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Abstract

Questions of design in real economic situations are often dynamic. Managerial com-

pensation, repeated auctions, and taxation are good examples. These demand the

economic theory of mechanism design to be adept to changing underlying environ-

ments and evolving information. Adjusting existing static results to the dynamic

models and introducing new ones is thus what the doctor orders. This collection of

essays is a contribution to the theory and applications of dynamic mechanism design.

Chapter 1 asks the question: when can efficient institutions be made self enforcing?

To answer it, the setting of bargaining with two sided asymmetric information is

chosen– a buyer has a hidden valuation for a good and a seller can produce the good

at a hidden cost, both of which can change over time. The essay provides necessary

and sufficient conditions for efficiency in this bilateral trading problem. In the process

of establishing this result, a new notion of budget balance is introduced that allows

the budget to be balanced dynamically, borrowing from the future but in a bounded

fashion. Through a set of simple examples the comparative statics of the underlying

economics forces of discounting and level of asymmetric information are explored.

In chapter 2, a dynamic and history dependent version of the payoff equivalence

result is established. It provides an equivalence class of all mechanisms that are

incentive compatible. Given two mechanisms that implement the same allocation,

expected utility of an agent after any history in one must differ from the other

through a history dependent constant. This result is then exploited to unify a host

of existing results in efficient dynamic mechanism design. In particular a mechanism,

and necessary and sufficient conditions are provided for the implementation of the

efficient allocation in a general N -player dynamic mechanism design problem under

participation constraints and budget balance.

Finally, in chapter 3 (coauthored with Marco Battaglini), we explore the applicabil-

ity and limitations of the first-order approach in solving dynamic contracting models,
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and the nature of contracts when local constraints are not sufficient to characterize

the optimum. A dynamic principal-agent model in which the agent’s types are serially

correlated forms the backbone of the analysis. It is shown that the first-order approach

is violated in general environments; when the time horizon is long enough and serial

correlation is sufficiently high, global incentive compatibility constraints generically

bind. By fully characterizing a simple two period example, we uncover a number

of interesting features of the optimal contract that cannot be observed in special

environments in which the standard approach works. Finally, we show that even in

complex environments, approximately optimal allocations can be easily characterized

by focusing on a class of contracts in which the allocation is forced to be monotonic.
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Chapter 1

Efficiency in Repeated Bargaining: A

Mechanism Design Approach

1.1 Introduction

In a paper that would generate much interest amongst economists and legal scholars,

Coase [1960] argued that if transactions costs are low enough and trade a possibility,

bargaining will eventually lead to an efficient outcome independent of the initial

distribution of property rights. A few decades later, in perhaps an equally influential

paper, Myerson and Satterthwaite [1983] showed that under reasonable institutional

assumptions, asymmetric information precludes efficient trade. A key missing link

in Coase’s argument was established as part of the growing acceptance of the role of

information in economic transactions.1

1Introducing theMyerson and Satterthwaite Theorem, as now it is popularly called,
Milgrom [2004] writes

“Doubts about the [Coase’s] efficiency axiom are based partly in concern about
bargaining with incomplete information. After all, a seller is naturally inclined
to exaggerate the cost of his good, and a buyer is inclined to pretend that her
value is low. Should we not expect these exaggerations to lead sometimes to
missed trading opportunities?"
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Myerson and Satterthwaite [1983] , along with many other papers that came before

and after, asked important questions of institution design under varying objectives-

efficiency, revenue maximization, etc. Public goods provision, procurement, auctions,

optimal taxation, bilateral trading, wage contracts are just some applications of the

general theory of mechanism design that has thus developed.2

Most of these papers, including the two aforementioned, dealt with static or

one-time interactions. Arguably, many of these economic transactions are inherently

dynamic, where information revealed today can be used for contract design tomorrow.

Food subsidies are provided repeatedly. In a fast changing technological landscape,

spectrum auctions and buybacks are taking place repeatedly. Taxation is often

dynamic and tagged with age, social security being a case in point. Wage contracts

and bonuses depend on performance parameters evaluated over time. Online selling

can now rely on a huge treasure trove of past buying data.

This paper seeks to provide a theory of such dynamic institutions and contribute

towards the burgeoning literature on dynamic mechanism design.3 When are efficient

institutions self enforcing? There are three key words in the preceding statement.

By, efficiency we mean first-best or the optimal allocation of resources without any

additional frictions or binding constraints. Institution is an environment characterized

by a set of rules that internalize underlying frictions. And, self enforcing, refers to the

ability of the institution to implement the desired objective under limits on external

subsidies.

To answer this question, we choose the well studied static problem of bargaining

under two-sided asymmetric information that concerned Myerson and Satterthwaite

[1983]. A seller wants to repeatedly sell a non-durable good to a buyer. Their

valuations for the good are privately known and can change over time. Repetition
2See Mas-Collel, Whinston and Green [1995], and Jackson [2003] for a thorough

overview of the literature.
3See Bergemann and Said [2010] and Vohra [2012] for insightful surveys.

2



can blunt the impossibility of efficiency result of Myerson and Satterthwaite [1983].

We formalize the extent and logic of this “blunting".

The main result of the paper is to provide a necessary and sufficient condition

for the implementation of efficient trade under participation constraints and budget

balance. The interaction of these two constraints with private information leads to

the impossibility of efficiency result in the static framework. We model the repeated

interaction of these constraints and precisely characterize when the impossibility

result can be overturned.

The key conceptual contribution we bring to the table is that of interim budget

balance.4 The motivation is to allow for the role of a financial intermediary or

mechanism designer, but one who cannot have access to an unbounded credit line.

At any given history, the expected value of current and future cash flows from the

buyer and the seller must be non-negative. Interim budget balance can be seen as

the mechanism design counterpart to self enforcing constraints from the relational

contracting literature5, but not on the side of the agents, rather the institution itself;

and standard bond issuing deficit financing constraints in macro models.6

In the process of providing a tight characterization of efficiency, we construct

a dynamic and modified version of the Vickery-Clarkes-Groove mechanism which

provides the mechanism designer the maximal surplus every period, and the minimum

utility to the agents subject to their information rents and reservation values. By

construction, if this mechanism does not produce an expected budget surplus at every

history of the contract, and hence satisfy interim budget balance, no other mechanism

does. Also, in a very simple implementation of this mechanism, each agent pays a

small fees at the start of every period, post which the mechanism designer runs a
4The standard notions in the literature are that of ex ante budget balance-

aggregate ex ante expected cash flow to the mechanism designer is non-negative,
and ex post budget balance- transfers sum to zero every period for any history.

5See Thomas and Worrall [1988], and Levin [2003]
6See Ljungqvist and Sargent [2004].
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(static) VCG mechanism.

We choose the two types example to illustrate some of the key economic forces

at play. The likelihood of achieving efficiency is increasing function of the discount

factor and a decreasing function of the level of asymmetric information in the model,

as measured by persistence of Markov process. In fact, as both discounting converges

to one and the Markov process converges to constant types, the attainment of the

efficiency depends on the order of limits– can be attained if the former converges

faster, but cannot be attained if the speed of convergence of the latter is higher.

A key advantage of looking at the bargaining model through a dynamic framework

is that allows for the role of an intermediary who is forward looking and can help the

agents reach an efficient outcome while possibly earning some rents as well. In a

world with no credit constraints, the agents can perfectly insure each other against

bad shocks as long as long types are not constant and the discount factor is high.

However, for high levels of persistence the transfers required for this insurance can

get large after bad shocks. This creates a role for an intermediary. We also show

that the ability of the intermediary to induce the efficient implementation rises with

access to a savings technology.

Related Literature. The paper builds on a body of work from static mechanism

design. Vickery [1961], Groves [1973] and d’Aspremont and Gérard-Varet (1979) were

some of the early papers to talk about efficient mechanisms. The bilateral trading

problem we study has a rich tradition in the static mechanism design literature-

Myerson and Satterthwaite [1983], and Chatterjee and Samuelson [1983] being two

of the early papers. Myerson and Satterthwaite [1983 established the impossibility of

reconciling the three key constraints of private information, participation constraints

and budget balance with the efficient allocation. Williams [1999] and Krishna and

Perry [2000] prove the same result by a different technique, exploiting the VCG

4



mechanism.

Athey and Segal [2007b, 2013] generalize the AGV mechanism to the dynamic

model. The mechanism they construct satisfies budget balance but will violate

participation constraints at some histories. Bergemann and Valimaki [2010] build

a dynamic version of the pivot mechanism that satisfies participation constraints but

does not balance the budget budget.7

This paper is the most closely related to Athey and Miller [2007] and Skrzypacz

and Toikka [2013]. Athey and Miller [2007] study the repeated bilateral trading

problem under iid types, ex ante and ex post budget balance, and ex post incentive

compatibility. They use a bounded budget account to show approximate efficiency

under ex post budget balance. Skrzypacz and Toikka [2013] analyze the same problem

with persistent types and multidimensional initial information. They establish a

necessary and sufficient condition for efficiency under ex ante budget balance, thereby

allowing for unbounded credit lines.8

While stressing voluntary participation in each period, we seek to characterize

efficiency for an intermediate notion of budget balance, one that allows for the role

of an intermediary with a bounded credit line. We also want to be able to impose

greater restrictions on the cash flows to the intermediary. The implementation of

the Collateral Dynamic VCG mechanism requires distribution of future surplus as

collateral every period, in comparison to the one time participation fees in Skrzypacz

and Toikka [2013], which may require large amounts of seed capital on the part of

the agents, in addition to the unbounded credit line being offered by the mechanism

designer.
7Under some additional assumptions, they also show that the mechanism satisfies

an efficient exit condition– that is, the agents who stop being pivotal and also not
assigned ay transfers.

8Using the balancing trick of Athey and Segal [2007, 2013], this condition also
guarantees implementation under ex post budget balance, but then like Athey and
Segal, a strong form of commitment is required on part of the agents by allowing
individual rationality only in period 1.
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In a companion paper, Lamba [2014], we generalize the main result presented here

to an N -dynamic mechanism design problem. That paper also takes a closer look at

the degree of transparency in the dynamic mechanisms, and their role in achieving

desired objectives.

1.2 Model

Two agents, each with private information, agree to be in a dynamic bilateral trading

relationship for a non-durable good. The buyer (B) has a hidden valuation for the

good and the seller (S) is endowed with a technology to produce the good each period

at a hidden cost. We assume that the buyer’s valuation and the seller’s cost are

random variables9, denoted v and c, distributed according to priors F and G on

V = {v1, ...., vN} and C = {c1, ...., cM}, that evolve according to independent Markov

processes F (.|.) : V × V → [0, 1] and G(.|.) : C × C → [0, 1], respectively.10 The

densities have full support and are denoted by f , g, f(.|.) and g(.|.), respectively.

Denote ∆vi+1 = vi+1 − vi, ∆cj+1 = cj+1 − cj. For the ease of notation, we will often

write v = v1 and c = cM .

We choose the discrete type model for three reasons. First, it allows us to elucidate

the key economic forces without measure theoretic complications. Second, it allows

us to do comparative statics for simple examples, specifically when both agents have

two possible types. And, finally many applications of dynamic mechanism design use

numerical methods which require a discrete state space.

Each period pt determines the probability of trade, that is, the production and

allocation of the good from the seller to the buyer, xB,t the transfer from the buyer

to the mechanism designer, and xS,t the transfer to the seller from the mechanism

9These shall be interchangeably referred to as their types.
10All the main results can accommodate moving supports. It would simply entail

a change of notation to Vt and Ct, to denote the respective supports in each period.
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designer. The mechanism designer here can be considered as a financial intermediary,

an institution as part of a larger social contract facilitating trade, or a simple transfer

scheme in case xB = xS. The per period payoffs are given by vtpt−xB,t and xS,t−ctpt

for the buyer and seller respectively.11,12

Taking the institutional details as given, both the buyer and seller can commit to

the mechanism. The institutional details temper the role commitment will play in

the model, as we elaborate below. Both the agents know their first period valuation

and cost respectively when the contract is signed, and these then stochastically evolve

over time. This assumption is crucial for it sows the seeds of asymmetric information

in the model with commitment.

The (contractual) relationship lasts for T discrete periods, where T ≤ ∞. Both the

agents discount future payoffs with a common discount factor δ. The static version

of this model, δ = 0, with continuous type spaces is the one studied by Myerson

and Satterthwaite [1983], and Chatterjee and Samuelson [1983]. For the the general

discrete type space model, as pointed out by Myerson and Satterthwaite [1983], we

can get possibility results for some measure of parameters. However as the number

of types becomes large and the model converges to the continuous type space model,

the measure of parameters for which efficiency can implemented converges to zero.

It is easy to show that a form of revelation principle holds and thus we can,

without loss of generality, consider direct mechanisms. Every period the agents learn

their own types, and then send a report to the mechanism, which in turn, spits

out the allocation and transfers rules. Employing the revelation principle, however,

demands a moral call on the information the mechanism itself reveals to the agents.

In particular, does the buyer observe the seller’s announcement and vice-versa? We
11The t subscript will not be used when the set of histories make the time dimension

obvious.
12An equivalent model is one where the seller is endowed with a good every period

and needs to decide whether she should sell the it to the buyer or consume it.
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shall work in an environment where the announcements are publicly observed. There

is a close information theoretic relationship between this public mechanism and the

blind one where the announcements are not publicly observed. We refer the reader

to Lamba [2014] for a discussion on this.13

The direct mechanism, say m, is then a collection of history dependent probability

and transfer vectors,m = 〈p,x〉 = (p (vt, ct |ht−1 ) , xB (vt, ct |ht−1 ) , xS (vt, ct |ht−1 ))
T
t=1,

where ht−1 and (vt, ct) are, respectively, the public history up to period t− 1 and the

types revealed at time t. These can also be succinctly written as p(ht), etc. In

general, ht is defined recursively as ht = {ht−1, (vt, ct)}, with h0 = ∅. The set of

possible histories at time t is denoted by H t (for simplicity H = HT ).

The strategies of the buyer and the seller can potentially depend on a richer set of

histories. For the buyer, the information available before his period t report is given

by htB = {ht−1
B , vt−1, v̂t}, where vt−1 is the announced type in period t − 1, and v̂t

is the actual type in period t, starting with h0
B = {v̂1}. The seller’s information is

analogously defined. Let the set of private histories at time t be denoted by H t
B and

H t
S, respectively. Thus, for a given mechanism, the strategy for the buyer, (σB,t)

T
t=1, is

then simply a function that maps private history into an announcement every period,

σB,t : H t
B 7→ V , and similarly for the seller, σS,t : H t

S 7→ C.

1.3 The institutional framework

The edifice of the institutional machinery has three key foundations: private infor-

mation, voluntary participation and limits on insurance. In the mechanism design

lexicon, these would respectively be associated with incentive compatibility, individual

rationality and budget balance constraints.

For a fixed mechanism m and strategies σ = (σB, σS), the expected utilities on the

13In particular, permissibility of the results is an increasing function of the
transparency of the mechanism.
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induced allocation and transfers, after each possible history are defined as follows.

Um,σ
B (htB) = Em,σ

[
T∑
τ=t

δτ−1 (vτpτ − xB,τ ) |htB

]
(1.1)

and,

Um,σ
S (htS) = Em,σ

[
T∑
τ=t

δτ−1 (xS,τ − cτpτ ) |htS

]
(1.2)

Though, along truthful histories the difference between public and private histories is

moot, and thus in much of what follows we shall suppress the same. Let Um
i = Um,σ∗

i ,

for i = B, S; where σ∗ is the truth-telling strategy.

1.3.1 A change of variables

We propose a change of variables in the structure of the mechanism that will be

central in our endeavor to establish a tight characterization of efficiency. In order to

keep notation simple we suppress the type/variable over which expectation is taken.

For example

p(vt|ht−1) =
M∑
j=1

p
(
vt, cj,t

∣∣ht−1
)
g(cj,t|ct−1),

where ct−1 is the t− 1 period announcement of the seller, known to the buyer, and,

p(vt+1|ht−1, vt) =
M∑
j=1

M∑
k=1

p
(
vt+1, ck,t+1

∣∣ht−1, vt, cj,t
)
g(cj,t|ct−1)g(ck,t+1|cj,t)

Expected utility of the buyer can be recursively defined as14

UB(vt, ct|ht−1) = vtp(vt, ct|ht−1)−xB(vt, ct|ht−1)+δ
N∑
i=1

UB(vi,t+1|ht−1, vt, ct)f(vi,t+1|vt)

(1.3)

14For simplicity, when the mechanismm being employed is obvious, we simple write
UB and US suppressing the m.
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and,

UB(vt|ht−1) = vtp(vt|ht−1)− xB(vt|ht−1) + δ

N∑
i=1

UB(vi,t+1|ht−1, vt)f(vi,t+1|vt)

Utility of the buyer of type vt from misreporting (once) to be type v′t, for a fixed type

ct of the seller, can be succinctly written as

UB(v′t; vt, ct|ht−1) = vtp(v
′
t, ct|ht−1)− xB(v′t, ct|ht−1)+

δ
N∑
i=1

UB(vi,t+1|ht−1, v′t, ct) · f(vi,t+1|vt)

= UB(v′t, ct|ht−1) + (vt − v′t)p(v′t, ct|ht−1)+

δ
N∑
i=1

UB(vt+1,i|ht−1, v′t, ct) · (f(vi,t+1|vt)− f(vi,t+1|v′t)) (1.4)

Similarly,

UB(v′t; vt|ht−1) = UB(v′t|ht−1) + (vt − v′t)p(v′t|ht−1)+

δ
N∑
i=1

UB(vi,t+1|ht−1, v′t) · (f(vi,t+1|vt)− f(vi,t+1|v′t))

The seller’s utility, US, can be similarly defined.

It is straightforward to note that a mechanism m = 〈p,x〉, which is a collection of

history dependent allocation and transfer vectors, can be equivalently defined to be

m = 〈p,U〉, where (fixing the allocation) the duality between transfers and expected

utility vectors is completely described by equation (2.1).

1.3.2 Incentive compatibility

Exploiting the one-deviation principle, incentive compatibility can be defined as

follows.

Definition 1. A mechanism m = 〈p,U〉 satisfies perfect Bayesian incentive compat-
10



ibility if

UB(vt|ht−1) ≥ UB(v′t; vt|ht−1) and US(ct|ht−1) ≥ US(c′t; ct|ht−1)

∀vt, v′t ∈ V, ∀ct, c′t ∈ C, ∀ht−1 ∈ H t−1, ∀t.

It states that along all truthful histories, buyer and the seller have no incentive to

misreport their type.

1.3.3 Individual rationality

Even though commitment is assumed as part of our institutional architecture, we

allow the agents to walk away after learning their type after any history if their

utility from continuing in the contract falls below their reservation thresholds, which

are normalized to zero. In keeping with our notation, we have:

Definition 2. A mechanism m = 〈p,U〉 satisfies perfect Bayesian individually ra-

tionality if

UB(vt|ht−1) ≥ 0 and US(ct|ht−1) ≥ 0

∀vt ∈ V, ∀ct ∈ C, ∀ht−1 ∈ H t−1, ∀t.

We say that a mechanism is perfect Bayesian implementable if it is perfect Bayesian

incentive compatible and individually rational.

1.3.4 Budget balance

In mechanism design with many agents budget balance is seen as the limits on

insurance or external subsidies available to them. In addition to the traditional

notions of ex ante and ex post budget balance, we introduce an intermediate notion

of interim budget balance.

11



We say that a mechanism is interim budget balanced if

Em
[

T∑
τ=t

δτ−t (xB,τ − xS,τ ) | ht−1

]
≥ 0

∀ ht−1 ∈ H t−1.15 The mechanism is ex ante budget balanced if interim budget balance

holds for the null history. Moreover, we say that the mechanism is ex post budget

balanced if the entire vector of transfers are equal for any history, xB = xS.

Next, using equations (1.1) and (1.2) we can write the expected budget surplus

that a mechanism generates after any history ht−1 to be

EBS(ht−1) = Em
[

T∑
τ=t

δτ−t (vτ − cτ ) pτ − UB(vt|ht−1)− US(ct|ht−1) | ht−1

]
(1.5)

The ex ante budget surplus is denoted simply by EBS = EBS(h0). We have,

Definition 3. A mechanism 〈p,U〉 satisfies ex ante budget balance if

EBS ≥ 0

This is the weakest possible notion of budget balance for this dynamic model.

It means that the mechanism designer does not loose money in an expected ex ante

sense. A more robust definition of budget balance in our opinion, which still allows for

the role of an intermediary is the one where a positive budget surplus is guaranteed

after every history.

Definition 4. A mechanism 〈p,U〉 satisfies interim budget balance if

EBS(ht−1) ≥ 0 ∀ht−1 ∈ H t−1, ∀t
15The exact definition will employ almost sure notions on the set of histories. It

will be obvious and is suppressed for the ease of exposition.
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This can be motivated in many ways. First, it can be viewed as a participation

constraint for the mechanism designer- after any history, just like the the two agents,

the mechanism designer must have an incentive to continue in the relationship.

Second, it is a bankruptcy constraint for the intermediary. If the contract reaches

a stage the where the intermediary is expected to loose money, he or she should be

allowed to shut shop.

Interim budget balance does not allow the mechanism designer to draw from

past surplus. It can be viewed as a constraint on the intermediary’s commitment

power. While this would a reasonable assumption in many contexts and an inter-

esting benchmark in it own right, it is also important to note that the family of

constraints defining interim budget balance can easily be generalized to a class where

the mechanism designer is allowed to save. We take up this issue in section 1.8.

Finally, the most standard (and strictest) definition of budget balance from the

static literature that can be generalized to dynamic environments states the transfers

should exactly equal across all histories for all time periods.

Definition 5. A mechanism m = 〈p,x〉 satisfies ex post budget balance if

xB(vt, ct|ht−1)− xS(vt, ct|ht−1) = 0,

∀vt ∈ V, ∀ct ∈ C, ∀ht−1 ∈ H t−1, ∀t.16

A natural way to motivate this in the dynamic model is the absence of an outside
16Equivalently, a mechanism m = 〈p,U〉 satisfies ex post budget balance if

(vt − ct)p(vt, ct|ht−1)−

(
UB(vt, ct|ht−1)− δ

N∑
i=1

UB(vt+1,i|ht−1, vt, ct)f(vt+1,i|vt)

)
−

(
US(vt, ct|ht−1)− δ

M∑
j=1

US(ct+1,j|ht−1, vt, ct)g(ct+1,j|ct)

)
= 0

∀vt ∈ V , ∀ct ∈ C, ∀ht−1 ∈ H t−1, ∀t.
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insurance provider or financial intermediary. A contractual relationship is thus more

the order of interpretation rather than a mechanism. Both the agents insure each

other against bad shocks, and premium paid can be recovered through continuation

utility.

Note the hierarchy in budget balance

ex post budget balance ⇒ interim budget balance⇒ ex ante budget balance

It is reasonably easy to show, by (backward) inductive redistribution of transfers

and replication of an argument from static mechanism design for every period17, that

if T is finite and there exists a mechanism that implements the efficient allocation

under interim budget balance, then there also exists a mechanism that implements

it under ex post budget balance. We show in section 1.5 that a similar result can be

constructed when T =∞. However, it will require large (but bounded) payments on

the part of the agents after certain histories.

1.3.5 Objectives

One of the most widely accepted objectives of mechanism design is that of efficiency.18

We shall invoke the strongest possible version in its ex post form.

Definition 6. A mechanism m = 〈p,U〉 satisfies efficiency if

p(vt, ct|ht−1) =

 1 if vt > ct

0 otherwise

∀vt ∈ V, ∀ct ∈ C, ∀ht−1 ∈ H t−1, ∀t.

Thus, regardless of history, under a positive instantaneous surplus and only then,
17See Lemma 3 in the appendix.
18See Holmstrom and Myerson [1983] for the various notions of efficiency.
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efficiency demands trade and always with probability 1. This is a straightforward

generalization of the notion typically used in static models, and allows for a direct

comparison with Myerson and Satterthwaite [1983].

1.3.6 The interaction of constraints

Before we jump into the results, it worthwhile to investigate the interaction of the

various forces laid out in this section. From static mechanism design we know

that it is the interaction of private information (and hence incentive compatibility)

with participation (hence individual rationality) and budget balance that leads to

impossibility of efficiency result of Myerson and Satterthwaite [1983]. If we wished to

implement the efficient allocation under only individual rationality, the well known

Vickery-Clarkes-Groves (VCG) mechanism does so. On the other hand, if we wished

to implement the efficient allocation under only budget balance, the d’Aspremont and

Gérard-Varet (AGV) mechanism does so. It is the simultaneous interaction of the

three forces that leads to a departure from efficiency.

So, in order to understand how dynamics can overcome the impossibility results,

we must model the simultaneous interactions of these forces every period. While ex

ante budget balance is a good benchmark to have, it only requires budget balance

and individual rationality to interact initially, thereby the possibility results are not

exclusively because of the dynamics of the problem. Also, it may not be a plausible

restriction for many real contractual situations because it forces the intermediary to

subsidize trade by unbounded amounts along some histories as time horizon gets long.

On the other hand, ex post budget balance might be too restrictive when agents can

contract dynamically. Our endeavor in this paper is to model the simultaneous inter-

action of the three forces by requiring a continuation budget surplus in expectation

every period.
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1.4 A simple model

To fix ideas we first consider the simple exercise of implementing the efficient allo-

cation in a two period model where both the agents have two possible types. So, in

terms of the model described in section 2: T = 2, N = M = 2. In addition, we assume

that the agents’ types are arranged in the following order: vH > cH > vL > cL. Any

other ordering will render posted prices efficient statically and hence dynamically.

Consider the following intuitive pricing mechanism. Each period the buyer an-

nounces (suggests) a price PB that he may pay for the object, and the seller similarly

announces a price PS she may accept for producing and selling it. Based on these

announcements, trade takes place if PB ≥ PS, that is p̂(PB, PS) = 1{PB≥PS}; and the

transfers are defined as follows:

x̂B(PB, PS) =

 min{vk|vk ≥ PS} if PB ≥ PS

0 otherwise

x̂S(PB, PS) =

 max{ck|PB ≥ ck} if PB ≥ PS

0 otherwise

Call the above mechanism m̂, and note that it is history independent. It is

straightforward to show that announcing the true valuation every period, PB(vi) =

vi, PS(cj) = cj, is a weakly dominant strategy for both the agents. It follows from

the fact that m̂ is essentially a discrete counterpart to the famous VCG mechanism19.

The added structure is provided to ensure it is statically the minimalist efficient

mechanism in terms of the information rent paid to the agents20, and maximalist in

terms of the surplus provided to the mechanism designer. Without loss of generality,
19Since this is a two player mechanism design problem, in the VCG mechanism

each player would be asked to pay the externality he/she imposes on the other player:
xvcgB (PB, PS) = PS1{PB≥PS} and x

vcg
S (PB, PS) = PB1{PB≥PS}.

20As will be shown in the general environment later, this mechanism ensures that
the local incentives hold as equalities.
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in what follows, we restrict the announcement space of the buyer and seller to be

{vH , vL} and {cH , cL}, respectively. Then,

x̂B(vH , cH) = vH , x̂B(vH , cL) = vL, x̂B(vL, cH) = 0, x̂B(vL, cL) = vL

x̂S(vH , cH) = cH , x̂S(vH , cL) = cH , x̂S(vL, cH) = 0, x̂S(vL, cL) = cL

The obvious problem with this mechanism is that it may a run a deficit, and

budget balance will be violated even in an expected sense. Thus, more cash needs

to flow to the mechanism designer. So as a final step, in addition to the above

efficient mechanism, we allow both players to deposit some additional money with the

mechanism designer every period. Dynamics present this possibility in the form of

expected future economic surplus. Extraction of this additional remuneration for the

mechanism designer must respect the agents’ incentive compatibility and individual

rationality constraints.

Suppose rB1 and rB2 (h) are the costs paid by the buyer in period 1 and in period 2

after history h, respectively. The local incentive constraints hold as equalities inm, so

more information rent cannot be drawn back from any type. Thus, an intuitive way

to construct these payments is extracting from each type of the buyer the expected

rent earned by the “lowest" type in excess of his reservation value of zero. Define

rB2 (h) = U m̂
B (vL|h) ∀ h ∈ {vH , vL} × {cH , cL}, and

rB1 + δEm̂
[
rB2 (h̃)

]
= Um

B (vL)

A back of the envelope calculation shows that U m̂
B (vL|h) = 0 for all h, and

U m̂
B (vL) = δf(vH |vL) [g(cH)g(cL|cH) + g(cL)g(cL|cL)] ∆v
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The costs paid by the seller in the two periods: rS1 and rS2 (h), can be similarly defined.

Call this new mechanism m∗: p∗t (vi, cj) = 1{vi≥cj} for t = 1, 2 independent of

history, and

x∗B,1(vi, cj) = x̂B(vi, cj) + rB1 , x∗B,2(vi, cj|h) = x̂B(vi, cj) + rB2 (h),

x∗S,1(vi, cj) = x̂S(vi, cj)− rS1 , x∗S,2(vi, cj|h) = x̂S(vi, cj)− rS2 (h)

In mechanism m∗, the incentive constraints hold tightly and the participation

constraints of the “lowest" type bind. Thus, given informational and participation

constraints, no more rents can be extracted from the agents. If the cash flow to

the mechanism designer in m∗ does not create an expected budget surplus, no other

mechanism will.

Define the ex ante budget surplus for this two period model to be

EBS =
∑
i=H,L

∑
j=H,L

f(vi)g(cj)
[
xB(vi, cj)− xS(vi, cj)+

δ
∑
k=H,L

∑
l=H,L

f(vk|vi)g(cl|cj) (xB(vk, cl|vi, cj)− xS(vk, cl|vi, cj))
]

and the expected surplus in period 2 after history h = (hv, hc) to be

EBS(h) =
∑
k=H,L

∑
l=H,L

f(vk|hv)g(cl|hc)
[
xB(vk, cl|h)− xS(vk, cl|h)

]

Letting EBS∗ and EBS∗(h) denote the above entities for the mechanism m∗,

we can completely characterize the implementation of the efficient allocation for our

simple model by the following result.

Proposition 1. There exists an incentive compatible and individually rational mech-

anism that implements the efficient allocation under interim budget balance if and

only if EBS∗ ≥ 0, and EBS∗(h) ≥ 0 ∀h.
18



This result pins down the necessary and sufficient conditions for the implementa-

tion of the efficient allocation under interim budget balance in our simple two period

model. It allows budget to balanced dynamically, but with an added “participation"

constraint for the mechanism designer at every history. If budget was only required

to be balanced ex ante, the above mechanism and result still go through with the

necessary and sufficient condition being simply EBS∗ ≥ 0.

A plausible alternative to our mechanism could be one in which the agents deposit

money with the mechanism designer only at the beginning of the contract, satisfying

only ex ante budget balance, and draw upon it whenever the need arise.21 While this

may certainly be a good assumption in various contractual scenarios, in the general

model with many type and time periods, there are at least two situations in which

this may not be an appropriate approximation of a real dynamic contract. First,

the agents may not have large amounts of seed capital to deposit from the word

go. Second, the mechanism designer designer would be asked to subsidize trade by

arbitrarily large amounts under some histories. at which stage he can possibly file for

bankruptcy.

In contrast the mechanism presented here requires the agents to deposit a smaller

fees every period post which (whenever possible) a simple pricing mechanism im-

plements the efficient allocation.22 Fixing the efficient allocation as the objective,

and given incentive and participation constraints, it precisely pins down the maximal

possible continuation surplus that can be extracted from the economic relationship

of the buyer and the seller in expectation at every history.

What about implementation under ex post budget balance? If δ = 0, that is we

were in a static world, it has been documented by a series of papers that if there
21Skrzypacz and Toikka [2013] construct such a mechanism.
22In the simple model, since the deposit in period 2 is zero, that is rB2 (h) = rS2 (h) =

0 ∀h, the two mechanisms coincide. But it’ll be clear in sections 1.5 and 1.6 that in
the general model deposits after period 1 are typically non-zero.
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exists an incentive compatible and individually rational mechanism (p, xB, xS) that

satisfies EBS ≥ 0, then there also exists a mechanism (p, x̃B, x̃S) implements p under

ex post budget balance; so x̃B = x̃S.23 The intuition for this result is simply that

if ex ante budget surplus is generated by a mechanism, and we only need to satisfy

Bayesian incentive compatibility (as opposed to dominant strategy), then this surplus

can be re-distributed between the agents across types to construct a mechanism that

implements the same allocation under ex post budget balance.

For the dynamic model, define

EBS1 =
∑
i=H,L

∑
j=H,L

f(vi)g(cj) [xB(vi, cj)− xS(vi, cj)]

and EBS2(h) = EBS(h) to be the current expected budget surplus generated each

period.24 In a direct generalization of the static result described above we can show

that there exists a mechanism that implements an allocation p under ex-post budget

balance if and only if it can be implemented by a mechanism that satisfies EBS1 ≥ 0

and EBS2(h) ≥ 0.25

Suppose EBS∗ ≥ 0 and EBS∗(h) ≥ 0 for all h. Then, the only way efficient

allocation cannot be implemented under ex post budget balance is if EBS∗1 < 0. In

that case we can simply move transfers across periods in an incentive compatible and

individually rational manner to generate a new mechanism, say m∗∗, that satisfies

EBS∗∗(h) = 0 for all h, and EBS∗∗1 ≥ 0.

Fix some α ∈ [0, 1]. Define

x∗∗B,2(vi, cj|h) = x∗B,2(vi, cj|h)− αEBS∗(h)

23See Mailath and Postlewaite [1991].
24Note that EBS = EBS1 + δE

[
EBS2(h̃)

]
.

25Lemma 3 in the appendix.
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x∗∗B,1(vi, cj) = x∗B,1(vi, cj) + δαEBS∗(vi, cj)

x∗∗S,2(vi, cj|h) = x∗S,2(vi, cj|h) + (1− α)EBS∗(h)

x∗∗S,1(vi, cj) = x∗S,1(vi, cj)− δ(1− α)EBS∗(vi, cj)

Thus, we have the characterization of implementation of the efficient allocation under

ex post budget balance.

Corollary 1. There exists an incentive compatible and individually rational mecha-

nism that implements the efficient allocation under ex post budget balance if and only

if EBS∗ ≥ 0, and EBS∗(h) ≥ 0 ∀h.

It is clear that in the absence of any additional constraints the necessary and

sufficient condition for implementation of the efficient allocation under interim and

ex post budget balance are exactly the same. Thus, in view of Corollary 1, should

interim and ex post budget balance be considered “equivalent"?

Ex post budget balance in the dynamic framework allows for the possibility of

the agents insuring each other against bad shocks through direct transfers. Interim

budget balance on the other hand is laxer, and allows for the role of an intermediary.

Since types are imperfectly correlated, a long enough time horizon (and high enough

discounting) will allow the possibility of such promises to be kept. However, for high

levels of persistence of bad shocks, the transfers required to meet these promises will

be arbitrarily large.

Note that x∗∗B,1(vi, cj) ≥ x∗B,1(vi, cj) and x∗∗S,1(vi, cj) ≤ x∗S,1(vi, cj) with at least

one strict inequality. Thus, in the presence of a hard (upper) bound on per-period

transfers it is easier to satisfy interim budget balance than ex post. These bounds,

which can be reasonably considered to be credit constraints, create the role for an

intermediary who can break the budget inter-temporally. We will have to say on this

in section 1.8.
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A second-best formulation. An alternative way to look at the same problem

is through the prism of maximizing gains from trade or surplus. Using the revelation

principle, the problem can simply be stated as

max
〈p,x〉

S =
∑
i=H,L

∑
j=H,L

f(vi)g(cj)
[

(vi − cj) p(vi, cj)+

δ
∑
k=H,L

∑
l=H,L

f(vk|vi)g(cl|cj) (vk − cl) p(vk, cl|vi, cj)
]

subject to

ICa
H , IC

a
L, IR

a
H , IR

a
L, for a = B, S

ICa
H(h), ICa

L(h), IRa
H(h), IRa

L(h), for a = B, S and h ∈ {vH , vL} × {cH , cL}

and,

EBS =
∑
i=H,L

∑
j=H,L

f(vi)g(cj)
[
xB(vi, cj)− xS(vi, cj)+

δ
∑
k=H,L

∑
l=H,L

f(vk|vi)g(cl|cj) (xB(vk, cl|vi, cj)− xS(vk, cl|vi, cj))
]
≥ 0

EBS(h) =
∑
k=H,L

∑
l=H,L

f(vk|hv)g(cl|hc)
[
xB(vk, cl|h)− xS(vk, cl|h)

]
≥ 0

for h = (hv, hc) ∈ {vH , vL} × {cH , cL}

where ICa
i and IRa

i are respectively the incentive compatibility and individual ratio-

nality constraint in period 1 for agent a of type i, ICa
i (h) and IRa

i (h) are analogously

the constraints in period 2 after history h, and EBS ≥ 0 and EBS(h) ≥ 0 represent

the interim budget balance constraints in period 1 and period 2 after history h

respectively. Also, note that if we take away the four constraints: EBS(h) ≥ 0, and

require the budget to balance only ex ante, we would of course get more permissible

results on efficiency.
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The choice of surplus as the maximand, as opposed to any other point on the

Pareto frontier, is driven by the fact that whenever the parameters of the problem

allow the efficient allocation to be implemented, it will indeed be the unique solution

of this second-best.

A natural way to proceed with this problem is to consider a relaxed problem

with “local downward" incentive constraints: ICB
H , IC

S
L , IC

B
H(h), ICS

L(h), and the

participation constraint of the “lowest" type: IRB
L , IR

S
H , IR

B
L (h), IRS

H(h), and the

(five) interim budget balance constraints. It is fairly straightforward to show that the

solution to this relaxed problem is indeed the solution to the original one.26

Next, the highest values of EBS and EBS(h) are obtained when the incentive

compatibility and individual rationality constraints in the relaxed problem hold as

equalities. Using these equalities, the transfers can be eliminated from EBS and

EBS(h), which can be re-written in terms of the allocation p. We consider the

problem of the second-best first under ex ante and then interim budget balance.

Now, define the ex ante virtual valuations, that is the valuations net of the

information rents, associated with each possible realization and history of types.

