
Essays on Decision Theory

Shaowei Ke

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Economics

Adviser: Faruk Gul, Wolfgang Pesendorfer

June 2015



c© Copyright by Shaowei Ke, 2015.

All rights reserved.



Abstract

This dissertation studies forward looking in dynamic choice. In the first chapter, we

propose a dynamic choice model for an error-prone decision maker choosing among

risky options. Our axioms yield a representation of the decision maker’s behavior in

which the decision maker rationally anticipates her future mistakes, and might be

averse to making choices. The resulting model provides a natural welfare criterion

even though the decision maker makes mistakes. We introduce comparative measures

of error-proneness and choice attitude. We characterize the logit quantal response

model as a special case of our model that exhibits constant measure of error-proneness

and choice neutrality. We show that different from standard risk, when risk is induced

by mistakes, the expected value of a future decision problem might increase even if

its options become worse.

In the second chapter, we dispense with the assumption of rational anticipation

of future mistakes. We propose a model of backward induction with an error-prone

decision maker who has limited understanding of her own future choices. To an

outside observer, her behavior appears stochastic and her choices become imperfect

signals of her payoffs. Our axioms yield a two-parameter representation of the deci-

sion maker’s behavior; one parameter characterizes her attitude towards complexity;

i.e., her willingness to choose more complicated subtrees over simpler ones, the other

her error-proneness. Our model nests fully rational backward induction as a limit of

these parameters. We introduce and analyze a measure of complexity aversion and a

measure of error-proneness. We show through examples how different decision trees
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induce different choice behavior in the context of product assortment and advertising

problems.

In the last chapter, we present a negative result showing that if the forward

looking satisfies three simple conditions, then the decision maker must have ignored

her possible mistakes when looking forward. If one of the conditions, monotonicity

is replaced with strict monotonicity, then forward looking can never satisfy all three

conditions at the same time. We show in specific models of mistakes why these

conditions are incompatible.
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Chapter 1

Rational Anticipation of Mistakes

and Revealed Choice Aversion

1.1 Introduction

People make mistakes when choosing. Consider a static decision problem consisting

of options a = {p1, . . . , pn}. If we observe an error-prone decision maker choosing

from a repeatedly, we will find that sometimes she chooses pi, but sometimes she

chooses some other option. In other words, her choice appears to be random: she

behaves as if she chooses each option in a with some probability.

Using random choice models to describe an error-prone decision maker’s behavior

is not new. Perhaps one of the most popular models is from McKelvey and Palfrey

(1995, 1998). In their model, each option pi has utility u(pi), but the decision maker

can only observe a noisy signal of it, u(pi) + εi. She chooses the option with the
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highest signal value. Since εi’s are random error terms, her choice contains random

mistakes.

In general, it is difficulty for choice models of mistakes to answer welfare questions.

Let us take McKelvey and Palfrey (1995, 1998) as an example. Suppose we want

to know what is the expected utility that the decision maker gets by choosing from

a. The existing approach calculates
∑
wi × u(pi), where wi is the actual choice

probability of pi due to the error terms. The idea is simple. It takes u(pi) as the

true utility of pi, and then calculates the expected utility. The problem is how do

we know that the function u is a vNM utility index? When we estimate u from the

choice data, there is no guarantee that such a u function is a vNM utility index. If

it is not the vNM utility index, calculating its expected value is not a natural way

to think about welfare questions. If it is, in what sense it is?

This issue is particularly important when the decision problem is dynamic. In

a dynamic decision problem, the error-prone decision maker needs to look forward.

In order to make a current-stage decision, she needs to take into account her future

mistakes to form some belief about the expected utility that she will get from each

continuation. In this case, identifying the vNM utility index (not just a utility

function) is inevitable.

Having this in mind, we propose an axiomatic, dynamic model of mistakes in

which the decision maker chooses among risky options. The decision maker’s error-

prone choice is also interpreted as random to capture that she does not make the

same mistakes over time.
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We analyze how the decision maker chooses from a decision problem. A decision

problem is a set of lotteries from which the decision maker makes a choice. Each

lottery in turn is a probability distribution over (continuation) decision problems;

that is, after the risk associated with the chosen lottery resolves, the decision maker

will face another decision problem to choose from. Choosing and risk resolution

alternate until the decision maker reaches an outcome.

In the resulting model, for each option we identify simultaneously (i) its Luce

value that describes the decision maker’s propensity to choose it, and (ii) its vNM

utility index. As a byproduct, we also identify the decision maker’s subjective ben-

efit/cost of making a choice from a decision problem. In the model, each option has

a vNM utility index. The utility of a lottery follows the standard expected utility

formula. The utility of a decision problem follows the standard expected utility for-

mula weighted by the actual choice probability of each option, added (subtracted)

by a benefit (cost) term that depends on the size of the decision problem. To relate

utility to error-prone choice, a conversion function converts utility into Luce value.

The higher is an option’s Luce value, the more likely it will be chosen.

The model is derived from simple axioms. The primitive of our model is a random

choice rule ρ(·, ·) that describes how the decision maker chooses. For example, ρ(·, a)

describes the choice probability of each option in the decision problem a. We impose

axioms on ρ.

The decision maker we want to model has a stable underlying preference. Her

random choice is solely attributed to mistakes. The first axiom we consider allows us

to identify her preference even though she makes random mistakes. If the decision
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maker chooses the lottery p from the problem {p, r1, . . . , rn} more often than chooses

q from {q, r1, . . . , rn} for all r1, . . . , rn, then she reveals that she prefers p over q. The

axiom, Luce Independence, ensures that she reveals her preference consistently; that

is, if p is chosen more often than q in one case, then p is chosen more often than q in

all cases.

Now that the underlying preference is uncovered, we impose the standard vNM

Independence axiom. We identify technical axioms that help us pin down the decision

maker’s vNM utility index under the presence of random choice.

Lastly, to have some structure on the benefit/cost term associated with making

choices, we consider the following simple axiom, Preference for Lottery-Choice Swaps.

This axiom captures that when a decision maker is averse to making choices, she

would find it more painful to choose from larger decision problems. Therefore, when

a larger decision problem is replaced with a comparable lottery, she benefits more;

when a smaller decision problem is replaced with a comparable lottery, she benefits

less. A comparable lottery pa of a decision problem a is a lottery such that the

probability distribution over (future) decision problems that pa induces is identical

to the distribution induced by the decision maker’s own choice when the problem is

a. Then, a choice-averse decision maker would prefer 1
2
pa + 1

2
δb over 1

2
pb + 1

2
δa when

a is a larger problem than b, where δc is the degenerate lottery that yields problem

c for sure, c = a, b. The decision maker prefers 1
2
pa + 1

2
δb because in this lottery,

she only have to worry about choosing from b, not from a, whereas in 1
2
pb + 1

2
δa, she

might need to choose from the larger decision problem a.
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Theorem 1.2.1 of this chapter establishes that these three axioms together with

other technical axioms result in the following representation of a random choice rule:

there exists a utility function U such that for each lottery p,

U(p) =
∑

ai∈supp(p)

p(ai)U(ai)

which is the standard expected utility function. Then, for a decision problem a =

{p1, . . . , pn}, the decision maker assigns utility

U(a) =
∑
pi∈a

ρ({pi}, a)U(pi) + ψ(|a|)

to it. The term
∑

pi∈a ρ({pi}, a)U(pi) reflects her rational anticipation of her future

mistakes, because this term is exactly the expected utility she would get from a had

she chosen from a. The added term ψ(|a|) is a monotone function that measures her

attitude towards choice. Lastly, there is a conversion function φ such that

ρ({pi}, a) =
φ(U(pi))∑
j φ(U(pj))

(1.1)

The strictly increasing function φ describes the relation between the utility and

the decision maker’s error-prone choice. It converts utility into Luce value (Luce

(1959)). We call this representation of a random choice rule an Anticipated-Mistakes

Rule (AMR). The AMR has a natural way to assess the expected utility that the

decision maker gets from choosing from a decision problem, since the function U is

indeed the vNM utility index.
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The AMR, unlike the other ones in the literature, distinguishes a Luce rule from

a logit model (see Luce (1959), McFadden (1974)). An AMR is always a Luce rule,

but it is a logit model if and only if

φ(u) = eu/λ

(unique up to a positive scalar multiplication) for some positive λ, and ψ = 0. The

logit model has been widely used in applications mostly because it is a Luce rule

and hence is more tractable. Thus, our representation generalizes the logit model by

allowing other functional forms of φ, but still ensures that the generalized models

are all Luce rules, which maintains its tractability.

In an AMR, the parameter φ and ψ quantify error-proneness and choice attitude

respectively. Decision maker 2 is said to be more error-prone than decision maker

1 if decision maker 2 always chooses inferior options more often. In Section 1.3, we

show that this happens if and only if φ′2
φ2
≤ φ′1

φ1
; that is, the rate of change of φ1 is

greater than the rate of change of φ2.

From the representation, it can be seen that the lower the value of ψ is, the more

choice-averse the decision maker should be. We show in Section 1.3 that the converse

is true. Compared to the existing measures of error-proneness and choice attitude,

our measure of error-proneness is more general than the one in Ke (2015a), and our

measure of choice aversion (seekingness) is more general than the one in Fudenberg

and Strzalecki (2015).

Through the characterization of error-proneness and choice attitude, we show that

the widely-used logit quantal response model, introduced in McKelvey and Palfrey
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(1995, 1998), can be characterized as a special case of our model that exhibitis

constant measure of error-proneness and neutrality to choice. In general, neither the

quantal response model is a special case of AMR, nor the other way around. The two

classes of models intercept at the case of logit quantal response model (φ(u) = eu/λ

and ψ = 0). To put it another way, only for the logit quantal response model, the

original approach of calculating the expected utility in McKelvey and Palfrey (1995,

1998) is valid. It is valid under the assumption of constant measure of error-proneness

and neutrality to choice.

Mistakes generate risk. In finance, risk from mistakes is classified as an important

case of the operational risk, defined in one of the most influential banking regulations,

Basel II. Despite the importance and prevalence of mistakes, it is not well-understood

how risk from mistakes differs from standard financial risk. In Section 1.4, we point

out one major difference between these two types of risks: risk from mistakes might

not be monotonic. To see this, suppose a principal assigns a task to an agent. The

error-prone agent could choose either action 1 that leads to a good outcome, or action

2 that leads to an extremely bad outcome. Note that with standard financial risk, if

a lottery’s possible outcomes improve, the lottery itself must improve. In our case,

if the principal improves the extremely bad outcome, the expected payoff she gets

from the task performed by the agent might in fact decrease. The reason is simple:

When the outcome of action 2 is bad enough, the agent, according to our model,

would choose action 1 with high probability. In contrast, when the outcome of action

2 is improved, the agent often mistakenly chooses action 2, which lowers the overall

expected payoff.
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1.1.1 Related Literature

The role of mistakes has been studied in the literature. Sah and Stiglitz (1986) in-

vestigate the impact of mistakes in economic systems with different architectures. In

particular, they analyze the performance of two decision making processes, one is a

two-unit polyarchy and the other is a two-unit hierarchy. They identify the condi-

tions under which one outperforms the other. McKelvey and Palfrey (1995, 1998)

introduce the quantal response model to analyze mistakes in both static and dynamic

games. Their model has been successful in explaining the experimental data. The

main differences between their model and ours are all discussed in the introduction.

In other fields, for example, Hassan and Mertens (2014) study a macroeconomic

model in which the decision makers make small correlated errors when forming ex-

pectations about future productivity. The authors show that even if the errors are

small, they amplify in equilbirium and significantly reduce the price informative-

ness. Our model has a different focus. Our purpose is to derive a model of mistakes

from reasonable axioms, and to emphasize how risk from mistakes (described by our

model) differs from standard risk.

This chapter is closely related to Fudenberg and Strzalecki (2015) and Ke (2015a).

Fudenberg and Strzalecki (2015) formulate an extension of the Luce’s random choice

model to dynamic problems. In their model, an alternative of a decision problem

is a current-period consumption good plus a continuation decision problem. The

decision maker has random tastes and she rationally anticipates them. She enjoys the

option value of the future problems. In the representation there is also an additively

separable term describing the decision maker’s choice attitude, as in this chapter.
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Fudenberg and Strzalecki’s work is the first to introduce the notion of choice

aversion in the choice theory literature. Our representation differs from theirs in

three ways. First, our model generalizes the logit model, while theirs is a logit

model. Second, although the decision maker looks forward rationally in both their

model and ours, the meaning of rational forward looking is different. In their case, a

decision maker anticipates future taste shocks, and hence a larger (future) decision

problem has a higher option value. In our case, the decision maker understands her

future choice probability of each alternative, and evaluates a future decision problem

by the expected utility that she will get from choosing. Lastly, our function that

characterizes the choice attitude is more general than Fudenberg and Strzalecki’s in

that we only require the function’s monotonicity. In Fudenberg and Strzalecki, the

function is a log function.

Ke (2015a) studies a relaxation of fully rational backward induction in which the

decision maker chooses from a set of decision (sub)trees. In fully rational backward

induction, the decision maker identifies each decision problem with its best option,

and chooses the option that has the highest value with certainty. In Ke, the decision

maker is averse to complex options and hence does not identify a decision problem

with its best option. Moreover, the decision maker makes mistakes when choosing;

that is, she cannot choose the option that has the highest value with certainty.

The major difference between that paper and the current chapter is that the

decision maker in the current chapter rationally anticipates her future choices, while

the rational anticipation is exactly the assumption that Ke (2015a) wants to relax;
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that is, the decision maker in Ke (2015a) does not understand how she will choose

in the continuation problems.

1.2 A Dynamic Model of Mistakes

Confronting a decision problem, the decision maker makes a series of choices to reach

an outcome. We use a decision problem to describe such a choice situation. A decision

problem is a finite set of options. Each option is a lottery. Facing a decision problem,

the decision maker first chooses a lottery. A lottery is a probability measure over a

finite set of decision problems. After a lottery is chosen, its risk resolves. Then, the

decision maker either faces an outcome and stops, or faces a new decision problem

and continue to make a choice. Decision maker’s choice and risk resolution continue

to alternate for finitely many times until the decision maker receives an outcome.

Formally, let D0 be the set of outcomes, and L1 := ∆(D0) be the set of simple

lotteries on D0, where ∆(·) denotes the set of simple lotteries. Next, let D1 := K(L1)

be the collection of nonempty finite subsets of L1, where K(·) denotes the collection

of nonempty finite subsets of a set. Confronting some a ∈ D1, the decision maker only

needs to make one choice to reach an outcome; that is, she chooses a lottery from a,

and then she gets an outcome after the lottery’s risk resolves. Recursively, we define

Lk+1 := ∆(Dk) and Dk := K
(⋃k

i=1 Li
)

. Facing some b ∈ Dk, the decision maker at

most chooses k times in order to reach an outcome, and each of her choices is followed

by risk resolution of the chosen lottery. Let D :=
⋃∞
i=1Di be the set of all possible

decision problems, and L :=
⋃∞
i=1 Li be the set of all possible options/lotteries. For
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any lottery p ∈ L, we use supp(p) to denote p’s support. Clearly, D := D ∪ D0

is the union of p’s support, for all p ∈ L. Thus, a typical decision problem is

a = {p1, . . . , pn} ∈ D where pi ∈ L and supp(pi) ⊂ D. Clearly, D = K(L) and

L = ∆(D). As usual,
∑n

i=1 αipi is a lottery such that the probability assigned to

a ∈ D is
∑n

i=1 αipi(a), where αi ∈ [0, 1],
∑
αi = 1 and pi ∈ L.

The decision maker makes mistakes, but she does not make the same mistake over

time. To the modeler who observes the decision problem and her choice, her choice

appears to be random. The decision maker’s random choice is defined as follows.

Definition 1.2.1 A function ρ : D × D → [0, 1] is a random choice rule (RCR) if

ρ(a, a) = 1 and ρ(c, d) =
∑

b∈c ρ({b}, d).

According to the definition, ρ(a, b) is the probability that any option of a is chosen

when the decision problem is b.

The decision maker in our model has a stable underlying preference. Since she

is error-prone, she cannot reveal her preference deterministically. However, she can

reveal her preference statistically. Based on an RCR, we define the decision maker’s

preference relation as follows.

Definition 1.2.2 For ∀p, q ∈ L, p � q (p is preferred to q) if ρ({p}, {p} ∪ a) ≥

ρ({q}, {q} ∪ a) for any a ∈ D such that p, q 6∈ a.

The decision maker reveals that she prefers p to q if p is chosen over a more

often than q over a, for all a that does not contain p or q. Below we impose axioms

on a random choice function. Many of the axioms are imposed on the underlying

preference directly. The first three axioms are taken from the literature.
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Axiom 1.2.1 (Positivity) If p ∈ a ∈ D, then ρ({p}, a) > 0.

Axiom 1.2.2 (Luce Independence) For a, b, c, d ∈ D such that (a∪ b)∩ (c∪ d) = ∅,

ρ(a, a ∪ c) ≥ ρ(b, b ∪ c) implies ρ(a, a ∪ d) ≥ ρ(b, b ∪ d).

Axiom 1.2.3 (vNM Independence) For p, q, r ∈ L, α ∈ (0, 1), p � q implies αp +

(1− α)r � αq + (1− α)r.

Positivity is from McFadden (1974). In our setting, it implies that every option

of a decision problem could have some chance to be (mistakenly) chosen, no matter

how small the probability is. Luce Independence is from Gul, Natenzon and Pe-

sendorfer (2014). This axiom ensures that the decision maker reveals her preference

consistently; that is, if she chooses some p ∈ L over a set of lotteries a more often

than q over a, then she always chooses p more often than q over any other set of

lotteries that does not contain p, q. This axiom implies that the preference relation

is complete. The third axiom, vNM Independence, is the well-known axiom used in

expected utility theory. We apply it to the decision maker’s underlying preference

to identify the vNM utility index.

Two technical assumptions, Continuity and Unboundedness, are needed to pin

down the representation.

Axiom 1.2.4 (Continuity) For p, q ∈ L, a ∈ D, ρ({αp+(1−α)q}, {αp+(1−α)q}∪a)

is continuous in α.

Axiom 1.2.5 (Unboundedness) For a ∈ D, α ∈ (0, 1), there exist p, q 6∈ a such that

ρ({p}, {p} ∪ a) < α and ρ({q}, {q} ∪ a) > α.
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Since we have imposed the vNM Independence, it is natural to consider the vNM

continuity axiom. However, the standard vNM continuity axiom is not sufficient. In

particular, it does not imply that ρ({αp + (1 − α)q}, {αp + (1 − α)q} ∪ a) would

change smoothly as α changes. Our Continuity axiom is a natural extension of

vNM continuity to a model with random choice. Unboundedness is a random-choice

version of the standard unboundedness assumption. Unboundedness implies that,

given a, we can find p so that ρ({p}, {p} ∪ a) is arbitrarily close to 0, and q so that

ρ({q}, {q} ∪ a) is arbitrarily close to 1.

Our next axiom is a simple consistency requirement. It states that a degen-

erate lottery would be identified with its only associated decision problem, and a

degenerate decision problem would in turn be identified with its only option/lottery.

Axiom 1.2.6 (Degenerate-Choice Indifference) For p ∈ L, δ{p} ∼ p.

Given a degenerate lottery δ{p}, the decision maker would face the decision prob-

lem {p} with certainty. Meanwhile, {p} is a decision problem that the decision maker

only needs to trivially choose p. Degenerate-Choice Indifference says that the de-

cision maker ignores the degeneracy of lotteries and decision problems. Hence, δ{p}

and p are indifferent to her.

Our decision maker might either find it difficult to make a choice, or enjoy making

a choice. The last axiom allows the decision maker to be either choice-averse or

choice-seeking. Let δb ∈ L denote the degenerate lottery such that δb(b) = 1, b ∈ D.

For any b = {p1, . . . , pn} ∈ D, we can find a lottery denoted by pb such that

pb(a) =
n∑
i=1

ρ({pi}, b)× pi(a)

13



for a ∈ D; that is, the probability that pb assigns to each a ∈ D (either an outcome

or a decision problem) is equal to the probability that a would be presented to the

decision maker after (i) she chooses from b and (ii) the chosen lottery’s risk resolves.

We call pa a comparable lottery of decision problem a. We use an example to illustrate

what a comparable lottery is.

