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ABSTRACT

THREE APPLICATIONS OF GAME THEORY
KIMBERLY F. KATZ
AKIHIKO MATSUI

The methods of game theory are used to discuss three features pertinent to numerous
economic interactions. Explicitly recognizing these features offers new insights into many
issues previously studied in economics. In Chapter 1, I study the behavior of agents con-
fronted with a variety of different games, but who cannot fully analyze each of these games
individually. This requires first defining similarity of games. Because of the fundamental
relationship between similarity and decision making, the only acceptable way to do this is
to use definitions generated endogenously, much in the way beliefs are held and updated by
decision makers. [ show that taking explicit account of similarity in this way and imposing a
mild bounded rationality constraint on agents rules out certain equilibria which a repeated
game framework admits. In Chapter 2, it is established that interaction requires coordination
on certain behavioral standards. Typically, this coordination comes at a cost. This cost is
incurred by both the individual attempting to achieve coordination and other members of
society. A random matching model in which agents exchange endowments is used. Agents
choose a standard of behavior, knowing that the gains from trade are higher if two trading
agents have chosen the same standard. Agents preferring a particular standard are considered
to be a community. It is shown that in some cases, total welfare of a minority community
decreases when a trade barrier is lifted between it and the majority community. An example
is also offered of a case in which, where no dominant culture exists, members of both com-
munities may be worse off when trade barriers are lifted. In Chapter 3, I study the problem
of modeling collective negotiations as two-player bargaining games, when the players in the
negotiating groups have differing preferences over the outcome of the negotiation. [ show that
it is generally necessary to represent the group by a player with preferences significantly more
extreme than those of a player with median preferences, even if the group makes decisions
using majority rule voting. How much more extreme this representative should be depends

upon the parameters of the game.
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Chapter 1

Similar Games

In reality, all arguments from experience are founded on the similarity
which we discover among natural objects, and by which we are induced
to expect effects similar to those which we have found to follow from such
objects. ...From causes which appear similar we expect similar effects.
This is the sum of all our experimental conclusions.

Hume, An Enquiry Concerning Human Understanding. 1748

1.1 Introduction

When people are faced with a problem which is new to them. they usually rely on ex-
perience with problems they think are similar for help in finding a solution. Moreover.
the basic process of human reasoning involves the use of analogy. And vet. econom-
ists have barely begun to explore the impact which this use of analogy has on the
economic decisions people make. In this chapter, [ begin to explicitly study the effects
of reasoning by analogy on strategic economic behavior, emphasizing the fact that the
analogies one player draws may differ from those another draws.

As an example, [ focus in the early sections of this chapter on the learning literature
in game theory. Typically, authors studying learning begin by assuming that some

group of players are engaged in a repeated game. From here. various issues such as
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whether or not convergence to an equilibrium strategy or outcome is possible and
which equilibria are most likely to be played are investigated. But we know that
people rarely find themselves engaged in such a repeated situation or game. Rather.
they are faced with a variety of different situations through time. And vet. people
still learn from their past experience. Thus, this example offers a framework which is
both important and straightforward for studying such analogy, or “similarity.”

It has been claimed that the repeated game scenario can be considered as an
approximation for the behavior of agents across ‘similar’ games. In this chapter. [ show
that taking explicit account of similarity can rule out equilibria that the repeated game
analysis admits. Moreover, one class of equilibria ruled out are those necessary to
allow the purification interpretation of mixed strategy equilibria. Thus, [ propose that
the problem of analyzing behavior across different games. even if they are “similar.’ is
distinct from that of analyzing behavior in repeated games.

A key point that [ argue in this chapter is that for us to be able to consider behavior
of agents across similar games, we must first think about why similarity is important.
The primary reason that similarity is important is that it is integrally related to the
process of decision making.! Only after we better understand this relationship between
similarity and decision making, can we begin to define similarity.

First, let me point out that the seemingly simple task of determining whether or
not some group of objects or situations are ‘similar’ is, in fact. a rather daunting one.
This is because two objects can be assessed to be similar in one situation whereas
they may be seen as strikingly different in another. In addition, two people may have
different views as to whether or not two objects or situations are similar. based perhaps
on their having had different experiences or having perceived the same experiences
differently. To see this, consider the following two examples.

Imagine a person hiking through the desert on a hot summer afternoon. To this

'This can be thought of as an attempt to step back and think further about an agent’s decision
making process. For a strong argument in favor of making such an attempt. see, for example, Binmore
(1987, 1988).

(O]



hiker, a cold glass of water and a cold glass of milk are likely to seem fairly similar;
both would quench the hiker’s thirst. However, now consider this hiker sitting at the
breakfast table on a cool fall morning. Quite possibly, the person will view these two
items as being very different in that they do not work equally well in a bowl of cereal.
Here, the use of the term similar is clearly related to the context in which the items
being compared will be used.

But now. consider another example. Suppose that a traveller from, say. the Middle
East is visiting the United States for the first time and has not studied American
practices. And now suppose that the traveller decides to purchase a pair of pants. He
enters a small clothing shop where he sees a variety of pants hanging on a rack and
a shopkeeper behind a counter. To him, this situation seems familiar: it is similar
to occasions when he has gone to purchase pants before. in his native country. He
chooses a pair and takes them to the shopkeeper, who tells him that the pants cost
$30. He immediately counters with an offer of $10 for the pants, since he assumes
that if the sales person suggested he pay $30, he must surely only really be hoping to
get 315 for the pants. The shopkeeper is offended. And while the shopkeeper will sell
the pants for no less than $30, the traveller feels that he will certainly be getting an
unfair price if he pays the full $30. So no sale is made.

Clearly, the past experiences of the shopkeeper and of the traveller differ. Each
views the situation as being similar to other situations, but of course. these situations
differ. Quite possibly, if the shopkeeper had seen this situation as being similar to
that in a Middle East shop, he might have first suggested a price of $60, planning
on getting 330 in the end. Similarly, if the traveller had seen the situation as similar
to that in other U.S. shops, he would have recognized U.S. pricing practices and he
might have paid the $30. Here, the behavior of these agents is clearly based on how
each views the situation as similar to other situations. And. in this case. these views
depend upon their past experiences.

From examples such as these, I conclude that models in which the determination

of similarity is exogenously and singularly made do not adequately capture the reason
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that we, as economists, are interested in studying similarity. Again, the reason we
care about similarity is that it is involved in agents’ decision making process. Further,
if we assume that similarity and decision making are fundamentally related, then we
must also recognize that the way different agents find similarity among a group of
problems or games may differ.

To handle this, I call upon a highly regarded and intuitive theory titled “analo-
gical reasoning” which has been developed extensively by psychologists and which has
received more recent attention from computer scientists working on topics in artifi-
cial intelligence. Analogical reasoning is a mechanism for exploiting past experience
and/or knowledge of others’ past experience in problem solving. The theory asserts
that a person, when faced with a problem he has not previously seen, will be reminded
of past situations that to him seem similar to the present problem. This reminding
experience then serves to retrieve behaviors that were successful in these earlier prob-
lem solving episodes and this successful past behavior is then adapted to meet the
demands of the current problem.

The model I construct is built with this theory in mind. [ take the view that
agents are only boundedly rational in the sense that they cannot fully analyze each
game they must play de novo, due perhaps to the complexity of the game. a limited
amount of time, or any other such reason. Instead, they must rely on comparisons
they can make with other games. One example is to think of agents relying on their
own past experience as a guide. An agent, when given a game to play which he has
not yet seen, will think back to games which he has played previously and which he
sees as ‘similar’ in deciding how to play the new game. Thus, the way in which the
agent finds similarity among various games governs the way he will approach games
he finds himself called upon to play.

[ maintain that the way in which an agent finds similarity among games is a part
of the agent’s beliefs. [ assume that beliefs (here, the similarity assessments) are given
by nature, but that these assessments are updated after each game plaved, much in the

way that beliefs are updated using Bayes rule in traditional models. Here. however. [



do not specify a specific updating rule, but rather assume simply that the assessments
are updated in some way so as to optimize for the player. To model this, [ let the
players in the model “choose” their similarity assessments in each period. However,
again, I stress that I do not intend this to suggest that agents can consciously choose
their beliefs, but rather that these beliefs are evolving ( unconsciously) over time.

In my model, agents are faced with a variety of different games.? Based on some
private information, which can be thought of as consisting of their past experience,
group these games into ‘categories.” Games which are in a given category for an
agent represent those games which that agent sees as similar and the agent must
play the same strategy when confronted with any of these games. I show that certain
equilibria which are possible in a repeated game model cannot be equilibria of this
type of model under some fairly mild and rather plausible assumptions.

The organization of the chapter is as follows. In Section 2. I focus on defining
similarity. In Section 3, the formal model is laid out. and in Section 4. the equilibrium
concept for this model, which is merely a reinterpretation of Nash equilibrium. is
introduced. In Section 5, [ impose some interesting bounded rationality constraints
on players and derive some results from this. Finally, Sections 6 and 7 contain some

alternative examples and some concluding remarks.

1.2 Defining Similarity

“Similarity” is implicitly a part of virtually every decision and transaction a person
makes. Even the construction of language is essentially a similarity assessment. For
example, consider the word “computer.” This is a word constructed to describe a

group of goods which are considered similar enough to be given a single label. Of

In my formal model, which for the purposes of this chapter is a static one, this is represented as
the possibility of seeing a variety of different games.

3Again, as the formal model is a static one, I do not assume anything about the information agents
have. However, implicitly, [ have something such as this in mind. And again. this choice is merely a
representation of the presumably unconscious. but optimizing, updating of beliefs.



course, we can discuss computers as being more or less similar to each other. such
as a laptop computer versus a desktop computer. By the same token, all computers
fit under the broader umbrella, with a more vague implicit definition of similarity,
of “machine.” Thus, some aspects of similarity are, in a certain sense, exogenously
defined for us by virtue of an established labelling system.*

However, when it comes to individuals making decisions over a variety of problems
(or choosing strategies in a variety of games), such definitions of similarity are not so
well defined. Further, similarity takes on a much more explicit role in such a case.
Thus, before we can discuss behavior of economic agents who face various similar
situations or games, we must first be able to better define the term ‘similar.’ as it is
relevant for these agents and these situations. There have thus far been few attempts
within economics to deal explicitly with this problem. and as vet. no fully satisfactory
results have been attained.’

The most prevalent definitions of this type of similarity are those in which two
games are defined to be similar if they have “approximately the same pavoffs.” Ex-
amples of this are definitions in which similarity of two games is determined based
on the distance between the games’ payoffs. More specifically, games are assumed to
be drawn from some metric space, and if the games are sufficiently close according to
some metric, they are said to be similar.® While these definitions can be appealing
in that they often have nice mathematical properties and are relatively intuitive. they
do have some drawbacks. One immediate problem, as pointed out in Kreps (1990).
is that games such as the two in Figure 1.1 will. under such a criterion, likely be
accepted as similar. However, they are likely to be played quite differently. as each
has a different focal point equilibrium.

Another thing to observe about these definitions is that, while they allow us to

40f course, at some point. this too was endogenously defined.

Some noteworthy and very interesting examples, however, include Rubinstein (1988), Gilboa and
Schmeidler (1992), and Fudenberg and Kreps (1990). Rubinstein and Gilboa and Schmeidler deal
with the issue of similarity in the context of the single agent decision problem. Fudenberg and Kreps
use a game theoretic setting.

5See Fudenberg and Kreps (1990) for examples.
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L C R L C R
U 0.0 10.1,10.1 0,0 U 0,0 10,10 0.0
I M| 10,10 0,0 0,0 M |10.1.10.1 0.0 0.0
D 0,0 0.0 10,10 D 0,0 0.0 10.10

Figure 1.1: Games Which Have Approximately the Same Payvoffs. but Dissimilar
Evident Ways to Play

compare two games, they lack a transitivity property which, in certain circumstances.
would be valuable in defining similarity among larger sets of games. The reason for this
is illustrated in Figure 1.2. Suppose that the space of all games under consideration
is depicted by the box G and that a game in G is represented by a point in the box.
Now, let our definition of similarity say that all games in an :-ball around T
are similar to . So, in diagram (a). all points in B.(T') represent games which are
similar to . However, notice in diagram (b) that [ ~ [", [ ~ [, but T A T".
What this means is that we are unable to define classes of ‘similar games' within G
unless we choose some fixed, specified reference point in G with which to compare the
remaining elements of G.” Further, if part of our motivation for studying similarity of
games is that we believe agents use rules of thumb in many situations. this becomes a
concern, as we tend to assume that agents use these rules of thumb, or act ‘similarly.’
in situations which they see as similar. This is especially relevant in the case of normal

form games, where the set of actions is discrete. For example, in the previous example

"However, one related positive aspect of these definitions which should not be overlooked is that
they offer us a clear way of asking questions such as ‘how similar are the games [ and ['?7"
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Figure 1.2: These Measures Are Not “Transitive”
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of Figure 1.2, we may expect that in the lefthand game, player [ will play U and player
IT will play C while in the righthand game. player [ will play M and player I1. L.
Yet if we say that these two games are similar and that players will play some rule
of thumb, or in this particular case take the same action. in games which are similar,
clearly this leads to a contradiction.?

If we assume that players take this rule of thumb action in games which are similar
such as those above, we would have to impose some sort of transitivity property on
our similarity measure. Yet, if we did assume these measures to be transitive. we
would essentially be saying that all games in G are similar and thus agents play the
same in all of them. For most specifications of G, this is nonsensical.