MR(vH) = vH ,MR(vL) = vL −
f(vH)

f(vL)
∆v,MC(cL) = cL,MC(cH) = cH +

g(cL)

g(cH)
∆c

MR(vi|vH) = vi, for i = H,L, and MC(cj|cL) = cj for j = H,L

MR(vH |vL) = vH ,MR(vL|vL) = vL −
f(vH)

f(vL)

f(vL|vL)− f(vL|vH)

f(vL|vL)
∆v

MC(cL|cH) = cL,MC(cH |cH) = cH −
g(cL)

g(cH)

g(cH |cH)− g(cH |cL)

g(cH |cH)
∆c

The notation MR and MC is in the spirit of Bulow and Roberts [1983], where

the virtual valuations of the buyer and the seller are motivated as the marginal
26Note that this is possible because of two types assumption. For the second-best,

in a dynamic contract with more than two types global constraints typically bind.
See Battaglini and Lamba [2014].
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revenue and marginal cost respectively, lending a Ramsey pricing interpretation to

the mechanism design problem of bilateral trading. Also, note that for both agents,

distortions persist in the second period only when their type is “low" in period 1.27

Define the ex ante virtual surplus to be

EBS(p) =
∑
i=H,L

∑
j=H,L

f(vi)g(cj)
[

(MR(vi)−MC(cj)) p(vi, cj)+

δ
∑
k=H,L

∑
l=H,L

f(vk|vi)g(cl|cj) (MR(vk|vi)−MC(cl|cj)) p(vk, cl|vi, cj)
]

The ex ante budget constraint is then simply EBS(p) ≥ 0. If the budget was

only required to balance in an ex ante sense, transfers can be moved across time and

types freely as long they respect the the individual rationality of the agents and the

ex ante budget surplus condition. Thus, maximization of surplus S with respect to

the virtual surplus constraint being positive, EBS(p) ≥ 0 is just an extension of the

static Ramsey pricing problem.

All types (in period 1 and 2) for whichMR > MC, trade will occur. For the rest, a

ranking based on the efficiency-profit ratio and the binding virtual surplus constraint

determine (im)possibility of trade.28 Note that ranking is homogenous for types in

both periods, that is, for Π(vi, cj) = MR(vi) − MC(cj) < 0 and Π(vk, cl|vi, cj) =

MR(vk|vi) − MC(cl|cj) < 0, trade is allowed in decreasing order of (v − c)/(−Π)

across periods till EBS(p) ≥ 0 binds. It is important to note that more trade

happens in period 1 of the dynamic problem than the static one, because a future

(virtual) surplus relaxes the EBS(p) ≥ 0 constraint. Finally, the efficient allocation

27This a product of the “generalized no distortion at the top" principle in dynamic
contracts. Once the type process hits the “highest" type, distortions disappear and
the virtual valuation is equal to the actual valuation for that agent.

28Since this a discrete type model, randomization occurs at the optimum for some
types with MR < MC. It is easy to show (Myerson [1985]) that in the continuous
type model the second-best is always bang bang: probability of trade is either zero
or one.
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can be implemented when ex ante budget surplus evaluated at the efficient allocation,

denoted say by EBS(p∗), is non-negative.

But, what if the expected budget has to be balanced in every period? Then, in

addition to the ex ante budget balance constraint, the mechanism must also satisfy

EBS(h) ≥ 0 for all h. The interim virtual valuations can be defined as

MR2(vH |vi) = vH ,MR2(vL|vi) = vL −
f(vH |vi)
f(vL|vi)

∆v

MC2(cL|cj) = cL,MC2(cH |cj) = cH +
g(cL|cj)
g(cH |cj)

∆c

Define the interim virtual valuation after history h = (vi, cj) to be

EBS(p)(vi, cj) =
∑
k=H,L

∑
l=H,L

f(vk|vi)g(cl|cj) [MR2(vk|vi)−MC2(cl|cj)] p(vk, cl|vi, cj)

It is easy to see that the interim budget balance constraint after history h is EBS(p)(h)

≥ 0. The original problem of the second-best can then be restated simply as the

maximization of S under EBS(p) ≥ 0 and EBS(p)(h) ≥ 0 for all h.

In contrast to the static model and the dynamic model under ex ante budget

balance, the Ramsey pricing problem for period 2 has to internalize two types of

marginal revenue and cost functions. In the first period, all types for which MR >

MC trade for sure. In the second period, all types for which MR > MC and MR2 >

MC2 trade for sure. For all other realizations, the correct virtual valuation for the

Ramsey ranking contest in period 2 depends on whether constraint EBS(p)(h) ≥ 0

binds. If after history h = (vi, cj), it binds, sorting is done based on (v − c)/(−Π2),

where Π2(vk, cl|vi, cj) = MR2(vk|vi) − MC2(cl|cj). Once we have run through all

histories for which EBS(p)(h) ≥ 0 binds, these allocations are substituted back in

to equation EBS(p) ≥ 0. Then, a Ramsey ranking is done for the remaining second

period types and first period types as before.
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In this relaxed problem if none of the budget balance conditions bind at the opti-

mum, optimization yields the efficient allocation. Letting EBS(p∗) and EBS(p∗)(h)

denote the virtual valuations evaluated at the efficient allocation, we get following

result

Proposition 2. There exists an incentive compatible and individually rational mech-

anism that implements the efficient allocation under interim budget balance if and

only if EBS(p∗) ≥ 0, and EBS(p∗)(h) ≥ 0 ∀h.

As described above, implementation under interim budget balance can be used a

foundation to construct a new mechanism that satisfies ex post budget balance.

Corollary 2. There exists an incentive compatible and individually rational mecha-

nism that implements the efficient allocation under interim budget balance if and only

if EBS(p∗) ≥ 0, and EBS(p∗)(h) ≥ 0 ∀h.

It is of course easy to see that Propositions 1 and 2, provide the same necessary

and sufficient conditions on the implementability of the efficient allocation, using

separate constructive arguments.

Comparative Statics. What do Propositions 1 and 2 mean in terms of the

parameters of the problem? It is clear that they put joint restrictions on the distance

between types, level of discounting and the Markov matrix. In the rest of this section,

we try to understand what moving parts mean in terms of economics of the problem.

First it easy to note that at δ = 0 or with perfectly persistent types, efficiency

holds if and only if

EBS(p∗)(δ = 0) =
∑
i=H,L

∑
j=H,L

f(vi)g(cj) [MR(vi)−MC(cj)] p(vi, cj) ≥ 0

This is equivalent to the condition in Matsuo [1989] for the two types static bilateral

trading problem. Note that this condition does hold for a significant measure of
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Figure 1.1: Expected Budget Surplus for two types, two periods model

parameters, unlike the continuous type space model where we get an impossibility of

efficiency as long as there is any overlap in buyer and seller supports.29

We parametrize the problem for simple comparative statics that can be commu-

nicated through pictures. Let the prior for agents be uniform, and the transition

probabilities be given by f(v|v) = g(c|c) = α, f(v|v′) = g(c|c′) = 1− α where α > 1
2
.

So α measures the level of persistence in the model. The type spaces- {vH , vL} and

{cH , cL}- are chosen such that EBS(p∗)(δ = 0) < 0; therefore, the possibility of

efficiency is exclusively due to the dynamics of the problem.

Figure 1.1a plots EBS∗ against α for four different values of δ. The horizontal

line is the of course EBS∗(δ = 0). As is intuitive the ex ante budget surplus is a

decreasing function of the level of persistence in the model, and an increasing function

of discounting in the “positive" region of the economic surplus.

Figure 1.1b plots EBS∗(vi, cj) for i, j = H,L. First note that all curves start

at the same point,. This is because at α = 1/2 the model is iid and history does

not matter for the interim budget balance constraint. Next, this graph shows why

it is not straightforward to rank expected budget surplus according to the level of
29However, for the general discrete type space model, as the number of types

becomes large and the model converges to the continuous type space model, the
measure of parameters where the condition holds converges to zero.
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persistence in the model. The parameter α affects both the probability of types and

level of distortions. And, as shown in the construction of interim virtual valuations,

these distortions can go both ways as a function of α. The imperative thing to note

though is that the minimum all of EBS∗(vi, cj) is a decreasing function of α. So,

persistence continues to be bad news even for the interim budget balance constraints.

1.5 Dynamic collateral VCG mechanism

Now, we ask the main question: when can efficiency be sustained in a dynamic

bargaining problem with Markovian private information under voluntary participation

and (interim or ex post) budget balance?

In order to answer this question we construct an incentive compatible mechanism

that produces the minimal possible rent for the agents after any history and allocates

maximal possible surplus to the mechanism designer. Borrowing techniques from

Williams [1999] and Krishna and Perry [2000], we start with a VCG mechanism and

adapt it to the discrete types framework to create a tight mechanism that satisfies

local incentive constraints with equality.30

The standard VCGmechanism consists of xvcgB (vt, ct|ht−1) = ct, and xvcgS (vt, ct|ht−1)

= vt, that is each agent pays the externality he/she imposes on the other agent. Since

payoff equivalence does not “automatically" hold for discrete types, the gap between

the types needs to taken care of in order to create a tight mechanism does not give rent

to agents that is more than necessary to satisfy incentives. The following modified
30As presented in the simple model, an alternative approach could be to write down

the problem of the second-best and back out conditions under which it implements the
efficient allocation. We use the dynamic generalization of the VCG to allow for easier
comparisons to the static literature and also to provide a simple way of implementing
the efficient allocation.
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version of the VCG mechanism takes care of the same.31

xMvcg
B (vi, cj|ht−1) =

 min {vk|vk > cj} if vi > cj

0 otherwise

xMvcg
S (vi, cj|ht−1) =

 max {ck|vi > ck} if vi > cj

0 otherwise

where Mvcg stands for modified version of VCG.

The key contribution of this mechanism over the standard VCG is that it ensures

the “downward" local constraints hold as equalities.

Lemma 1. For all i < N

UMvcg
B (vi+1|ht−1) = UMvcg

B (vi|ht−1) + ∆vi+1p(vi|ht−1)+

δ
N∑
k=1

UMvcg
B (vk|ht−1, vi) · (f(vk|vi+1)− f(vk|vi))

and for all j > 0

UMvcg
S (cj|ht−1) = UMvcg

S (cj+1|ht−1) + ∆cj+1p(cj+1|ht−1)+

δ

N∑
k=1

UMvcg
S (ck|ht−1, cj+1) · (g(ck|cj)− g(ck|cj+1))

This mechanism may or may not run a deficit. However, as the number of possible

types becomes large (and the distance between them goes to zero), the mechanism

converges to the standard VCG mechanism which we know violates any notion of

budget balance. The challenge then is, using the modified VCG mechanism as a

base, can we construct a mechanism that while preserving incentives and participation
31A static version of it appears in Manea and Kos [2009].
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satisfies interim budget balance whenever the parameters of the problem deem it

possible?

The following partial payoff equivalence result paves our way.

Lemma 2. Suppose 〈p,U〉 is incentive compatible. For a family of finite constants

(aB(ct|ht−1), aS(vt|ht−1)), define

ŨB(vt, ct|ht−1) = UB(vt, ct|ht−1) + aB(ct|ht−1), and

ŨS(vt, ct|ht−1) = US(vt, ct|ht−1) + aS(vt|ht−1)

Then
〈
p, Ũ

〉
is also incentive compatible.

This result provides a potent history dependent formulation of the payoff equiv-

alence result. It provides a structure to the composition of transfers both inter-

temporally and within a period. Starting from an incentive compatible mechanism,

how can move transfers across types and across time in a way that still preserves

incentives? Lemma 2 answers this question.

The change of variables from 〈p,x〉 to 〈p,U〉 proves key in establishing this

result.32 If we work in an environment with stage transfers it is hard to keep track of

the change in incentives caused by a moving transfers around after any given history.

But, moving expected utility vectors endogenously keeps the incentives intact. The

bijection from x to U through p precisely determines the associated stage transfers.

Now, we construct the collateral dynamic VCG mechanism.

Constructing the Dynamic Collateral VGC mechanism

32This approach is popular in (static) contract theory. See, for example Laffont
and Martimort [2001]. The key difference is that change with stage transfers in the
dynamic environment must be with the expected utility variables, rather than the
stage utility ones.
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Step 1. Start with the modified VCG mechanism,
〈
p∗,UMvcg

〉
, as defined above.

It is incentive compatible and individually rational.

Step 2. Select the mechanism 〈p∗,U∗〉, where U∗ is chosen so that inf
v∈V

U∗B(v, ct|ht−1)

= 0 = inf
c∈C

U∗S(vt, c|ht−1) for all vt, ct and ht−1. Let EBS∗(ht−1) represent the expected

budget surplus generated by this mechanism after history ht−1.

Step 3. Show that an incentive compatible and individually rational mechanism

guaranteeing efficient trade under interim budget balance can exist if and only if

〈p∗,U∗〉 runs an expected budget surplus, that is, EBS∗(ht−1) ≥ 0 ∀ht−1, ∀t.

Step 4. Using 〈p∗,U∗〉 and equation (2.1), recover the stage transfers x∗.

They key elements of our construction are the minimization of information rents

for all types and participation rents to the lowest possible type, and transfer of all

remaining surplus to the mechanism designer. We showed in Lemma 1 that local

incentive constraints are tight which ensures that the minimalist information rent

is paid to the agents. And, using Lemma 2 we extract at every history the excess

participation rent generated by the modified VCG mechanism without affecting the

incentive constraints. We can now state the main result of the paper.

Proposition 3. There exists an incentive compatible and individually rational mech-

anism that implements the efficient allocation under interim budget balance if and

only if EBS∗(ht−1) ≥ 0 ∀ht−1, ∀t.

The result is precise in the sense that it offers an “if and only" condition on the

primitives of the problem as to when efficiency can be attained. It also signifies the

salience of the modified VCG mechanism in characterizing efficient mechanisms in

our discrete type dynamic Markovian framework.
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Finally we show that the modified VCG mechanism can also be used to charac-

terize efficiency under the traditional ex post budget balance. The key to this result

is sustaining efficiency under a static budget surplus every period. Define

EBSt(h
t−1) = E

[
xB(vt, ct|ht−1)− xS,t(vt, ct|ht−1)|ht−1

]
= EBS(ht−1)− δE

[
EBS(ht)|ht−1

]
Generalizing a standard result on the “equivalence" of ex ante and ex post budget

balance in static mechanism design, it is easy to show that there exists a mechanism

that implements an allocation under ex post budget balance if and only if it can be

implemented by a mechanism that satisfies EBSt(ht−1) ≥ 0 for all t.

The modified VCG mechanism extracts all possible rents from the agents. If this

mechanism produces a static budget surplus, that is EBS∗t (ht−1) ≥ 0 for all ht−1,

we are done. If not, than Corollary 3 below shows that as long as EBS∗(ht−1) ≥ 0

for all ht−1 transfers can be moved across time and types using Lemma 2 to produce

a mechanism that indeed produces a static budget surplus. The result follows by

(backward) induction in a finite horizon model. Infinite horizon model requires a bit

more detailed construction.

Corollary 3. There exists an incentive compatible and individually rational mecha-

nism that implements the efficient allocation under ex post budget balance if and only

if EBS∗(ht−1) ≥ 0 ∀ht−1, ∀t.

Unifying existing results, Proposition 5 and Corollary 3 provide a complete char-

acterization of efficiency for dynamic mechanism design models with budget balance.

Athey and Miller [2007] provide the characterization under iid shocks. Athey and

Segal [2007b, 2013] provide a dynamic version of the AGV mechanism that does not

satisfy individual rationality at every history.33 Finally, Skrzypacz and Toikka [2013]
33Athey and Segal [2007a] provide a partial characterization with individual
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provide a mechanism that satisfies individual rationality but balances the budget only

ex ante.

1.6 Comparative statics

A poignant follow up question to Proposition 5 is of course– what does this condition

mean in terms of the parameters of the model? Define

ΓMvcg
t =

∞∑
τ=t

δτ
(
xMvcg
B,τ − x

Mvcg
S.τ

)

Then, E
[
ΓMvcg
t |ht−1

]
represents the expected cash flow to the mechanism designer

from the modified VCG mechanism after history ht−1. From step 2 of the construction

of the dynamic collateral VCG mechanism it is easy to see that

EBS∗(ht−1) = UMvcg
B (v|ht−1) + UMvcg

S (c|ht−1) + E
[
ΓMvcg
t |ht−1

]

An intuitive way to think about this definition is to quantify it in the limit continuous

type space model. Let

Γt = −Γvcgt =
∞∑
τ=t

δτ (vτ − cτ )+

where a+ = max {a, 0}. Then, the expected value of Γt given the information set

at time t (public or private history), defines the expected economic surplus of the

dynamic bilateral trade relationship from period t onwards. Let d → c denote the

discrete to continuous limit. In a slight abuse of notation, we have a simple expression

for the expected budget surplus in the dynamic collateral VCG mechanism for the

rationality with stronger sufficient conditions. A dynamic version of the pivot
mechanism is presented by Bergemann and Valimaki [2010] that satisfies individual
rationality every period but not budget balance.
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continuous model.

lim
d → c

EBS∗(ht−1) = E
[
Γt|ht−1, vt = v

]
+ E

[
Γt|ht−1, ct = c

]
− E

[
Γt|ht−1

]
Thus, the condition is accounting for the added cash flow equal to the expected surplus

generated by the “lowest" types of the buyer and the seller respectively, minus deficit

created by the VCG mechanism.

Now, the ability of the underlying environment to sustain efficiency depends on

three key factors: extent of overlap of supports of buyer and seller types, level

of discounting, persistence of the Markov processes. The necessary and sufficient

condition provided by Proposition 5 in the terms of the expected budget surplus

of the dynamic collateral VCG mechanism puts joint restrictions on these three

aspects of the environment. Of course, given any (or all) of these, relaxing the

institutional requirements of individual rationality or budget balance makes efficiency

more permissible.

The role of overlap of support is the same as pointed out by Myerson and Satherth-

waite [1983] in the static model. If v1 > cM , then the problem is trivial and trade

always happens. On the other hand if vN < c1, then there is common knowledge of

no gains from trade. As the support overlap moves from the former case to the latter,

the trade region (weakly) shrinks. Dynamics make the trade regions shift over time

but the basic intuition stays.

Fixing the supports, the tension between discounting and persistence drives the

potential ability of the dynamic model to break away from the static impossibility

results and produce greater levels of efficiency. Two benchmarks are in order. At

δ = 0, for any Markov matrix, the model is static and we are back to Myerson

and Satterthwaite [1983], and Manea and Kos [2009]. On the other hand, for the

Identity Markov matrix, that is for perfectly persistent types, since this a model with
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commitment, we are back to the repetition of the static optimum for any level of

discounting. So, we can converge to the static model at both ends of the parameter

space.

Intuitively, it is clear that ceteris paribus, a higher δ is good for efficiency and

higher persistence is bad. Higher δ creates more future surplus which can then be

used as collateral to sustain efficiency. In the dynamic model, with persistent types,

the agents’ type not only determines their payoff today but also provides conditional

information about payoffs in the future. Thus, as the level of persistence increase so

does the amount of asymmetric information about future payoffs. It is thus reasonable

to expect that higher persistence make matters wore for efficiency.

Disentangling the two effects in generality, however, is a no mean task. Skrzypacz

and Toikka [2013] make some progress on this for the model with ex ante budget

balance by imposing certain restrictions on the types and stochastic process. The

problem is particularly difficult when looking at interim (or ex post) budget balance

because persistence affects both the distortions (information rents) and probability

of good or bad shocks every period.

Example 1. We start simple by parameterizing the infinite horizon version of the

two type model presented in section 1.4. As before vH > cH > vL > cL. We assume

a uniform prior and following Markov matrices.

f(vi|vi) = g(ci|ci) = α, f(vj|vi) = g(cj|ci) = 1− α for i 6= j

So, α measures the level of persistence in the model. The numerical values of types

are chosen so that efficiency is not sustainable in the static model, that is, EBS∗(δ =

0) < 0. Since the mechanism is stationary starting period 2 onwards, we need only to

calculate five values to test Proposition 3, viz. EBS∗, EBS∗(vH , cH), EBS∗(vH , cL),
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Figure 1.2: EBS∗, EBS∗(vH , cL) and EBS∗(vL, cH) for the two types infinite horizon
model.

EBS∗(vL, cH), EBS∗(vL, cL). For this simple model, these can actually be solved in

closed form.

Figure 1.2 plots EBS∗, EBS∗(vH , cL) and EBS∗(vL, cH) against δ for four differ-

ent values of δ.

Example 2. Next, we look at the limit continuous type space model where both

the buyer and seller types are distributed over [0, 1]. The prior is uniform. From the

second period onwards types are constant with probability α and are drawn again

from the prior with probability 1 − α. Then, again it is easy to solve the expected

budget surplus constraints in closed form. We get

EBS∗ ≥ 0⇔ 1− α ≥ 1− δ
δ

, and

min
{v∈[0,1],c∈[0,1]}

EBS∗(v, c) ≥ 0⇔ 1

6

(
1

α
− 1

)2
1 + δα

1− δ
≥ 1
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Key economics forces. The intuition that that a higher discount factor is good

and higher persistence is bad for efficiency is confirmed by our two examples. Even

if the model is arbitrarily close to constant types (α = 1− ε, for ε small enough), we

can still find a discount factor high enough to achieve efficiency. On the other hand,

for any value of δ arbitrarily close to 1, there exists a value of α < 1 large enough

such that efficiency cannot be attained. So, the limit result on efficiency critically

depends of the order of limits.

1.7 Implementation

There is a simple and intuitive method of implementing the dynamic collateral VCG

mechanism. Every period both agents deposit a small fees with the mechanism

designer post which a VCG style mechanism is run. For all ht−1 ∈ H t−1, define

rBt (ht−1) = UB(v|ht−1)− δE
[
UB(v|ht) | ht−1

]
, and

rSt (ht−1) = US(c|ht−1)− δE
[
US(c|ht) | ht−1

]
,

where the expectation is taken over the t-th element of history ht = (ht−1, (vt, ct))

given ht−1. The following simple mechanism implements the dynamic collateral VCG

mechanism.

I At start of every period t (after history ht−1) the agents pay a participation fees

rSt (ht−1) and rSt (ht−1).

II Then, run a static modified VCG mechanism.

III Repeat till time period T .
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Recollect that for the two types, two periods model, ra1(h0) and ra2(h1) are exactly the

participation fees that we constructed in the simple example in section 1.4.

If the efficient allocation could be implemented by depositing all the extra eco-

nomic surplus that the bilateral trading relationship hopes to generate right at the

start of the contract, then this mechanism would still implement it. However, the

converse is not true. If the agents face credit constraints that doesn’t allow them to

put large sums of money upfront our mechanism can still work.

1.8 Role of an intermediary

If the efficient allocation can be implemented under ex post budget balance, strictly

speaking there is no role for an intermediary. Both the agents insure each other against

bad shocks; the positive probability of the good shocks and high enough discounting

ensure a future economic surplus that can be used as collateral to sustain efficiency.

But, as the persistence of bad shocks increases, the size of the transfers along those

histories required to sustain efficiency increases rapidly. Thus, with hard bounds on

transfers which can interpreted as credit constraints, it is easier to sustain efficiency

under interim budget balance rather than ex post.

The role of an intermediary is even more pronounced if we allow for a savings tech-

nology, and the interest thus accrued to be carried over in the mechanism designer’s

budget account, thereby relaxing or strengthening his participation constraint, de-

pending on whether interest is being built over a surplus or a deficit. They key thing

to notice is that even in that scenario the collateral dynamic VCG mechanism pins

down the necessary and sufficient conditions on efficient implementation. If after

history ht−1, the current and future value of the intermediary under the collateral

dynamic VCG mechanism is A∗(ht−1), then Proposition 5 goes through with a savings

technology with A∗(ht−1) replacing EBS∗(ht−1).
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1.9 Conclusion

This paper provides a necessary and sufficient condition for the attainment of ef-

ficiency in a repeated bargaining problem with two sided asymmetric information.

In the process, it introduces an intermediate notion of budget balance which allows

for the role of an intermediary but with bounded credit lines. ced that allows the

budget to be balanced dynamically, borrowing from the future but in a bounded

fashion. Through a set of simple examples we explore the comparative statics of the

underlying economics forces of discounting and level of asymmetric information.

The main result (Proposition 5) and the mechanism can be generalized to ex

post notions of incentive compatibility without any cost. In another paper, Lamba

[2014], we state and prove a general dynamic payoff equivalence result for the N -

player dynamic mechanism design problem with continuous types which is exploited

to provide necessary and sufficient conditions for the implementation of the efficient

allocation for the general model.

1.10 Appendix

1.10.1 Proof of Lemma 1

We prove the equality for the buyer. The proof for the seller’s utility is analogous.

Let uMvcg
B (vi) be the (expected) current utility of the buyer of type vi in the modified

VCG mechanism. Since the mechanism is stationary we suppress the history. First

note that

xMvcg
B (vi) =

i∑
k=1

[G(vk)−G(vk−1)] vk
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Then, we have

uMvcg
B (vi) = vip

∗(vi|ht−1)− xMvcg
B (vi)

= viG(vi|ct−1)−
i∑

k=1

[G(vk|ct−1)−G(vk−1|ct−1)] vk

= (vi − vi−1)G(vi−1|ct−1)−
i−1∑
k=1

[G(vk|ct−1)−G(vk−1|ct−1)] vk

= ∆vip
∗(vi−1|ht−1) + uMvcg

B (vi−1)

Now, to the dynamic mechanism. Fix ht−1. We have

UMvcg
B (vi|ht−1) = uMvcg

B (vi−1|ht−1) + δ
N∑
k=1

f(vk|vi)UMvcg
B (vk|ht−1, vi)

= ∆vip
∗(vi−1|ht−1) + uMvcg

B (vi−1|ht−1) + δ
N∑
k=1

f(vk|vi)UMvcg
B (vk|ht−1, vi)

= ∆vip
∗(vi−1|ht−1) + UMvcg

B (vi−1|ht−1)+

δ
N∑
k=1

(f(vk|vi)− f(vk|vi−1))UMvcg
B (vk|ht−1, vi)

= ∆vip
∗(vi−1|ht−1) + UMvcg

B (vi−1|ht−1)+

δ
N∑
k=1

(f(vk|vi)− f(vk|vi−1))UMvcg
B (vk|ht−1, vi−1)

The last equality follows from the fact the mechanism is stationary and as long

expectations about future type realizations are the same (which in this case depend

only on ct−1) the expected utility vectors are equal. Thus, UMvcg
B (vk|ht−1, vi) =

UMvcg
B (vk|ht−1, vi−1).
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1.10.2 Proof of Lemma 2

Suppose 〈p,U〉 is ex post incentive compatible. Fix ht−1. Then, UB(vt|ht−1) appears

in two kinds of incentive compatibility constraints. First,

UB(vt|ht−1) ≥ UB(v′t|ht−1) + (vt − v′t)p(v′t|ht−1)

+δ
N∑
i=1

UB(vt+1,i|ht−1, v′t) (f(vt+1,i|vt)− f(vt+1,i|v′t))

Clearly, addition of the constants aB(ct|ht−1) to U(vt, ct|ht−1) for all vt ∈ V , and

ct ∈ C, leads to addition of aB(ht−1) = E [aB(ct|ht−1)] to U(vt|ht−1) for all vt ∈ V ,

which does not affect any of these constraints.

Next, fix vt−1 = ht−1
v,t−1. Second, we need to consider the constraints,

UB(v′t−1|ht−2) ≥ UB(vt−1|ht−2) + (v′t−1 − vt−1)p(vt−1|ht−2)

+δ
N∑
i=1

UB(vt,i|ht−2, vt−1)
(
f(vt,i|v′t−1)− f(vt,i|vt−1)

)
Again, this leads to addition of aB(ht−1) = E [aB(ct|ht−1)] to U(vt|ht−1) for all

vt ∈ V which drops out of the constraint.

Therefore, linear additions of constants as defined in the lemma preserves incen-

tives.

1.10.3 Proof of Proposition 5

Sufficiency is obvious. If EBS∗(ht−1) ≥ 0, for all ht−1 ∈ H t−1, ∀t, then the collateral

dynamic VCG mechanism satisfies all the necessary properties, and is one such desired

mechanism.

Conversely, we will show that the collateral dynamic VCG mechanism produces

the highest expected budget surplus at every history of the mechanism. Consider a re-
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laxed problem with only the local “downward" incentive compatibility constraints and

the individually rationality constraint of the lowest type. Given first order stochastic

dominance and that the efficient allocation is monotonic, if a mechanism implementing

the efficient allocation satisfies all the constraints in the relaxed problem, then it is

(globally) incentive compatible, and individually rational.34

Fixing the allocation to be p∗, we want to choose the mechanism m = 〈p∗,U〉

that produces the highest value(s) of expected budget surplus. For any history ht−1

we have

EBS(ht−1) = Em
[

T∑
τ=t

δτ−1 (vτ − cτ ) pτ − UB(vt|ht−1)− US(ct|ht−1) | ht−1

]

It is thus straightforward to see that in order to produce the highest value of EBS∗(ht−1)

all the local “downward" incentive constraints and the individual rationality constraint

of the lowest type must hold as equalities, which is isomorphic to the collateral

dynamic VCG mechanism. Thus, for any incentive compatible and individually

rational mechanism m = 〈p∗,U〉, we have

UB(vt, ct|ht−1) ≥ U∗B(vt, ct|ht−1) and US(vt, ct|ht−1) ≥ U∗S(vt, ct|ht−1)

Thus, if for any history ht−1 ∈ H, EBS∗(ht−1) < 0, we must have EBS(ht−1) < 0 in

〈p∗,U〉. The result follows.

1.10.4 Proof of Corollary 3

First, define,

EBSt(h
t−1) = EBS(ht−1)− Em

[
EBS(ht)|ht−1

]
=

34See Pavan, Segal and Toikka [2014] and Battaglini and Lamba [2014].
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Em
[
xB(vt, ct|ht−1)− xS(vt, ct|ht−1)|ht−1

]
to be the current expected budget surplus. We show that implementation under ex

post budget balance balance is equivalent to generating a current expected budget

surplus at every history.

Lemma 3. An allocation p is implementable under ex post budget balance if and only

if there exists an implementable mechanism m = 〈p,x〉 that satisfies EBSt(ht−1) ≥ 0,

∀ht−1, ∀t.

Proof. Ex post budget balance implies EBSt(ht−1) ≥ 0, ∀ht−1, ∀t is obvious. Con-

versely, suppose 〈p,x〉 satisfies EBSt(ht−1) ≥ 0, ∀ht−1, ∀t. Fix a history ht−1, and

let Π = EBSt(h
t−1) ≥ 0. Define

x̃(vt, ct|ht−1) = xB(vt|ht−1)−
N∑
i=1

xB(vt,i, ct)f(vt,i|vt−1)dvt + xS(ct|ht−1) + αΠ,

where α ∈ [0, 1] is a constant. We have

x̃(vt|ht−1) = xB(vt|ht−1)− (1− α)Π, and

x̃(ct|ht−1) = xS(ct|ht−1) + αΠ

Repeat this for every possible history. Now, consider the mechanism 〈p, x̃〉. It is

ex post budget balanced by construction. Moreover, using an incentive compatible

mechanism we are reducing what the buyer has to pay and increasing what the seller

gets. So, the new mechanism must also be incentive compatible and individually

rational.

Now, to the main result. Note that If there exists t and ht−1 such that EBS∗(ht−1) <

0, then by Proposition 5, the efficient allocation cannot be implemented under interim

budget balance, and hence neither under ex post budget balance.
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Conversely, suppose EBS∗(ht−1) ≥ 0 ∀ht−1, ∀t. We show that then, there exists

a mechanism
〈
p, Ũ

〉
that satisfies EBSt(ht−1) ≥ 0 ∀ht−1. If T is finite the result

follows from backward induction. So, let T =∞.

Define

H1 =
{
ht−1 ∈ P (H) |EBS∗τ (hτ−1) ≥ 0 ∀ τ ≤ t, hτ−1 = πτ−1(ht−1)

}
and,

H2 =
{
ht−1 ∈ P (H) |EBS∗t (ht−1) + E

[ T∑
τ=t+1

1{ht−1∈H1}δ
τ−tEBS∗τ (h

τ−1) | ht−1
]
≥ 0
}

H3 =
{
ht−1 ∈ P (H) |EBS∗t (ht−1) + E

[ T∑
τ=t+1

1{ht−1∈H2}δ
τ−tEBS∗τ (h

τ−1) | ht−1
]
≥ 0
}

.

.

.

Hn =
{
ht−1 ∈ P (H) |EBS∗t (ht−1)+E

[ T∑
τ=t+1

1{ht−1∈Hn−1}δ
τ−tEBS∗τ (h

τ−1) | ht−1
]
≥ 0
}

Then, is clear that limn→∞Hn = P(H). Finally, construct the following mechanism.

Algorithm for a mechanism
〈
p∗, Ū

〉
that satisfies ex post budget balance

Step 1. Start with the collateral dynamic VCG mechanism. If EBS∗t (ht−1) ≥ 0

∀ht−1, ∀t we are done. If not go to step 2.

Step 2.1. Fix a history ht−1 such that EBS∗(ht−1) < 0. Then, for all histories

hτ−1 ∈ H1 where τ > t + 1 and πt−1(hτ−1) = ht−1, increase UB(vτ , cτ |hτ−1) and
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US(vτ , cτ |hτ−1) so that EBS(hτ−1) = 0. All the surplus backloaded is then utilized

by increasing UB(vt+1, ct+1|ht) and US(vt+1, ct+1|ht) using Lemma 2. Do this for all

histories for which EBS∗(ht−1) < 0. If for those histories EBS∗(ht−1) ≥ 0, we are

done. If not, go to step 2.2....

Step 2.n. Do, the same as above but change is made for all histories hτ−1 ∈ Hn

where τ > t+ 1 and πt−1(hτ−1) = ht−1.

Step 3. Since EBS∗(ht−1) ≥ 0 ∀ht−1, ∀t, the sequences of mechanisms con-

structed in step 2 converges to a finite mechanism that satisfies EBS∗t (ht−1) ≥ 0

∀ht−1, ∀t.

Step 4. Using Lemma 3 construct a mechanism that satisfies ex post budget

balance.
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Chapter 2

Dynamic Payoff Equivalence and

Efficient Mechanism Design

2.1 Introduction

Questions of design in real economic situations are often dynamic. Information and

actions are reported and recorded. Managerial compensation and taxation are good

examples. Repeated interactions are also being internalized in the design of spectrum

auctions. All these demand the economic theory of mechanism design to be adept

to changing underlying environments and evolving information. Adjusting existing

static results to the dynamic models and introducing new ones is thus what the doctor

orders.

A key result in static mechanism design with a strong theoretical appeal and wide

set of applications is the payoff equivalence result. It essentially states that for a model

with quasilinear preferences and independent types if two mechanisms implement the

same allocation, then the expected utility (and thus transfers) for each agent in one

must differ from the the other through a constant. The result is powerful for it

classifies all implementable mechanisms into simple equivalence classes. Often the
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revenue maximizing or least costly mechanism amongst the class is then chosen to

be the one that gives exactly the reservation utility to the “lowest" type, inductively

constructing payments for all other types.

It has been an open question in the literature on dynamic mechanism design as to

how transfers can be moved across time and across types while preserving incentives.1

In other words, a history dependent version of the payoff equivalence result has been

elusive. The main task of this paper is to fill that gap.

The dynamic payoff equivalence result provides a precise characterization of equiv-

alence classes of implementable mechanisms in models where the agents interact more

than once. The problem is challenging because tinkering with transfers in period t

will affect incentives in periods s ≤ t through stochastic evolution of information and

the prescribed mechanism. We show that given two mechanisms that implement the

same allocation, expected utility of an agent after any history in one must differ from

the other through a history dependent constant.

The analysis is simplified by exploiting a dynamic version of the revelation princi-

ple. It allows us to, without loss of generality, look at mechanisms where the agents

report their type to the mechanism every period. Since private information of the

agents may arrive (and change) over time, a moral call on what the mechanism

itself reveals to the agents needs to be taken. We look at the two extreme points

of the information set: public mechanisms where the all agents can see each others’

announcements and blind mechanisms where the agent does not observe the other

players’ announcements.

Armed with the dynamic payoff equivalence result, we explore the implementation

of (ex post) efficient allocation in dynamic mechanism models. A series of papers have

1For instance, constructing a partial characterization of efficiency, Athey and
Segal [2007a] write “The only degree of freedom the transfers offer in transferring
utility across players is a fixed constant K (if it varied with history, it would affect
incentives)."
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explored the implementability of the efficient allocation under various institutional

(participation, budget balance, efficient exit) and informational (Bayesian and ex

post incentive compatibility) constraints. Since the allocation is fixed to be efficient,

our result helps unify these existing results simply through the family of history

dependent constants. In particular it helps us recast well known impossibility results

on implementation of the efficient allocation under budget balance and participation

constraints into precise (im)possibility characterizations for the dynamic models.2

Starting with a dynamic version of VCG mechanism, which does not satisfy

budget balance, we construct a mechanism for a general N -player mechanism design

problem which precisely characterizes the implementability of the efficient allocation

under budget balance. Finally, we also use the dynamic payoff equivalence result to

characterize the second-best mechanism for the dynamic bilateral trading problem.

For a simple two period iid model, we also precisely characterize the no trade regions.

This represents but a small set of a wide array of applications where the dynamic

payoff equivalence formula can be put to use to calculate the revenue or social welfare

maximizing contracts.

Related Literature. The paper builds on a body of work from static mechanism

design. Exploring optimal mechanisms, Myerson [1981], Wilson [1993] and others

provide revenue and payoff equivalence results. Vickery [1961] and Groves [1973]

were the early papers to talk about efficient mechanisms. We refer the reader to

Mas-Collel, Whinston and Green [1995] and Milgrom [2004] for detailed overviews.