Example 1.2.1 Suppose a, b ∈ D are decision problems. Consider a decision prob-

lem c = {1
2
a + 1

2
b, δa}. Let q = ρ({δa}, c) be the probability that the decision maker

chooses δa over 1
2
a + 1

2
b. Confronting c, the decision maker makes a choice. If she

chooses δa, she expects to choose from a in the next stage. If she chooses 1
2
a + 1

2
b,

she expects to choose from a in the next stage with 1
2

probability, and from b with 1
2

probability. Thus in the next choice stage, with probability q + 1
2
(1 − q) = 1

2
(1 + q),

the decision maker confronts a, and with probability 1
2
(1 − q), the decision maker

confronts b. According to the definition, the comparable lottery of c, pc, is a lottery

that assigns 1
2
(1 + q) to a and 1

2
(1− q) to b.

Axiom 1.2.7 (Preference for Lottery-Choice Swaps) For a, b ∈ D, if |a| ≥ |b|, then

(a) (Choice Aversion) 1
2
pa + 1

2
δb � 1

2
pb + 1

2
δa;

(b) (Choice Seekingness) 1
2
pb + 1

2
δa � 1

2
pa + 1

2
δb.

To understand this axiom, first note that when δa’s risk resolves (trivially), the

decision maker needs to choose from a. Then, if a decision maker understands the

probability with which she chooses each option of a, she would notice that δa and pa

induce the same probability distribution over future decision problems and outcomes.

Thus, in terms of the probability distribution over future decision problems and

outcomes, 1
2
pb + 1

2
δa and 1

2
pa + 1

2
δb are identical.
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However, the decision maker might not be indifferent between making the choice

by herself (δa) and letting the choice be randomly determined by a lottery (pa). In

other words, if she is choice-averse, she might prefer pa to δa, and if she is choice-

seeking, she might prefer δa to pa. This is true because with pa, she does not need

to choose from a, and the resulting distribution over future decision problems and

outcomes is the same as the one she would face had she chosen from a on her own.

Ideally, if a decision maker prefers not to choose (choice-averse), then the larger

the size of a is, the more she prefers to switch from δa to pa. If she enjoys choosing

(choice-seeking), the larger the size of a is, the less willing she would be to switch to

pa.

Preference for Lottery-Choice Swaps summarizes the arguments above. In the

axiom, 1
2
pa + 1

2
δb is a lottery such that with 1

2
probability the decision maker would

face pa, and with 1
2

probability she would need to choose from decision problem b. The

other lottery 1
2
pb + 1

2
δa swaps the lottery and choice; that is, with 1

2
probability the

decision maker would need to choose from decision problem a, and with 1
2

probability

she would face the lottery pb. Since pa is the comparable lottery of a and pb is

the comparable lottery of b, for a rationally forward-looking decision maker who

understands her future choice probability, there is only one difference between 1
2
pa +

1
2
δb and 1

2
pb + 1

2
δa: with 1

2
chance choosing from a or b. The axiom says that if

a decision maker is choice-averse, she would prefer to have 1
2

probability choosing

from the smaller decision problem. The opposite applies to a choice-seeking decision

maker.
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Empirically, consumers’ aversion to choice (sometimes called overchoice) has been

well documented (see Chernev (2003), Gourville and Soman (2005) among others).

Recently it is also examined in the choice theory literature by Fudenberg and Strza-

lecki (2015) where a function κ log |a| is proposed to describe the decision maker’s

choice attitude. Our axioms are different from their work, and the resulting charac-

terizing function for choice attitude is different from theirs too.

In Theorem 1.2.1, we show that the axioms will induce the following model in

which the decision maker rationally anticipates her own future mistakes. Due to the

axioms, we can identify (i) the vNM utility function that describes risk aversion as

usual, (ii) the Luce value function that describes the decision maker’s propensity to

choose a particular option, and (iii) a benefit/cost function associated with making

choices.

Definition 1.2.3 An RCR ρ is a Anticipated-Mistakes Rule (AMR) if there exist

a function U : L ∪ D → R, a surjective strictly increasing continuous function

φ : U(L ∪D) → R++, a monotone function ψ : N → R with ψ(1) = 0 such that for

p ∈ L, a = {p1, . . . , pn} ∈ D,

U(p) =
∑

ai∈supp(p)

p(ai)U(ai) (1.2)

U(a) =
∑
pi∈a

ρ({pi}, a)U(pi) + ψ(|a|) (1.3)
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and

ρ({pi}, a) =
φ(U(pi))∑
j φ(U(pj))

(1.4)

When U, ψ, φ satisfy the equations above, we say that (U, ψ, φ) represents ρ.

Although U depends on ψ and φ according to (1.2) and (1.3), if we restrict U ’s

domain to the set of outcomes, it is independent of ψ and φ. Thus, the function

ψ and the function φ uniquely extend the utility of outcomes to the utility of all

lotteries and decision problems.

In the representation, a lottery’s utility is given by equation (1.2), the standard

expected utility function. As for a decision problem a, equation (1.3) says that

the decision maker forms a correct expectation of the actual expected utility she

would get if she chooses from a, which is equal to
∑

pi∈a ρ({pi}, a)U(pi). On top of

this expected utility term, ψ(|a|) is added to describe the decision maker’s attitude

towards making choices. The function ψ could either be increasing or decreasing.

When it is increasing, the utility of a decision problem a is more penalized as a’s size

grows.

The decision maker’s error-prone behavior is characterized by equation (1.4).

Fixing φ, the higher an option’s utility is, the more likely it would be chosen. Fixing

U , consider for example φ(u) = uk. The higher is k, the more likely the decision

maker would end up choosing the better options; that is, the decision maker is

less error-prone when making choices. In the limiting case in which k is arbitrarily

large, the best option of a decision problem would be chosen for sure. At the other

extreme, when φ becomes a constant function in the limit, the decision maker chooses

uniformly randomly. Allowing different patterns of error-proneness is important. In
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poker games, both professional players and amateur players make mistakes. However,

the professional players make fewer mistakes, while the amateur players make more.

Applying our model, this can be captured by equipping the professional players with

a less error-prone AMR, and the amateur players with a more error-prone one.

According to (1.4), an AMR is a Luce rule and φ(U(pi)) is the Luce value of pi.

However, an AMR is significantly different from the logit model. In a static decision

problem, there is no reason why we should distinguish between a logit model and a

Luce rule. For any Luce rule, we can find a logit model that provides the same choice

prediction, and vice versa. Here we can (and should) make a distinction because we

are considering dynamic choice. In our resulting model, the function φ converts

utility into Luce value. A standard logit model requires this conversion function to

be φ(u) = exp{u/λ} for some positive constant λ. In our model, φ could be other

functions, which allows for richer behavior patterns of error-proneness. Our model

thus breaks the link between Luce rule and logit model.

Lastly, let us point out that understanding the future choice probabilities does

not imply that the decision maker would not make mistakes in the future. Consider

a decision maker who is grilling a beef steak for dinner. There are three styles of

cooking: well-done, medium-rare and rare. The goal is to get the steak medium-

rare. To achieve that, the steak needs to be turned at the right time while grilling.

Before cooking, the decision maker may be able to understand with what probability

she would turn the steak how much early/late. Nonetheless, she still cannot avoid

mistakes when she cooks.
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Our main result is the representation theorem below that establishes the relation

between the axioms and the AMR.

Theorem 1.2.1 An RCR ρ satisfies Axiom 1–6 and 7a (7b) if and only if it is an

AMR with a decreasing (increasing) ψ.

The sufficiency of the theorem is not difficult. The necessity proof consists of

three parts. First, we show that the preference we define satisfies the three stan-

dard vNM axioms. Thus, we can find the utility function defined for all lotteries

that satisfies (1.2). Then, noting that the utility of a decision problem a could

be different from
∑

pi∈a ρ({pi}, a)U(pi), we show that the difference between U(a)

and
∑

pi∈a ρ({pi}, a)U(pi) only depends on and is monotone in |a| by Preference for

Lottery-Choice Swaps. Thus, we obtain equation (1.3). Finally, we show that a

richness assumption used in Gul, Natenzon and Pesendorfer (2014) is satisfied due

to Positivity, Continuity and Unboundedness. Therefore, due to Gul, Natenzon and

Pesendorfer’s Theorem 1, Luce Independence and richness imply the existence of a

value function V that satisfies the Luce rule. Since U and V represent the same

preference, we can find a strictly increasing function φ that converts U into V , which

leads to our last equation (1.4).

The uniqueness result follows from the well-known fact that U is unique up to a

positive affine transformation, and that Luce value function is unique up to a positive

scalar multiplication. We omit the proof.

Proposition 1.2.1 If both (U, ψ, φ) and (Ũ , ψ̃, φ̃) represent the RCR ρ, there exists

α1, α2 > 0 and β such that Ũ = α1U + β, ψ̃ = α1ψ and φ̃(u) = α2φ(α1u+ β).
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1.3 Measuring Error-Proneness and Choice Atti-

tude

In an AMR, the function φ characterizes the decision maker’s error-prone behavior,

and the function ψ characterizes her aversion toward choice. In this section, we

introduce measures for both of them.

1.3.1 Error-Proneness

In a related model in Ke (2015a), a measure of error-proneness is introduced. Suppose

decision maker i has RCR ρi, i = 1, 2. In Ke’s notion of error-proneness, ρ2 is more

error-prone than ρ1 if there exists a function h : (0, 1
2
] → R++ such that h(t) ≤ t,

h(1
2
) = 1

2
and

ρ1({x}, {x, y}) = h(ρ2({x}, {x, y}))

for ∀{x, y} ∈ D1 with ρ2({x}, {x, y}) ≤ 1
2
; that is, ρ1 chooses the worse option x

with lower probability through a function h.

Ideally, a more general notion of error-proneness would be defined without h,

which requires only that ρ1 chooses the worse option with lower probability than ρ2;

that is,

ρ1({x}, {x, y}) ≤ ρ2({x}, {x, y})

Below we introduce this more general notion of error-proneness. Recall that p ∈ L1

is a lottery that directly leads to an outcome, and a decision problem a ∈ D1 is a

20



set of such lotteries; that is, confronting a ∈ D1, the decision maker only needs to

choose once to reach an outcome.

Definition 1.3.1 RCR ρ2 is more error-prone than ρ1 if for any {p, q} ∈ D1 such

that ρ2({p}, {p, q}) ≥ ρ2({q}, {p, q}), ρ2({p}, {p, q}) ≤ ρ1({p}, {p, q}).

The definition says, if decision maker 2 is more error-prone than decision maker

1, then whenever decision maker 2 reveals that she prefers p over q, decision maker

1 not only prefers p over q as well, but also chooses the preferred option p with

higher probability. We focus on {p, q} ∈ D1 to ensure that the key inequalities in

the definition cannot be attributed to choice attitude. The result below relates our

notion of error-proneness to φ.

Proposition 1.3.1 Suppose each ρi is an AMR, i = 1, 2. Then ρ2 is more error-

prone than ρ1 if and only if there exist (Ui, ψi, φi)’s representing ρi’s such that U1(p) =

U2(p) for all p ∈ L1, and φ2(u)
φ1(u)

is decreasing in u.

Proof. Suppose U1(p) = U2(p) for all p ∈ L1, and φ2(u)
φ1(u)

is decreasing in u. For any

p, q ∈ L1 such that ρ2({p}, {p, q}) ≥ ρ2({q}, {p, q}), i.e.,

φ2(U2(p))

φ2(U2(p)) + φ2(U2(q))
≥ φ2(U2(q))

φ2(U2(p)) + φ2(U2(q))

we know that U2(p) ≥ U2(q). Define uh := U1(p) = U2(p) and ul := U1(q) = U2(q).

Since φ2(uh)
φ1(uh)

≤ φ2(ul)
φ1(ul)

, we have

φ1(uh)

φ1(uh) + φ1(ul)
≥ φ2(uh)

φ2(uh) + φ2(ul)
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as desired.

Now suppose we know that ρ2 is more error-prone than ρ1. Since ρi({p}, {p, q}) ≥

ρi({q}, {p, q})⇐⇒ Ui(p) ≥ Ui(q), the hypothesis ρ2({p}, {p, q}) ≥ ρ2({q}, {p, q})⇒

ρ2({p}, {p, q}) ≤ ρ1({p}, {p, q}) then implies that

U2(p) ≥ U2(q)⇒ U1(p) ≥ U1(q) (1.5)

By the Corollary B.3 of Ghirardato, Maccheroni and Marinacci (2004), U1(p) =

αU2(p) + β if p ∈ L1, for some α > 0 and β. Due to Proposition 1.2.1, we can

without lost of generality pick a U2 such that α = 1 and β = 0. Now for any

p, q ∈ L1 such that U2(p) ≥ U2(q), similarly defining uh and ul, we must have

φ1(uh)
φ1(uh)+φ1(ul)

≥ φ2(uh)
φ2(uh)+φ2(ul)

, which implies that φ2(uh)
φ1(uh)

≤ φ2(ul)
φ1(ul)

.

Equation (1.5) seems to allow for the case where U2(p) > U2(q) but U1(p) = U1(q).

However, Ghirardato, Maccheroni and Marinacci (2004) show that when U1 and U2

are affine functions on a lottery space, (1.5) implies identical perferences (over that

lottery space).

Notice that φ1 and φ2 are both strictly increasing, and are both unique up to

positive scalar multiplications. Therefore, the value of φ1(u), φ2(u) or φ2(u)
φ1(u)

has no

significance, because they can be changed freely by scalar multiplication. The result

above implies that when comparing error-proneness, it is the monotonicity of φ2(u)
φ1(u)

that matters.

Our next proposition clarifies what the monotonicity of φ2(u)
φ1(u)

implies.
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Proposition 1.3.2 Suppose that (Ui, ψi, φi) represents ρi, i = 1, 2, U1(p) = U2(p)

for all p ∈ L1, and φi’s are differentiable. Then ρ2 is more error-prone than ρ1 if

and only if φ1(u)
φ′1(u)

≤ φ2(u)
φ′2(u)

for all u.

Proof. We first prove the necessity. Continuing the notations in the previous proof,

suppose uh ≥ ul, and we have φ2(uh)
φ1(uh)

≤ φ2(ul)
φ1(ul)

. Now φ1(uh)
φ1(ul)

≥ φ2(uh)
φ2(ul)

⇒ φ1(uh)−φ1(ul)
φ1(ul)

≥
φ2(uh)−φ2(ul)

φ2(ul)
, which in turn implies

[φ1(uh)− φ1(ul)]/(uh − ul)
φ1(ul)

≥ [φ2(uh)− φ2(ul)]/(uh − ul)
φ2(ul)

Let uh converge to ul. We have φ′1(u)
φ1(u)

≥ φ′2(u)
φ2(u)

for all u.

Conversely, consider φ2(u)
φ1(u)

. We have

∂(φ2(u)/φ1(u))

∂u
=

φ′2(u)φ1(u)− φ′1(u)φ2(u)

φ1(u)2

=
φ′2(u)

φ2(u)

φ2(u)

φ1(u)
− φ′1(u)

φ1(u)

φ2(u)

φ1(u)

≤ 0

The proposition says if ρ2 is more error-prone than ρ1, then the rate of change

of the function φ2,
φ′2
φ2

, should be lower than that of φ1. Due to this proposition, it

is natural to let φ(u)
φ′(u)

> 0 be the measure of error-proneness. Then, a function φ

exhibits constant measure of error-proneness if and only if

φ(u) = eu/λ (1.6)
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(up to positive scalar multiplications), for some λ > 0. When (1.6) holds, the

measure of error-proneness is exactly λ. A higher λ implies more error-proneness.

The measure of error-proneness could be very useful in game theory, as it is a natural

tool to model players with different levels of skill.

1.3.2 Choice Attitude

Recall that the comparable lottery of a decision problem b is pb. The lottery pb and

b are comparable in the sense that the probability that pb assigns to each decision

problem or outcome a is equal to the probability that the decision maker would

confront a in the next stage if she chooses from b by herself.

The notion of choice aversion is simple. When a decision maker prefers a’s com-

parable lottery pa over a itself, then the decision maker is averse to making choices.

Definition 1.3.2 A decision maker is

(i) choice-averse if pa � δa, for all a ∈ D;

(ii) choice-seeking if δa � pa, for all a ∈ D;

(iii) choice-neutral if pa ∼ δa, for all a ∈ D.

It follows immediately that a decision maker is choice-averse if and only if ψ < 0,

is choice-seeking if and only if ψ > 0, and is choice-neutral if and only if ψ = 0.

Next, we compare the choice attitude of decision maker 1 and 2. Recall that D0

is the set of possible outcomes, p ∈ L1 is a lottery over outcomes, and a ∈ D1 is a

set of such lotteries. If the decision maker chooses a lottery p ∈ a ∈ D1, then she

does not need to make any further choice to reach an outcome. A lottery q ∈ L2 is a
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probability measure over decision problems in D1 and outcomes in D0. Thus, if the

lottery q ∈ L2 is chosen, the decision maker might expect to make one more choice

to reach an outcome.

To fix error-proneness, suppose that decision maker 1 and 2 have the same choice

behavior over any a ∈ D1; that is, when no future choices are expected and hence

choice attitude does not matter, they behave identically. Now consider the choice

between p ∈ L1 and q ∈ L2 where p is a lottery that does not yield any future choices,

and q is a lottery that yields at most one more choice in the future. If we observe

that whenever decision maker 2 prefers q over p, decision maker 1 also reveals the

same preference, then decision maker 1 is always less averse to making choices. In

this case, we say that decision maker 2 is more choice-averse than decision maker 1.

We say that ρ1 and ρ2 coincide on D1 if ρ1(·, a) = ρ2(·, a) for all a ∈ D1. An RCR ρi

induces preference �i.

Definition 1.3.3 RCR ρ2 is more choice-averse than ρ1 if ρ1 and ρ2 coincide on

D1, and q �2 p implies q �1 p, for all p ∈ L1 and q ∈ L2.

The proposition below is intuitive. Fixing other parameters, when ρ2 is more

choice-averse than ρ1, ψ2 should be less than ψ1.

Proposition 1.3.3 For AMRs ρ1 and ρ2, ρ2 is more choice-averse than ρ1 if and

only if there exist (Ui, ψi, φi)’s representing ρi’s respectively, i = 1, 2, such that (i)

U1(p) = U2(p) for all p ∈ L1, (ii) φ1(u) = φ2(u) for all u ∈ Ui(L1), and (iii)

ψ2(t) ≤ ψ1(t).
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Fudenberg and Strzalecki (2015) is the first to introduce choice attitude to the

choice theory literature. Our characterization of choice attitude is different from

theirs in both the choice-theoretic definition and the representation. In terms of

representation, in Fubenberg and Strzalecki, choice attitude is characterized by a

specific function κ log |a|, where a more choice-averse decision maker would have a

lower κ. In our model, choice attitude is characterized by ψ, which can be any

monotone function.

Fudenberg and Strzalecki’s choice aversion, Ke’s (2015) complexity aversion and

our choice aversion are all related to the general idea that the decision maker might

want to avoid larger problems. Our notion of choice attitude is similar to Fudenberg

and Strzalecki’s. However, both Fudenberg and Strzalecki’s and our notions of choice

attitude are different from Ke’s complexity aversion. A decision maker with little

complexity aversion in Ke’s model would identify a decision problem with its best

option. Fudenberg and Strzalecki’s model and our model do not have this feature,

even when the choice aversion disappears.

1.3.3 Characterizing the Logit Decision Model of Quantal

Response Equilibrium

The results above can help us understand a widely-used decision model in the quantal

response equilibrium literature (McKelvey and Palfrey (1995, 1998)). To begin with,

we introduce the decision model in the quantal response equilibrium literature. In

a game with quantal response, players make random mistakes, as in our model.

The random choice model used in a quantal response equilibrium assumes that the
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decision maker chooses an option pi from the decision problem a = {p1, . . . , pn} with

probability

ρ({pi}, a) = Pr[U(pi) + εi ≥ U(pj) + εj,∀j]

where each option pi has a fixed utility U(pi), and the random error terms ε1, . . . , εn

follow some probability distribution. Let us call this random choice rule the quantal

response rule (QRR). When the error terms follow i.i.d. Gumbel distribution, the

equation above becomes the most widely-used model, the logit QRR, in the quantal

response equilibrium literature:

ρ({pi}, a) =
exp{U(pi)/λ}∑
j exp{U(pj)/λ}

To first understand how AMR differs from QRR, note that McFadden’s (1974)

result implies that a QRR is a Luce rule if and only if it is a logit QRR. Thus, in

general a QRR is not necessarily a Luce rule. In contrast, an AMR must be a Luce

rule. However, AMR is not a special case of QRR. Relating McFadden’s work to our

model, we can also conclude that an AMR is a QRR if and only if φ(u) = eu/λ for

some λ > 0. In this case, AMR coincides with the logit QRR. In general, an AMR

allows for other functional forms of φ. Therefore, QRRs and AMRs are two different

classes of models that intersect at the case where φ(u) = eu/λ for some λ > 0, and

ψ(·) = 0; that is, they intersect at the most widely-applied case, the logit QRR.

