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Partial Implementation by Information Design

I Fix a game. What outcomes (joint distributions over action
profiles and states) can be induced by picking an information
structure and an equilibrium?

I Enough to offer players action recommendations that players
have an incentive to follow ("obedience constraints")

I The set of obedient outcomes corresponds to an (incomplete
information version of) correlated equilibria of the original
game; "Bayes correlated equilibria" or BCE)

I This is the many player generalization of "Bayesian
persuasion," much explored in recent years

I Will review shortly if you are not familiar with this stuff.



Question 1: Full Implementation

I What outcomes can be induced if you can pick the
information structure but not the equilibrium?

I We will give a complete characterization of full
implementation by information design for binary action
supermodular (BAS) games, closely analogous to that for
partial implementation.



Question 2: Smallest Equilibrium Implementation

I What outcomes can be induced if you can pick the information
structure and expect the smallest equilibrium to be played?

I Well posed in BAS games
I Easier question to pose and answer than full implementation
I Full implementation result then follows easily
I Smallest equilibrium implementation is more relevant for
applications



Main Result

Under a dominant state property, an outcome can be smallest
equilibrium implemented if and only if it satisfies not only
obedience but also sequential obedience

I "Sequential obedience" =
I designer recommends players to switch to high action
according to a randomly chosen sequence

I a player has a strict incentive to switch when told to do so
even if he thinks only players before him in the sequence have
switched (without knowing the true state or realized sequence)

I Implementible outcomes characterized by a finite linear
program

I Full implementation requires in addition a reverse sequential
obedience condition, where designer recommends switches
from high action to low action.



Two Applications in Paper

1. (will briefly summarize today) Information Design with
Adversarial Equilibrium Selection

I If the game is a convex potential game (meaning not too much
heterogeneity....) and the designer has monotonic and partially
convex preferences

I the optimal outcome satisfies the perfect coordination
property : the optimal policy always has either all players
choosing the high action or all players choosing the low action.

I the optimal outcome has all choosing the high action on the
highest probability event where the high action profile is
potential maximizing

2. (see paper) Adding Bonuses



Literature: Higher Order Beliefs Literature and The Main
Result

I Arguments in Rubinstein (1989) and Carlsson and van
Damme (1993) show that you can fully implement the risk
dominant equilibrium of a two player BAS game by choose of
information structure (and a small perturbation of payoffs)

I Kajii and Morris (1997) showed (among other things) that
you cannot fully implement the risk dominated equilibrium.

I literature on "robustness to incomplete information" follows
(in parallel with closely related global games literature)....

I Oyama and Takahashi (2020) characterize which equilibria
you can fully implement in general BAS games.

I Our main result extends those arguments and results beyond
complete information games.



Literature: Applications
1. Information Design with Adversarial Equilibrium Selection

I Inostroza and Pavan (2020) show you can restrict attention to
perfect coordination outcomes in regime change games

I Problem discussed in Mathevet, Perego and Taneva (2019),
who solve a two player two action example

I Li, Song and Zhou (2020) contemporaneously with us solve
regime change game problem

I Relative to these papers:
I We provide a result that unifies and generalizes known results,
with a simple characterization and intuition for optimal
outcome

I We show perfect coordination property holds even with
asymmetric payoffs

I MPT and LSZ implement with simpler information structures
tailored to examples; we provide canonical method that works
for all BAS games

2. Adding bonuses
I Winter (2004), Halac, Lipnowski and Rappoport (last week’s
seminar!)

I We illustrate applicability of our results by extending
incomplete information result of Moriya and Yamashita (2020)
showing minimum cost way of inducing all choose high action



Comment on Higher Order Beliefs and Rank Beliefs
I IP, MPT and others have emphasized the importance of
higher-order beliefs and expressed results in terms of the
universal type space.

I But they (like us) impose the common prior assumption and
the implications of the common prior assumption on higher
order beliefs are not very well understood / easy to state.

