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Recap from Yesterday

◮ A new framework based on the allocation of tasks to factors.

◮ Automation — the expansion of the set of tasks that can be performed by machinery

and algorithms — is crucial for labor demand.

◮ A large fraction of the decline in the labor share, the slowdown in labor demand, stagnant

wages and surging inequality in the US are related to automation.



But Why So Much Automation?

◮ In this lecture, I will discuss why there appears to be an acceleration in automation.

◮ But, acceleration or no acceleration, automation has always been with us. If automation

reduces the labor share, how come the labor share has been broadly constant in many

modern economies for much of the 20th century?

◮ Could it be because of composition effects? Baumol’s cost disease? Factor-augmenting

technological changes?

◮ The answer to all of these questions is no. Both theoretically and empirically, these

factors could not have—and have not—counterbalanced the effects of automation.

◮ Something else is necessary: the introduction of new (labor-intensive) tasks.

◮ We will see that the introduction of new tasks has played an important role in the

decades that followed World War II (and before) but has slowed down significantly over

the last 30 years.

◮ We will then discuss good and bad reasons for an acceleration in automation — bad

automation may be increasing inequality and failing to help productivity, while good

automation may be having a transformative effect on many economies.



Recap: Task-Based Framework

Y =

(∫
N

N−1

Y(z)
σ−1
σ dz

) σ
σ−1

Output Task services

Elast of substitution

Y(z) =

{
ALγL(z)ℓ(z) + AKγK (z)k(z) if z ∈ [N − 1, I ]

ALγL(z)ℓ(z) if z ∈ (I ,N].

New tasks

Feasible to automate

◮ The labor share is given by

sL =
Γ(N, I )(W /AL)1−σ

(1− Γ(N, I ))(R/AK )1−σ + Γ(N, I )(W /AL)1−σ

Task content Γ =
∫
N

I
γL(z)σ−1dz

∫
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∫
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γL(z)σ−1dz

Task-price subs.



Allocation of Tasks to Factors



Labor-Augmenting Technological Change



Capital-Augmenting Technological Change



Automation



New Tasks: N shifts to N ′



New Tasks and Labor Demand

◮ The effects of creation of new tasks in which labor has a competitive advantage—an

expansion in N—can be determined similarly to our analysis of automation:

∂ lnWLd(L,K ; θ)

∂N
=
∂ lnY (L,K ; θ)

∂N
(Productivity effect)

+
1

σ

1− sL

1− Γ(N, I )

∂ ln Γ(N, I )

∂N
(Reinstatement effect)

◮ The productivity effect is now given by

∂ lnY (L,K ; θ)

∂N
=

1

σ − 1

[(
W

ALγL(N)

)1−σ
−

(
R

AKγK (N − 1)

)1−σ]
> 0.

◮ The reinstatement effect is always positive, increasing the labor share.



Multi-Sector Economy: Decomposition
◮ Has the reinstatement effect been important in the US economy? To answer this

question, we need to turn to a multi-sector economy.
◮ We index sectors by subscript i and let I represent the set of industries.

◮ Factor prices are denoted by Wi and Ri . χi denotes share of sector i in value added and

sL
i
its labor share.

◮ Then, we have the following exact decomposition of changes in labor demand:

d ln(WL) =d lnY (Productivity effect)

+
∑

i∈I

(
sL
i

sL
− 1

)
dχi (Composition effect)

+
∑

i∈I

ℓi (1− σ)(1 − s
L
i )d ln

(
Wi/A

L
i

Ri/A
K
i

)
(Subs across tasks)

+
∑

i∈I

ℓi
1− sL

i

1− Γi
d ln Γi (Change task content)



Multi-Sector Economy: Summary

Overall change in labor demand = Productivity effect

+ Composition effect

+ Substitution effects

+ Change in task content

◮ We directly observe all the terms here except the change in task content and substitution

effects—where the latter are due to substitution between tasks because of changes in

factor prices (which are observed) and factor-augmenting technologies (which are not

observed).
◮ Strategy: under plausible lower and upper bound assumptions on the extent of

factor-augmenting technological change, we can obtain lower and upper bounds on

changes in task content.
◮ In practice, very similar results regardless of the range of assumptions — because the

plausible range of the elasticity of substitution between tasks is quite close to 1,

approximately 0.7-0.8.



