$$
$$\Delta IP_{i\tau} = \sum_{j} \frac{L_{ijt}}{L_{it}} \Delta IP_{j\tau}$$

Instrumental Variables Strategy

Source of endogeneity

 US imports from China not only affected by Chinese productivity growth and falling trade costs, but also by US demand shocks

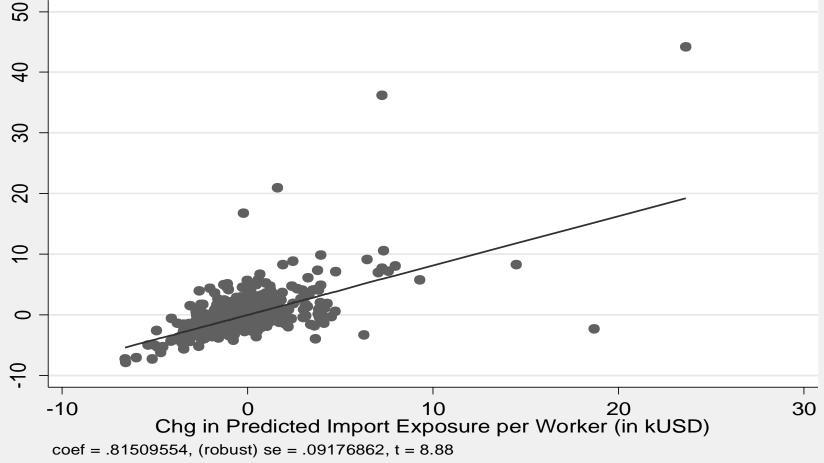
Instrumental variable approach

 Instrument for US imports from China using other developed countries' imports from China (and lags of all other variables)

$$\Delta I P_{j\tau}^{oth} = \frac{\Delta M_{j\tau}^{ch,oth}}{Y_{j88} + M_{j88} - X_{j88}}$$
$$\Delta I P_{i\tau}^{oth} = \sum_{j} \frac{L_{ijt-10}}{L_{it-10}} \Delta I P_{j\tau}^{oth}$$

Correlations: △ Chinese Imports to U.S. and Eight Other High Income Countries, 1991 – 2007 (385 Products)

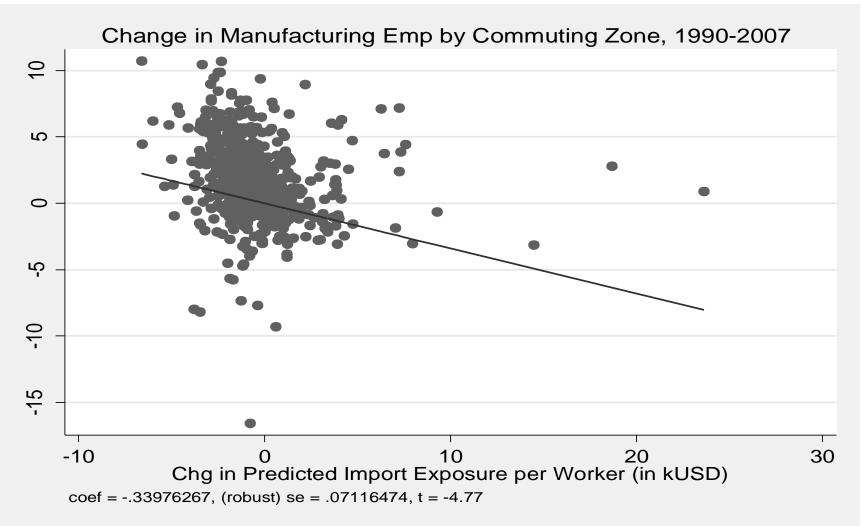
Imports from China in the U.S. and Other Developed Economies 1991 - 2007 (in Billions of 2007\$), and their Correlations with U.S.-China Imports


	United States	Japan	Germany	Spain	Australia
Δ Chinese Imports (Bil\$)	303.8	108.1	64.3	23.2	21.5
No. Industries with Import Growth	385	368	371	377	378
Correlation w/ U.SChina	1.00	0.86	0.91	0.68	0.96
	8 Non-US			New	
	Countries	Finland	Denmark	Zealand	Switzerland
Δ Chinese Imports (Bil\$)	234.7	5.7	4.7	3.8	3.3
No. Industries with Import Growth	383	356	362	379	343
Correlation w/ U.SChina	0.92	0.58	0.62	0.92	0.55

Correlations of imports across 397 4-digit industries are weighted using 1991 industry employment from the NBER Manufacturing database.