Bergemann and Valimaki [2010], Pavan, Segal and Toikka [2014], and Skrzypacz

and Toikka [2013] have presented dynamic versions of the payoff equivalence result

in different contexts and notions of incentive compatibility. Our result is both more

general and nuanced. First it encapsulates all these existing results as special cases.
2See Myerson and Satterthwaite [1983] and Mailath and Postlewaite [1991] for

impossibility results in private and and public goods environments respectively.
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Second, and more importantly, versions of the dynamic payoff equivalence result

presented before this were ex ante ones that pin down the ex ante aggregate value

of transfers through the entire length of time up to a constant. But, they are silent

on how can these transfers vary over time. For example, these results cannot tell

you how expected utility is related from period 2 onwards in two mechanisms that

implement the same allocation. Thus, what is the appropriate equivalence class of

mechanisms that one can consider in the dynamic framework to characterize efficient

and revenue maximizing contracts? Our dynamic and history dependent version of

the payoff equivalence result answers these questions precisely.

Athey and Segal [2007b, 2013] and Lamba [2014] provide mechanisms that im-

plement the efficient allocation under budget balance. The former generalizes the

AGV mechanism to the dynamic environment and thus does not satisfy individual

rationality. And restricting itself to the bilateral trade setting, the latter provides

precise conditions on the primitives of the model under which efficiency can be

attained under both budget balance and individual rationality.3 In section 6, we

generalize Lamba’s results to an N player mechanism design problem using dynamic

payoff equivalence.

2.2 Model

There are N agents who commit to participate in an economic relationship for T

discrete periods, where T ≤ ∞. At the inception of every period, each agent privately

observes a payoff relevant information parametrized by θi ∈ Θi for i ∈ {1, 2, ..., N}.

We will write θt = (θi,t)
N
i=1. The economic relationship is governed by an allocation

kt ∈ K which is observed by all, and transfers xi,t every period. For an allocation and

3Skrzypacz and Toikka [2013] also provide a characterization of efficiency under
budget balance and individual rationality. However, they only require the budget to
balance ex ante which can lead to the mechanism designer subsidizing the agents by
arbitrarily large amounts when the time horizon is long enough.

52



transfer scheme (kt, xi,t)
T
t=1, preferences are quasilinear and time separable, given by

T∑
t=1

δt−1 (ui(θt, kt)− xi,t)

where δ ∈ (0, 1) is the common discount factor, and ui is stage utility function assumed

to bounded,

Types are first independently drawn from some priors (Fi)
N
i=1, and hence from

independent Markov processes (Fi(.|., .))Ni=1, where Fi : Θi ×K 7→ Θi. For simplicity,

we assume that prior and the Markov processes have full support.4 The expected

stage payoff must be bounded– there exists an M <∞ such that for any i, k and θt,

and F =
N∏
i=1

Fi, ∫
Θt

|ui(θt+1, k)|dF (θt+1|θt, k) < M

The model encapsulates as a special case the iid model, the perfectly persistent

case and the AR(1) model. It also lets the stochastic evolution of types depend on the

allocation rule. However, in the rest of the paper we’ll look at the special case where

the Markov evolution is exogenous, that is, Fi : Θi 7→ Θi. At the cost of lengthy

notation, the main results easily extend to the case where stochastic evolution can

also depend on past allocations. Finally, the independence assumption across players

is made for reasons analogous to the static model: to avoid full surplus extraction

a’la Cremer and McLean [1988].

4Note that we can include moving supports Θi,t, time varying Markov processes
Fi,t, and make the Markov process at time t depend on the entire history of allocation
Kt−1. The chosen setup is simple in communicating the main result and can be easily
generalized.
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2.3 Mechanisms

It is easy to show that a form of revelation principle holds and thus we can, without

loss of generality, consider direct mechanisms. Every period the agents learn their

own types, and then send a report to the mechanism, which in turn, spits out the

allocation and transfers rules. Employing the revelation principle, however, demands

a moral call on the information the mechanism itself reveals to the agents. What is

the degree of transparency in the mechanism? In particular, does one agent observe

the other agents’ announcements?

Most of the literature so far has been silent on the applicability and generality of

the revelation principle with respect to information sharing in dynamic mechanism

design models.5 Myerson [1986] has argued that in a general multistage game with

communication with private information and publicly observable actions, confiden-

tiality is essential to generate the most permissible results. This is intuitive: private

announcements means less leakage of information to the agents and thus less incentive

constraints to keep track of.

We shall mostly work in the two extreme environments- one in which all announce-

ments are publicly observed, and the other where there is no release of information

beyond the allocation rule, viz. agents cannot see each others announcements and

transfers are measurable with respect to their information sets. There is a close

information theoretic relationship between these public and blind mechanisms re-

spectively. Incentives, participation and budget balance constraints satisfied by the

public mechanism are of course satisfied by the blind mechanism too, whereas the

converse may not always hold.

The set of feasible histories in period t for the mechanism m is given by Hm,t. In
5Skrzypacz and Toikka [2013] is an exception.
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general, a typical element of Hm,t, say ht, can be recursively defined as follows.

h0 = ∅, ht =
{
ht−1, (θ̂i,t)

N
i=1, kt

}

where θ̂i,t is the announcement by agent i at time t. Similarly, the set of possible

histories for the agents, Hm,t
i can be defined as follows. For the public mechanism,

hpub,1i = {θi,1}, hpub,ti =
{
hpub,t−1
i , (θ̂k,t−1)Nk=1, θi,t, kt

}
,

where θi,t is the actual type of agent i at time t. And, for the blind mechanism,

hblind,1i = {θi,1}, hblind,ti =
{
hblind,t−1
i , θ̂i,t−1, θi,t, kt

}

As we will see below, observing all the announcements leads to knowing the

allocation in the direct mechanism, so writing down kt in the agent’s information

set for the public mechanism is superfluous. However, the same cannot be said for

the blind mechanism, where the allocation rule can carry additional information.

In what follows, we suppress the specification of the mechanism when it is obvious.

Also, under truthful histories the difference between announcements and actual types

will be moot and thus suppressed.

The direct mechanism, say m, is then a collection of history dependent allocation

and transfer vectors, m = 〈k,x〉 =
(
k (ht) , xi (h

t)
N
i=1

)T
t=1

. To differentiate current

and past types, we will often use the alternative notation k(θt|ht−1). Moreover, for a

given mechanism, the strategy for agent i, (σm,ti )Tt=1, is simply a function that maps

private history into an announcement every period- σm,ti : Hm,t
i 7→ Θi.

In most of what follows, we present further notations and definitions in terms of

the public mechanism. This is mostly done for two reasons. First, for the ease

of notation– for a public mechanism under truthful histories, the history of the
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mechanism coincides with the private history of the agents. Second, though a realistic

level of transparency for a mechanism perhaps lies in the middle of the two extreme

cases being presented, the blind mechanism seems to be a highly artificial construct,

interesting only as a benchmark. The definitions and results for the blind mechanism

are presented in the appendix.

Additional Notation. Along truthful histories, we can write the stage utility

succinctly as

ui(θt, k(θt|ht−1)) = ui(θt|ht−1)

In order to keep notation simple we suppress the type/variable over which expectation

is taken. For example

ui(θi,t|ht−1) = Eθ−i,t
[
ui
(
θi,t, θ−i,t

∣∣ht−1
) ∣∣ht−1

]
ui(θi,t+1|ht−1, θi,t) = Eθ−i,t+1

[
Eθ−i,t

[
ui(θi,t+1, θ−i,t+1

∣∣ht−1, θi,t, θ−i,t )
∣∣ht−1, θi,t

]]
Expected utility of agent i can be recursively defined as

Ui(θt|ht−1) = ui(θt|ht−1)− xi(θt|ht−1) + δEθt+1

[
Ui(θt+1|ht−1, θt)

∣∣ht−1, θt
]

(2.1)

and,

Ui(θi,t|ht−1) = ui(θi,t|ht−1)− xi(θi,t|ht−1) + δEθt+1

[
Ui(θt+1|ht−1, θi,t)

∣∣ht−1, θi,t
]

Let ui(θ′i,t; θt|ht−1) = ui(θt, k(θ′i,t, θ−i,t|ht−1)). Then, utility of agent i of type θi,t from

misreporting (once) to be type θ′i,t, for a fixed type θ−i,t of the other agents, can be
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succinctly written as

Ui(θ
′
i,t; θt|ht−1) = ui(θ

′
i,t; θt|ht−1)− xi(θ′i,t, θ−i,t|ht−1)

+δEθt+1

[
Ui(θt+1|ht−1, θ′i,t, θ−i,t)

∣∣ht−1, θt
]

= Ui(θ
′
i,t, θ−i,t|ht−1) +

(
ui(θ

′
i,t; θt|ht−1)− ui(θ′i,t, θ−i,t|ht−1)

)
+δ

∫
Θi

Ui(θi,t+1|ht−1, θ′i,t, θ−i,t)
(
dFi(θi,t+1|θi,t)− dFi(θi,t+1|θ′i,t)

)
(2.2)

Similarly,

Ui(θ
′
i,t; θi,t|ht−1) = Ui(θ

′
i,t|ht−1) +

(
ui(θ

′
i,t; θi,t|ht−1)− ui(θ′i,t|ht−1)

)
+δ

∫
Θi

Ui(θi,t+1|ht−1, θ′i,t)
(
dFi(θi,t+1|θi,t)− dFi(θi,t+1|θ′i,t)

)

Mechanism. It is straightforward to note that a mechanism m = 〈k,x〉, which is

a collection of history dependent allocation and transfer vectors, can be equivalently

defined to be m = 〈k,U〉, a collection of history dependent allocation and expected

utility vectors, where (fixing the allocation) the duality between transfers and expected

utility vectors is completely described by equation (2.1).

Incentive Compatibility. Exploiting the one-deviation principle, incentive com-

patibility can be defined as follows.6

Definition 7. A mechanism m = 〈k,U〉 satisfies perfect Bayesian incentive compat-

6See Pavan, Segal and Toikka [2014] for the validity of the one-deviation principle
here.
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ibility if truthtellng is optimal at all truthful histories, that is,

Ui(θi,t|ht−1) ≥ Ui(θ
′
i,t; θi,t|ht−1)

∀i ∈ {1, ..., N}, ∀θi,t, θ′i,t ∈ Θi, ∀ht−1 ∈ H t−1, ∀t.

In addition, in the perfect Bayesian equilibrium of the associated game, every

agent believes that the other agents are following a truthful strategy. Moreover, the

Markov assumption means that it is incentive compatible for an agent to say the

truth even if she/he has lied in the past.

A stronger equilibrium notion is the that of ex-post incentive compatibility. The

mechanism in each period is implemented in ex-post equilibrium (see Chung and Ely

[2006]). Formally,

Definition 8. A mechanism m = 〈k,U〉 satisfies ex post incentive compatibility if

Ui(θt|ht−1) ≥ Ui(θ
′
i,t; θt|ht−1)

∀i ∈ {1, ..., N}, ∀θi,t, θ′i,t ∈ Θi, ∀θ−i,t ∈ Θ−i, ∀ht−1 ∈ H t−1, ∀t.

In the words of Bergemann and Valimaki [2010], “We say that the dynamic direct

mechanism is periodic ex post incentive compatible if truthtelling is a best response

regardless of the history and the current state of the other agents."

2.4 Dynamic Payoff Equivalence

Now to the dynamic and history dependent version of the payoff equivalence result. To

fix ideas, consider a two period model. Suppose m = 〈k,x〉 is an incentive compatible

mechanism. Change the transfers to all possible types of agent i in period 2 after

history θ1 by a constant say ai. Standing at history θ1, (as in the static model) this
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change in the mechanism does not affect incentives in period 2. However, the same

cannot be said for period 1. The change renders the contract not incentive compatible

in period 1– it changes the value of Ui(θi,1) keeping utility of all other agent i types

the same. The transfers in period 1 for type θi,1 thus need to be adjusted to keep the

contract incentive compatible.

Think of a general T period model. Keeping track of these history dependent

transfers to pin down the equivalence class of implementable allocations can be a

daunting task. A change of variable though makes the problem simpler. We look at

the mechanism through the prism of allocation and expected utility vectors, 〈k,U〉.

A dynamic analog of the payoff equivalence result then follows. The set of incentive

compatible allocations sits neatly in a family of history dependent constants. Starting

from any incentive compatible mechanism, scaling expected utility vectors through

constants that may depend on the history and current type of other agents, but not the

current type of the given agent produces another incentive compatible mechanism.

Moreover, all incentive compatible mechanisms must belong to this class of scaled

family of history dependent constants.

Proposition 4. Payoff equivalence holds after every history. That is, if 〈k,U〉 and〈
k, Ũ

〉
are two ex post incentive compatible mechanisms that generate utility vec-

tors
(

(Ui(θt|ht−1))
N
i=1

)T
t=1

and
((

Ũi(θt|ht−1)
)N
i=1

)T
t=1

respectively, then, there exists

a family of constants
(

(ai(θ−i,t|ht−1))
N

i=1

)T
t=1

such that

Ui(θt|ht−1) = Ũi(θt|ht−1) + ai(θ−i,t|ht−1)

Conversely, if 〈k,U〉 is ex post incentive compatible, and U and Ũ satisfy the above

two equations for a finite family of constants
(

(ai(θ−i,t|ht−1))
N

i=1

)T
t=1

, then
〈
k, Ũ

〉
is

also ex post incentive compatible.

A natural next question question to ask is: what does the result mean in terms
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of actual transfers? Let us go back to the two period model. Suppose as before that

we increase the transfers to all possible types of agent i in period 2 after history θ1

by a constant say ai. This translates into an increase in Ui(θ2|θ1) by ai for θ2 ∈ Θ.

Rewrite equation (2.1) for this two period model:

Ui(θ1) = u(θ1)− x̃i(θ1) + δEθ2 [Ui(θ2|θ1) + ai(θ1) |θ1 ]

Keeping Ui(θ1) the same as before, this uniquely defines the the new transfer x̃i(θ1)that

keeps the mechanism incentive compatible. This change was of course a very simple

one, done for only one history and one agent and independent of the other agent

types. The more detailed the required change, the more equation (2.1) will be put to

use to derive transfers for the “new" mechanism.

Note that the above result was established for a fairly strong notion of incentive

compatibility. As a simple corollary, one can show that an analogous payoff equiva-

lence result also holds for perfect Bayesian incentive compatibility.

Corollary 4. If 〈k,U〉 and
〈
k, Ũ

〉
are two perfect Bayesian incentive compatible

mechanisms that generate utility vectors
(

(Ui(θt|ht−1))
N
i=1

)T
t=1

and
((

Ũi(θt|ht−1)
)N
i=1

)T
t=1

respectively, then, there exists a family of constants
(

(ai(h
t−1))

N
i=1

)T
t=1

such that

Ui(θi,t|ht−1) = Ũi(θi,t|ht−1) + ai(h
t−1)

Conversely, if 〈k,U〉 is perfect Bayesian incentive compatible, and U and Ũ sat-

isfy the above two equations for a finite family of constants
(

(ai(h
t−1))

N
i=1

)T
t=1

, then〈
k, Ũ

〉
is also perfect Bayesian incentive compatible.

All versions of the dynamic payoff equivalence result presented before this were ex

ante ones that pin down the ex ante aggregate value of transfers through period 1 to T
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up to a constant.7 But, they are silent on how can these transfers vary over time. For

example, these results cannot tell you how expected utility is related from period 2

onwards in two mechanisms that implement the same allocation. Our dynamic payoff

equivalence result answers these questions and identifies the appropriate equivalence

class of incentive compatible mechanisms in the dynamic framework that can then be

used to characterize efficient and revenue maximizing contracts.

2.5 Other Institutional Constraints

While the dynamic payoff equivalence result characterizes all incentive compatible

mechanisms, there are other institutional constraints that capture important aspects

of real economic situations in mechanism design. We discuss two commonly used:

individual rationality and budget balance.8

Individual Rationality. Each agent is allowed to walk away at any stage of the

mechanism after learning her/his type that period if the utility from continuing in

the contract falls below the reservation threshold, which is normalized to zero.

Definition 9. A mechanism m = 〈k,U〉 satisfies perfect Bayesian individually ra-

tionality if

Ui(θi,t|ht−1) ≥ 0

∀i ∈ {1, ..., N}, ∀θi,t,∈ Θi, ∀ht−1 ∈ H t−1, ∀t.
7See Bergemann and Valimaki [2010], Pavan, Segal and Toikka [2014], and

Skrzypacz and Toikka [2013].
8Athey and Miller [2007] write, “At the outset, we should point out that IC

[incentive compatibility] imposes restrictions on equilibria in the game, while the
BB [budget balance] and IR [individual rationality] assumptions are better thought
of as conditions on the structure of the game itself."
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Definition 10. A mechanism m = 〈k,U〉 satisfies ex post individually rationality if

Ui(θt|ht−1) ≥ 0

∀i ∈ {1, ..., N}, ∀θt,∈ Θ, ∀ht−1 ∈ H t−1, ∀t.

Budget Balance. In mechanism design with many agents budget balance is seen

as the limits on insurance or external subsidies available to them. The most widely

used notion is that of ex post budget balance.

Definition 11. A mechanism m = 〈k,x〉 satisfies ex post budget balance if

N∑
i=1

xi(θt|ht−1) = 0,

∀θt ∈ Θ, ∀ht−1 ∈ H t−1, ∀t.

Lamba [2014] introduce an intermediate notion that allows for the budget to

balanced dynamically, not running a deficit in expectation after any history.

Definition 12. A mechanism m = 〈k,x〉 satisfies interim budget balance if

Em
[

T∑
s=t

δs−t
N∑
i=1

xi(θs|hs−1) | ht−1

]
≥ 0

∀ ht−1 ∈ H t−1, ∀t.

Note that

Em
[

T∑
s=t

δs−t
N∑
i=1

xi(θs|hs−1) | ht−1

]
=

N∑
i=1

Em
[

T∑
s=t

δs−tui(θs|hs−1)− Ui(θt|ht−1) | ht−1

]
(2.3)

Thus, the definition(s) can be written equivalently in terms of 〈k,U〉.

Finally, if the budget was required to balance in expectation only at the start of

the contract for history h0, then we call the constraint ex ante budget balance.
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2.6 Efficient Mechanisms

Proposition 4 and Corollary 4 above help us unify a host of results from the existing

literature on efficient dynamic mechanism design. Most (if not all) these papers invoke

the ex post notion of efficiency. Define

S(θ, k) =
N∑
i=1

ui(θ, k)

to be the (static) economic surplus generated by the N -player mechanism design

problem.

Definition 13. Let k∗ be the first-best allocation rule, that is, for all θt ∈ Θ, ht−1 ∈

H t−1 and ∀t,

k∗(θt|ht−1) = argmax
k∈K

S(θt, k)

A mechanism m = 〈k,U〉 or 〈k,x〉 satisfies efficiency if k = k∗.

Athey and Segal [2007b, 2013] provide the dynamic version of AGV mechanism

that satisfies perfect Bayesian incentive compatibility and ex post budget balance

but violates individual rationality at some history. Bergemann and Valimaki [2010]

present the dynamic analog of the pivot (or VCG) mechanism that satisfies ex post

incentive compatibility and individual rationality every period but not budget bal-

ance.9

In a bilateral trade setting, Myerson and Satterthwaite [1983] showed that it is

simultaneous interaction of incentives, participation and budget balance that leads to

an impossibility of efficiency result. It is thus interesting to analyze the interaction of

these forces in a dynamic model. Athey and Miller [2007], Skrzypacz and Toikka [2013]

and Lamba [2014] provide necessary and sufficient conditions for implementation of

9Under some assumptions their mechanism also satisfies efficient exit– an agent
that stops being pivotal does get any more transfers.
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the efficient allocation under ex post (and perfect Bayesian) incentive compatibility,

individual rationality and budget balance in a repeated bilateral trade setting. Athey

and Miller [2007] consider only iid shocks. While Skrzypacz and Toikka [2013] only

look at ex ante budget balance, Lamba [2014] provides results for interim and ex post

budget balance. Addition of a savings technology laxes the dynamic budget balance

constraint; Lamba [2014] explores this permissibility.

The common thread in all these papers is that they implement the efficient

allocation. Hence, all the mechanisms constructed in these papers, while different

in their inter-temporal structure of payments, must lie in the same equivalence class

of history dependent constants presented in Proposition 4 (or Corollary 4) that

implement the efficient allocation.

We offer a simple translation of the dynamic VCG mechanism of Bergemann and

Valimaki [2010] into the dynamic collateral VCG mechanism proposed in Lamba

[2014] using the dynamic payoff equivalence result. Suppose our objective is to

implement the efficient allocation under (perfect Bayesian) incentive compatibility,

individual rationality and interim budget balance.

We can start with the VCG mechanism. Define

S−i(θ−i, k) =
∑
j 6=i

uj(θ−i, k)

to be surplus generated without agent i, and let S∗(θ) and S∗−i(θ−i) be the respective

maximum values (over the allocation rule k). As is standard, the VCG mechanism is

then defined by 〈k∗,xvcg〉, where

xvcgi (θt|ht−1) = S∗(θt)− S∗−i(θ−i,t),

for all θt ∈ Θ, ht−1 ∈ H t−1 and t ≤ T . Next, consider the isomorphic mechanism in
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terms of the expected utility vectors, 〈k∗,Uvcg〉, defined by

U vcg
i (θt|ht−1) = E

[
T∑
s=t

δs−t
(
S∗−i(θt)− S∗−i(θ−i,t)

)
| ht−1, θt

]
,

where S∗−i(θt) =
∑
j 6=i

ui(θt, k
∗). This mechanism is ex post incentive compatible and

individually rational but it may violate budget balance; for example, in the bilateral

trade setting with private goods.

Using the dynamic payoff equivalence result, it is easy to construct another mech-

anism 〈k∗,U∗〉 where

U∗i (θt|ht−1) = U vcg
i (θt|ht−1)− inf

θi,t∈Θi
U vcg
i (θt|ht−1)

Note that in view of Proposition 4 our construction entails

ai(θ−i,t|ht−1) = − inf
θi,t∈Θi

U vcg
i (θt|ht−1).

Hence, the new mechanism is ex post incentive compatible. Also, by construction it

is individually rational.

This mechanism, which we call the dynamic collateral VCG mechanism essentially

transfers all expected surplus at every history to the mechanism designer while leaving

the minimalist possible utility for the agents that satisfies incentives and participation.

It is then immediate to see that if this mechanism does not satisfy interim budget

balance, no other mechanism will.

For all t ≤ T , and ht−1 ∈ H t−1, let EBS∗(ht−1) represent the values calculated

in equation (2.3) for the dynamic collateral VCG mechanism. Then, we have the

following result.

Proposition 5. There exists an ex post incentive compatible and ex post individually

rational mechanism that implements the efficient allocation under interim budget
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balance if and only if EBS∗(ht−1) ≥ 0 ∀ht−1, ∀t.

Lamba [2014] proves this result for the special case of two player bilateral bar-

gaining and private good in a discrete types model. That paper also shows that

EBS∗(ht−1) ≥ 0 ∀ht−1, ∀t is also a necessary and sufficient condition for implementa-

tion under ex post budget balance when considering perfect Bayesian implementabil-

ity. We conjecture that a similar result can be shown for this more general framework

adjusting for measure theoretic considerations.10

2.7 Application: Bilateral Trade

The dynamic payoff equivalence result is particularly useful in analyzing second-best

mechanisms in standard dynamic mechanism design problems with budget balance.

We consider one of the simplest and widely applied problem from static mechanism

design of bargaining with two sided asymmetric information.

A buyer and a seller bargain repeatedly. The seller can produce a non-durable

good every period at a hidden cost and the buyer has a hidden valuation. Both the

cost and the valuation may change over time. In terms of our model, the set of agents

is {B, S}; set of possible valuations and costs are respectively ΘB = V and ΘS = C;

and the allocation rule is simple the probability of trade, so kt = pt ∈ [0, 1]. Stage

payoffs for the buyer and the seller are respectively given by11

vtpt − xB,t and xS,t − ctpt

The problem of the second-best is then simply the maximization of the expected

aggregate surplus or gains from trade subject to incentive compatibility, individual
10It will require a repeated use of the dynamic payoff equivalence result to

redistribute transfers across time and types.
11To keep the outside option normalized to zero, we have tweaked the model a bit

to allow for transfers “from" the buyer and transfers “to" the seller.
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rationality and interim budget balance constraints.

max
〈p,U〉

GFT =

∫
V

∫
C

[
(v1 − c1) p(v1, c1)+

δ

∫
V

∫
C

(v2 − c2) p(v2, c2|v1, c1)g(c2|c1)f(v2|v1)dc2dv2

]
g(c1)f(v1)dc1dv1

subject to

(IC) UB(v1) ≥ UB(v′1; v1) ∀v1, v
′
1 ∈ V and US(c1) ≥ US(c′1; c1) ∀c1, c

′
1 ∈ C

UB(v2|h) ≥ UB(v′2; v2|h) ∀v2, v
′
2 ∈ V and

US(c2|h) ≥ US(c′2; c2|h) ∀c2, c
′
2 ∈ C, ∀h ∈ V × C

(IR) UB(v1) ≥ 0 ∀v1 ∈ V and US(c1) ≥ 0 ∀c1 ∈ C

UB(v2|h) ≥ 0 ∀v2 ∈ V and US(c2|h) ≥ 0 ∀c2 ∈ C, ∀h ∈ V × C

and,

(BB) EBS =

∫
V

∫
C

[
(v1 − c1)p(v1, c1)− UB(v1, c1)− US(v1, c1)+

δ

∫
V

∫
C

(v2 − c2)p(v2, c2|v1, c1)g(c2|c1)f(v2|v1)dc2dv2

]
g(c1)f(v1)dc1dv1 ≥ 0

EBS(h) =

∫
V

∫
C

[
v2 − c2)p(v2, c2|h)− UB(v2, c2|h)− US(v2, c2)|h

]
g(c2|hc)f(v2|hv)dc2dv2 ≥ 0, ∀h = (hv, hc) ∈ V × C

The analysis in this section generalizes the approach of Myerson and Satterthwaite

[1983] to the dynamic model. We collapse the necessary local incentive compatibility

conditions into an envelope formula which is then plugged into the expected budget

surplus constraint. Note, however, that because the problem is dynamic this exercise
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is repeated for every possible history. We first provide the flavor of the general

argument, and then proceed to solve specific examples to formally lay down the key

forces in our understanding of efficient implementation.

Let V = [v, v] and C = [c, c].12 We have the following characterization of expected

budget surplus.

Lemma 4. For any perfect Bayesian incentive compatible mechanism,

EBS + UB(v) + US(c) =

∫
V

∫
C

[{(
v1 −

1− F (v1)

f(v1)

)
−
(
c1 +

G(c1)

g(c1)

)}
p(v1, c1)

+δ

∫
V

∫
C

{(
v2 −

1− F (v1)

f(v1)

[
−∂F (v2|v1)/∂v1

f(v2|v1)

])
−
(
c2 +

G(c1)

g(c1)

[
−∂G(c2|c1)/∂c1

g(c2|c1)

])}

×p(v2, c2|v1, c1)g(c2|c1)f(v2|v1)dc2dv2

]
g(c1)f(v1)dc1dv1,

and

EBS(h) + UB(v|h) + US(c|h) =

∫
V

∫
C

[(
v2 −

1− F (v2|hv)
f(v2|hv)

)
−
(
c2 +

G(c2|hc)
g(c2|hc)

)]

×p(v2, c2|h)g(c2|hc)f(v2|hv)dc2dv2

It is important to note that the above result can be stated and proven verbatim

for ex post incentive compatibility. The key to the indifference is that the expected

budget surplus takes expectation over all current and future types of both agents.

Lemma 4 pins down the value of the expected budget surplus in terms of the

primitives and the allocation rule up to an additive constant. Using the dynamic

payoff equivalence result these additive constants determine all possible values of the
12For simplicity, in this section, in a slight abuse of notation, we will denote UB(v) =

infv∈V UB(v) and UB(c) = infc∈C US(c). This is true if Markov processes satisfy first-
order stochastic dominance, but not in general. It is, however, not essential for our
results.
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expected budget surplus for an incentive compatible mechanism implementing a fixed

allocation.

Let EBS∗∗ and EBS∗∗(h) refer specifically to the incentive compatible and indi-

vidually rational mechanisms where

UB(v) = US(c) = UB(v|h) = US(c|h) = 0

for all v ∈ V , c ∈ C, and h ∈ V × C.

Corollary 5. A perfect Bayesian (or ex post) incentive compatible and individually

rational mechanism can be implemented under interim budget balance if and only if

EBS∗∗ ≥ 0 and EBS∗∗(h) ≥ 0 for all h ∈ V × C.

Proof. Sufficiency is obvious. For necessity, note that EBS∗∗ and EBS∗∗(h) are the

highest expected budget surpluses that can be generated for their respective histories

while satisfying IC and IR. If they are not non-negative no other IC and IR mechanism

can ensure them to be.

Removing transfers, the second best mechanism can then be explicitly formulated

by the following result.

Corollary 6. A perfect Bayesian incentive compatible and individually rational allo-

cation maximizes expected gains from trade under interim budget balance if only if it

solves

max
p

GFT

subject to

EBS∗∗ ≥ 0, EBS∗∗(h) ≥ 0 ∀h, and

p is PBIC

Implementability of p is essentially a requirement that global incentive constraints
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be satisfied. In the static model it is replaced by the familiar monotonicity condition

on the allocation. In the dynamic model, Pavan, Segal and Toikka [2014] show that it

can instead be replaced by what they call the integral monotonicity condition. In the

dynamic model though the implications of this condition are much less understood

and global incentive constraints can routinely bind; see Battaglini and Lamba [2014].13

A substantial appeal of the static model with linear preferences and continuous

types is that the solution is always bang-bang, the probability of trade is always 0 or

1. Since the objective and all constraints are linear in the allocation, the same insight

goes through in the dynamic model too.

Also, Lamba [2014] shows that if there exists a mechanism that implements an

allocation under interim budget balance, then there must exist a mechanism that

implements it under ex post budget balance.14 The argument for a finite period

model simply follows an inductive inter-temporal redistribution of transfers.

Perhaps one of the most studied simple expositions of the competing economic

forces of information, participation and budget balance in mechanism design is the

uniform bilateral trading problem- static version of our model with a uniform prior.15

In order to clearly bring out the prominent economic forces in a simple fashion, we

work in a natural extension of this model to the dynamic environment, and present

the optimal mechanisms under the extreme ends of the information space. In the next

three subsections the types of the buyer and the seller are assumed to be uniform on

[0,1] in both periods.16

13In most of the literature fairly stringent sufficient monotonic conditions (requiring
monotonicity of the allocation across histories) are invoked ex post to check whether
the allocation in incentive compatible.

14This is valid only for perfect Bayesian incentive compatibility and not ex post.
15See Myerson [1985] and Gibbons [1992].
16We use the iid model to motivate ideas because it offers a simple and complete

characterization. We do not have to worry about global incentive constraints. Though
a characterization with persistence for a simple model is an important benchmark to
work towards.
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2.7.1 Static Benchmark

Following Myerson and Satterthwaite [1983], let us first consider the case where δ = 0.

Then, writing down the problem in corollary 2 as a Lagrangian17, it is easy to show

that trade happens, that is, p(v1, c1) = 1, if and only if v1 > c1 +M , where M solves

the binding EBS constraint

1∫
0

1∫
0

1{v1>c1+M} [2v1 − 1− 2c1] dc1dv1 = 0

i.e.,
1

6
(4M − 1)(1−M)2 = 0

Thus, trade happens if and only if v1 > c1 + 1
4
. Since efficiency demands trade for

every v1 ≥ c1; M = 1
4
precisely characterizes the no trade region and the degree

of inefficiency. Since the allocation is monotonic, it is implementable. Figure 2.1a

captures the no-trade region pictorially. The solid diagonal represents the locus v1 =

c1. Efficient allocation requests trade above the solid diagonal. The area above the

dotted line represents the actual trade region.

2.7.2 IID case

Now, suppose the types of both agents are distributed uniformly on [0,1] in both

periods.18 We first consider implementation under ex ante budget balance. In the

second period distortions in the EBS constraint are 0, and trade is always efficient,

generating a maximum possible surplus of 1
6
irrespective of the history in period 1.

17
1∫
0

1∫
0

[(v1 − c1) + λ (2v1 − 1− 2c1)] p(v1, c1)dc1dv1, where λ is the multiplier on

EBS. Details are in the appendix.
18Formal proofs are presented in the appendix.
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Figure 2.1: No-trade regions
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Thus, the no trade region in period 1 solves

1

6
(4M − 1)(1−M)2 + δ

1

6
= 0 (2.4)

It is clear thatM is a decreasing function of δ. In fact, at δ = 0,M = 1/4, replicating

the static model, and M = 0 for δ = 1, implying the implementability of the efficient

allocation.

In the T period version of this problem, trade is always efficient starting period

2. Using a recursive mechanism, Athey and Miller [2007] show that in fact for any

distribution, when T =∞, trade in first period will be efficient for any δ ≥ 1
2
.

Next, consider implementation under interim (or ex post budget balance) budget

balance. Now, it is easy to show that EBS∗∗(h) will always bind, and the trade in

the second period replicates the static model. Thus, p(v2, c2|h) = 1 if and only if

v2 > c2 + 1
4
for all h. In the first period, the no trade region M solves

1

6
(4M − 1)(1−M)2 + δ

9

64
= 0 (2.5)

Again, M is a decreasing function of δ. However, this time even δ = 1 cannot

guarantee efficient trade in period 1. Interim budget balance forces the agents to

internalize incentives for period 2 while deciding on the optimal mechanism. The

contract is no longer efficient in period 2, and hence a smaller collateral is available

for trade in period 1.

Nevertheless, it is interesting to consider δ as a proxy for the surplus available in

the future in a general T period model. Following the said motivation, it is easy to

see that trade will be efficient, and the expected budget surplus constraint will not

bind in period 1 for δ ≥ 32
27
.
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2.7.3 Perfect Persistence

When types are perfectly persistent, there are no second period expected budget

surplus constraints. So, all notions of budget balance are equivalent. The problem

reduces to the maximization of gains from trade under ex ante BB and constant types,

thus giving us a repetition of the static optimum. In both periods trade happens if

and only if v > c+ 1
4
.

2.7.4 Discussion

We know that efficient trade is impossible in the static model. What is the driving

force in the dynamic model that presents us with the possibility of efficiency? A

casual glance at equations (2.4) and (2.5) gives us an indication. A greater expected

economic surplus creates a collateral that can used to sustain efficiency. This surplus

generated is a function of discounting, the levels of asymmetric information through

persistence and the limits on insurance imposed by varying notions of budget bal-

ance.19

Under iid types and ex ante budget balance, maximum possible surplus is gener-

ated in period 2, which can distributed across types and time, significantly reducing

the no-trade region in period 1. However, under a stricter notion of budget balance,

there are limits on the depth of the credit line facilitating trade. It reduces the total

future surplus, thereby mitigating the advantage dynamics present even for the case

with minimal informational constraints.

At the other extreme, when the informational constraints are the most severe, in

the form of constant types, it blunts all possible advantages that dynamics present by

making all those histories that would relax information constraints to generate future

surplus be zero in probability.
19See Lamba [2014] for a full discussion of efficiency in repeated bargaining.
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2.8 Conclusion

This paper introduces a dynamic and history dependent version of the payoff equiva-

lence result. We show that given two mechanisms that implement the same allocation,

expected utility of an agent after any history in one must differ from the other

through a history dependent constant. This result is then used to unify existing

results in efficient dynamic mechanism design. For a general, N - player mechanism

design problem, we also precisely characterize the conditions under which the efficient

allocation can be implemented under participation constraints and budget balance.

This conditions puts joint restrictions on the stochastic evolution of types and the

level of discounting. We also show how the dynamic payoff equivalence result can

be exploited to calculate the second-best mechanisms through a simple of repeated

bilateral trading. Finally, we elucidate the nuances of degree of transparency in the

mechanism and its impact on the dynamic payoff equivalence result.

Going forward it will be useful to study specific dynamic mechanism design prob-

lems, especially those related to multiple goods auctions and public goods provision

where the dynamic equivalence formula will prove very useful in characterizing the

revenue and social welfare maximizing mechanisms.

2.9 Appendix

2.9.1 Proof of Proposition 4

Sufficiency. Suppose 〈k,U〉 is ex post incentive compatible. Fix θ−i,t and ht−1. Then,

Ui(θi,t, θ−i,t|ht−1) appears in two kinds of incentive compatibility constraints. First,

Ui(θi,t, θ−i,t|ht−1) ≥ Ui(θ
′
i,t, θ−i,t|ht−1) +

(
ui(θ

′
i,t; θt|ht−1)− ui(θ′i,t, θ−i,t|ht−1)

)
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+δ

∫
Θi

Ui(θi,t+1|ht−1, θ′i,t, θ−i,t)
(
fi(θi,t+1|θi,t)− fi(θi,t+1|θ′i,t)

)
dθi,t+1

(2.6)

and,

Ui(θ
′
i,t, θ−i,t|ht−1) ≥ Ui(θi,t, θ−i,t|ht−1) +

(
ui(θi,t; θ

′
i,tθ−i,t|ht−1)− ui(θi,t, θ−i,t|ht−1)

)
+δ

∫
Θi

Ui(θi,t+1|ht−1, θi,t, θ−i,t)
(
fi(θi,t+1|θ′i,t)− fi(θi,t+1|θi,t)

)
dθi,t+1

(2.7)

Clearly addition of any constant ai(θ−i,t|ht−1) to Ui(θi,t, θ−i,t|ht−1) for all θi,t ∈ Θi

does not affect any of these constraints.

Next, fix (θi,t−1, θ−i,t−1) = ht−1
t−1. Second, we need to consider the constraints,

Ui(θ
′
i,t−1, θ−i,t−1|ht−2) ≥ Ui(θi,t−1, θ−i,t−1|ht−2)+

(
ui(θi,t−1; θ′i,t−1θ−i,t−1|ht−2)− ui(θi,t−1, θ−i,t−1|ht−2)

)
+δ

∫
Θi

Ui(θi,t|ht−1)
(
fi(θi,t|θ′i,t−1)− fi(θi,t|θi,t−1)

)
dθi,t

Thus, addition of the constants ai(θ−i,t|ht−1) to Ui(θi,t, θ−i,t|ht−1) for all θi,t ∈ Θi leads

to addition of ai(ht−1) = Eθ−i,t [ai(θ−i,t|ht−1)|ht−1] to Ui(θi,t|ht−1) for all θi,t ∈ Θi which

drops out of the constraint.