These two observations lead me to conclude that alternative definitions of similarity
which allow boundaries to be drawn between various groups of games will be valuable
for capturing our intuition about the way in which agents may view games. For normal
form games, which we can think of as representable by their payoff vectors. we may.
for example, want definitions which place linear boundaries between certain classes
of games. Thus, the definitions I propose in this chapter allow such boundaries to be
drawn.

Finally, and most importantly, is that these definitions, as they have been presented
in the literature thus far, are exogenous in the sense that it is the modeler who defines
a priori what it is for games to be similar. However, as discussed in Section 1. we
are interested in studying similarity of games primarily because we believe similarity
is related to the way in which agents make decisions. For example, we mentioned

above that we see agents using rules of thumb in many situations. If we are to

80f course, both of these examples bring up the issue of whether the labels we place on strategies
have some meaning or are merely interchangeable entities. I will assume that the labels do play a
role. That is, if a player plays a game such as the lefthand game of Figure 1.2 a number of times and
sees a certain action, say L, taken by his opponent many times, then if he is suddenly confronted
with the righthand game and believes that it is similar to the lefthand game, he may believe that
his opponent will continue to take the action L. Assuming that the labels have no meaning would
require that we assume players know that labels have no meaning. or put differently. that players
have an additional layer of knowledge about the game. Again, in this chapter. I do not make this
assumption.



capture this belief in our models, we should begin to consider models in which agents
have endogenously generated assessments of the similarity of situations, where these
assessments may be based on factors which are unique to the individual agents. By
doing so, we can probe the role similarity plays in an agent’s reasoning process.

To do this, I construct a model in which the agents interacting in the model build
their own definitions of similarity and then use these definitions as learning tools
for making strategy choices when faced with games which are unfamiliar to them.
Towards this end, [ propose a model which has the following rough characteristics.
This description is a preview of the formal model outlined in Section 1.3.?

There is a large society of players who are repeatedly randomly matched and in
each period, each matched pair is randomly assigned some game from a large set of
games. [ take the view that these players are unable to analyze each new game they are
faced with de novo. Instead, the players each have a store of information, which can
be thought of as including their own past experience, the past experiences of others,
or both, and they use this information in a specific way when they are called upon to
play a game.!©

To capture the belief that players play similarly in games which they see as being
similar, I assume that a player who is called to play a game will look into his in-
formation (or beliefs) and find a game or some group of games which he sees as being
similar to the game he is now faced with. He will then employ a strategy which he feels
was or would have been successful in these similar games. To model this, I implicitly
assume that each period has two stages. In the first stage of the period, each player
must in some way partition the set of potential games, where for simplicity [ assume
this to be the set of 2 x 2 normal form games. An element of the partition. which I

will call a category. represents games that player believes to be *similar. Presumably.

9However, in the formal model I enumerate in Section 1.3, I will consider only a static, one-shot
version of this dynamic model. However, underlying the one-shot game [ set up, [ have a dynamic
story such as this one in mind.

%Note that the information set of each player need not and in general is not the same as that
of other players. Again, in my formal model, [ do not specify the origin of this information, but
intuitively, it makes sense for our purposes to view it as having its origins in players’ experiences.
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the player can make use of any new information he acquired in the previous period.
In addition, the player must associate a single strategy with each of these categories.
This strategy will represent the way he estimates, at that point in time, is the best
way to play games in that category. In the second stage of the period, the player is
randomly matched with an opponent and the pair is randomly assigned a game to
play. At this point, the player must look to the categorization he made earlier in the
period, find the category into which the current game falls, and play according to the
strategy he associated with that category when he made the categorization. Essen-
tially, this association of a single strategy with a grouping of games is much like the
idea of players choosing rules of thumb for games which they see as similar.

An equilibrium of such a model will involve not only the strategies being played
in games, but the definitions of similarity which the players maintain. In this way. I
do not exogenously define similarity of games at all, nor in the end can I pinpoint a
unique ‘correct’ definition of ‘similar games.” This should not be seen as a negative
result, as what [ can do, using my model, is analyze whether or not a particular
definition of similarity is viable in equilibrium. Again, this corresponds to an analysis
of whether players have “correct’ beliefs. but in this case, there is not a single ‘truth’
for all players, but rather players may in equilibrium have different views as to which
games are similar.

Note also that I avoid the other problems which I associated earlier in this section
with the distance-between-payoffs definitions by allowing players to define boundaries
between games if they wish to do so. In my general model. players also have the
option of categorizing games as similar using a metric approach and in this sense,
these definitions can be seen as a special case of my model. However. for many

classes of games. definitions of this type are not an equilibrium.
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1.3 The Model

Let G = [0, 1]® represent the set of 2 x 2 normal form games and let an element of G
be denoted by I'.'! Assume that there is a continuum of players, denoted by I = [0.1].
Players are randomly pairwise matched and for each pair. a game is randomly selected
from G. I assume that both the distribution governing the random matching of players
and that governing the selection of a game for each pair of players are uniform. My
result does not depend on this assumption, but it reduces the amount of notation I
will need to introduce.

[ will say that if players i and j are matched and assigned a game from G, this
game will be labelled as ' when [ am referring to the game as seen from player i's
perspective and as ['7 when referring to it as seen from player j’s perspective.!? These
two processes (that of the matching and that of the game assignment ) are assumed to
be independent, though this is not crucial to my results.

Define the set of categories held by player i € I, denoted C*. to be a partition
of G. A category is then defined to be an element of C'. [ represent category s
of player i as C. and let |C'| denote the cardinality of C'. Thus. if |O] is finite.
Ct = {C},Ci..... CIiC'I}’ Games which are grouped together in a category are to be
thought of as being similar.

The strategy set, which is the same for all players. is denoted by S = {s,.s;}. The
payoff to player ¢ from playing s; against the strategy s; will be denoted by ='(s;. $i)-
For simplicity, I will refer to the specific payoffs ofagame I' € G as {=%, 7.'{, R
where these 7’s correspond to those in Figure 1.3. Then. an example of a category
which player i could define is the following. Let C. = {["e€ G | #i > mi A=) > w}

in [}, where A represents the operator “and.” Then C! represents a category which

1I'The assumption that G = [0, 1)3is a restriction in that it does not allow players to consider factors
such as context in assessing games. The results in Section 1.4 do not depend in any way on this
restriction, but I make the restriction nonetheless to avoid the need for additional and cumbersome
notation. I will return to this discussion later in the chapter.

!2Note that there is no restriction here to symmetric games and therefore that, in general. I' and
[T will appear as different games to the players.

12
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Figure 1.3: = References

contains all of the games in G in which s, strictly dominates s, for player i.

Finally, associated with each player i is a function f* where initially. I will assume
that f*: C* — A(S) where A(S) denotes the strategy simplex.'® The strategy which
corresponds to C under f* will be denoted . When player i is selected to play I
he must determine into which element of C* the game [ falls and must then play the
strategy which is associated with that category under f'.

To capture the fact that [ want a model in which a player’s definition of similarity
is endogenous. I assume that players choose their own partitions of G and their own
corresponding functions. in the same sense that in standard game theoretic models.
players choose their strategies.!

To most easily handle this. | assume that players are playing the following two
stage metagame. In the first stage. each player i must choose a partition C' of G and
then a function f* which maps each of the categories in C' irto a strategy. In the
second stage of the game. each player is randomly matched with an opponent j and
then each pair is randomly assigned a game [ from G. If [ € C:. then player / must

play ot = f*(C!). If his opponent, player j, has categorized such that ['T € C{. then

"*In Section 1.5.2, I will relax this and assume the there is a correspondence = : C' — E. where
E'is the space of continuous functions from G to [0,1], where [0.1] represents A(S). associated with
each player.

"4 Recall that this is merely a representation of the updating of the agents’ ‘beliefs’ and is not
intended to suggest that agents realistically choose their beliefs.
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player ¢ can expect the payoff wi(a:;,af\') and player j should expect 7/ (o*_{,a,';).

For this exercise, it is sufficient to assume that the metagame is a one shot game,
but extensions to a dynamic setting are immediate. To interpret this model in terms
of the learning literature, we could simply assume that players play this metagame
repeatedly. Each period would involve two stages and so forth. Alternatively, though
considerably more difficultly, we could place some restrictions on the information
which players could use when categorizing each period (such as their own experience)

and build a dynamic model from here.

1.4 Equilibrium in Similar Games

In this section, I adapt the notion of a Nash equilibrium to the model just outlined.
[ redefine the equilibrium concept in terms of this model and examine some of its
properties.

An equilibrium in this model involves both the set of categories which a player
has defined and the function he has designated to map each of those categories into a
strategy. Therefore, I will look at equilibrium categorizations of the players. where a
categorization for player i is a pair (C', f*). The set of categorizations for a society (i.e.
the set of categorizations, one for each player) will be referred to as a configuration.
To denote this. I define ¥ = {(C*, f)}ier.

I do not at this point impose any restrictions on the way agents may partition G.
The first thing to observe is that for similarity to have some bite, it is necessary to
impose some restrictions on players’ behavior. By allowing players complete freedom
in categorizing, I allow them to choose the singleton partition and a function which
designates a Nash equilibrium strategy for each game. This means that any equi-
librium of any game in G can be replicated. It is therefore not surprising that the
results here look like the standard Nash equilibrium results. In Section 1.3. I study
the implications of imposing restrictions on players’ choices of categorizations.

I begin with some definitions. Write E(?.“'(a,c',a,c])) for player i’s expected payoff

14



when he plays o,, against the mixed strategy of his opponent. Recall that his opponent
is also randomly determined. Given I' € G and ¥ = {(C’. f*)}ics, define C(I') =
{C: Yier such that T € Ci €Ciforalliel. Let f(C(T)) = {0k Yier-

Definition 1 ¥ is an equilibrium configuration if Vi, ¥Y(C'. f'), VI = (=!.7?).
E(n(a},.0%,)) 2 E(xi(o%,.0L,) where ol, = F(CL,). T € C. and oi, = fi(CL).
rreci.

Notice that this concept of equilibrium is an ex-post concept which is strong in the
sense that it requires equilibrium to hold for all games in G. However, in the metagame
being played, each game is played with probability zero. Thus, it may seem that an
ex-ante type of equilibrium is more intuitively appealing. For this reason. I make
the following definition. For a measurable configuration. W. let EII’(-) be player i’s
expected payoff before he is assigned an opponent or a game in the two-stage one-shot

game delineated in Section 1.3.

Definition 2 A measurable configuration ¥ = {(C’, f*)}ics is an ez-ante equilibrium

configuration if Vi, V(C', f'), EII'(\¥) > EIIY(¥_;, (C". f)).

In this chapter. and primarily for simplicity. I will use the ex-post concept of
equilibrium. or in other words, I will discuss results assuming that ¥ is an equilibrium
configuration. Allof these results hold for almost all games if [ were to assume instead
that ¥ is an ex-ante equilibrium configuration. Such extensions are. in most cases.
easy to see, and thus, [ will discuss them explicitly only in a few cases.

[ will say that a configuration of categories is symmetric if under ¥. Ci = C? for
all 1,7 € I, or that a configuration is symmetric if all players have the same partition
of G.

Finally. I make the following definition.

Definition 3 Given (C™, f~). let (C, f') = (C*, f*) Vi. And let 6= = f~(C*) Vx. Sup-

=
N

pose U € C: and I'T € C;. Then (C*, f7) is a symmetric equilibrium categorization if
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Y(C. f'), VT, 7i(03,02) > 0.s.0%) whenever [ € C:NCL and I'T € C; where o', =
f'(Cy). The set {(C, f*) }zel will be called a symmetric equilibrium configuration.

Similarly, we can think of ex-ante symmetric equilibrium categorizations and ex-
ante symmetric equilibrium configurations.
Since my definitions of equilibrium are essentially a reformulation of the basic no-

tion of Nash equilibrium, many things immediately follow.
An equilibrium configuration ezists.

A trivial equilibrium is constructed by considering the singleton partition, i.e. Cf =
{{T}}reg Vi € I, and letting players take Nash equilibrium strategies for each game.
Note that this implies that every subset of G has an equilibrium configuration as well.
Further, since we know that there exists a symmetric mixed strategy equilibrium for
every 2 X 2 normal form game, a symmetric equilibrium configuration exists for G as

well as for every subset of G.

Given a game [' € G, and let E be the projection of Nash equilibrium strategies
onto player i’s component. Suppose ¥ = {(C', f')}ic; is an equilibrium configuration

of G. IfT € Ci, then fi(CL) =0l €E. VL €Ci.¥YCi €C'. Viel.

This follows immediately from the definition of an equilibrium configuration. Thus.

it is similarly straightforward to show the following.

Let W = {(C', f')}ier be an er-ante equilibrium configuration of G. Then for al-
most all T € Cy , then fi(C.) =0l € NE(T), V[ ¢ Ci,VCi eC', Viel.

For this reason, all of the results in the remainder of the chapter, which are discussed

in terms of the equilibrum configuration. easily extend to the case of the ex-ante
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equilibrium configuration.

Finally, we can make this observation about equilibrium configurations of G before
imposing restrictions. Consider some particular game [ € G. Let (i) = Pr (i plays
s1) in I. Then, oy : [0,1] — [0,1]. It is assumed throughout this chapter that o,
is Lebesgue-measurable. Thus, [y o,(i)di = Pr (s,). I also assume throughout that
group behavior, represented by f: [0,1] x [0, 1]® = A(S) is measurable.

The following states that generically, every equilibrium configuration either in-
volves all players playing the same strategies for all games or can be represented by

some equivalent such configuration using nontrivial mixed strategies.