First Stage Regression: 722 Commuting Zones, 1990 – 2007

Panel A: 2SLS 1st Stage Regression, Full Sample



Autor-Dorn-Hanson '13

Reduced Form Regression: 722 Commuting Zones, 1990 – 2007

Panel B: OLS Reduced Form Regression, Full Sample

Autor-Dorn-Hanson '13

Accounting for Gender Differences

- Gender-specific trade shocks
 - Trade shocks differentially affect males or females depending on industries exposed
 - Multiply CZ-by-industry exposure measure by *initial period male or female share* of employment in each industry-CZ cell

$$\Delta IP_{i\tau}^{m} = \sum_{j} \frac{m_{ijt}L_{ijt}}{L_{it}} \Delta IP_{j\tau}$$
$$\Delta IP_{i\tau}^{f} = \sum_{j} \frac{(1 - m_{ijt})L_{ijt}}{L_{it}} \Delta IP_{j\tau}$$

Main Estimating Equations

Control vector includes

$$\Delta Y_{ij\tau} = \alpha_t + \beta_1 \Delta I P_{i\tau} + \mathbf{X}'_{jt} \delta_2 + e_{ijt}$$

 $\Delta Y_{ij\tau} = \alpha'_t + \beta'_1 \Delta I P^m_{i\tau} + \beta'_2 \Delta I P^f_{i\tau} + \mathbf{X}'_{jt} \delta'_2 + e'_{ijt}$

- Population shares in 5 race/ethnicity, 2 education, and 2 nativity groups
- Share of employment in manufacturing, 'routineintensive' occupations, 'offshorable' employment
- Female employment share
- Census division dummies

Measure of Trade Shocks: Employment-Weighted Change in CZ's Import Penetration (per Decade)

Mean and Percentiles of Decadal Growth in Chinese Import Penetration by Commuting Zone, 1990 - 2007

	I. Overall Shock			II. Mal	e Industry	y Shock	III. Female Industry Shock			
	1990-'07	1990-'00	2000-'07	1990-'07	1990-'00	2000-'07	1990-'07	1990-'00	2000-'07	
Mean	1.13 (0.75)	0.94 (0.61)	1.33 (0.83)	0.71 (0.47)	0.56 (0.33)	0.86 (0.53)	0.42 (0.32)	0.39 (0.31)	0.46 (0.33)	
P25	0.68	0.54	0.83	0.43	0.35	0.54	0.25	0.21	0.27	
P50	0.95	0.88	1.14	0.60	0.53	0.77	0.37	0.34	0.39	
P 75	1.43	1.22	1.59	0.90	0.73	1.09	0.52	0.48	0.54	
P75-P25	0.74	0.68	0.76	0.47	0.38	0.56	0.27	0.27	0.28	

Notes: N=1444 (722 commuting zones x 2 time periods) in column 1, N=722 in columns 2 and 3. Observations are weighted by start of period commuting zone share of national population.

Manufacturing Decline and Marriage-Market Value of Men

Manufacturing Decline and Marriage-Market Value of Men

- 1. Trade and manufacturing
- 2. Empirical approach
- 3. A simple model
- 4. Results

Canonical Theory of Marriage: Becker '73

Market vs household specialization

- 1. Falling male earnings
- 2. Rising female earnings
- 3. Increasing public support for unmarried mothers
- ... reduce marriage rates, increases single-headedness

Literature

 Blau, Kahn, Waldfogel '2000, Ellwood-Jencks '04, Murray '12, Shenhav '16, Shaller '16

Bertrand, Kamenica, Pan '15

Asymmetries

Sequential Model of Fertility and Marriage (based on Kane-Staiger '96)

Core ideas of setting

- (1) Woman has control of fertility
- (2) Mother has control rights over child
- (3) Mother has 'right of refusal' of marriage

Sequential decision-making process: Pregnancy precedes decision about marriage

- 1. Potential mother uncertain about quality of man who may serve as father and marital partner
- 2. Father quality revealed after conception
 - If male partner is 'high quality,' choose marriage
 - If male partner is 'low quality,' choose between Marry low-quality father or raise child out-of-wedlock

Formalization

Male partners either high or low-quality $Q \in \{0,1\}$

- $E[Q] = P_{ij}$, where *i* is mother, *j* is Commuting Zone
- P_{ij} is common knowledge
- Quality of individual male partner Q_i of mother i not known until woman i conceives child

• What is male partner 'quality'?