I We build on work in the "higher-order beliefs" literature
where belief operators (Monderer and Samet (1989)) have
been used to characterize relevant properties of higher order
beliefs (Kajii and Morris (1997)).

I Morris and Shin (2007) and Morris, Shin and Yildiz (2017)
defined generalized belief operators and highlighted the
importance of rank beliefs, and these generalizations play
central role in Oyama and Takahashi (2020).

I In this talk and paper, we do not express results in terms of
higher order beliefs (via belief operators or any other way)
although we could. It is a pedagogical choice.



Binary-Action Supermodular (BAS) Games

I I = {1, . . . , |I |}: the set of players.
I Θ: a finite set of states.
I µ ∈ ∆(Θ): a common prior.

I Without loss of generality, we assume µ(θ) > 0 for any θ.

I Ai = {0, 1}: the binary-action set for player i .
I A = {0, 1}I .

I ui : A×Θ→ R: player i’s payoff, supermodular so that

di (a−i , θ) = ui (1, a−i , θ)− ui (0, a−i , θ)

is increasing in a−i
I Dominant state assumption: there exists θ ∈ Θ such that
di (0−i , θ) > 0 for all i .



Information

I Ti : a countable set of signals for player i .
I T = ∏i∈I Ti .
I π ∈ ∆(T ×Θ): a common prior.
I Without loss of generality, we assume π({ti} × T−i ) > 0 for
any ti .

I Given T =(T ,π), the notion of Bayes Nash equilibrium
σ = (σi )i∈I , σi : Ti → ∆(Ai ), is defined as usual.

I Information structure T and strategy profile σ induce an
outcome:

ν(a, θ) = ∑
t

π(t, θ)∏
i∈I

σi (ti )(ai ).



Definition. Outcome ν is partially implementable if there exists
an information structure T and an equilibrium σ such that (T , σ)
induces ν.
Definition. Outcome ν satisfies consistency if

ν(A× {θ}) = µ(θ)

Definition. Outcome ν satisfies obedience if

∑
a−i∈A−i ,θ∈Θ

ν(ai , a−i , θ)(ui (ai , a−i , θ)− ui (a′i , a−i , θ)) ≥ 0

for any i ∈ I and ai , a′i ∈ Ai .
Proposition. Outcome ν is partially implementable if and only if
it satisfies consistency and obedience.

I Bergemann and Morris (2016) called the set of such outcomes
Bayes correlated equilibria.



Smallest Equilibrium Implementation and Full
Implementation

I Outcome ν is fully implementable if there exists an
information structure T such that (T , σ) induces ν for all
Bayes Nash equilibria of T .

I Because game is BAS, there is a smallest (pure strategy)
Bayes Nash equilibrium, σ

I Outcome ν is smallest equilibrium implementable if there
exists an information structure T such that (T , σ) induces ν.

I We will call the set of such outcomes "smallest equilibrium
implementable outcomes" SI .



Two Player Two State Example

Payoffs

g Invest Not
Invest 4, 5 1, 0
Not 0, 2 0, 0

b Invest Not
Invest −5,−4 −8, 0
Not 0,−7 0, 0

I Supermodular (payoff gain of 3 to investing if the other player
invests)

I Both players have dominant strategy to invest in good state
and not invest in bad state

I Asymmetric: Column player 2 gets higher payoff (+1) from
investing relative to row player 1



Partial Implementation

Payoffs

g Invest Not
Invest 4, 5 1, 0
Not 0, 2 0, 0

b Invest Not
Invest −5,−4 −8, 0
Not 0,−7 0, 0

I The following outcome is partially implementable (and is the
"best" partially implementable outcome)

g Invest Not
Invest 1

2 0
Not 0 0

b Invest Not
Invest 2

5 0
Not 1

10 0

I But there is a strict equilibrium of the direct implementation
where both players never invest