Corollary 1.3.1 A random choice rule is both a QRR and an AMR if and only if

it is a logit QRR.
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Now, due to our previous results, it follows immediately that the logit QRR is

characterized by an AMR that exhibits neutrality to choice (ψ(·) = 0) and constant

measure of error-proneness.

Corollary 1.3.2 A random choice rule is a logit QRR if and only if it is an AMR

that is choice-neutral and has constant measure of error-proneness.

Recall that the decision maker in our model rationally anticipates all her future

random mistakes. If we treat the probabilities associated with lotteries as some other

players’ choice probabilities, then our decision maker not only understands her future

strategy, but also her opponents’ strategies. Indeed in McKelvey and Palfrey (1998),

their decision maker also correctly anticipates future mistakes that are either made

by the decision maker herself or by other players in dynamic games.

Our model could be useful in applications. The intersecting case between AMRs

and QRRs, the logit QRR, is almost the only case of QRRs that has been used

in either theoretical applications or empirical estimations, mostly because the logit

QRR is a Luce rule and hence is highly tractable. Traditionally, a Luce rule is

automatically paired with a logit model, due to McFadden (1974). Hence, our model

enriches the useful Luce rule by allowing for other patterns of error-proneness, that is,

by relaxing φ(u) = eu/λ to arbitrary strictly increasing function φ. Further empirical

research might be able to find out better φ functions rather than exponentials to

describe a decision maker’s error-prone behavior in games.

Unlike the QRRs that have been criticized as being neither falsifiable nor iden-

tifiable, when we have abundant choice data, AMRs are falsifiable by testing our

axioms and are identifiable due to the uniqueness result in Proposition 1.2.1 (see
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Haile, Hortaçsu and Kosenok (2008) for a discussion of QRR’s falsifiability and iden-

tifiability).

As argued in the Introduction, compared to QRRs, our model is more suitable

for answering welfare-related questions and analyzing dynamic choice problems.

1.4 Risk from Mistakes vs. Standard Risk and

Operational Risk Management

Our model relates two types of risks in a unified framework. The risk associated with

lotteries is the standard type that has been studied for long, especially in the finance

literature. The other type of risk, risk from mistakes, is due to the decision maker’s

random error-prone behavior. Clearly, people make mistakes everyday. Economists

have classified this second type of risk as an important case of the operational risk

in one of the most influential banking regulations, Basel II.

Despite its importance and prevalence, it is not entirely clear how risk from mis-

takes differs from standard financial risk. In this section, we illustrate a fundamental

difference between them. To focus on the understanding of error-proneness, we con-

sider only AMRs with ψ = 0 (choice-neutral).

One of the most important features of risk from mistakes (modeled by AMRs) that

differs from standard risk is that the model for the former might not be monotonic.

Definition 1.4.1 An RCR ρ is monotonic if p1 � q1 and p2 � q2 implies {p1, p2} �

{q1, q2}.
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A lottery-version of monotonicity is satisfied in models of standard financial risk.

Consider a lottery that with equal probability yields outcome w which has utility 2,

and outcome x which has utility −n, where n is a large number. If we replace w

with y that has utility 2.1, and replace x with z that has utility 1, clearly the new

lottery is better, since in either case, the outcome is improved.

However, in a model of risk from mistakes, monotonicity does not necessarily hold.

An extremely bad option x with utility −n is obviously inferior than w. Hence, the

decision maker chooses it with low probability. As a result, the ex ante expected

utility that the decision maker gets from {w, x} could be higher than {y, z}, even

though w � y and x � z.

Indeed in an AMR, suppose φ(u) = eu and ψ(·) = 0. When n becomes arbitrarily

large,

U({δw, δx}) = U(w) = 2

> U({δy, δz})

=
exp{1}+ 2.1 exp{2.1}

exp{1}+ exp{2.1}
≈ 1.825

It is easy to prove that in the logit case where φ(u) = eu/λ, monotonicity is al-

ways violated (see Ke (2015b) for a more detailed discussion). When φ(u) = eu/λ,

lim
u→−∞

uφ(u) = 0. More generally, the following result holds.

Proposition 1.4.1 Suppose AMR ρ is represented by (U, ψ, φ). If lim
u→−∞

uφ(u) = 0,

then ρ is not monotonic.
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Proof. This proposition is a corollary of Theorem 1 in Ke (2015b).

The condition lim
u→−∞

uφ(u) = 0 describes how the decision maker behaves when

facing extremely bad outcomes. If the decision maker has a φ that converges to 0

fast enough as u gets arbitrarily low, then the decision maker’s random choice rule

violates monotonicity.

This result has some implication on operational risk management. Suppose a

manager asks an agent to perform a task on a machine. The agent could possibly

hit button A that leads to w or button B that leads to x. The manager has the

opportunity to ”improve” the machine by replacing w with y and x with z at no cost.

It seems that the manager of course should implement the improvement. However,

according to our discussion above, whether or not the manager should improve the

machine depends on the agent’s error-proneness. If the consequence of hitting the

inferior option is bad enough, it might in fact be better to leave the bad option as it

is and not improve the machine.

The machine in the example is not as abstract as one might think. Every now and

then, some traders from big banks place wrong orders by mistakenly hitting one more

zero or so. These mistakes could induce huge loss to the banks. A bank can certainly

set up some protection against these mistakes. For example, a bank could completely

ban the traders’ large orders that exceed some threshold. Our model suggests that

such protection, seemingly good for operational risk management, might actually

lead to more mistakes of choosing the inferior options. Depending on the error-

proneness that can be estimated easily, restriction should be placed only to part of

the agents.
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1.5 Appendix

Proof of Theorem 1.2.1: We prove the case that involves Axiom 1.2.7a and

decreasing ψ only. We first show the sufficiency. An AMR is a Luce rule according

to (1.4), and hence satisfies Luce Independence. In a Luce rule, p � q if and only if

U(p) ≥ U(q) and hence φ(U(p)) ≥ φ(U(q)), as φ is strictly increasing. According to

the definition, φ’s image is R++, thus Positivity holds. vNM Independence and Conti-

nuity are satisfied according to equation (1.2) and the fact that the Luce value of each

p is φ(U(p)) in which φ is continuous. Because ψ(1) = 0, U(δ{p}) = U({p}) = U(p),

Degenerate-Choice Indifference is satisfied. Since φ is surjective, Unboundedness

holds. As for Preference for Lottery-Choice Swaps, we have for a = {p1, . . . , pn},

b = {q1, . . . , qm}, n ≥ m. Since pa(b) =
∑n

i=1 ρ({pi}, a)× pi(b),

U(pa) =
∑

c∈supp(pa)

[(
n∑
i=1

ρ({pi}, a)pi(c)

)
× U(c)

]

=
n∑
i=1

ρ({pi}, a)U(pi)

Thus

U(
1

2
pa +

1

2
δb) =

1

2
U(pa) +

1

2
U(b)

=
1

2
U(pa) +

1

2
[U(pb) + ψ(|b|)]

≥ 1

2
[U(pa) + ψ(|a|)] +

1

2
U(pb)

= U(
1

2
pb +

1

2
δa)
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Next we show the necessity.

Lemma 1.5.1 � is complete and transitive.

Proof. From Luce Independence, we know that � is complete because for any

ρ({p}, {p}∪a) and ρ({q}, {q}∪a) such that p, q 6∈ a, the former is either greater than

or less than the latter. Say it’s greater. Luce Independence implies that ρ({p}, {p}∪

b) ≥ ρ({q}, {q} ∪ b) for any b ∈ D such that p, q 6∈ b, and hence p � q.

To show transitivity, suppose ρ({p}, {p} ∪ a) ≥ ρ({q}, {q} ∪ a), and ρ({q}, {q} ∪

b) ≥ ρ({r}, {r} ∪ b), p, q, r ∈ L, p, q 6∈ a, q, r 6∈ b. If any two of p, q, r are the

same object, clearly we have p � r. Otherwise by Luce Independence, we know that

ρ({p}, {p, r}) ≥ ρ({q}, {q, r}) and ρ({q}, {p, q}) ≥ ρ({r}, {p, r}). Due to Positivity,

ρ({r}, {p, r}) > 0. Thus by Unboundedness, we can find an r′ ∈ L such that

ρ({r′}, {p, r′}) < ρ({r}, {p, r})

It is then clear that r′ is distinct from p, q, r. Now we have ρ({p}, {p, r′}) ≥

ρ({q}, {q, r′}) ≥ ρ({r}, {r, r′}), and hence p � r.

Lemma 1.5.2 For p, q, r ∈ L, p � q � r implies that there exist α, β ∈ (0, 1) such

that αp+ (1− α)r � q � βp+ (1− β)r.

Proof. Following the similar argument in the previous lemma, we can find an

r′ such that ρ({p}, {p, r′}) > ρ({q}, {q, r′}) > ρ({r}, {r, r′}), where r′ 6= p, q, r.

Now by Continuity, since p = 1 · p + 0 · r, we can find an α near 1 such that

ρ({αp+ (1− α)r}, {αp+ (1− α)r, r′}) > ρ({q}, {q, r′}). Notice that we can require
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αp+ (1− α)r to be distinct from r′ since if αp+ (1− α)r = r′, we can find another

α in the neighborhood, which has to be different from r′. Similar argument applies

to β.

The lemma above shows that the vNM continuity is satisfied by the stochastic

preference �. Knowing that � is complete and transitive, and satisfies vNM Inde-

pendence and vNM continuity, by the mixture space theorem and a simple induction

statement, we know that there exists a function Ũ : L → R such that Ũ(p) =∑
a∈supp(p) p(a)Ũ(δa). Define a function U : L ∪D → R such that U(a) := Ũ(δa), if

d ∈ D, and U(p) := Ũ(p), we have equation (1.2).

Now for each a ∈ D, let ψ̃(a) := Ũ(δa)− Ũ(pa). By Axiom 1.2.7a, Preference for

Lottery-Choice Swaps, consider any a, b ∈ D such that |a| = |b|, we have 1
2
pa + 1

2
δb ∼

1
2
pb + 1

2
δa. Thus

Ũ(
1

2
pa +

1

2
δb) =

1

2
Ũ(pa) +

1

2
Ũ(δb)

=
1

2
Ũ(pa) +

1

2
Ũ(pb) + ψ̃(b)

= Ũ(
1

2
pb +

1

2
δa)

=
1

2
Ũ(pb) +

1

2
Ũ(pa) + ψ̃(a)

Since the equations above holds for any a and b such that |a| = |b|, we know that

there exists a function such that ψ(|a|) = ψ̃(a). We have used U(a) to denote Ũ(δa),

and hence we have equation (1.3) established.
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For |a| ≥ |b|, 1
2
pa + 1

2
δb � 1

2
pb + 1

2
δa, which implies

Ũ(
1

2
pa +

1

2
δb) =

1

2
Ũ(pa) +

1

2
Ũ(pb) + ψ(|b|)

≥ Ũ(
1

2
pb +

1

2
δa)

=
1

2
Ũ(pa) +

1

2
Ũ(pb) + ψ(|a|)

and thus ψ(|a|) is decreasing. ψ(1) = 0 can be easily seen by applying the equation

(1.3) to Degenerate-Choice Indifference axiom.

Finally, we show that equation (1.4) holds and φ’s properties as stated are satis-

fied.

Lemma 1.5.3 For any a ∈ D, α ∈ (0, 1) there exists infinitely many p ∈ L such

that ρ({p}, {p} ∪ d) = α.

Proof. By Unboundedness, there exists q1 and r1 such that ρ({q1}, {q1} ∪ a) > α

and ρ({r1}, {r1} ∪ a) < α. By Continuity and the Intermediate Value Theorem,

we can find β1 such that ρ({β1q1 + (1 − β1)r1}, {β1q1 + (1 − β1)r1} ∪ a) = α. Let

p1 := {β1q1 + (1− β1)r1}.

Now consider supp(q1) and supp(r1). We can find b ∈ supp(q1) ∪ supp(r1) such

that δb � δd for all d ∈ supp(q1) ∪ supp(r1), and c ∈ supp(q1) ∪ supp(r1) such

that δd � δc for all d ∈ supp(q1) ∪ supp(r1). Applying Unboundedness again, we

can find a lottery q2 such that 1 > ρ({q2}, {q2} ∪ a) > ρ({δb}, {δb} ∪ a). We must

have 1 > ρ({q2}, {q2} ∪ a) because of Positivity. It should be clear that supp(q2) 6=

supp(q1), supp(r1). Similarly, we can find r2 such that 0 < ρ({r2}, {r2} ∪ a) <

ρ({δc}, {δc} ∪ a), and hence supp(r2) 6= supp(q1), supp(r1). By Continuity, we can
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find β2 ∈ (0, 1) such that ρ({p2}, {p2}∪a) = α, where p2 := β2q2+(1−β2)r2. Clearly

p2 is distinct from p1 since both q2 and r2 have different supports from q1 and r1.

We can recursively continue this process. Each qi and ri will invite new elements

to their supports, and hence generate countably infinitely many distinct pi such that

ρ({pi}, {pi} ∪ d) = α.

From the lemma above together with Luce Independence, applying Theorem 1

of Gul, Natenzon and Pesendorfer (2014), we know that there exist a surjective

function V : L → R++ such that p � q if and only if V (p) ≥ V (q), and for any

a = {p1, . . . , pn}, ρ({pi}, a) = V (pi)∑n
j=1 V (pj)

.

Since both U and V represent � on L, we know that there exists a strictly

increasing function φ : U(L)→ R++ such that V (p) = φ(U(p)). Since V is surjective,

φ must be surjective too. It’s not difficult to see that U(L) = U(L ∪ D). Finally,

because of Continuity, φ has to be continuous.

�

Proof of Proposition 1.3.3: When (Ui, ψi, φi)’s represent ρi’s respectively,

i = 1, 2, and (i) (ii) and (iii) hold, it is clear that U2(q) ≤ U1(q) and U2(p) = U1(p)

for all p ∈ L1, q ∈ L2. Hence, whenever U2(q) ≥ U2(p), U1(q) ≥ U1(p) too, for all

p ∈ L1, q ∈ L2.

Now suppose ρ2 is more choice-averse than ρ1. First, note that L1 ⊂ L2, and

consider p, q ∈ L1. The hypothesis in the definition of choice-aversion comparison

then implies that p �2 q ⇒ p �1 q, for all p, q ∈ L1. Again by the Corollary B.3 of
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Ghirardato, Maccheroni and Marinacci (2004), we know that

U1(p) = α1U2(p) + β

if p ∈ L1, for some α1 > 0 and β. We pick α1 = 1 and β = 0. Next, since

ρ1(·, a) = ρ2(·, a) for all a ∈ D1, it is not difficult to see that φ2(u) = α2φ1(u) by

applying (1.4), for all u ∈ Ui(L1). We can pick α2 = 1. Finally, consider δa ∈ L2\L1

such that a ∈ D1. Since δa �2 p implies δa �1 p, for p ∈ L1,

U2(δa) = U2(a)

=
∑
pi∈L1

ρ2({pi}, a)U2(pi) + ψ2(|a|)

=
∑
pi∈L1

ρ1({pi}, a)U1(pi) + ψ2(|a|)

≤ U1(δa)

=
∑
pi∈L1

ρ1({pi}, a)U1(pi) + ψ1(|a|)

Thus, ψ1(t) ≥ ψ2(t), for all t ∈ N.

�
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Chapter 2

Boundedly Rational Backward

Induction

2.1 Introduction

Rubinstein (1990) identifies backward induction as one topic in decision theory and

game theory that is most in need of a model of bounded rationality. In dynamic

economic problems, economists use solutions suggested by fully rational backward

induction to predict a decision maker’s behavior. However, it is well-acknowledged

that such solutions would have less predicting power when the problems are more

complicated. Indeed, fully rational backward induction implies a non-losing strategy

for one of the players in chess, which is clearly misleading.

To see how we can relax fully rational backward induction, consider a decision

maker who needs to make a series of choices to reach an outcome. Her valuation
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for outcomes is fixed, and she fully understands the structure of the choice problem.

We can describe such a choice situation by a decision tree. Fully rational backward

induction has two implications here. First, the value of a decision tree is equal to the

maximum of its subtree values. Second, the decision maker chooses the best subtree

with certainty. Hence, a boundedly rational model of backward induction could relax

either implication or both.

In particular, we want to propose a relaxation of fully rational backward induction

that addresses the following question: what value should be assigned to a decision

tree if the decision maker does not know how she will choose at the future stages.

The value of the tree should still depend on its outcomes, but how should they be

related? This issue appears in Jéhiel (1995) for example, where the decision maker

can only look forward j stages in a decision tree. Since the decision tree has more

than j stages, the question is what values should be assigned at the end of the j

stages. Beyond them, the decision maker is agnostic about her own future behavior.

Therefore, we need a model of how the decision maker behaves in this situation.

We formulate a coherent model of a decision maker who makes mistakes and

is agnostic about (cannot predict) her own future choice behavior by interpreting

the decision maker’s choice as random. Random mistakes provide a reason why

the decision maker is unable to know her future behavior even though she fully

understands the structure of the decision tree.

Our resulting model deviates from fully rational backward induction in its both

components. First, to evaluate a decision tree, instead of the maximum, the decision

maker has a general aggregating function that aggregates the subtree values. The
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aggregating function could be interpreted as if the decision maker assigns a uniform

prior to the subtrees, which reflects her lack of understanding of her future choice

behavior. Second, the decision maker makes random mistakes when choosing among

the subtrees. The first departure enables us to identify a measure of complexity

aversion, and the second enables us to identify a measure of error-proneness.

Our goal is not to model specific heuristics for a particular class of problems nor to

study the decision maker’s actual reasoning process. Rather, we present a framework

for analyzing how the decision maker’s choices may vary with the presentation of the

decision problem; that is, how changes further down the decision tree affect the

decision maker’s choice at a current decision node. As we show in Section 4 below,

our model provides new explanations for the menu effect and framing effect in the

context of product assortment and advertising problems.

Our model is derived from simple axioms on the decision maker’s choices. The

primitive is a random choice rule that describes how the decision maker chooses

among the available subtrees in any finite decision tree. Decision trees are defined

recursively: depth-1 decision trees are finite sets of outcomes; depth-2 decision trees

are finite sets consisting of outcomes and depth-1 decision trees and so on. A typical

decision tree a = {a1, . . . , an} is a set of subtrees. Implicitly, we assume that the

modeler can observe the decision tree and can observe the decision maker’s behavior

in a variety of decision problems repeatedly.

We present axioms that relate how the decision maker chooses in some deci-

sion tree a = {a1, . . . , an} to how she would have chosen in each of the subtrees

a1, . . . , an. If a decision maker chooses a more often from {a, d1, . . . , dn} than b from
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Figure 2.1: If for any d, the decision maker chooses a more often in the left-hand-
side decision tree than b in the right-hand-side decision tree, then the decision maker
reveals statistically that she prefers a to b.

{b, d1, . . . , dn} for all d1, . . . , dn; that is, if

P ({a}, {a, d1, . . . , dn}) ≥ P ({b}, {b, d1, . . . , dn})

for all d1, . . . , dn, we say that the decision maker prefers a to b (see Figure 2.1).

This terminology is appropriate: an error-prone decision maker cannot reveal her

preference deterministically but can reveal it statistically. Our first axiom, Indepen-

dence, requires the consistency of this preferences. It allows us to identify a complete

preference relation from the decision maker’s error-prone choices.

The second axiom Dominance states that the decision maker prefers a to b if and

only if she prefers {a, d1, . . . , dn} to {b, d1, . . . , dn}. Independence and Dominance

together allow us to identify the decision maker’s unchanging true objectives from

her imperfect attempts at achieving them. The next two axioms describe the manner

in which our decision maker can depart from rationality.