- Capacity and commitment to provide economic and parental inputs
- May also depend on male/female relative earnings (Bertrand Kamenica Pan '15)

Formalization

Women's preferences

- U[Married to high Q male + kid] = 1
- U[Unmarried + no kid] = 0

Women differ in disutility of marry low $\ensuremath{\mathbb{Q}}$ vs. single mom

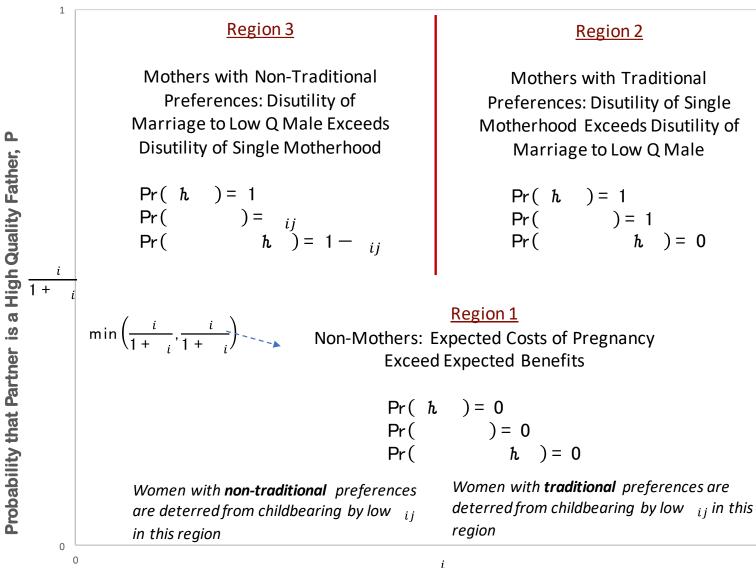
- Disutility of marrying low Q male = $-M_i < 0$
- Disutility of single-motherhood = $-S_i < 0$

Convenient to think of two 'types' of women

- 1. Traditional preference: $-S_i < -M_i$ Marry man even if he is low-quality
- 2. Non-traditional preference: $-M_i < -S_i$ Single-mother if man is low-quality

Formalization

Now, backward induct to conception decision


Women will conceive a child only if

$$\frac{P_{ij}}{1 - P_{ij}} > \min[M_i, S_i]$$

• Either

- a. Expected quality of fathers is sufficiently high or
- b. Option value of single-parenthood is sufficiently attractive

How Shocks to the Supply of 'High Quality' Males Affect Marriage and Fertility

Disutility of Single Motherhood,

Implications

Adverse shocks to male earnings capacity

- a. Reduce overall fertility and the prevalence of marriage
- b. Reduce marriages by more than births
- c. Increase share of children born out-of-wedlock and raised in single-headed households

Adverse shocks to female earnings capacity

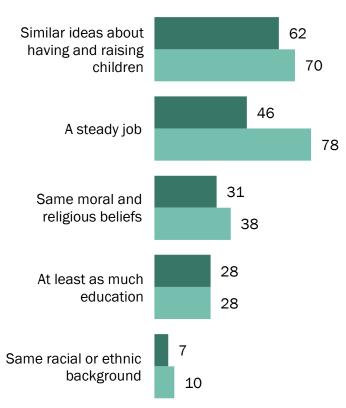
- a. Increase overall fertility and prevalence of marriage
- b. Reduce births by more than marriages
- c. Decrease share of children born out-of-wedlock and raised in single-headed households

Is Sequential Decision-Making Realistic?

Non-marital births are modal among young mothers

- Among women > Age 24 in 2006 through 2008
- 53% were mothers by the age of 24
- 65% of those mothers unmarried at time of first birth (Edin and Tach '12)
- Most first births are to young mothers
 - 76% of first births in 2007 were to mothers < age 30
 - 46% were to women < age 25 (Martin et al. '10)

Most U.S. Marriages Involve Children: Women Ages 18 – 39, 1990 and 2007


Marital/Maternal Status of U.S. Women Ages 18-

	1990		2007
Married without children	12.5%	\downarrow	10.2%
Married with children	40.6%	\downarrow	31.9%
Unmarried without children	34.3%	1	42.9%
Unmarried with children	12.7%	1	15.0%

Census and ACS data, 1990 and 2007

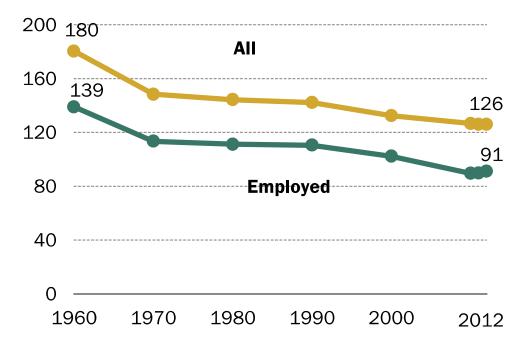
"Never-Married Women Want a Spouse with a Steady Job," *Pew Research Center* 2014

 $\% \hat{\mathbf{b}} f \hat{\mathbf{h}} ever-married \hat{\mathbf{k}} dults$ who say ... would be "very important" to them in choosing a spouse or partner \hat{E}

Note: Based on never-married adults who want to marry or are not sure (n=369).