Therefore, linear additions of constants as defined in the proposition preserves

incentives.

Necessity. Fix agent i and history ht−1 ∈ H t−1. From (2.6) and (2.7), incentive

compatibility implies

(
ui(θt|ht−1)− (ui(θi,t; θ

′
i,t, θ−i,t|ht−1)

)
+
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δ

∫
Θi

Ui(θi,t+1|ht−1, θt)
(
dFi(θi,t+1|θi,t)− dFi(θi,t+1|θ′i,t)

)
≥ Ui(θt|ht−1)− Ui(θ′i,t, θ−i,t|ht−1) ≥

(
ui(θ

′
i,t; θt|ht−1)− ui(θ′i,t, θ−i,t|ht−1)

)
+

δ

∫
Θi

Ui(θi,t+1|ht−1, θ′i,t, θ−i,t)
(
dFi(θi,t+1|θi,t)− dFi(θi,t+1|θ′i,t)

)
Using integration by parts, this can be written as

(
ui(θt|ht−1)− (ui(θi,t; θ

′
i,t, θ−i,t|ht−1)

)
+

δ

∫
Θi

∂Ui(θi,t+1|ht−1, θt)

∂θi,t+1

·
[
F (θi,t+1|θi,t)− F (θi,t+1|θ′i,t)

]
dθi,t+1

≥ UB(vt, ct|ht−1)− UB(v′t, ct|ht−1) ≥

(
(
ui(θ

′
i,t; θt|ht−1)− ui(θ′i,t, θ−i,t|ht−1)

)
+

δ

∫
Θi

∂Ui(θi,t+1|ht−1, θ′i,t, θ−i,t)

∂θi,t+1

·
[
F (θi,t+1|θi,t)− F (θi,t+1|θ′i,t)

]
dθi,t+1

Since the utility functions and stochastic processes satisfy all standard regularity

conditions20, the usual envelope argument gives us

∂Ui(θi,t, θ−i,t|ht−1)

∂θi,t
=
∂u(θi,t, θ−i,t|ht−1)

∂θi
+δ

∫
Θi

∂Ui(θi,t+1|ht−1, θt)

∂θi,t+1

· ∂F (θi,t+1|θi,t)
∂θi,t

dθi,t+1

A slight modification of the Theorem 1 in Pavan, Segal and Toikka [2014] tells us that

this can be done recursively. The modification being an extra variable in conditioning
20See sections 2.1 and 3.1 of Pavan, Segal and Toikka [2014].
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on expectations, viz θi,t, since we are using ex post incentive compatibility. Thus21

Ui(θ
′
i,t, θ−i,t|ht−1)− Ui(θ′′i,t, θ−i,t|ht−1)

θ′i,t∫
θ′′i,t

∂u(θi,t, θ−i,t|ht−1)

∂θi
+ δ

∫
Θi

∂Ui(θi,t+1|ht−1, θt)

∂θi,t+1

· ∂F (θi,t+1|θi,t)
∂θi,t

dθi,t+1

 dθi,t (2.8)

The result follows.

2.9.2 Proof of Proposition 5

Sufficiency is obvious. If the Collateral Dynamic VCG mechanism satisfies all the

necessary properties, then it is one such desired mechanism.

Next, we establish necessity. Most of the substance follows from Proposition 4

, that is, payoff equivalence. Suppose there exists a set of histories H of non-zero

measure, such that EBS∗(h) < 0 for all h ∈ H.

Consider any other mechanism 〈p,U〉 that is ex post incentive compatible, indi-

vidually rational and and implements the efficient allocation under interim budget

balance. Then, by construction,

Ui(θt|ht−1) ≥ U∗i (θt|ht−1) ∀i ∀ht−1

Recollect from equation (2.3) that expected budget surplus can be written as

EBS(ht−1) =
N∑
i=1

Em
[

T∑
s=t

δs−tui(θs|hs−1)− Ui(θt|ht−1) | ht−1

]

Thus, if for any history ht−1 ∈ H, EBS∗(ht−1) < 0, we must have EBS(ht−1) < 0 in

21From any standard integrability theorem, see for example Theorem 5.13 in
Royden [1968].
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〈p,U〉.

2.9.3 Blind Mechanism

The blind mechanism consists of each agent announcing her/his type to the mech-

anism every period; however, the agents cannot observe each other announcements.

Thus, the information set of an agent in period t consists of her/his own announce-

ments, actual types and the allocation rules up to period t − 1. An important

restriction on the set of mechanisms then is measurability of the transfers to the

agents every period with respect to their information sets. Note that the histories in

the blind mechanism only consist of own announcements, own types and the allocation

rule.

Keeping these in mind, we can restate the the dynamic payoff equivalence result

for the blind mechanism as follows.

Proposition 6. Payoff equivalence holds after every history for the blind mechanism.

That is, if 〈k,U〉 and
〈
k, Ũ

〉
are two perfect Bayesian incentive compatible mecha-

nisms that generate utility vectors
((
Ui(θi,t|hblind,t−1)

)N
i=1

)T
t=1

and((
Ũi(θi,t|hblind,t−1)

)N
i=1

)T
t=1

respectively, then, there exists a family of constants((
ai(h

blind,t−1)
)N
i=1

)T
t=1

such that

Ui(θi,t|hblind,t−1) = Ũi(θi,t|hblind,t−1) + ai(h
blind,t−1)

Conversely, if 〈k,U〉 is ex post incentive compatible, and U and Ũ satisfy the above

two equations for a finite family of constants
((
ai(h

blind,t−1)
)N
i=1

)T
t=1

, then
〈
k, Ũ

〉
is

also ex post incentive compatible.

To operationalize the blind mechanism and note its basic difference from the

public one, we explore the collateral dynamic VCG mechanism. In equilibrium, and
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on truthful histories, the expected utility vectors are now simply functions of past

individual reports.

First, we start with the dynamic VCG mechanism as in section 6, and construct

the collateral dynamic VCG mechanism, 〈k∗,U∗〉. This of course cannot be a blind

mechanism because it is not measurable with respect to the agents’ information sets.

Thus, as a final step we define the following utility vectors. Let θti = {θi,1, ..., θi,t}.

U blind
i (θi,t|θt−1

i ) = Eθt−i
[
U∗(θt|ht−1) | θti

]
And, finally using Proposition 6, we define

U blind,∗
i (θi,t|θt−1

i ) = U blind
i (θi,t|θt−1

i )− inf
θi,t∈Θi

U blind
i (θi,t|θt−1

i )

where a(θt−1
i ) = − inf

θi,t∈Θi
U blind
i (θi,t|θt−1

i ). From the perspective of the mechanism

designer who observes the public history, define

U blind,∗
i (θt|ht−1) = U blind,∗

i (θi,t|θt−1
i ),

∀ θt ∈ Θ, ∀ ht−1 ∈ H t−1. Thus, the blind mechanism amounts to pooling a lot of the

incentive constraints across histories.

For all t ≤ T , and ht−1 ∈ H t−1, let EBSblind,∗(ht−1) represent the values calculated

in equation (2.3) for this blind dynamic collateral VCG mechanism. Note that the

set of histories for calculating the expected budget surplus is still public because

the mechanism designer can observe all the announcements. Then, we can state the

following result.

Proposition 7. There exists a perfect Bayesian incentive compatible and individually

rational blind mechanism that implements the efficient allocation under interim budget

balance if and only if EBSblind,∗(ht−1) ≥ 0 ∀ht−1, ∀t.
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The associated transfers can be then be constructed using equation,

U blind,∗
i (θi,t|θt−1

i ) = ublind,∗i (θi,t|θt−1
i )− xblind,∗i (θi,t|ht−1)+

δEθt+1

[
U blind,∗
i (θi,t+1|θt−1

i , θi,t)
∣∣θt−1
i , θi,t

]
where

ublind,∗i (θi,t|θt−1
i ) = Eθt−i

[
u∗(θt|ht−1) | θti

]
It is important to note that from the perspective of the mechanism designer

U blind,∗
i (θt|ht−1) ≥ U∗i (θt|ht−1),

∀ θt ∈ Θ, ∀ ht−1 ∈ H t−1. Thus, the blind mechanism produces a weakly higher

surplus for every history and thus is more likely to implement the efficient allocation.

Corollary 7. EBSblind,∗(ht−1) ≥ EBS∗(ht−1) ∀ht−1, ∀t. Thus, if the public mecha-

nism implements the efficient allocation, so does the blind mechanism.

2.9.4 Proof of Lemma 4

Incentive compatibility in period 2 for any history h gives,

(v2 − v′2) p(v2|h) ≥ UB(v2|h)− UB(v′2|h) ≥ (v′2 − v2) p(v′2|h)

The envelope formula for period 2 thus follows,

UB(v2|h) = UB(v|h) +

v2∫
v

p(ṽ2|h)dṽ2 (2.9)
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Employing incentive compatibility in period 1 gives

(v1 − v′1)p(v1) + δ

∫
V

UB(v2|v1) · [dF (v2|v1)− dF (v2|v′1)]

≥ UB(v1)− UB(v′1) ≥

(v1 − v′1)p(v′1) + δ

∫
V

UB(v2|v′1) · [dF (v2|v1)− dF (v2|v′1)]

Using (2.9) and integration by parts, gives the dynamic envelope formula,

UB(v1) = UB(v) +

v1∫
v

p(ṽ1) + δ

∫
V

p(v2).

(
−∂F (v2|ṽ1)/∂ṽ1

f(v2|ṽ1)

)
dv2

 dF (ṽ1) (2.10)

Similarly, we get

US(c2|h) = US(c|h) +

c∫
c2

p(c̃2|h)dc̃2 (2.11)

and,

US(c1) = US(c) +

c∫
c1

[
p(c̃1) + δ

∫
C
p(c2).

(
−∂G(c2|c̃1)/∂c̃1

g(c2|c̃1)

)
dc2

]
dG(c̃1) (2.12)

Now, in period 2, we can write the expected budget surplus as

EBS(h) =

∫
V

∫
C

[xB(v2, c2|h)− xS(v2, c2|h)] g(c2|hc)f(v2|hv)dc2dv2

=

∫
V

∫
C

[(v2p(v2, c2|h)− UB(v2, c2|h))− (c2p(v2, c2|h) + US(v2, c2|h))]

g(c2|hc)f(v2|hv)dc2dv2

82



which using equations (2.9) and (2.11), and integration by parts can be written as

EBS(h) + UB(v|h) + US(c|h) =

∫
V

∫
C

[(
v2 −

1− F (v2|hv)
f(v2|hv)

)
−
(
c2 +

G(c2|hc)
g(c2|hc)

)]

×p(v2, c2|h)g(c2|hc)f(v2|hv)dc2dv2

Similarly, using equations (2.10) and (2.12) in

EBS =

∫
V

∫
C

[
(v1p(v1, c1)− UB(v1, c1))− (c1p(v1, c1) + US(v1, c1))

+δ

∫
V

∫
C

[v2p(v2, c2|v1, c1)− c2p(v2, c2|v1, c1)] g(c2|hc)f(v2|hv)dc2dv2

]
g(c1)f(v1)dc1dv1

and integrating by parts, we get the desired equality.

2.9.5 Details of the Examples presented in Section 4

Monotonicity. Let htv,j denotes buyer’s report in period j ≤ t. For ht, ĥt ∈ H t,

ht � ĥt if htv,j ≥ ĥtv,j and htc,j ≤ ĥtc,j for all j ≤ t. Then, an allocation p is monotonic

if ht−1 � ĥt−1 ⇒ p(vt|ht−1) ≥ p(v′t|ĥt−1) and p(ct|ht−1) ≤ p(c′t|ĥt−1) for all vt ≥ v′t and

ct ≥ c′t.

In the context of our model, Pavan, Segal and Toikka [2014], and Battaglini and

Lamba [2014] show that under first-order stochastic dominance, local incentives and

monotonicity imply implementability.

In each of the first three examples, we maximize expected gains from trade

under the respective expected budget surplus constraints. In all the cases below,

the allocation will be monotonic in the sense described above, so will ignore the

83



implementability constraint. In the static model,

max
p

1∫
0

1∫
0

(v1 − c1) p(v1, c1)dc1dv1

subject to
1∫

0

1∫
0

(2v1 − 1− 2c1) p(v1, c1)dc1dv1 ≥ 0

The Lagrangian can then we written as

1∫
0

1∫
0

[(v1 − c1) + λ (2v1 − 1− 2c1)] p(v1, c1)dc1dv1

= (1 + 2λ)

1∫
0

1∫
0

(
v1 − c1 −

λ

1 + 2λ

)
p(v1, c1)dc1dv1

Since we know that the efficient allocation is not implementable, we must have λ > 0.

Thus, we must have

p(v1, c1) =

 1 if v1 > c1 +M

0 otherwise

where M = λ
1+2λ

. Substituting this allocation rule in the binding constraint, gives

M = 1
4
. The two period iid problem under ex ante BB can be written as

max
p

1∫
0

1∫
0

(v1 − c1) p(v1, c1) + δ

1∫
0

1∫
0

(v2 − c2) p(v2, c2|v1, c1)dc2dv2

 dc1dv1

(2.13)

subject to

1∫
0

1∫
0

(2v1 − 1− 2c1) p(v1, c1) + δ

1∫
0

1∫
0

(v2 − c2) p(v2, c2|v1, c1)dc2dv2

 dc1dv1 ≥ 0

(2.14)
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Setting up the Lagrangian, it is easy to see that the optimal mechanism is efficient

in period 2 and M in period 1 solves equation (2.4).

Finally, in the two period iid problem under interim BB we maximize (2.13)

subject to (2.14) and

1∫
0

1∫
0

(2v2 − 1− 2c2) p(v2, c2|v1, c1)dc2dv2 ≥ 0,

for all v1, c1. Setting up the Lagrangian it is easy to see that allocation in period 2

replicates the static model, and period 1 no-trade region solves equation (2.5).
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Chapter 3

Optimal Dynamic Contracting: the

First-Order Approach and Beyond

3.1 Introduction

Most contractual relationships have a dynamic nature, involving long-term, non-

anonymous interaction between a principal and an agent. Examples of these con-

tractual relationships include income taxation, regulation, managerial compensation

or a monopolist repeatedly selling a non-durable good to a buyer. In these envi-

ronments contracts can be made contingent on past realizations of the agent’s type,

allowing the principal to use the agent’s revealed preferences to screen future types’

realizations. This may be particularly useful in limiting asymmetric information and

agency problems when the agent’s type is persistent over time.

Despite recent advances in contract theory, there is still a limited understanding

about how to use this information to design optimal screening contracts. Dynamic

contracts are difficult to study because they involve a large number of incentive com-

patibility constraints. The analysis of optimal dynamic contracts has therefore been

limited to economic environments in which a form of the “first-order approach” can be
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applied: environments in which the optimal contract can be fully characterized using

only the necessary conditions implied by local incentive compatibility constraints.

While the first-order approach can be generally applied in static environments under

mild regularity assumptions, in dynamic models local incentive compatibility con-

straints have proven to be sufficient only in very special economic environments.1

This leaves three sets of open questions. First, what is the general applicability

of the first-order approach and what are its implications? Second, in environments

in which the first-order approach does not hold, what does the optimal contract

look like? Are there phenomena associated with dynamic contracts that we are

ignoring by focusing on environments in which solving the contract is easy? Finally,

if characterizing the optimal contract is complicated, can we approximate the optimal

contracts with simpler contracts which guarantee a minimal loss in profits?

To address these questions, we consider a simple principal-agent model in which

a monopolist repeatedly sells a non durable good to a buyer. The “type" of the

buyer that parametrizes his utility is private information, and it evolves over time

according to a general N -state Markov process. Higher types are assumed to have

higher marginal valuations and their associated conditional distribution on future

types first-order stochastically dominates the distribution of lower types.

We present four sets of results. We start by exploring the applicability of the

first-order approach. We show that if we ignore global constraints, necessary local

incentive compatibility constraints allow us to state a “dynamic envelope theorem”

with discrete types through which the agent’s equilibrium rent can be expressed just as

a function of the expected allocation. In the relaxed problem that only includes local

incentive constraints, the dynamic envelope theorem allows a simple characterization

of the profit maximizing contract. In keeping with the terminology from the static lit-

erature, this contract is referred to as the first-order optimal contract, or FO-optimal
1We will discuss the literature in greater detail in Section 8.
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contract. We also show that the envelope formula and a simple form of monotonicity

of the allocation are sufficient for implementability.2 Monotonicity requires that

if ht � ĥt, then q(ht) ≥ q(ĥt), where q(ht) (resp., q(ĥt)) is the quantity allocated

following a history ht (resp., ĥt).3 This condition is only sufficient and quite strong,

but it is verified for virtually all environments in which the optimal dynamic contract

has been characterized in the existing literature.4 Although various characterizations

of the envelope conditions have been presented over time,5 this paper is the first to

provide a general characterization of the formula and its implications for discrete

types. This approach has two advantages. First, most applied works using numerical

methods to study dynamic contracts rely either on the discrete type assumption or

discrete approximations of the continuous type model. The formula with discrete

types presented in this paper, thus, allows an exact characterization. Second, focusing

on discrete types allows us to avoid the measure theoretic complications of the case

with continuous types which may obscure otherwise simple economic intuitions.

Second, we show that the environments for which the dynamic envelope formula

is sufficient to characterize the optimal dynamic contract are very special. With

more than two types, when types’ correlation is sufficiently high, the first-order

optimal contract is generically non-monotonic. Because of this, global constraints

are generically binding if the time horizon is sufficiently important (that is when

types’ persistence, number of periods T and the discount factor δ are high enough).

Numerical calculations show that, in general, the level of persistence needed for the

failure of the first-order approach is in fact quite low.
2An allocation is implementable if there exist transfers such that the contract is

incentive compatible.
3A history is a vector of reports ht = (ht1, ..., h

t
t), so ht � ĥt if htj ≥ ĥtj ∀j ≤ t.

4Necessary and sufficient conditions for the optimality of the FO-contract can
easily be stated, see Section 4. But, these tend to be less intuitive.

5See, among others, Baron and Besanko [1984], Besanko [1985], Laffont and Tirole
[1996], Courty and Li [2000], Battaglini [2005], Eso and Szentes [2007], Pavan, Segal
and Toikka [2014].
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These findings on the limits of the first-order approach have important implica-

tions for applied work. In many applications of dynamic principal-agent models

(including the study of optimal taxation), the key variable for which agents have

private information is their income. Using a recent large data set Guvenen et al.

[2013a] and [2013b] 6 show that individual income in the U.S. is very persistent and

the empirical distribution of income changes has extremely high kurtosis. Therefore,

in all applications where income is the key variable it is appropriate to assume that

types are highly persistent. These are precisely the environments where our results

suggest that the use of the first-order approach is particularly problematic: either it

does not work, due to the violation of some global incentive constraint; or it works

only because a non-generic stochastic process has been assumed.

Our third contribution is to fully characterize the optimal contract in a simple

environment with three types and two periods. The characterization shows that the

seller typically finds it optimal to offer a continuation utility in the second period

that is not monotonic in the revealed first period type. The optimal contract is

characterized by separation of types even when separation is not optimal in static

contracts. It is also characterized by what we call dynamic pooling: strategic state

contingent treatment of types in which types may be initially separated, to be then

pooled conditioned on particular histories.

In our final contribution, we make a first step in addressing the problem of

designing optimal contract in complex environments with large T and N . We

identify a particular class of allocations for which the optimal implementable contract,

which we term monotonic contracts, can be easily characterized. Quantities in

monotonic contracts are forced to be non-decreasing in types (a restriction, following

Roger Myerson’s original terminology, we call ironing). Restricting to this subset of

contracts is not optimal in general. We show, however, that the optimal monotonic
6The dataset consists of a random sample of 10% of the population between the

ages of 25 and 60 from 1978 to 2011.
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contract converges in probability to the optimal contract as types become highly

persistent, or discounting converges to one, or both persistence and discounting

converge to one, independent of the order of these limits. In these cases, the loss

in the monopolist’s profit goes to zero. Further, numerical calculations show that the

optimal monotonic contract performs very well, ensuring a minimal loss in objective,

even with lower levels of persistence.

We proceed as follows. In Section 3.2 we present the model. In Section 3.3

we present the dynamic envelope formula and the first-order optimal contract. In

Section 3.4 we characterize the validity of the first-order approach. In Section 3.5 we

establish the limits of the first-order approach in the form of an impossibility result

for a general class of dynamic models. In Section 3.6 we completely characterize

a three type, two period model. In Section 3.7 we introduce and explore monotonic

contracts. In Section 3.8 we provide an overview of the literature. Finally, conclusions

are presented in Section 3.9. Proofs can be found in the appendices.

3.2 Model

There are two players, a buyer (or consumer) and a seller (or monopolist). The buyer

repeatedly buys a non-durable good from the seller. Consumer of type θt enjoys a

per-period utility u (θt, q) − p for q units of the good bought at a price p. In every

period, the seller produces the good with a cost function c(q). The utility and cost

functions satisfy the usual conditions. The utility function u (θt, q) is increasing and

differentiable in both arguments, with u (θt, 0) = 0; it is concave in q; and it satisfies

the single crossing condition:

Assumption 1. uθq (θ, q) > 0 for any θ and q.

The cost function c(q) is increasing, convex and differentiable with c′(0) = 0

and limq→∞ c
′(q) = ∞. For future reference, let s(θ, q) = u(θ, q) − c(q) be the
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instantaneous surplus generated by a contract that supplies quantity q to a buyer

of type θ. In what follows, sq(θ, q) and uq(θ, q) denote the derivatives with respect

to q. To illustrate some of the results, we will repeatedly use the classic version

of this model proposed by Mussa and Rosen [1978] in which u (θt, q) = θtq and

c(q) = (1/2)q2.

The type θt evolves over time according to a Markov process. There are N + 1

possible types, Θ = {θ0, θ1, ..., θN}, with θi − θi+1 = ∆θ > 0 for any i = 0, ..., N − 1.

Let N = {0, 1, 2, ..., N} denote the set of all indices of types, noting that the indices

uniquely identify the types. The probability that type k is reached next period if the

agent’s current type is i is given by f(θk|θi) = αik. Let F be the conditional CDF,

defined F (θj|θi) =
N−j∑
k=0

αi(j+k). The distribution of types conditional on being type i is

denoted αi = (αi0, αi1, ..., αiN), where we assume that αi has full support (so αij > 0

for any i, j), and αi first-order stochastically dominates αj for any i and any j > i.

Given that higher indices imply lower values, first-order stochastically dominance can

be stated as:

Assumption 2. F (θj|θi) ≤ F (θj|θk) for any j and i ≤ k.

In each period the consumer observes the realization of his own type; the seller,

in contrast, can only observe past allocations. At date 0 the seller has a prior

µ = (µ0, ..., µN) on the agent’s type. For convenience in most of what follows we

assume the prior has full support, so µi > 0 for any i. This assumption is made only

to simplify notation and is not necessary for the results.

In static models, standard concavity assumptions on the objectives and distribu-

tional assumptions like monotone hazard rate on the prior ensure the validity of the

first-order approach, see for example Stole [2001]. We require the former assumption,

but we do not need the latter. Define:

Φ(θi, q) = s(θi, q)−
1−

∑N
k=i µk
µi

· [u(θi−1, q)− u(θi, q)] .
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Assumption 3. Φ is concave and has a a unique interior maximum over q for all i.

This assumption rules out situations in which even in the static model the optimal

solution is the zero supply corner solution.

We assume that time is discrete and the relationship between the buyer and the

seller lasts for T ≥ 2 periods. In period 1 the seller offers a supply contract to the

buyer. The buyer can reject the offer or accept it; in the latter case the buyer can

walk away from the relationship at any time t ≥ 1 if the expected continuation utility

offered by the contract falls below the reservation value U = 0. In line with the

standard model of price discrimination, the monopolist commits to the contract that

is offered. The common discount factor is δ ∈ (0, 1).

It is easy to show that in this environment a form of the revelation principle

is valid, which allows us to consider, without loss of generality, only contracts that

depend on the history of type revelations, i.e., the contract can be written as 〈p,q〉 =

(p (θt |ht−1 ) , q (θt |ht−1 ))
T
t=1, where ht−1 and θt are, respectively, the public history

up to period t − 1 and the type revealed at time t.7 In general, ht can be defined

recursively as ht = {ht−1, θt}, h0 = ∅. The set of possible histories at time t is

denoted H t (for simplicity H = HT ). Let κt be the mapping that projects the

first t elements of a vector. The set of full histories that follow ht till time t is

given by H(ht) = {h ∈ H|κt(h) = ht}. It is also useful to define the set Ĥ(ht) =

{h ∈ H(ht)|hτ < θ0 ∀τ > t}. This is the set of histories following ht in which all

realizations after t are lower than θ0, the highest type.

A strategy for a seller consists of offering a direct mechanism 〈p,q〉 as described

above. The strategy of a consumer is, at least potentially, contingent on a richer

history htA =
{
ht−1
A , θt, θ̂t−1

}
, where θt is the actual type every period and θ̂t is the

revealed type. Note that h0
A = θ1. For a given contract, a strategy for the consumer

7When it does not create confusion, the subscript of θ signifies time period or a
specific type depending on the context: so when we write θi, we mean θi,t. The extra
notation would be superfluous in most of the paper.
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is simply a function that maps a history htA into a revealed type: htA 7→ s(htA).

3.3 The first-order approach and the dynamic enve-

lope formula

In this section we characterize the seller’s problem and discuss the standard approach

that has been used in the literature to solve it: the so called first-order approach. The

seller’s problem consists of choosing a contract 〈p,q〉 that maximizes profits under two

sets of constraints: incentive compatibility constraints, which guarantee that an agent

of type i does not want to report being a type j after any history ht, and individual

rationality constraints, which guarantee that all types expect to receive at least their

reservation utility U = 0 after any history ht. Since the choice of prices and quantities

corresponds to the choices of utilities and quantities for the buyer, this problem can be

conveniently represented as a choice of 〈U,q〉 = (U (θt |ht−1 ) , q (θt |ht−1 ))
T
t=1, where

U (θt |ht−1 ) is the expected utility of a type θt after history ht−1.

The generic incentive compatibility constraint ICi,j(ht−1) requires U(θi|ht−1) ≥

U(θj; θi|ht−1), where U(θj; θi|ht−1) is the expected utility of a type θi reporting to be

a type θj at time t after history ht−1. This constraint can be easily rewritten in terms

of 〈U,q〉 as:

U(θi|ht−1) ≥ U(θj|ht−1) + δ

N∑
k=0

(αik − αjk)U(θk|ht−1, θj)

+u(θi, q(θj|ht−1))− u(θj, q(θj|ht−1)). (3.1)

The individual rationality constraint for type i at history ht−1, IRi(h
t−1), is a simple

non-negativity constraint:

U(θi|ht−1) ≥ 0. (3.2)
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For future reference, we call local downward constraints the incentive constraints that

are associated with a deviation to a contiguous lower type (i.e. ICi,i+1(ht−1)), and

local upward constraints the incentive constraints that are associated with a deviation

to a contiguous higher type (i.e. ICi+1,i(h
t−1)). We refer to all the other constraints

as global. A contract that satisfies all incentive and individual rationality constraints

is said to be implementable.

The monopolist’s problem is to maximize expected surplus net of the buyer’s

expected equilibrium rents:

max
〈U,q〉


E [S(q)]−

N∑
i=0

µiU(θi|h0)

s.t. q ≥ 0 and IRi(h
t−1), ICi,j(ht−1)

for any i, j, t and ht−1 ∈ H t−1.


(3.3)

This is a standard maximization problem of a concave function under a system of

non-linear constraints. As T and N increase the number of variables and constraints

becomes prohibitively large making (3.3) analytically intractable.

The typical approach in the literature is to first study a relaxed problem in which

only individual rationality constraint of the lowest type and the local downward

constraints ICi,i+1(ht) are considered. The remaining constraints can be verified

ex-post after the solution of the relaxed problem has been characterized.

Definition 1. A contract is first-order optimal if and only if it maximizes profits

under the following constraints: IRN(ht−1) and ICi,i+1(ht−1), ∀i ∈ N\{N}, ∀ht−1 ∈

H t−1, ∀t.

Interest in FO-optimal contracts is based on the fact that in many environments

they coincide with the optimal contracts. Under standard assumptions, the FO-

optimal contract coincides with the optimal contract in a static environment, both
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with finite and continuous type spaces (Stole [2001]).8 This approach has also

been used in all papers that have extended the principal-agent model to dynamic

environments: the first-order autoregressive environment (Besanko [1985]) and the

Markov environment with two types (Battaglini [2005]). Perhaps, more importantly,

the applied literature often focuses on FO-optimal contracts even in the absence of

an explicit proof that local incentive constraints are sufficient for implementability.9

It is easy to show that when we consider the relaxed problem with only local

downward constraints, the incentive compatibility constraints can be assumed to hold

as equalities.10 This allows us to eliminate utilities from the optimization problem

and drastically simplify the constraint set. Let us define:

∆F (θj |θi ) = F (θj |θi )− F (θj |θi−1 ) .

It denotes the effect on the conditional distribution of a marginal change in type in

the previous period. It is important to note that first-order stochastic dominance

implies ∆F (θj |θi ) ≥ 0, for all i and j. Recalling that Ĥ (ht) is the set of histories

following ht in which all realizations after t are lower than θ0, and representing by

hk the kth element of history h, we have the following characterization of the agent’s

utility only as a function of q:11

8A sufficient condition for the FO-optimal contract to be optimal in a static
environment is that the prior µ satisfies the monotone hazard rate condition and
uθ(θ, q) is not increasing in θ- conditions satisfied, for example, by a uniform prior
and u (θ, q) = θq. See Stole [2001] for discussion of these results.

9See Section 8 for a discussion of this literature.
10The details of the statements made in this section are formally proven in the

appendix.
11To interpret (3.4), note that, given a history ĥ = (ĥ1, ..., ĥs), ĥτ is the realization

of the type at time τ ≤ s. It follows that q(ĥτ |ĥτ−1) is the quantity at time τ when
the realized history is ĥτ−1.
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Lemma 1. Corresponding to a FO-optimal contract, we have:

U(θi|ht−1)− U(θi+1|ht−1)

∆θ
=

∫ θi
θi+1

uθ(x, q(θi+1|ht−1))dx

∆θ

+
∑

ĥ∈Ĥ(ht−1,θi+1)

∑
τ>t

δτ−t


τ∏

k=t+1

∆F
(
ĥk

∣∣∣ĥk−1

)
·
∫ ĥτ+∆θ

ĥτ
uθ(x,q(ĥτ |ĥτ−1))dx

∆θ


(3.4)

for any i ∈ N\{N}, ht ∈ H t−1 and t = 1, ..., T .

Lemma 1 presents a straightforward dynamic extension of the envelope formula

introduced by Myerson [1981]. This can be seen by taking δ to zero, in which case

the second term on the right hand side vanishes and (3.4) coincides with the classic

static formula. The formula in (3.4) allows us to express the marginal rent of a type

exclusively as a function of the allocation q.12 Although the formula is a complicated

function of the conditional probabilities and the allocation, in specific environments

it is quite tractable.

Example 1. When types are i.i.d. we have f (θi |θj ) = f (θi |θk ) for all i, j, k, so

for all histories ∆F
(
ĥk

∣∣∣ĥk−1

)
= 0. It follows that U(θi|ht−1) − U(θi+1|ht−1) =∫ θi

θi+1
uθ(x, q(θi+1|ht−1))dx. If we assume u (θ, q) = θq, then uθ(x, q(θi+1|ht−1)) =

q(θi+1|ht−1). It follows that

[
U(θi|ht−1)− U(θi+1|ht−1)

]
/∆θ = q(θi+1|ht−1).

12A continuous type version of the formula is presented in Baron and Besanko
[1984] for the case in which T = 3 and in Besanko [1985] for an infinite horizon model
with first-order autoregressive types in which shocks have independent realizations.
Battaglini [2005] states the formula for a Markov process with two states: (3.4) is a
direct, but more involved extension of this result for the case with |Θ| ≥ 2. Pavan,
Segal and Toikka [2014] present a general version of the formula for a continuous type
space and other stochastic processes.
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In particular this holds for the null history, h0. Thus, the expected rent at t = 1

depends only on quantities in the first period and is same as in the static model. The

agent has no private information about future realizations beyond period 1 when the

contract is signed. So he or she is unable to extract any rents for t ≥ 2.

Example 2. Assume u (θ, q) = θq and, as in Baron and Besanko [1984], that types

are constant, i.e. f (θi |θi ) = 1 for all i = 0, ..., N . In this case, after (ht−1, θi+1), only

history ĥ = {ht−1, θi+1..., θi+1} (in which the type remains equal to θi+1) has positive

probability and ∆F (θi |θi ) = 1 for all i. Applying (3.4), it follows that:

[
U(θi|ht−1)− U(θi+1|ht−1)

]
/∆θ =

∑
τ≥t

δτ−t · q(ĥτ |ĥτ−1)

for all i ∈ N\{N}, where ĥ ∈ H(ht−1, θi+1) is the history that has all realizations

following period t equal to θi+1. The expected rents are thus a discounted sum of

quantities along the constant histories.

Example 3. Assume u (θ, q) = θq and two types, θ0 = θH and θ1 = θL that are

imperfectly correlated. In this case all histories except the “lowest history” (in which

all the types’ realizations are always θL) disappear from (3.4). Given this, we obtain:

[
U(θH |ht−1)− U(θL|ht−1)

]
/∆θ =

∑
τ≥t

δτ−t · [F (θL|θL)− F (θL|θH)]τ−t · q(ĥτ |ĥτ−1)),

where ĥ = {ht−1, θL..., θL} is the history following ht−1 in which all realization after

t−1 are θL. In this case the rent of the agent at t = 1 depends only on the quantities

in the lowest history, in which the realizations are always θL. This is the envelope

formula derived in Battaglini [2005].

Example 4. Another example that will prove useful in the remainder of the paper is

when T = 2. Assuming the usual utility u (θ, q) = θq, the rents at t = 2 are given by

U(θi|h1)−U(θi+1|h1)/∆θ = q(θi+1|h1) and those at t = 1 by [U(θi)− U(θi+1)] /∆θ =
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q(θi+1) +
N∑
k=1

δ∆F (θk|θi+1) · q(θk|θi+1).

Returning to the general model, we can express the utility vector solely as a

function of q using Lemma 1. Define:

U∗(θi|ht−1; q) =
N−i∑
n=1


∫ θi+n−1

θi+n
uθ(x, q(θi+n|ht−1))dx

+
∑

ĥ∈Ĥ(ht−1,θi+n)

∑
τ>t

δτ−t


τ∏

k=t+1

∆F
(
ĥk

∣∣∣ĥk−1

)
·
∫ ĥτ+∆θ

ĥτ
uθ(x, q(ĥτ |ĥτ−1))dx




(3.5)

for any i < N , and U∗(θN |ht−1; q) = 0. Corollary 1, thus, immediately follows from

(3.4):

Corollary 1. Corresponding to a FO-optimal contract, we have U(θi|ht−1) = U∗(θi|ht−1; q)

for any i ∈ N , ht−1 ∈ H t−1,∀t.

The FO-optimal contract can now be characterized as the solution of the following

program:

max
q≥0

{
E [S(q)]−

N∑
i=0

µiU
∗(θi|h0; q)

}
(3.6)

This problem can be solved to obtain the closed form solution. Let D(ht) be equal

to 1 at t = 1, and for t > 1, define:

D(ht) =


0 if htτ = θ0 for any τ ≤ t

t−1∏
τ=1

(
∆F (htτ+1|htτ )

f(htτ+1|htτ )

)
else

(3.7)

These are the dynamic distortions associated with the FO-optimal contract. Recall

that for any θi, s(θi, q) is the per period surplus (i.e. u(θi, q)− c(q)), and sq(θi, q) its

derivative with respect to q. From the first-order necessary conditions of (3.6) we

can easily characterize the FO-optimal contract as follows.13

13Note that, in the following expression, D(ht−1, θi) corresponds to D(ht) for ht =
{ht−1, θi}. Also, θ−1 is any dummy type.
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Proposition 1. Corresponding to a FO-optimal contract we have:

sq(θi, q
∗ (θi|ht−1

)
) ≤ 1−

∑N
k=j µk

µj
·D(ht−1, θi) ·

∫ θi−1

θi

uθq(x, q(θi|ht−1))dx (3.8)

for any i ∈ N , ht−1 ∈ H t−1 and t, where θj = ht1, and the above is satisfied with

equality if q∗ (θi|ht−1) > 0.

It is customary in the literature to assume that the objective function in (3.6) is

concave (see Stole [2001] for example): in this case (3.8) is necessary and sufficient

and so it uniquely defines the FO-optimal contract. Although this assumption is not

required for the following results, it is always verified if we assume preferences a’ la

Mussa and Rosen [1978], when u(θ, q) = θq and c(q) = (1/2)q2. In this case, at an

interior solution, we have:

q∗
(
θi|ht−1

)
= θi −

1−
∑N
k=j µk

µj
D(ht−1, θi)∆θ (3.9)

where θj = ht1. Under Assumption 3, moreover, the objective function (3.6) is concave

if types are sufficiently persistent.

We can now apply (3.8) to the examples discussed above.

Example 1 (cont.). From (3.7) and (3.8) we can see that when types are i.i.d.,

it is optimal to offer the optimal static contract in the first period and the efficient

contract in all following periods since the quantities offered after t = 1 do not affect

rents. For the standard model, we have q∗ (θi) = θi− 1−
∑N
k=i µk
µi

∆θ in the first period

and q∗ (θi|ht−1) = θi in the following periods.

Example 2 (cont.). From (3.9), it follows that when types are constant it is optimal

to offer the same quantities q∗ (θi) = θi− 1−
∑N
k=i µk
µi

∆θ in all periods, irrespective of the

history of types’ realizations. To see this, note that on histories in which types remain

constant we have D(ht−1, θi) = 1, so (3.9) is equal to θi − 1−
∑N
k=i µk
µi

∆θ. On histories
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in which types are not constant, any quantity is optimal. Since these quantities

neither affect the surplus nor the rents of the agent they do not enter the objective

function, (3.6).14 The quantity q∗ (θi) is equal to the optimal quantity that would

be offered in a static model with T = 1. This observation was first made by Baron

and Besanko [1984]. For future reference, note that this is only one of the possible

solutions.