Broad Patterns, 1947-1987
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Figure: The labor share and sectoral evolutions, 1947-1987.



Decomposing Labor Demand, 1947-1987
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Figure: Sources of changes in labor demand, 1947-1987.



Displacement and Reinstatement, 1947-1987

◮ Change in task content=displacement + reinstatement.

◮ Requires two additional assumptions:

1. no technological regress

2. at a point in time, an industry either automates or creates new tasks
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Figure: Estimates of the displacement and reinstatement effects, 1947-1987.



Broad Patterns, 1987-2017
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Figure: The labor share and sectoral evolutions, 1987-2017.



Decomposing Labor Demand, 1987-2017
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Figure: Sources of changes in labor demand, 1987-2017.



Displacement and Reinstatement, 1987-2017
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Figure: Estimates of the displacement and reinstatement effects, 1987-2017.

◮ Very different than during 1947-1987.

◮ Much faster displacement and much slower reinstatement.

◮ Changes in tasks content correlated with measures of automation and new tasks —

consistent with theory.



Recap: Automation and Changes in Task Content
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New Tasks and Changes in Task Content
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Labor Demand In the Age of Agricultural Mechanization, 1850-1910
◮ Composition effects have been important during other episodes:
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Endogenous Automation

◮ Why the slowdown in reinstatement and the acceleration in automation?

◮ This is, in essence, a question about endogenous automation — and what other

technologies we can develop with our know-how.

◮ General framework developed in Acemoglu and Restrepo (AER, 2018).

◮ I will return to some of the implications of the theory later.

◮ But for now we can recap the main factors affecting the direction of technological

change.



Direction of Technological Change between Automation and New Tasks

◮ Let us summarize the main outlines of a theory of equilibrium direction of technological

change.

◮ Suppose that changes in the automation margin, I , and new tasks, N, are given by:

İ = ηISI

Ṅ = ηNSN

◮ Here, SI and SN denote the number of scientists working on automation and new tasks.

◮ Let the expectations of researchers/firms regarding the productivity of the two

innovation technologies be denoted by EηI and EηN .

◮ Let government taxes/subsidies on technologies be denoted by τI and τN .



Equilibrium Directed Technological Change

◮ Finally, denote the net present discounted value of (pre-tax) profits from the two

technologies by πI and πN , and suppose that these are known.

◮ Then, the equilibrium condition is:

EηI · (1+ τI ) · πI = EηN · (1+ τN) · πN

◮ So research can be directed towards different technologies because of differences in

profitabilities, differences in policies (taxes/subsidies) and differences in

expectations/visions.

◮ Acemoglu and Restrepo (2018) show that differences in profitabilities is an equilibriating

force: the more automation there is, the lower is the labor share, and investing in new

tasks is more profitable than automation.

◮ This will generally (but not always) lead to an interior BGP (not just automation in the

long run).

◮ But not necessarily efficient.



Reasons for Inefficiencies: Excessive Automation

◮ Even if the market generates economic forces that push towards an interior BGP, there is

no reason to expect that the composition of innovations will be efficient in the

decentralized equilibrium.

◮ There are various reasons for this:

1. Different types of innovations may create different amounts of spillovers to other

technologies — creation of new tasks may involve more “blue sky” thinking, generating

more external effects but by the same token, weaker private incentives.

2. Labor market imperfections may fuel excessive automation.

3. Policies favoring automation/capital instead of labor.

4. The vision or beliefs of leading companies/researchers may favor automation instead of new

tasks.



Labor Market Imperfections

◮ Labor market imperfections typically create a wedge between the equilibrium wage and

the (social) opportunity cost of labor (e.g., bargaining, efficiency wages or nonpecuniary

mobility costs).

◮ The social planner would like to decide employment based on labor’s opportunity cost,

while the market will use labor according to the wage.

◮ The same decoupling between the efficient allocation and the market’s choices are

transmitted to innovation decisions.