Source: Pew Research Center survey, May 22-25 and May 29-June 1, 2014 (N=2,003)

PEW RESEARCH CENTER


Q.SD.10a-e

Pew Research Center 2014

Ratio of Employed Never-Married Men is Falling Relative to Never-Married Women (ages 25 – 34)

For Young Never-Married Women, the Pool of Employed Men Has Shrunk

of ... men per 100 women, among never-married adults ages 25 to 34

Source: Pew Research Center analysis of the 1960-2000 decennial censuses and 2010-2012 American Community Survey, Integrated Public Use Microdata Series (IPUMS)

PEW RESEARCH CENTER

- 1. Trade and manufacturing
- 2. Empirical approach
- 3. A simple model
- 4. Results
 - a) Employment and earnings by gender
 - b) Marriageable men and missing men
 - c) Marital status
 - d) Birth outcomes
 - e) Children's household structures, poverty

Manufacturing Emp/Pop Among M+F Ages 18 – 39, 1990 – 2007

	OLS	OLS	OLS	2SLS	2SLS
	<u>1990-'00</u>	2000-'07	1990-'07	1990-'00	<u>2000-'07</u>
	(1)	(2)	(3)	(4)	(5)
△ Chinese Import	-0.65 *	* -1.85 **	-1.44 **	-2.14 *	* -2.54 **
Penetration	(0.27)	(0.14)	(0.17)	(0.43)	(0.18)
2SLS First Stage Estimate	n/a	n/a	n/a	0.73 * (0.06)	* 0.86 ** (0.06)
R^2				0.33	0.62

Notes: N=722 in columns 1-2 and 4-5, N=1444 (722 commuting zones x 2 time periods) in columns 3 and 6-10. All stacked first differences regressions in column 3 and 6-10 include a dummy for the 2000-2007 period. Occupational composition controls in columns 9-10 comprise the start-of-period indices of employment in routine occupations and of employment in offshorable occupations as defined in Autor and Dorn (2013). Population controls in column 10 comprise the start-of-period shares of commuting zone population that are Hispanic, black, Asian, other race, foreign born, and college educated, as well as the fraction of women who are employed. Robust standard errors in parentheses are clustered on state. Models are weighted by start of period commuting zone share of national population. $\sim p \le 0.10$, * $p \le$ 0.05, ** $p \le 0.01$. Manufacturing Decline and Marriage-Market Value of Men

Manufacturing Emp/Pop Among M+F Ages 18 – 39, 1990 – 2007

	<u>2SLS: 1990-'07</u>									
	(6)		(7)		(8)		(9)		(10)	
∆ Chinese Import Penetration	-2.44 (0.20)	**	-2.64 (0.35)	**	-2.33 (0.34)	**	-2.32 (0.36)	**	-2.52 (0.40)	**
Manufacturing Emp Share ₋₁ Census Division Dummies Occupational Composition ₋₁ Population Composition ₋₁			Yes		Yes Yes		Yes Yes Yes		Yes Yes Yes	
2SLS First Stage Estimate	0.82 (0.05)	**	0.60 (0.05)	**	0.62 (0.05)	**	0.60 (0.05)	**	0.59 (0.06)	**
\mathbb{R}^2	0.55		0.60		0.61		0.63		0.63	

Notes: N=722 in columns 1-2 and 4-5, N=1444 (722 commuting zones x 2 time periods) in columns 3 and 6-10. Robust standard errors in parentheses are clustered on state. Models are weighted by start of period commuting zone share of national population. $\sim p \le 0.10$, * $p \le 0.05$, ** $p \le 0.01$.

Impact of a One-Unit Trade Shock on Employment Among Men and Women Ages 18 – 39, 1990 – 2007

	A. Sł	nare Pop A Manufac	Age 18-39 in turing	B. Male-Female Differential by Employment Status					
	All	Males	Males Females		Non-Mfg	Unemp	NILF		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)		
			<u>I. Ove</u>	rall Trad	e Shock				
△ Chinese Import	-2.52	** -2.60	** -2.40 **	-0.19	0.41	0.04	-0.26		
Penetration	(0.40)	(0.47)	(0.36)	(0.29)	(0.34)	(0.17)	(0.34)		
	II. Male Industry vs Female Industry Shock								
∆ Chinese Imports × (Male Ind Emp Share)	-2.51 (0.87)	** -5.03 (1.20)	** 0.02 (0.74)	-5.05 (0.98)	** 2.61 * (1.09)	0.19 (0.44)	2.26 * (0.97)		
∆ Chinese Imports × (Female Ind Emp	-2.54 (1.10)	* 0.94 (1.39)	-5.92 ** (1.16)	6.86 (1.37)	** -2.77 * (1.31)	-0.18 (0.58)	-3.91 ** (1.32)		
Mean Outcome Variable Level in 1990	-3.13 12.98	-3.86 17.37	-2.48 8.68	-1.38 8.69	-0.03 3.59	-0.06 1.22	1.46 -13.50		