Example 3 (cont.). With two types, (3.9) implies that q∗ (θi|ht−1) = θi if θi = θH

and/or θH is a realization in ht−1. For the remaining history, h̃t−1, in which the type

is always θL, we have q∗
(
θL|h̃t−1

)
= θL − µH

µL

(
F (θL|θL)−F (θL|θH)

F (θL|θL)

)t−1

∆θ. In this case

the FO-optimal contract is efficient for all histories except the lowest in which the

type is θL. Along the lowest history in which quantities are distorted, the distortion

is proportional to
(
F (θL|θL)−F (θL|θH)

F (θL|θL)

)t−1

, which is less than 1, and so it vanishes as

t→∞.

Example 4 (cont.). In the first period, we have q∗ (θi) = θi − 1−
∑N
k=i µk
µi

∆θ, as in

the static model, and in period 2, q∗ (θi |θj ) = θi −
1−

∑N
k=j µk

µj

F (θi|θj)−F (θi|θj−1)

f(θi|θj) ∆θ.

Some distinct characteristics easily emerge from (3.8) even without assuming that

it admits a unique solution. Since the right hand side of (3.8) is non-negative, the

contract is always distorted downward, at least weakly: so, analogous to the static

case, we never have overprovision, but we can have underprovision. Moreover, the

right hand side becomes zero when the type becomes θ0, the highest type (since

D(ht−1, θi) = 0). In this case, sq(θi, q∗ (θi|ht−1)) = 0 and the contract is efficient in

all following periods, a phenomenon that has been called “Generalized No-Distortion

at the Top”. For any other history, the quantities are distorted strictly below the
14In the rest of the paper we assume that types have full support so (3.7) is always

well defined. With perfect persistence, for histories in which types change, D(ht) is
indeterminate: in this cases both the numerator and the denominator of D(ht) are
zero. These histories occur with zero probability, so the associated quantities are
irrelevant.
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efficient level. The distortion is exactly equal to
[∑j−1

k=0 µk/µi

]
D(ht−1, θi)∆θ: this

formula is complicated because the wedge is state contingent and it depends on the

entire history.

3.4 When does the first-order approach work?

Given the (relatively) simple characterization of Proposition 1, the imperative ques-

tion is: when is it without loss of generality to focus on the first-order approach?

From previous work we know that there are a number of cases in which the first-order

approach works and so the optimal contract coincides with (3.8). Should these cases

be seen as the “standard cases”, or are they special examples? In the remainder of this

section we attempt to answer this question exploring when the first-order approach

is valid.

To verify the validity of the FO-approach we need to establish that the solution of

(3.6) satisfies the full set of constraints in (3.3). Corollary 1 tells us that the agent’s

rents are functions only of the quantities, so the set of constraints also depends only

on q. We let C(q) denote this set of constraints. The first-order optimal contract is

defined by q(Θ, µ, F ), function only of the fundamentals. It follows that a necessary

and sufficient condition for the validity of the first-order approach is that the set of

fundamentals satisfy the family of inequalities defined by C(q(Θ, µ, F )).

The key question is whether these conditions define reasonably interesting eco-

nomic environments for which the FO-approach works. The following result provides

a unified framework to interpret existing “possibility results” for the FO-approach.

Let q(ht) = q (htt|ht−1) be an allocation after history ht, and let ht � ĥt if htj ≥ ĥtj

∀j ≤ t. We have:

Definition 2. An allocation is monotonic if q(ht) ≥ q(ĥt) for any ht � ĥt.

A simple sufficient condition for the validity of the first-order approach can now be
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stated.15

Proposition 2. The envelope formula (3.5) and monotonicity of the FO-optimal

contract are sufficient for implementability.

Proposition 2 directly parallels the well known results in static environments that

show that local incentive compatibility (i.e. the envelope formula) and monotonicity

of the allocation are necessary and sufficient for implementability. The result is

however weaker for two reasons: first the monotonicity condition is stronger than

in a static environment, since it involves all histories following a report; second, the

result is only sufficient. The problem with Proposition 2 is that it is useful only to

the extent that it is easy to apply. The are a number of applications in which the

FO-optimal contract is indeed monotonic.

Example 1 and 2 (cont.). When types are i.i.d., the contract is history independent

and monotonic in all periods t > 1 (since it coincides with the efficient allocation).

The contract is also monotonic in the type at t = 1 if the optimal static contract is

monotonic: this is always the case if, for example, the prior satisfies the monotone

hazard rate condition and uqθθ ≤ 0, a condition satisfied, for example, by a uniform

prior and u(θ, q) = θq. When types are constant, the repetition of the first-order

optimal static contract is a FO-optimal contract (although it is not unique), which is

monotonic if the first-order optimal static contract is monotonic. It follows that under

standard assumptions that guarantee monotonicity in θ of the first-order optimal

static contract, FO-optimal contract is an optimal dynamic contract both when types
15This result generalizes, to an environment with N types, the method used in

Battaglini [2005] to establish the sufficiency of (3.5) for N = 2. In Battaglini [2005]
it is shown that a weaker monotonicity condition than the one in Proposition 2 is
actually sufficient. The condition requires that for any history, the marginal of
expected utilities are non decreasing in the current type (see Step 1 of Claim 2 in
Battaglini [2005]). This condition is implied by the monotonicity of the allocation
as defined in Definition 2. Analogous monotonicity results for continuous types are
presented by Pavan, Segal and Toikka [2014].
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are constant and when they are i.i.d .

Example 3 (cont.). As discussed in the previous section, with two types the

FO-optimal contract is efficient in all histories except the history in which types’

realizations are all θL. This history is also the “lowest history” according to the order

�. It follows that the contract is monotonic according to Definition 1, and so the

FO-optimal contract is optimal.16

Example 5: AR(1) model. Besanko [1985] and more recently Pavan, Segal and

Toikka [2014] assume an AR(1) model in which θt = γθt−1 + εt, where εt is the

realization of an i.i.d. random variable and γ ∈ (0, 1). The Markovian framework

developed above can be easily adapted to generalize this environment to non i.i.d.

shocks. Here we present a two period model to drive home the point in a simple

fashion. In both periods, the “shocks" have support θ0, ...θN , with θk − θk+1 = ∆θ;

in the first period the realization is θ1 = θi with prior probability µi, in the second

period ε2 = θj with probability αij when θ1 = θi. When αij = αkj for any i, j, k, we

have i.i.d. shocks and the model is equivalent to the models presented in Besanko

[1985] and Pavan, Segal and Toikka [2013]; in general, however, it is natural to expect

αij and αkj not to be equal.

When we consider only local incentive constraints, it is easy to show that they

must hold as equalities. In period 2, we have U(θk,2|θi) = U(θk+1,2|θi)+∆θq(θk+1,2|θi),

where U(θk,2|θi) and q(θk,2|θi) are respectively the second period utility and quantity

of the agent when the realization at t = 1 and t = 2 are θi and θk,2.17 Without

loss of generality we can set U(θN,2|θi) = 0, so that U(θk,2|θi) = ∆θ
∑N

l=k+1 q(θl,2|θi).
16Boleslavsky and Said [2013] generalize this two type model assuming continuous

types at t = 0 with binary shocks in the following periods. They also consider a
version with a continuum of shocks, but in this case they directly assume that the
quantities are monotonic in the reported values.

17So, with realization θi in period 1, we have that θk,2 ∈ {γθi + θ0, .., γθi + .θN}.
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Similarly, in the first period, we have:

U(θi) = U(θi+1) +

[
∆θq(θi+1|h0) + δγ∆θ

N∑
k=0

αikq(θk,2|θi+1)

]
(3.10)

+δ
N∑
k=0

(
αik − α(i+1)k

)
U(θk,2|θi+1) (3.11)

The expected utility of the agent with type θi is equal to the utility of type θi+1 plus an

informational rent. The informational rent can be decomposed into two parts. First,

we have a deterministic part ∆θq(θi+1|h0)+δγ∆θ
N∑
k=0

αikq(θk,2|θi+1): the realization of

type at time 1 affects rents at t = 1 (i.e., ∆θq(θi+1|h0)), but it effects rents at t = 2 as

well, in a way that is proportional to γ (i.e., δγ∆θ
N∑
k=0

αikq(θk,2|θi+1)). Second, we have

the stochastic part δ
N∑
k=0

(
αik − α(i+1)k

)
U(θk,2|θi+1). This term depends only on the

fact that types i and i+ 1 have different expectations on the probability of the shock

εt at t = 2. With i.i.d. shocks the stochastic term of the information rent is zero.

The distortions are then exclusively deterministic. The first-order optimal quantities

are given by θ1−∆θ
(

1−
∑N

k=i µk

)
/µi, in period 1, and θ2−γ∆θ

(
1−

∑N
k=i µk

)
/µi

in period 2 (when θi is the realization in the first period). It is immediate to observe

that, under a monotone hazard rate assumption on the prior, quantities are monotonic

in the sense of Definition 1. It follows from Proposition 2 that the first-order approach

works and these quantities describe the optimal contract.

Example 6: AR(k) model and its variations. When the shock εt is i.i.d. we

can easily generalize the analysis to T periods following the same steps as in Example

5. In this case we can verify that the quantity at time t is

θt −
1−

∑N
k=i µk
µi

· γt−1∆θ (3.12)

when θi is the realization in the first period. Distortions, therefore, are history

dependent- they depend only on time through γt−1. Note that θt is the first best
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efficient quantity: the optimal contract is characterized by deterministic distortions

that are independent of the Markov process governing the evolution of types. Given

this, it is easy to extend the analysis to the k-order autocorrelation case: θt =∑k
j=0 γjθt−j + εt. The examples can also be extended to a non-linear case in which

θt = l1(θt−1,qt−1) + l2(θt−1,qt−1)εt, where li(θt−1,qt−1) i = 1, 2 are both functions

of the sequences of types and quantities up to t − 1. To see this point, note that

at time t the terms
∑k

j=0 γjθt−j or l1(θt−1, qt−1) are just constants for all types, so

they do not have any effect on incentives to reveal the true type and l2(θt−1,qt−1)

disappears since εt is an i.i.d. random variable. In all these cases, the key assumption

is that the shock is an independent linear addition to the agent’s type.18

The examples presented above show that the first-order approach can be extended

to study quite complex dynamic environments. All the examples, however, can be

reconducted to two basic assumptions. The environment studied in Besanko [1985]

allows for many possible types (in fact a continuum), but assumes that types change

because of linearly additive stochastic shocks uncorrelated with the agent’s type. In

this environment the shocks are irrelevant for the equilibrium distortions, which are

independent of the history of realized types (except for the first).19 The environment

studied in Battaglini [2005] allows the conditional distributions of the types to depend

on the type, but limits the analysis to two types only. In this case the optimal contract

is history dependent. These two environments have a common feature: in all these

cases the FO-optimal allocation is monotonic. In the next section, however, we show

that this is not a general property of FO-optimal contracts.
18Multiplicative independent shocks also share a similar structure, see Coutry and

Li [2000].
19We will return on the importance of these assumptions for the first-order approach

to work in Section 3.5.1.
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3.5 The limits of the first-order approach

In static environments monotonicity only requires that the quantity is non-decreasing

in the type. This condition is satisfied under standard regularity conditions. Notably,

a sufficient condition for the monotonicity of the optimal contract is that the prior

satisfies the monotone hazard rate condition and that uθq is non-decreasing in θ.

The examples in the previous section may suggest that monotonicity of the optimal

contract is a feature of dynamic contracts as well. Dynamic environments, however,

are different and monotonicity should not be expected even in the simplest examples.

To see this, consider an example with two periods and Mussa and Rosen [1978]

preferences. Lets us assume 3 types, θ0 = θH , θ1 = θM and θ2 = θL with θH >

θM > θL and transition probabilities f(θi |θj ) = α and f(θi |θj ) = (1−α)/2 for i 6= j.

These simple transition probabilities satisfy first-order stochastic dominance, so they

preserve “order” in the stochastic evolution of types. From Example 4 in Section 3.3

we have:

q∗ (θM |θM ) = θM −
1−

∑
k=L,M µk

µM

F (θM |θM)− F (θM |θH)

f (θM |θM)
∆θ (3.13)

= θM −
µH
µM

3α− 1

2α
∆θ < θM .

Monotonicity would require q∗ (θM |θM ) > q∗ (θM |θL ). On the contrary, we have:

q∗ (θM |θL ) = θM − 1−µL
µL

F (θM |θL)− F (θM |θM)

f (θM |θL)
∆θ = θM ,

since F (θM |θM) = F (θM |θL) = 3α−1
2

. So the FO-optimal contract is not monotonic

with respect to the realization at t = 1.

To understand why the seller finds it optimal to offer a non-monotonic contract,

consider the role of distortions in screening problems. Starting from the surplus

maximizing contract, consider the effect a marginal reduction in q∗ (θM |θM) (see the
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left panel of Figure 3.1). The principal distorts q∗ (θM |θM) only if the change induces

a reduction in the agent’s rents at t = 1 since the change implies a costly reduction

in surplus. The reduction in q∗ (θM |θM) reduces U (θH |θM) at t = 2 (see the left

panel of Figure 3.1).20 If this reduction is, say ∆, then the effect on rents at t = 1 is

a reduction in U(θH) by δ [f (θH |θH )− f (θH |θM )] ∆, that is δ (3α− 1) ∆/2. This

follows from the fact that by reducing U (θH |θM), the seller makes a deviation to θM

less profitable for a type θH at t = 1.21 The seller chooses the distortion to solve the

trade-off between the marginal benefit of reducing the rent of θH , and the marginal

cost in terms of surplus reduction. Indeed, the first-order condition characterizing

q∗ (θM |θM ) is:

δ · µM · α · [θM − q∗ (θM |θM )] = δ · µH ·
3α− 1

2
(3.14)

Since θM − q∗ (θM |θM ) is the derivative of the surplus generated in period 2, the left

hand side of (3.14) is the expected marginal reduction in surplus due to reduction in

q∗ (θM |θM); the right hand side of (3.14) is the expected reduction in paid rents.22

Consider now a reduction in q∗ (θM |θL) that keeps the rent of the θL type constant

at t = 1 (see the right panel of Figure 3.1). By the same logic as above, a marginal

reduction in q∗ (θM |θL) induces a decrease in the rents of θM at t = 1 equal to

20From the binding ICHM constraint, at t=2 we have U (θH |θM) = U (θM |θM) +
∆θ · q (θM |θM).

21If the reduction in U (θH |θM) is ∆, then the expected reduction in the rent of
type θM at t = 1 is δf (θH |θM ) ∆. The principal, however, can not allow a reduction
in U (θH |θM) without other changes in the contract. Incentive compatibility at t = 1
requires that the rent of type θM is equal to the rent this type would receive if he
reported θL: to preserve incentive compatibility U(θM) must remain constant. To
compensate for the expected reduction in the rent, the principal reduces the price
paid by θM at t = 1 by δf (θH |θM ) ∆. The benefit of reducing q∗ (θM |θM), therefore,
is captured exclusively by the fact that the outside option at t = 1 for θH is reduced.
After the change, the rent of θH at t = 1 (that in equilibrium is equal to the utility of
falsely reporting to be θM) is therefore reduced by a net δ [f (θH |θH )− f (θH |θM )] ∆.

22With respect to the right hand side of (3.14), note that µM · α is the probability
of history h2 = {θM , θM}. With respect to the left hand side, note that the expected
reduction in paid rents is the change in U(θH) times the probability of a type θH at
t = 1.
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Figure 1: The simple economics behind optimal non-monotonic allocations.

effect on the rent extracted by θM at t = 1. (In general, f (θH |θM )− f (θH |θL ) is always small

when types are highly persistent, since in this case both f (θH |θM ) and f (θH |θL ) are both close

to zero). Similarly, a reduction in q∗ (θM |θM ) induces a reduction in the rent of a type θH in

t = 2: for α > 1/3, however, θH is more likely to remain θH than θM is to become θH ; this makes

a distortion on q∗ (θM |θM) a more effective screening device than a distortion on q∗ (θM |θL).

In the example presented above we have assumed a particular transition function fα (θj |θi ) in

which the probability of persistence is the same for all types (fα (θi |θi ) = α) and all deviations

are equally likely (fα (θj |θi ) = 1−α
N

for i �= j). Does the phenomenon illustrated by the example

extend to general transition functions? To address this question consider the general set Λ of

all possible transition functions fα (θj |θi ) satisfying Assumption 2 and parametrized by α ∈ [0, 1]

such that for all i, fα (θi |θi ) → 1 as α→ 1.23

Definition 3. We say that a property holds for a generic transition function in Λ if it holds for

an open and dense set of functions in Λ.

This is the standard definition of genericity in this environment.24 Our first result proves

that, for a generic transition function, the optimal contract is non-monotonic when types are

highly persistent.

Proposition 3. For any µ, δ, |Θ| > 2, T > 2, and a generic transition function in Λ, there

exists an α∗ < 1 such that the FO-optimal contract is not monotonic for any α > α∗.

23 Note that since we impose no additional restrictions, the probabilities of persistence of different types may
be different for α < 1 and they can even converge to one at different speeds: α is just an index of the level of
persistence of the stochastic process.

24 Endowed with a sup norm, the space of transition functions Λ is a complete metric space. The complement
of an open and dense set in Λ is a set of first category. The Baire Category Theorem guarantees that these sets
have empty interior and therefore are topologically small (Royden [1988], ch.7.8).

15

Figure 3.1: The simple economics behind optimal non-monotonic allocations.

δ [f (θH |θM )− f (θH |θL )] ∆. The rent of θH is a linear function of U(θM), so it is

also reduced by the same amount. In our model, however we have that f (θH |θM )

and f (θH |θL ) are both equal to (1 − α)/2, so the net benefit of the reduction in

q∗ (θM |θL) is zero. It follows that the equilibrium condition is:

δ · 1− α
2
· [θM − q∗ (θM |θL )] = 0 (3.15)

where δ · 1−α
2
· [θM − q∗ (θM |θL )] is the expected marginal reduction in surplus due to

the reduction in q∗ (θM |θL).

Comparing (3.14) to (3.15) we can see that q∗ (θM |θL) > q∗ (θM |θM) because the

the marginal effect on rents of distorting q∗ (θM |θL ) is smaller than the effect of

q∗ (θM |θL) for α > 1/3. A reduction in q∗ (θM |θL) induces a reduction in the rent of

a type θH at t = 2: a type θM is however as likely likely to become θH as a type θL

(since f (θH |θM ) = f (θH |θL )), so this has no screening effect on the rent extracted

by θM at t = 1. (In general, f (θH |θM )− f (θH |θL ) is always small when types are

highly persistent, since in this case both f (θH |θM ) and f (θH |θL ) are both close to

zero). Similarly, a reduction in q∗ (θM |θM) induces a reduction in the rent of a type

θH in t = 2: for α > 1/3, however, θH is more likely to remain θH than θM is to
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become θH ; this makes a distortion on q∗ (θM |θM) a more effective screening device

than a distortion on q∗ (θM |θL).

In the example presented above we have assumed a particular transition function

fα (θj |θi ) in which the probability of persistence is the same for all types (fα (θi |θi ) =

α) and all deviations are equally likely (fα (θj |θi ) = 1−α
N

for i 6= j). Does the

phenomenon illustrated by the example extend to general transition functions? To

address this question consider the general set Λ of all possible transition functions

fα (θj |θi ) satisfying Assumption 2 and parametrized by α ∈ [0, 1] such that for all i,

fα (θi |θi )→ 1 as α→ 1.23

Definition 3. We say that a property holds for a generic transition function in Λ if

it holds for an open and dense set of functions in Λ.

This is the standard definition of genericity in this environment.24 Our first result

proves that, for a generic transition function, the optimal contract is non-monotonic

when types are highly persistent.

Proposition 3. For any µ, δ, |Θ| > 2, T > 2, and a generic transition function in

Λ, there exists an α∗ < 1 such that the FO-optimal contract is not monotonic for any

α > α∗.

To grasp the intuition behind this result, consider the FO-optimal contract when

u(θ, q) = θq. From (3.9), in an interior solution, we have:

q∗
(
θi|ht−1

)
= θi −

1−
∑N
k=j µk

µj
D(ht−1, θi)∆θ

23Note that since we impose no additional restrictions, the probabilities of
persistence of different types may be different for α < 1 and they can even converge to
one at different speeds: α is just an index of the level of persistence of the stochastic
process.

24Endowed with a sup norm, the space of transition functions Λ is a complete metric
space. The complement of an open and dense set in Λ is a set of first category. The
Baire Category Theorem guarantees that these sets have empty interior and therefore
are topologically small (Royden [1988], ch.7.8).
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Intuitively (and as formally proven in the proof of Proposition 3), for a generic

transition probability function the terms D(ht−1, θi) are history dependent, even as

persistence converges to one. In particular, if ht−1(θi) is the history in which all

realizations are θi, then there is always an ht−1 with ht−1
1 = θi, ht−1 ≺ ht−1(θi) and

either D(ht−1, θi) < D(ht−1(θi), θi) or D(ht−1, θi) > D(ht−1(θi), θi). In the first case

it is clear that the FO-optimal contract is non-monotonic and the result is proven.

The key step in the proof of Proposition 3 is to show that if ht−1 � ht−1(θi) and

D(ht−1, θi) > D(ht−1(θi), θi), then there must be a history ht−1 with ht−1
1 = θi+1,

ht−1 � ht−1(θi+1) and D(ht−1, θi+1) > D(ht−1(θi+1), θi+1) when types are sufficiently

persistent. This implies q∗ (θi+1|ht−1(θi+1)) > q∗
(
θi+1|ht−1

)
and, alas, a failure of

monotonicity. The reason why the result holds generically is that the concept of

monotonicity required is so strong that even a arbitrarily small difference between

D(ht−1, θi) and D(ht−1(θi), θi) is sufficient to make it fail, independently of its sign.

Does Proposition 3 imply that the FO-approach generically fails when types are

highly persistent? It is easy to see that a failure of monotonicity can not alone be

sufficient for the first-order approach to fail. When δ is small, the future becomes

irrelevant and the problem is essentially static. What happens when the future is

sufficiently important? In the next result we use Proposition 3 to show that when

types are highly persistent and the future is sufficiently important, then even a small

failure of monotonicity is sufficient to make the FO-approach invalid. We have:

Proposition 4. For any µ, |Θ| > 2 and a generic transition probability function,

there exists an α∗ < 1, T ∗ > 2, and δ∗ < 1 such that the first-order approach fails to

be verified for any α > α∗, T ≥ T ∗ and δ > δ∗.

The proposition shows that with highly persistent types and a long horizon, the

effect of even a small failure of monotonicity is highly magnified as δ → 1, to the

point of inducing an effect on the expected utility that is significant enough to violate

a global incentive constraint. The fact that the first-order approach fails only if types
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Figure 3.2: Example 7, the truncated normal case. σ = 0.25, ∆θ = 0.025.

are sufficiently persistent and expected payoffs are sufficiently important should not

be surprising. As we have seen in Example 1, the first-order approach always works

when types are sufficiently serially uncorrelated: in this case types have small private

information about the future, so there is no point in imposing distortions on future

quantities. Similarly, if agents are impatient and the time horizon is short, the model

is close to being static.

Interestingly, it is easy to compute examples in which very limited serial correlation

is sufficient to induce a failure of the first-order approach. To illustrate this point, we

conclude this section with three natural examples.

Examples 7. Assume that the type in the first period, θ1, is uniformly dis-

tributed on Θ = [5, 6] and the distribution in the second period is a (truncated)

normal fα (θ2 |θ1 ) = A(θ1)
σ

Φ( θ2−θ1
σ

)∆θ where Φ is a standard normal density with

variance σ and A(θ1) is chosen so that the distribution assigns probability one on
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Θ.25 (The specific values chosen for the support are obviously irrelevant and chosen

only as examples). In this case, the probability that a type remains constant is

fα (θi |θi ) = A(θi)
σ

∆θΦ(0), a function of the first period realization. It is easy to verify

the probability of persistence converges to one as σ → 0 (in the notation used above,

the process can therefore be parametrized by α = 1 − σ). The top panels of Figure

3.2 illustrate fα (θj |θi ) for two values: θi = 5.1 (top left panel) and θi = 5.4 (top

right panel) The bottom right and left panel of the figure shows the FO-optimal

contracts at t = 2 after histories θi = 5.1 and θi = 5.4, respectively. The contract is

not monotonic: it is not monotonic with respect to the realization at t = 2 (this can

be seen from the fact that the lines are not non-decreasing); and it is not monotonic

in the realization at t = 1 (this can be seen form the fact that the contracts intersect

at t = 2). It can also be verified that the FO-optimal contract is not incentive

compatible.

Examples 8 and 9. Assume that the type in the first period, θ1, is uniformly

distributed and consider now the transition probabilities fα (θj |θi ) = αe
−

(θj−θi)
2

σi(α∆θ) ∆θ,

and fα (θj |θi ) = α∆θ
1+σi|θj−θi| , where σi chosen so that the probabilities sum to one. In

this case, fα (θi |θi ) = α∆θ so the probability of persistence is identical for all types;

it is the variance of the distribution that is adjusted so that fα assigns probability one

on Θ2. As it is straightforward to verify, we have σi → 0 as α∆θ → 1. Figures 3.3

and 3.4 illustrate fα (θj |θi ) for two values: θi = 5 (top left panel) and θi = 5.1 (top

right panel) and compares the two implied distribution functions (bottom left panel)

assuming Θ1 = [5, 6] and Θ2 = [4.5, 6.5]. The bottom right panel of the figures

illustrates the FO-optimal contracts at t = 2 after histories θi = 5 and θi = 5.1,

respectively. As in Example 7, the contract is not monotonic and the FO-optimal
25To obtain a discrete density that can be applied to any size ∆θ (even arbitrarily

small), we discretize a continous density f(θ). As standard, in this case the
probability of type θi is equal to f(θi)∆θ, i.e. the “histogram" approximation of
the continuous density.
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Figure 3.3: Example 8, the exponential case. α = 2, ∆θ = 0.05.

(a)	
   (b)	
  

(c)	
   (d)	
  

Figure 3.4: Example 9, the hyperbolic case. α = 1.75, ∆θ = 0.05.
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contract associated to this case is not incentive compatible.

It is interesting to note that both in Examples 7, 8 and 9 the contract is not

monotonic despite the fact that the transition probabilities have very little persistence.

Finally, the discussion above, Propositions 3 and 4, and non-monotonicity in the

examples are all valid independent of the prior µ, re-affirming our assertion that the

failure of the first-order approach is not a technical irregularity, but a consequence of

the added structure that dynamics present to the economic problem of contracting.

3.5.1 Discussion

We conclude this section with a few remarks on Propositions 3 and 4.

Perfectly persistent shocks. As we have seen in the previous sections, the

first-order approach always works when types are perfectly persistent; Proposition

4, however, shows that the FO-approach does not generically work when types are

highly persistent. How is this possible? The key to understanding this apparent

contradiction is to realize that when types are constant, the repetition of the optimal

static contract is only one of the many possible solutions: in histories which occur with

exactly zero probability, the quantities are irrelevant and so they can be set to any

arbitrary number, for example, equal to the static optimum. On the contrary, when

types are highly persistent, but probabilities off the main diagonal are not exactly zero,

quantities can not be set arbitrarily in these histories. The effect of these histories

on the agent’s rents is small, but so is the effect of these quantities on the surplus.

Typically, the quantities are uniquely defined along all histories. As persistence

converges to one, these quantities along the non-constant histories converge to values

that are different from the static optimum and that are non-monotonic. In the

example presented at the beginning of Section 3.5, qM(M) = θM − µH
µM

3α−1
2α

that

converges to θM − µH
µM

in the limit; qM(L), on the contrary, is equal to θM for

any α: in the limit, therefore, qM(M) < qM(L). The problem is that there is a
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lack of lowerhemicontinuity at the limit with constant types, and some of the limit

solutions (including the repetition of the static optimum) can not be seen as the limit

of solutions as persistence converges to one.

AR(k) models. To see why monotonicity is a fragile property in AR(k) models

consider (3.12). In this formula the terms D(ht−1, θi) are all identically equal to

γt−1 and independent of ht−1: trivially, therefore, we have q∗ (θi|ht−1) = q∗
(
θi|ĥt−1

)
for any two histories with ht−1 � ĥt−1. This however is not a generic or even a

plausible property: it follows from the fact that the shocks εt are assumed to be i.i.d

and linearly additive. If we assume that the distribution of εt depends on the past

realization, even if the effect of the past realization is very small, then D(ht−1, θi) is

history dependent and it is no longer the case that q∗ (θi|ht−1) = q∗
(
θi|ĥt−1

)
.

In addition to this, even assuming a constant γ, to make the AR(k) model

conceivable we need to assume that the support shifts with the type as in Examples

4 and 5 or alternatively that the type support is unbounded above and below. If we

assume a given constant and bounded support then a perfect horizontal translation

of the distribution is obviously impossible. Again, it is not generally true that

q∗ (θi|ht−1) = q∗
(
θi|ĥt−1

)
for any two histories with ht−1 � ĥt−1. Example 7 can be

seen as an AR(k) model with bounded support in which the shock follows a truncated

normal. As evident from Figure 3.2, neither monotonicity nor the FO-approach works

in this case.

On serially independent shocks. Pavan Segal and Toikka [2013] suggest that

the AR(k) model can be seen as an example of a more general class of environments

for which the first-order approach works. Their suggestion is based on an original

observation by Eso and Szentes [2007] who note that any model with correlated and

continuous types can be transformed into an equivalent model with i.i.d. shocks.

To see this, note that if the cumulative distribution is F (θt|θt−1), then assuming

that the agent observes θt is equivalent to assuming that he or she observes the
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variable vt = F (θt|θt−1) (since F (θt|θt−1) is increasing and invertible in θt): as well

known, vt is a random variable with a uniform distribution on [0, 1]. Eso and

Szentes’ [2007] observation is insightful in interpreting the screening contract and

useful to derive the envelope formula (see Eso and Szentes [2013]). Unfortunately,

however, it does not generalize the insights from the AR(1) models, and it does

not help to solve the problems of the FO-approach elucidated above. It is useful

to illustrate why transforming the stochastic process to an i.i.d. shock does not

make the problem more tractable. Assume the utility is u(θ, q) = θq. To make

the equivalent transformation, we need to substitute θt = F−1(vt; θt−1), so we have:

u(v1, q1) = F−1(v1) · q1, u(v2, q2) = F−1(v2;F−1(v1)) · q2 and iterating:

u(vt, qt) = F−1(vt;F
−1(vt−1;F−1(vt−2; [...]))) · qt (3.16)

where vt = (v1, ..., vt). It is clear from (3.16) that, even starting from the simplest

utility function, the per period utility of the equivalent transformation is a very

complicated, time inseparable function of the entire history of the shocks vt. The

change of variables, from θt to vt, allows one to get rid of serial correlation in the

types; the correlation however, does not disappear: it must be incorporated in a

transformed utility function. All the problems that induce a failure of the first-order

approach in the original problem are just shifted from the distribution function to the

transformed per period utility function. The benefit of having independent shocks

is compensated by the complications of having these per period utilities.

From discrete to continuous types. While we have focused the analysis on the

case with discrete types, there is a strict connection between models with discrete and

continuos types; and the same issues discussed above arise in continuous type models

as well. Consider a continuous types model with type set Θ =
[
θ, θ
]
⊂ R+, prior

distribution Γ (θ) and transition distribution F (θ′ |θ ). We can define an associated
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discrete model by defining the type space as ΘN = {θ0, ..., θN} with θ0 = θ, θN = θ

and θi = θi+1 + ∆θN , the prior as ΓN (θi) = Γ (θi) and the transition matrix as

FN(θj |θi ) = F (θj |θi ). In the online appendix we show that the envelope formula

and the FO-optimal contracts of the continuous model can be obtained as limits of

the discrete formulas (3.4) and (3.9). We also present a number of solved continuous

type examples (including continuous type versions of Examples 8 and 9) to illustrate

the problems with the FO-approach.

3.6 What does the optimal contract look like when

the first-order approach is invalid?

As we have seen in Section 3.5, even with two periods and three types the FO-optimal

contract fails to be monotonic and the FO-approach can not be generally applied. In

this section we fully characterize the optimal contract in the motivating example of

Section 3.4, in which f(θ|θ) = α and f(θ|θ′) = 1−α
2

for any θ, θ′ ∈ {θH , θM , θL}, θ 6= θ′

and α > 1/3. The goal of this section is twofold- to elucidate the structure of optimal

contracts that is otherwise elusive in models where the FO-approach can be applied,

and to illustrate the trade-offs between rent and efficiency in a dynamic model.

To characterize the optimal contract we focus on a weakly relaxed program that

constitutes problem (3.3) with |Θ| = 3 and T = 2, with the following subset of

constraints:

IRL, ICHM , ICML, ICHL, (3.17)

ICHM(M), ICML(M), ICLM(M), ICHM(L), ICML(L), ICLM(L)

where IRL is the individual rationality constraint of type L at t = 0, ICi,j is incentive

compatibility constraint requiring that type i doesn’t want to misreport being a type
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First Order Approach WR-program

Figure 5: The dashed arrows are the constraints in the WR-program that are ignored in the
first-order approach.

Lemma 2. In the WR-program, constraints IRL, ICHM , ICML bind at the optimum.

We can now use the equalities implied by Lemma 2 to reduce the number of free variables

in the optimization problem. In particular we can eliminate the period 1 utility vectors. Define

ωHM(i) = uH(i) − uM(i) and ωML(i) = uM (i) − uL(i) for i = M,L. The variable ωkl(i) is the

net utility of reporting to be type k rather than a type l after history i. Using this notation, we

can rewrite the WR-program as a maximization problem in which the control variables are the

quantities q and second period marginal utilities ω:

max
〈ω,q〉





∑
i=H,M,L

µi

[
θiqi −

1
2q
2
i + δ

∑
k=H,M,L

µ (k |i)
(
θkqk(i)− 1

2qk(i)2
)
]

−µH
[
∆θqM + δ 3α−12 ωHM(M)

]

−(µH + µM )
[
∆θqL + δ 3α−12 ωML(L)

]





(16)

subject to

[λ] : ∆θqM + δ
3α− 1

2
ωHM (M) ≥ ∆θqL + δ

3α− 1

2
ωHM(L)

[λHM (M)] : ωHM(M) ≥ ∆θqM(M) | [λHM(L)] : ωHM (L) ≥ ∆θqM (L)

[λML(M)] : ωML(M) ≥ ∆θqL(M) | [λML(L)] : ωML(L) ≥ ∆θqL(L)

[λLM (M)] : ωML(M) ≤ ∆θqM(M) | [λLM (L)] : ωML(L) ≤ ∆θqM(L)

is immediate. If, for example ICHM were not binding, the principal could simply raise the price that type θH is
paying. In theWR-program the proof of the result is complicated by the additional constraints: reducing type θH ’s
rent at t = 0 may conflict with ICHL.

22

Figure 3.5: The dashed arrows are the constraints in theWR-program that are ignored
in the Þrst-order approach.

j in period 1, and ICi,j(k) is the incentive compatibility constraint requiring that

type i doesn’t want to misreport being a type j in period 2, after the agent reports

to be a type k in period 1. In contrast to the FO-approach, this problem has two

key differences. First, now we are ignoring all the individual rationality constraints

of the lowest type in period 2 and incentive compatibility constraints after history

H. Second, and most importantly, we are adding three new constraints: the global

downward constraint ICHL, and the local upward constraints ICLM(M), ICLM(L) in

period 2. The constraint set of the problem is illustrated in the relevant history tree

in Figure 3.5. In the following we will refer to this program as the WR-program.

Since this is a three type and two period model we simplify notation. Let Ui be

the expected utility of type i in the first period and ui(h) be the expected utility of

type i after history h in the second period. Note that since the second period is the

terminal period, the expected utility and stage utility are the same. Similarly, we

define qi and qi(h) to be the first and second period allocations respectively. The

following lemma allows to simplify the constraint set:26

26When only the usual local downward incentive compatibility constraints are
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Lemma 2. In the WR-program, constraints IRL, ICHM , ICML bind at the optimum.

We can now use the equalities implied by Lemma 2 to reduce the number of free

variables in the optimization problem. In particular we can eliminate the period 1

utility vectors. Define ωHM(i) = uH(i) − uM(i) and ωML(i) = uM(i) − uL(i) for

i = M,L. The variable ωkl(i) is the net utility of reporting to be type k rather than

a type l after history i. Using this notation, we can rewrite the WR-program as a

maximization problem in which the control variables are the quantities q and second

period marginal utilities ω:

max
〈ω,q〉



∑
i=H,M,L

µi

[
θiqi − 1

2
q2
i + δ

∑
k=H,M,L

µ (k |i)
(
θkqk(i)− 1

2
qk(i)

2
)]

−µH
[
∆θqM + δ 3α−1

2
ωHM(M)

]
−(µH + µM)

[
∆θqL + δ 3α−1

2
ωML(L)

]


(3.18)

subject to

[λ] : ∆θqM + δ
3α− 1

2
ωHM(M) ≥ ∆θqL + δ

3α− 1

2
ωHM(L)

[λHM(M)] : ωHM(M) ≥ ∆θqM(M) | [λHM(L)] : ωHM(L) ≥ ∆θqM(L)

[λML(M)] : ωML(M) ≥ ∆θqL(M) | [λML(L)] : ωML(L) ≥ ∆θqL(L)

[λLM(M)] : ωML(M) ≤ ∆θqM(M) | [λLM(L)] : ωML(L) ≤ ∆θqM(L)

where the variables in the square brackets on the left are the Lagrange multipliers

associated with the constraints. Program (3.18) is a standard maximization problem,

but it is complicated by a still significantly large number of constraints. The differ-

ence between (3.18) and the problem of the first-order approach (3.6) is the global

considered, the following result is immediate. If, for example ICHM were not binding,
the principal could simply raise the price that type θH is paying. In the WR-program
the proof of the result is complicated by the additional constraints: reducing type
θH ’s rent at t = 0 may conflict with ICHL.