I Nothing close to this outcome is fully implementable



Full Implementation

Payoffs

g Invest Not
Invest 4, 5 1, 0
Not 0, 2 0, 0

b Invest Not
Invest −5,−4 −8, 0
Not 0,−7 0, 0

I The following outcome is fully implementable for every η > 0
(and the η → 0 limit is the supremum)

g Invest Not
Invest 1

2 0
Not 0 0

b Invest Not
Invest 1

4 − η 0
Not 0 1

4 + η

I Perfect Coordination Outcome is optimal in asymmetric game



Explanation 1: Risk Dominance

I Complete information game conditional on both being told to
invest (and η = 0)

Complete Information Payoffs

Invest Not
Invest 1, 2 −2, 0
Not 0,−1 0, 0

I "Invest, Invest" is (just) risk dominant (Harsanyi and Selten
(1988)), so we can fully implement it following the logic of
Rubinstein (1989) and Carlsson and van Damme (1993).

I Kajii and Morris (1997) show you cannot fully implement a
higher probability of investment in this way because the
(invest,invest) would not be risk dominant in the induced
complete information game



Explanation 2: Sequential Obedience

Consider an "ordered outcome" which is a probability distribution
over a state θ ∈ {g,b} and a sequence γ ∈ {{12} , {21} ,∅}

νγ {21} {12} ∅
g 1

3
1
6 0

b 1−δ
6

1−δ
12 −

1+δ
4

I this ordered outcome establishes sequential obedience:
I player 1 assigns probability 23 to player 2 having invested and
independent probability > 2

3 to the state being good
I player 2 assigns probability 13 to player 1 having invested and
independent probability > 2

3 to the state being good



Explanation 3: An Email Game Implementation

I Draw an integer m ∈ {0, 1, 2, ....} almost uniformly, i.e., with
probability η (1− η)m

I Draw (γ, θ) according to

νγ {21} {12} ∅
g 1

3
1
6 0

b 1
6

1
12

1
4

I Each player observes a signal ti ∈ {1, 2, 3, ....} ∪ {∞}; let

(t1, t2) =


(∞,∞) , if γ = ∅
(m+ 1,m+ 2) , if γ = {12}
{m+ 2,m+ 1} , if γ = {21}

unless m = 0 and θ =b, in which case (t1, t2) = (∞,∞)



Explanation 3: An Email Game Implementation

I If a player observes signal ti = 1, he knows the state is good
and has a dominant strategy to invest

I Knowing this, players observing ti = 2 will have an incentive
to invest (messy calculation, trust me)

I If player 1 observes signal t1 ≥ 3, he assigns probability
2
3−η >

2
3 to player 2 having a lower signal and independent

probability 2
3 to the state being good

I If player 2 observes signal t2 ≥ 3, she assigns probability
1

3−2η >
1
3 to player 1 having a lower signal and independent

probability > 2
3 to the state being good

I by induction, invest is only rationalizable action for ti 6= ∞



Explanation 3: An Email Game Implementation

Induced outcome is

g Invest Not
Invest 1

2 0
Not 0 0

b Invest Not
Invest 1

4 −
1
4η 0

Not 0 1
4 +

1
4η



Sequences

I We care about who eventually plays action 1 in the smallest
BNE, but the characterization is based on a hypothetical order
in which players change actions under an iterative procedure.

I Let Γ be the set of all finite sequences of distinct players; for
example, if I = {1, 2, 3}, then

Γ = {∅, 1, 2, 3, 12, 13, 21, 23, 31, 32, 123, 132, 213, 231, 312, 321}.

I An "ordered outcome" is distribution over sequences and
states νΓ ∈ ∆(Γ×Θ)



Sequences

I For γ ∈ Γ, ā(γ) denotes the action profile where player i
plays action 1 iff player i appears in γ;

I Each "ordered outcome" νΓ ∈ ∆(Γ×Θ) induces outcome
ν ∈ ∆(A×Θ) by forgetting the ordering, i.e.,

ν(a, θ) = ∑
γ∈Γ:ā(γ)=a

νΓ(γ, θ).