Stochastic Set Betweenness requires that if the decision maker prefers a to b and

a, b are disjoint, then a ∪ b must be ranked between a and b in her preference. A
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Figure 2.2: Stochastic Set Betweenness implies that the decision maker would choose
{win}more often in the first decision tree than {win, draw, lose} in the second, which
is in turn chosen more often then {draw, lose} in the last decistion tree.

fully rational decision maker would prefer a to b if and only if the best option in a is

better than the best option in b, in which case a∪ b and a would have the same best

option and hence would be indifferent. Stochastic Set Betweenness relaxes this last

requirement to capture the fact that the decision maker will make mistakes when

making her choices and her choices reveal some awareness of her own error-proneness.

Figure 2.2 provides an example of this axiom.

Finally, the key axiom of this chapter, Preference for Accentuating Swaps

implies that if the decision maker prefers b to a, then she will prefer d̃ =

{{b, c1, . . . , cm}, {a, d1, . . . , dn}} to d = {{a, c1, . . . , cm}, {b, d1, . . . , dn}} as long

as m ≤ n. To see what this means, note that in the decision problem d, the subtree

a is more visible than the subtree b, because a in d is presented at a smaller simpler

subtree, and b in d is presented at a larger subtree. In d̃, the places of a and b

are reversed. Hence, d̃ renders the better subtree more visible while d emphasizes

the inferior subtree a. Accentuating the better subtree in this fashion improves the

original tree and increases the probability that the decision maker chooses it. For a

concrete example of this axiom, see Figure 2.3.
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Figure 2.3: The left-hand-side decision tree is swapped into the right-hand-side one.
After the swap, win becomes more salient and draw becomes less so. Thus the
decision maker would choose the right-hand-side decision tree with higher probability.

Theorem 2.2.1 establishes that these four axioms, together with other technical

conditions, yield the following representation of the random choice rule: there exists

a value function V on the set of all decision subtrees such that

P ({ai}, a) =
V (ai)∑n
j=1 V (aj)

where a = {a1, . . . , an}. Thus, the random choice rule P is a Luce rule (see Luce

(1959)). Subtrees with higher Luce values would be chosen more often. Moreover,

there is an aggregator f such that V satisfies

V (a) = f−1
(

1

n

∑
f(V (aj))

)
(2.1)

for all a = {a1, . . . , an}. The aggregating function in (2.1) relates decision tree a’s

value to its subtree values. Intuitively, this aggregating function is a general notion of
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average, which ranges from the maximum to the minimum.1 The uniform weight 1/n

is interpreted as the decision maker’s equal attention to each subtree, and it captures

the fact that the decision maker is agnostic about her future choice behavior. We

call a random choice rule that has the representation described above a Boundedly-

Rational Backward-Induction Rule (BBR). An alternative interpretation of BBR in

which the decision maker receives noisy signals about the subtree values is provided

in Section 4.2.

The two parameters V and f quantify the extent to which the decision maker’s

behavior differs from that of a fully rational decision maker. To see this, first consider

the choice between an outcome and a decision tree. Outcomes are the simplest choice

objects in our setting. For two decision makers, if decision maker 2 always chooses

the outcome more often than decision maker 1 facing the same problem, then decision

maker 2 is said to be more complexity-averse than decision maker 1. In Theorem

2.3.1, we show that f2 is a concave transformation of f1 if and only if BBR (V2, f2)

is more complexity-averse than (V1, f1) in this sense.

Next, consider a decision maker defined by BBR (V1, f) and another one defined

by (V2, g) such that for some λ ∈ (0, 1), [V1(x)]λ = V2(x) for any outcome x. Note

that the two decision makers have the same ranking of outcomes; that is, given any

binary depth-1 decision problem {x, y}, the first decision maker chooses x more often

than y if and only if the second one chooses x more often than y. However, the second

decision maker makes more mistakes; that is, in any binary decision problem, she

1This average is called Kolmogorov-Nagumo mean.
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chooses the preferred outcome less often. Theorem 2.3.2 extends this observation to

develop a comparative measure of error-proneness.

With the measure of complexity aversion and error-proneness, we identify limiting

cases of BBR. In particular, fully rational backward induction is the limiting cases of

BBR where both complexity aversion and error-proneness disappear. We also show

through examples how complexity aversion and error-proneness interact. We show

that in some decision problems, they are complements, and in some others, they are

substitutes.

In Section 4, we present BBR’s implications in dynamic choice problems. In

the context of product assortment problems, we show a menu effect induced by

BBR. We find that consistent with the empirical findings, reducing a store’s product

assortment properly could increase the store’s sales. In particular, if the value of

a product is below some threshold, it is better for the store to exclude it from the

product assortment.

Fixing the set of outcomes to be presented, we analyze two simple presentation

strategies to study the framing effect induced by BBR. The first strategy repeats

an outcome in multiple subtrees, which we call the strategy with recurrence, and the

second strategy singles out an outcome from many others, which we call the strategy

with emphasis. These two strategies resemble some common features of advertising.

We first show that both strategies outperform our benchmark case (presenting all

the outcomes together). Then we show that when the decision maker’s complexity

aversion is above some threshold, the strategy with emphasis does better than the
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strategy with recurrence. Conversely, when the consumer’s complexity aversion is

sufficiently low, the strategy with recurrence dominates the strategy with emphasis.

2.1.1 Related Literature

Jéhiel (1995) examines the implication of limited foresight in a special class of re-

peated games. In his model, the agents can only look forward j steps. To obtain the

decision maker’s value function beyond the jth step, Jéhiel equips the agents with a

particular heuristic, the average payoff from the j steps. The heuristic is reasonable

for the games he studies. Gabaix and Laibson (2005) study a reasoning procedure

where the decision maker evaluates the alternatives as if the game ends right away.

Based on this heuristic, the procedure determines the optimal number of steps that

the decision maker looks forward endogenously. Our work does not focus on a spe-

cific heuristic; rather, we aim to identify a model that can be applied to all finite

decision trees from simple and general axioms.

Theorem 1 of Gul, Natenzon and Pesendorfer (2014) establishes that when the

choice environment is rich enough, the Luce rule is the only random choice rule that

satisfies Independence. The richness assumption is a random-choice version of the

Savage’s small event continuity. Our model incorporates this axiom, and extends the

Luce rule to model how changes further down a decision tree would affect the decision

tree’s Luce value. Gul, Natenzon and Pesendorfer also study dynamic choice. The

decision maker in their model can identify all the duplicates and treat the duplicates

as a single choice object. In our case, duplicates should not be treated as a single

choice object since the decision maker makes random mistakes when choosing. If
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a choice problem consists of more duplicates of some choice object, then the other

alternatives should have smaller probability to be chosen.

An axiom similar to our Stochastic Set Betweenness was first proposed by Bolker

(1966). He uses it to propose a generalization of expected value. His analysis deals

neither with random choice nor with dynamic problems. Gul and Pesendorfer (2001)

propose a stronger axiom Set Betweenness to model temptation and self-control. In

their model, a decision maker might prefer a smaller choice set to a larger one because

the larger one contains tempting options. In our model, a smaller choice set might

be preferred because it’s simpler. Their axiom applies to the case with nonempty

intersection, while ours does not.

Fudenberg and Strzalecki (2015) formulate an alternative extension of the Luce’s

random choice model to dynamic problems. In their model, a choice problem is a set

of current-period choices. Each current-period choice yields current-period consump-

tion and a choice problem for the next period. The utility of a current period choice

has three components: a deterministic utility derived from backward induction, a

random component reflecting possible taste shocks and a term that depends only on

the number of alternatives available in the next period. This last term, when the

relevant coefficient is positive, reflects the decision maker’s choice aversion. When

the coefficient is negative, the term captures a preference for flexibility beyond the

option value associated with the continuation choice problem.

Fudenberg and Strzalecki introduce the notion of choice aversion, and one of

their main findings is that choice aversion is associated with a preference for delay-

ing decisions. Axiom 2.2.5 of our model rules out the type of preference for delay
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that Fudenberg and Strzalecki consider. Fudenberg and Strzalecki do not restrict

attention to boundedly rational backward induction, nor is their model derived from

axioms that describe how choice frequencies may vary with the presentation of de-

cision problems. The decision maker in their model fully understands her future

choices, while in ours, the decision maker does not.

2.2 Model

In our model, a decision maker makes a series of choices to reach an outcome. A

decision tree describes this choice situation. Let D0 be the set of possible outcomes.

A depth-1 decision tree is a nonempty finite subset of D0. When the decision maker

confronts a depth-1 decision tree a ⊂ D0, she chooses an outcome x ∈ a from it.

Let D1 := K(D0) be the set of all depth-1 decision trees, where K(·) denotes the

collection of all nonempty finite subsets of a set. Recursively, we define the set of

depth-k decision trees as Dk := K(Dk−1 ∪ D0). Let D :=
⋃∞
i=1Di be the set of all

decision trees. A decision tree a ∈ D is a finite set of subtrees. A subtree could

either be an outcome or itself a decision tree. Let D := D ∪D0 denote the set of all

decision subtrees.

Confronting a decision tree b ∈ D, the decision maker chooses among b’s subtrees

with randomness. Let L be the set of finite-support probability measures on D

endowed with the topology of weak convergence. The probability measure P (b) ∈ L

describes the choice probability that each subtree of b is chosen. With some abuse of

notation, we use P (a, b) to denote the probability that P (b) assigns to the set a ∈ D;
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Figure 2.4: The left-hand-side decision tree is a depth-1 decision tree {x, y} ∈ D1.
The right-hand-side one is a depth-2 decision tree {x, {y, z}} ∈ D2, where x, y, z are
outcomes.

that is, the probability that any subtree in a is chosen when the decision tree is b.

We call the function P : D → L a random choice rule (RCR) if P (a, a) = 1 for all

a ∈ D.

The decision maker’s choice deviates from the optimal choice implied by fully

rational backward induction. Fully rational backward induction implies that (i) the

decision maker evaluates a tree by its best subtree, and (ii) she always chooses the

best subtree with certainty. Here, we have in mind a decision maker who (i) does

not identify a tree with its best subtree, and (ii) makes random mistakes when

choosing. To obtain such a choice model, we consider the following simple axioms

on the random choice rule.

The first axiom is from Gul, Natenzon and Pesendorfer (2014). In our context,

it imposes some independence property on the way that the decision maker makes

mistakes.

Axiom 2.2.1 (Independence) For a, b, c, d ∈ D such that (a ∪ b) ∩ (c ∪ d) = ∅,

P (a, a ∪ c) ≥ P (b, b ∪ c) implies P (a, a ∪ d) ≥ P (b, b ∪ d).
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One role of this axiom is to uncover the decision maker’s underlying preference,

despite her random choice mistakes. The decision maker might prefer subtree a to b,

but she cannot reveal her preference deterministically due to the random mistakes.

However, if we observe that the decision maker always chooses a over d more often

than b over d for all d that does not intersect a and b, then the decision maker reveals

statistically that she prefers a to b.

Definition 2.2.1 For any a, b ∈ D, we say that the decision maker prefers a to b

(and write a � b) if P ({a}, {a}∪d) ≥ P ({b}, {b}∪d) for all d ∈ D such that a, b 6∈ d.

Independence guarantees that we can uncover a complete preference from the

decision maker’s random choice. Then, the remaining axioms are imposed on the

uncovered preference.

The next axiom is a monotonicity assumption. It ensures that the decision

maker’s preference is not changing over time. In particular, it states that replac-

ing a subtree with a better one makes the decision tree itself better. This axiom

rules out temptation and related phenomena that have been studied extensively in

the literature following Strotz’s (1955) work.

Axiom 2.2.2 (Dominance) For a = {a1, a2, . . . , an}, a′ = {a′1, a2, . . . , an}, a1 � a′1

implies a � a′, and a1 � a′1 implies a � a′.

The first part of Dominance (a1 � a′1 implying a � a′) is also satisfied by a fully

rational decision maker. The second part (a1 � a′1 implying a � a′) incorporates

some departure from the fully rational behavior. Suppose d = {a, b} and d′ = {a, c},

where a � b � c. A fully rational decision maker would be indifferent between d
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Figure 2.5: Dominance implies that the choice probability of a is higher than a′ if
and only if a1 is preferred to a′1.

and d′ since they have the same best subtree. In contrast, Dominance implies that

d � d′; that is, our decision maker has some awareness of her own error-proneness

and more often avoids decision trees with inferior subtrees.2

The two axioms below encapsulate our model of complexity-averse and error-

prone decision making. The first, Stochastic Set Betweenness, considers two decision

trees a and b that have no subtree in common. For example, suppose a is {win}, b is

{draw, lose} and the decision maker prefers {win} over {draw, lose}. Stochastic Set

Betweenness requires that {win} is chosen more often than {win, draw, lose} which

in turn is chosen more often than {draw, lose} (see Figure 2.6).

Axiom 2.2.3 (Stochastic Set Betweenness) For all a, b ∈ D, a ∩ b = ∅ and a � b

imply a � a ∪ b � b.

When a � b, a fully rational decision maker should be indifferent between a and

a∪b since they both contain the same best subtree from a. Stochastic Set Betweenness

allows the decision maker to strictly prefer a over a ∪ b, reflecting her aversion to

2However, the decision maker does not have full awareness of her error-prone behavior. See a
discussion in Section 5.
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Figure 2.6: Stochastic Set Betweenness implies that the decision maker would choose
{win}more often in the first decision tree than {win, draw, lose} in the second, which
is in turn chosen more often then {draw, lose} in the last decistion tree.

more complex decision trees. In the literature, Bolker (1966) is the first to use this

type of condition to derive a generalization of expected value.3 Gul and Pesendorfer

(2001) use a related axiom to model temptation. Our axiom is weaker than the

Gul-Pesendorfer version since we require that a and b have empty intersection. To

see why this is important, assume that a = {win, lose}, b = {win, lose∗} where lose

and lose∗ are two similar unattractive outcomes. If the decision maker struggles

with complex decision trees, then it may well be that {win, lose, lose∗} is worse

than both {win, lose} and {win, lose∗}. Therefore the Gul-Pesendorfer version of

set betweenness would be violated.

The next axiom is built upon a simple idea: if a tree has fewer subtrees, then

each of those subtrees commands more attention. To see what attention has to do

with choice, let us first introduce a notion of a “swap.” Let | · | denote the cardinality

of a set.

3We thank Larry Epstein for referring this paper to us.
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Figure 2.7: A swap of b for a converts d into ∆b
a(d).

Definition 2.2.2 For d = {d1, d2, . . . , dn} such that a ∈ d2\d1, b ∈ d1\d2 and

|d1| ≥ |d2|, a swap of b for a is

∆b
a(d) := d\{d1, d2} ∪ {d′1, d′2}

where d′1 := d1\{b} ∪ {a}, d′2 := d2\{a} ∪ {b}.

In the definition, the subtree b originally belongs to a larger tree (d1) than the

one (d2) containing a. We assume that the subtrees from a smaller tree command

more attention. Therefore, the swap of b for a accentuates b and masks a. Figure

2.7 illustrates the definition. If b is preferred to a, we call this swap an accentuating

swap to emphasize the fact that the better subtree b is now more visible. When we

write ∆b
a(d) to denote the swap of b for a, implicit we have d1, d2 ∈ d, a ∈ d2\d1,

b ∈ d1\d2 and |d1| ≥ |d2|.

Axiom 2.2.4 (Preference for Accentuating Swaps) If b � a, then ∆b
a(d) � d.

To understand the motivation for Preference for Accentuating Swaps, consider a

decision tree d = {d1, d2} where d1 = {lose, win}, d2 = {draw}. Had the decision

maker been fully rational, it does not matter which one of the three outcomes is
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Figure 2.8: The left-hand-side decision tree is swapped into the right-hand-side one.
After the swap, win becomes more salient and draw becomes less so. Thus the
decision maker would choose the right-hand-side decision tree with higher probability.

presented in what subtree. However, when the boundedly rational decision maker

tries to see through the tree, the outcomes in d1 might command less attention than

the one in d2, simply because there are more outcomes to be looked at in d1 than d2.

Suppose win is preferred to draw. An accentuating swap of win for draw makes the

better outcome more salient and the worse outcome less (see Figure 2.8). Therefore

the swapped decision tree might appear to be better, and be chosen more often than

the original tree.

This axiom captures what we observe in many situations. For example, stores

usually try to present better products at more visible places. One way to do so is to

single out a few better products from many other alternatives. By doing that, the

store can attract more consumers, given the same set of products.

This axiom certainly has its limitation. It says that swapping a good subtree from

a bigger tree for a bad subtree from a smaller tree should constitute an improvement.

In other words, only the sizes of trees matter, which greatly simplifies our problem.

More generally, one might want to have an axiom saying that swapping a good subtree

from a more complicated tree for a bad subtree from a simpler tree should constitute
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Figure 2.9: The right-hand-side decision tree extends a into {a} by adding a trivial
choice.

an improvement. To achieve this, one needs to first define what complicated and

simple mean in terms of the decision maker’s choice. We leave this generalization for

future works.

The remaining axioms are technical conditions that help pin down the model.

The axiom below is a consistency requirement. It states that adding a trivial choice

to subtree a is irrelevant (see Figure 2.9). As a result, the decision maker is indifferent

between a and {a}.

Axiom 2.2.5 (Consistency) For a ∈ D, a ∼ {a}.

The last axiom is Continuity. The idea is simple. Suppose we already have a

value function that assigns values to trees. The notion of continuity that we need

is that, for any decision tree, we want small perturbations of its subtree values to

have small impact on its own value (see Figure 2.10). Of course, we do not have the

value function to begin with. To impose this notion of continuity, we first define the

following distance function on the space of subtrees, D. For any decision subtrees

a, b ∈ D, we let

ν(a, b) := |P ({a}, {a, b})− P ({b}, {a, b})|
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be the distance between a, b. In other words, a and b are close whenever the decision

maker considers them to be close substitutes. Next, analogous to the definition of

the Hausdorff distance, we extend the distance function from the space of subtrees

to the space of decision trees as follows.

µ(c, d) :=


max

{
max
ci∈c

min
dj∈d

ν(ci, dj), max
dj∈d

min
ci∈c

ν(dj, ci)

}
, if |c| = |d|

1, if |c| 6= |d|
(2.2)

Hence, c and d are close if c’s and d’s subtrees are pairwisely close in terms of ν.

Unlike the standard Hausdorff distance, we only measure the distance between c

and d that have the same cardinality. When they do not have the same cardinal-

ity, we consider them ”far apart.”4 To see why, suppose we have three indifferent

outcomes x ∼ y ∼ z. Had we not required the second line in (2.2), we will find

that µ({x}, {y, z}) = 0 according to the first line in (2.2). But clearly P ({x}) and

P ({y, z}) are different probability measures.

Axiom 2.2.6 (Continuity) The function P is continuous.

In our notion of continuity, the function µ depends on P while P is required to

be continuous with respect to µ. This circularity creates no problems; as in standard

metric spaces, the metric itself is continuous with respect to the topology it induces.

In our case, the distance µ(c, d) depends on the subtrees of c and d, rather than c

and d themselves. Thus, like the Dominance axiom, Continuity builds a connection

4With the other axioms, µ is a pseudometric that only violates µ(c, d) = 0 ⇒ c = d, compared
to a metric. Without the other axioms, µ might also violate the triangle inequality, and is called a
pseudosemimetric.
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Figure 2.10: Suppose we already have the value function that evaluates subtrees.
The continuity condition that we need is that small perturbations of a decision tree’s
continuation values should have small impact on the decision tree’s value.

between decision trees and their subtrees. The function P defined on depth-1 decision

trees imposes a continuity requirement on P defined on the set of depth-2 decision

trees, and so on.

Our main theorem establishes that in a rich choice environment, the only model

that can satisfy all these axioms is the following model. In the model, two functions

fully describe the decision maker’s behavior: a value function V that describes the

decision maker’s propensity to choose a particular subtree a ∈ b from the decision

tree b, and a function f that relates the value of the decision tree b to it subtree

values.

Definition 2.2.3 An RCR P is a Boundedly-Rational Backward-Induction Rule

(BBR) if there exist a value function V : D → R++ and a strictly increasing contin-

uous function f : V (D)→ R such that for any a = {a1, . . . , an},

P ({ai}, a) =
V (ai)∑n
j=1 V (aj)

(2.3)
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for all i = 1, . . . , n and

V (a) = f−1

(
1

n

n∑
i=1

f(V (ai))

)
(2.4)

As shown in (2.4), V depends on f . However, if we restrict the domain of V to

the set of outcomes D0, then it is independent of the function f . In other words,

through equation (2.4), the function f uniquely extends the valuation of outcomes

to all finite decision trees. The value V (a) > 0 is called the Luce value of a, and

the BBR is a dynamic extension of the Luce rule (Luce (1959)) (or called the logit

model) that has been widely used in the industrial organization literature. When V

and f satisfy the equations above, we say that (V, f) represents P .