122



Figure 3.6: Fully characterized contract.

constraint ICHL and the presence of the local upward constraints ICLM(M) and

ICLM(L). The latter are essentiallymonotonicity conditions requiring qM(h) ≥ qL(h)

for h = M,L.27 We cannot ignore any of these three constraints. Moreover now we

cannot assume without loss of generality that all local downward incentive constraints

are binding at t = 2: so the envelope formula (3.4) cannot be directly applied. Hence,

we still have utilities in the objective function. The next lemma validates our focus

on problem (3.18) :

Lemma 3. A contract is optimal if and only if it solves the WR-program.

The analysis can be divided into two cases: first the case in which the global

constraint can be ignored and so it is sufficient to look at local constraints, i.e. λ = 0;

second, the case in which the global constraint is binding, i.e. λ > 0.
27To see this note that given ICML(h), qM(h) ≥ qL(h) if and only if ICLM(h) is

satisfied.
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3.6.1 Case 1: Local IC is sufficient

The following result characterizes the necessary and sufficient condition for λ = 0.

For a given µL and δ, the environment is fully described by two parameters, µM , α,

and therefore it can be represented in the two dimensional box (µM , α) ∈ E(µL) =

(0, 1− µL) × (1/3, 1).28 In the rest of the analysis we will fix µL and δ and study

how the equilibrium changes as we change µM , α. This approach is without loss of

generality and it allows for simpler statements (and a graphical representation) of the

relevant cases. We have:

Lemma 4. There exists a threshold µ∗ (α) such that the global incentive constraint

ICHL can be ignored if and only if µM ≥ µ∗ (α).

Within the two regions defined by µ∗ (α), the particular shape of the optimal

contract depends on the remaining set of binding constraints. Explicit solutions

of the optimal quantities for all feasible parameters are presented in Table 1 in the

appendix. The following proposition describes what the optimal contract looks like

for µM ≥ µ∗ (α), when the global constraint can be ignored:

Proposition 6. Assume µM ≥ µ∗ (α). There is a threshold α0(µM), such that:

- Case A1. If α < α0(µM), the optimal contract is fully separating and first-order

optimal.

- Case A2. If α ≥ α0(µM), the optimal contract is fully separating after all

histories except M . After this history types M and L are pooled: qM(M) =

qL(M).

Regions A1 and A2 are illustrated in Figure 3.6 in a simple parametric example,

where the threshold α0(µM) is represented by a dashed line.29 In region A1, the

28The thresholds defined below do not depend on the types θ.
29In Figure 3.6 we assume µL = 0.25 and δ = 0.95.
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Figure 3.7: Fully characterized contract.

envelope formula is sufficient to characterize the optimal contract. In this case

the FO-optimal contract is not monotonic (as in Definition 2), but this lack of

monotonicity is not sufficient to cause a failure of incentive compatibility. The

contract is not monotonic because qM(M) < qM(L). However, given any h, qθ(h) is

monotonic in θ. In region A2, even though the global constraints can be ignored, the

envelope formula is not sufficient to determine the contract since at t = 2 we have

pooling after history M . It is interesting to note that although pooling makes sure

that qθ(h) is monotonic in h for all θ, the optimal contract remains non-monotonic

with respect to the realization at t = 1 (since qM(M) < qM(L) in A2 as well).

Figure 3.7 illustrates what happens when we make the payoffs in the second period

more important by increasing δ. We know from Proposition 4 that as the future

becomes more important, the first-order approach is never valid for high levels of α.

A similar phenomenon occurs here: as δ increases, µ∗ (α) shifts up and the region in

which local constraints are sufficient shrinks. These higher values of δ should be seen

as representative of dynamic models with longer time horizons.
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3.6.2 Case 2: Local IC is not sufficient

When µM < µ∗ (α) both the global constraint ICHL and the local constraints ICHM

and ICML are simultaneously binding in the first period. There are three relevant

cases. The following result characterizes the optimal contract in these situations:

Proposition 7. There exists a threshold µ∗∗(α) such that:

- Case B1&B2. Assume µM ∈ [µ∗∗(α), µ∗(α)). The optimal contract is fully

separating at t = 1. There exists a threshold µ0(α), such that the optimal

contract is fully separating at t = 2 as well if µM > µ0(α) (case B1). If µM ≤

µ0(α), types M and L are pooled after history M : qM(M) = qL(M) (case B2).

- Case B3. If µM < µ∗∗(α), the optimal contract pools types M and L in the

first period: qM = qL. In the second period, after history H, the contract is

separating and efficient. After histories M and L, types M and L are pooled

across both histories: qM(j) = qL(j) and qj(M) = qj(L) for j = M,L.

Propositions 6 and 7 provide a full characterization of the optimal contract that

can be used to gain new insights on how types are optimally screened in dynamic

environments that are not apparent in the models discussed in Section 3.4.30

How does the possibility of repeated interactions affect the structure of the optimal

contract? It is imperative to note that, in contrast to the static model, binding global

constraints are no longer synonymous with pooling alone. In regions B1 and B2, even

though the global incentive constraint binds, there is complete separation of types in

period 1. Region B2 interestingly, like in A2, has a strategic separation in period 1

followed by history dependent pooling in period 2, which we term dynamic pooling.

Region B3 has pooling in period 1 and in period 2 after histories θM and θL (but

not θH). The contract captures a loss of history in region B3- it is as if we are in a
30Table 1, presented in the appendix, enlists closed form solutions of the optimal

quantities for the entire parameter space.
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two-type model in period 1 and after histories M and L in period 2. Further, note

that the principal never chooses to pool types in period 1 without also having some

pooling in period 2.

Another lesson is that pooling of types at t = 1 is always lower in the dynamic

model than in a static optimal contract. It is easy to verify that in a static model

types are pooled only if µM ≤ µ
M

= µL(1−µL)
1+µL

, which in the example presented above is

equal to 0.15- the horizontal line in Figure 3.7. This condition, however, is irrelevant

in a dynamic model. We have pooling at t = 1 only if µM < µ∗∗(α), and µ∗∗(α) < µ
M

for all α ∈ (1/3, 1). The reason that the region for pooling at t = 1 is strictly smaller

with two periods than with one is fairly intuitive: in a dynamic environment the

principal has an added instrument in the form of continuation value to screen the

agent’s types. Thus, the burden of the efficiency rent trade-off can be pushed into the

future, spreading distortions over time. Yet full separation in the static model does

not imply full separation over time in the dynamic model as is evident in region A2,

with µM > µ
M
, but pooling in period 2.

3.7 Ironing, implementability and optimality

The results of the previous sections make clear that in order to solve for an optimal

contract, the principal cannot generally use the first-order approach and limit the

analysis to local incentive compatibility constraints. Without the first-order ap-

proach, we have no systematic way of simplifying the constraint set. This may make

the analysis extremely complicated even from a numerical point of view. What does

the optimal contract look like in general environments with large T and N? What

kind of advice can we give to a seller who needs to design an optimal contract?

In this section we show that there is a class of contracts that is relatively easy

to characterize, and that induces a minimal loss (if any) on the principal’s payoff
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precisely when the first-order approach fails, that is, when the agent’s types are

highly persistent. This class consists of contracts that are monotonic in the sense

of Definition 2. In static environments the envelope formula plus monotonicity

are necessary and sufficient for a contract to be implementable: if we ignore the

monotonicity constraint, then the contract must be ironed out to make it monotonic,

otherwise implementability fails (see Myerson [1981]). In a dynamic environment

monotonicity is not necessary: it follows that if we impose monotonicity in the seller’s

problem, we guarantee implementability even if we ignore the global constraints, but

we may obtain a suboptimal contract. The main result of this section is that as types’

persistence converge to one, the optimal monotonic contract converges in probability

to the optimal contract, and so the loss from focusing on this class of contracts

converges to zero.

DefineM as the set of monotonic contracts:

M =

q

∣∣∣∣∣∣∣
q(θi|ht−1) ≥ q(θi+1|ht−1), i < N , and q(θi|ht−1) ≥ q(θi|ĥt−1),

i = 1, ..., N, ∀ht−1 and ht−1 � ĥt−1

 (3.19)

where, as before, ht � ĥt if htj ≥ ĥtj ∀j ≤ t. It follows immediately from Proposition

2 that the optimal monotonic contract can be characterized by solving the following

program:

max
q∈M

{
E [S(q)]−

N∑
i=0

µiU
∗(θi, h

0; q)

}
(3.20)

where U∗(θi, h0; q) is given by the envelope formula (3.5). Problem (3.20), moreover,

is sufficiently tractable to allow a partial characterization of the properties of its

solution.

Proposition 8. In the optimal monotonic allocation, q (θt |ht−1 ) ≤ θt for any θt and

ht−1. Moreover, for any arbitrarily small ε1, ε2 > 0 we have Pr (|q (θt |ht−1 )− θt| > ε1) ≤

ε2 for t and T sufficiently large.
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The first part of the proposition establishes that, analogous to the static model,

the optimal monotonic contract is uniformly downward distorted. The second part

states that the contract converges to an efficient contract in probability.

How good is the optimal monotonic contract as an approximation of the optimal

contract? Let q = {q (ht)}ht∈H be an allocation and let q∗∗= {q∗∗ (ht)}ht∈H be the

optimal allocation. Let I be the identity matrix that describes the transition matrix

when types are perfectly correlated. As types become perfectly persistent, we

must have that the transition matrix converges to I, i.e. α → I. We say that q

converges in probability to the optimal allocation as types become perfectly persistent

if limα→I Pr (|q (ht)− q∗∗ (ht)| ≥ ε) = 0 for any ε > 0.

Proposition 9. For all µ, δ, T , and transition matrices, the optimal monotonic

contract converges in probability to a contract that maximizes the seller’s profits as

types become perfectly persistent.

This result implies that for any δ and T , as types become increasingly persistent

the profit associated with the optimal monotonic contract converges to the profit in

the optimal contract. The table in Figure 3.8 illustrates the loss of profits associated

with the optimal monotonic contract in an example with 3 periods, 3 types and the

Markov matrix used in Section 6. The loss is expressed as a percentage of the profit

in the optimal contract. As can be seen, the approximation is quite good for all

cases, with a loss of profit that is never higher than 0.06%. It is interesting to note

the inverse-U relationship between losses and the level of persistence. As persistence

increases, losses increase, peak and then come down again. The reason is simple. At

α = 1/3, the model is akin to the i.i.d. shock framework, where we know that the

optimal contract is monotonic. At the other extreme, α = 1, the optimal contract

constitutes repetition of the static optimum which too is monotonic. As we increase

α, the distortions vary and the probability of non-constant histories decreases. Thus,

the loss in using monotonic contracts increases with the non-monotonicities only to be
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suppressed in probability by the increasing weight of constant histories along which

the optimal monotonic allocation converges to the optimal allocation.

When simultaneously types’ persistence, the discount factor and the length of the

contract are high, Proposition 9 may not be sufficient to guarantee that the optimal

monotonic contract is a good approximation for the seller. Even a contract that

converges to the efficient contract as α → I may perform very poorly as δ → 1 and

T →∞ as well. For example, the repetition of the optimal static contract converges

in probability to an optimal contract (as shown in Example 2): for any given α

(even arbitrarily close to I), however, the difference in profits between this contract

and the optimal contract becomes arbitrarily large as δ → 1 and T → ∞.31 The

problem is that the contract may not converge to the efficient contract fast enough

in α. Therefore, in general, the order of limits may matter when we allow both the

probability of persistence and the discount factor to converge to one.

The following result shows that for the optimal monotonic contract, profits con-

verges to the optimal level independently of the order of limits. Define πm (α, δ, T )

and π∗ (α, δ, T ) to be the expected average discounted profits corresponding to the

optimal monotonic contract and the optimal contract.32 Moreover, let πm (α, δ) =

limT→∞ πm (α, δ, T ) and π∗ (α, δ) = limT→∞ π
∗ (α, δ) be the limit expected average

profits as T →∞.33

Proposition 10. When α → I and δ → 1, the profits of the optimal monotonic
31As proven in Battaglini [2005], the contract becomes efficient and the seller

appropriates all the surplus as δ → 1 when types are imperfectly persistent. With
the repetition of the optimal static contract, however, per period surplus is below
the efficient level and only a fraction is appropriated by the seller. The difference in
discounted profits, therefore, becomes arbitrarily large as δ → 1 and T → ∞ when
types are imperfectly persistent.

32If Πm (α, δ, T ) and Π∗ (α, δ, T ) are the expected discounted profits correspondeing
to the optimal monotonic contract, then πm (α, δ, T ) = (1− δ) Πm (α, δ, T ) and
π∗ (α, δ, T ) = (1− δ) Π∗ (α, δ, T ).

33This limit exists without loss of generality since πm (α, δ, T ) and π∗ (α, δ, T ) are
bounded for any α and δ.

130



Figure 3.8: Percentage loss of optimal objective (monopolist’s profit) by using
monotonic contracts (in bold) and repetition of the static optimum.

contract converges to the profits of the optimal contract independent of the order of

limits: lim
δ→1

lim
α→I

πm (α, δ) = lim
δ→1

lim
α→I

π∗ (α, δ) and lim
α→I

lim
δ→1

πm (α, δ) = lim
α→I

lim
δ→1

π∗ (α, δ).

The table in Figure 3.8 illustrates this point comparing the loss of profits of the

optimal monotonic contract with the loss of profits obtained with the repetition of

the optimal static contract: the loss can be higher than 10% of the optimal profits,

even in this simple example with only 3 periods. Naturally larger losses should be

expected with longer horizons.

The results of this section may be useful in applied work. As mentioned in

the introduction, many works in the applied literature postulate that the first-order

approach works. The risk is that the contracts thus characterized are not incentive

compatible. Further in the most natural environments, this risk can not be fully

resolved by numerical methods. To the extent that it is not possible to check all the

incentive compatibility constraints, studying optimal monotonic contracts may be a

more robust option, since it guarantees implementability and it is equal to the true
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optimal contract with high probability when types are highly persistent.

3.8 Related literature

Our paper is related to four main literatures. First, we have the traditional literature

studying dynamic principal-agent models when the agent’s type follows a stochastic

process and the allocation is chosen in every period. The first paper to use the first-

order approach to study dynamic models and state an associated “envelope formula”

is Baron and Besanko [1984].34 Their paper states the formula in general terms and

shows it to be sufficient in two benchmark cases: when types are constant over time,

in which case the optimal dynamic contract corresponds to a repetition of the static

optimum; and when types’ realizations are independently distributed over time, in

which case the optimal contract is efficient starting from period 2.35 Extensions

of this approach to environment with imperfect correlation of types are presented

by Besanko [1985], Laffont and Tirole [1990] and Battaglini [2005]. Besanko [1985]

extends the analysis to an infinite horizon with continuous types following a AR(1)

process; Laffont and Tirole [1990] focus on a two periods environment with two types.

Battaglini [2005] extends the two types model to an infinite horizon.36 The main

34See Section 3 for a discussion of the first-order approach and envelope formula.
See Stole [2001], Laffont and Martimort [2002], Milgrom (2004), and Bolton and
Dewatripont [2005] for general discussions of the envelope formula in the static case.

35See also Roberts (1982) and Townsend (1982) for dynamic principal-agent models
in which types are serially uncorrelated.

36Other important contributions in the dynamic contracting literature are De-
watripont [1989], Hart and Tirole [1988], Rey and Salanie (1990), Rustichini and
Wolinsky [1995], Biehl [2001], Battaglini [2007], Williams [2010], Bergeman and
Valimaki [2010], Strulovici [2011], Athey and Segal [2013], Boleslavsky and Said
[2013], Maestri [2013]. These papers however focus on different aspects of the
problem and limit the analysis to environment that are quite different from ours.
Hart and Tirole (1988) assumes that supply can have two values, zero or one.
Rustichini and Wolinsky (1995) assume consumers are not strategic and ignore that
future prices depend on their current actions. Dewatripont (1989), Rey and Salanie
(1990), Battaglini [2007], Maestri [2013] and Strulovici [2011] focus on renegotiation.
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contributions of these papers is in showing that the first-order approach is sufficient

in their respective environments. Laffont and Tirole [1996], and more recently,

Pavan, Segal and Toikka [2013] and Eso and Szentes [2013] have derived “envelope

formulas” for continuous types applicable to more complex environments. Both of

the latter papers build on Eso and Szentes [2007], where the principal-agent problem

is transformed in to a problem in which the shocks are i.i.d. through an appropriate

change in utility. Contrary to the previous literature, these papers are not focused

on finding specific environments in which these envelope formulas are sufficient for

incentive compatibility, leaving open the question of the general applicability of the

first-order approach.

The second literature to which our paper is related is the literature on sequential

screening started by Courty and Li [2000]. This literature studies environments

in which the agent receives information gradually over time, but the allocation is

determined only in the last period. The models in this literature have 2 stages: in

the beginning of period 1, the agent receives an informative signal and the contract

is signed at the end of this period, but no allocation is made; in the second period

the type is revealed to the agent and the allocation takes place. Courty and Li is

one of the first papers to clearly discuss the limitations of the first-order approach in

dynamic environments: one of their main achievements is to identify environments in

which the first-order approach can be applied in the class of problems that they study.

More recently, Courty and Li’s work has been extended in many directions. Eso and

Szentes [2007] consider the case in which the seller can choose to voluntarily disclose

information in the first period. They show that the agent does not receive private

rents for the disclosure of information. Li and Shi [2013] show that discriminatory

disclosure of information can be optimal when the amount of additional private

Bergemann and Valimaki [2010] and Athey and Segal [2013] study implementation of
efficient allocations extending the pivot mechanism to dynamic environments.
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information that the buyer can learn depends on his type.37 Krahmer and Strausz

[2013] argue that in this class of models the benefit of sequential screening is due to

the joint relaxation of incentive and participation constraints. To solve their model,

the authors propose an original approach to deal with global constraints that works

in their environment with N types. In all these papers the key question is whether

the contract must depend on the interim informative signal, or if it can depend only

on the type revealed in the last stage. In our model, because the allocation is chosen

in all periods, information must be disclosed in all periods.

Third, our paper is related to a recent literature devoted to the study of ap-

proximately optimal mechanisms in environments in which fully optimal mechanisms

are hard to characterize (see Madarasz and Prat [2012], Chassang [2013] for recent

contributions and Hartline [2012] for a summary of the computer science approach).

While parts of this literature deal with more general environments than ours, the

approach we adopt in Section 3.7 takes full advantage of the dynamic structure of

the framework we study; this allows us to obtain an approximately optimal contract

that guarantees incentive compatibility for all types at all histories.

Finally, there is a large and growing literature using the first-order approach to

solve dynamic contracts in complex environments using numerical methods. Under-

standing the conditions for the applicability of the first-order approach with discrete

types seems particularly important in these exercises. Even when using models with

continuous types, these papers typically compute the equilibrium policies and verify

incentive compatibility using discretized approximations.38 When discrete approxima-

tions are not used to construct the first-order optimal contract, incentive compatibility
37For other recent models of infomation disclosure see, amongst others, Hoffman

and Inderst [2011], Inderst and Ottaviani [2012].
38This is the case, for example, in Kapicka [2013], Farhi and Werning [2013], and

Golosov et al. [2013] who study models of intertemporal consumption smoothing
using numerical methods.
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is verified numerically on a grid of points.39 The envelope formula presented in our

paper provides an exact formula for discrete types that can be used to compute the

first-order optimal contract and to verify incentive compatibility directly without

approximations.

3.9 Conclusion

In this paper we have studied a simple principal-agent model in which the agent’s type

is private information and follows a Markov process. We have presented four sets

of results. First, following the standard approach in the literature, we have studied

the optimal contract when only local incentive constraints are considered. We have

shown that the agent’s equilibrium rents can be represented purely as a function

of the allocation through a dynamic version of the so called “envelope formula.”

Moreover, as in the static model, the envelope formula and a natural monotonicity

condition on the allocation guarantee that the contract is implementable. Although

this condition is only sufficient and quite strong, it is verified for virtually all the

natural environments in which the optimal dynamic contract has been characterized

in the existing literature.

Second, and most importantly, we have shown that the environments for which

the envelope formula is sufficient to characterize the optimal dynamic contract are

quite special. In general, even in the simplest examples, the allocation is not

monotonic. Thus, for high persistence and sufficiently long time horizons global

incentive constraints generically bind. Moreover, numerical examples show that
39Exceptions are Zhang [2009] and Williams [2011] who use continuous time

methods to avoid discrete approximation of the policy functions. Zhang [2009] and
Williams [2011] verify that the conditions for the first order approach are satisfied in
their model. Zhang [2009] however, limits the analysis to a two types model; and
Williams [2011] limits the set of possible deviations available to the agent (who can
report only incomes lower or equal to the true income).
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moderate levels of persistence are sufficient to violate the first-order approach.

Third, to gain insight on how the optimal contract looks like when the first-order

approach doesn’t work, we have characterized it in a simple case with three types

and two periods. We show that the optimal contract is characterized by dynamic

pooling: strategic, state contingent treatment of types in which types may be initially

separated, but then be pooled conditioned on particular histories.

Finally, we have shown that some insights in general environments with many

types and periods can be gained by studying a simple class of suboptimal contracts:

monotonic contracts, in which non-monotonicities in the allocation are “ironed” out.

The appeal of optimal monotonic contracts is derived from the fact that it converges

in probability to the optimal contract as the persistence of types converges to one,

that is precisely when the first-order approach tends to fail.

The analysis suggests a number of important research questions. The charac-

terization of the optimal contract with three types and two periods suggests that

state dependent pooling of types plays an important role in dynamic screening. The

example suggests a number of features that one naturally expects to hold in more

general environments as well. The analysis in Section 7, moreover, suggests that

even when it is not possible to fully characterize the optimal contract, useful insights

can be gained by studying contracts that are approximately optimal. We leave the

further development of these ideas for future research.

3.10 Appendix

3.10.1 Proof of Lemma 1 and Corollary 1

We first show that all the constraints in the relaxed problem can be assumed to hold

as equalities.

Lemma A1. In a FO-relaxed problem: IRN(ht−1) can be assumed to hold as equality
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for all ht−1 ∈ H t−1; ICi,i+1(ht−1) can be assumed to hold as an equality for all ht−1 ∈

H t−1 and i = 0, 1, ..., N − 1.

Proof. We proceed in two steps:

Step 1. Suppose that U(θN |ht−1) = ε > 0 for some ht−1. If t = 1, then decreasing

U(θi|h0) by ε for all i does not violate any constraints and increases the monopolist’s

profit. If t > 1, fix ht−1 and decrease U(θi|ht−1) by ε for all θi. This does not change

any of the constraints and keeps the profit of the monopolist the same.

Step 2. Suppose that ICi,i+1(ht−1) does not hold as an equality for some ht−1 ∈ H t−1

and i = 0, 1, ..., N − 1. Then, decrease U(θk|ht−1) by ε for each k ≤ i. If t = 1, all

the constraints are still satisfied and the monopolist’s profit is strictly higher, giving a

contradiction. If t > 1, this change does not affect any constraint except ICj−1,j(h
t−2),

where θj is such that ht−1 = (ht−2, θj). The right hand side of ICj−1,j(h
t−2) is reduced

by δ
∑

k≤i(α(j−1)k − αjk)ε = δ∆F (θi+1|θj) ε ≥ 0, where the last inequality follows

from first order stochastic dominance. Now, repeat the same procedure, decreasing

U(θk|ht−2) by δ∆F (θi+1|θj) ε for each k ≤ j−1. We can keep reducing utility vectors

backward till the first period, unless ht−1 contains θ0, in which case the backward

iteration ends there, to deduce a strictly greater increase in the monopolist’s profit.

Thus, the changes do not violate any of the constraints and keep the profit of the

monopolist larger than or equal to before the change. �

We can now prove Lemma 1 and Corollary 1 together. We shall proceed by

(backward) induction on t. Note that at t = T , Lemma A1 implies:

U(θN |hT−1) = 0 and U(θi|hT−1) =
N−i∑
l=1

∆u(θi+l|hT−1; q) ∀i ≤ N − 1. (3.21)

where ∆u(θi+1|ht−1; q) is defined by

∆u(θi+1|ht−1; q) = u(θi, q(θi+1|ht−1))− u(θi+1, q(θi+1|ht−1)).
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Similarly, for t = T − 1, we have for i ≤ N − 1:

U(θi|hT−2) = ∆u(θi+1|hT−2; q) + U(θi+1|hT−2) + δ

N∑
k=0

(αik − α(i+1)k)U(θk|hT−2, θi+1)

=
N−i∑
n=1

[
∆u(θi+n|hT−2; q) + δ

N∑
k=0

(α(i+n−1)k − α(i+n)k)U(θk|hT−2, θi+n)
]

=
N−i∑
n=1

[
∆u(θi+n|hT−2; q)+

δ

N−1∑
k=0

(α(i+n−1)k − α(i+n)k)
N−k∑
l=1

∆u(θk+l|hT−2, θi+n; q))
]

Now, let
N−1∑
k=0

(α(i+n−1)k − α(i+n)k)
N−k∑
l=1

∆u(θk+l|hT−2, θi+n; q))

=
N−1∑
k=0

(
α(i+n−1)k − α(i+n)k

)N−k∑
l=1

Qk+l, (3.22)

where Qj = ∆u(θj|hT−2, θi+n; q)) for for any type θj. The right hand side of (3.22)

can be written as:

N−1∑
k=0

(
α(i+n−1)k − α(i+n)k

)N−k∑
l=1

Qk+l =


(
α(i+n−1)0 − α(i+n)0

)
(Q1 + ....+QN)

+
(
α(i+n−1)1 − α(i+n)1

)
(Q2 + ....+QN)

+...+
(
α(i+n−1)(N−1) − α(i+n)(N−1)

)
QN


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Rearranging the terms, we have:

N−1∑
k=0

(
α(i+n−1)k − α(i+n)k

)N−k∑
l=1

Qk+l

=


(
α(i+n−1)0 − α(i+n)0

)
Q1

+
((
α(i+n−1)0 + α(i+n−1)1

)
−
(
α(i+n)0 + α(i+n)1

))
Q2

+...+
((
α(i+n−1)0 + ...+ α(i+n−1)(N−1)

)
−
(
α(i+n)0 + ...+ α(i+n)(N−1)

))
QN


=

N∑
k=1

∆F (θk|θi+n)Qk

where, we recall, ∆F (θj |θi ) = F (θj |θi )− F (θj |θi−1 ). This implies that:

N−1∑
k=0

(α(i+n−1)k − α(i+n)k)
N−k∑
l=1

∆u(θk+l|hT−2, θi+n; q))

=
N∑
k=1

∆F (θk |θi+n )∆u(θk|hT−2, θi+n; q))

It follows that we can write:

U(θi|hT−2) =
N−i∑
n=1

[
∆u(θi+n|hT−2; q) + δ

N∑
k=1

∆F (θk |θi+n )∆u(θk|hT−2, θi+n; q))
]

=
N−i∑
n=1

[
∆u(θi+n|hT−2; q)

+
∑

ĥ∈Ĥ(hT−2,θi+n)

∑
τ>T−1

δτ−T−1

τ∏
k=T

∆F
(
ĥk

∣∣∣ĥk−1

)
∆u(ĥτ |ĥτ−1; q))

]
(3.23)

where, we reacall, Ĥ(ht) is the set of histories following ht in which all realizations

after t are lower than θ0.

It is easy to see that (3.21) and (3.23) prove the statement in Corollary 1 and in

Lemma 1 respectively for t = T and t = T − 1. We therefore conclude that our

hypothesis holds for t ≥ T − 1. Next, suppose it holds for t+ 1 where t ≥ T − 2. We
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want to show that it holds for t. We have,

U(θi|ht−1) = ∆u
(
θi+1|ht−1; q

)
+ U

(
θi+1|ht−1

)
+ δ

N∑
k=0

(αik − α(i+1)k)U(θk|ht−1, θi+1)

(3.24)

=
N−i∑
n=1

[
∆u
(
θi+n|ht−1; q

)
+ δ

N∑
k=0

(α(i+n−1)k − α(i+n)k)U
(
θk|ht−1, θi+n

)]

=
N−i∑
n=1

[
∆u
(
θi+n|ht−1; q

)
+ δ

N−1∑
k=0

(α(i+n−1)k − α(i+n)k)

N−k∑
m=1

(
∆u
(
θk+m|ht−1, θi+n; q

)
+

∑
ĥ∈Ĥ(ht−1,θi+n,θk+m)

∑
τ>t+1

δτ−(t+1)

τ∏
ι=t+2

∆F
(
ĥι

∣∣∣ĥι−1

)
∆u
(
ĥτ |ĥτ−1; q

))]
,

where the third equality follows from the induction hypothesis. Now,

N−1∑
k=0

(α(i+n−1)k − α(i+n)k)
N−k∑
m=1

∆u(θk+m|ht−1, θi+n; q)

=
N∑
k=1

∆F (θk |θi+n )∆u(θk|ht−1, θi+n; q), (3.25)

and,

δ
N−1∑
k=0

(α(i+n−1)k − α(i+n)k)
N−k∑
m=1

∑
ĥ∈Ĥ(ht−1,θi+n,θk+m)

∑
τ>t+1

δτ−(t+1)

τ∏
ι=t+2

∆F
(
ĥι

∣∣∣ĥι−1

)
∆u
(
ĥτ |ĥτ−1; q

)
= δ

N−1∑
k=0

(α(i+n−1)k − α(i+n)k)
N−k∑
m=1

Qk+m,

where, Ql =
∑

ĥ∈Ĥ(ht−1,θi+n,θl)

∑
τ>t+1

δτ−(t+1)
τ∏

ι=t+2

∆F
(
ĥι

∣∣∣ĥι−1

)
∆u
(
ĥτ |ĥτ−1; q

)
. As be-

fore, after some algebraic manipulation, this becomes:

δ

N−1∑
k=0

(α(i+n−1)k − α(i+n)k)
N−k∑
m=1

Qk+m = δ

N∑
k=1

∆F (θk|θi+n)Qk (3.26)
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Combining (3.25) and (3.26) we obtain:

δ
N∑
k=1

∆F (θk|θi+n)
[
∆u(θk|ht−1, θi+n; q) +Qk

]
(3.27)

= δ

N∑
k=1

∆F (θk|θi+n)
[
∆u(θk|ht−1, θi+n; q)+

∑
ĥ∈Ĥ(ht−1,θi+n,θk)

∑
τ>t+1

δτ−(t+1)

τ∏
ι=t+2

∆F
(
ĥι

∣∣∣ĥι−1

)
∆u
(
ĥτ |ĥτ−1; q

) ]

=
∑

ĥ∈Ĥ(ht−1,θi+n)

∑
τ>t

δτ−t
τ∏

ι=t+1

∆F
(
ĥι

∣∣∣ĥι−1

)
∆u
(
ĥτ |ĥτ−1; q

)

Combining (3.24) and (3.27), we obtain:

U
(
θi|ht−1

)
=

N−i∑
n=1

[
∆u
(
θi+n|ht−1; q

)
+

∑
ĥ∈Ĥ(ht−1,θi+n)

∑
τ>t

δτ−t
τ∏

ι=t+1

∆F
(
ĥι

∣∣∣ĥι−1

)
∆u(ĥτ |ĥτ−1; q)

]
.

Note that:

∆u(θi+1|ht−1; q) = u(θi, q(θi+1|ht−1))−u(θi+1, q(θi+1|ht−1)) =

∫ θi

θi+1

uθ(x, q(θi+1|ht−1))dx

It follows that we have:

U
(
θi|ht−1

)
=

N−i∑
n=1

[ ∫ θi+n−1

θi+n

uθ(x, q(θi+n|ht−1))dx+

∑
ĥ∈Ĥ(ht−1,θi+n)

∑
τ>t

δτ−t
τ∏

ι=t+1

∆F
(
ĥι

∣∣∣ĥι−1

)∫ ĥτ+∆θ

ĥτ

uθ(x, q(ĥτ |ĥτ−1))dx
]
.

This proves Corollary 1. Subtracting U(θi+1|ht−1) and dividing by ∆θ from the above

expression gives us Lemma 1.
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3.10.2 Proof of Proposition 2

Recall that ∆U(θk |ht−1, θi ) = U(θk |ht−1, θi )−U(θk |ht−1, θi+1 ). We start with some

useful lemmas.

Lemma A2. If q(θi|ht−1) and ∆U(θk |ht−1 ) are non increasing in, respectively, i and

k for any ht−1, then (3.5) implies that local upward incentive compatibility constraints

are satisfied.

Proof. Condition (3.5) implies that local downward constraints, ICi,i+1(ht−1), hold

as equality for any i and ht−1, that is:

U(θi|ht−1) = U(θi+1|ht−1) + ∆θq(θi+1|ht−1) + δ
N∑
k=0

(
αik − α(i+1)k

)
U(θk|ht−1, θi+1).

Thus,

U(θi+1|ht−1)− U(θi|ht−1) = −∆θq(θi+1|ht−1)− δ
N∑
k=0

(
αik − α(i+1)k

)
U(θk|ht−1, θi+1))

= −∆θq(θi|ht−1) + δ
N∑
k=0

(
α(i+1)k − αik

)
U(θk|ht−1, θi)

+ ∆θ
(
q(θi|ht−1)− q(θi+1|ht−1)

)
+

δ
N∑
k=0

(
αik − α(i+1)k

)
∆U(θk|ht−1, θi)

≥ −∆θq(θi|ht−1) + δ
N∑
k=0

(
α(i+1)k − αik

)
U(θk|ht−1, θi),

where the last inequality follows from the fact that q(θi|ht−1) is non increasing in i

and
N∑
k=0

(αik − α(i+1)k)∆U(θk |ht−1, θi ) ≥ 0. The second observation follows from the

fact that ∆U(θk |ht−1, θi ) is non increasing in k, and that αik first order stochastically

dominates α(i+1)k. Thus, ICi+1,i(h
t−1) holds. �

Lemma A3. If q(θi|ht−1) and ∆U(θk |ht−1 ) are non increasing in, respectively, i

and k for any ht−1 and (3.5) holds, then the local incentive compatibility constraints
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imply the global incentive compatibility constraints.

Proof. We show that ICi,i+2(ht−1) holds. The envelope formula (3.5) is equivalent to

assuming that all the local downward incentive compatibility constraints are satisfied

as equalities. From ICi,i+1(ht−1) and ICi+1,i+2(ht−1) we have:

U(θi|ht−1)− U(θi+2|ht−1)

=
[
U(θi|ht−1)− U(θi+1|ht−1)

]
+
[
U(θi+1|ht−1)− U(θi+2|ht−1)

]
= ∆θq(θi+1|ht−1) + δ

N∑
k=0

(
αik − α(i+1)k

)
U(θk|ht−1, θi+1)

+ ∆θq(θi+2|ht−1) + δ
N∑
k=0

(
α(i+1)k − α(i+2)k

)
U(θk|ht−1, θi+2).

It follows that:

U(θi|ht−1)− U(θi+2|ht−1)

= 2∆θq(θi+2|ht−1) + δ
N∑
k=0

(
αik − α(i+2)k

)
U(θk|ht−1, θi+2)

+∆θ
(
q(θi+1|ht−1)− q(θi+2|ht−1)

)
+ δ

N∑
k=0

(
αik − α(i+1)k

)
∆U(θk|ht−1, θi+1)

≥ ∆θq(θi+2|ht−1) + δ
N∑
k=0

(
α(i+1)k − α(i+2)k

)
U(θk|ht−1, θi+2),

where the last inequality follows from the fact that q(θi|ht−1) is non increasing in i

and
N∑
k=0

(αik − α(i+1)k)∆U(θk |ht−1, θi ) ≥ 0. As in the previous lemma, the second

observation follows from the fact that ∆U(θk |ht−1, θi ) is non increasing in k, and

that αi+1k first order stochastically dominates α(i+2)k. Thus, ICi,i+2(ht−1) holds.

Similarly we can show that ICi,i+l(ht−1) holds for all l ≤ N − i. Therefore, all global

downward incentive constraints are satisfied. In an analogous fashion, we can show

that all upward global incentive constraints are satisfied. �

Given the lemmas presented above, Proposition 2 is proven if we establish that
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when the allocation is monotonic as defined in Definition 2, then q(θi|ht−1) and

∆U(θk |ht−1, θi ) are non increasing in i for any ht−1. The fact that q(θi|ht−1) is

non increasing in i for any ht−1 is an immediate consequence of the monotonicity.

The fact that ∆U(θk |ht−1, θi ) is non increasing in i for any ht−1 is established by the

following result.

Lemma A4. If the allocation is monotonic as in Definition 2, then ∆U(θk |ht−1 ) is

non increasing in k ∀ht−1.