Notes: N=1444 (722 CZ x 2 time periods). All regressions include the full vector of control variables from Table 1. Robust standard errors in parentheses are clustered on state. Models are weighted by start of period commuting zone share of national population. $\sim p \le 0.10$, * $p \le 0.05$, ** $p \le 0.01$. $\sim p \le 0.05$, ** $p \le 0.01$. $\sim p \le 0.05$, ** $p \le 0.01$.

Impact of a One-Unit Trade Shock on the CZ-Level Male-Female Earnings Gap at the P25, P50, P75

	Male-Female Earnings Differential in US\$									
	P25	P75								
	(1)		(2)		(3)					
	I. Overall Trade Shock									
△ Chinese Import Penetration	-1,325	**	-612	**	-695	**				
	(226)		(238)		(235)					
	II. Male Industry vs Female Industry Shock									
∆ Chinese Imports × (Male Ind Emp Share)	-2,360 (669)	**	-2,860 (807)	**	-3,341 (976)	**				
∆ Chinese Imports × (Female Ind Emp Share)	176 (940)		2,648 (1,072)	*	3,145 (1,299)	*				
Mean Outcome Variable	-1,169		-1,119		-1,696					
Level of Male Earnings 1990	7,226		23,452		41,285					
Level of Female Earnings 1990	979		11,387		25,510					

Notes: N=1444 (722 CZ x 2 time periods). Dependent variable is the change in the differential between the 25th, 50th and 75th percentile of the male earnings distribution in a CZ and the corresponding percentile of the female earnings distribution. The earnings measure is annual wage and salary income, and earnings distributions include individuals with zero earnings. . ~ $p \le 0.10$, * $p \le 0.05$, ** $p \le 0.01$. Manufacturing Decline and Marriage-Market Value of Men

Male-Female Earnings Gap, Scaled by Baseline Male

	Earnin	as				
	M-F D	Differen	ntial in %	of Mal	e Earning	zs
-	P25		Median		P75	
_	(4)		(5)		(6)	
		<u>I. O</u>	verall Tra	de Sho	<u>ck</u>	
Δ Chinese Import Penetration	-16.7	**	-2.2	*	-1.6	**
	(3.3)		(1.0)		(0.5)	
	II. Male	Indus	try vs Fer	nale In	dustry Sh	ock
Δ Chinese Imports \times (Male Ind	-24.9	**	-12.0	**	-8.6	**
Emp Share)	(0.2)		(3.2)		(2.1)	
Δ Chinese Imports × (Female	-4.8		11.9	**	8.5	**
Ind Emp Share)	(13.0)		(4.4)		(2.9)	
Mean Outcome Variable	-13.5		-4.3		-3.9	

Notes: N=1444 (722 CZ x 2 time periods). Dependent variable is the change in the differential between the 25th, 50th and 75th percentile of the male earnings distribution in a CZ and the corresponding percentile of the female earnings distribution. The earnings measure is annual wage and salary income, and earnings distributions include individuals with zero earnings. . ~ $p \le 0.10$, * $p \le 0.05$, ** $p \le 0.01$. Manufacturing Decline and Marriage-Market Value of Men

- 1. Trade and manufacturing
- 2. Empirical approach
- 3. A simple model
- 4. Results
 - a) Employment and earnings by gender
 - b) Marriageable men and missing men
 - c) Marital status
 - d) Birth outcomes
 - e) Children's household structures, poverty

Earnings Exceeds Males; (ii) Ratio of Young Men to Women

	Earnings	> Earn	n Age 22- ings of M artner] (2)	B. △ 100 x CZ Male/Fema Ratio, Adults Ages 18-39 (1) (2)					
\Delta Chinese Import Penetration	0.42 (0.17)	*			-1.65 (0.50)	**			
∆ Chinese Import Penetration × (Male Ind Emp Share)			1.93 (0.60)	**			-2.87 (0.90)	**	
▲ Chinese Import Penetration × (Female Ind Emp Share)			-1.78 (0.96)	~			0.13 (1.35)		
Mean Outcome Variable Level in 1990		1.88 27.3				1.70 98.6			

Notes: N=1444 (722 CZ x 2 time periods). Panel A: For women age 22-41, a potential marriage partner is defined as a man age 24-43 with the same CZ of residence, the same race/ethnicity (non-hispanic white, black, or hispanic), and the same education level (college or non-college). Panel B: Sample comprises all CZ residents ages 18-39 who are not in insitutionalized group quarters. All regressions include the full set of control variables from Table 1 and are weighted by start-of-period population. Standard errors are clustered on state. $\sim p \leq 0.10$, * $p \leq 0.05$, ** $p \leq 0.01$.