◮ Put differently, in the presence of labor market imperfections, there will typically be

excessive automation.

◮ An additional consideration: if employed individuals or individuals in “good jobs” are

better citizens and contribute more to their communities/families/polities, then this will

be ignored by the market as well. Hence another reason for excessive automation.



Policies
◮ Policies can correct for biases towards automation resulting from innovation dynamics or

market distortions — e.g., via targeted research subsidies or taxes on automation.
◮ But the opposite has been the case in most advanced economies, especially the US and

especially lately: low capital taxes encourage excessive automation.
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Visions

◮ Views and values of leading companies and researchers are important for the direction of

technology (even if typically ignored in economics).

◮ In this simple framework, these can be captured by means of EηI and EηN (potentially

incorrect views about the prospects for different technologies).

◮ Suppose, for example, that researchers overestimate EηI , which could be because they

are overoptimistic about automation or because they view automation as more “cool”.

◮ Alternatively, if companies that are at the forefront of new technologies, such as AI, have

a business model that is based on automation, then their research will also reflect this

focus.

◮ Worse, all of these incentives will be transmitted to universities and students wishing to

get jobs as researchers, engineers or managers in these companies.

◮ Though we do not, at the moment, know how to quantify these mechanisms, in principle

they can be powerful forces towards excessive automation.



Double Whammy: So-so Automation
◮ Recall that — via productivity effect — automation may generate benefits for labor.
◮ However, when policies or distorted visions encourage excessive automation, we end up

with so-so automation technologies — hence plenty of labor displacement, but not much

productivity gains (impact on TFP may even be negative).



The Demographic Challenge: Rapid Aging of the World Population
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Aging Could Restrict Economic Activity:

1. Demand side/ output gap (Alvin Hansen):

Excess of savings over desired investment could lead to shortfall in aggregate

demand.

2. Supply side/ potential GDP (Robert Gordon):

People drop out of the labor force or their productivity peaks.

Aging creates a shortage of the manual labor provided by middle-age workers

employed in industry jobs.



Aging and Change in GDP per Capita
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Why?
◮ Because of “good automation”: automation responding to the shortages of certain skills

created by demographic change.
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Cross-Country Differences

Big differences in the speed in which new automation technologies are being adopted

and developed:

◮ Number of industrial robots per thousand workers in US industries was 9.1 in 2014,

◮ Number is 14.2 in Japan, 16.9 in Germany and 20.1 in South Korea.

◮ The United States lags behind in the production of robots relative to Germany and

Japan, which have each six of the major producers of industrial robots, while the United

States has only one.

◮ What is the relationship between demographic change in the direction of technological

change?

◮ Can there be good automation in this context?



A Model of Automation
◮ Let us present some more modeling details to clarify what we mean by good automation.
◮ Households consume varieties in I:

Y =

(
∑

i∈I

Y (i)
σ−1
σ

) σ
σ−1

with σ > 1.

◮ Firm producing i faces elastic demand Y (i) = YP(i)−σ and earns a constant markup

σ/(σ − 1) > 0.
◮ Output requires production tasks (X ) and support/service tasks (S):

Y (i) = X (i)α(i)S(i)1−α(i).

◮ α(i) =importance of production inputs relative to support inputs.
◮ Production tasks, X (i), comprise a unit measure of tasks

lnX (i) =

∫
1

0

lnX (i , z)dz .

performed by middle-aged workers or machines.



A Model of Automation (continued)
◮ Key assumption: Middle-aged workers specialize in production tasks; older workers in

support tasks.
◮ Support tasks completed by older workers, S(i).
◮ Production tasks produced either by middle-aged workers, ℓ, or machines, m:

X (i , z) =

{
ℓ(i , z) +m(i , z) if z ∈ [0, θ(i)]

ℓ(i , z) if z ∈ (θ(i), 1],

◮ Firms may use machines in tasks below θ(i) at a cost of PM (adoption) or invest in
increasing θ(i) (develop new automation technologies).