Let G = G\{[ € G such that 7t = w5 or 7 = mi}. Suppose that o(i) is the
strategy that player i plays in T and 7(i) is the strategy that he plays in ['T. Then
(E(o), E(T)) is an equilibrium of T.

To see this, consider any game I' € G and assume that [ € Ci. Let o = fiucs).
Suppose that fj(C',{J) = oj for each j € [ (j # i) where [T ¢ C,{]. [f ¥ is an
equilibrium configuration, then VYo' € A(S).Vi, E[z'(c.0;)] > E[ri(o’.0j)]. And
we know. since 7 is linear in ¢;, E[x‘(c.0;)] = 7'(0. E(0;)). This implies that
7'(0. E(0;)) > w'(c". E(0;)) Vi.¥e’ € A(S). Finally, T € ¢ = E(0;) = o~ for
some c~' € A(S).

1.5 Restricted Categorization

As mentioned earlier, the above statements hold when there are no restrictions placed
on the way players may categorize games. Thus, the conclusions look like those of
standard Nash equilibrium analysis. However, theories such as the rules of thumb
theory imply that players cannot, or at least do not, perfectly discriminate between
games. To explore the impact of this, we must place some restriction on the types of

categorizations players may use.
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The following assumption provides one such restriction. Pick a game [' and let
C*(T) be the category in C' which contains I'. And define the join of the players’

partitions, which I will denote 7. to be the partition generated by

J([)=(CiT) VT € 6.

el

Assumption 1 The partition J is countable.

First, notice that this assumption implies that for all players i € [, the partition
C' is countable.

One restriction which would generate this feature of the join is to assume that play-
ers have only finitely many partitions to choose from, where each of these partitions
is countable.

There are a number of ways in which Assumption 1 can be interpreted. For
example, we can think of players as being bounded by language to defining only
countably many categories. That is, if players are constrained to some plausible spoken
language to define categories and certainly, languages have countably many words and
thus word combinations, then players can define only countably many categories using
this language.

One interpretation that lends itself to players’ individual partitions is that plavers
have limited memories. Thus. it is not feasible for a player to retain an uncountable
partition in this memory or even simply not possible for a player to recall the categories
from such a partition when needed, as [ am assuming they do in this model.

Again. one partition which this restriction rules out is the singleton partition
which was referred to in Section 1.4. However. under this restriction, players still

have enormous flexibility in choosing which games to group together.
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Figure 1.4: Intuition Regarding Lemma 1

1.5.1 fi:C' = A(S)

The strongest assumption being made at this point is that f*:C' — A(S). This says
that a player must play identically in every game he sees as similar.!® The combination

of this restriction and Assumption ! imply some facts worth noting.

Lemma 1 Let ¥ = {(C', f')}ier be a configuration which satisfies Assumption 1.
Then every player is playing non-optimally for almost all games in G which have no

pure strateqy Nash equilibrium.

The intuition behind this observation is quite simple. First, Assumption 1 implies
that almost all games in G are in an element of J which has positive measure. [f we
pick any element of 7, all players in [ view the games in that element of J to be
similar. In other words, every player i has a partition C* such that every game in this
set is in some equivalence class defined by every player. Now. consider the games in
Figure 1.4.

Label the lefthand game as . This game clearly has no pure strategy Nash equi-
librium. Suppose that I is in some category, say C{, which has positive measure and

which all players have defined. And suppose that an equilibrium is being played for

5Note that a complementary interpretation of this model is to assume that players cannot perfectly
distinguish between games and that the partitions here are somewhat akin to information partitions.
However, as [ am assuming that players choose their partitions. I will continue to discuss the model
in light of the above discussions.
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this game. One example would be the symmetric equilibrium in which all plavers are
playing s; with probability 3 and s, with probability 3- But the fact that C}. has
positive measure means that there is some other game, such as I'* which is also in
Cf. Yet the strategy configuration in which all players are playing s, and s, with
equal probabilities is not an equilibrium of I'*. Rather. for a corresponding symmet-
ric equilibrium, it would have to be the case that the i players were playing s; with
probability it and s; with probability 1 — 2—:_—; However, since players must play
identically for all games which they see as similar, this is not possible. The formal

proof of this lemma follows this intuition closely.

Proof. First, pick a game I' € G which has no pure strategy Nash equilibrium. And
pick a strategy profile s which is an equilibrium of T'. Then it is easy to show that the
set of games in G for which s is an equilibrium is a set of measure zero. (It is a set
of hyperplanes in [0, 1J2.

Now. let 1 denote a measure on [0, 1]%. And let P = {P,. P,... .} be a countable
partition of [0,1]°. And let S = {5}, S;....} be the subset of P such that u(S:) = 0
forall i and let 7 = {T}.T>....} be the subset P such that u(T;) > 0 for all j: and let
S and T be such that SUT = P.

We know that u(S) = u(U; Si) < T #(Si) = 0 by countable subadditivity of pu.

Thus, if SUT = P, then we know that 7 must be nonempty, since u(g) > 0.
This implies that almost all games in G are in sets which have positive measure.

Since the set of games in [0, 1]* which have no pure strategy equilibrium has positive
measure as well. we also know that if this set is partitioned into countably many
elements, almost all of these games must be in sets which have positive measure.

Therefore, for almost all games, if we pick a game I' which has no pure strategy
equilibrium, and we pick an equilibrium (mixed) strategy s for this game, then there
must be some other game in the same category as this game for which s is not an
equilibrium strategy. since the set of games for which s is an equilibrium is a set of

measure zero while the category containing I is a set of positive measure.
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One implication of this lemma is immediate.

Proposition 1 Let ¥ = {(C*, f*) }icr be a configuration which satisfies Assumption 1.

Then ¥ is not an equilibrium configuration.

Proof. We know that players must be playing a Nash equilibrium for every game in
G, yet Lemma 1 tells us that under Assumption 1, this cannot be the case. Thus, ¥
cannot be an equilibrium configuration.

Note, however, note that there are ways to recapture an equilibrium in this model.
The most intuitive of these is adding in certain forms of costs to categorization. In this
way, we may bring back an equilibrium. One simple example is that we can require
a player to pay some small cost ¢ for each element of the partition he defines. That
is, player i would pay c|C’|. In this case, there would come a point in the player’s
refinement process where the benefits to further refining his partition are outweighed
by the gain in cost associated with doing so. However, it is important to recognize
that with costs as discussed here, the particular equilibria we can obtain will be a
direct function of the costs we choose. Further pursuit of this direction is left to
future research. In addition to the cost approach. the concept of e-equilibrium used in
place of the Nash equilibrium concept [ use here could, properly formulated. restore
equilibrium.

There is one further thing which the previous proposition implies. Let G represent
the set of games in G which have at least one symmetric pure strategy equilibrium.
Then, by the same process of reasoning, we can rule out players using mixed strategies

for these games in equilibrium.

Proposition 2 Let ¥ be a category symmetric equilibrium configuration of G in which
all categories in C* satisfy Assumption I. Then W is a symmetric equilibrium config-
uration and o\ € S Vi, Yk such that Ci € C'.

The proof of this observation follows the same logic of the proof of Lemma !. Thus.

it will be omitted here.



1.5.2 ¢':C'> E

Consider the following generalization of the above model. Now, instead of assuming
that f*:C' — A(S), [ allow players to choose a correspondence ' : C' — E where
E is the space of continuous functions from G to [0.1], and where this [0,1] represents
A(S). Instead of forcing players to select a specific element of A(S), I allow them to
associate a function, which must be continuous in payoffs, to each category.

This extension gives players the ability to adapt their behavior for differences they
see between similar situations. However, players must still act “similarly” in games
they deem to be similar. In this sense, [ am able to directly handle the problem I
mentioned in Section 1.2 regarding transitivity of the similarity measures. Players
can implicitly characterize some games as being more similar than others, as was the
case with these measures, but they still have the ability to draw boundaries where ap-
propriate. This is important because clearly, equilibrium strategies are not continuous
across all games.

As an example of a strategy choice which is now allowed but previously was not,
suppose that player i chooses a partition which has a category containing only games
which have no pure strategy equilibrium. Under the original assumption on f*. player
¢ would have to choose a single element of the strategy simplex to designate his play in
games in this category. Now, however, he may choose a strategy which. for example.
dictates that he play s; with probability p* and s, with probability I — p=. where
p- = :Frﬁ::—::?{ where j refers to his opponent. Note that the constant strategies
which were required before are still allowed under this more general specification.

Also, notice that we can construct an equilibrium configuration in which every
category has a nonempty interior. The problem in doing this before came primarily
when we needed to categorize games with no symmetric pure strategy equilibrium.
but allowing these more general strategy functions takes care of this problem.

One example of a symmetric equilibrium categorization which satisfies Assump-

tion 1 is the following. For simplicity, the categorization is for the set of generic games.

o
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or more specifically, games which do not involve ties in payoffs.

Ci={l'eG|mi>mi A m>xiinl}

C;={l'eG|ni<ai A 7<= inl"}

C:={l"eg n>7r‘Aﬂ"<7r‘A7rj>7rjA7rj>ﬁfinF'
3 1 3 2 4 1 2 3 1
Cf{z{[”eg_lnl<n‘§ A TE>ah A 7r{>ﬂ% A n’;{>7r;{in[”}
C-_{F'eg|7— >l A 7r§<7r§ A rr{<ﬁ{ A ﬁé<n‘iinf'}
Cs={l"'ed|rmi<miAmi>rArmi<aml Anml<alinl’
6 1 3 2 4 1 2 3 r
C:={l'eG|rm>riAm<r Ari>sTE Armi<alinl’
; 1 3 2 4 1 2 3 1
Ci={"eGlri<miAm>a Adrd < Arisainl’
8 1 3 2 4 1 2 3 1
Co={l'eG|m>ariAm<E Anri<al A ®>alinl
9 1 3 2 4 1 2 3 1
[0={F’€g.|/ll< /\7r§>7rj/\7r{>7ré/\7.’§<ﬂinl“’}

and where f*(CT) = f*(C3) = f(C§) = f*(C5) = s1; [(C3) = f*(C}) = f~(C3) =

s2; and f(Cg) = f*(Cg) = f~(C},) = s1 with probability p* and s, with probability
T-T for player i when his opponent is player j

e =7 for play PP player j.

Notice that this is just a way of saying, without using game theoretic terminology,

1 — p~, where p* =

that in one possible equilibrium, players recognize dominance solvable games (those in
CT through Cg); coordination and battle-of-the-sexes games (C); games of “chicken’

(Cs); and games in which there are no pure strategy Nash equilibria (C5 and C7y).

Proposition 3 Let ¥ be an equilibrium configuration of G which satisfies Assump-
tion 1. Then ¥ must be such that there are players playing nontrivial mired strategies

for almost all games in G which do not have a pure strategy equilibrium.

Equilibria which are strict purifications of mixed strategy equilibria cannot be
part of equilibrium for almost all games in the set of games with no pure strategy
equilibrium. Note that there are many types of partitions which would imply that this

result apply for other games in G which do not have a symmetric equilibrium.
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The intuition behind this result is much like that behind Proposition 1. Consider
again, the games in Figure 1.4. Suppose that I is in the interior of Cf. for all i. The
purification equilibrium for the game I involves % of the i-population playing s, and
% playing s2. However, the equivalent equilibrium for the game ['* involves # of the
i-population playing sy and 1 — # playing s,. If players can use only pure strategies,
then clearly, at least one player, say player k, had to be playing s, in [ but s, in [,
which would imply a discontinuity in the function ¢*(C¥).

Proof. The proof of this proposition relies on the fact that a strategy correspond-
ence which has a jump from s, directly to s, as we change the game is not continuous.

Pick a game I in ™ which is in the interior of some category, say C in C*. We
know from Assumption 1 that such a game exists, and further. that almost all games
in G™ are in a category which has positive measure. Suppose that the equilibrium for

this game is the purified equilibrium, with some fraction p of the population playving

sy and the remaining fraction 1 — p playing s,. [t must be the case that
pri + (1= p)m3 = prh + (1 = p)ml,

or equivalently.,

o

_ 4

P=—75""7 )
11—112‘_4I3+14

But as in earlier proofs, we know that for all values of ¢ which have absolute value
less than some 4. the games [ = {#i,#] + <, @}, 73, .. ..wi, @} are also in CE. For

the equivalent purified equilibrium of this game, it must be the case that

P= =3 I R AN
Ml —I|2—I(3+ll4

+

(n

This would imply that at least one player, say player k. played s, in [, but s, in [,
no matter how small . This implies that «v* could not be continuous. Thus. it must be

that equilibrium involves players playing nontrivial mixed strategies for these games.



Again, this says that in the case where all agents “view the world in the same way.”
no equilibrium configurations can contain purifications of mixed strategy equilibria,
at least for almost all games.!® This result is interesting on two counts. First., we
know that people have been concerned about the notion of mixed strategies for a long
time and that the concept of purification was motivated by people’s distrust of mixed
strategies.!” Yet this proposition points out that if the world in which agents are
making decisions is complex, purification of strategies must also be approached with
caution. Purified mixed strategies in such a world are subject to concerns as are the
mixed strategies themselves.

More broadly, this result points out that there are equilibria which players playing
a single game repeatedly may be able to ‘learn’ but which, when players are playing a
variety of different games over time, may be too complex. That is, the set of equilibria
in 2 model such as mine is smaller than that obtainable in a repeated game situation.
Specifically, there are equilibria which involve players playing different strategies for
the same game which can be obtained in the repeated game model, but which cannot
be supported here. In fact, it should be noted that the purification equilibrium is
simply one example of an equilibrium configuration which combining this model with
Assumption 1 rules out. Rather, there many (uncountably many, in fact) which are
ruled out by this assumption. It is easy to construct examples. Thus, when we assume
players are playing a single game repeatedly while we actually believe they are playing

a variety of different games, we are losing significant complexity.