Missing Men: Differential M-F Mortality Deaths per 100K Adults Ages 20 – 39

Male-Female Death Rate Differential by Cause of Death per 100k Population Age 20-39

	Total	Drug/ Alc Poisoning	Liver Diseases	Diabetes	Lung Cancer	Suicide	All Other		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)		
			I. Ove	erall Trade S	hock				
△ Chinese Import	4.27	3.16 *	0.72 *	0.62 ~	0.40 *	0.01	0.08		
Penetration	(3.54)	(1.35)	(0.32)	(0.32)	(0.17)	(0.99)	(3.08)		
	II. Male Industry vs Female Industry Shock								
△ Chinese Imports × (Male Ind Emp Share)	18.84 ~ (11.28)	10.11 ** (2.80)	1.68 ~ (0.91)	1.38 (0.91)	0.30 (1.00)	1.12 (3.22)	3.13 (9.89)		
∆ Chinese Imports × (Female Ind Emp Share)	-16.79 (17.46)	-6.93 ~ (3.61)	-0.68 (1.33)	-0.49 (1.69)	0.54 (1.53)	-1.59 (5.17)	-4.34 (17.94)		
Mean Outcome Variable	-21.93	5.54	-0.73	0.20	-0.25	-1.28	-25.40		
Male Death Rate in 1990	213.43	6.39	4.11	1.95	1.55	25.12	174.31		
Female Death Rate in 1990	78.89	1.92	1.91	1.44	1.00	5.57	67.05		

Notes: N=1444 (722 CZ x 2 time periods). All regressions include the full set of control variables from Table 1 and the start-of-period value of the outcome variable. Regressions are weighted by start-of-period population and standard errors are clustered on state. ~ $p \le 0.10$, * $p \le 0.05$, ** $p \le 0.01$.

Fragile Males: Deaths per 100K Adult Men Ages 20 – 39

	I. Male Death Rates								
		Drug/							
		Alc	Liver		Lung				
	Total	Poisoning	Diseases	Diabetes	Cancer	Suicide	All Other		
			Ove	rall Trade S	Shock				
△ Chinese Penetration	3.67	4.28 *	0.64 *	0.31	0.33 **	6.72	-0.24		
	(3.47)	(1.87)	(0.32)	(0.27)	(0.12)	(0.87)	(2.45)		
		Ma	le Industry	vs Female	Industry Sh	nock			
△ Chinese Penetration	16.61	11.33 **	1.12	1.83 *	* 0.28	-0.73	1.98		
× (Male Ind Share)	(12.85)	(3.97)	(0.70)	(0.65)	(0.47)	(2.33)	(11.53)		
△ Chinese Penetration	-15.06	-5.96	-0.05	-1.88 ~	0.41	2.81	-3.44		
× (Female Emp Share)	(15.28)	(4.99)	(1.04)	(1.11)	(0.69)	(3.74)	(16.55)		
Mean of Outcome	-25.71	10.27	0.19	-1.26	-0.53	-1.42	-32.95		
Level in 1990	213.43	6.39	4.11	1.95	1.55	25.12	174.31		

Notes: N=1444 (722 CZ x 2 time periods). All regressions include the full set of control variables from Table 1 and the start-of-period value of the outcome variable. Regressions are weighted by start-of-period population and standard errors are clustered on state. ~ $p \le 0.10$, * $p \le 0.05$, ** $p \le 0.01$.

Less Fragile Women: Deaths per 100K Adult Women Ages 20 – 39

	II. Female Death Rates									
		Drug/ Alc	Liver		Lung					
	Total	Poisoning	Diseases	Diabetes	Cancer	Suicide	All Other			
			Ove	rall Trade Sl	nock					
△ Chinese Penetration	2.26	1.05	-0.12	-0.30	-0.07	0.81 *	1.69			
	(2.51)	(0.78)	(0.20)	(0.22)	(0.15)	(0.37)	(2.05)			
	Male Industry vs Female Industry Shock									
△ Chinese Penetration × (Male Ind Share)	-3.97 (7.72)	0.46 (2.23)	-0.55 (0.64)	0.49 (0.63)	-0.05 (0.69)	-2.04 (1.43)	-1.86 (6.23)			
▲ Chinese Penetration × (Female Emp Share)	11.31 (11.12)	1.89 (3.55)	0.51 (1.12)	-1.43 (1.01)	-0.11 (1.12)	4.94 * (2.09)	6.85 (9.32)			
Mean of Outcome	-3.79	4.73	-0.01	-0.53	-0.28	-0.14	-7.55			
Level in 1990	78.89	1.92	1.91	1.44	1.00	5.57	67.05			