Demographic Changes and Factor Prices
◮ Machines: fixed rental price PM . Middle-aged workers: supply L and wage W . Older

workers: supply S and wage V .
◮ Let φ = S

S+L measure aging and Θ = {θ(i)}i∈I technology.

Proposition

Given φ and Θ, unique equilibrium wages W E (φ,Θ) and V E (φ,Θ). Aging—move to

φ′ > φ—raises W E (φ,Θ) and lowers V E (φ,Θ).

Figure: Equilibrium determination. C (W ,V ,PM) = 1 is an iso-cost curve.



Adoption of Automation Technologies

Proposition

Adoption decisions are summarized by an automation threshold, θA(i), which satisfies:

θA(i) =

{
θ(i) if W E (φ,Θ) > PM
0 if W E (φ,Θ) ≤ PM ,

For φ ≤ φ̃ (or W E (φ,Θ) ≤ PM) we have θ
A(i) = 0 and firms wont adopt existing automation

technologies.

For φ > φ̃ (or W E (φ,Θ) > PM) we have θ
A(i) = θ and firms will adopt existing automation

technologies.

◮ Aging increases the middle-aged wage, W , and encourages the adoption of automation

technologies.

◮ Aging is one of the many factors that affect wages, W .



Equilibrium with Endogenous Technology

◮ We now endogenize the development of automation technologies using an approach

similar to that in Acemoglu (2007, 2010).

◮ Developing an automation technology θ(i) costs the firm 1−η
2−η
PY (i)Y (i) · Ci(θ(i)) units

of the final good, where

Ci(θ(i)) = 1− (1− H(θ(i)))
1

ρ(i) .

◮ Here: ρ(i) is a measure of “opportunities for automation” in industry i — the elasticity

of the cost function.

◮ H is an increasing and convex function that satisfies H ′(0) = 0, limx→1H(x) = 1, and

h(x) ≥ 1/(1 − x), where h(x) = H ′(x)/(1 − H(x)).



Endogenous Technology

◮ The objective of the technology monopolist to industry i is to maximize

max
θ(i)∈[0,1]

πM(i) =(1− σ) lnP(i) +
1

ρ(i)
ln (1−H(θ(i)))

where the (log) price/cost of industry i ’s good is

lnP(i) = α(i)θA(i) lnPM + α(i)(1 − θA(i)) lnW + (1− α(i)) lnV

Lemma:
For all i ∈ I, the profit function πM(i) is supermodular in θ(i) and W . Moreover, firms invest

in automation only if π(i) > 0. Thus, θA(i) = θ(i).

◮ Let θR
i
(W ) denote the technology choice of the monopolist when the middle-aged wage

is W .

◮ Supermodularity ensures that θR
i
(W ) is increasing in W .



Equilibrium with Endogenous Technology

◮ Let ΘR(W ) = {θR
i
(W )}i∈I . An equilibrium with endogenous technology is a fixed point

of the mapping:

W =W E (φ,ΘR(W )).

Proposition

For any φ > 0 there exists an equilibrium with endogenous technology. For each fixed point

W ∗ there is a uniquely defined set of technology choices given by Θ∗ = ΘR(W ∗).



Unique Equilibrium with Endogenous Technology
◮ Suppose that automation reduces the middle-age wage, W .
◮ That is: W E (φ; ΘR(W )) is nonincreasing and automation decisions are strategic
substitutes, which ensures that the equilibrium is unique.

Figure: Impact of aging on the wage of middle-aged workers when the equilibrium with endogenous

technology is unique. Aging shifts the mapping W E up, and this increases the equilibrium wage in the

unique equilibrium.

◮ This is good automation because additional automation is always associated with higher

wages — this also implies that automation is always sufficiently high productivity.



Multiple Equilibrium with Endogenous Technology
◮ But in general, the productivity effect could make the mapping W E (φ; ΘR(W )) upward

slopping, introducing multiplicities.
◮ Similar comparative statics in the least and greatest equilibria.

Figure: Determination of the wage of middle-aged workers in the equilibrium with endogenous

technology. Aging shifts the mapping W E up, and this increases the equilibrium wage in the least and

the greatest equilibrium.