The BBR relaxes both components of fully rational backward induction. First,

fully rational backward induction requires tree a’s value to be equal to the maximum

of a’s subtree values. In a BBR, the aggregator (2.4) aggregates a’s subtree values

to evaluate a. Intuitively, this aggregator is some general notion of average instead

of maximum.5 A rapidly increasing (i.e. convex) f ensures that the aggregator is

close to the maximum function. Second, fully rational backward induction requires

that a subtree with the highest value would be chosen with certainty. In a BBR, the

decision maker is not able to do so. Her error-prone choice follows (3.1). The higher

a tree’s value is, the more likely it would be chosen.

This representation could be understood as follows. Given a decision tree, the

decision maker fully understands its structure and outcomes. However, at the current

stage the decision maker does not know how she would choose at the future stages.

5This average is called Kolmogorov-Nagumo mean.
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Hence, she evaluates each tree as if she assigns a uniform prior (or an equal amount

attention) to its subtrees, and uses a function f to aggregate the subtree values. A

tree is treated as a closer substitute for its better outcomes when f is more convex.

Random mistakes are useful in this interpretation: had the decision maker never

made a mistake, knowing all the subtree values should naturally imply that she is

able to use the maximum function to evaluate a tree, instead of some average. As

expected, the axioms are also related to this interpretation. We will come back to

this point in Section 5.

An alternative interpretation of BBR would be provided in Section 4.2, in which

the decision maker receives random noisy signals about the subtree values. More

complicated trees have more downward-biased signals in general. The decision maker

bases her choice on the signals.

To state Theorem 2.2.1, we first define when the choice environment is rich. The

richness condition we have here is similar to the one in Gul, Natenzon and Pesendorfer

(2014).

Definition 2.2.4 We say that (D0, P ) is rich if ∀a, b ∈ D, q ∈ (0, 1), ∃x ∈ D0 such

that x /∈ b and P ({x}, {x} ∪ a) = q.

Richness in our setting implies that for any given probability and any set of

subtrees a, we can find an outcome that would be chosen with the required probability

when put together with a. Moreover, we can find countably many such outcomes,

because the definition requires that the desired outcome does not belong to b, for

any predetermined b ∈ D. Richness is easy to satisfy when the outcome set contains

lotteries. The example below yields a rich (D0, P ).
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Example 2.2.1 Let D0 be all the 50-50 lotteries over monetary prizes. Let δu denote

the degenerate lottery that yields prize u with probability 1. For each 50-50 lottery

1
2
δu1 + 1

2
δu2 that has 1/2 probability returning u1 and 1/2 probability u2, let U(1

2
δu1 +

1
2
δu2) := exp{1

2
u1 + 1

2
u2}. Consider an RCR P such that P (a, a ∪ {1

2
δu1 + 1

2
δu2}) =

1
1+U( 1

2
δu1+

1
2
δu2 )

, 1
2
δu1 + 1

2
δu2 6∈ a. Because U is continuous and monotone, we can

adjust u1 and u2 to find infinitely many 50-50 lotteries that has the same U value.

Thus, we have infinitely many outcomes that satisfies that condition in the definition

of richness.

Our main result below establishes the relation between the axioms and the rep-

resentation. Richness is required in the necessity, but not the sufficiency. To put

it another way, when the choice environment is sparse, there might be other choice

models that satisfy our axioms. However, this can be viewed merely as an artifact

of the sparse choice environment.

Theorem 2.2.1 If (D0, P ) is rich, then the RCR P satisfies Axioms 1–6 if and only

if it is a BBR.

The sufficiency of the theorem can be easily verified. As for the necessity, by The-

orem 1 in Gul, Natenzon and Pesendorfer (2014), Independence and richness ensure

the existence of the function V such that the Luce formula (3.1) holds. The more

challenging part of the proof is relating V (a) to the V (ai)’s for any a = {a1, . . . , an}

and ensuring that (2.4) holds.

The construction of the function f is similar to how one would calibrate a vNM

utility function from the data on a decision maker’s certainty equivalents for 50-50
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gambles (see Machina (1987)). Choose any a, b ∈ D such that V (b) > V (a) and set

f(V (a)) = 0 and f(V (b)) = 1. Let

f(V ({a, b})) =
1

2
f(V (a)) +

1

2
f(V (b)) =

1

2

Note that when calibrating a utility function, we use a similar equation in which

V (a) and V (b) are replaced with monetary prizes x and y, V ({a, b}) is replaced with

the certainty equivalent of the 50-50 gambles between x and y, and f is replaced

with the utility function. Then, we consider d = {b, {a, b}} and set

f(V (d)) =
1

2
f(V ({a, b})) +

1

2
f(V (b)) =

3

4

We can continue in this fashion and define f on some subset of the reals.

This construction works only because of our axioms. For example, if the rep-

resentation is to hold, we must have b � {a, b} � a, because in the represen-

tation f is strictly increasing. This is guaranteed by Stochastic Set Betweenness

and Dominance. More importantly, consider two decision trees {{a, b}, {c, d}} and

{{a, c}, {b, d}}. If P is a BBR, it must be true that

{{a, b}, {c, d}} ∼ {{a, c}, {b, d}} (2.5)
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because

f(V ({{a, b}, {c, d}})) = f(V ({{a, c}, {b, d}}))

=
1

4
f(V (a)) + · · ·+ 1

4
f(V (d))

Preference for Accentuating Swaps ensures that (2.5) holds. To see why, consider

{{a, b}, {c, d}} and suppose b � c. According to the axiom, a swap of b for c should be

preferred to the original tree; that is, {{a, c}, {b, d}} � {{a, b}, {c, d}}. However, we

can swap b and c back, and apply the axiom again to conclude that {{a, b}, {c, d}} �

{{a, c}, {b, d}}. Thus we have (2.5).

Now we obtain that f satisfies

f(V ({a′, b′})) =
1

2
f(V (a′)) +

1

2
f(V (b′))

for a countable subset of V ’s image. Next, Dominance implies that this subset must

be dense in V ’s image. Hence, together with Continuity, f can be extended to V ’s

image. The construction so far only deals with binary decision trees. The last step

requires the interaction between all the axioms except Independence to show that

(2.4) holds not only for binary trees, but also for all finite decision trees.

Proposition 2.2.1 below establishes the uniqueness of the BBR representation. In

particular, the proposition shows that V is unique up to a positive scalar multiplica-

tion, and fixing V , f is unique up to a positive affine transformation. From here on,

for simplicity, when (D0, P ) is rich and P is a BBR, we say that P is a rich BBR.
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Proposition 2.2.1 Suppose P is a rich BBR. Fixing V , f is unique up to a positive

affine transformation. More generally, both (V, f) and (Ṽ , f̃) represent P if and only

if there exist α1, α2 > 0 and β ∈ R such that V (a) = α1Ṽ (a) and f(α1ṽ) = α2f̃(ṽ)+β.

2.3 Complexity Aversion and Error-Proneness

Our model describes a decision maker whose behavior falls short of fully rational

backward induction on both dimensions, assigning correct values to trees and choos-

ing the best subtree with certainty. In this section, we quantify the extent to which a

BBR deviates from fully rational backward induction by providing comparative mea-

sures of complexity aversion and error-proneness. We take limits of these measures

to find limiting cases of BBR, and we show by examples how complexity aversion

and error-proneness interact.

2.3.1 Complexity Aversion

Confronting a depth-1 decision tree a ∈ D1, the decision maker chooses an outcome

x ∈ a ⊂ D0. An outcome is the least complex choice object in our framework.

Consider two decision makers, labeled 1 and 2, who exhibit the same choice

behavior when confronting any depth-1 decision tree. Suppose that compared to

decision maker 1, decision maker 2 is always less likely to choose a nondegenerate

decision subtree over an outcome. Then, we say that decision maker 2 is more

complexity-averse than decision maker 1. To formalize this idea, recall that for an

RCR P and a decision tree a ∈ D, P (a) ∈ L is the probability measure that describes
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how the decision maker chooses. We say that an RCR P1 and RCR P2 coincide on

the depth-1 decision trees if P1(a) = P2(a), ∀a ∈ D1. Let �i be the preference that

Pi induces.

Definition 2.3.1 RCR P2 is more complexity-averse than RCR P1 if P1 and P2

coincide on the depth-1 decision trees, and for any x ∈ D0, a ∈ D, a �2 x implies

a �1 x.

We say that the function f2 is more concave than f1 if f2 = g ◦ f1 for some

strictly increasing and concave function g. The following theorem establishes that

the concavity of f is the measure of the decision maker’s complexity aversion.

Theorem 2.3.1 Suppose RCR P1 and P2 are rich BBRs. Then P2 is more

complexity-averse than P1 if and only if there exist (V1, f1) and (V2, f2) that repre-

sent P1 and P2 respectively such that V1(x) = V2(x) for all x ∈ D0, and f2 is more

concave than f1.

Theorem 2.3.1 suggests that the function f in a BBR describes a decision maker’s

complexity aversion the same way that a utility function describes a decision maker’s

risk aversion. The resulting complexity aversion is not the same as being averse to

trees with more subtrees. It describes how the decision maker thinks of a tree. A

decision tree is treated as a closer substitute for its worse outcomes if f is more

concave, and vice versa. Indeed the aggregator converges to min{V (ai)} as f gets

more and more concave, and it converges to max{V (ai)} case as f gets more and

more convex.
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Now that we have obtained a comparative measure of complexity aversion, let

us introduce a subclass of BBRs that exhibit some constant measure of complexity

aversion, like we do in expected utility theory. These BBRs will be used in the ap-

plications later. They are characterized by the following simple observable behavior.

Definition 2.3.2 Suppose a = {w, x}, b = {y, z} are depth-1 decision trees. We

say that a BBR P is homogeneous if P ({x}, a) ≥ P ({y}, b) implies P ({x}, {x, a}) ≥

P ({y}, {y, b}).

The definition says that for a homogeneous BBR P , if x is chosen more frequently

from a than y from b, then x should also be chosen more frequently over a than y

over b. Proposition 2.3.1 below shows that such BBRs would have the following

representation.

Definition 2.3.3 An RCR P is a Constant-Complexity-Averse (CCA) BBR if there

exists a function V : D → R++ and γ ∈ R such that for any a = {a1, . . . , an},

P ({ai}, a) =
V (ai)∑n
j=1 V (aj)

, i = 1, . . . , n

and either

V (a) =

(
1

n

n∑
i=1

[V (ai)]
γ

)1/γ

or (γ = 0)

V (a) = n

√√√√ n∏
i=1

V (ai)
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Hence, the Luce value of a decision tree a is the γ-power mean of a’s subtree

values V (ai)’s. The following result establishes that the homogeneity condition is

equivalent to constant complexity aversion.

Proposition 2.3.1 A rich BBR P is homogeneous if and only if it is a CCA BBR.

We use the term CCA to describe such BBRs because their f functions are

similar to the CRRA utility functions with domain R++. If we mimick the definition

of relative risk aversion, that is, −v f
′′(v)
f ′(v)

, we know that

−v f
′′(v)

f ′(v)
= 1− γ

Recall that f2 is more concave than f1 if and only if −f ′′2
f ′2
≥ −f ′′1

f ′1
, if both f1 and f2

are twice differentiable. Since v ∈ R++, it is clear that if γ1 ≥ γ2, RCR P2 would

be more complexity-averse than P1. Thus the CCA BBRs with the same outcome

values are ordered with respect to the parameter γ.

2.3.2 Error-Proneness

Under richness and Independence, the RCR is a Luce rule. Hence, facing a binary set

of outcomes {x, y} ∈ D1, if a decision maker chooses x with lower probability than

y, then she statistically reveals that y � x. When comparing two decision makers,

1 and 2, who both prefer y over x, if decision maker 2 always chooses x with higher

probability, then we say that decision maker 2 is more error-prone. Formally, we

define it as follows.
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Definition 2.3.4 RCR P2 is more error-prone than RCR P1 if there exists a func-

tion h : (0, 1
2
]→ R++ such that h(p) ≤ p, h(1

2
) = 1

2
and

P1({x}, {x, y}) = h(P2({x}, {x, y})) (2.6)

for ∀{x, y} ∈ D1 with P2({x}, {x, y}) ≤ 1
2
.

The equation (2.6) under h(1
2
) = 1

2
and h(p) ≤ p implies that x �2 y if and only

if x �1 y. Moreover, since h(p) ≤ p, (2.6) implies that decision maker 2 is always

more likely to choose the inferior outcome (through the function h) than decision

maker 1. The theorem below characterizes our notion of error-proneness.

Theorem 2.3.2 Suppose RCR P1 and P2 are rich BBRs. Then P2 is more error-

prone than P1 if and only if there exist (V1, f1) and (V2, f2) that represent P1 and P2

respectively such that for any x ∈ D0, V2(x) = [V1(x)]λ for some λ ∈ (0, 1].

Clearly, a smaller λ corresponds to a more error-prone decision maker. The key

condition used to prove Theorem 2.3.2 is the following. Consider x1, x2, y1, y2 ∈

D0 such that P2({x1}, {x1, x2}) = P2({y1}, {y1, y2}) ≤ 1
2
. Say decision maker 2

is more error-prone than decision maker 1. Our definition immediately implies

P1({x1}, {x1, x2}) ≤ P2({x1}, {x1, x2}) and P1({y1}, {y1, y2}) ≤ P2({y1}, {y1, y2}).

More importantly, due to the h function, we must also have P1({x1}, {x1, x2}) =
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P1({y1}, {y1, y2}), because

P1({x1}, {x1, x2}) = h(P2({x1}, {x1, x2}))

= h(P2({y1}, {y1, y2}))

= P1({y1}, {y1, y2})

Thus from P2({x1}, {x1, x2}) = P2({y1}, {y1, y2}), decision maker 2 being more error-

prone than decision maker 1 also implies P1({x1}, {x1, x2}) = P1({y1}, {y1, y2}). This

property yields a functional equation for which the exponential is the solution.

2.3.3 Limiting Cases of BBR and the Interaction between

Complexity Aversion and Error-Proneness

So far we have described BBR as two simultaneous deviations from the benchmark

case, fully rational backward induction. By taking limits of the two measures we just

derive, we elaborate the deviations one after another.

Fix some value function V only defined on the set of outcomes. Consider a

collection of CCA BBRs in which each BBR is parametrized by two numbers, λ > 0

and γ. For the CCA BBR with parameters λ and γ, it assigns value Vλ(x) =

[V (x)]λ to an outcome x, and has f(v) = vγ/λ. Consider a simple decision tree

a = {x2, {x1, x3}} where V (xi) = i. According to (3.1) and (2.4), for each pair of λ

and γ, we can define

V ({x1, x3}) :=

(
1

2
[V (x1)]

γ +
1

2
[V (x3)]

γ

)1/γ
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and the equation below should hold

P ({x1, x3}, a) =
[V ({x1, x3})]λ

[V (x2)]λ + [V ({x1, x3})]λ

Note that for each pair of λ and γ, the decision maker’s value function is Vλ(x) =

[V (x)]λ instead of V .

When both λ and γ are arbitrarily large, the choice behavior of BBR coincides

with fully rational backward induction (with an equal-probability tie-breaking rule),

because

lim
γ→∞

V ({x1, x3}) = max{V (x1), V (x3)}

and

lim
λ→∞

P ({x1, x3}, a) =


1, if V ({x1, x3}) > V (x2)

0, if V ({x1, x3}) < V (x2)

1
2
, if V ({x1, x3}) = V (x2)

(2.7)

Of course, since we have V (x1) < V (x2) < V (x3) and V ({x1, x3}) = V (x3) in this

case, the decision maker will choose {x1, x3} for sure at the first stage.

Next, let us bring in complexity aversion. Keep λ to be arbitrarily large, but

consider a finite γ. The decision maker still always chooses the subtree with the

highest value for sure as in (2.7). However, she might be averse to complex subtrees

deterministically. For instance, if γ = −1, we know that

V ({x1, x3}) =

(
1

2
[1]−1 +

1

2
[3]−1

)−1
= 1.5 < 2 = V (x2)
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Therefore in this limiting case, at the first stage, the decision maker chooses the safer

bet x2 with certainty, despite the fact that had she been confronted with {x1, x3},

she would have been able to choose x3 for sure. In other words, had she not shied

away from the complex subtree, she would have been better off.

Lastly, if we also let λ be finite, we will be back to the case with both complexity

aversion and error-proneness.

From the analysis of the previous limiting case, we can see some interaction

between complexity aversion and error-proneness. In this particular decision tree

{x2, {x1, x3}}, for a decision maker who never makes a mistake, the less complexity-

averse she is, the more likely she will end up with the best outcome x3. In other

words, complexity aversion and error-proneness can be complements. Indeed, from

Figure 2.11, we can see that for a decision maker with high error-proneness, her

expected payoff decreases as complexity aversion decreases.

Note that complexity aversion and error-proneness can sometimes be substitutes

too. If we have another decision tree {x1, {x2, x3}}. The more complexity-averse the

decision maker is, the more likely that she can avoid the worst outcome x1. On the

other hand, the less error-prone she is, the better off she would be.

2.4 BBR in Dynamic Choice Problems

In this section, we present several BBR’s implications and properties in dynamic

choice problems. Let us begin with a simple result. Suppose there is an outcome

xn presented either deep down a decision tree (e.g., {x1, {x2, . . . , {xn}}}), or among
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Figure 2.11: Complementarity: When the decision maker’s error-proneness is high,
she benefits (having a higher expected payoff) from having a higher complexity aver-
sion (lower γ). The numerical difference is small because when error-proneness is
high, the decision maker’s behavior is very close to uniform random choice.

many alternative subtrees (e.g., {x1, {x2, . . . , xn}}). Intuitively, such an outcome

should have little contribution to the valuation of the decision tree as a whole. In

other words, if we replace outcome xn with some other outcome y, the value of the

decision tree should not change much. This intuition indeed holds under a BBR, as

stated below. We omit its proof.

Proposition 2.4.1 Consider a BBR (V, f), a sequence of outcomes {xi} such that

V (xi) ∈ [v, v], 0 < v < v, and an outcome y ∈ D0. Then lim
n→∞

V ({x1, {x2, . . . , {xn}}})−
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V ({x1, {x2, . . . , {xn−1, {y}}}}) = 0 and lim
n→∞

V ({x1, {x2, . . . , xn}})−V ({x1, {x2, . . . , xn−1, y}}) =

0.

So far, given a decision tree a = {a1, . . . , an}, our model predicts the probability

with which the decision maker chooses each subtree ai, but it has not yet predicted

how she would continue to choose after choosing some aj ∈ D. Thus, we have

presented a theory that relates a decision maker’s choices at the initial stage of a

decision tree to how she would have chosen had she been asked to make choices in

the subtrees of that tree. We have not addressed the decision maker’s choice after

the first stage of any decision tree.

There is a simple way to extend our model to the subsequent stages of choice:

imposing consequentialism. Consequentialism means history independence. Suppose

b = {b1, . . . , bn} and b1 = {a1, . . . , am}. Under consequentialism, the probability

π({ai}, b) of ai being chosen from the decision tree b is

π({ai}, b) = P ({b1}, b)× P ({aj}, b1) (2.8)

Note that more generally, the second term on the right hand side of (2.8) could also

depend on b2, . . . , bn. By assuming consequentialism, only the current tree matters.

Consequentialism is a maintained hypothesis in the analysis below.

2.4.1 Menu Effect

Consider a decision tree and fix the choice path towards its unique best outcome. A

fully rational decision maker’s choice remains unaffected no matter how we change
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the suboptimal paths. For example, if we add or remove a suboptimal path, the

fully rational decision maker will still follow the optimal choice path with certainty.

However, when the decision maker’s choice follows BBR, all subtrees and outcomes

affect her choice. In particular, adding or removing a suboptimal path could have a

nontrivial impact.

In the marketing literature, it is widely acknowledged that product assortment

affects a decision maker’s choice (see Simonson (1999) for a review) in ways that

are inconsistent with the standard utility maximizing model. Product assortment

studies how adding or removing alternatives affects the decision maker’s choice, that

is, the menu effect. Our model provides a new stochastic framework for analyzing

this question. When a consumer contemplates which store to go to or stands in front

of a supermarket shelf, she is implicitly facing strategic agents who are “gaming” her

complexity aversion.