Notes: N=1444 (722 CZ x 2 time periods). All regressions include the full set of control variables from Table 1 and the start-of-period value of the outcome variable. Regressions are weighted by start-of-period population and standard errors are clustered on state. ~ $p \le 0.10$, * $p \le 0.05$, ** $p \le 0.01$.

- 1. Trade and manufacturing
- 2. Empirical approach
- 3. A simple model
- 4. Results
 - a) Employment and earnings by gender
 - b) Marriageable men and missing men
 - c) Marital status
 - d) Birth outcomes
 - e) Children's household structures, poverty

Impact of Trade Exposure on Women's Marital Status by Age Group (% Pts)

	A. Marital Status (% pts): Women Ages 18-39			B. Marital Status (% pts): Women Age 18-25	C. Pct of Mothers Currently Married		
	Never Married	Widowed Divorced Separated	Married	Widowed Never Divorced Married Separated Married	Age Age 18-39 18-25		
				I. Overall Trade Shock			
△ Chinese Penetration	0.44 (0.30)	0.28 ~ (0.15)	-0.72 * (0.34)	$1.03 \sim 0.19 \sim -1.22 *$ (0.53) (0.11) (0.50)	-0.76 * -1.01 (0.31) (0.77)		
			II. Male I	ndustry vs Female Industry Shock			
△ Chinese Penetration × (Male Share)	1.77 ~ (0.91)	-0.22 (0.41)	-1.55 ~ (0.88)	3.90**-0.06-3.84**(1.25)(0.43)(1.18)	-1.56 ~ -3.57 ~ (0.81) (2.04)		
△ Chinese Penetration × (Female Share)	-1.50 (1.35)	1.01 ~ (0.58)	0.49 (1.39)	$\begin{array}{rrrr} -3.12 & \sim & 0.55 & 2.57 \\ (1.60) & (0.59) & (1.66) \end{array}$	0.392.70(1.32)(3.53)		
Mean Outcome Var Level in 1990	8.62 34.84	-1.49 12.11	-7.14 53.05	9.00-1.32-7.6967.304.9627.74	-5.14 9.59 76.02 61.23		

Notes: N=1444 (722 CZ x 2 time periods). Columns 3 and 6 refer to the percentage of women in the indicated age group who report to be married but not separated. All regressions include the full set of control variables from Table 1. Regressions are weighted by start-of-period CZ population and standard errors are clusterd by state. ~ $p \le 0.10$, * $p \le 0.05$, ** $p \le 0.01$.

- 1. Trade and manufacturing
- 2. Empirical approach
- 3. A simple model
- 4. Results
 - a) Employment and earnings by gender
 - b) Marriageable men and missing men
 - c) Marital status
 - d) Birth outcomes
 - e) Children's household structures, poverty

Impact of Trade Shocks on Birth Outcomes, 1990 – 2007

	Births p	000 Wom	Share	Share of Births to							
	Adults Teens			Teenage	U	Unmarried					
	Age 20-	Age 20-39 Age		Age 15 - 19		Mothers		•			
	I. Overall Trade Shock										
△ Chinese Import Penetration	-3.30	**	-1.22	~	0.63	**	0.48				
•	(0.51)		(0.72)		(0.17)		(0.40)				
	II. Male Industry vs Female Industry Shock										
▲ Chinese Import Penetration × (Male Ind Emp Share)	-8.16 (2.10)	**	-5.30 (1.98)	**	1.92 (0.53)	**	3.41 (1.02)	**			
∆ Chinese Import Penetration × (Female Ind Emp Share)	3.74 (3.00)		4.71 (3.05)		-1.25 (0.69)	~	-3.77 (1.41)	**			
Mean Outcome Variable	3.86		-11.08		-1.44		8.15				
Level in 1990	86.9		60.0		12.8		22.0				

Notes: N=1444 (722 CZ x 2 time periods). Regressions weighted by start-of-period CZ population. Standard errors clusterd on state. ~ $p \le 0.10$, * $p \le 0.05$, ** $p \le 0.01$.