Comparative Statics of Automation Technology

Proposition

1. In the least and in the greatest equilibrium, aging ()an increase in φ):
◮ increases the equilibrium wage W ∗;
◮ increases automation technologies {θ(i)∗}i∈I+(φ,Θ∗);
◮ expands the set of industries that adopt automation technologies I+(φ,Θ∗).

2. The impact of aging on θ(i)∗ is more pronounced in:
◮ industries that rely more heavily on middle-aged workers (i.e., those with high α(i));
◮ industries that present greater opportunities for automation (i.e., those with high ρ(i)).

3. In the least and the greatest equilibrium, equilibrium output in industry i , Y ∗(i), exhibits

increasing differences between φ and ρ(i).

◮ Cross-industry, cross-country predictions — both on the direction of innovation and

productivity effects — that can be tested.



Data on Robotics Development and Adoption

◮ International Federation of Robotics (IFR) data:

◮ Compiled by surveying global robot suppliers.
◮ 52 countries from 1993 to 2014.
◮ Available separately for 19 industries.

◮ Comtrade data on imports and exports of automation technologies:

◮ Dollar value from 1990 to 2015 for different types of machinery, including industrial robots.

◮ Data from the USPTO on robotics-related patents assigned to each country.
◮ Patents referenced by USPTO class 901 (“Robots”).
◮ Additional measures based on keywords in abstracts.

◮ Data on the number of robot integrators in each US commuting zone from Leigh and

Kraft (2017)



Age and Industry Employment
◮ Middle-aged workers specialize in industries with the greatest opportunities for the use of

robots (car manufacturing, electronics, metals, and plastic and chemicals).
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Age and Occupation Employment
◮ Middle-aged workers specialize in tasks that are more prone to industrial automation

(machinist, craft production, material handling) than in service and white-collar jobs.
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Estimating the Substitution Between Robots and Workers Directly

◮ We now estimate the impact of exposure to industrial robots on workers of different ages.

◮ Exposure to robots measure across commuting zones, z :

Exposure to robots

from 1993 to 2007z
=
∑

i∈I

ℓ1970zi APR i .

◮ For 10-year age bins, a, we estimate the impact of robots on the change in employment

rates and the log of wages from 1990 to 2007:

∆Lz ,a =β
L
a

Exposure to robots

from 1993 to 2007z
+ ǫLz ,a

∆ lnWz ,a =β
W
z ,a

Exposure to robots

from 1993 to 2007z
+ ǫWz ,a.

◮ Unweighted regressions, and standard errors robust against correlation within US states.



Robots Substitute for Middle-Aged Workers
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Figure: Estimated impact of one additional robot per thousand workers on employment (in p.p.) and

wages (in log points).



The Effects of Aging on the Adoption of Robots

◮ We start with the regression equation

∆
Rc
Lc

= βm∆ lnPop21−55c + βo∆ lnPop≥56c + ΓXc ,1990 + εc ,

◮ ∆Rc
Lc
is the (annualized) change in the stock of robots per thousand workers between

1993 and 2014 in country c.

◮ The right-hand side variables are the changes between 1990 and 2025 in the log

population of three age groups:

1. between the ages of 21-55, Pop21−55c ;

2. above the age of 56, Pop≥56c .

◮ Robots depreciate in 10-15 years, so current adoption decisions should take into account

population trends at least until 2025.

◮ Unweighted estimates and robust standard errors.



The Effects of Aging on the Adoption of Robots
◮ Adoption of robots negatively affected by the population of 21-55-year-olds; positively

affected by older population.

Table: OLS estimates of the impact of population change.

Dependent variable: Change in the

stock of industrial robots per thousand workers (annualized)

Full sample OECD sample

(1) (2) (3) (4)

Change in the log of population -0.451 -0.510 -0.538 -0.971

aged 20-55 years (0.148) (0.286) (0.292) (0.477)

Change in the log of population 0.366 0.368 0.307 0.312

≥ 56 years (0.190) (0.203) (0.202) (0.368)

Robots per thousand workers in 1993 0.080 0.058

(0.014) (0.030)

Observations 52 52 52 30

R-squared 0.47 0.59 0.71 0.72

Covariates included:

Country covariates X X X

◮ Country covariates: log GDP per capita, log population, average schooling, initial

demographic structure, and log value added in manufacturing.