Abundant evidence has shown that excluding some less appealing products from a

store’s assortment boosts its sales (see Broniarczyk, et al. (1998) and Boatwright and

Nunes (2001)). However, standard theory predicts that a larger product assortment

always induces weakly higher sales than a smaller one. To see how our model can

accommodate such evidence, suppose the decision maker faces {not enter, {good

product, bad product, leave}}; that is, she first chooses whether to enter a store or

not, and then chooses which product to buy or leave the store. If the store eliminates

bad product, the decision tree becomes {not enter, {good product, leave}}. This

assortment reduction might decrease her probability of not entering. To see this,
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according to Stochastic Set Betweenness, it is likely to be the case that

{good product, leave} � {good product, bad product, leave}

Formally, let the Luce value of not enter and leave be normalized to 1. Let the

Luce values of good product and bad product be vg and vb (vg > vb > 0) respectively.

Assume that the profit margins of them are αg > 0 and αb > 0 respectively. Then,

V0 = f−1(1
3
(f(vg) +f(vb) +f(1))) and V1 = f−1(1

2
(f(vg) +f(1))) are the Luce values

of the orginal store and the store after assortment reduction respectively. The total

profit for the original store would be

β0 =

(
1− 1

1 + V0
− V0

1 + V0

1

vg + vb + 1

)
vgαg + vbαb
vg + vb

The total profit for the store after assortment reduction would be

β1 =

(
1− 1

1 + V1
− V1

1 + V1

1

vg + 1

)
αg

The following result establishes that if the Luce value of the bad product is below

some threshold, then total profit of the store would increase if the bad product is

removed from the product assortment.

Proposition 2.4.2 For each vg > 0, there exists a threshold v̂ such that if vb < v̂,

then β1 > β0.

The proof is simple. Assume for a moment that vb = 0, then obviously β0 < β1.

Since β0 is continuous in vb, we can find (0, v̂) such that for all vb ∈ (0, v̂), β0 < β1.
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Note that the menu effect caused by the assortment reduction is significantly

different from the attraction affect or the compromise affect often studied in the

marketing literature; it is inherently dynamic. Our RCRs are extensions of the Luce

rule and therefore satisfy regularity: removing a subtree a ∈ b from the decision

tree b cannot decrease the choice probability of any of the remaining subtrees in

b. However, removing a bad subtree from the tree a can make a more attractive

and hence reduce the probability that the decision maker chooses any of the other

subtrees.

In this particular setting (facing stores and products), one might demand a psy-

chological interpretation for how the decision maker actually chooses. To do this,

it is useful to introduce an alternative interpretation of BBR. In the industrial or-

ganization literature, researchers usually use the logit model instead of the Luce

rule, although the two models are equivalent in terms of observable choice. To see

why they are equivalent, given a set of choice objects a = {a1, . . . , an} and a utility

function U , a logit model says that the probability that ai is chosen is

P ({ai}, a) =
exp{U(ai)}∑
j exp{U(aj)}

(2.9)

Clearly, if we let each aj has Luce value exp{U(aj)}, the resulting Luce rule would

be equivalent to this logit model (2.9). However, the logit model has its own inter-

pretation. In a logit model, the decision maker receives a noisy signal U(aj) + εj

about each choice object’s utility, where εj follows some i.i.d. Gumbel distribution.

Then, she chooses the choice object with the highest signal value. It is well-known

that in this case the decision maker’s choice probabilities would exactly be (2.9).
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A BBR can also be interpreted in this way. For example, suppose the decision

maker’s RCR is represented by (V, f). Say there are two stores. One only has product

x, and the other has products y, z. Let the utility function be U := log V and define

h(u) := f(exp(u)). Now the as-if interpretation becomes that the decision maker

receives a signal about the utility of each store, and then she chooses the store with

the highest signal value to go to. The first store has a signal U(x)+ε, and the second

store has a signal

U({y, z}) + ε′ = h−1
(

1

2
h(U(y)) +

1

2
h(U(z))

)
+ ε′

where ε and ε′ follows i.i.d. Gumbel distribution. The second store’s signal is centered

around some average product values of that store.

Back to the assortment reduction example, under this interpretation, the decision

maker first receives two signals about the utility of entering and not entering the store.

The signals contain errors, but the decision maker simply chooses the alternative that

has a better signal. The signal for entering the store consists of two components: an

error term and an average about the product utility in the store. Hence, having a

bad product in the store will on average punish signal value.

2.4.2 Framing Effect

Consider a simple example. A seller in a store wants to present a fixed set of products

to a decision maker. There is a singled-out place to present only one product, and

a shelf to present the rest of the products. For a fully rational decision maker, how
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the seller presents the products does not matter. The fully rational decision maker

simply buys the best product from the store that contains it. However, this is not

true for a decision maker whose choice follows BBR. As an immediate example,

Preference for Accentuating Swaps implies that the decision maker will more likely

choose a store that presents a better product at the singled-out place. Consistent

with our observation, how the seller presents matters.

To put this in an abstract way, given a fixed set of outcomes, there are many

different ways to organize the outcomes through decision trees. Say there are three

outcomes x1, x2, x3. The mindless way to present them would be to show them

altogether to the decision maker; that is, let the decision maker be confronted with

{x1, x2, x3}. Let us give a name to this presentation strategy, strategy N.

Obviously if we use other decision trees to present the outcomes, the choice

probabilities would not be the same. Consider the following two decision trees

a = {{x1, x2}, {x1, x3}}

and

b = {x1, {x2, x3}}

We can interpret the first decision tree a as follows. The outcomes are classified

into two groups {x1, x2} and {x1, x3}, and more importantly, x1 recurs in both.

Intuitively, by repeating x1 in this way, the choice probability of x1 should be higher.

In the second case, decision tree b, outcome x1 is presented in a simpler subtree. It

is singled out and hence emphasized compared to the grouped ones x2 and x3.
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Figure 2.12: Stragegy N, strategy E and strategy R.

The two abstract examples above capture some common features of advertising.

For instance, when we search for certain search keywords in Google, an advertised

website not only appears on the first page of the search results, but also recurs

on all the other pages (up to ten or more). In contrast, an unadvertised website

only appears once. The decision tree a captures the key element in this advertising

strategy: it repeats the outcome x1. Due to this connection, we call decision tree a an

advertising strategy with recurrence (strategy R). Decision tree b also captures some

important feature of advertising. When we apply for a Chase’s credit card online or

in a local branch, usually three advertised cards are singled out and introduced to

us first, Chase Freedom, Slate, and Sapphire Preferred. Of course Chase has a lot

of other cards, but the other cards are grouped together when prensented. In other

words, the first singled-out credit cards are emphasized. Decision tree b captures the

key element in this advertising strategy: it emphasizes the outcome x1 by singling

it out. Because of this, we call decision tree b an advertising strategy with emphasis

(strategy E). Note that many advertising strategies are combinations of recurrence

and emphasis, including the actual Google’s and Chase’s strategies.
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To see how these two examples, strategy R and E, differ from the benchmark case

strategy N, we define PN := P ({x1}, {x1, x2, x3}) and PE := P ({x1}, {x1, {x2, x3}})

as the probabilities of x1 being chosen in strategy N and strategy E respectively. The

choice probability of x1 under strategy R is

PR : = P ({{x1, x2}}, a)× P ({x1}, {x1, x2}) (2.10)

+P ({{x1, x3}}, a)× P ({x1}, {x1, x3}) (2.11)

Our first result confirms that both strategy R and E increase the choice proba-

bility of x1, no matter what the functions V and f are.

Proposition 2.4.3 If the RCR P is a BBR, PN < min{PE, PR}.

Proof. A BBR is a Luce rule. In a Luce rule, adding a subtree to a decision tree

will strictly lower the probability that the decision maker chooses any of the existing

subtrees. Hence,

P ({x1}, {x1, x2, x3}) < min{P ({x1}, {x1, x2}), P ({x1}, {x1, x3})}

where the left-hand-side is PN . Consider PE. If V (x2) ≥ V (x3), then PE ≥

P ({x1}, {x1, x2}) since V (x2) ≥ V ({x2, x3}). Same applies when V (x2) ≤ V (x3).

Therefore we have PE > PN . Next consider PR. From (2.10) we know that PR is a

weighted average of P ({x1}, {x1, x2}) and P ({x1}, {x1, x3}. Hence PR > PN .

Another question we could ask is when which strategy works better, recurrence

or emphasis. To simplify the analysis, we consider only CCA BBRs. For a CCA
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BBR

V ({xi, xj}) =

(
1

2
[V (xi)]

γ +
1

2
[V (xj)]

γ

)1/γ

PE =
V (x1)

V (x1) + V ({x2, x3})

and

PR =
2∑
i=1

V ({x1, xi})
V ({x1, x2}) + V ({x1, x3})

V (x1)

V (x1) + V (xi)

Recall that a higher γ corresponds to lower complexity aversion. The following result

implies that when the outcome being promoted (x1) is not the worst one, there is

a unique cutoff of complexity aversion such that if the complexity aversion is above

the cutoff, then the strategy with emphasis works better, and vice versa.

Theorem 2.4.1 Suppose RCR P is a CCA BBR, and V (x1) ≥ min{V (x2), V (x3)}.

Then PR ≥ PE if and only if γ ≥ 1.

When γ is low (high complexity aversion), strategy E takes advantage of the

decision maker’s complexity aversion to steer her to outcome x1. In contrast, PR

is less affected by complexity aversion since the strategy R’s first-stage subtrees

are similarly complex. Note that the theorem also implies that the level of error-

proneness does not matter qualitatively. Only the ordinal ranking of V (xi)’s might

matter.

For the case in which x1 is the worst outcome, the following similar but slightly

weaker result holds.
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Proposition 2.4.4 Suppose RCR P is a CCA BBR. For each value function V ,

there exist γ ≥ 1 ≥ γ such that PR < PE whenever γ ≤ γ and PR > PE whenever

γ ≥ γ.

The result above is similar the our previous theorem, except that now the outcome

x1 could be the worst, and that we have two cutoffs instead of one. What happens

between the two cutoffs? It turns out that between the two cutoffs, our result still

holds approximately. For more details, please refer to the Additional Results at the

end of the chapter.

2.5 Axioms Revisited: The Lack of Understand-

ing of Future Choices

In Section 2, we offer one interpretation of BBR: it is a choice model of an error-

prone decision maker who does not understand how she would choose in the future.

In the representation, this is reflected by the uniform weights (1/n) in the aggregating

function

V (a) = f−1
(

1

n

∑
f(V (ai))

)
In contrast, when we say that the decision maker understands her future choices,

we mean that she uses the correct weights in her aggregating function, and possibly
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some function other than f to aggregate the subtree values. In other words,

V (a) = g−1

(∑
i

P ({ai}, a)× g(V (ai))

)
6 (2.12)

Since the axioms and the representation are equivalent, some of our axioms must

also depend on the lack of understanding of future choices. Which axioms depend

on this?

Expectedly, Preference for Accentuating Swaps might not hold if the decision

maker understands her future choices. For example, in the sketch of proof, we know

that this axiom implies

{{w, x}, {y, z}} ∼ {{w, y}, {x, z}}

However, if the aggregating function is (2.12), it’s easy to see that this indifference

condition might not hold.

More surprisingly, Dominance also fails. Consider a simple example where

V (w) = 0, V (x) = exp{2}, V (y) = exp{1}, V (z) = exp{2.1}, and g(v) = log v. Since

V (w) < V (y) and V (x) < V (z), if Dominance holds, {y, z} � {w, x}. However, we

have V ({w, y}) = 2 and V ({y, z}) < 2 under (2.12). In other words, for a decision

maker who understands her future choices, she knows that she never runs into the

bad outcome w. Hence she identifies {w, x} with x. But when facing {y, z}, she

understands that she sometimes mistakenly chooses y. In this particular case, we

can see that even though V (z) > V (x), the fact that y is sometimes chosen drags

6In Ke (2015), a generalization of this model is characterized.
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down the value that the decision maker can get out of {y, z}. The other axioms

hold with or without understanding of future choices.

These findings do not mean that Dominance and Preference for Accentuating

Swaps are not suitable in our case. When the decision maker does not understand

her future choices, Dominance is one of the most natural axioms to impose: without

knowing how choices would be made in the future, a simple rule of thumb for the

current-stage choice is to choose the subtree that has better outcomes. Similarly,

Preference for Accentuating Swaps is also a simple rule of thumb without looking into

how future choices will actually be made. Also note that by imposing Dominance,

the case where the decision maker understands her future choices would not be a

special case of BBR. We leave the more general model that allows for both cases for

future research.
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2.6 Appendix and Additional Results

2.6.1 Appendix

Lemma 2.6.1 For d = {d1, d2, . . . , dn} such that b ∈ d1\d2, a ∈ d2\d1 and |d1| =

|d2|, ∆b
a(d) ∼ d.

Proof of Lemma 2.6.1: Say b � a. Then |d1| ≥ |d2| implies ∆b
a(d) � d

by Preference for Accentuating Swaps. Let d′ := ∆b
a(d), d′1 := d1\{b} ∪ {a}, and

d′2 := d2\{a} ∪ {b}. Notice that now b ∈ d′2\d′1 and a ∈ d′1\d′2. Clearly |d′1| = |d′2|,

and hence |d′2| ≤ |d′1| implies ∆a
b (d
′) � d′. It is not difficult to see that ∆a

b (d
′) = d.

Therefore ∆b
a(d) ∼ d.

�

Proof of Theorem 2.2.1: First we show the necessity. Suppose (D0, P ) is

rich and P is a BBR. According to (3.1), the RCR P is a Luce rule. In a Luce rule,

we know that (i) V (a) ≥ V (b) implies a � b, and (ii) Luce rule satisfies IIA and IIA

implies Independence.

Dominance is satisfied because f is strictly increasing. Continuity is satisfied

too. Small value of ν(a, b) is equivalent to that V (a) and V (b) are close. For two sets

c = {c1, . . . , cn}, d = {d1, . . . , dn}, µ(c, d) being small implies that there is a bijection

π : {1, . . . , n} → {1, . . . , n} such that

max
i
ν(ci, dπ(i))
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is small too. Thus V (ci) and V (dπ(i)) are close. By f ’s continuity, we know that

V (c) and V (d) should be close and hence ν(c, d) would be small.

As for Stochastic Set Betweenness, consider any a, b ∈ D such that a∩ b = ∅, say

a = {a1, . . . , am}, b = {b1, . . . , bn}. If a � b, then V (a) ≥ V (b). Since f(V (a)) =

1
m

∑m
i=1 f(V (ai)), f(V (b)) = 1

n

∑n
i=1 f(V (bi)),

f(V (d1 ∪ d2)) =
1

n1 + n2

(
m∑
i=1

f(V (ai)) +
n∑
i=1

f(V (bi))

)
=

m

m+ n
f(V (a)) +

n

m+ n
f(V (b))

Thus V (a) ≥ V (a ∪ b) ≥ V (b), and Stochastic Set Betweenness is satisfied. Consis-

tency is satisfied since V ({a}) = f−1(f(V (a))) = V (a).

For d = {d1, d2, . . . , dn} such that b ∈ d1\d2, a ∈ d2\d1, b � a and |d1| ≥ |d2|, let

d′1 := d1\{b} ∪ {a} and d′2 := d2\{a} ∪ {b}. We have

|d|[f(V (∆b
a(d)))− f(V (d))] = f(V (d′1)) + f(V (d′2))− f(V (d1))− f(V (d2))

= (f(V (b))− f(V (a)))

(
1

|d2|
− 1

|d1|

)
≥ 0

Therefore Preference for Accentuating Swap is satisfied.

Next we prove the sufficiency. When (D0, P ) is rich and P satisfies Independence,

P would be a Luce rule (see Gul, Natenzon and Pesendorfer (2014)); that is, there

exists a function V : D → R++ that assigns each decision subtree a ∈ D a Luce value
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V (a) > 0, and for a = {a1, . . . , an},

P ({ai}, a) =
V (ai)∑n
j=1 V (aj)

It’s easy to see that a � b implies V (a) ≥ V (b).

For each x ∈ D0, we have V (x) already. We first prove that V (D0) = R++. For

any v ∈ R++, we can find an x ∈ D0 such that V (x) = v′. If v 6= v′, by richness, we

can find y ∈ D0 such that P ({y}, {x, y}) = v
v+v′

. Then V (y) = v. Not only so, for

any v and any given finite set a ⊂ D0, we can find z ∈ D0 such that V (z) = v and

z 6∈ a.

A standard induction argument would show that P satisfies Dominance only if

the following statement holds. For a = {a1, . . . , an} and b = {b1, . . . , bn} such that

ai � bi, a � b; if any of the former is strict, so is the latter. Let us call this statement

Dominance∗.

Next we show that for all a = {a1, . . . , an} ∈ D, by Dominance, there is a

sequence of symmetric and strictly increasing function Mn’s such that V (a) =

Mn(V (a1), . . . , V (an)), where Mn : Rn
++ → R++. The previous result shows that

Mn’s domain is indeed Rn
++. For any (v1, . . . , vn) ∈ Rn

++, we can find {x1, . . . , xn}

such that V (xi) = vi. We can guarantee by richness that xi’s are distinct even if

some vi = vj. Now for any a = {a1, . . . , an} such that V (ai) = vi, it has to be true

that V (a) = V ({x1, . . . , xn}), because we at the same time have all V (ai) ≥ V (xi)

which by Dominance∗ implies V (a) ≥ V ({x1, . . . , xn}), and the other way around.

Therefore we can let Mn maps (v1, . . . , vn) to V ({x1, . . . , xn}), which delivers a

well-defined sequence of functions. Clearly Mn would be symmetric, meaning that
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Mn(v1, . . . , vn) = Mn(vπ(1), . . . , vπ(n)) for any permutation function π. Furthermore,

the strictness in Dominance implies that Mn would be strictly increasing. Consis-

tency implies that M1(v) = v.

Notice that by Dominance, ν(a, b) = 0 if ν(ai, bi) = 0 for all i. It is then straight-

forward to translate Conintuity into the following statement. For ∀ε > 0, a =

{a1, . . . , an}, there exists a δ > 0 such that for all b = {b1, . . . , bn}, if max
i
ν(ai, bi) < δ,

then ν(a, b) < ε.

We show in this paragraph that Mn is continuous. Consider any ε > 0 and

(v1, . . . , vn), where V (ai) = vi, a = {a1, . . . , an}. Now for ε′ = ε
ε+2V (a)

, we can find a

1 > δ′ > 0 such that if max
i
ν(ai, bi) < δ′, then ν(a, b) < ε′. Notice that ν(ai, bi) < δ′

means that

|V (ai)− V (bi)|
V (ai) + V (bi)

< δ′ (2.13)

If V (ai) ≤ V (bi), (2.13) becomes V (bi)−V (ai)
V (bi)+V (ai)

< δ′, which is equivalent to

V (bi)− V (ai) <
2V (ai)

1/δ′ − 1
:= δi

If V (ai) ≥ V (bi), we have

V (ai)− V (bi) <
2V (ai)

1/δ′ + 1
< δi

Thus now we know that if max |V (ai) − V (bi)| < δ := min δi, ν(a, b) < ε′. And

ν(a, b) < ε′ implies

|V (a)− V (b)| < 2V (a)

1/ε′ − 1
= ε
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Therefore Mn is continuous.

Lemma 2.6.1 implies that for xi ∈ D0, i = 1, . . . , 4, where V (xi) = vi,

{{x1, x2}, {x3, x4}} ∼ {{x1, x3}, {x2, x4}}. Therefore we know that

M2(M2(v1, v2),M2(v3, v4)) = M2(M2(v1, v3),M2(v2, v4)) (2.14)

By Stochastic Set Betweenness, for any a, b ∈ D, if a ∼ b, then a ∼ a ∪ b ∼ b,

that is, if V (a) = V (b), then V (a) = V (a ∪ b) = V (b). In particular, we know that

M2(v, v) = v (2.15)

This argument can be easily generalized to Mn(v, . . . , v) = v by induction.

Consider n = 2. We have now shown the function M2 is symmetric, strictly

increasing, continuous and satisfies (2.15) and (2.14). According to Aczél (1948), we

know that there exist a stricly increasing continuous function f : V (D) → R such

that M2(v1, v2) = f−1(1
2
f(v1) + 1

2
f(v2)). Thus for any a = {a1, a2},

V (a) = f−1
(

1

2
f(V (a1)) +

1

2
f(V (a2))

)

Notice that we already haveM1(v) = v, and hence V ({a}) = f−1(f(U(a))). Equation

(2.4) is true for n = 1, 2 now.