Proof. Note first that U(θN |ht−1, θi ) = U(θN |ht−1, θi+1 ) = 0, so ∆U(θN |ht−1, θi ) =

0. By Lemma 1, we have:

U(θN−1|ht−1, θi) =

∫ θN−1

θN

uθ(x, q(θN |ht−1, θi))dx

+
∑

ĥ∈Ĥ(ht−1,θi,θN−1)

∑
τ>t+1

δτ−t−1


τ∏

ι=t+2

∆F
(
ĥι

∣∣∣ĥι−1

)
·
∫ ĥτ+∆θ

ĥτ
uθ(x, q(ĥτ |ĥτ−1))dx


(3.28)

It is useful to write this expression with a different notation. Let Ĥt(i) be set of

realizations of length T − t that start with the first element equal to θi (we denote th

is the typical element of Ĥt(i), so th1 = θi). A history hτ ∈ Ĥ (ht) with (t + 1)-th

element equal to θi (hτt+1 = θi) is then hτ = {ht,t hτ−t} for th ∈ Ĥt(i) (by convention

we write ht = {ht,t h0}). We can then write:

U(θN−1

∣∣ht−1, θi ) =

∫ θN−1

θN

uθ(x, q(θN |ht−1, θi))dx+

∑
th∈Ĥt(N−1)

∑
τ>t+1

δτ−t−1


τ∏

l=t+2

∆F (thl |thl−1 ) ·∫
thτ+∆θ

thτ
uθ(x, q(thτ |ht−1, θi,t h

τ−t−1))

 (3.29)
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Similarly we can write:

U(θN−1

∣∣ht−1, θi+1 )

∫ θN−1

θN

uθ(x, q(θN |ht−1, θi+1))dx+

∑
th∈Ĥt(N−1)

∑
τ>t+1

δτ−t−1


τ∏

l=t+2

∆F (thl |thl−1 ) ·∫
thτ+∆θ

thτ
uθ(x, q(thτ |ht−1, θi+1,t h

τ−t−1))dx

 (3.30)

Therefore we have:

∆U(θN−1

∣∣ht−1, θi ) =∫ θN−1

θN

[
uθ(x, q(θN |ht−1, θi))− uθ(x, q(θN |ht−1, θi+1))

]
dx

+
∑

th∈Ht(N−1)

∑
τ>t+1

δτ−t−1


τ∏

l=t+2

∆F (thl |thl−1 )

·
∫
thτ−∆θ

thτ

 uθ(x, q(thτ |ht−1, θi,t h
τ−t−1))

−uθ(x, q(thτ |ht−1, θi+1,t h
τ−t−1))

 dx


Note that by monotonicity, we must have q(θN |ht−1, θi)− q(θN |ht−1, θi+1) ≥ 0 and

q(thτ |ht−1, θi,t h
τ−t−1)− q(thτ |ht−1, θi+1,t h

τ−t−1) ≥ 0

The above condition plus the single crossing condition (Assumption 1) imply that

∆U(θN−1 |ht−1, θi ) ≥ ∆U(θN |ht−1, θi ). Assume now that ∆U(θj |ht−1, θi ) is mono-

tonic in j for j ≥ m. We show below that ∆U(θm−1 |ht−1, θi ) ≥ ∆U(θm |ht−1, θi ),

the result then follows from induction. Applying Lemma 1 and using the notation
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developed above, we have:

∆U(θm−1

∣∣ht−1, θi )

= ∆U(θm
∣∣ht−1, θi ) +

∫ θN−1

θN

[
uθ(x, q(θm|ht−1, θi))− uθ(x, q(θm|ht−1, θi+1))

]
dx

+
∑

th∈Ht(m−1)

∑
τ>t+1

δτ−t−1


τ∏

l=t+2

∆F (thl |thl−1 )

·
∫
thτ−∆θ

thτ

 uθ(x, q(thτ |ht−1, θi,t h
τ−t−1))

−uθ(x, q(thτ |ht−1, θi+1,t h
τ−t−1))

 dx


Thus, the single crossing condition and monotonicity of the allocation imply

∆U(θm−1

∣∣ht−1, θi ) ≥ ∆U(θm
∣∣ht−1, θi ).

�

3.10.3 Proofs of Propositions 3

For 0 < i < N , define Ψi(fα) as:

Ψi(fα) =

[
∆Fα(θi|θi+1)

fα(θi|θi+1)
· ∆Fα(θi+1|θi)
fα(θi+1|θi)

]

=

N∑
k=i+1

[fα(θk|θi)− fα(θk|θi−1)]

fα(θi+1|θi)
·

N∑
k=i

[fα(θk|θi+1)− fα(θk|θi)]

fα(θi|θi+1)

In Lemma A5 we prove that if:

lim
α→1

Ψi(fα) 6= 1 for some i ∈ (0, N) (3.31)

then the optimal contract is not monotonic as α → 1. In Lemma A6 we prove that

condition (3.31) is generically satisfied.

146



Lemma A5. For any µ, δ, |Θ| > 2, T > 2, if limα→1 Ψi(fα) 6= 1 for some i ∈ (0, N),

then there is an α∗ < 1 such that the FO-optimal contract is not monotonic for any

α > α∗.

Proof. Suppose firstD = limα→1 Ψi(fα) < 1. We show that limα→1 q(θi|θi, θi+1) >

limα→1 q(θi|θi, θi). Note that

sq(θi, q(θ|θi, θi)) ≤
1−

∑N
k=i µk
µi

·
[

∆Fα(θi|θi)
fα(θi|θi)

· ∆Fα(θi|θi)
fα(θi|θi)

]
·
∫ θi−1

θi

uθ,q(x, q(θi|θi, θi)dx

and

sq(θi, q(θi|θi, θi+1)) ≤

1−
∑N

k=i µk
µi

·
[

∆Fα(θi|θi+1)

fα(θi|θi+1)
· ∆Fα(θi+1|θi)
fα(θi+1|θi)

]
·
∫ θi−1

θi

uθ,q(x, q(θi|θi, θi+1)dx.

Let q1 = limα→1 q(θi|θi, θi). Distortions converge to 1 along constant histories, so

q1 = q(θi|h0).40 By Assumption 3, since the static optimum is an interior solution,

we have

sq(θi, q1) =
1−

∑N
k=i µk
µi

·
∫ θi−1

θi

uθ,q(x, q1)dx.

Also, letting q2 = limα→1 q(θi|θi, θi+1), we have

sq(θi, q2) ≤ 1−
∑N

k=i µk
µi

·D.
∫ θi−1

θi

uθ,q(x, q2)dx.

It follows that:

Φq(θi, q1) = sq(θi, q1)− 1−
∑N

k=i µk
µi

·
∫ θi−1

θi

uθ,q(x, q1)dx

= 0 ≥ sq(θi, q2)− 1−
∑N

k=i µk
µi

·D ·
∫ θi−1

θi

uθ,q(x, q2)dx

> sq(θi, q2)− 1−
∑N

k=i µk
µi

·
∫ θi−1

θi

uθ,q(x, q2)dx = Φq(θi, q2),

40This follows from the fact that limα→1 ∆Fα(θi|θi)/fα(θi|θi) = 1.

147



where the strict inequality follows from D < 1. Since Φ is concave, we have q2 > q1.

Next, suppose D = limα→1 Ψi(fα) > 1. Then, analogous to the steps above we

show that limα→1 q(θi+1|θi+1, θi+1) > limα→1 q(θi+1|θi+1, θi). Letting q3 =

limα→1 q(θi+1|θi+1, θi), and q4 = limα→1 q(θi+1|θi+1, θi+1), we get

sq(θi, q4) =
1−

∑N
k=i+1 µk

µi+1

·
∫ θi

θi+1

uθ,q(x, q4)dx

and,

sq(θi, q3) ≤
1−

∑N
k=i+1 µk

µi+1

·D.
∫ θi

θi+1

uθ,q(x, q3)dx

Thus, using D > 1, we obtain Φq(θi+1, q3) < Φq(θi+1, q4), implying q4 > q3. �

We now prove that (3.31) is generically satisfied. Define

Γi =
{
fα ∈ Λ | lim

α→1
Ψi(fα) 6= 1

}

We will show that Γi is open and dense in Λ, thereby establishing that Γ = ∪N−1
i=1 Γi

is open and dense in Λ, proving our result.

Lemma A6. (3.31) is a generic property of Λ.

Proof. Note that Λ is a space of functions from [0, 1] to [0, 1]N+1× [0, 1]N+1 that

satisfy Assumption 2. Endow this space with the sup norm:

‖f‖ = sup
α∈[0,1]

max
i∈{0,..,N}, j∈{0,..,N}

fα(θi|θj).

Given an i ∈ (0, N), we proceed in two steps.

Step 1. We first prove that Γi is open. Assume not. Then for some fα ∈ Γi and

any ε-neighborhood Nε(fα) of fα we can find a f ′α ∈ Γi = Λ\ Γi. It follows that there

exists a sequence (fnα ) ∈ Γi such that fnα → fα. By definition limα→1 Ψi(f
n
α ) = 1 for
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all n. Since Ψi(f) is continuous in f , this implies

lim
α→1

Ψ(fα) = lim
α→1

lim
n→∞

Ψ(fnα ) = lim
n→∞

lim
α→1

Ψ(fnα ) = 1

proving that fα ∈ Γi, a contradiction.

Step 2. Next we prove that the Γi is dense in Λ. To this goal we need to prove

that for any fα ∈ Λ and ε > 0, there is a function f ′α such that and ‖f − f ′‖ < ε and

f ′α ∈ Γi. If fα ∈ Γi, then the result is immediate. Assume therefore that fα ∈ Γi.

Let f̃ be a constant stochastic matrix that satisfies first order stochastic dominance

strictly and with f̃(θk|θi) > 0 for all i, k. Fix ε > 0 and define

f ′α = ε(α)f̃ + (1− ε(α)) fα

where ε(α) is a non negative function of α with ε(α) ≤ ε ∀α. Then, is easy to see

that ‖f − f ′‖ < ε. Moreover,

Ψi(f
′

α) =

N∑
k=i

 fα(θk|θi+1)−fα(θk|θi)
fα(θi|θi+1)

+ ε(α)
1−ε(α)

f̃(θk|θi+1)−f̃(θk|θi)
fα(θi|θi+1)


1 + ε(α)

1−ε(α)
f̃(θi|θi+1)
fα(θi|θi+1)

·

N∑
k=i+1

 fα(θk|θi)−fα(θk|θi−1)
fα(θi+1|θi)

+ ε(α)
1−ε(α)

f̃(θk|θi)−f̃(θk|θi−1)
fα(θi+1|θi)


1 + ε(α)

1−ε(α)
f̃(θi+1|θi)
fα(θi+1|θi)

(3.32)

Since fα(θi|θi+1) and fα(θi+1|θi) both converge to zero as α→ 1, there are two cases to

consider. Assume first limα→1
fα(θi|θi+1)
fα(θi+1|θi) = 0. In this case choose ε(α) = fα(θi|θi+1).

We have:

lim
α→1

Ψi(f
′

α) =
1

1 + f̃(θi|θi+1)

[
1 +M

N∑
k=i

(
f̃(θk|θi+1)− f̃(θk|θi)

)]

where M = limα→1

N∑
k=i+1

[
fα(θk|θi)−fα(θk|θi−1)

fα(θi+1|θi)

]
. If M = 0, then limα→1 Ψi(f

′
α) = 1/(1 +

f̃(θi|θi+1)) < 1; if M =∞, then limα→1 Ψi(f
′
α) =∞. It follows that limα→1 Ψi(f

′
α) =
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1 only if M is a bounded non negative constant and:

M = f̃(θi|θi+1)/
N∑
k=i

(
f̃(θk|θi+1)− f̃(θk|θi)

)
. (3.33)

Since f̃ is as a generic transition matrix that satisfies first-order stochastic dominance

strictly, we have a contradiction. To see this, assume (3.33) holds and consider a

matrix f̂ that is equal to f̃ except that f̂(θi|θi+1) = f̃(θi|θi+1)− ε and f̂(θi+1|θi+1) =

f̃(θi+1|θi+1) + ε where ε > 0 is a arbitrarily small. The new matrix still satisfies first

order stochastic dominance strictly and it has f̂(θi|θi+1)/
N∑
k=i

(
f̂(θk|θi+1)− f̂(θk|θi)

)
<

M. We can then repeat the argument presented above choosing f̂ instead of f̃ and

obtain a contradiction. In the case in which fα(θi+1|θi)
fα(θi|θi+1)

→ 0 we choose ε(α) =

fα(θi+1|θi) and we proceed proving the result as in the previous case. �

3.10.4 Proof of Proposition 4

We prove that for any µ, |Θ| > 2 and a generic transition probability function, there

exists an α∗ < 1, T ∗, and δ∗ < 1 such that the first-order approach fails to be verified

for any α > α∗, T ≥ T ∗ and δ > δ∗ if limα→1 Ψi(fα) 6= 1 for some i ∈ (0, N). Given

this, the statement of the proposition follows from Lemma A6.

Note that as α → 1, ∆Fα(θk|θk) → 1 and ∆Fα(θj|θk) → 0 for ∀k 6= j. We have

two cases to consider:

Case 1: D = limα→1 Ψi(fα) < 1. We prove the result by showing that the FO-optimal

contract violates the second period global incentive constraint ICi−1,i+1(θi). To this

end, we first make a useful observation.
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Lemma A7. ICi−1,i+1(ht−1) holds if and only if

∫ θi−1

θi

 uθ(x, q(θi|ht−1))

−uθ(x, q(θi+1|ht−1))

 dx+ δ

N∑
k=0

 (fα(θk|θi−1)− fα(θk|θi)) ·

(U(θk|ht−1, θi)− U(θk|ht−1, θi+1))

 ≥ 0

(3.34)

where U(θk|ht−1, θi) = U∗(θk |ht−1, θi; q), as defined in (5) in the paper.

Proof. The global incentive compatibility constraint ICi−1,i+1(ht−1) can be written

as:

U(θi−1|ht−1)− U(θi+1|ht−1) ≥ u(θi−1, q(θi+1|ht−1))− u(θi+1, q(θi+1|ht−1))

+δ
N∑
k=0

(fα(θk|θi−1)− fα(θk|θi+1))U(θk|ht−1, θi+1) (3.35)

Note that

U(θi−1|ht−1)−U(θi+1|ht−1) =
(
U(θi−1|ht−1)− U(θi|ht−1)

)
+
(
U(θi|ht−1)− U(θi+1|ht−1)

)
.

So using ICi−1,i(h
t−1) and ICi,i+1(ht−1), we have:

U(θi−1|ht−1)− U(θi+1|ht−1)−

 u(θi−1, q(θi+1|ht−1))− u(θi+1, q(θi+1|ht−1))

+δ
N∑
k=0

(fα(θk|θi−1)− fα(θk|θi+1))U(θk|ht, θi+1)


(3.36)

=

 u(θi−1, q(θi|ht−1))− u(θi, q(θi|ht−1))

+u(θi, q(θi+1|ht−1))− u(θi−1, q(θi+1|ht−1))

+

δ
N∑
k=0

 (fα(θk|θi−1)− fα(θk|θi))

· (U(θk|ht−1, θi)− U(θk|ht−1, θi+1))


Using (3.35) and (3.36), it follows that that ICi−1,i(h

t−1) holds if and only if (3.34)
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holds. �

So, ICi−1,i+1(θi) holds if and only if

∫ θi−1

θi

 uθ(x, q(θi|θi))

−uθ(x, q(θi+1|θi))

 dx+ δ

N∑
k=0

 (fα(θk|θi−1)− fα(θk|θi)) ·

(U(θk|θi, θi)− U(θk|θi, θi+1))

 ≥ 0

We first note that:

N∑
k=0

(fα(θk|θi−1)− fα(θk|θi)) [U(θk|θi, θi)− U(θk|θi, θi+1)]

= fα(θi−1|θi−1)

 U(θi−1|θi, θi)

−U(θi−1i|θi, θi+1)

− fα(θi|θi)

 U(θi|θi, θi)

−U(θi|θi, θi+1)

+ o(α)

where o(α) is such that o(α)→ 0 as α→ 1. Either the distortions are finite in which

case the first-order quantities are finite, or the distortions go to infinity in which case

the non-negativity constraint binds and quantities are zero. Thus, all the quantities

along non-constant histories remain finite in the limit and the associated probabilities

converge to zero. Hence, o(α)→ 0 as α→ 1.

Next, let h̃t(θ) be an history in which the realization is θ in every period for t

periods. Using (3.4), we have:

U(θi−1|θi, θi)− U(θi|θi, θi) =
T∑
t=3

(δ∆Fα(θi |θi ))t−3∆u(θi|h̃t−1(θi)) + o(α)

=
T∑
t=3

 (δ∆Fα(θi |θi ))t−3

·
[∫ θi−1

θi
uθ(x, q(θi|h̃t−1(θi)))dx

]
+ o(α)

Moreover:

U(θi−1|θi, θi+1)− U(θi|θi, θi+1)

=
T∑
t=3

(δ∆Fα(θi |θi ))t−3∆u(θi|θi, θi+1, h̃
t−3(θi)) + o(α)
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=
T∑
t=3

 (δ∆Fα(θi |θi ))t−3

·
[∫ θi−1

θi
uθ(x, q(θi|θi, θi+1, h̃

t−3(θi)))dx
]
+ o(α)

As α→ 1, we have by (3.8), q(θi|h̃t−1(θi))→ q1, defined as the unique solution of:

sq (θi, q1) =
1−

∑N
k=i µk
µi

·
∫ θi−1

θi

uθq(x, q1)dx

and, q(θi|θi, θi+1, h̃
t−3(θi))→ q2, where q2 satisfies

sq(θi, q2) ≤ 1−
∑N

k=i µk
µi

·D.
∫ θi−1

θi

uθ,q(x, q2)dx

As in the proof of Proposition 3, we get q2 > q1. Next,

lim
α→1

N∑
k=0

(fα(θk|θi−1)− fα(θk|θi)) [U(θk|θi, θi)− U(θk|θi, θi+1)]

= lim
α→1

T∑
t=3

(δ∆Fα(θi |θi ))t−3

∫ θi−1

θi

[
uθ(x, q(θi|h̃t−1(θi)))− uθ(x, q(θi|θi, θi+1, h̃

t−3(θi)))
]
dx

=
1− δT−2

1− δ

∫ θi−1

θi

[uθ (x, q1)− uθ (x, q2)] dx

Finally, as α→ 1, ICi−1,i+1(θi) holds only if:

lim
α→1

∫ θi−1

θi

[uθ(x, q(θi|θi))− uθ(x, q(θi+1|θi))] dx

≥ 1− δT−2

1− δ

∫ θi−1

θi

[uθ (x, q2)− uθ (x, q1)] dx (3.37)

The left hand side of (3.37) is clearly bounded for any δ. Since uθ is strictly increasing

in q and q2 > q1, the right hand side of (3.37) diverges to ∞ as δ → 1 and T → ∞.

We conclude that there exist thresholds for δ and T above which the inequality does

not hold.
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Case 2: D = limα→1 Ψi(fα) > 1. We prove the result by showing that the FO-optimal

contract violates the second period upward local incentive constraint ICi+1,i(θi+1). To

this end, we first make a useful observation. Analogous to the arguments in Lemma

A7 above, it is easy to show that ICi+1,i(θi+1) holds if and only if

∫ θi

θi+1

 uθ(x, q(θi|θi+1))

−uθ(x, q(θi+1|θi+1))

 dx+

δ

N∑
k=0

(fα(θk|θi)− fα(θk|θi+1)) ·

 U(θk|θi+1, θi)

−U(θk|θi+1, θi+1)

 ≥ 0

Now,

N∑
k=0

(fα(θk|θi)− fα(θk|θi+1)) [U(θk|θi+1, θi)− U(θk|θi+1, θi+1)]

= fα(θi|θi)

 U(θi|θi+1, θi)

−U(θi|θi+1, θi+1)

− fα(θi+1|θi+1)

 U(θi+1|θi+1, θi)

−U(θi+1|θi+1, θi+1)

+ o(α)

where o(α) is such that o(α) → 0 as α → 1. Then, following the same steps as in

case 1, we get that as α→ 1, ICi+1,i(θi+1) holds as if and only if

lim
α→1

∫ θi

θi+1

[uθ(x, q(θi|θi+1))− uθ(x, q(θi+1|θi+1))] dx

≥ 1− δT−2

1− δ

∫ θi−1

θi

[uθ (x, q4)− uθ (x, q3)] dx

where q3 = limα→1 q(θi+1|θi+1, θi), and q4 = limα→1 q(θi+1|θi+1, θi+1) are as in the

proof of proposition 3 above, and q4 > q3 gives us the result. �
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3.11 Proof of Lemma 2

First, we prove a useful lemma that will be invoked in the proof of Lemma 2.

Lemma A8. The optimal solution satisfies: qL ≤ θL, qL(L) ≤ θL and qM(L) ≤ θM .

Proof. Suppose qL > θL. Then, decrease qL by ε. Since it only appears on the RHS

of incentive constraints and has positive coefficients, this does not violate any of the

constraints. Moreover, the change in the monopolist’s profit is proportional to

(
θL (qL − ε)−

1

2
(qL − ε)2

)
−
(
θLqL −

1

2
q2
L

)
= (qL − θL) ε− 1

2
ε2.

We can choose ε small enough so that the above expression is positive, giving us a

contradiction. We can similarly show that qL(L) ≤ θL.

Next, suppose qM(L) > θM . Note that the second period incentive constraints

after history L give

∆θqL(L) ≤ uM(L)− uL(L) ≤ ∆θqM(L).

Without loss of generality, ICML(L) can be assumed to hold as an equality. Suppose

uM(L) − uL(L) > ∆θqL(L). Then, decrease uM(L) so that ICML(L) holds as an

equality. This does not violate any constraints and keeps the profit of the monopolist

the same.

If ICLM(L) holds as an equality, then we must have qM(L) = qL(L) ≤ θL < θM ,

giving a contradiction. If ICLM(L) does not hold as an equality, then we can decrease

qM(L) by ε without disturbing any of the constraints. Moreover, the change in the

monopolist’s profit is proportional to the following expression:

(
θM (qM(L)− ε)− 1

2
(qM(L)− ε)2

)
−
(
θMqM(L)− 1

2
qM(L)2

)
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= (qM(L)− θM) ε− 1

2
ε2.

We can choose ε small enough so that the above expression is positive, giving us a

contradiction. �

Now, we show that IRL binds. Suppose not. Decrease UH , UM , UL by the same

small amount. The first period incentive compatibility constraints continue to hold

and the second period constraints are unaffected. This increases the profit of the

monopolist without disturbing any of the constraints, giving us a contradiction. Thus,

UL = 0. Next, we show that ICML binds. Suppose not. Decrease UM by ε. Then,

all the constraints are satisfied and we increase the monopolist’s profit, giving us a

contradiction. Using these two binding constraints we can eliminate UL and UM from

the maximization problem. In particular, ICHM can now be written as

UH ≥ ∆θ (qM + qL) + δ
3α− 1

2
[(uH(M)− uM(M)) + (uM(L)− uL(L))]

Also, ICHL is given by

UH ≥ 2∆θqL + δ
3α− 1

2
[uH(L)− uL(L)]

First, note that at least one of ICHM and ICHL must bind. If not, then we can

decrease UH and increase the monopolist’s profit. Suppose ICHM does not bind.

Then, ICHL must bind. Thus, we can eliminate UH from the maximization problem.

In particular, ICHM can now be written as

∆θqL + δ
3α− 1

2
[uH(L)− uM(L)] ≥ ∆θqM + δ

3α− 1

2
[uH(M)− uM(M)] (3.38)

Second, we claim that if ICML and ICHL bind and ICHM does not bind, then

ICHM(L) binds. Suppose uH(L) − uM(L) > ∆θqM(L). Decrease uH(L) by ε (and
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so UH by δ(αHH − αLH)ε and UM by δ(αMH − αLH)ε), thereby, increasing the profit

of the monopolist without disturbing any of the remaining constraints, giving us a

contradiction. Thus, ICHM(L) must bind.

Using ICHM(M) and the binding ICHM(L) we can rewrite (3.38) to obtain:

∆θqL + δ
3α− 1

2
∆θqM(L) ≥ ∆θqM + δ

3α− 1

2
∆θqM(M)

Since ICHM does not bind, it is easy to see that qM = θM and q
i
(M) = θi for any

i. By Lemma A8, we have qL ≤ θL (and thus qL < θM) and qM(L) ≤ θM . These

clearly contradict the above inequality. Thus, we must have that ICHM binds. �

3.12 Proof of Lemma 4

For the reminder of the proof, it is useful to state the first-order conditions of the

WR-problem. It is easy to see that the H type always gets the efficient quantity.

After history H, moreover, quantities are always efficient, implying: qH = qH(M) =

qH(L) = θH and qH(H) = θH , qM(H) = θM , qL(H) = θL. The remaining first-order

conditions are given by:

[qM ] : µM (θM − qM)− µH∆θ + λ∆θ = 0

[qL] : µL (θL − qL)− (µH + µM) ∆θ − λ∆θ = 0

[qM(M)] : µMδα (θM − qM(M))− λHM(M)∆θ + λLM(M)∆θ = 0

[qL(M)] : µMδ
1− α

2
(θL − qL(M))− λML(M)∆θ = 0

[qM(L)] : µLδ
1− α

2
(θM − qM(L))− λHM(L)∆θ + λLM(L)∆θ = 0
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[qL(L)] : µLδα (θL − qL(L))− λML(L)∆θ = 0

[ωHM(M)] : − µHδ
3α− 1

2
+ λδ

3α− 1

2
+ λHM(M) = 0

[ωML(M)] : λML(M)− λLM(M) = 0

[ωHM(L)] : − λδ3α− 1

2
+ λHM(L) = 0

[ωML(L)] : − (µH + µM) δ
3α− 1

2
+ λML(L)− λLM(L) = 0

We can now proceed with the proof. In the reminder of this section, we firs

characterize the optimal allocation assuming λ = 0. We then derive the conditions

under which the assumption of λ = 0 is admissible.

Assuming λ = 0, we have

qM = θM −
µH
µM

∆θ and qL = θL −
µH + µM

µL
∆θ. (3.39)

Clearly, λ = 0 implies λHM(L) = 0. Also, it is easy to show that λLM(L) = 0,

else qM(L) > θM , which contradicts lemma A8. We therefore have λML(L) =

(µH + µM) δ 3α−1
2

, and the solution after history L is given by:

qM(L) = θM and qL(L) = θL −
µH + µM

µL

3α− 1

2α
∆θ. (3.40)

Next, note that we must have λHM(M) = µHδ
3α−1

2
and λML(M) = λLM(M). We

have two possible cases:

Case 1 (Region A1). λML(M) = λLM(M) = 0. In this case:

qM(M) = θM −
µH
µM

3α− 1

2α
∆θ and qL(M) = θL (3.41)

158



For this to be a solution, we must have θM − µH
µM

3α−1
2α

∆θ ≥ θL, so α ≤ α0(µM) where

α0(µM) =
µH

3µH − 2µM
.

We conclude that for α ≤ α0(µM) the solution is given by qH = θH , qH(j) = θH ,

qj(H) = θj for all j = H,M,L in addition to (3.39)-(3.41).

Case 2 (Region A2). λML(M) = λLM(M) > 0. Then, qM(M) and qL(M) are

both equal to a constant q. From the first order condition with respect to qM(M)

and qL(M) we have:

qM(M) = qL(M) =
2α

1 + α
θM +

1− α
1 + α

θL −
µH
µM

3α− 1

1 + α
∆θ. (3.42)

We conclude that for α > α0(µM) the solution is given by qH = θH , qH(j) = θH ,

qj(H) = θj for all j = H,M,L, (3.39)-(3.40) and (3.42).

To characterize the necessary and sufficient condition for λ = 0, we need to verify

that given the solution defined above, ICHL is satisfied. Plugging in the values of

Case 1, we obtain:

θM −
µH
µM

∆θ + δ
3α− 1

2

(
θM −

µH
µM

3α− 1

2α
∆θ

)
≥ θL −

µH + µM
µL

∆θ + δ
3α− 1

2
θM ,

(3.43)

that is,

µM ≥
µL (1− µL)

(
1 + δ

α

(
3α−1

2

)2
)

1 + µL

(
1 + δ

α

(
3α−1

2

)2
) = µ∗1 (α) (3.44)

Plugging in the values of Case 2, we obtain:

θM −
µH
µM

∆θ + δ
3α− 1

2

(
2α

1 + α
θM +

1− α
1 + α

θL −
µH
µM

3α− 1

1 + α
∆θ

)
≥

θL −
µH + µM

µL
∆θ + δ

3α− 1

2
θM , (3.45)
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that is,

µM ≥
µL(1− µL)

(
1 + δ (3α−1)2

2(1+α)

)
1 + µL

(
1− δ 3α−1

1+α
(1− 2α)

) = µ∗2 (α) (3.46)

Let us define µ∗ (α) = min{µ∗1 (α) , µ∗2 (α)}. We have the following result.

Lemma A9. If α, µM is such that µM ≥ µ∗ (α) and α ≤ α0(µM) then the optimal

contract is as described in Case 1 presented above. If µ ≥ µ∗ (α) and α > α0(µM)

then the optimal contract is as described in Case 2 presented above.

Proof. We first prove that when α ≤ α0(µM), then µM ≥ µ∗ (α) implies µM ≥

µ∗1 (α). To this end, we prove the counterpositive: when α ≤ α0(µM), µM < µ∗1 (α)

implies µM < µ∗ (α). Note that: 1. the left hand side of (3.43) and (3.45) are the

same; 2. the right hand side of (3.43) is not larger than the right hand side of (3.45)

if and only if µM
µH
≤ 2α

3α−1
, that is if α ≤ α0(µM). It follows that if µM < µ∗1 (α), then

neither (3.43) nor (3.45) hold, implying µM < µ∗2 (α) as well: we therefore conclude

that µM < µ∗ (α). Given this, the conditions µM ≥ µ∗ (α) and α ≤ α0(µM) imply

the conditions µM ≥ µ∗1 (α) and α ≤ α0(µM), so by the discussion presented above,

the allocation described in Case 1 is an optimal solution of the WR-problem. By a

similar argument, we can prove that when α > α0(µM), then µM ≥ µ∗ (α) implies

µM ≥ µ∗2 (α). This implies that when we have µM ≥ µ∗ (α) and α > α0(µM), then

the allocation described in Case 2 is an optimal solution of the WR-problem. �

Finally note that Case 1 and Case 2 described above are the only possible alloca-

tions consistent with λ = 0. So, if µM < µ∗ (α), the Largrange multiplier of ICHL

must be binding.

3.13 Proof of Proposition 6

The result follows from Lemma A9. �
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3.14 Proof of Proposition 7

We first prove a useful lemma.

Lemma A10. The optimal solution satisfies: qL ≤ θL − µH+µM
µL

∆θ, qL(L) ≤ θL −
µH+µM
µL

3α−1
2α

∆θ and qL(M) ≤ θL.

Proof. We proceed in 3 steps.

Step 1. Suppose qL > θL − µH+µM
µL

∆θ. Now, decrease qL by ε. All the constraints

are still satisfied. The change in the monopolist’s profit is given by

µL

[
−θLε−

1

2

(
(qL − ε)2 − (qL)2

)]
+ (µH + µM)∆θε

= µL

[(
qL −

(
θL −

µH + µM
µL

∆θ

))
ε− 1

2
ε2
]
,

which is greater than zero for small enough ε, giving us a contradiction.

Step 2. Suppose qL(L) > θL− µH+µM
µL

3α−1
2α

∆θ. Now, decrease qL(L) by ε and ωML(L)

by ∆θε. All the constraints are still satisfied. The change in the monopolist’s profit

is given by

µLδα

[
−θLε−

1

2

(
(qL(L)− ε)2 − (qL(L))2

)]
+ (µH + µM)δ

3α− 1

2
∆θε

= µLδα

[(
qL(L)−

(
θL −

µH + µM
µL

3α− 1

2α
∆θ

))
ε− 1

2
ε2
]
,

which is greater than zero for small enough ε, giving us a contradiction.

Step 3. Suppose qL(M) > θL. Now, decrease qL(M) by ε and ωML(M) by ∆θε. All

the constraints are still satisfied. The change in the monopolist’s profit is given by

µMδ
1− α

2

[
−θLε−

1

2

(
(qL(M)− ε)2 − (qL(M))2

)]
=

µMδ
1− α

2

[
[(qL(M)− θL) ε− 1

2
ε2
]
,
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which is greater than zero for small enough ε, giving us a contradiction. �

Keep in mind that λ > 0⇒ λHM(L) > 0. It follows from the first order condition

with respect to ωHM(L). Next, in order to characterize the quantities after history

M , we prove a useful lemma.

Lemma A11. λ > 0⇒ λHM(M) > 0.

Proof. Assume by contradiction that λHM(M) = 0. Then, we must have λML(M) =

λLM(M) = 0. Assuming them strictly positive gives us qM(M) = qL(M). Also, from

the first order condition for qM(M), we obtain qM(M) > θM , implying qL(M) > θM >

θL, a contradiction to Lemma A9. Thus, λ = µH and qM = qM(M) = θM .

Next, we note that if λ > 0, then qM(L) < θM . To see this point, consider the

first-order condition with respect to qM(L). Since, λHM(L) > 0, if λLM(L) = 0 then

it follows immediately that qM(L) < θM . If λLM(L) > 0, then qM(L) = qL(L) < θL <

θM , where the first inequality follows from Lemma A10.

Using these facts, we can now write:

∆θqM+δ
3α− 1

2
ωHM(M) = ∆θ · θM + δ

3α− 1

2
ωHM(M) ≥ ∆θ · θM + δ

3α− 1

2
∆θqM(M)

(3.47)

= ∆θ · θM + δ
3α− 1

2
∆θ · θM > ∆θqL + δ

3α− 1

2
∆θqM(L)

= ∆θqL + δ
3α− 1

2
ωHM(L).

The strict inequality proven in (3.47) contradicts λ > 0. Thus, we must have

λHM(M) > 0 as requested. This completes the proof of Lemma A11. �

We divide the proof of Proposition 4 into two steps. First, in Section 7.1, we

assume that ICLM(L) is not binding and we characterize the parameter region in

which this assumption is correct. This will allow us to define the regions B1 and

B2 described in Proposition 7. Then, in Section 7.2, we characterize the optimal
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contract when ICLM(L) is binding, region B3.

3.14.1 Characterization of Regions B1 and B2

Let us assume λLM(L) = 0. Since µM < µ∗(α), we have λ > 0. From the first order

conditions, we obtain:

qM = θM −
µH − λ
µM

∆θ, qL = θL −
µH + µM + λ

µL
∆θ (3.48)

qM(L) = θM −
λ

µL

3α− 1

1− α
∆θ, qL(L) = θL −

µH + µM
µL

3α− 1

2α
∆θ (3.49)

Since λ > 0, we have λHM(M) > 0 and λHM(L) > 0. Thus,

qM + δ
3α− 1

2
qM(M) = qL + δ

3α− 1

2
qM(L) (3.50)

There are two relevant cases. We use λ1 to denote λ from Case 1 and λ2 from Case 2.

Case 1 (Region B1). λML(M) = λLM(M) = 0. Then, from the first-order

conditions:

qM(M) = θM −
µH − λ1

µM

3α− 1

2α
∆θ and qL(M) = θL (3.51)

Substituting, the values from (3.48)-(3.49) and (3.51) in equation (3.50) we obtain:

1 + λ1

µL
+ δ

3α− 1

2

λ1

µL

3α− 1

1− α
=
µH − λ1

µM
+ δ

3α− 1

2

µH − λ1

µM

3α− 1

2α
(3.52)

which gives:

λ1 = λ1 (α) =

µH
µM

(
1 + δ 3α−1

2
3α−1

2α

)
− 1

µL
1
µM

(
1 + δ 3α−1

2
3α−1

2α

)
+ 1

µL

(
1 + δ 3α−1

2
3α−1
1−α

) (3.53)

Clearly, for this case to be valid, we must justify the assumption that λML(M) =
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λLM(M) = 0. A necessary and sufficient condition for this is qM(M) ≥ qL(M).

Given (3.51), this condition can be rewritten as: µH−λ1

µM

3α−1
2α
≤ 1, where λ1 is given

by (3.53). This condition is implied by:

µM ≥
1 + (1− µL)b0(α)− µLc0(α)a0(α)

b0(α) (1 + c0(α))
= µ0(α),

where

a0(α) = 1 + δ
3α− 1

2

3α− 1

2α
, b0(α) = 1 + δ

3α− 1

2

3α− 1

1− α
, and c0(α) =

2α

3α− 1

It follows that (under the assumption that λLM(L) = 0) the solution is given by

(3.48)-(3.49), (3.51) and (3.53) when when µM ≥ µ0(α).

Case 2 (Region B2). For µM < µ0(α) we must have λML(M) = λLM(M) > 0. In

this case, we must have:

qM(M) = qL(M) =
2α

1 + α
θM +

1− α
1 + α

θL −
µH − λ2

µM

3α− 1

1 + α
∆θ (3.54)

Substituting qM(M) and qM(L) equation (3.50) we obtain:

1 + λ2

µL
+ δ

3α− 1

2

(
λ2

µL

3α− 1

1− α
− 1− α

1 + α

)
=
µH − λ2

µM
+ δ

3α− 1

2

µH − λ2

µM

3α− 1

1 + α

(3.55)

which gives

λ2 =

µH
µM

(
1 + δ 3α−1

2
3α−1
1+α

)
−
(

1
µL
− δ 3α−1

2
1−α
1+α

)
1
µM

(
1 + δ 3α−1

2
3α−1
1+α

)
+ 1

µL

(
1 + δ 3α−1

2
3α−1
1−α

) (3.56)

It follows that (under the assumption that λLM(L) = 0) the solution is given by

(3.48)-(3.49), (3.54) and (3.56) when µM < µ0(α).

We now complete the analysis of this section by characterizing the conditions

under which we can ignore the ICLM(L) constraint and so λLM(L) = 0. It is easy to
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see that ICLM(L) is satisfied if and only if qM(L) ≥ qL(L). We have qM(L) ≥ qL(L)

if and only if:

λi ≤
(

1

µL

3α− 1

1− α

)−1(
1 +

1− µL
µL

3α− 1

2α

)
(3.57)

Thus, for Case 1 we have,

µH
µM

(
1 + δ 3α−1

2
3α−1

2α

)
− 1

µL
1
µM

(
1 + δ 3α−1

2
3α−1

2α

)
+ 1

µL

(
1 + δ 3α−1

2
3α−1
1−α

) ≤ ( 1

µL

3α− 1

1− α

)−1(
1 +

1− µL
µL

3α− 1

2α

)

Define

a1 (α, µL) = 1 + δ
3α− 1

2

3α− 1

2α
, b1 (α, µL) = 1 + δ

3α− 1

2

3α− 1

1− α
, and

c1 (α, µL) =

(
1

µL

3α− 1

1− α

)−1(
1 +

1− µL
µL

3α− 1

2α

)
We can then write the previous inequality as:

µM ≥
µLa1 (α, µL) [1− µL − c1 (α, µL)]

1 + a1 (α, µL)µL + b1 (α, µL) c1 (α, µL)
= µ∗∗1 (α)

Next, for Case 2, we have qM(L) ≥ qL(L) iff,

µH
µM

(
1 + δ 3α−1

2
3α−1
1+α

)
−
(

1
µL
− δ 3α−1

2
1−α
1+α

)
1
µM

(
1 + δ 3α−1

2
3α−1
1+α

)
+ 1

µL

(
1 + δ 3α−1

2
3α−1
1−α

) ≤ ( 1

µL

3α− 1

1− α

)−1(
1 +

1− µL
µL

3α− 1

2α

)

Define

a2 (α, µL) = 1 + δ
3α− 1

2

3α− 1

1 + α
, b2 (α, µL) =

1

µL
− δ3α− 1

2

1− α
1 + α

c2 (α, µL) =

(
1

µL

3α− 1

1− α

)−1(
1 +

1− µL
µL

3α− 1

2α

)
,

d2 (α, µL) = 1 + δ
3α− 1

2

3α− 1

1− α
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Rearranging, we obtain:

µM ≥
µLa2 (α, µL) [1− µL − c2 (α, µL)]

µL (a2 (α, µL) + b2 (α, µL)) + b2 (α, µL) c2 (α, µL)
= µ∗∗2 (α)

Let us define µ∗∗ (α) = min {µ∗ (α) , µ∗∗1 (α) , µ∗∗2 (α)} . We have:

Lemma A12. If µM ∈ [µ∗∗ (α) , µ∗ (α)] and µM ≥ µ0(α), then the solution of

the WR-problem is given by the solution in Case 1 presented above. If µM ∈

[µ∗∗ (α) , µ∗ (α)] and µM < µ0(α), then the solution of the WR-problem is given by the

solution in Case 2 presented above.