- 1. Trade and manufacturing
- 2. Empirical approach
- 3. A simple model
- 4. Results
 - a) Employment and earnings by gender
 - b) Marriageable men and missing men
 - c) Marital status
 - d) Birth outcomes
 - e) Children's household structures, poverty

Household Living Circumstances of Children Ages

			<18						
]	Parent Hea	ad, I	Parent He	ad,	Grand	-	Any Other
	Income	<	Spouse		Spouse		Parent		Person
	Poverty L	ine	Present		Absent		Headed		Headed
	(1)		(2)		(3)		(4)		(5)
			<u>I.</u>	Ove	erall Trade	e Sho	ock		
△ Chinese Import Penetration	2.17	**	-0.44	~	0.22		0.24	~	-0.01
I I I I I I I I I I I I I I I I I I I	(0.42)		(0.25)		(0.23)		(0.13)		(0.13)
		II	. Male Ind	ustr	<u>y vs Fema</u>	ale In	dustry S	hock	<u> </u>
△ Chinese Import Penetration	3.99	**	-1.00		1.98	**	-0.77	~	-0.20
× (Male Ind Share)	(0.85)		(0.62)		(0.59)		(0.40)		(0.30)
△ Chinese Import Penetration	-0.48		0.38		-2.34	*	1.70	*	0.26
× (Female Ind Share)	(1.28)		(1.01)		(1.06)		(0.67)		(0.42)
Mean Outcome Variable	0.51		-4.98		3.91		0.56		0.50
Mean Level in 1990	0.17		71.43		19.59		5.43		3.55
Poverty Rate (%) in 1990	n/a		8.13		45.26		23.99		34.73

Notes: N=1444 (722 CZ x 2 time periods). The Census records every household member's relationship to the household head, who is the person that owns or rents the household's dwelling. All regressions include the full set of control variables from Table 1. Regressions are weighted by start-of-period CZ population and standard errors are clusterd by state. ~ $p \le 0.10$, * $p \le 0.05$, ** $p \le 0.01$.

- 1. Trade and manufacturing
- 2. Empirical approach
- 3. A simple model
- 4. Results
- 5. Magnitudes

Outcomes:

Some Illustrative Calculations

	% Women 18-25 Married (1)	% Women 18-39 Married (2)	% Births to Teens (3)	% Births Out of Wedlock (4)	% Kids 0- 17 in Poor HHs (5)	% Kids 0-17 in 2-Parent HHs (6)
	A. Summary Statistics					
1990 Level	27.74	53.05	12.77	21.98	17.99	71.43
D 90-07: Actual	-11.86	-11.02	-2.33	13.07	0.25	-8.25
	B. Implied Impact of `China Shock'					
D 90-07: Implied impact	-1.26	-0.74	0.64	0.49	2.23	-0.45
D 90-07: Counterfactual	-10.60	-10.28	-2.97	12.57	-1.98	-7.80
	C. Using Observed DMale-Female P50 Annual Earnings Gap as Explanatory Variable					
D 90-07: Implied impact	-3.63	-2.13	1.86	1.42	6.44	-1.30
D 90-07: Counterfactual	-8.22	-8.89	-4.18	11.65	-6.19	-6.96

Panel A reports the 1990 level and the 1990-2007 change in each outcome. Panel B reports the reduced form impact of the `China Shock' on each outcome and the counterfactual change in that outcome while setting the China shock to zero. Panel C reports counterfactual calculations that treat the change in the male-female P50 annual earnings gap as the hypothetical forcing variable. This gap fell by \$1,820 between 1990 and 2007. Table 3 implies that the exogenous component of the China trade shock reduced this gap by \$631. Interpreting the reduced form estimates in panel B as the causal effect of a \$631 fall in the male-female P50 gap, we rescale the panel B impact estimates by 1,820/631=2.88 to get the implied effect of the overall decline in the male-female P50.

Consequence of the Declining Marriage-Market Value of Men

- Trade shocks between 1990 and 2007
 - Reduced male + female employment, male relative earnings
- Broader consequences
 - 1. Reduced male/female ratio in non-institutional population
 - 2. Raised male mortality due to 'unhealthy behaviors'
 - 3. Reduced marriage rates and fertility
 - 4. Raised fraction of births due to teen and single mothers
 - 5. Raised fraction of kids living in poverty, single-headed HHs
- Mechanism appears robust, quantitatively important
 - China shock alone explains 5%-20% of the observed change in family structure outcomes
 - Total effect of manufacturing decline is likely to be larger

Female Friends Spend Raucous Night Validating The Living Shit Out Of Each Other

The group of friends, in the midst of an absolute fucking blow-out affirmation fest.

Summary of Topics

- 1. Context Gains along four economic margins
- 2. The gender earnings gap
- 3. Gender norms and gender roles
- 4. Labor markets, marriage, children's HH structure