!%0ne point worth reiterating here is that [ have not allowed for the possibility of players considering
the context in which they are playing some game. Further, [ am restricting the discussion to a single,
fixed society. If [ allow for either the possibility that players can condition on some context in which
they are playing a given game or the possibility that players from two different societies are being
matched and can recognize this, there could be equilibria where this does not hold. One possible
example (mentioned in Chapter 6 of Kreps (1990)) is that of social conventions such as the deferral in
certain cultures of students to their professors. In battle-of-the-sexes games, for example. if a student
can condition on the fact that he is matched with a professor, then coordination on the equilibrium
which gives the professor his highest payoff is possible.

1"The seminal reference on this topic is Harsanyi (1973).
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Finally, let me point out that the restriction of G to the set of 2 x 2 games was
purely for simplicity, and that the results hold for any set of n x k games, as well as for
sets of games which contain various-dimensioned finite strategy normal form games.
All that is required is that we assume all players to be categorizing over the same set
of games. Note as well that the basic ideas outlined here can be readily extended to
handle situations other than normal form games. Some of these are discussed in the

following section.

1.6 Examples

There are many situations which models based of this chapter’s main idea can help us
to better understand. Some involve a relatively direct application of the above model.
while others require a bit more abstraction. Here, [ mention two of these. In addition.
there are other types of issues which such a model can help us address. and I note one
here as well.

Ezample. Perhaps the best known example which this theory can directly and sys-
tematically help us better understand involves repeated play of the prisoner’s dilemma
game such as that in Figure 1.5. There is a body of experimental evidence which sug-
gests the following. When a population of players (most of whom have not previously
seen the formal game) are asked to choose a strategy in a prisoner’s dilemma game.
they often choose to cooperate. When asked to play this game repeatedly, the pattern
that is often observed is one in which players begin by cooperating, but eventually,
defection starts to occur and ultimately, takes hold. Such a phenomenon can result
within the framework of the above model. To see this. consider a dynamic version of
the model. There are a variety of ways we can set up such a model and obtain the
same result. For example, if we assume that players define categories based only on
their own past experience, then a player who had primarily encountered situations
(or games) in which cooperation was preferable (as is presumably the case for many

of life’s daily encounters), it is quite possible and even likely, that this player would
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Figure 1.5: Prisoner’s Dilemma

initially believe the prisoner's dilemma to be similar to some such game. Thus. when
first confronted with the prisoner’s dilemma, the player would cooperate. However,
after playing such a game a few times, the player will likely realize that this game is
indeed not similar to his previous experiences, and at this point, he should choose to
recategorize, placing this game in a separate category and assigning it the strategy
“defect.”

Alternatively, we could model this situation as one in which players can only re-
categorize periodically, as opposed to after each experience. In such a case. again, if
a player’s categorization at the time he is confronted with the first repetition of the
prisoner’s dilemma suggests that this player choose to cooperate when asked to play
such a game. we would see cooperation early on. As players are allowed to recategor-

1ze, we would expect to see more and more defections.

Ezample. Thus far, I have focused on categorizations over payoffs. However. we can
also consider circumstances in which players categorize over not only (or not even)
payoffs, but also (or alternatively) over other characteristics of a game or situation as
well. Examples include categorizations or similarity assessments over an opponent’s
type, over one’s own type, over the context in which the game is being played or the
decision is being made. and over the rules of the game. Such extensions are virtually

immediate. The following example is just one of many which emphasize the import-
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ance of considering similarity as something endogenously defined.

Consider this bargaining model which I take from Rosenthal (1991). There is a con-
tinuum of bargainers who are randomly matched in pairs on a regular basis to play
one of a set of bargaining games. Each player selects a bargaining effort level and
whoever has the higher effort level in a matched pair wins the prize. Players know
that the set of games they can be given to play contains K different games, each of
which is characterized by (W, T;), and they know the distribution from which games
will be drawn. Game k will be randomly chosen with probability py. If players i and
J are matched and they have chosen effort levels e; and e;, respectively, then pavoffs
are as follows. If e; > e;, then i's payoff is Wi — e; and j's payoff is —¢;. If e; = e;.
then each player receives T —e;. (Wi > T}, > 0 for all k.) [t is assumed that plavers
choose their effort level once and for all at the beginning of time. and that they must
exert this effort level regardless of the game which they are given in any particular
period. In other words, this is the rule-of-thumb which players choose.

Rosenthal shows that in this metagame, there is a unique population equilibrium
which is the c.d.f. of the uniform distribution on [0, W]. where W = T, pc W5.

In his discussion, Rosenthal proposes that one manageable modification of the
model is to allow for the possibility that individuals maintain more than one effort
level and subdivide the universe of bargaining games into subsets according to which
rule is to be used.

Using my model, [ can show that, if players are restricted to maintaining fewer
effort levels than there are games, i.e. if the number of effort levels a player can define
is less than K, then in equilibrium, it cannot be the case that all players choose the
same partition of this set of games.'® To see this, consider the following very simple
example. Suppose that K = 3 with W, < W, < W3 and that players can choose at

most 2 effort levels. Notice first that in Rosenthal’s equilibrium. the expected payoff to

18] am assuming that Wy # W for k # I.



every player is zero. [ can easily show that if every player partitions the set of games
in the same way, then any one player can give himself a strictly positive (expected)
payoff by altering his partition.

Using my example, consider the case where every player has the partition
{{W1, W,}, {W3}}. Then if there is an equilibrium, it must be described by the c.d.f.
of the uniform distribution on [0, M;_Wz] for games | and 2, and the c.d.f. of the
uniform distribution on [0, W3] for game 3. And again. each player expects a payoff
of zero.

But consider the following option for any one player, say i. in the population.
Choose the partition {{IW;, W3}, {W>}}. And select an effort level of zero for the
games {WW, W3}, but an effort level of m-jz'—P& + ¢ for some small ¢ > 0 for the game
W,. Then player i's expected payoff from the overall game is 1[W, — (%;—Wl + ¢)]
which is clearly strictly greater than zero. This exercise can be easily carried out for
any partitioning of the games to show that in equilibrium. it cannot be the case that
all players have chosen the same partition.

This example illustrates that allowing players to endogenously choose partitions
over the space of games (or situations) will, in some cases, lead to very interesting

results in which players in equilibrium will not all “see the world in the same way.”

Additional [nterpretations. There are a variety of questions which this model can
help us address. One such question is that of optimal partitioning, in general. Other
attempts to deal with this issue can be found in the literature; one interesting example
is Dow (1991). In this work, Dow is concerned with the decision problem of an agent
with limited memory, searching to find a low price, whose memory is represented by
a partition of the set of possible past prices. To represent the fact that his memory is
limited, it is assumed that the number of elements of the partition is limited. He goes
on to characterize the optimal partition for a specific simple example.

The model I construct here can be easily adapted to deal with such issues. It also

allows us to attack questions regarding the optimal partitioning of more complicated

29



situations and games. The bargaining example above offers one such example.
Finally, using this type of model, we can consider game theoretic situations in

which one player has, say, a better memory than does his opponent. Similarly, we can

also discuss situations in which one player has more computing ability or simply more

information than does his opponent.

1.7 Concluding Remarks

The results and examples in this chapter have been cited to illustrate the importance of
explicitly considering endogenously defined definitions of similarity in our economic
modeling. This is particularly true if we believe that agents are either boundedly
rational or able to handle only limited complexity, taking as given that agents face a
very complicated world.

The results in this chapter first suggest that we can improve upon the repeated
game framework, which has been used thus far in the learning literature. in cases
where we believe that agents are actually playing a variety of different games over
time, even if these games are ‘similar’. There are behavior patterns which can be
learned if a single game is played repeatedly, but which may not be so easily learned
when a variety of different games are being played.

In addition, we can explain interesting phenomena supported by experimental
evidence, such as those discussed in the previous section. Further, this model allows
us to understand that in cases where players choose rules of thumb for their behavior.
we can find cases where in equilibrium, players will necessarily choose different par-
titions over the space of games or situations. This avenue has not, to the best of my
knowledge, been pursued previously.

In general, further research into the impact of endogenous definitions of similarity,

as defined in this chapter, is clearly warranted.
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Chapter 2

When Trade Requires Coordination®

[ am the son of immigrant parents. ... [ had to learn American culture
on my own, and it is difficult to explain to someone who has not gone
through it what this means. ... In short, [ was a cultural orphan (like

many others) and “speak the culture with an accent.”

[saac Asimov. exerpted from Yours. [saac Asimov

2.1 Introduction

[nteraction requires coordination. and the interactions which arise in economic activ-
ities are certainly no exception. Trade, for example, requires coordination on a variety
of conventions such as language. Corporate mergers often require that the merging
companies coordinate on a single corporate culture. Network externalities, a feature
of computer and other communications networks, force agents to coordinate one or
at most a small number of operating systems. Rural to urban migration is the result
of the need for people to coordinate on a geographical location for many of the jobs
available in a post agricultural economy. Women often feel that to succeed in fields

predominantly inhabited by males, they must adopt numerous attitudes and behavi-

“This chapter is the result of joint work with Akihiko Matsui.
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ors traditionally associated with men. Immigrants frequently find that to obtain the
better jobs in their new country, they must assimilate into the predominant culture of
this country, or phrased differently, they must coordinate their customs with those of
their new compatriots. And members of racial or ethnic groups which have historically
interacted largely with only members from their own community find that a similar
predicament applies to them.

The costs of achieving such coordination can be nontrivial and are, in many cases,
very large. For instance, learning a foreign language can be expensive and time
consuming. The expenses of moving one’s home from one location to another are
apparent to anyone who has moved. And changing one’s behavior patterns to behavior
patterns which are less natural or instinctive can be uncomfortable or even traumatic.
(Evidence of such costs can be found in Rubin (1995), Cose (1993). and de Beauvoir
(1952) among others.)

In addition, the need for coordination in interactions presents us with a situ-
ation involving strategic complementarity. In such a situation. the optimal strategy
of an agent depends positively upon the strategies of other agents, or in other words.
the more people that choose a behavior. the higher is the payoff to all people who
choose this behavior. The literature on strategic complementarity is extensive. in-
cluding Cooper and John (1988), Farrell and Saloner (1985). Matsuvama (1991). and
Murphy, Shleifer, and Vishny (1989). Due to strategic complementarity. members of
a minority group may have the incentive to adopt behaviors of a majority group even
if they inherently prefer their own behavior patterns. since adopting these alternative
behaviors allows them the chance to interact with a larger group of people.

This strategic complementarity, in effect, implies a “cost” to members of a com-
munity when some members of the community decide to coordinate with the members
of another group. To see this in terms of our earlier examples. consider first the case
of someone from a rural community leaving permanently for the city. When this per-
son leaves, the remaining members of the community may be left worse off. A parent

may have one person fewer to help manage the family farm and business owners in
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town now have one consumer fewer. Similarly, when a member of an immigrant or
ethnic group assimilates into another group in society, the group members who re-
main are left, in effect, with one member fewer to interact with. This may reduce
their economic community’s size and/or it may reduce the group’s political power
by rendering it a smaller group. Numerous such costs are possible. These costs are
discussed, implicitly, in Rubin (1995) and Wilson (1980).

By formally modeling the coordination component of interaction, rather than rely-
ing solely on anecdotal evidence, we are able to more clearly and precisely understand
the relationship between this need for coordination and the standards of behavior which
people choose. Further, we can explicitly study the welfare effects of this relationship.
[n so doing, we find that in some cases, when a group’s opportunities for trade (or
interaction in general) expand to include the possibility of trading with members of
another group, but with coordination required, a community can end up worse off
than before these added trading opportunities arose.

The model we suggest has the following characteristics. We begin by assuming
that the gains from trade are higher if the two agents trading use the same standard
of behavior. Each agent chooses such a standard from an exogenously given set of
standards before he is randomly matched with a trading partner. Once matched with
a trading partner, if the agents have chosen the same standard, then they may trade
and will naturally do so if a beneficial trade exists. If they have not chosen the same
standard, then trade may be possible, but agents incur a significant cost to doing so
due to the lack of coordination. We normalize this payoff to zero in the model.

All members of society belong to one of two distinct communities, with members of
one community preferring one standard while members of the other community prefer
another. Further, the costs associated with adopting a less preferred standard differ
among agents within a community.

As a reference point, we begin with the situation in which agents trade only with
members of their own community. In this situation we have in mind that there is

effectively a barrier between the two communities in the sense that a member of one

35



community simply does not come into contact with a member of the other community.
We assume that each community is in the stable equilibrium in which all members
choose the standard preferred within that community. We then examine what happens
when this “barrier” is lifted, expanding the trading opportunities for everyone.

Using this framework, we find that in some cases, when we account for these costs
associated with coordination, total welfare of a minority community will decrease
when the barrier between the communities is lifted. In these cases. some members
of the minority community choose to coordinate their behavior with that being used
by the members of the majority community. The remaining members of the minority
community find the cost of doing this to be too high, and thus they continue to use their
preferred standard. While the members who have switched their standards of behavior
may be better off than they were in the autarky case (though not all necessarily will
be), all community members who continue to use the initial standard are worse off due
to the strategic complementarity we mentioned earlier. This loss may outweigh the
gains achieved by those who switched to the majority standard. This logic differs from
that found in Hart (1975) and in the literature on customs unions. both of which also
examine cases in which a welfare loss can result upon the lifting of a trade barrier.!
Further, this result is in sharp contrast to the most traditional results which state
that when two countries lift a trade barrier, the welfare of both countries will at least
weakly increase.

