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Abstract

The first chapter of my thesis is the first attempt in the game theory literature to study

the impact of reputation in a game with an arbitrary number of non- myopic players,

not just two. I consider a reputation game with perfect monitoring and multiple

long-lived opponents indexed 1, 2, · · · , n. Player 0, who attempts to build reputation,

could be either the normal type (maximizing the discounted sum of payoffs) or one of

many commitment types. For a single opponent (n = 1) the previous literature finds

that, when all players are arbitrarily patient and 0 is patient relative to others, in

any equilibrium player 0 gets arbitrarily close to g∗∗0 , the maximum feasible payoff for

0 subject to giving player 1 at least her minmax. In other words, 0 can appropriate

‘everything’. For n > 1, in stark contrast, I find that player 0’s minimum equilibrium

payoff is typically strictly below g∗∗0 and could be as low as his minmax value.

My first chapter makes two important simplifying assumptions: (i) the type space

that 0 can mimic contains only pure strategy types, and (ii) an announcement stage

is available before the dynamic game is played. In the second chapter I show that

the announcement stage is without loss of generality; although different strategies

are called for, the same bound works when player 0 does not have an opportunity

to signal his type. This chapter also shows that the qualitative result proved in the

first chapter is robust to a very large set of types I extend the result to include types

that, in addition to playing arbitrarily complex history-dependant actions, may be

committed to mixing. I state and prove a new upper bound on vmin 0 that works

even in the presence of types that mix.

My third chapter, co-authored with Vinayak Tripathi, draws attention to a para-

doxical commitment bias that may be present in voting games. Consider an electorate

whose individual rankings of alternative policies may change between the time they

vote for a candidate and the date a policy is implemented. Rankings may change fol-

lowing common or idiosyncratic shocks. Voters choose, via a simple majority election,
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between a candidate who is committed to a single alternative (no matter what the

preferences of the voters are), and an unbiased candidate who implements the ex-post

optimum. We show that, even when idiosyncratic shocks lead to slight changes in

rankings, the unique symmetric pure strategy Nash equilibrium often entails strategic

voters choosing the committed candidate. The resulting welfare loss is higher when

a common shock is more likely. The bias is amplified when the voters are strategic.
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Chapter 1

Multiple Opponents and the Limits

of Reputation:

Pure Strategy Types

1.1 INTRODUCTION AND LITERATURE SURVEY

The literature on “reputation” starts with the premise that while we may be almost

certain of the payoffs and the structure of the game we cannot be absolutely certain.

The small room for doubt, when exploited by a very patient player (sometimes referred

to as a long-run player), leads to “reputation” being built. This paper is the first

to investigate what happens when a very patient player who has private information

about his type plays a dynamic game with multiple non-myopic opponents. The

results are significantly different from previous work that has looked at reputation

building against a single opponent, whether myopic or patient. Even when the long-

run player can mimic any type from a very large set and is relatively more patient, my

results demonstrate that the presence of multiple opponents imposes strong checks

on his ability to exploit reputation.
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Kreps and Wilson (1982), and Milgrom and Roberts (1982) introduced this idea

in the context of chain-store games with a finite horizon. They show that arbitrarily

small amounts of incomplete information suffice to give an incumbent monopolist

a rational motive to fight early entrants in a finitely repeated entry game even if

in each stage it is better to acquiesce once an entry has occured; in contrast the

unique subgame-perfect equilibrium of the complete information game involves entry

followed by acquiescence in every period (this is Selten’s well-known chain-store para-

dox ). Another paper by the above-named four explains cooperation in the finitely

repeated prisoner’s dilemma using slight incomplete information, although there is no

cooperation in the unique subgame perfect equilibrium of the corresponding complete-

information game. The first general result on reputation, due to Fudenberg and

Levine (1989), henceforth referred to as FL, applies to a long-lived player playing an

infinitely repeated simultaneous-move stage-game against a myopic opponent (hav-

ing a discount factor of 0): As long as there is a positive probability of a type that

always plays the Stackelberg action,1 a suffciently patient LR can approximate his

Stackelberg payoff.

Work on reputation has not looked at games with multiple long-lived opponents

who interact with one another, not just with the long-run player; my paper inves-

tigates how far the results for a single opponent extend to settings with multiple

non-myopic opponents(i = 1, 2, . · · · , n;n > 1) and one long-run player(0), who could

be very patient relative to the rest of the players and has private information about

his type. I show that introducing more opponent leads to qualitative differences, not

just quantitative ones.