The Effects of Aging on the Adoption of Robots

◮ The previous exercise underscores the importance of aging, as opposed to changes in the

population.

◮ We explore the role of aging in a more parsimonious specification:

∆
Rc
Lc

= βAgingc + ΓXc ,1990 + εc ,

◮ Agingc is the change between 1990 and 2025 in the ratio of “older” workers (above 56

years of age) to middle-aged workers (those between 21 and 55).

◮ We present unweighted estimates and robust standard errors.



The Effects of Aging on the Adoption of Robots

Table: OLS estimates of the impact of aging on the adoption of robots.

Dependent variable: Change in the stock

of industrial robots per thousand workers (annualized)

Full sample
OECD

sample

(1) (2) (3) (4)

Aging between 1990 and 2025 0.769 0.712 0.567 0.711

(0.252) (0.237) (0.241) (0.311)

log of GDP per capita in 1993 0.032 -0.005 -0.112

(0.030) (0.050) (0.081)

Robots per thousand workers in 1993 0.077 0.065

(0.013) (0.026)

Observations 52 52 52 30

R-squared 0.47 0.59 0.70 0.64

Covariates included:

Country covariates X X X

◮ Adoption of robots strongly associated with aging.

◮ Country covariates: (1990) log GDP per capita, log population, average schooling, initial

demographic structure, and log value added in manufacturing.



The Effects of Aging on the Adoption of Robots

BELGIUM

CHILE

CHINA P.REP.

CHINA,HONG KONG S.A.R.

DENMARK

EGYPT

FINLAND

GERMANY

MOLDOVA, REPUBLIC OF

PAKISTAN
POLAND

SINGAPORE

SOUTH KOREA

SWEDEN

UNITED STATES

0
.2

.4
.6

.8
In

cr
ea

se
 in

 r
ob

ot
s 

be
tw

ee
n 

19
93

 a
nd

 2
01

4

0 .2 .4 .6
Aging between 1990 and 2025

Full sample

BELGIUM

CHILE

DENMARK

ESTONIA

FINLAND

GERMANY

ISRAEL

ITALY

NEW ZEALAND

POLAND

SOUTH KOREA

SWEDEN

TURKEY

UNITED KINGDOM

UNITED STATES

0
.2

.4
.6

.8
In

cr
ea

se
 in

 r
ob

ot
s 

be
tw

ee
n 

19
93

 a
nd

 2
01

4

.1 .2 .3 .4 .5
Aging between 1990 and 2025

OECD countries

Figure: Relationship between aging (change in the ratio of workers above 56 to workers aged 21-55 between

1990 and 2025) and the increase in the number of industrial robots per thousand workers between 1993 and

2014. The plots partial out country covariates.

◮ About 50% of cross-country variation in robot adoption due to demographic factors.
◮ 20 p.p. increase in aging (difference between Germany and the US) leads to three more

robots per thousand workers by 2007, closing more than 30% of the Germany-US gap.



The Effects of Aging on the Adoption of Robots: IV
◮ IV estimates using the average birth rates over five-year intervals from 1950-1954 to

1980-1984 as instruments. The results are very similar:

Table: IV estimates of the impact of aging on the adoption of industrial robots.

Dependent variable: Change in the stock of

industrial robots per thousand workers (annualized)

Full sample
OECD

sample

(1) (2) (3) (4)

Aging between 1990 and 2025 0.874 0.767 0.714 0.901

(0.263) (0.241) (0.251) (0.323)

Observations 52 52 52 30

First-stage F stat. 25.2 17.8 15.2 8.7

Overid p− value 0.67 0.66 0.09 0.10

Anderson-Rubin Wald test p− value 0.02 0.03 0.00 0.00

Covariates included:

Country covariates X X X

Robot density in 1993 X X



Stacked Differences
◮ Split our sample from 1993 to 2015 into roughly two decades, 1993-2005 and

2005-2015, and estimate stacked differences models.
◮ Control for country effects; does robot adoption happen during time of rapid aging?