Further, we find that even in some cases where total welfare increases. agents in a
minority community may choose to change their standard of behavior, or “assimilate.”
even though they are worse off assimilated into this larger community than thev were
before the expansion of trade opportunities ever took place. Again. the driving force

here is the strategic complementarity of the situation.

'Hart (1975) examines a case involving incomplete markets and shows that the addition of an
asset which allows trade between some of the markets, but not all of them, can lead to a decrease
in welfare. In the literature on customs unions, it is shown that when a country has two trading
partners, one with high costs and the other with low costs, and this country forms a customs union
with the higher cost partner, while imposing a high tariff on the low cost partner, then a decrease in
welfare is also possible.
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We also look briefly at an extension of this model, in which agents may choose
from a set of three standards. We offer an example of a case in which, beginning from
the autarkic situation in which all agents use their most preferred standard, all agents
in both communities change their standard to the standard which is not the most
preferred standard of either community when the barrier between the communities is
lifted. In this example, both communities, and more specifically all members in both
communities, are left worse off.

The remainder of the chapter is organized as follows. The formal model is laid out
in Section 2, while a description of equilibrium and dynamics can be found in Section
3. An analysis of the welfare implications which result from our accounting for the
cost of coordination makes up Section 4. The extension of the model in which agents

choose from three standards is discussed in Section 5. and we conclude in Section 6.

2.2 The Model

We consider an exchange economy consisting of two types of agents, type z and type
y- The sizes of the type x group and that of the type y group are equal. There are
two commodities, z and y. A type z agent is endowed with 2 units of good z. while
a type y agent is endowed with 2 units of good y. Each type z agent is indexed by
a number in (0.1), as is each type y agent. Agents get zero utility from consuming
only one good, while they get positive utility from consuming a unit each of r and
y- In this world, trade takes place in the form of a one-for-one swap of goods. When
agents trade, they need to coordinate on a behavioral standard, either L or R. for the
benefit to trade to be positive.

Each agent belongs to one of two communities, 4 or B. Agents in A strictly
prefer coordination on standard L, while agents in B strictly prefer coordination on
R. However, coordination on some standard is preferred to miscoordination by all
agents. If an r-endowed agent i, from community A. uses standard L and trades

with another agent using L . the agent receives a utility level which we normalize to
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L, while if he uses standard R and trades with another agent using R. he receives
utility pp(i) € (0,1). Similarly, if an z-endowed agent j from B uses standard R
and trades with another agent using R, the agent receives utility 1, while if he uses
standard L and trades with another agent using L, he receives utility u.(j) € (0, 1).
Symmetrically, a y-endowed agent i in A receives utility 1 if he uses standard L and
trades with another agent using L, while he receives utility vg(i) € (0, 1) if he chooses
standard R and trades with another agent using R. A y-endowed agent j in B receives
utility ».(j) € (0,1) if he uses standard L and trades with another agent using L.
while he receives 1 if he uses R and trades with another agent also using R.?

We denote the fraction of the z-type agents who are in community A by n, and
the fraction of the y-type agents who are in community A by ny. Thus, the fraction
of the total population which is in community A is %ﬁi We arrange z-type players
uniformly on the line [0,1] such that the following is true. For i < n,. 0 < ur(l) <1
and pp(:) is monotonically increasing. For i > n,, 0 < pr(i) < 1 and pr() is
monotonically decreasing. This places players in community A on the first portion
of the line and those in B after them. Also, note that this is equivalent to placing
the players who have the most trouble changing their standard of behavior at the
outer ends of the line, while placing those who would find it least difficult to make
this change nearest the members of the community to which they do not belong. In
the same manner, we arrange y-type players on the line [0,1] such that the following
holds. For j < n,, 0 < pp(j) <1 and wp(j) is monotonically increasing. For j > n,.
0 <pr(j) <1 and pr(y) is monotonically decreasing,.

There is no centralized market where agents can meet to exchange commodities.
Rather, agents are randomly matched into pairs. We examine two cases. We will
refer to the first of these cases as the “autarky” case, and it will serve as a benchmark

for analyzing the results we obtain in the second case. In the autarky case. agents

2Note that by defining ¢ and v as we do, our model can also be interpreted to address situations
in which agents from one community can interact profitably with members of the other community,
but they may not be able to fully reap the benefit of the interaction in the way that the agents using
their most preferred standard can.
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Figure 2.1: Matching Technology: Autarky Case
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Figure 2.2: Matching Technology: Unification Case

are matched only with agents from their own community according to the matching
technology enumerated in Figure 2.1. In other words, an agent in community 4 meets
a trading partner with probability %—"- while with probability 2—%"1 the agent
meets no one. Similarly, an agent in community B meets a trading partner with
probability -2—"%’1 and meets no one with probability “’—;"l

The second case we examine is the “unification” case. Here, agents may meet
trading partners from either community, according to the matching technology of
Figure 2.2. In this case, an agent will meet a trading partner with probability 1.
Recall, however. that this is not equivalent to saying that an agent will trade with

probability 1. Agents in a pair must use the same standard of behavior and have

different commodities for trade to actually occur.
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2.3 Equilibrium and Dynamics

We consider two situations. The first is that of an autarky, which serves as a bench-
mark for the second situation in which there is no barrier in the sense of uniform

random matching.

2.3.1 Autarky

If there is a barrier between the two communities such that no agent can meet an agent
from the other community, we can analyze each community separately. We consider
community A. The analysis for community B is symmetric. First. any pure strategy
equilibrium, i.e. a situation from which no one has an incentive to deviate. can be
characterized by two numbers, m. € [0,n;] and m, € [0.n,]. where agent i of type z
(resp. type y) takes standard L if and only if i < m, (resp. i < m,). ® Indeed. if
t < j, then pup(?) < ur(J) and vp(i) < vp(y) and therefore. if player i takes R in an
equilibrium, player j of the same type weakly prefers R to L as well.

The agent : of type z obtains Zt if he takes L and %(ny — my)pr(m;) if he takes

R. Therefore, his incentive conditions are given by

my > (ny — my)ur(i) if i < m;. (2.1)

my < (ny = my)ur(i)  ifi > m,. (2.2)

[nequalities (2.1) and (2.2) give the incentive curve for type r agents. i.e. the curve
on which no agent of type r has an incentive to deviate. Similarly, for an agent i of

tvpe y, we have

m; > (n; — mz)vg(i) if i <m, (2.3)

me < (ne —~mg)vp(i)  ifi > m, (2.4)

3This is unique up to permutation among those with the same pu’s. Also, we ignore the action
taken by the agent at the threshold, i.e., agent m,.
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Inequalities (2.3) and (2.4) jointly give the incentive curve for type y agents. The
intersections of these two curves determine the equilibria of this community. Since
pr(m:) and vr(m,) are functions of m. and m,, respectively, we can draw equilibrium
conditions on a (m;,m,)-plane. Two examples are given in Figure 2.3. The first
illustrates the case in which y and v are distributed uniformly, and the second where
the distributions are made up of two mass points. As is always the case, there are
multiple equilibria, including one at (0,0) and another at (nz,ny). Yet. if we use
the theory of evolution, we can identify (m.,m,) = (n,. ny) as the unique “stable”
equilibrium. More precisely, it is the unique stochastically stable equilibrium according
to Foster and Young (1990), the unique long run equilibrium according to Kandori.
Mailath and Rob (1993), and the unique globally absorbing state according to Matsui
and Matsuyama (1995). Further, the equilibrium (n.. n,) is stable in this sense for all
distributions of 4 and v. When we discuss dynamics after the barrier is removed. we
assume, therefore, (n., n,) as the initial condition in community A. By the same token,
we assume that (n;.n,) is the initial condition in community B. This will simplify our

dynamics as well.

2.3.2 Unification

The analysis of the case with no barrier is similar to that of the autarky. As before.
an equilibrium is essentially characterized by two thresholds. m, and m,. Now, the
z-type agent at m; obtains myuy(m.) if he takes L. and (1 — m,)ugr(m.) if he takes

R. Therefore, the first condition becomes

mypr (i) > (1 = mypr(t) ifi<m, (2.5)

myu(i) < (1 — my)ur(i)  if i > m,. (2.6)

Similarly, the second condition is given by

merp (1) > (1 —mg)vr(i)  ifi <m, (2.

(S
~1
e
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mevp(i) < (1 —mg)vp(t)  ifi > m,. (2.8)

As before, (2.5) through (2.8) jointly determine the incentive curves and hence equi-

librium.

2.3.3 Dynamics

We use best response dynamics to select equilibrium. which makes our results con-
clusive. A best response dynamic is a dynamic in which agents gradually adjust their
actions to a best response action to the current strategy profile. Such a slow adjust-
ment process is appropriate to our problem, since cultural adjustment traits change
only slowly. (See, for example, Cavalli-Sforza and Feldman (1981).) Thus. we assume
that time is continuous, as is the dynamic path. For the sake of simplicity of the
analysis, we assume further that if many agents have incentive to switch their actions,
those who have greater incentive than others switch first. This enables us to charac-
terize the state of the dynamical system by two thresholds m, and m, if the initial

condition is also expressed by two thresholds. If (m,, m,) satisfies

mypr(mz + &) > (L — my)pur(m, + <)

for some ¢ > 0, then type z agent m, + . who is now taking R. prefers L to R.
and m, increases. Similar conditions are applied to other cases. which enables us to
draw a phase diagram. Examples are given in Figure 2.4. The stable equilibrium
shown in Figure 2.4a represents what we refer to as a completely assimilated equi-
librium, (0,0), meaning that in this equilibrium, all members of one community have
coordinated with, or assimilated into, the other community. We refer to the stable
equilibria of Figures 2.4b and 2.4c as partially assimilated equilibria, which are given
by (mz, my) with (m,,m;) € [0,n;] x [0,n,] \ {(0.0).(n,.n,)}. Here. some members
of one community have coordinated with the members of the other community. but

not all members have done so.
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We fix the initial condition at (n.,n,). Then in each case, there is the unique
equilibrium which is accessible from the initial condition under best response dynamics
irrespective of the relative speed of adjustment for two types of agents.

We now classify situations into two cases. In the first case, the equilibrium which
is uniquely accessible from (n,n,) is a completely assimilated equilibrium. In the
second, this uniquely accessible equilibrium is a partially assimilated equilibrium.

[f the two incentive curves obtained from inequalities (2.5) through (2.8) coincide

in the box [0, nz] x [0,n,], i.e.. if ug and vg satisfy

T _ pr(z) ‘
-z 'R (m) » Vo€ (0ng), (2.9)

then there are a continuum of equilibria. Such a pair of incentive curves plays an im-
portant role in determining whether the equilibrium which is uniquely accessible from
(nz.ny) is a completely assimilated equilibrium or a partially assimilated equilibrium.
Let a pair of functions uj and vy satisfy (2.9).* Consider another pair zr and vg. If
we have

pr(t) > pp(i), Vie (0,nz).

and

vr(t) > vp(i), Vi€ (0.ny),

then (0.0) is the unique equilibrium which is accessible from (nz,ny) since the only
intersection of the two curves below (n..n,) is (0.0). That is, if agents in community
A do not dislike R too much, they completely assimilate into the larger community.
On the other hand. if there exists an interval (m,m) C (0.n,) with positive length
such that pp(i) < wp(i) foralli € I, and if vp(i) < vi(i) forall i € (0.n,). then the
two curves intersect at (m;, m,) for some m, € [m.n,). Therefore. the system either

stays at the initial situation or converges to a partially assimilated equilibrium.

*There are infinitely many such pairs.



2.4 Welfare Implications

We now turn to the welfare implications of our accounting for the costs of coordination.
We study two explicit examples.

In all of our examples, we restrict our attention to the situation where n, and ny

L
2

are less than Thus, in the stable equilibrium which is accessible from the initial
condition (n,n,) given by the “autarky case,” it is members of community 4 who
will switch from their most preferred standard if anyone does.® Therefore. we need
only refer to the distributions of ur and vg; the distributions of s and of v do not
factor. Also for convenience, we normalize the size of the population endowed with z
to be 1, and thus the size of the population endowed with y to be 1 as well.

We first examine the case in which pg and vg are uniformly distributed on (0.1)
across the (respective) agents in A. We then turn to essentially the other end of the
spectrum by examining the case in which ug and vg each take on one of two values.
£y and fg and respectively vp and 7z, and a positive mass of plavers incurs each
level of cost.

We use a simple welfare function in which the utility of each member in the com-
munity is given equal weight. Thus. we define total welfare for community 4 to be

the sum of the total welfare of A’s type r agents, W, and the total welfare of the type

y agents, W, as follows.
W, = /"’ Eu, di (2.10)
0

W, = /"” Eu; di. (2.11)
4]

where Eu; is the expected utility of an agent i of the respective type. Using these

functions, we find that community 4’s total welfare in the autarky case is equal to

SNote that this is a sufficient condition for members of A to be the only agents who switch in the
abovementioned equilibria, but not a necessary condition.
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37zny + §nony = neny. Again, this will serve as our benchmark level of welfare for

the discussions which follow.

2.4.1 Example 1: Uniform Distribution

Let pr(7) and vr(7) be distributed uniformly on (0,1). Then pg(:) = n‘—: and similarly,
vr(1) = t We know from section 2.3 that the stable equilibrium accessible from our
initial (autarky) condition (n., n,) is the equilibrium in which all members of 4 adopt
their less preferred standard, L, while members of B continue to use L.