The central issue in the reputation literature is characterising a lower bound on

the payoff of player 0 when he has access to an appropriate set of types to mimic

1If LR were given the opportunity to commit to an action, the one he would choose is called
the Stackelberg action. In other words, the Stackelberg action maximises his utility if his opponent
plays a best response to whichever action he chooses.

2



and is patient relative to the other players. Fudenberg and Levine have shown that

this lower bound is “very high” — When a patient player 0 faces a single myopic

opponent repeatedly, there is a discontinuity in the (limiting) set of payoffs that can

be supported as we go from the complete information to the incomplete information

game if we allow a rich enough space of types. Even small ex-ante uncertainties are

magnified in the limit, and the effect on equilibria is drastic. Does the same message

hold in variants of the basic framework?

Schmidt (1994), Aoyagi (1996), and Celentani et. al. (1994) all consider only

one non-myopic opponent. At the cost of some additional notation let us be precise

about the discount factors δ0, δ1, · · · , δn. All three papers deal with the limiting case

where all players are patient but 0 is relatively patient, i.e. δi → 1 ∀i > 0 and

1−δ0
1−δi → 0 ∀i > 0. One standard justification of a higher discount factor for LR is

that he is a large player who plays many copies of the same two-player game, while

the other party plays relatively infrequently. My work will retain this assumption,

although we shall see later that it is not critical to my work and merely facilitates

comparison with the earlier work. To see the importance of having a non-myopic

opponent, recall FL’s argument for a single myopic opponent: If the normal type

mimics the type that plays the “Stackelberg action” in every period, then eventually

the opponent will play a best-response to the Stackelberg action if she is myopic.

Schmidt was the first to consider the case of one non-myopic opponent; he shows

that this natural modification introduces a twist in the tale: The opponent need not

play a period-by-period best response because she fears that she is facing a perverse

type that plays like the commitment type on the path but punishes severely off-path.

A related problem is that the normal type itself might be induced to behave like

the committment type on the path of play, but differently off the path — when 1

deviates, he reveals himself as the normal type and play enters a phase that is bad

for 1 but good for the normal type of 0. Since off-path strategies are not learnt in
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any equilibrium with perfect monitoring, this could lead to very weak lower bounds,

ones lower than FL’s bound in particular. Schmidt shows that the result in FL

extends only to “conflicting interest games” — games where the reputation builder

would like to commit to an action that minmaxes the other player. Roughly this

is because in such games the impatient player has no choice about how to respond

— she must ultimately play her best response in the stage-game or get less than

her minmax value, which is impossible in equilibrium. Later Cripps, Schmidt, and

Thomas considers arbitary, not just ones with conflicting interest, stage-games and

obtains a tight bound that is strictly below the bound of FL; the bound is “tight”

in the sense that any payoff slightly higher than the bound can be supported as an

equilibrium payoff of player 0.

The subsequent literature argues that Schmidt and Cripps et. al. take a somewhat

bleaker view of reputation effects than warranted. In Aoyagi and Celentani et. al.

there is no issue whether strategies can be learnt: Trembles in the first paper and

imperfect monitoring in the second ensure that all possible triggers are pressed and

latent fears do not remain. When strategies are eventually learnt, reputation is once

again a potent force. Here is their main result: As the (relatively impatient) opponent

also becomes patient in absolute terms, the payoff of the patient player tends towards

g∗∗0 = max {v0 |(v0, v1) ∈ F ∗},2 where F ∗ is the feasible and individually rational set

of payoffs; i.e. he gets the most that is consistent with individual rationality of the

opponent, player 1.

A final decisive step towards restoring a high lower bound was taken by Evans

and Thomas (1997, henceforth ET); they showed that the weakness of the bound in

Cripps at. al. relies on the assumption that all irrational types impose punishments

of bounded length; under limiting patience they extend the FL result to the case

of a single long-lived opponent playing an arbitrary simultaneous stage-game even

2We adopt the convention that the generic value is v; w is the “worst” value; and b denotes the
best. The mnemonic advantages hopefully justify any break with practice.
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under perfect monitoring, provided the reputation builder is patient relative to the

opponent. ET obtains the same bound g∗∗0 as Aoyagi and Celentani et. al., showing

in the process that a suitable choice of the type space makes the result hold even

when there is perfect monitoring. Assign a positive prior probability to a type that

plays an appropriate finite sequence of actions, and expects a particular sequence of

replies in return; the kth deviation from the desired response is punished punishes for

k periods by this type. By mimicking this type, a normal (sufficiently patient) player

0 can approximate his best feasible payoff subject to the opponent getting at least her

minmax payoff. In terms of the framework used in the literature, my work adds more

opponents to the framework used by Schmidt and ET; the results, however, stand

in sharp contrast. To focus on a different issue, I shall introduce a signalling stage

that abstracts from learning problems that could arise from perfect monitoring. In a

later section I show that this modification does not distort results, although it does

simplify greatly the description of the strategies.