I Let Γi = {γ ∈ Γ | player i appears in γ}.
I For γ ∈ Γi , a−i (γ) denotes the action profile of player i’s
opponents where player j plays action 1 iff player j appears in
γ before player i .



Sequential Obedience

Definition. Ordered outcome νΓ satisfies sequential obedience if

∑
γ∈Γi ,θ∈Θ

νΓ(γ, θ)di (a−i (γ), θ) > 0

for all i such that Γi is non-empty. Ordered outcome νΓ satisfies
weak sequential obedience if we replaces inequalities with
equalities.

Definition. Outcome ν ∈ ∆(A×Θ) satisfies (weak) sequential
obedience if there exists ordered outcome νΓ ∈ ∆(Γ×Θ) that
induces ν and satisfies (weak) sequential obedience.

Definition. Outcome ν ∈ ∆(A×Θ) satisfies upper dominance if
ν
(
1, θ
)
> 0



Result

Theorem 1. If an outcome is smallest equilibrium implementable,
then it satisfies consistency, obedience and sequential obedience.
If an outcome satisfies consistency, obedience, sequential obedience
and upper dominance, then ν is smallest equilibrium
implementable.

Corollary 1. ν ∈ SI if and only if it is satisfies consistency,
obedience and weak sequential obedience.



Necessity of Sequential Obedience

I Suppose that ν is smallest equilibrium implementable
I Let T =(T ,π) be a consistent information structure whose
smallest equilibrium induces ν

I Starting from constant 0 strategies, iteratively apply myopic
best responses (say, round robin by player)

I This process will converge to the smallest equilibrium
I For each type ti ∈ Ti , if type ti changes from action 0 to
action 1 in the n-th step, we denote by ni (ti ) = n; if he never
changes, then we denote by ni (ti ) = ∞.

I Define

νΓ(γ, θ) = ∑
t : (ni (ti )) is ordered according to γ

π(t, θ)

I Because this process converges to smallest equilibrium, we
know that νΓ induces ν



Necessity of Sequential Obedience
I To show sequential obedience, note that for each ti ∈ Ti with
ni (ti ) < ∞, we have

∑
t−i ,θ

π((ti , t−i ) , θ)di (a−i (t), θ) > 0,

where a−i (t) is the action profile of player i’s opponents in
the myopic best response process when i switches; so player j
plays action 1 iff nj (tj ) < ni (ti ).

I By adding up these inequalities over all such ti , we have

∑
γ∈Γi ,θ

νΓ(γ, θ)di (a−i (γ), θ)

= ∑
ti : ni (ti )<∞

∑
t−i ,θ

π(t, θ)di (a−i (t), θ)

> 0

for any i ∈ I such that Γi 6= ∅.



Suffi ciency of Sequential Obedience and Upper Dominance

I We construct information structure 1 as follows
I Let νΓ be an ordered outcome establishing sequential
obedience

I Draw γ according to νΓ and draw integer m from Z+ with
almost uniform probability η (1− η)m

I Let the type of player i be given by

ti = t̃i (m,γ) =

{
m+ ranking of i in γ if γ ∈ Γi ,
∞ otherwise,



Inductive Step

CLAIM: Suppose that for some k ≥ |I |, we knew that all types
ti ≤ k choose action 1. Then types k + 1 of all players must
choose action 1.

I Consider type k + 1 of player i . He will know that all players
before him in the realized sequence γ are playing 1. As
η → 0, his belief over sequences will approximate the belief in
the sequential obedience condition and his payoff to action 1
will approach

∑
γ∈Γi ,θ∈Θ

νΓ(γ, θ)di (a−i (γ), θ) > 0

I Thus claim holds for suffi ciently small η



Perturb Payoffs

I Now construct information structure 2 by re-arranging payoffs
in information structure 1 so that types 1, ...., |I | have
dominant strategy to play action 1