We make our calculations for type z agents only. The results are symmetric for
the type y agents. Total welfare for the type £ members of community A at the
equilibrium point is expressed here by

I e
Wew = — ! di. (2.12)
) 2n. Jo
which yields a level of welfare in this equilibrium equal to %z, Given our restriction
that n; and n, are less than %, W 4 is clearly greater than this group’s level of welfare,
%nrny, in the autarky case. Thus, the expansion of trade opportunities has in this
case increased the community’s total welfare using this measure of welfare.

This does not mean, however, that all members of the community are better off.
And we can readily see that they are not. More specifically. all type z members of A
with cost multiplier zg(i) < n, are now strictly worse off than they were before the
lifting of the barrier. Why, then, do they change their standard? They change their
standard because of the negative externality imposed upon them when the members
of their community with low switching costs change standards. As a result of this ex-
ternality, they find themselves in a position where clinging to their preferred standard
leaves them even worse off than they will be if they change their standard. This is a

condition which does not arise when only standard transaction costs are involved in

trade.
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Figure 2.5: Probabilities in Equilibrium: Two Mass Points Example

2.4.2 Example 2: Two Mass Points

Now we turn to the example in which all members of the community have one of a
small set of cost multipliers. We assume that a fraction ¢ of the z-endowed members
of A have cost pp(i) = fir while the remaining | — ¢ of this population have cost
pr(i) = pp, where jig > Lg- Similarly, a fraction ¢ of the y-endowed members of A
have cost vp(i) = g while the remaining agents of this type have cost vp(i) = vR-
where op > vp.

We assume that Lp: £R: Yp, and Ug are such that, in equilibrium, players with
costs equal to either ip or og will switch to using standard R. while plavers with

costs i or yp will continue to use L. Specifically, this means that ip > 1—2{; and

(1—¢)n
1=(1~¢)ny

(l—e)n,

e From these conditions. we see
—£)ny

VR > l—ff; while Bg < and vg <
that for a given jip and [ p: there is a range of n, for which a partial equilibrium
exists. An equivalent statement can be made for 7r and v5. When these conditions
are satisfied, we can characterize the probabilities, in equilibrium, that an agent will
meet a trading partner using L or R by those in Figure 2.5.

Given this, the total welfare of A’s type z agents in equilibrium is now described

by

B
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1 (l—e)n, R ﬁR nr . P s
Wem = 5/0 (1—¢)ny) di + ?/(I—e)nx(l—(l—s)ny) di (2.13)

which yields a welfare level equal to

Wem = 5(1—e)nony + S{@all — (1 - )n,ln,}.

N} —

This expression, while somewhat messy. is readily interpretable. The first term in
the expression represents the utility level of the community members who continue to
use L. This mass of members, in the autarky case, would have received welfare level
{1=ens 2 di = 3(1-¢)ngn, > $(1 = ¢)’nn,. These members have suffered a
welfare loss. This is, of course, the direct result of the negative externality imposed
upon them when the g and 7 members of their community switch to R.

On the other hand, for their incentive constraint to have been satisfied. the agents
with Zr and Pp must have experienced a welfare gain. This is easy to verify. The
second term in the above expression represents the new level of welfare which these
agents receive. Previously, again referring to the autarky case. they received
f(l_,)n: 5 = -;-;‘nrny which, given our initial restrictions on jig and g is strictly
less than their new level of welfare.

We now ask whether or not the welfare gain experienced by the agents using
R outweighs the welfare loss incurred by those continuing to use L. We will look
specifically at the case where fip = g = 1. since if the inequality holds under this
condition, it will certainly hold in the case where jip and 75 are less than 1. as in this
case, the welfare gain experienced by the gaining agents is diminished. As before. we
look first at the net change in welfare which the type r agents experience. and then

we can examine, separately, the type y agents. If the type z agents have incurred a
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net welfare loss, the following inequality will hold.

&(l —&)nzny > engl — (1 ~e)ny| ~ en.n,.

which gives us the condition

Ty 2 352

Since the relevant inequality for the y-type agents is symmetric. we can conclude that
the following condition will also hold if the y -type agents experience a net welfare
loss.

1
3—-2¢

ny >

Again, these conditions are sufficient but if ig and/or og are strictly less than one,
then weaker conditions will suffice. Either way, these conditions tell us immediately
that for ranges of n; and n,, a net welfare loss may result with the expansion of trade

opportunities when the costs of coordination are accounted for.

2.5 The Case of 3 Standards

We now consider the situation in which agents may choose from among three beha-
vioral standards, namely L. C' and R. We look at a fairly specific example. Let the
payoft matrix for type = agents be that in Figure 2.6. We assume that a corresponding
matrix applies to the type y agents. However, as before, we focus our welfare analysis
on the type r agents since the analysis for the y agents is symmetric.

We assume that the communities 4 and B are equal in size, or more specifically
that n, = n, = 1. And we retain the assumption that the standard L is the most
preferred standard by members of community A while R is most preferred by members

of B. Thus, we retain the normalization that for type r members of A, tr = 1. while
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L KL 0 0
C ¥ e v
R 0 0 KR

Figure 2.6: Payoff Matrix: The Case of 3 Standards

for members of B, ur = 1. Further, we can retain the initial condition at which all
members of A use L and all members of B use R. Note, however. that m_ and m, as
previous defined are no longer sufficient to characterize equilibrium here because of
the addition of the third standard.

As mentioned in the introduction to the chapter. the welfare results in this case
do not rely upon there being heterogeneity among agents with respect to pr and
KR, though the results do hold for appropriate parameter values when heterogeneity is
present. Thus, for ease of enumeration, we will assume that agents within a community
are homogeneous in this regard. Further, we can assume that all agents in both
communities earn the payoff v when using C' and trading with someone using L or R.
while earning the payoff uc from using C and trading with someone using C.

We assume that v > maz{n,.l — n,} and that if agents from A and B switch to
standard C from their preferred standards, they do so at the same rate.® We use the

remainder of this section to show that if

1 L1 ;
/>5>ﬂc>§/—z, (....14)

%One assumption which we could make that would make our assumption regarding agents switch-
ing at the same rate most intuitively appealing is the assumption that ug for agents in A is equal to
pr for agents in B. However. as this assumption is in itself not necessary, we do not make it.
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then the lifting of a trade barrier between A and B leads to a welfare loss for every
individual in both A and B.

Given our assumptions, the stable equilibrium accessible from our initial condition,
using best response dynamics, is the equilibrium in which all members of both A and B
choose standard C. To see this, we first consider the decision of an agent at the initial
point when the barrier is lifted. If the agent is a member of A, then taking L offers
an expected payoff of 3n, = ;. taking C offers 1v, and taking R offers Lup(l —n,) =
i,u r- The agent’s best response is clearly to choose C, given our assumption regarding
the value of y. The same argument holds for members of B. Thus, we expect some
agents to switch to C.

Now, since agents from A and B switch to C at the same rate. we can say that at
some fixed point in time, a fraction c of the agents in both groups are using C. Thus.
in evaluating his options, an agent in A sees that his expected payoff equals %(% —c)
if he chooses L. 3[v(1 — 2c) + pc(2c)] if he chooses C, and s1r(5 — c) if he chooses R.
Since choosing R is clearly a dominated strategy, we need only assess the comparison
between his choosing L and C. Doing so. we find that if the following equation holds,

then an agent will still prefer C to L if the following inequality holds.

(1 =2¢) + pe(2e) = (5 ~¢) >0

¢

| —

This equation will hold for all ¢ € [0,1] if it holds for c=1. Thus, we find that if

l 1
,UC>,‘2’7“‘4'

then in equilibrium, all agents will stay with the choice C. In equilibrium. the payoff
expected by every agent equals %/Lc. If ue < ,_% = n, = 1 — n,, then the expected
payoff to every agent is lower than it was at the initial condition. Therefore. we say
that all agents in both communities experience a welfare loss upon the lifting of the

trade barrier between the communities.
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2.6 Concluding Remarks

We have highlighted the importance of explicitly considering the need for coordination
in interactions when modeling economic behaviors where such coordination is required.
We have shown that when we account for the costs of such coordination. there are
cases in which total welfare of a minority community decreases when a trade barrier
between the two communities is lifted. In addition, we offered an example which
illustrates that in a situation where no dominant culture exists. every member of both
communities may ultimately be worse off upon the lifting of a trade barrier.

Several remarks are in order. First, we have not in this work considered important
intergenerational issues which are pertinent in any discussion of assimilation. It is
often argued that ore of the most serious problems associated with assimilation is the
gap which arises between generations. Parents become alienated from their children
and cannot pass on the wisdom they have inherited from generations of people that
came before them. Children who wish to assimilate must learn the new culture on
their own. They often remain second class citizens in the new society. This effect may
persist, in some cases becoming intensified and while in others, becoming weaker. In
cases where this effect becomes larger, the rate of economic growth may be higher
for members of a dominant group in society than for those coming from a minority
group. In addition to this problem, we have assumed that people make their choices
myopically. We have not considered the case in which people take into account future
generations when making their own decisions regarding assimilation.

Our next remark is related to our first. We do not presently deal with situations
in which discrimination makes it essentially impossible for one group to coordinate
with, or assimilate into, another group. This problem arises most commonly in cases
when a group has some recognizable traits which cannot be changed, even by choice.
such as gender or skin color. As the Folk Theorem has shown us. discrimination is
sustainable in equilibrium even if the only difference between people is their “names.”

In such cases. it may be that members of one community would like to coordinate
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with the members of another group, but when they take the appropriate behaviors
which would seemingly allow them to do so, they effectively end up as a group unto
themselves, forced to interact primarily within the newly formed, third group.

As a final remark, different situations present different problems. For example.
in the case of computer networks, standardization may imply the need for complete
coordination. On the other hand, culture cannot be described by a single trait. (See
Cavalli-Sforza and Feldman.) Adopting one trait but not another may have effects
which we do not capture with the model in this chapter. Thus, we must more carefully
examine the contents of such traits when we apply our analysis to specific problems.
One typical question which must be addressed in this vein is the question or which
traits can be changed and at what cost.

Finally, in the future, careful applied work is needed if we are to better understand
the nature of the problems suggested by the present analysis. All of these issues are

left to future research.
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Chapter 3

Representing Collective Bargaining
Games by Two-Player Bargaining
Models

3.1 Introduction

Bargaining is an important economic reality, and as such. economists have constructed
numerous models of bargaining in an attempt to gain insight into the topic. These
models range from the early axiomatic bargaining model of Nash (1950) through the
vast array of strategic models beginning with Nash (1953) and including the first
dynamic models of Stahl (1972) and Rubinstein (1982).

One feature common to virtually all of these bargaining models is that they in-
volve two players, negotiating against each other, to decide how to divide some pie
between them.! However, most of the important negotiations we are attempting to
gain insight into by building these models are collective negotiations. That is. most of

the negotiations involve groups of players negotiating against other groups of players

'In a few additional studies. attempts have been made to model situations in which n > 2 people
are negotiating to divide the pie into n pieces. For references and a summary of some of the results.
see Osborne and Rubinstein (1990), Chapter 3.
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to divide the pie. Examples include everything from labor negotiations, in which a
group of workers is negotiating against a team of management, to international treaty
negotiations, in which entire nations of people are negotiating against other entire na-
tions of people (or at least some governing body such as the United States Congress
is the effective player in the game). To date, there has been an implicit assumption
that our two-player models can be viewed as representations of collective bargaining
situations as well as simply models of two-player negotiations.?

[ accept the premise that we can represent collective bargaining situations by two-
player bargaining models. However, we cannot do so blindly. My aim in writing
this chapter is to better understand what exactly it means to represent a collective
bargaining situation by studying two-player bargaining models. In so doing, I find
that intuition alone does not allow us to intelligently propose outcomes for collective
negotiations; instead, it will generally lead us astray. In the process, I also find some
interesting results which enable a better understanding of phenomena we often see
occurring in real bargaining situations.

The reason that we must be careful when proposing results for collective negoti-
ations based on two-player bargaining models is the diversity of preferences among
the members of negotiating groups. If groups consist of identical members. then the
two-player representation for collective negotiations involving these groups is trivially
applicable. However, members of groups involved in a negotiation are rarely identical
in their preferences over the outcome of the negotiation. Often, there is commonality
in what they aim to achieve in the negotiation, but generally, there are significant dif-
ferences as well. For example, in a labor negotiation, members of a negotiating labor
union all prefer higher wages to lower ones. However. the union members are likely to
differ in their preferences over which nonwage benefits to sacrifice for higher wages.

and likely in their preferences over how soon an agreement must be achieved as well.

2An important exception is Raiffa (1982). In this work, the nature of some of the problems specific
to collective negotiations are pointed out, and interesting examples are discussed. Thus. this work
serves as excellent background reading to this chapter.
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In many important international negotiations, these differences can be even more ex-
treme. When the United States negotiated with Canada and Mexico over NAFTA (or
for that matter, any time the United States is involved in trade negotiations with for-
eign trading partners), members of Congress, who must ultimately agree to the terms
of a treaty, all want terms which are most favorable to the United States. However,
no one could argue over the claim that they differ in their preferences over how to
achieve such an outcome.® Negotiations in the Middle East between Israel and its
Arab neighbors are perhaps among the most well known examples of such differences
within the negotiating groups.

Thus, if we set out to model these collective negotiations as two-player games,
a crucial question which immediately arises is that of who these “two players” are.
What preferences does a player representing a diverse group have? Without the
answer to this question, we cannot begin to discuss collective bargaining using the
two-player framework, as all of our results for bargaining games depend critically on
the preferences of the bargaining players.