To generalize (2.4) to the case with n > 2, we first prove the following lemma.

Lemma 2.6.2 For di = {di,1, . . . , di,m}, d = {d1, . . . , dn} with di ∩ dj = ∅, d ∼⋃n
i=1 di.
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Proof of Lemma 2.6.2: For each di,j, we can find d
(t)
i,j ∈ D0, t = 2, . . . , n×m

such that di,j ∼ d
(t)
i,j . Furthermore, by richness, we can make sure that none of the

d
(t)
i,j is the same as any di′,j′ or any other d

(t′)
i′,j′ . For simplicity, let us define d

(1)
i,j := di,j.

Define d
(t)
i := {d(t)i,1, . . . , d

(t)
i,m}, and d(t) := {d(t)1 , . . . , d

(t)
n }. By Dominance, d(t) ∼ d(t

′).

Then via Stochastic Set Betweenness, we have {d} ∼ {d(1), . . . , d(nm)}. Since d ∼ {d}

by Consistency, we have d ∼ {d(1), . . . , d(nm)} = d′.

Notice that any d
(t)
i,j and d

(t′)
i′,j′ can be swapped in d′ without changing the cardinal-

ity of any subtree, since none of them is the same as another. With |d′i| = |d′j|, due to

Lemma 2.6.1, we can perform any swap and end up having a new decision tree that is

indifferent to d. In particular, we can swap for many times and obtain the following

decision tree, d′′ = {d′′1,1, . . . , d′′n,m} ∼ d′ where d′′i,j = {d′′i,j,1, . . . , d′′i,j,n} and d′′i,j,t =

{d((t−1)×m+1)
i,j , . . . , d

(tm)
i,j }. Now by Stochastic Set Betweenness, d′′i,j,t ∼ {d

(tm)
i,j } ∼ d

(tm)
i,j ,

and thus d′′i,j ∼ {di,j} ∼ di,j. Finally, d ∼ d′ ∼ d′′ ∼ {d1,1, . . . , dn,m} =
⋃n
i=1 di. �

Now suppose (2.4) works for all m < n for some n > 2. For any d =

{d1, . . . , dn+1}, let us find by richness distinct x1, . . . , xn−1 such that none of them

belongs to d and each of them is indifferent to d. By Stochastic Set Betweennes, d ∼

d∪{x1, . . . , xn−1} = d′. By Lemma 2.6.2, d′ ∼ {{d1, . . . , dn}, {dn+1, x1, . . . , xn−1}} =

d′′. Define d′′1 := {d1, . . . , dn}, and d′′2 := {dn+1, x1, . . . , xn−1}. As |d′′| = 2 and
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|d′′i | = n, noting that V (xi) = V (d) = V (d′′) we know that

f(V (d′′)) = f(V (d))

=
1

2
f(V (d′′1)) +

1

2
f(V (d′′2))

=
1

2n

(
n+1∑
i=1

f(V (di)) +
n−1∑
i=1

f(V (xi))

)

=
1

2n

(
n+1∑
i=1

f(V (di)) + (n− 1)f(V (d))

)

Thus we have

V (d) = f−1
(

1

n+ 1

∑
f(V (di))

)
�

Proof of Proposition 2.2.1: The sufficiency is straightforward. If both (V, f)

and (Ṽ , f̃) represent P , since the Luce value is unique up to a scalar multiplication,

V (a) = α1 × Ṽ (a)

for all a ∈ D, and α1 > 0.

As for f ’s uniqueness, consider now x, y ∈ D0. Define v1 := V (x), v2 := V (y)

and v3 := V ({x, y}), and similarly ṽ1 := Ṽ (x), ṽ2 := Ṽ (y) and ṽ2 := Ṽ ({x, y}). We

have

f(v3) =
1

2
f(v1) +

1

2
f(v2) (2.16)

and

f̃(ṽ3) =
1

2
f̃(ṽ1) +

1

2
f̃(ṽ2)
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Since we already have V (a) = α1Ṽ (a), let us define f̂(ṽ) := f(α1ṽ). Now (2.16)

becomes

f̂(ṽ3) =
1

2
f̂(ṽ1) +

1

2
f̂(ṽ2)

Thus

f̂−1
(

1

2
f̂(ṽ1) +

1

2
f̂(ṽ2)

)
= f̃−1

(
1

2
f̃(ṽ1) +

1

2
f̃(ṽ2)

)
(2.17)

Define t1 := f̂(ṽ1) and t2 := f̂(ṽ2). (2.17) becomes

f̃ ◦ f̂−1
(

1

2
t1 +

1

2
t2

)
=

1

2
f̃ ◦ f̂−1(t1) +

1

2
f̃ ◦ f̂−1(t2)

Since ṽ1 and ṽ1 can be arbitrary on the domain, by Jensen’s inequality, it must be

true that

f̃ ◦ f̂−1(t) = α′2t+ β′

and hence f̃(ṽ) = α′2f̂(ṽ) + β′2. Since both f and f̃ are strictly increasing, α′2 > 0.

Reorganizing the equation with α2 := 1
α′
2

and β2 := −β′
2

α′
2
, we get

f(α1ṽ) = α2f̃(ṽ) + β

�

Proof of Theorem 2.3.1: We first prove the sufficiency. Suppose P1 and

P2 can be represented by (V1, f1) and (V2, f2) respectively. Since V1(x) = V2(x) for

x ∈ D0, P1 must coincide with P2 on depth-1 decision trees according to (3.1). Now

for any x ∈ D0, a ∈ D1, that is a = {x1, . . . , xn}, let vi := V1(xi) = V2(xi). Since
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f2 = g ◦ f1,

f2(V2(a)) =
1

n

∑
f2(vi)

g ◦ f1(V2(a)) =
1

n

∑
g ◦ f1(vi)

On the other hand, f1(V1(a)) = 1
n

∑
f1(vi). By Jensen’s inequality, as

1

n

∑
g ◦ f1(vi) ≤ g

(
1

n

∑
f1(vi)

)
= g(f1(V1(a)))

it’s clear that V1(a) ≥ V2(a), and hence a �2 x implies a �1 x. Now suppose we

have proved that for any m′ ≤ m, a �2 x implies a �1 x for any x ∈ D0 and

a ∈
⋃m′

i=1Di. Now for a b = {b1, . . . , bn} ∈ Dm+1, by the induction hypothesis we

have V1(bi) ≥ V2(bi), and thus

V1(b) = f−11

(
1

n

∑
f1(V1(bi))

)
≥ f−11

(
1

n

∑
f1(V2(bi))

)
≥ f−12

(
1

n

∑
f2(V2(bi))

)
= V2(b)

Next we prove the necessity. Since P1 and P2 coincide on the depth-1 decision

trees, and they are both Luce rules, we can by Proposition 2.2.1 set α1 = 1 and

find V1 and V2 such that V1(x) = V2(x) for x ∈ D0. Suppose (Vi, fi) represents Pi.

Define g := f2 ◦ f−11 . The function g is clearly strictly increasing. We know that
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for any x ∈ D0 and a = {x1, . . . , xn} ∈ D1, a �2 x implies a �1 x, where we again

let vi := V1(xi) = V2(xi). In particular, by richness, we can find y ∈ D0 such that

a ∼2 y. Say V1(y) = V2(y) = v; that is, V2(a) = f−12 ( 1
n

∑
f2(vi)) = v, and V1(a) ≥ v,

which implies

f−11

(
1

n

∑
f1(vi)

)
≥ f−12

(
1

n

∑
f2(vi)

)
g

(
1

n

∑
f1(vi)

)
≥ 1

n

∑
f2(vi)

Define ti := f1(ui). The inequality above becomes 1
n

∑
g(ti) ≤ g( 1

n

∑
ti), which

implies that g is concave.

�

Proof of Proposition 2.3.1: Suppose a rich CCA BBR is homogeneous.

Then from

V (x)

V (x) + V (w)
≥ V (y)

V (y) + V (z)

we know that

V (x)/V (w) ≥ V (y)/V (z)
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By definition, V (a) = (1
2
[V (x)]γ + 1

2
[V (w)]γ)1/γ and V (b) = (1

2
[V (y)]γ + 1

2
[V (z)]γ)1/γ.

Therefore

V (a) = V (x)

(
1

2
+

1

2

(
V (w)

V (x)

)γ)1/γ

≤ V (x)

(
1

2
+

1

2

(
V (z)

V (y)

)γ)1/γ

=
V (x)

V (y)
V (b)

which implies that

V (x)

V (x) + V (a)
≥ V (y)

V (y) + V (b)

To show necessity, notice that P ({x}, a) = P ({y}, b) implies that P ({x}, {x, a}) =

P ({y}, {y, b}). Since

V (x)

V (x) + V (w)
=

V (y)

V (y) + V (z)

there exists a α such that V (x) = αV (y) and V (w) = αV (z). Since

V (x)

V (x) + V (a)
=

V (y)

V (y) + V (b)

we know that V (a) = αV (b) too. By richness, we can pick any α. Therefore f must

be homogeneous of degree 1, and take the form f(v) = βvγ (see Wnuk (1984)).

�

Proof of Theorem 2.3.2: First we show the sufficiency. For any {x, y} ∈ D1

such that V2(x) ≤ V2(y), we can let h map P2({x}, {x, y})) to P1({x}, {x, y}). It

is clear that P1({x}, {x, y}) ≤ P2({x}, {x, y}) since λ ∈ (0, 1). The only thing
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that needs to be shown is that h is well-defined; that is, for P2({x}, {x, y}) =

P2({x′}, {x′, y′}), we have P1({x}, {x, y}) = P1({x′}, {x′, y′}) too. Since [V1(x)]λ =

V2(x),

V2(x)

V2(x) + V2(y)
=

V2(x
′)

V2(x′) + V2(y′)

implies that

V2(x)/V2(y) = V2(x
′)/V2(y

′)

[V2(x)]1/λ/[V2(y)]1/λ = [V2(x
′)]1/λ/[V2(y

′)]1/λ

V1(x)/V1(y) = V1(x
′)/V1(y

′)

Thus we know that P1({x}, {x, y}) = P1({x′}, {x′, y′}).

Now consider the necessity. Under the hypothesis of the theorem, P2({x}, {x, y}) ≤
1
2

if and only if V2(x) ≤ V2(y). Since h(p) ≤ p, we know that if V2(x) < V2(y), then

V1(x) < V1(y) too, for x, y ∈ D0. And since h(1
2
) = 1

2
, we know that V2(x) = V2(y)

implies that V1(x) = V1(y). Thus there is a strictly increasing function φ such that

V1(x) = φ(V2(x)), x ∈ D0. Now for any x, y ∈ D0 such that V2(x) ≤ V2(y), by

richness, we can find xα and yα such that V2(xα) = αV2(x) and V2(yα) = αV2(y).

Notice that

P2({x}, {x, y}) = P2({xα}, {xα, yα})

we must have

P1({x}, {x, y}) = P1({xα}, {xα, yα})
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which implies that V1(xα) = ψx(α)V1(x), V2(yα) = ψy(α)V1(y) and ψx(α) = ψy(α).

Since x and y are arbitrary, there has to be a ψ(α) = ψx(α) for any x ∈ D0. Thus

φ(V2(xα)) = φ(αV2(x))

V1(xα) = ψ(α)V1(x)

= ψ(α)φ(V2(x))

Therefore we have

φ(αv) = ψ(α)φ(v)

To satisfy the equation above, according to Aczél (1966, p. 144–145), φ(v) = α1v
λ′ ;

that is, V1(x) = α1[V2(x)]λ
′
. With an abuse of notation, we can pick the representa-

tion via Proposition 2.2.1 so that α1 = 1. Then h(p) ≤ p implies that λ′ ≥ 1, and

thus λ := 1/λ′ ∈ (0, 1].

�

Proof of Theorem 2.4.1 and Proposition 2.4.4: In our example, we deal

with only x1, x2 and x3. Let us define vi := V (xi) and

vi,j =

(
1

2
[V (di)]

γ +
1

2
[V (dj)]

γ

)1/γ

Note that vi,i = vi. Sometimes to emphasize the parameter γ, we write vi,j(γ). Now

PE =
v1

v1 + v2,3
=

v1,1
v1,1 + v2,3
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and

PR =
v1,2

v1,2 + v1,3
× v1
v1 + v2

+
v1,3

v1,2 + v1,3
× v1
v1 + v3

Again sometimes to emphasize the parameter γ, we write PE(γ) and PR(γ).

We first prove the following lemmas. Define ṽ(vx, vy; γ) = (1
2
vγx + 1

2
vγy )1/γ.

Lemma 2.6.3 ṽ(vx, vy; γ) is increasing in γ. It’s strictly increasing if vx 6= vy.

Proof of Lemma 2.6.3: Say γ1 ≤ γ2. We have

ṽ(vx, vy; γ2) = (
1

2
vγ2x +

1

2
vγ2y )1/γ2

= (
1

2
vγ1×(γ2/γ1)x +

1

2
vγ1×(γ2/γ1)y )1/γ2

≥ (
1

2
vγ1x +

1

2
vγ1y )(γ2/γ1)×1/γ2

= ṽ(vx, vy; γ1).

It is not difficult to see the strictness. �

To prove the next lemma, first notice that ṽ is homogenous of degree 1, that is,

ṽ(αvx, αvy; γ) = αṽ(vx, vy; γ).

Lemma 2.6.4 If vl ≤ vm ≤ vh, γ1 ≤ γ2, then

ṽ(vl, vh; γ2)

ṽ(vl, vh; γ1)
≥ ṽ(vm, vi; γ2)

ṽ(vm, vi; γ1)
, i = l or h

Proof of Lemma 2.6.4: We prove the case of i = h. i = l can be proven

similarly. Obviously ṽ(vm, vh; γ1) ≥ ṽ(vl, vm; γ1) since ṽ is increasing in its both
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arguments. Suppose for some β ≥ 1, ṽ(vm, vh; γ1) = βṽ(vl, vh; γ1). By the homo-

geneity,

ṽ(vm, vh; γ1) = ṽ(βvl, βvh; γ1)

Note that it has to be the case that βvl ≤ vm, as we already have βvh ≥ vh. Now γ1 is

increased to γ2. Due to the homogeneity, we still have ṽ(βvl, βvh; γ2) = βṽ(vl, vh; γ2).

If we can show that ṽ(vm, vh; γ2) ≤ βṽ(vl, vh; γ2), then

ṽ(vm, vh; γ2) ≤
ṽ(vm, vh; γ1)

ṽ(vl, vh; γ1)
ṽ(vl, vh; γ2)

which implies the conclusion.

Suppose ṽ(vm, vh; γ2) := v′ > βṽ(vl, vh; γ2) = ṽ(βvl, βvh; γ2) := v′′. Say

ṽ(vm, vh; γ1) = ṽ(βvl, βvh; γ1) = v = ṽ(v, v; γ1). We know that v′′ ≥ v by

Lemma 2.6.3. Clearly there is one and only one point (vm, vy) such that

ṽ(βvl, βvh; γ2) = ṽ(vm, vy; γ2) by continuity and strict monotonicity. We know

that vy ≥ βvh since βvl ≤ vm. Furthermore, we know that vy ≥ vh. To see this,

define curve C(v, γ) := {(v′x, v′y) : v′x ≥ v′y and ṽ(v′x, v
′
y; γ) = v}. We can show that

for every C(v, γ), its slope at (v′x, v
′
y) ∈ C(v, γ) is decreasing in γ because the slope

is equal to

−
∂ṽ(v′x, v

′
y; γ)/∂v′x

∂ṽ(v′x, v
′
y; γ)/∂v′y

= −
(
v′x
v′y

)γ−1
Together with some standard arguments, it is not difficult to conclude that vy ≥ vh.

Now we have ṽ(vm, vh; γ2) = v′ > v′′ = ṽ(βvl, βvh; γ2) = ṽ(vm, vy; γ2) but vy ≥ vh,

which is a contradiction. �
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The next lemma can be stated in a much more general way, but for our purpose,

we merely need to prove the following version.

Lemma 2.6.5 For ṽ(vx, vy; γ), ∂2ṽ
∂vx∂vy

≤ 0 if γ ≥ 1, ∂2ṽ
∂vx∂vy

≥ 0 if γ ≤ 1.

Proof of Lemma 2.6.5:

∂ṽ

∂vx
=

1

2
vγ−1x (

1

2
vγx +

1

2
vγy )1/γ−1

and hence

∂2ṽ

∂vx∂vy
=

1

4
(1− γ)vγ−1x vγ−1y (

1

2
vγx +

1

2
vγy )1/γ−2 (2.18)

Clearly (2.18) is less than 0 if γ ≥ 1, and vice versa. �

Without loss of generality, let v2 ≤ v3. First let us consider v2 ≤ v3 ≤ v1.

Clearly PE is decreasing in γ since v2,3 is increasing in γ by Lemma 2.6.3. Consider

PR = v1,2
v1,2+v1,3

v1
v1+v2

+ v1,3
v1,2+v1,3

v1
v1+v3

. By Lemma 2.6.4, if γ1 ≥ γ2,
v1,2(γ1)

v1,2(γ2)
≥ v1,3(γ1)

v1,3(γ2)
.

Therefore

v1,2(γ1)

v1,2(γ1) + v1,3(γ1)
=

1

1 + v1,3(γ1)

v1,2(γ1)

≥ 1

1 + v1,3(γ2)

v1,2(γ2)

=
v1,2(γ2)

v1,2(γ2) + v1,3(γ2)

Notice that v1
v1+v2

≥ v1
v1+v3

, therefore PR(γ1) ≥ PR(γ2); that is, PR in this case is

increasing in γ, which implies that PE − PR is decreasing in γ. It’s easy to verify

that PE = PR when γ = 1. Thus if γ ≥ 1, PR ≥ PE, and if γ ≤ 1, PR ≤ PE.
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If v2 ≤ v1 ≤ v3 and γ ≥ 1, then

PR =
v1,2

v1,2 + v1,3

v1
v1 + v2

+
v1,3

v1,2 + v1,3

v1
v1 + v3

≥ (v1 + v2)/2

v1,2 + v1,3

v1
v1 + v2

+
(v1 + v3)/2

v1,2 + v1,3

v1
v1 + v3

=
v1

v1,2 + v1,3
,

since when γ ≥ 1, v1,i ≥ 1
2
v1 + 1

2
vi, i = 2, 3, by Lemma 2.6.3. By Lemma 2.6.5, it is

easy to show that v1 − v1,2 ≥ v1,3 − v2,3, and hence

v1
v1,2 + v1,3

≥ v1
v1 + v2,3

.

Therefore if γ ≥ 1, PR ≥ PE. The other case of γ ≤ 1 can be proven similarly.

Finally, to see why Proposition 2.4.4 is true, notice that when v1 ≤ v2 ≤ v3, PE

is decreasing in γ because v2,3 is increasing in γ by Lemma 2.6.3. Same is PR. Since

PR = v1,2
v1,2+v1,3

× v1
v1+v2

+ v1,3
v1,2+v1,3

× v1
v1+v3

where by Lemma 2.6.4, when γ increases,

the increase of v1,3 is larger than the increase of v1,2, which implies that v1,2
v1,2+v1,3

will

decrease and v1,3
v1,2+v1,3

will increase. Since v1
v1+v3

≥ v1
v1+v2

, when γ increase, PR would

decrease.

Now notice that

lim
γ→+∞

PR =
v2

v2 + v3

v1
v1 + v2

+
v3

v2 + v3

v1
v1 + v3
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lim
γ→−∞

PR =
1

2

v1
v1 + v2

+
1

2

v1
v1 + v3

while

lim
γ→+∞

PE =
v1

v1 + v3

lim
γ→−∞

PE =
v1

v1 + v2

Therefore we know that

lim
γ→−∞

PE ≤ lim
γ→−∞

PR ≤ lim
γ→+∞

PR ≤ lim
γ→+∞

PE

Note that when γ = 1, PE = PR as usual. By the intermediate value theorem,

there exist γ and γ such that PE(γ) = lim
γ→+∞

PR and hence for any γ > γ, PE > PR.

Similar argument can be applied to the other direction.

�

2.6.2 Additional Results

An Approximate Result of Advertising Strategy Comparison

Proposition 2.6.1 Suppose RCR P is a CCA BBR, and V (x1) ≤ V (x2) ≤ V (x3).