I Possible because we assumed ν
(
1, θ
)
> 0 and we can choose

η suffi ciently close to 0 so that ν
(
1, θ
)
is much larger than

η
(
1+ (1− η) + ...+ (1− η)|I |−1

)
I Now inductive argument implies all types ti < ∞ choose
action 1



Simpler Constructions

I Mathevet, Perego and Taneva (2019) and Li, Song and Zhao
(2019) give alternative simpler constructions in examples

I In potential games (which we will now discuss) we can give a
generic global game construction that works (Frankel, Morris
and Pauzner (2003))



Applying Sequential Obedience

I I think the sequential obedience characterization is cute
I It gives rise to a finite linear program that has the flavor of
obedience

I But what is it good for?
I A fair amount of extra work is required to get concrete
characterizations

I Our paper derives progressively simpler characterizations of
sequential obedience: "coalitional obedience" and "grand
coalitional obedience" that hold under additional assumptions.
These should be useful in many contexts.

I Today, I will (maybe) mention these tools in words and report
the main application they imply



Potential Games

Definition. The game is a potential game if, for each θ, there
exists Φ : A×Θ→ R such that

di (a−i , θ) = Φ(1, a−i , θ)−Φ(0, a−i , θ).

Normalize Φ(0, θ) = 0 for all θ.



Investment Game

I Payoff to action 1 (investing) is θ + hn − ci where n is the
number of players investing where

I Assume hn is increasing in n
I Without loss of generality, c1 ≤ c2 ≤ ... ≤ c|I |

I Payoff to action 0 normalized to 0
I This game has potential:

Φ(a, θ) = n (a) .θ +
n(a)

∑
k=1

hk −∑
i∈I
aici

where
n (a) = # {i |ai = 1}

I Up to normalization, for fixed θ, this is general binary action
supermodular game at each state with anonymous interactive
component (making it a potential game).



Regime Change Game

I Payoff to action 1 (attacking) is....
I 1− ci if the number of players attacking is greater than
|I | − k (θ)

I ci if the number of players attacking is less than |I | − k (θ)
I This game has potential:

Φ(a, θ) =


n (a)− (|I | − k (θ))−∑

i∈I
aici , if n (a) > |I | − k (θ)

−∑
i∈I
aici , otherwise



Simplifying Sequential Obedience I

I An outcome satisfies coalitional obedience if there does not a
subset of players who could increase the potential by always
disobeying recommendations to play action 1

I More constraints than obedience but on outcomes not ordered
outcomes

PROPOSITION 3: In a potential game, an outcome satisfies
sequential obedience if and only if it satisfies coalitional obedience.

I intuition:
I existence of potential allows comparison across deviations
across players

I appeals to dual characterization of sequential obedience which
involves adding payoff gains to players along sequences



Simplifying Sequential Obedience II

I An outcome satisfies grand coalitional obedience if the grand
coalition of all players cannot increase the potential by always
disobeying recommendations to play action 1

I An outcome ν satisfies perfect coordination if

ν (a, θ) = 0

if a /∈ {0, 1}.
I The potential game is convex if

Φ (a, θ) ≤ n (a)
|I | Φ (1, θ)

for all θ.

PROPOSITION 4: In a convex potential game, a perfect
coordination outcome satisfies sequential obedience if and only if it
satisfies grand coalitional obedience.



Convexity
I The potential game is convex if

Φ (a, θ) ≤ n (a)
|I | Φ (1, θ)

for all θ.
I Because of supermodularity, this is automatically satisfied if Φ
is symmetric

I The game is convex if and only if the game is not too
asymmetric

I In investment game,

I convexity if l
|I |
∑
k=1

(hk − ck ) ≥ |I |
l

∑
k=1

(hk − ck )
I simple suffi cient condition: hk+1 − ck+1 ≥ hk − ck for all k

I In regime change game, convexity requires c1 = c2 = ... = c|I |
I Convexity ensures that the benefit of coalitional deviation is
bounded below by a constant times the benefit of a grand
coalitional deviation



(with adversarial equilibrium selection)

Now suppose an information designer seeks to maximize

V : A×Θ→ R.