Suppose. as an example, that one of the groups in our collective negotiation votes
under majority rule. That is, assume that any agreement which results from the ne-
gotiation must be agreed to by at least fifty percent of the group’s members. Intuition
might lead us to believe, then, that the median voter of the group would be the cor-
rect choice for our “representative” player, i.e. the player whose preferences should
be used in modeling the negotiation as a two-player game.

This intuition is wrong. If the group members are allowed to choose, by majority
vote, a representative from among themselves to negotiate on behalf of the group.,
assuming that when the group member actually bargains, he does so according to his
own preferences, then, in most games, the group will not choose the median voter to

represent them. Rather, they will choose a more extreme member of the group. How

3The reasons for the differing preferences of members within a group are not our issue here. Thus.
even if these differening “preferences” are the direct result of different beliefs over the parameters of
the situation, they are considered here to simply be differing preferences. For the purposes of our
exercise, this representation is most staightforward and qualitatively equivalent.
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much more extreme depends on a number of things, most significant of which is the
actual parameters of the bargaining game. The reasons for this will become clear as
we study specific cases later in the chapter. However, it is worth pointing out that this
result does, in fact, correspond with much of what we see in many real negotiations.
Often, groups send someone more extreme than the middle to negotiate on their behalf.
In particular, we certainly see this in the types of collective negotiations mentioned
earlier, i.e. wage negotiations and international treaty negotiations of virtually every
kind.

The chapter is organized as follows. In Section 2, I describe the basic model.
Section 3 contains comparative statics results for the basic model in which players are
completely informed about the parameters of the game they are playing and about their
opponents. Sections 4 and 5 then discuss additional issues pertinent to this complete
information case. In Section 6, I examine a case in which players are incompletely

informed. Section 7 contains concluding remarks.

3.2 The Model

Two groups. denoted A and B, are to bargain with each other over the location at
which something is to be placed. Each group is made up of a continuum of expected
payoff maximizing members located along a line segment. Group A is distributed
uniformly on [0,1] while group B is distributed uniformly on [2.3]. [ refer to the
player located at i as player i. An offer is a point (or “location”) on X= [1.2]. The

following diagram should help the reader visualize the setup.

A X B

-+
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Each player would like the agreed upon location to be as close to himself as
possible. The payoff to player 7 if the agreement point is z is described by a — |z — i,
where o > 0 is a known constant. Disagreement results in a payoff of 0 to all players.
Note that I do not restrict & — [z — i to being greater than or equal to zero; it can
be negative and thus, for some values of @, agreement can lead to a payoff worse than
that caused by disagreement for some players.

The game is a two-stage game. In the first stage, each group chooses a negotiator
to represent their group. In the second stage of the game. the chosen negotiators meet
and negotiate over z based on their own preferences. The outcome of this negotiation
determines all players’ payoffs. Below, I lay out these two stages in detail.

Again, in the first stage of the game, groups choose negotiators to act on their
behalf. Group A chooses a negotiator a, while group B simultaneously chooses b,. [
assume that a, must be in A, i.e. in [0,1], and symmetrically. that b, must be in B.
That is, groups are choosing a member of their group to act as their representative.
Both groups make this choice according to a majority rule vote. More specifically,
agreement of fifty percent of players is required to appoint a particular group member
as the group’s negotiator.

[ use the term median voter to refer to the voter, or group member, who is located
halfway into the group. In this model, this equates to the plavers located at « = 0.5
and b = 2.5.

In the second stage of the game, the negotiators a, and b, will meet privately to
bargain in an alternating offers framework. For simplicity. a, will make the first offer.
These negotiators negotiate based upon their own preferences, or equivalently. based
upon their own locations. They have a common discount rate § € [0.1]. which is a
discount rate also common to all members of both .4 and B. If they reach agreement
on z, each player i receives a payoff @ — |z — i, even if for a particular player. this
payoff is negative. If the negotiators do not agree, all players accept the disagreement
payoff of zero. No player can opt out of receiving the negotiation-determined payofft.

[ will focus on equilibria which are subgame perfect.
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3.3 Comparative Statics

We now turn to our primary question, that of which group member should be con-
sidered the representative player for the group. Because the results vary as the value

of a changes, I break the discussion into two sections.

3.3.1 « Large

Recall that the payoff to player i when the agreement point equals r is a — |z — i | I
begin by considering the situation in which a is “very large.” by which I mean that
« is large enough such that every player receives a positive payoff for every possible
agreement point. [n our model, this is equivalent to saying that « > 2. Later in
this section, [ consider the case in which « is still “large.” but not very large. i.e.
a € [L.5,2).

When o« > 2, in equilibrium, in the second stage of the game, agreement will be
reached immediately. The negotiator making the first offer. in this case a,. will offer

a location r~ such that the payoff 7~ to the B’s negotiator. b,. is

. §(2a + a, — b,) )
0 —max{ s . a—(bn—l)} (3.1)
Thus, a, will offer
2 —
™ = max {J(_a -ll.-zné bn) _ a + b,. 1} (3.2)

Player b, will accept this initial offer, but will reject any offer in which r is lower.
Now, we can step back and assess whether a group fares better having a middle-
of-the-pack negotiator or a more or less extreme one. Note that a more “extreme”
negotiator in this model is a player located nearer the endpoints of the [0.3] line
segment. These players are more difficult to satisfy in the negotiation stage of the

game. Consider the following.



dz~ é
&, - T T (3:3)
Clearly, %ﬁ 2 0 for all § > 0. Thus, as b, increases, z* increases. The higher the
value of b,. the better off are the members of B. The same question can be addressed

with respect to group A, who is making the first offer. Here.

dz* )
= — 3.4
dan 1 + 6 ( y )
% > 0 for all § > 0. Thus, as a, increases, r* increases. As the members of

A want z* to be as small as possible, this means that the lower the value of ay. the
better off are the members of A. So. regardless of whether a group is making the first
offer or the second, it is in the interest of every member of that group to choose an
extreme negotiator and hence, if the group votes on a negotiator, its members would
(unanimously) agree to be represented by their most extreme player. This holds for

all @ > 2. To summarize,

Theorem 1 Va > 2, a}, = 0 and b, = 3 is the unique equilibrium in the first stage
of the two-stage game defined above. In the second stage. agreement will be reached

immediately on r* = max Ma_il-:;—ﬂl —a+ by, 1}.

Thus, in a simple two-player model of this situation. if groups can choose their
representatives, the only way to capture this result is to assume that the two players
are the most extreme players in their groups, i.e. the players located at ¢ = 0 and
b=23.

If @ < 2. it is no longer the case that all players in both groups would prefer any
agreement to no agreement at all. However, when « is less than but still close to 2,
or more specifically, when a € [1.5.2), agreement can still be reached even if both
groups are represented by their most extreme member. For a in this range, there
are still some agreement points which all players would prefer to no agreement. and

in equilibrium, one of these will be chosen. Here, the fact that « is lower effectively
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shrinks the set of feasible equilibrium offers from [1,2] to [b. - @, an + a]. or in our
case specifically, where a,=0 and b,=3, [3 - o, o] C [1.2]. The calculation of an
equilibrium, however, is otherwise the same as the calculation in the case of a > 2;

with @, making the first offer,

. {5(2a+an—bn)
r* = max

—atbn3—
I+6 &+ O a}

and it is still the case that the more extreme the group’s negotiator. the more favorable
the equilibrium outcome will be for that group. Further. this will still be a unanimous

choice.

3.3.2 « Small

We now turn to the case in which «a is small. or @ < 1.5. When a € (1. 1.5),
agreement will no longer be reached in equilibrium if both groups choose their most
extremely located members as representatives. The most extremely located players in
each group cannot both, simultaneously, receive a payoff greater than the disagrement
point from agreement on any point in X. Yet, it will nevertheless be the case that a
majority of the group’s members would prefer certain agreements to disagreement.

In this case, in fact, there are a continuum of equilibria. More specifically.

Theorem 2 For o € (1,1.3), there ezist a continuum of equilibria. These equilibria

are characterized by the first-stage choices

b, —a; = 2a

such that a; < 0.5 and b > 2.5.

In the second stage, agreement will be reached immediately on z= = a,+a =b>—a.

Figure 3.1 is provided to enable us to visualize the relationships between equilib-

rium choices of negotiators and a and between equilibrium offers and a more clearly.
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This result is straightforward to verify. Note that in any of these equilibria in
the case where a is small, there are players who are receiving a negative payoff as a
result of the agreement on z. Thus, the choice of a negotiator in these cases is not
a unanimous one. Rather, some of the most extremely located players would have
voted to choose a more extreme negotiator, even if this resulted in no agreement in
the second stage of the game.

This result brings to mind our general intuition that in games of complete inform-
ation in which players bargain in an alternating offers framework, we have a unique
equilibrium outcome. The implication of this result is that when we have a collective
negotiation between groups whose members have differing preferences over the out-
come of the negotiation, we may not be able to point to a unique equilibrium when
considering the broader game in which these groups must first choose a negotiator.
An alternative way to view this is that while, in a particular negotiation between
two players (negotiators), we do have a unique equilibrium outcome. we have a con-
tinuum of two-player bargaining games which act as equilibrium representations of
the collective bargaining situation we are interested in.

We can also see from Figure 3.1 that when o = 1. there is again a unique equi-
librium in which @} = 0.5 and b7 = 2.5. while £* = 1.5. I do not spend time on the
case in which a < 1, since in this case, no agreement is possible in the second stage
of the game when at least fifty percent of players within each group much approve a
negotiator choice in the first stage of the game. Even the median voters themselves.
acting as representatives of their groups, could not reach agreement on any z. but

rather would prefer disagreement.

3.4 Alternatives to Majority Rule

[n the above discussion, it was assumed that groups vote using majority rule. [ now
turn to consider the effects that this voting rule has on our results and hence. the

impact that other possible voting rules would have on our results.
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[ restrict my attention to the case in which « is small. As pointed out above. when
a is large, groups unanimously choose their negotiator to be the most extreme plaver,
regardless of the voting rule that the group uses to make its decisions. However, when
a is small, i.e. when « € [1,1.5), there is disagreement among group members as to
the choice of a negotiator. Even though a majority of the group’s members can agree
on a negotiator in equilibrium, not all members are voting in favor of this negotiator.

Let a group’s voting rule be defined to be a point in [.5,1]. This point represents
the fraction of players in the group who must vote in favor of a player for that plaver to
be confirmed as the group’s representative. Thus, a voting rule of 0.5 corresponds to
majority rule, while a voting rule of 1.0 corresponds to the unanimity rule. Specifically.
[ denote group A’s and group B’s voting rules as v4 and vp, respectively.

The reader can verify that if a player located at i votes in favor of choosing a
particular group member as the group’s representative, then all players in i’s group
less extreme than i will vote in favor of this representative as well. Thus. in our
discussion in Section 3, we were able assume that if a choice was confirmed by the
median voter, it would be confirmed. Now, we can say the same of some critical voter
in the group. Here, the term critical voter refers to the voter. or group member. who
is located at the position vz “into” group I, where moving into the group is equivalent
to moving away from X' = [1,2]. For example, if A’s voting rule is 2, then A’s critical
voter is located at @ = % And of course. a symmetric statement can be made about
group B.

Consider, for the moment. fixing group B’s voting rule at vz = 0.5. or majority
rule. We said previously that if v4 = 0.5 also. then there are a continuum of equilibria
which can be described as in Theorem 2. That is, all choices of negotiators by the
two groups which satisfy b7 — a; = 2a where a} < 0.5 and b7 > 2.5 are equilibria of

the first stage of our bargaining game.

ol

Now, instead, suppose that group A has a voting rule v = Now. agreement

is possible only for a > 1.125. That is, A’s critical voter. located at ¢ = } cannot

reach any agreement with B’s critical voter b = 23 for a < 1.125. However. for a €
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[1.125,1.5), the set of equilibria, while still a continuum (for a > 1.125), is reduced in
size. Equilibria in the first stage of the game still satisfy the condition bz —a> = 2a but
now must satisfy the conditions a}, < 1 and & > 21. The corresponding second stage
equilibrium outcomes remain the same. This not only reduces the set of equilibria for
games with o in this range, but does so in favor of group A. Those equilibria which
were least favorable to A are those that have been eliminated.

Thus, for a given value of a, holding v, fixed at v, = 0.5, group A fares best with
its critical voter located at the position max{2.5 — 2a,0} or stated in terms of its

voting rule, with
ve = max{l — (2.5 - 2a), 1} =max{2a - L.5. 1}.

Not only does this reduce the set of equilibria for all @ > 1, but it in fact implies a
unique equilibrium for all @ > 1. This unique equilibrium is equal to the equilibrium
most favorable to A of the set of equilibria described by Theorem 2.

Again, however, recall that we fixed vz in the above discussion. If we instead
consider v4 and vg to be variables which are also chosen by A and B. respectively,
we then revert to a situation in which there are a continuum of equilibria. Whereas
previously, our equilibrium condition stated that the distance between the two groups’
chosen negotiators would, in equilibrium. equal 2a, in this game the distance between
the group’s critical voters would equal 2« and the negotiator would be chosen to be

the group’s critical voter.