Then γ ≥ (≤)1 implies PR > (<)PE − (+) 1
16

.
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Proof of Proposition 2.6.1: Suppose v1 ≤ v2 ≤ v3. Consider first the case

of γ ≥ 1. Since v1,2 ≥ v1 and v2,3 ≥ v1,3, we know that

v1,2
v1,2 + v1,3

≥ v1
v1 + v2,3

Therefore PR ≥ P ′R := v1
v1+v2,3

v1
v1+v2

+ v1,3
v1,2+v1,3

v1
v1+v3

. The inequality becomes an equal-

ity if and only if v1 = v2. Define ∆ := v1
2v1+v2+v3

v2−v1
v2+v1

. We prove that P ′R + ∆ ≥ PE.

It is easy to verify that when γ = 1,

P ′R(1) + ∆ = PE(1) = PR(1) =
2v1

2v1 + v2 + v3

where ∆ is not affected by γ. Now consider γ increasing from 1 to γ > 0. Since v2,3

increases, PE changes from v1
v1+

v2+v3
2

to v1
v1+

v2+v3
2

−δ for some nonnegative constant δ ≥

0 (δ = 0 if and only if v2 = v3). Similarly, P ′R changes from v1
v1+v2,3

v1
v1+v2

+ v1,3
v1,2+v1,3

v1
v1+v3

to

(
v1

v1 + v2,3
− δ) v1

v1 + v2
+

v1,3(γ)

v1,2(γ) + v1,3(γ)

v1
v1 + v3

According to Lemma 2.6.5, we know that v1,3(γ)

v1,2(γ)+v1,3(γ)
is increasing in γ. Therefore

PE(γ) =
v1

v1 + v2+v3
2

− δ

= P ′R(1) + ∆− δ

≤ v1
v1 + v2,3

v1
v1 + v2

− δ +
v1,3(γ)

v1,2(γ) + v1,3(γ)

v1
v1 + v3

+ ∆

≤ (
v1

v1 + v2,3
− δ) v1

v1 + v2
+

v1,3(γ)

v1,2(γ) + v1,3(γ)

v1
v1 + v3

+ ∆

= P ′R(γ) + ∆
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To summarize, we have now

PR + ∆ ≥ P ′R + ∆ ≥ PE

for all values of v1 ≤ v2 ≤ v3 and γ ≥ 1; that is PR ≥ PE − ∆ and the inequality

becomes an equality if and only if v1 = v2 = v3. Since

∆ =
v1

2v1 + v2 + v3

v2 − v1
v2 + v1

≤ v1(v2 − v1)
2(v1 + v2)2

=
v2/v1 − 1

2(v2/v1 + 1)2

Define t := v2/v1− 1 ∈ [0,+∞) and T (t) := t
2(t+2)2

. It is not difficult to analyze this

function and conclude that

max
t∈[0,+∞)

T (t) =
1

16

reached when t = 2. Hence we prove one side of the case of v1 ≤ v2 ≤ v3.

Notice that when t = 2, v1 < v2. Therefore our result for this case is not tight.

For the other side of the statement, we define P ′′R := v1,2
v1,2+v1,3

v1
v1+v2

+ v2,3
v1+v2,3

v1
v1+v3

,

and ∆′ := v1
2v1+v2+v3

v2−v1
v3+v1

. Then similarly one can show that PR−∆′ ≤ P ′′R−∆′ ≤ PE,

if γ ≤ 1. Since

∆′ =
v1

2v1 + v2 + v3

v2 − v1
v3 + v1

≤ v1(v2 − v1)
2(v1 + v2)2
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the same argument continues, proving the case of γ ≤ 1.

�

The Depth of Outcomes

Here we show that for a CCA BBR with γ = 1, to calculate the Luce value of a

decision tree, the structure of the tree matters only through the depth of outcomes.

For simplicity, let us only consider a decision tree a whose parent nodes all have a

branching factor k, where a branching factor means the number of children nodes

that a parent node has. The result can be easily extended to general finite decision

trees. Again for simplicity, suppose each outcomes xi that appears on a leaf node

of a does not appears more than once. Then we must have either xi ∈ a or xi ∈

a(1) ∈ · · · ∈ a(li−1) ∈ a for some li ≥ 2, but not both. In the former case, xi’s depth

li = 1. In the latter case, li is xi’s depth. Since xi only appears once, the depth is

well-defined. If xi ∈ a or xi ∈ a(1) ∈ · · · ∈ a(li−1) ∈ a, we say that xi is an outcome

of a.

Let vi := V (xi). We want to prove that for a decision tree a that has outcomes

x1 through xn and induces an n-tuple of depths (l1, . . . , ln), the probability that the

decision maker chooses each outcome is

k−livi∑
k−ljvj

(2.19)

and the Luce value of a is ∑
k−ljvj (2.20)
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Suppose a ∈ D1 and satisfies our assumptions. We know that |a| = k, and each

xi has depth 1. Then vi∑k
j=1 vj

is the probability of xi being chosen, which is equivalent

to
1
k
vi∑ 1
k
vj

. Thus (2.19) holds. Clearly the Luce value of a is
∑

1
k
vj. Thus (2.20) holds.

Now suppose for any a ∈ Dm that satisfies our assumptions, m ≤ n for some

n ≥ 1, both (2.19) and (2.20) hold. Consider any a ∈ Dn+1 that satisfies our

assumptions. Again |a| = k. Suppose a = {a1, . . . , ak} where ai ∈ Dmi
for some

mi ≤ n. The n-tuple of depths it induces is (l1, . . . , ln). Obviously the depth of xi

in a exceeds its depth in aj by 1, if xi is an outcome of aj. Since the Luce value of

a is
∑k

j=1
1
k
V (aj),

k∑
j=1

1

k
V (aj) =

1

k

∑
k−li+1vi =

∑
k−livi

Thus (2.20) holds.

The probability of xi being chosen is equal to P ({aj}, a) times the probability of

xi being chosen from aj, if xi is an outcome of aj. We know that that latter is

k−(li−1)vi∑
{t:xt∈···∈dj} k

−(lt−1)vt

while the former is ∑
{t:xt∈···∈dj} k

−(lt−1)vt∑n
t=1 k

−(lt−1)vt
.

Combining the two, it is not difficult to see that (2.19) holds.
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Chapter 3

Forward Looking in Dynamic

Choice - An Impossibility Result

3.1 Introduction

Confronting a dynamic economic problem, a decision maker needs to make a sequence

of choices. Each choice that she makes not only affects what she receives at the

current stage, but also what continuation problems that she would face in the future.

Hence, to make a good decision at the current stage, the decision maker needs to

look forward.

When looking forward in a dynamic problem, it is not enough to just understand

the structure of it. The decision maker also needs to take her own future choice

behavior into account. For example, if the decision maker predicts that she will
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make mistakes in the future, then a complicated continuation problem that contains

the best prize is not necessarily good.

Furthermore, it is not necessarily true that forward looking takes everything into

account correctly. The decision maker might fail to understand the structure of the

problem. For instance, the decision maker might have limited attention, and hence

some choice options are unnoticed (Masatlioglu, Nakajima and Ozbay (2012), Brady

and Rehbeck (2015)). The decision maker might also fail to understand her future

choices due to her changing preference, which leads to dynamic inconsistency (Strotz

(1955), Laibson (1997)). For instance, a naive decision believes that her future

choices should be optimal with respect to her current preference, but in fact her

future preference changes and she would optimize according to the future preference

instead.

In this chapter, we analyze forward looking under a different assumption: the

decision maker makes random mistakes when choosing. We assume that the decision

maker understands the structure of the dynamic problem, and she does not have a

changing preference, but she might and might not understand how exactly she makes

mistakes.

We present a negative result showing that if the error-prone decision maker’s

forward looking satisfies three simple conditions, then she must have ignored her

mistakes when looking forward. The first condition monotonicity states that a deci-

sion problem looks better if its prizes are better. The second condition, betweenness,

assumes that a decision problem’s value should be between its best prize and its worst

prize. The reason is simple: even though the decision makes mistakes, she would
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never end up with any prize better than the best or worse than the worst. Lastly,

most existing models of error-prone choice behavior imply that if an option is bad

enough, then the decision maker is able to avoid it even though she makes mistakes.

The last condition reducibility captures this idea in forward looking. It states that

if an option is bad enough, it will not affect the value of a decision problem because

it would not be chosen.

Our result shows that if the decision maker’s forward looking satisfies monotonic-

ity, betweenness and reducibility, then she must identify a decision problem by its

best prize. In other words, even though the conditions we consider allow for an-

ticipation of mistakes, they together predict the ignorance of mistakes in forward

looking. Moreover, no matter how the decision maker looks forward, strict mono-

tonicity, betweenness and reducibility can never be satisfied at the same time. Most

likely, one may believe that monotonicity is an innocent assumption, and it is the

other conditions that go wrong. Under the most standard assumptions, error-prone

choice following the logit model and forward looking exhibiting rational anticipation

of mistakes (McKelvey and Palfrey (1998)), we show that, monotonicity fails in this

case. The intuition is in line with reducibility. When an option is obviously inferior

compared to the other options, it would be chosen with low probability. However,

when it improves, although still inferior than the others, it will be chosen more of-

ten. It turns out that the overall effect of improving that inferior option could be

negative.

In general, under rational anticipation of mistakes, betweenness holds, but either

monotonicity or reducibility fails. The failure of monotonicity is not restricted to
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the particular functional form of logit. We show that in a more general model of

mistakes (Ke (2015a)), monotonicity not only fails in the logit case, but also many

others.

3.2 An Impossibility Theorem

Consider a decision maker who is asked to evaluate a decision problem. The deci-

sion problem consists of several monetary prizes. It is understood that the decision

maker needs to make a choice among those prizes at a future stage. We ask the

decision maker to report the certainty equivalent of the decision problem; that is,

what monetary prize is considered to be indifferent to the decision problem.

A monetary prize is a real number. A decision problem X = (x1, . . . , xn) is an

n-tuple of prizes, where n could be any positive integer. Let X =
⋃+∞
n=1Rn be the set

of all decision problems. The reported certainty equivalent of the decision problem

X is I(X) where I is a function that maps X to R such that for any x ∈ R

I((x)) = x

We call I the foresight function.

In the simplest case, this question is trivial: I(X) should simply be equal to

maxxi. However, the decision maker might make mistakes when choosing. For

example, in Caplin, Dean and Martin’s (2011) experiments, the decision maker per-

forms some simple addition and subtraction to figure out the exact monetary prize
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associated with each option. Even though the calculation is simple enough, the

decision maker sometimes fails to identify the option with the best prize.

When looking forward to evaluate a decision problem, the decision maker may

and may not be aware of her mistakes. Even if she anticipates mistakes, her belief

about the mistakes may not be ”rational”. However, there are a few conditions that

seem natural to impose on the foresight function, under the presence of mistakes.

To facilitate the explanation for those conditions, let us first introduce some existing

models of how the decision maker makes mistakes.

3.2.1 Preliminaries: Models of Error-Prone Choice

There are several ways to model how the decision maker makes random mistakes.

For a decision problem X = (x1, . . . , xn), let P (X) be the probability distribution

that describes how the decision maker chooses. In other words, Pi(X) is the proba-

bility that xi is chosen when the decision problem is X. Of course, Pi(X) ≥ 0 and∑
i Pi(X) = 1 for any X ∈ X. We call P the random choice function. Below are a

few examples of models of random mistakes.

1. Logit Model : When facing a decision problem X = (x1, . . . , xn), the decision

maker chooses xi with probability

Pi(X) =
exp{u(xi)}∑
j exp{u(xj)}

(3.1)

where u is the utility function, and exp{u(xi)} is also called xi’s Luce value

(see Luce (1959)). This choice probability formula can be generated as follows.
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Confronting X, the decision maker receives a noisy signal u(xj)+εj for each xj,

where εj follows some i.i.d. Gumbel distribution. The decision maker chooses

the prize with the highest signal. It is shown that such a procedure will induce

the logit formula in (3.1) (see McFadden (1973)).

2. Quantal Response Model (QRM): In McKelvey and Palfrey (1995, 1998), when

facing a decision problem X = (x1, . . . , xn), the decision maker receives a noisy

signal u(xi) + εi for each prize xi, where u is the utility function and εi is

the noise term that satisfies some mild assumptions on the distribution. The

decision maker chooses the prize that has the highest signal. Since the signal

is random, the decision maker’s choice is random from the observer’s point of

view. In this case, Pi(X) is equal to the probability that xi has the highest

signal value. This model nests the logit model as a special case when the error

terms follow some i.i.d. Gumbel distribution.

3. Anticipated-Mistakes Rule (AMR): In Ke (2015a), the decision maker chooses

each xi from (x1, . . . , xn) with probability φ(u(xi))∑n
j=1 φ(u(xj))

where u is the utility

function, and φ is a surjective strictly increasing function that maps u(R) to

R++. In an AMR, φ(u(xi)) is the Luce value of xi. This model nests the logit

model as a special case when the φ function is exponential.

3.2.2 Forward-Looking under Error-Prone Choice

We introduce three simple conditions that seem natural for the foresight function I

to satisfy. The first condition is a monotonicity assumption.

117



Definition 3.2.1 The foresight function satisfies monotonicity if for any X =

(x1, . . . , xi−1, xi, xi+1, . . . , xn) and X ′ = (x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)

xi ≥ x′i ⇒ I(X) ≥ I(X ′) (3.2)

We say that the foresight function satisfies strict monotonicity if it satisfies mono-

tonicity and the strict version of (3.2).

The second condition is based on the following idea. Even though the decision

maker chooses with randomness, she can never get anything better than the best

monetary prize, nor anything worse than the worst prize. Hence, the foresight func-

tion should be between the maximum function and the minimum function. Different

forms of this condition have appeared in Bolker (1966), Gärdenfors (1994), Ahn

(2008), and Ke (2015a).

Definition 3.2.2 The foresight function I satisfies betweenness if for any X =

(x1, . . . , xn) ∈ X

minxi ≤ I(X) ≤ maxxi

The last condition we consider is called reducibility. In X = (x1, . . . , xn), when

some xi gets worse and worse, any of the models introduced above (logit, QRM,

and AMR) will predict that Pi(X) converges to zero. In other words, when xi is

obviously inferior than the other prizes, it would never be chosen. We take this idea

to the foresight function.

118



Definition 3.2.3 The foresight function I satisfies reducibility if for any X =

(x1, . . . , xn) ∈ X

lim
y→−∞

I ((x1, . . . , xn, y)) = I(X)

Theorem 3.2.1 shows that in fact these simple conditions are incompatible. In

particular, if I satisfies the three conditions above, the only possible solution is

I(X) = max xi

In other words, the decision maker evaluates a decision problem as if she never

makes a mistake. In addition, if we replace the monotonicity condition with strict

monotonicity, then there is no function I that can satisfy all the conditions.

Theorem 3.2.1 The foresight function I satisfies monotonicity, betweenness and

reducibility if and only if I(X) = max xi. Furthermore, there is no foresight function

I that satisfies strict monotonicity, betweenness and reducibility.

Proof. We first prove the second half: strict monotonicity, betweenness and

reducibility are incompatible. Take any x ∈ R. From betweenness, we know that

I((x, x)) = x

Take some fixed y < x. By strict monotonicity, we have

I((x, y)) < I((x, x)) = x (3.3)
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Lastly, due to reducibility, we have I((x, z)) → I((x)) = x as z → −∞. Hence, for

some sufficiently small z, we must have z < y but

I((x, z)) > I((x, y))

which violates monotonicity.

Next, we prove the first half: I satisfies monotonicity, betweenness and reducibility

if and only if I(X) = maxxi. It is easy to check that I(X) = maxxi satisfies those

three conditions. To see the other direction, notice that now that we only have

monotonicity, (3.3) will become

I((x, y)) ≤ I((x, x)) = x

for some fixed y < x. For any ε > 0, we can find a sufficiently small z(ε) such that we

have x − ε ≤ I((x, z(ε))) ≤ I((x, y)) ≤ x. Take ε to 0, we know that I((x, y)) = x.

Since this holds for any y < x, and the same argument applies to the other X ∈ X,

we know that I(X) = max xi.

3.3 Failure of Monotonicity under Rational An-

ticipation of Mistakes

One might think that reducibility is the condition that leads to this impossibility

result, and that assuming rational anticipation of mistakes, the logit model, the QRM

and the AMR seem to satisfy monotonicity and betweenness, but not reducibility.
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These conjectures are not entirely true. First of all, let us define what we mean by

rational anticipation of mistakes. Suppose we have a utility function u : R→ R, as in

the logit model, the QRM and the AMR. We say that I exhibits rational anticipation

of mistakes if

I(X) = u−1
(∑

Pi(X)u(xi)
)

In other words, the utility of I(X) would be equal to the expected utility that the

decision maker can actually derive from the decision problem X. One among the

three conditions is never violated in the logit model, QRM and AMR, if I exhibits

rational anticipation of mistakes. Let us state this simple fact without proof.

Proposition 3.3.1 When I exhibits rational anticipation of mistakes, betweenness

holds for the logit model, the QRM and the AMR.

This result is obvious, because in all these models, the utility derived from X is

somewhere between the maximum and the minimum of u(xi). Hence, I(X) should

also be between maxxi and minxi.

Perhaps a more surprising observation is that monotonicity can be easily violated.

Let us take the logit model as an example. Consider a fixed x ∈ R and y → −∞.

Assume for a moment that u is the identity function. When the foresight function I

exhibits rational anticipation of mistakes

I((x, y)) =
x exp{x}

exp{x}+ exp{y}
+

y exp{y}
exp{x}+ exp{y}
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It is not difficult to see that in this case

lim
y→−∞

I((x, y)) = x = I((x))

In other words, reducibility holds. It follows immediately that monotonicity fails.

To see the intuition, consider (−100, 1) and (0, 1.01). In the first decision problem

(−100, 1), the decision maker rarely chooses the bad prize −100, because compared

to 1, it is obviously inferior, even though the decision maker makes mistakes. On

the other hand, facing (0, 1.01), the logit model implies that the decision maker will

often bumps into the inferior prize 0. As a result, her expected payoff from (0, 1.01)

is lower than (−100, 1), even though 0 > −100 and 1.01 > 1. Indeed, a simple

calculation shows that I((−100, 1)) > 0.99, while I((0, 1)) < 0.99.

Although we assume above that u is the identity function, the failure of mono-

tonicity under the logit model does not depend on it, as stated in the result below.

Proposition 3.3.2 Assume that P follows the logit model and I exhibits rational

anticipation of mistakes. If u is continuously strictly increasing and u(z)→ −∞ as

z → −∞, then monotonicity does not hold.

Proof. Under the assumptions

u(I((x, y))) =
u(x) exp{u(x)}

exp{u(x)}+ exp{u(y)}
+

u(y) exp{u(y)}
exp{u(x)}+ exp{u(y)}
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Let v := exp{u(y)}. Then, lim
y→−∞

u(y) exp{u(y)} = lim
v→0

v log v = 0, by the L’Hôpital’s

rule. Therefore

lim
y→−∞

u(I((x, y))) = u(x)

Under the assumptions on u, we know that

lim
y→−∞

I((x, y)) = x

By Theorem 3.2.1 and Proposition 1, monotonicity fails.

One might continue to wonder if the failure of monotonicity merely comes from

the specific functional form used by logit. This is again not true. Take the AMR as

an example. Given X, the probability of choosing xi is

Pi(X) =
φ(u(xi))∑
j φ(u(xj))

When φ is an exponential, the AMR becomes a logit model. Again assume that u is

continuously strictly increasing and u(z) → −∞ as z → −∞. The following result

taken from Ke (2015a) states that some limiting behavior of φ is sufficient to let

mononicity be violated.

Proposition 3.3.3 (Ke (2015a)) If lim
u→−∞

uφ(u) = 0, then monotonicity does not

hold.
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3.4 When Is Monotonicity a Good Assumption?

Despite all these facts, monotonicity still seems to be a natural condition, even

under the presense of mistakes. But when should we impose it, and in what sense is

it natural?

Note that all the violations of monotonicity in this section happen under the

assumption of rational anticipation of mistakes. If we drop this assumption, that is,

when the decision maker does not know how she makes the future mistakes, mono-

tonicity becomes a natural heuristic for the decision maker’s current-stage decisions.

For a decision maker who is agnostic about her future choices, it is plausible for

her to think that if a decision problem has strictly better prizes than another deci-

sion problem, then the first decision problem is likely to yield higher payoff (see Ke

(2015b)).
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