Table: Stacked-differences estimates of aging on adoption of robots.

Dependent variable: Change in the stock of

industrial robots per thousand workers (annualized)

Full sample OECD

(1) (2) (3) (4)

Panel A. OLS estimates

Contemporary aging 0.843 0.552 0.448 0.583

(0.291) (0.207) (0.206) (0.323)

Observations 104 104 104 60

R-squared 0.28 0.49 0.13 0.13

Panel B. IV estimates

Contemporary aging 1.157 0.831 0.797 1.122

(0.401) (0.294) (0.473) (0.647)

Observations 104 104 104 60

First-stage F stat. 10.4 6.1 4.1 4.2

Overid p− value 0.50 0.07 0.49 0.47

Anderson-Rubin Wald test p− value 0.02 0.00 0.14 0.00

Covariates included:

Country covariates X X X

Country trends X X



The Effects of Aging on Imports of Industrial Robots
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Figure: Relationship between aging (change in the ratio of workers above 56 to workers aged 21-55 between

1995 and 2025) and the log of imports of industrial robots between 1996 and 2015 (relative to total imports of

intermediates).

◮ OLS estimates for full sample 1.8 (se=0.77) and OECD sample 2.2 (se=0.72).
◮ Quantitative importance: a 20 p.p. increase in aging leads to a 44% increase in robot

imports (a third of the Germany-US gap).



The Effects of Aging on Imports of Other Automation Technologies
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Figure: Estimates of the relationship between aging and the log of imports of intermediate goods 1990-2015

(normalized by the total intermediate imports).



Innovation: The Effects of Aging on Exports of Robots
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Figure: Relationship between aging (change in the ratio of workers above 56 to workers aged 21-55 between

1990 and 2025) and the log of exports of industrial robots between 1996 and 2015 (relative to total exports of

intermediates).

◮ OLS estimates for full sample 4.7 (se=0.98) and OECD sample 4.1 (se=1.2).
◮ Quantitative importance: a 20 p.p. increase in aging leads to a 82% increase in robot

exports (roughly the Germany-US gap).



Innovation: The Effects of Aging on Other Automation Technologies
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Innovation: The Effects of Aging on Robotics Patents
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Figure: Relationship between aging (change in the ratio of workers above 56 to workers aged 21-55 between

1990 and 2025) and the log of automation patents granted to a country between 1990 and 2016 (relative to

total patents at the USPTO). Marker size indicates total patents.

◮ OLS estimates for full sample 1.4 (se=0.44) and OECD sample 1.6 (se=0.55).
◮ Quantitative importance: a 20 p.p. increase in aging leads to a 32% increase in robotics

patents (half of the Germany-US gap).



Innovation: The Effects of Aging on Patents
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The Effects of Aging on Robots in the United States

◮ We now estimate the relationship between aging and robot-related activities across US

commuting zones.

◮ We use Leigh and Kraft’s (2017) data on the location of robot integrators as a proxy of

robots-related activity.

◮ We estimate:

Integratorsz = βAgingz + ΓXz ,1990 + υz

across 722 US commuting zones, z . Here Integratorsz is a dummy variable for the

presence of integrators.

◮ We measure aging between 1990 and 2015 using the NBER-SEER data, and instrument

for it using past birthrates from 1950 to 1985.

◮ Control for the exposure to robots, Census division, demographic characteristics, industry

shares, and trade shocks.



The Effects of Aging on Robots in the United States
◮ Focus on IV (given importance of migration within US) — similar results to cross-country.

Table: IV Estimates of the impact of aging on location of integrators in the US.

Dependent variable: Dummy for

presence of robot integrator

(1) (2) (3) (4)

Aging between 1990 and 2015 1.338 0.642 0.530 0.879

(0.581) (0.224) (0.218) (0.240)

Exposure to robots 0.042 0.042

(0.021) (0.020)

Observations 722 722 722 722

First-stage F stat. 4.2 21.5 20.0 22.9

Overid p− value 0.00 0.52 0.19 0.65

Regional dummies X X X X

Baseline covariates X X X

Industry composition X X

Additional covariates X

◮ Baseline covariates: (1990) log income per capita, log population, education and

demographic structure. Additional covariates: (1990) shares of population by race,

gender, living in urban areas, and employed in routine jobs, as well as exposure to Chinese

imports.
◮ So why isn’t this “good automation”? What is the difference from Germany?