I Normalize V (0, θ) = 0 for all θ

I Two assumptions on V :
I Monotonicity: V (a, θ) is increasing in a.
I Restricted convexity:

V (a, θ) ≤ n (a)
|I | V (1, θ)

whenever Φ (a, θ) > Φ (1, θ).



Restricted Convexity
I Restricted convexity:

V (a, θ) ≤ n (a)
|I | V (1, θ)

whenever Φ (a, θ) > Φ (1, θ).

I Restricted convexity is satisfied when V (a, θ) =
(
n(a)
|I |

)α
for

some α ≥ 1
I For α = 1, maximize the sum of probabilities that players
invest

I For α = ∞, maximize the probability that all players invest

I In regime change game,

V (a, θ) =
{
1, if n (a) > |I | − k (θ)
0, if n (a) ≤ |I | − k (θ)

satisfies restricted convexity (because n (a) ≤ |I | − k (θ)
whenever Φ (a, θ) > Φ (1, θ))



Information Design Problem

I Now consider the problem of an information designer choosing
an information structure to maximize his expected payoff in
the worst possible equilibrium.

I Equivalent to choosing v ∈ SI to maximize

∑
a,θ

ν(a, θ)V (a, θ).



Perfect Coordination Solution
I An outcome ν satisfies perfect coordination if

ν (a, θ) = 0

if a /∈ {0, 1}.

Theorem 2 If the information designer has monotone preferences
satisfying restricted convexity, and the game has a convex
potential, then the adversarial information design problem has an
optimal solution satisfying perfect coordination.

I Intuition: If ν (a′, θ) > 0 for a′ /∈ {0, 1}, we can replace with
probability α (a′, θ) ν (a′, θ) on 1 and probability
(1− α (a′, θ)) ν (a′, θ) on 0 such that coalitional obedience is
maintained and V is increased.

I Does not require symmetry (Inostroza and Pavan (2020),
Mathevet, Perego and Taneva (2019) and Li, Song and Zhou
(2020))

I Covers known BAS applications including regime change game
I Failure of suffi cient conditions leads to failure of perfect
coordination property.



Easy Characterization of Optimal Solution
I Given potential and perfect coordination property, optimal
solution is easy to characterize

I Choose 1 whenever Φ (1, θ) > 0 and include as many states
as possible with Φ (1, θ) < 0 subject to cost benefit analysis

I Order states so Φ(1,θ)
V (1,θ) is increasing in θ

I Ignoring integer issues (or assuming continuum of states), find
θ∗ solving

∑
θ≥θ∗

µ (θ)Φ (1, θ) = ∑
θ≥θ∗

µ (θ)Φ (0, θ) = 0

I Let

ν∗ (a, θ) =


µ (θ) , if a = 1 and θ ≥ θ∗

µ (θ) , if a = 0 and θ < θ∗

0, otherwise

I I.e., maximize the probability that high action profile is "ex
ante risk dominant" (ex ante potential maximizing)



Optimal Solution In Investment Game

I potential:

Φ(a, θ) = n (a) .θ +
n(a)

∑
k=1

hk −∑
i∈I
aici

I optimal cutoff solves:

E (θ|θ ≥ θ∗) =
1
|I |

(
∑
i∈I
ci −

|I |

∑
k=1

hk

)



Full Implementation

I We focussed on "smallest equilibrium implementation"
because it is easier to state than full implementation and it is
more relevant for applications

I But full implementation characterization turns out to be a
mechanical extension of smallest equilibrium implementation
result

I Sequential obedience requires tightened obedience conditions
when switching from 0 to 1

I Can define reverse sequential obedience condition (that would
characterize largest equilibrium implementation)

I Full implementation requires both SO and reverse SO



Summary

1. Sequential obedience characterization of smallest equilibrium
implementation and full implementation

I Explained wh
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