Proof. We first show that if µM ∈ [µ∗∗ (α) , µ∗ (α)] and µM ≥ µ0(α), then µM ∈

[µ∗∗1 (α) , µ∗ (α)] and µM ≥ µ0(α). This implies that the solution is given by Case 1.

Assume µM < µ∗∗1 (α). In this case, (3.57) does not hold with λ1. This implies that

(3.57) does not hold with λ2 as well if λ2 ≥ λ1. Subtracting equation (3.55) from

equation (3.52), we get

(λ1 − λ2)

[
1

µL
+

1

µM
+ δ

3α− 1

2

(
1

µL

3α− 1

1− α
+

1

µM

3α− 1

1 + α

)]
=

δ
3α− 1

2

1− α
1 + α

[
µH − λ1

µM

3α− 1

2α
− 1

]
(3.58)

So, we have that λ2 ≥ λ1 if:

µH − λ1

µM

3α− 1

2α
− 1 ≤ 0,

which is implied by µM ≥ µ0(α). It follows that if µM < µ∗∗1 (α), then µM < µ∗∗ (α),

a contradiction. We conclude that it must be µM ≥ µ∗∗1 (α).

We now show that if µM ∈ [µ∗∗ (α) , µ∗ (α)] and µM < µ0(α), then µM ∈ [µ∗∗2 (α) , µ∗ (α)]

and µM < µ0(α). This implies that the solution is given by Case 2. Assume

µM < µ∗∗2 (α). In this case, (3.57) does not hold with λ2 . This implies that (3.57)
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does not hold with λ1 as well if λ1 ≥ λ2. From (3.58) we have that this always true

if µM < µ0(α). It follows that if µM < µ∗∗2 (α), then µM < µ∗∗ (α), a contradiction.

We conclude that it must be µM ≥ µ∗∗2 (α). �

3.14.2 Characterization of Region B3

Finally, we characterize the contract when µM < µ∗∗(α) and so both λ > 0 and

λLM(L) > 0. This is region B3. In this case:

qM = θM −
µH − λ
µM

∆θ and qL = θL −
µH + µM + λ

µL
∆θ (3.59)

We also have that λLM(L) > 0 implies qM(L) = qL(L), so:

qM(L) = qL(L) =
1− α
1 + α

θM +
2α

1 + α
θL −

µH + µM + λ

µL

3α− 1

1 + α
∆θ (3.60)

From Lemma A9, we have qL(L) ≤ θL− µH+µM
µL

3α−1
2α

∆θ. Also, when λLM(L) > 0, the

above inequality is strict. Thus, substituting the optimal value of qL(L), we obtain:

1− λ

µL

3α− 1

1− α
+
µH + µM

µL

3α− 1

2α
< 0 (3.61)

Note that as λLM(L) converges to zero, (3.61) is the exact violation of µM ≥ µ∗∗(α),

that is, inequality (3.57).

To characterize the quantities after history M , we now show that λML(M) =

λLM(M) > 0.

Lemma A13. λ, λLM(L) > 0⇒ λML(M) = λLM(L) > 0.

Proof. Suppose λML(M) = λLM(M) = 0. Then,

qM(M) = θM −
µH − λ
µM

3α− 1

2α
∆θ and qL(M) = θL.
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From θM − µH−λ
µM

3α−1
2α

∆ ≥ θL, we have:

2α

3α− 1
− µH − λ

µM
≥ 0. (3.62)

Since λ, λLM(L) > 0, using qM(M) ≥ qL(M) = θL > qL(L) = qM(L), we get qL > qM .

This implies (
1− µH − λ

µM
+
µH + µM + λ

µL

)
< 0.

Using equation (3.62). we get

µH + µM + λ

µL

3α− 1

1− α
< 1. (3.63)

Now, inequality (3.61) can be written as

1 <
µH + µM + λ

µL

3α− 1

1− α
− µH + µM

µL
(3α− 1)

(
1

1− α
+

1

2α

)

=
µH + µM + λ

µL

3α− 1

1− α
− µH + µM

µL

3α− 1

2α

1 + α

2α

which contradicts condition (3.63). �

It follows that

qM(M) = qL(M) =
2α

1 + α
θM +

1− α
1 + α

θL −
µH − λ
µM

3α− 1

1 + α
∆θ

Finally, substituting the optimal values in ICHL as equality, we obtain:

(
1− µH − λ

µM
+
µH + µM + λ

µL

)
= 0 (3.64)

that implies qM = qL. Note that equation (3.64) gives the value of λ, which uniquely

defines the solution at the optimum. In particular note that typeM and L are treated
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as one, that is,

qM = qL and qM(M) = qL(M) = qM(L) = qL(L) (3.65)

We conclude that the solution of the WR-problem in region B3 (µM < µ∗∗(α)) is given

by: (3.59),(3.60), (3.65) and (3.64). �

Table 1 summarizes the solution of the WR-problem describing the optimal allo-

cation for each possible case.

3.14.3 Proof of Proposition 8

We proceed in two steps.

Step 1. We say that a quantity q (θi |ht−1 ) is distorted downward (respectively,

upward) if q (θi |ht−1 ) ≤ θi (respectively, q (θi |ht−1 ) > θi). We first show that in the

optimal monotonic contract distortions are all downward. Consider the constraint

set of (3.20), as described byM. Define,

Γ
(
ht−1

)
=

 ĥt−1|∃k ≤ t− 1 s.t. given ht−1
k = θl for some l = 0, 1, ..., N − 1;

we have ĥt−1
k = θl+1 and ht−1

j = ĥt−1
j ∀j 6= k


Thus, Γ (ht−1) is the set of histories that differ from ht−1 only once: the type in

period k is replaced by the contiguous lower type. It is easy to see that a contract

is monotonic if and only if for any history ht−1: 1. q (θi|ht−1) ≥ q (θi+1|ht−1) for all

i < N ; and, 2. q (θi|ht−1) ≥ q
(
θi|ĥt−1

)
for all i and for all ĥt−1 ∈ Γ (ht−1).

Next, we introduce the following complete order on the set of all histories at

time t. For any two histories ht−1 and ĥt−1, let τ ∗
(
ht−1, ĥt−1

)
be the first period

in which they diverge: τ ∗
(
ht−1, ĥt−1

)
= minj

{
0 ≤ j ≤ t− 1 s.t. ht−1

j 6= ĥt−1
j

}
, with

τ ∗
(
ht−1, ĥt−1

)
= t − 1 if ht−1 = ĥt−1. We say that ht−1 �∗ ĥt−1 if ht−1

τ∗(ht−1,ĥt−1)
≥
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ĥt−1

τ∗(ht−1,ĥt−1)
, i.e., if it is higher at the first point of divergence. It is easy to verify

that the order �∗ is complete, so without loss we can order the histories at time

t from largest (ht−1) to smallest (ht−1), where the largest (smallest) history has all

realizations equal to θ0 (θN). Also, note that, ht−1 �∗ ĥt−1 for all ĥt−1 ∈ Γ (ht−1).

Consider period t, and the smallest history of length t−1 (denoted, ht−1), in which

all the realizations are θN . It is immediate to see that q
(
θN |ht−1

)
can not be distorted

upward. To see this note that q
(
θN
∣∣ht−1

)
is on the left hand side of no constraint.41

If it were distorted upward, then a marginal decrease in q
(
θN |ht−1

)
would relax all

constraints and increase surplus. Now, consider q
(
θN−1|ht−1

)
: this quantity appears

on the left hand side of only one constraint; q
(
θN−1|ht−1

)
≥ q

(
θN |ht−1

)
. If this

constraint is not binding, then by the argument presented above, q
(
θN−1|ht−1

)
≤

θN−1. Assume it is binding. In this case q
(
θN−1|ht−1

)
= q

(
θN |ht−1

)
≤ θN ≤ θN−1.

Proceeding inductively with a similar argument, we can prove that q
(
θi
∣∣ht−1

)
≤ θi

for all i.

Note that the case for first period quantities, when the history is just the empty set,

is already covered by the above paragraph. Thus, now we consider t ≥ 2. Assume,

as an induction step, that there is a history ĥt−1, where ĥt−1 �∗ ht−1, such that

ĥt−1 �∗ ht−1 �∗ ht−1 implies q (θi|ht−1) ≤ θi for all i. Let us also introduce a useful

definition. For any ht−1 with h
t−1 �∗ ht−1, ht−1 6= h

t−1 and t ≥ 2, define [ht−1]
+

to be the smallest t-period history larger than ht−1 according to the order �∗in the

following inductive way. If t = 2, then [ht−1]
+

=
{
κt−1(ht−1), ht−1

t−1 + ∆θ
}
; if t > 2

then: [
ht−1

]+
=


(
κt−1(ht−1), ht−1

t−1 + ∆θ
)
, if ht−1

t−1 < θ0(
[κt−1(ht−1)]

+
, θN

)
, if ht−1

t−1 = θ0

,

where κs projects the first s elements of a vector.42 We intend to show that
41We say that a quantity is on the left hand side of a given constraint if in that

constraint it must be larger than some other quantity.
42Recollect that ht−1 is a vector of length t: ht−1 = (ht−1

0 , ht−1
1 , ..., ht−1

t−1), where
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q

(
θi|
[
ĥt−1

]+
)
≤ θi for all i. Now, q

(
θN |
[
ĥt−1

]+
)

appears on the left hand

side in the following constraints: q

(
θN |
[
ĥt−1

]+
)
≥ q

(
θN |h̃t−1

)
for all h̃t−1 ∈

Γ

([
ĥt−1

]+
)
. If none of these constraints bind, then as before, we have the desired

inequality. Suppose at least one of them binds. Clearly, by the definition of
[
ĥt−1

]+

,

we have ĥt−1 �∗ h̃t−1 for all h̃t−1 ∈ Γ

([
ĥt−1

]+
)
. Thus, by the induction hypothesis

q
(
θN |h̃t−1

)
≤ θN for all h̃t−1 ∈ Γ

([
ĥt−1

]+
)
. Since the inequality constraint binds

for some h̃t−1, we have q
(
θN |
[
ĥt−1

]+
)

= q
(
θN |h̃t−1

)
≤ θN .

Next, consider q
(
θN−1|

[
ĥt−1

]+
)
. It appears on the left hand side in the fol-

lowing constraints: q
(
θN−1|

[
ĥt−1

]+
)
≥ q

(
θN |
[
ĥt−1

]+
)

and q
(
θN−1|

[
ĥt−1

]+
)
≥

q
(
θN−1|h̃t−1

)
for all h̃t−1 ∈ Γ

([
ĥt−1

]+
)
. If none of these constraints bind, then as

before, we have the desired inequality. If the first one binds then, q
(
θN−1|

[
ĥt−1

]+
)
≤

θN < θN−1. If any of the latter one binds, then invoking the induction hypothesis, as

argued in the case above, we have the desired inequality. Proceeding inductively, we

can show q (θi|ht−1) ≤ θi for all i and ht−1.

Step 2. We now prove that the allocation is asymptotially efficient. Consider

problem (3.20). From this problem eliminate the constraint q (θ0|h0) ≥ q (θ1|h0) and

all the monotonicity constraints that involve quantities following an history in which

the agents reports to be a type θ0. It is easy to see that in this problem the quantities

offered after the agent reports (or has reported) to be θ0 are efficient: q (θi|ht−1) = θi

for i = 0 and/or ∀ht−1 ∈ H t−1
, t ≥ 2, where H t−1

= {ht−1 |∃τ ≤ t− 1 s.t. ht−1
τ = θ0}.

Following the same approach as in Step 1, it can be shown that the solution of this

relaxed problem is monotonic and so it coincides with the optimal monotonic contract.

Since the probability of the event in which no type realization in t periods is equal to

θ0 converges to zero as t→∞, this solution is, is asymptotically efficient, and so the

ht−1
0 = ∅. So, κt−1(ht−1) = (ht−1

0 , ..., ht−1
t−2).
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optimal monotonic contract. �

3.14.4 Proof of Proposition 9

We prove that for any given T , the optimal monotonic contract converges in prob-

ability to the optimal contract. Let Πs(α), Πm(α) and Π∗∗(α) be the expected

profits obtained by the seller from, respectively, the repetition of the optimal static

contract, the optimal monotonic contract and the optimal contract when the Markov

matrix is α. Because the repetition of the optimal static contract is a monotonic

dynamic contract, we must have Πm(α) ∈ [Πs(α),Π∗∗(α)]. Now note that when

types are constant and α = I, it is well known that the repetition in every period

of the optimal static contract is optimal.43 Since Πm(α),Πs(α) and Π∗∗(α) are

continuous in α by the theorem of the maximum44, we must have that for any

sequence αn → I and ε > 0 there must be a n′ such that for n > n′, we have

|Πm(αn)− Π∗∗(αn)| ≤ |Πs(αn)− Π∗∗(αn)| < ε. It is immediate to see that the

fact that Πm(αn) converges to Π∗∗(αn) and that by Proposition 8 quantities are

bounded imply that the optimal monotonic contract must converge to a contract

that maximizes profit in probability. �

43This result can be easily deduced studying problem (3.20). To see it, note that
the repetition of the static contract is incentive compatible and individually rational.
Then note that when Λ = I, the first order optimal contract coincides with the static
optimal contract along the histories in which the agent reports always the same type.
Since the other histories have probability zero, the profit from the repetition of the
static contract is the same of the profit from the FO-optimal contract. Since the
FO-optimal contract yields a profit not inferior to the optimal contract, the result is
proven.

44In order to apply the theorem of the maximum the space of quantities must be
compact. It is clearly bounded below by zero. Also, Proposition 8 shows that it is
bounded above by the efficient quantities. Hence, there is no loss of generality in
assuming that set of quantities is contained in the interval [0, θ0 ].
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3.14.5 Proof of Proposition 10

The fact that lim
δ→1

lim
α→I

πm (α, δ) = lim
δ→1

lim
α→I

π∗ (α, δ) follows immediately from the fact

that for any δ, lim
α→I

πm (α, δ) = lim
α→I

π∗ (α, δ). We now prove the remaining equal-

ity. Let S(α, δ, T ) be the total expected surplus generated in the efficient con-

tract, U∗(α, δ, T ) be the agent’s expected surplus obtained with the efficient con-

tract and U∗i (α, δ, T ) be the agent’s surplus obtained with the efficient contract

conditional on being type i at t = 1. Define also s(α, δ, T ) = (1− δ)S(α, δ, T ),

u∗(α, δ, T ) = (1− δ)U∗(α, δ, T ) and u∗i (α, δ, T ) = (1− δ)U∗i (α, δ, T ); and s(α, δ) =

limT→∞ s(α, δ, T ), u∗(α, δ) = limT→∞ u
∗(α, δ, T ) and u∗i (α, δ) = limT→∞ u

∗
i (α, δ, T ).

Profits πm (α, δ) must be larger or equal to the profits obtained by offering the

efficient quantity and charging a fixed per period price equal to u∗N(α, δ), since this

is an incentive compatible monotonic contract. Note that since types follow an

irreducible Markov process, their distribution converges to a stationary distribution

that is independent from the realization at t = 1. It follows that, for all α,

lim
δ→1

u∗i (α, δ) = lim
δ→1

u∗ (α, δ) and so the per period profits in this contract converge

to s(α, δ), implying that, for all α, lim
δ→1

πm (α, δ) = lim
δ→1

s(α, δ). Similarly we can

show that for all α, lim
δ→1

π∗ (α, δ) = lim
δ→1

s(α, δ). It follows that: lim
α→I

lim
δ→1

πm (α, δ) =

lim
α→I

lim
δ→1

s(α, δ) = lim
α→I

lim
δ→1

π∗ (α, δ). This proves the result. �

3.15 Proof of Lemma 3

We prove the lemma as follows. Let U = U(ht) be the vector of expected utilities,

mapping an history ht to the corresponding agent’s expected utility. First, we

construct a vector of utilities U using the solution of the WR-problem, 〈ω,q〉. We

then show that the solution 〈U,q〉 satisfies all the constraints of the seller’s profit

maximization problem and it maximizes profits. We proceed in two steps:

173



Step 1. We set uL(M), uL(L), uL(H) all equal to zero. We also define:

uM(M) = ωML(M), uM(L) = ωML(L), uM(H) = ∆θqL(H)

uH(M) = ωML(M) + ωHM(M), uH(L) = ωML(L) + ωHM(L), uH(H)

= ∆θ (qL(H) + qM(H))

Since IRL, ICML and ICHM hold as an equality, we must have:

UL = 0,

UM = ∆θqL + δ
3α− 1

2
ωML(L), and

UH = UM + ∆θqM + δ
3α− 1

2
ωHM(M).

Step 2. We now show that 〈U,q〉 satisfies all the constraints of the profit maximizing

problem. By construction it is immediate that 〈U,q〉 satisfies all the constraints in

the WR-problem. It remains to be shown that it also satisfies the other constraints,

IRH , IRM , ICMH , ICLM , ICLH , (3.66)

ICHM(H), ICML(H), IRL(H), IRL(M), IRL(L)

ICMH(H), ICLM(H), ICLH(H), ICHL(H)), ICMH(M),

ICLH(M), ICHL(M), ICMH(L), ICLH(L), ICHL(L).

First, we show that IRM is satisfied. From ICML we have

UM = UL + ∆θqL + δ
3α− 1

2
[uM(L)− uL(L)]

= ∆θqL + δ
3α− 1

2
[uM(L)− uL(L)] [Using IRL]

≥ ∆θqL + δ
3α− 1

2
∆qL(L) > 0 [Using ICML(L)]
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Similarly, we can show that IRH is satisfied. To prove the remaining constraints we

need the following properties of the solution of the WR-problem.

Lemma A14. For all parameter configurations, in the solution to the WR-problem we

have: 1. qi(H) = θi for i = M,L,H, qM(M) < θM , qL(M) ≤ θL, and qL(M) ≥ qL(L)

2. ωHM(M) = ∆θqM(M) and, without loss of generality, ωML(M) = ∆θqL(M),

ωHM(L) = ∆θqM(L); 3. quantities at t = 2 are nondecreasing in type after any

history; 4. qH ≥ qM ≥ qL.

Proof. Point 1 follow from the solution characterized in Propositions 6 and 7 (for

convenience the quantities are reported in Table 1). The first part of Point 2

(ICHM(M) always binds) follows from Lemma 4 (when λ = 0) and Lemma A11

(when λ > 0). The second part follows from the fact that ICML(M) can be assumed

to hold as an equality. Suppose ωML(M) > ∆θqL(M). Then can decrease ωML(M)

so that this holds as an equality. No constraint is violated and the profit of the

monopolist is unaffected. Similarly, we show that ICHM(L) can be assumed to

hold as an equality, implying ωHM(L) = ∆θqM(L). Point 3 follows from incentive

compatibility constraints for the second (terminal) period. We now turn to Point 4.

From the fact that in the solution to the WR-problem, qH = θH and the fact that (as

shown in Propositions 6 and 7) qi ≤ θi for i = H,M,L, we have qH ≥ qi i = M,L.

We, therefore, only need to prove that qM ≥ qL. We will show this result case by

case for all regions A1, A2, B1, B2 and B3. In cases A1 and A2, from (3.39) we

have qM ≥ qL if and only if

1− µH
µM

+
µH + µM

µL
≥ 0,

that is, 1
µL
≥ µH

µM
. In regions A1 and A2 we have µM ≥ µ∗ (α), as defined in Lemma

4. This condition can be written as
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1

µL
≥ µH
µM

+ δ
3α− 1

2

µH
µM

3α− 1

2α
and

1

µL
≥ µH

µM
+ δ

3α− 1

2

(
1− α
1 + α

+
µH
µM

3α− 1

1 + α

)
.

clearly implying 1
µL
≥ µH

µM
. For case B3, we show in Proposition 7 that qM = qL.

We now show that in regions B1 and B2 we have qM ≥ qL as well. In these region we

have µ ∈ [µ∗∗ (α) , µ∗ (α)]. We have qM ≥ qL if and only if 1− µH−λ
µM

+ µH+µM+λ
µL

≥ 0

. First order conditions in Lemma 4 clearly show that λ > 0 implies λHM(L) > 0,

thus, ωHM(L) = ∆θqM(L). Therefore, we have in regions B1 and B2,

qM + δ
3α− 1

2
qM(M) = qL + δ

3α− 1

2
qM(L).

When µM ≥ µ0 (α), substituting optimal values (summarized in Table 1) we have

1− µH − λ1

µM
+
µH + µM + λ1

µL
+ δ

3α− 1

2

[
λ1

µL

3α− 1

1− α
− µH − λ1

µM

3α− 1

2α

]
= 0.

That can be re written as:

(
1− µH − λ1

µM
+
µH + µM + λ1

µL

)(
1 + δ

(3α− 1)2

4α

)
=

δ
(3α− 1)2

4α

[
1 +

µH + µM
µL

− λ1

µL

3α− 1

1− α

]
.

We know from (3.57) that right hand side of the above equation is non-negative.

Thus, 1− µH−λ1

µM
+ µH+µM+λ1

µL
≥ 0.

When µM < µ0 (α), substituting optimal values again (see Table 1) we have

1− µH − λ2

µM
+
µH + µM + λ2

µL
+δ

3α− 1

2

[
λ2

µL

3α− 1

1− α
− µH − λ2

µM

3α− 1

1 + α
− 1− α

1 + α

]
= 0.
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That can be rewritten as:

(
1− µH − λ2

µM
+
µH + µM + λ2

µL

)(
1 + δ

(3α− 1)2

2 (1 + α)

)

= δ
α (3α− 1)

1 + α

 1 + µH+µM
µL

3α−1
2α

− λ2

µL

3α−1
1−α

 .
We know that (3.57) is always verified in the relevant range. Using this condition

we can see that right hand side of the above equation is non-negative. Thus, we we

have 1− µH−λ2

µM
+ µH+µM+λ2

µL
≥ 0. �

Consider the first period constraints. To show that ICLM holds it is sufficient to

prove:

0 = UL ≥ θLqM + δ

[
αuL(L) +

1− α
2

uM(M) +
1− α

2
uH(M)

]
(3.67)

= UM −∆θqM − δ
3α− 1

2
uL(M)

= UM −∆θqM − δ
3α− 1

2
qL(M)

Since UM = ∆θqL + δ 3α−1
2
qL(L), (3.67) can be written as:

qM + δ
3α− 1

2
qL(M) ≥ qL + δ

3α− 1

2
qL(L)

The fact that this inequality is satisfied follows from Point 1 and 4 in Lemma A14.

(In the following, when we mention a point, we refer to the points of Lemma A14.)

Next, we show that ICMH holds. From ICHM we have:

UH = UM + ∆θqM + δ
3α− 1

2
[uH(M)− uM(M)]
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Thus,

UM = UH −∆θqM − δ
3α− 1

2
[uH(M)− uM(M)]

= UH −∆θqH − δ
3α− 1

2
[uH(H)− uM(H)]

+ ∆θ(qH − qM) + δ
3α− 1

2
[(uH(H)− uM(H))− (uH(M)− uM(M))]

> UH −∆θqH − δ
3α− 1

2
[uH(H)− uM(H)] .

The last inequality follows from the observation that:

uH(H)− uM(H) ≥ ∆θqM(H) = ∆θθM > ∆θqM(M) = uH(M)− uM(M), (3.68)

where the first inequality follows from the definition of ui(H), the first equality and

the second inequality follow from Point 1. From (3.68) and the fact that qH > qM

(Point 4), it follows that ICMH holds. We now turn to ICLH . Using ICLM first and

then ICMH , we have:

UL ≥ UM −∆θqM − δ
3α− 1

2
[uM(M)− uL(M)]

≥ UH −∆θqH − δ
3α− 1

2
[uH(H)− uM(H)]−∆θqM − δ

3α− 1

2
[uM(M)− uL(M)]

= UH − 2∆θqH − δ
3α− 1

2
[uH(H)− uL(H)]

+ ∆θ (qH − qM) + δ
3α− 1

2
[(uM(H)− uL(H))− (uM(M)− uL(M))]

> UH − 2∆θqH − δ
3α− 1

2
[uH(H)− uL(H)] ,

The last inequality follows from the observation that:

uM(H)− uL(H) ≥ ∆θqL(H) = ∆θθL ≥ ∆θqL(M) = uM(M)− uL(M), (3.69)

where the first inequality follows from the definition of ui(H), the first equality and
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the second inequality follow from Point 1. From (3.69) and qH > qM (Point 4), it

follows that ICLH holds.

Consider now the second period constraints. The constraints IRL(M), IRL(L)

IRL(H), ICML(H), and ICHM(H)) follow immediately by the definition of the utili-

ties at t = 2. The proof that 〈U,q〉 solves the seller’s problem is therefore completed

if we prove that it satisfies the constraints in the last two lines of (3.66). This result

follows from the fact that the local downward incentive constraints are satisfied in

period 2 and quantities are weakly monotonic after any history (Point 3). Finally, to

see that the contract is optimal, we note that it maximizes expected profits in the less

restricted WR-problem, so it must be optimal in the seller’s problem. Note moreover

that since the original problem is concave in q this is in fact the unique solution (in

quantities). �

3.16 From discrete to continuous types

In this section we show that the continuous case can be seen as the limit of the

discrete case, so all problems of the FO-approach in the discrete version are inherited

by the continuous version and viceversa. To keep the notation simple, we assume

two periods and u (θ, q) = θq. Consider a type set Θ =
[
θ, θ
]
⊂ R+, an associated

prior distribution Γ (θ) at t = 1 and a conditional distribution F (θ′ |θ ) at t = 2

defined on Θ. We assume Γ (θ) is differentiable in θ with density µ (θ) and F (θ′ |θ )

is differentiable in both θ, with derivative Fθ(θ′ |θ ), and θ′, with density f(θ′ |θ ). By

standard methods we can obtain the following envelope formula (3.4):45

U ′(θ) = q(θ)−
∫
θ′
q(θ′ |θ ) · Fθ (θ′|θ) dθ′

45See Baron and Besanko [1984], Besanko [1985], Laffont and Tirole [1996], Courty
and Li [2000], Eso and Szentes [2007], and Pavan, Segal and Toikka [2013].
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Figure 3.9: Example A1

and then derive the FO-optimal contract:

q(θ′ |θ ) = θ′ +
1− Γ(θ)

µ(θ)

Fθ (θ′|θ)
f (θ′|θ)

(3.70)

In the rest of this section, we refer to this as the continuous model. We start with

an example.

Example A1. Assume F (θ′ |θ ) = (θ′ − θ)γθ for θ′ ∈
[
θ, θ
]
where θ − θ = 1. If we

assume that the prior on Θ is uniform, (3.70) implies that the FO-optimal contract is

q(θ′ |θ ) = θ′+ (θ′−θ) ln(θ′−θ)
θ

(
θ − θ

)
. Figure 3.9 plots the conditional distributions and

the associated FO-optimal allocations when γ = .1 and Θ = [5, 6] after two histories

θ1 = 5.01 and θ1 = 5.08. It is evident that the contract is non-monotonic in the

realization at t = 2, θ2. It is easy to see that this FO-optimal contract violates global

contraints at t = 2 and so it is not incentive compatible.

We now explore the connection between the continuous model and the discrete

model studied in the previous sections. The continuous model can be easily derived

as the limit of the discrete model of the previous sections as follows. Define ΘN =

{θ0, ..., θN} with θ0 = θ, θN = θ and θi = θi+1 + ∆θN ; and let ΓN (θi) = Γ (θi)

and FN(θj |θi ) = F (θj |θi ). Given this, the probability of a type j at t = 1 is

µNj = ΓN (θj) − ΓN (θj+1) and the probability of a type i at t = 2 after a type j at
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t = 1 is fN (θj|θi) = FN (θj|θi) − FN (θj+1|θi).46 In the rest of the section, we refer

to this as the discrete model.

Consider a sequence of supports ΘN for N →∞ such that ∆θN → 0 as N →∞

and ΘN ⊆ ΘN+1, so that along the sequence the finite approximation of Θ becomes

increasingly fine.47 Using the formula derived in the paper (3.9), we can write the

FO-optimal contract along the sequence as:

qN (θj|θi) = θj − 1−ΓN (θi)

µNi

FN (θj|θi)− FN (θj|θi−1)

fN (θj|θi)
∆θN (3.71)

for any θj ∈ ΘN , θi ∈ ΘN . Note that µNi can be written as: µNi =
Γ(θj)−Γ(θj+1)

∆θN
·∆θN .

and fN (θj|θi) =
FN (θj |θi)−FN (θj+1|θi)

∆θN
∆θN . We can therefore rewrite (3.71) as:

qN (θj|θi) = θj +
(
1− ΓN (θi)

) [FN (θj|θi)− FN (θj|θi−1)
]
/∆θN[

Γ(θi)−Γ(θi+1)
∆θN

] [
FN (θj |θi)−FN (θj+1|θi)

∆θN

]
This condition immediately implies that

lim
N→∞

qN (θj|θi) = θj +
1− Γ(θi)

µ(θi)

Fθ (θj|θi)
f (θj|θi)

= q (θj|θi)

since µNi /∆θN → µ(θi) and fN (θj|θi) /∆θN → f (θj|θi) as N → ∞. It follows that

the limit of the discrete FO-optimal contracts is equal to the continuous FO-optimal

contract.48

This discussion makes it clear that there is a natural connection between discrete
46In both definitions, we are implicitly assuming a dummy “N + 1" type with mass

0.
47For example, consider the sequence (θm0 , ..., θ

m
N ) such that θm0 = θ, θmN = θ, θmi −

θmi−1 = (θ − θ)/2m and so Nm = 2m.
48Since ΘN ⊆ ΘN+1, if θj ∈ ΘN , θi ∈ ΘN , then θj ∈ ΘM , θi ∈ ΘM for M ≥ N , so

limN→∞ q
∗
N (θi|θj) is well defined. To extend the contract for points on the real line

that do not appear in the sequence of approximations we can consider, for example,
the sequence of linear interpolations of the discrete contract. It is immediate to verify
that this is a sequence of equicontinuous curves that converges to (3.70).
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Figure 3.10: Example 8

Figure 3.11: Example 9

and continuos types dynamic principal-agent models. In the light of this we can

revisit the examples we have discussed in the previous sections in their continuos

version.

Example 8 and 9 (cont.). Consider fα(θ′|θ) = α · e−
(θ′−θ)2

σθ(α) and fα(θ′|θ) =

α
1+σθ(α)|θ′−θ| with all other parameters same as before. Note that σθ(α) is chosen

so that the probabilities sum to one. The larger is α, the higher is the persistence

of the types. Figures 3.10 and 3.11 show two sample distributions and the associated

quantities in period 2 that were plotted for the discretized case in Figures 5.3 and 5.4,

respectively,. The contract is non-monotonic in two ways: first, for a given history,

it is non-monotonic in θ2. Because of this alone, the FO-optimal contract is not

implementable and violates a global constraint. In addition to this, the FO-optimal

contract is not monotonic with respect to θ1; this can be seen from the fact that the
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contracts with the two different histories cross each other.

183



Bibliography

[1] Athey, S. and I. Segal (2013), “An Efficient Dynamic Mechanism,” Econometrica,

forthcoming.

[2] Baron, D. and D. Besanko (1984), “Regulation and Information in a Continuing

Relationship,” Information Economics and Policy, 1(3), 267-302.

[3] Battaglini, M. (2005), “Long-term Contracting with Markovian Consumers.”

American Economic Review, 95, 637–658.

[4] Battaglini, M. (2007), “Optimality and Renegotiation in Dynamic Contracting,”

Games and Economic Behavior, 60 (2), 213-246.

[5] Battaglini M. and S. Coate (2008), “Pareto Efficient Income Taxation with

Stochastic Abilities,” Journal of Public Economics, 92 (3-4), 844-868.

[6] Bergemann D. and J. Valimaki (2010). “The Dynamic Pivot Mechanism,”

Econometrica, 78(2), 771-789.

[7] Besanko, D. (1985), “Multiperiod Contracts between Prinipal and Agent with

Adverse selection,” Economic Letters, 17, 33-37.

[8] Biehl, A., (2001), “Durable-goods monopoly with stochastic values," Rand

Journal of Economics, 32, 565–577

184



[9] Boleslavsky R. and M. Said (2013), “Progressive Screening: Long-Term Con-

tracting with Privately Known Stochastic Process,” Review of Economic Studies,

forthcoming.

[10] Bolton, P. and M. Dewatripont (2005). Contract Theory. The MIT Press,

Cambridge, MA.

[11] Chassang, S. (2013), “Calibrating Incentive Contracts,” Econometrica, forth-

coming.

[12] Courty, P. and H. Li (2000), “Sequential Screening,” Review of Economic Studies,

67 (4), 697-718.

[13] Dewatripont, M. (1989), “Renegotiation and Information Revelation over Time:

The Case of Optimal Labor Contracts.” Quarterly Journal of Economics, 104

(3), 589–619.

[14] Eso, P. and B. Szentes (2007), “Optimal Information Disclosure in Auctions and

the Handicap Auction,” Review of Economic Studies, 74 (3), 705-731.

[15] Eso, P. and B. Szentes (2013), “Dynamic Contracting: An Irrelevance Result,”

working paper.

[16] Farhi, E. and I. Werning (2013), “Insurance and Taxation over the Life Cycle, ”

Review of Economic Studies, 80, 596-635.

[17] Garrett, D. and A. Pavan (2012), “Managerial Turnover in a Changing World,”

working paper.

[18] Golosov, M., M. Troshkin, and A. Tsyvinski, (2013), “Redistribution and Social

Insurance,” working paper.

[19] Guvenen, F., F. Karahan, S. Ozkan, and J. Song, (2013a), "What Do Data on

Millions of U.S. Workers Say About Labor Income Risk?” working paper.
185



[20] Guvenen, F., S. Ozkan, and J. Song, (2013b), “The Nature of Countercyclical

Income Risk,” Journal of Political Economy, forthcoming.

[21] Hartline, J. (2012), “Approximation in Mechanism Design,” American Economic

Review P&P.

[22] Hoffmann F. and R. Inderst (2011), “Presale Information,” Journal of Economic

Theory, 146 (6), 2333–2355.

[23] Inderst R. and M. Ottaviani (2012), “How (not) to pay for advice: A framework

for consumer financial protection,” Journal of Financial Economics, 105 (2),

393-411

[24] Kapicka, M. (2013), “Efficient Allocations in Dynamic Private Information

Economies with Persistent Shocks: A First-Order Approach,” Review of Eco-

nomic Studies, 80 (3), 1027-1054.

[25] Krahmer, D. and R. Strausz (2013), “The Benefits of Sequential Screening, ”

working paper.

[26] Laffont, J.J. and D. Martimort (2002), The Theory of Incentives, Princeton

University Press, Princeton, NJ.

[27] Laffont J.J. and J. Tirole (1990): “Adverse Selection and Renegotiation in

Procurement,” Review of Economic Studies, 57 (4), 597–625.

[28] Laffont J.J. and J. Tirole (1996), “Pollution Permits and Compliance Strategies,”

Journal of Public Economics, 62 (1–2), 85–125.

[29] Madarasz, K. and A. Prat (2012), “Screening with an Approximate Type Space,”

working paper.

[30] Maestri, L. (2013), “Dynamic Contracting under Adverse Selection and Renego-

tiation, ” working paper.
186



[31] Milgrom, P. (2004), Putting Auction theory to Work, Cambridge University

Press.

[32] Mussa M. and S. Rosen (1978), “Monopoly and Product Quality,” Journal of

Economic Theory, 18 (2), 301–317.

[33] Myerson R. (1981), “Optimal Auction Design, ” Mathematics of Operations

Research, 6 (1), 58-73.

[34] Pavan, A., I. Segal, and J. Toikka (2014), “Dynamic Mechanism Design: A

Myersonian Approach,” Econometirca, 82(2): 601-653.

[35] Rey, P. and Salanie, B. (1990), “Long-Term, Short-Term and Renegotiation: On

the Value of Commitment in Contracting.” Econometrica, 58(3), pp. 597–619.

[36] Stole, L. (2001), “Lectures on the Theory of Contracts and Organizations,"

mimeo, The University of Chicago.

[37] Roberts, K. (1982) “Long-Term Contracts.” unpublished paper.

[38] Royden, H. (1988), Real Analysis, Prentice Hall, Third Edition.

[39] Rustichini, A. and A. Wolinsky.(1995), “Learning about Variable Demand in the

Long Run.” Journal of Economic Dynamics and Control, 19(5–7), pp. 1283–92.

[40] Strulovici, B. (2011), “Contracts, Information Persistence, and Renegotiation,"

mimeo.

[41] Townsend, R. M. (1982), “Optimal Multiperiod Contracts and the Gain from En-

during Relationships under Private Information.” Journal of Political Economy,

90 (6), 1166–86.

[42] Williams, N. (2011), “Persistent Private Information," Econometrica, 79 (4),

1233–1275.
187



[43] Zhang, Y. (2009), “Dynamic Contracting with Persistent Shocks,” Journal of

Economic Theory, 144, 635-675.

188