3.5 Additional Remarks on the Complete Informa-
tion Case

The model presented above is, of course. a simplification of real negotiation proced-
ures. chosen in part for its illustrative value. However, in many collective negotiations.

while groups’ chosen negotiators do get together privately to negotiate an agreement
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without the intervention of other group members, after these negotiators have come
to an agreement between themselves, group members may have the opportunity to
vote on whether or not to accept the agreement. For example, when the United States
negotiates a trade agreement with another nation, a representative chosen by the U.S.
government gets together with a representative chosen by the other nation’s govern-
ment. They negotiate secretly until both agree to terms for the treaty. However.
before the treaty is actually enacted, the terms of the agreement are brought to the
U.S. Congress for a vote. Only if Congress votes in favor of the terms is the treaty en-
acted; otherwise, the negotiators must begin to negotiate anew. To cover negotiations
which occur in this pattern, only minor modifications to our model are required. [
discuss the basic changes which are needed below, and express the equilibrium of this
modified model. As can be expected, the equilibrium outcome is a function of not
only a group’s negotiator, but also explicitly of the group’s voting rule. This in turn
allows us to consider situations in which either one or both of the variables, negotiator
and voting rule, are given exogenously. In the case of the U.S. Congress. for instance.
it is often the President who chooses a negotiator to represent the U.S.. while Con-
gress must vote on the terms of the negotiated agreement based upon a predetermined
voting rule.

Bargaining between the groups’ negotiators takes place as before. However. now.
once an agreement is reached by the negotiators. this agreement is presented to each
group for a vote. If both groups vote to accept the agreement. the game ends with
players receiving the payoff designated by this agreement. If. however. either group
votes to reject this agreement. the negotiators resume bargaining, with the negotiator
making the first offer alternating between a, and b,.

There are a number of possible assumptions which can be made regarding discount
rates in such a game. One option is to assume that there is one discount rate which
holds between rounds of the bargaining game taking place between the negotiators
and that when agreement is reached, voting is instantaneous. so that this is the only

discount factor taken into account. Alternatively, thinking about modeling real time
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events, one can assume that there are two separate discount rates. one which is faced
between rounds of the negotiation, and another which is faced in the event of rejection
of agreements between the actual negotiations themselves, with this second discount
rate presumably being larger. For simplicity, I let there be a single discount factor.

The equilibrium outcome in this model is similar to that in our primary model.
However, the groups’ voting rules may now affect the outcome. In equilibrium, agree-
ment will still be reached immediately. However, the location of z* will depend on
the relative locations of both the groups’ critical voters and their chosen negotiat-
ors. I define a, and b, to be the locations of the critical voters in groups A and B.
respectively.

[f b, > by. then a, will offer = such that the payvoff to plaver b,. wy, is

5(2a+ay—by .
max{—(%—fjs—),a — (b, — 1)} ifa, <a,

§(2 n~—by .
max (—°%—).a — (b, — l)} if a, > a,.

If. on the other hand. b, < b,, then a, will offer z= such that the pavoff to player b,

equal to m; where

max { d2etaezba) o (p l)} if a, < a,

- 145
bn — § _ .
max n%w‘l,a — (b, — l)} if a, > a,.

Thus. a, will offer

( - .
max 5(2011-:} %) _ o4 b,. 1} if a, < a, and b, > b,

melx{is%l —a+b,, 1} if a, > a, and b, > b,

max{6(2a~:-:§-bnl —a+b,, 1} if a, < a, and b, < b,

| max{Cteazte)l _ o 1 b, 1} ifa, > a, and b, < by,

It is interesting to note that U.S. Congressional rules were set up such that Con-
gress follows a majority rule voting rule when voting on most domestic issues. but

for ratification of most international treaties, requires a vote of 2/3 of the members
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of Congress. This work implies that this puts the U.S. in a stronger negotiating po-
sition in treaty negotiations than would a majority rule vote for international treaty
ratification. However, it can lead in some instances to disagreements in some such
negotiations despite the fact that a majority of members would prefer agreement.

It is straightforward to see that we can also discuss cases in which groups choose
a negotiator to act on their behalf in addition to. or instead of, a voting rule. For
example, in some situations, it is considerably less costly to choose a negotiator than it
is to choose a voting rule, given some previously defined constraints on the situation.
For example, to change a voting rule which applies to the U.S. Congress is virtually
impossible, while choosing a negotiator to act on behalf of the U.S. for any given
negotiation is relatively simple. A very modest restructuring of the model would

allow for this.

3.6 Negotiator Choice Under Incomplete Informa-
tion

In our discussions to this point, we have assumed that players have complete in-
formation regarding all parameters of the game and regarding the preferences of their
opponents. In this section, I relax one of these assumptions to discuss collective bar-
gaining under incomplete information. To do so, I assume that players have incomplete
information regarding the value of a when they make their choice of a negotiator in
the first stage of the game.* Onuly after groups have chosen their representatives is
the true value of a realized, so that the negotiators know the realization of o when
bargaining in the second stage of the game.

Specifically, [ assume that when players must make their choices of a negotiator for

It is possible to instead relax the assumption that players have complete information about the
preferences of their opponents. However, alternating-offers bargaining models of two-sided incomplete
information do not, in general, have a unique equilibrium even in the true two-player case. Thus.
it is more difficult to focus on our issue of interest. i.e.. the choice of a representative player for a
group of players with diverse preferences.
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their group, they do not know the value of a. Rather, they know that a will be chosen
by nature after this first stage of the game, but before the second stage. Further. a
will be drawn from a uniform distribution on some interval [ @@ ]. with a and @
known. Thus, when the chosen negotiators bargain in the second stage of the game.
they will know the realization of a.

For simplicity, [ return to the assumption made in Sections 2 and 3 that both groups
vote under majority rule in the first stage. [ also return to the simplest (initial) basic
model, in which groups choose a negotiator in the first round and these negotiators
bargain privately in the second round; the agreement they reach in this second stage
will determine the payoff to all players. No further voting takes place.

We know from equation 3.2 that in equilibrium in the second stage of the game, a,
will make the initial offer z= when b, — a, > 2a and « is high enough that agreement

can be reached in equilibrium. where

.) —_—
"= max{(s(-a + an = bn) —a+b,. 1}

)

This offer will be accepted by b,, hence leading to immediate agreement. To simplify

our calculations, [ assume that § ~ 1. We can then rewrite this equilibrium offer as

9 —
" = max{(~a+an bn)—a—{-bn.l}

(an +bn)
9

Hence, we can write the payoff to player a € A as a function f,(a.a,.b,)

5= a—%(an%—bn)-{-a if b, — a, < 2a

0 otherwise

and that to a player b € B as

~1
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_ a—{-%(an-{-bn) ~b ifb, —a, <2a
Jo= 0 otherwise

We now step back to consider the point at which players must choose a negotiator to

represent their group. At this stage of the game, players are uncertain as to the value

of a, and thus they must make their decisions based upon the payoff they expect

to receive after a is realized and the second stage negotiation takes place. Letting

gi(a,an,by) be the expected payoff to player i, we have for a player ¢ € A and a

player € B, respectively

E(a) - %(an+bn) +a ifb, —a, <2

YGa )
0 otherwise

E(a) + %(an+bn) —-b ifb, —a, <2a

9s
0 otherwise

Since groups A and B make their choices of a negotiator simultaneously in the first
stage of the game, we can appropriately take our game to be a normal form between
the groups’ median voters.

Equilibria in this game now depend on the values of both a and &. To assess these
equilibria, I break the distributions over [ o, & ] into three classes. First. if @ > 1.3.
then regardless of the realization of a. agreement will be reached with probability 1
in equilibrium. Hence, both groups will choose their most extreme member as their
negotiator in the first stage. Agreement will be reached on z* = 1.5 immediately.
Further, if @ < 1. agreement will never be possible, and thus [ ignore this case.

The most interesting case thus arises when a < 1.5 and/or @ > 1. Then, group
members must consider tradeoffs between appearing strong in the second stage ne-

gotiation and thus decreasing the probability with which agreement can be reached
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and increasing the probability of agreement while thus decreasing their negotiator’s
bargaining power. Said another way, as a group’s negotiator becomes more extreme,
the better will be the agreement point z* when agreement is possible, but the lower
will be the probability that agreement is reachable at all.

To get a feel for equilibria in this model within the abovementioned class of dis-
tributions, I first consider the class of distributions represented by a ~ U[a. 1.5]. In
Figure 3.2, the reaction curves of A’s median voter a = 0.5 and B’s median voter b
= 2.5 for five values of a are plotted. Again, since we are looking for equilibria of a
normal form game between the two groups’ median voters, this is appropriate. Spe-
cifically, the five diagrams illustrate, in order, the reaction curves in the cases when a
is distributed on [1,1.5], [1.2,1.5], [1.25, 1.5], {1.3,1.5], and [1.4,1.5]. This enables us
to clearly see the changes which occur as we change the value of a.

The intersection of these two reaction curves determines the equilibrium negotiator
choices a;, and b;. Thus. we can see that within this class of distributions. there
is a unique equilibrium when o < 1.25. This holds for all @ > 0. Further, the
equilibrium values of @} and b} remain constant at the symmetric values a% = 0.25
and b; = 2.75. However, for @ € (1.25,1.5), there are. instead, a continuum of
equilibria when a € (1.25, 1.5).

More generally, we can characterize the equilibrium results as follows.

Theorem 3 Let @ € (1.2]. Then for all @ > 0 such that 2a < @ + 1. there is a

unique equilibrium in which a}, and b} are characterized by

a, = li—(a+1)/2

b, = 13+ (@+1)/2
with = = 1.5 when the realized value of o is greater than or equal to (b; —az)/2.

Thus, when ¢ is small enough relative to @, we have a result which is highly

different from that in the complete information case for & anywhere in the range [a. @)
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Recall that under complete information, when a € (1, 1.5). there are a continuum of
equilibria, always. Here, with incomplete information, the level of uncertainty adds,
intuitively, an increased awareness of the possibility that negotiators may be unable
to reach agreement, even when agreement is desired by a majority of group members.
It is worth noting that information regarding the expected value of a is insufficient
for a characterization of the equilibria in such a game of incomplete information.
Note also that in this case, the median voters in both groups would receive a strictly
higher expected payoff if both groups choose their median voter as their group's rep-
resentative than that which they are receiving in equilibrium. Choosing the median
voters as representatives increases the probability of reaching agreement while keep-
ing the equilibrium agreement point the same. This is not, however, sustainable in
equilibrium. The logic is that of the Prisoner’s Dilemma game. Consider the median
voter in A. If the members of B choose their median voter to be the group's represent-
ative, this median voter in A has a strict preference to deviate from this “cooperative”
outcome and choose a more extreme player as the representative for A. The decrease
in the probability of agreement is outweighed by the increase in payoff over the range
of a for which such agreement is possible. A look back to Figure 3.2 will confirm this.
Of course, there is a range of outcomes to which Theorem 3 does not apply. Rather.

we have the following.

Theorem 4 Let @ € (1.2]. Then for all a < @ such that 2a > & + 1. there are a
continuum of equilibria. These equilibria are an intermediate subset of the equilibria

found in the complete information case for o = o, characterized by b, —a> =2a.

In this case, o is nearer @. Thus, we are, in a sense. moving closer to the complete
information case. When a is “close” but not “very close™ to &, the set of equilibria
under incomplete information is a strict subset of those found in the complete in-
formation game in which o = a. Intuitively, players still ind the uncertainty to be
significant enough to make it worthwhile not to choose their most extreme players as

negotiators.



However, when a becomes “close enough” to &, the set of equilibria under incom-
plete information is equivalent to that under complete information. Returning again
to Figure 3.2, and turning our attention specifically to the fifth and final diagram. we
see that the equilibria of the game in which « is distributed uniformly on [1.4,1.5] are
exactly those in the complete information game in which a = 1.4. Here, the uncer-
tainty is less severe, and hence, there are equilibria in which one group does choose
their most extreme group member who could reach agreement with someone who is a
candidate for the role of negotiator in the opponent group.

Thus, coming back to our main goal. it should be clear that moving between a
collective bargaining game and its two-player representation is certainly possible. but
not trivial. To choose a representative player for a group demands extreme care.

There is no “intuitive” choice for a group representative in many such games.

3.7 Concluding Remarks

[n this work, I have highlighted the need for paying careful attention to the collective
nature of collective bargaining problems when using two-player bargaining models to
represent them. When the members of a group involved in a collective negotiation have
interests which vary along some dimension, the issue of determining which preferences
should “represent” the group when the game is formulated as a two-player game cannot
be decided based upon intuition alone. This problem arises both in games of complete
information and games of incomplete information. In most cases, groups would prefer
to be represented by someone with preferences more extreme than those of the member
with median preferences. How much more extreme is a function of the parameters.
rules, and informational constraints of the game being played.

Some comments are warranted. First, [ have restricted my attention here to a very
simple bargaining model. Yet, outcomes of bargaining models are highly dependent
upon the rules of the game. Thus, for bargaining games with different rules. the results

may differ significantly from those here. However, again. when attempting to model



real collective negotiations, it is important to explicitly consider the collective nature
of the situation in order to determine what the appropriate two-player representation
of the game should be.

Also, I have assumed that preferences of group members differ along only one
dimension. In reality, it is often the case that groups are negotiating along many
dimensions simultaneously, and members of the groups have varying preferences over
many of these dimensions. To study this. conceptually, we could discuss a model of
bargaining in which players are located at various points in a 2-dimensional space and
are negotiating to locate something in this space. It is unclear how this complexity
would affect the results offered here.

Finally, the results [ present here are static in the sense that players are choosing
voting rules and/or negotiators for a single negotiation. However, in practice. for a
variety of reasons, groups choose voting rules and/or negotiators only periodically,
with many negotiations taking place between these choices. Thus. additional con-
siderations such as developing reputations for future bargaining situations may arise.
Considering these issues in a dynamic framework would allow analysis of a richer ar-
ray of such problems which undoubtedly arise in true collective bargaining situations.

Such exercises are left to future research.
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