Industry-Level Effects of Aging

◮ To explore the industry implications, we estimate

IRi,c ,t
Li,c ,1990

=βAgingc + βR Agingc × Reliance on Middle-Aged Workersi

+ βPAgingc ×Opportunities for Automationi

+ Γi,tXc ,1990 + αi + δt + εi,c ,t ,

◮ Opportunities for automation:
◮ “replaceability” index constructed by Graetz and Michaels (2018).
◮ Dummy variable for automobiles, electronics, metal products, metal machinery, and

chemicals, plastics and pharmaceuticals (BCG, 2015).

◮ We proxy the reliance on middle-aged workers using the age composition of employees in

an industry in the 1990 U.S. Census.

◮ Standard errors robust against heteroscedasticity and correlation at the country level.



Industry-Level Effects of Aging
◮ More pronounced effects for industries with greater opportunities for automation and

greater reliance on middle-aged workers.
◮ Main effect: 95th percentile of reliance on middle-aged workers and 95th percentile

opportunities for automation.

Table: IV estimates of the impact of aging by industry.

Potential for the use of robots

Replaceability index BCG measure

(1) (2) (3) (4) (5)

Dep. variable: Installation of robots in country-industry-year cells

Aging between 1990 and 2025 1.430 3.780 2.992 6.585 5.246

(0.477) (1.254) (1.025) (2.175) (1.768)

Aging × reliance on middle-aged 0.958 0.682 0.327 0.193

(0.318) (0.247) (0.112) (0.094)

Aging × opportunities for automation 4.919 4.597 5.902 4.835

(2.228) (1.883) (1.986) (1.594)

Observations 10,602 10,602 10,602 10,602 10,602

Countries in sample 50 50 50 50 50

Country covariates, industry and year fixed

effects
X X X X X

Robot density in 1993 X X



Implications for Industries: Labor Productivity

◮ More positive productivity effect for industries with greater opportunities for automation.

◮ Main effect: 5th percentile of reliance on middle-aged workers and 95th percentile

opportunities for automation.

Table: IV estimates of the impact of aging on labor productivity by industry.

Potential for the use of robots

Replaceability index BCG measure

(1) (2) (3) (4) (5)

Dependent variable: Change in log labor productivity 1995-2007

Aging between 1995 and 2025 -1.707 1.432 1.768 1.138 1.534

(0.595) (1.149) (0.978) (1.224) (1.059)

Aging × reliance on middle-aged -0.566 -0.645 -0.538 -0.622

(0.258) (0.239) (0.263) (0.246)

Aging × opportunities for automation 4.782 5.119 1.450 1.617

(1.334) (1.459) (0.430) (0.419)

Observations 399 399 399 399 399

Countries in sample 21 21 21 21 21

Country covariates and industry fixed

effects
X X X X X

Initial value added in 1995 X X



Conclusion: Implications for the Future of Work

◮ We have seen the two faces of automation.

◮ Good automation — high-productivity automation technology developed because of skill

shortages — is a potent force combating the potential negative effects of demographic

change already affecting many countries around the world.

◮ But bad or so-so automation reduces employment growth and worsens the distribution of

income — esp. when there is excessive automation due to policy or vision distortions.

◮ The problem is even worse when automation is not counterbalanced by new tasks.

◮ If the future is one of ceaseless automation and nothing else, then the future of work will

not be bright. There would be lower and lower labor share across industries and in

national income. And there would be no guarantee of sufficient job growth.

◮ Improving labor market institutions, by itself, cannot be the solution — if we push wages

up, this will cause more automation, unless technology becomes more “human-friendly”.

◮ But good automation, particularly when combined with rapid creation of new tasks for

workers, can be powerful engine of growth and prosperity.

◮ Which future will it be?
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