The immediate generalisation of the bound obtained by Aoyagi, CFLP, and ET

for n = 1 to multiple (n > 1) opponents is g∗∗0 = max {v0 |(v0, v1, · · · , vn) ∈ F ∗}.

One obvious case where this holds is the one where the relatively patient player (0)

is playing a series of independent games with the other n players.3 When players

1, ...n are myopic, the above bound follows readily from the analysis of FL; if the

other players are also patient the bound derives from (an n-fold repetition of) the

analysis of ET. However I find that this is not true in general: The presence of addi-

tional opponents, each with the ability to punish and play out various repeated game

strategies, complicates the situation. Recall that the previous literature obtains lower

bounds by showing that vmin0 ≥ L, where L is a large lower bound that equals the

3By “independent” I mean that the payoff of any player i > 0 is independent of the actions of
player j > 0, j 6= i . This game is no more than the concatenation of n two-player games, each of
which has player 0 as one of the two players. Furthermore, the types of player 0 are independent
across these games, in the sense that observing the play in any one game conveys no information
about the type of 0 in any other game.
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Stackelberg payoff of 0 in FL and is g∗∗0 in the three other papers mentioned above.

When a player is patient relative to the single opponent he faces repeatedly, repu-

tation is a very powerful force. In contrast, under some non-emptiness restrictions

that rule out cases like the immediate extension above, a world with multiple oppo-

nents gives a cap on what “reputation” can guarantee 0. In other words, I define a

quantity l such that vmin0 ≤ l < g∗∗0 ; therefore, l is an upper bound on 0′s minimum

equilibrium payoff. I then show that any equilibrium payoff above l of player 0 in

the complete information game can be supported in the limiting set of payoffs even

under incomplete information, and even with any or the types used by Celentani and

Schmidt or ET; furthermore, sequential rationality is satisfied in the construction of

the above equilibria. Finally, l could be much lower than g∗∗0 , and even as low as

the minmax value of player 0. This means that while reputation has non negative

value to a player, its impact is qualitatively less dramatic when there are multiple

opponents — all equilibrium payoffs of 0 exceeding l in the repeated game of complete

information are present in the perturbed game.

Fudenberg and Kreps (1987) is, to my knowledge, the only earlier paper that has

multiple opponents playing 0, who is trying to build a reputation. Their framework

is significantly different from mine; in particular, the impatient players do not have a

direct effect one another’s payoffs through actions. The paper is concerned with the

effect of 0’s actions being observed publicly rather than privately by each opponent;

their basic “contest” or stage-game is an entry deterrence game, while my analysis

considers more general games. At this point I should also note the literature on

reputation games in which all players have equal discount factors. Cripps et. al. and

Chan (2000) have shown that, except in special cases, the reputation builder needs to

be patient relative to the others to be able to derive advantage from the incomplete

information. My main result applies equally well when all players have equal discount

factors, although it contrasts most sharply with the previous literature when player

6



0 is more patient than the rest, which is also the case that has received the most

attention in the literature. There is yet another strand of the reputation literature —

see for example Benabou and Laroque(1992), and Mailath and Samuelson (2004)—

that looks not at the payoff from building reputation, but the actual belief of the

opponent about the type of the reputation-builder. The latter shows that, in a world

with imperfect monitoring and a single opponent, even when a patient player can

get high payoffs in equilibrium by mimicking a committed type, the opponent will

eventually believe with very high probability that she is indeed facing a normal type;

in other words, reputation disappears in the long run under imperfect monitoring

although the patient player reaps the benefits of reputation. Benabou and Laroque

had shown this phenomenon in the context of a particular example. This question

will not be relevant in our context.

The plan of the paper is as follows. Section 2 has two motivating examples; section

3 lays out the formal details of the model; the next states the benchmark result for a

single patient opponent. Section 5 is the main section, where I prove the upper bound

on the minimum equilibium payoffs of 0. I generalise and extend my main result to

two additional situations in section 6, although at the cost of increasing complexity

of the equilibrium strategies and the analysis. Section 7 chracterises a lower bound

on the payoff of player 0; section 8 concludes.

1.2 MOTIVATING EXAMPLES

This section presents a few simple examples to demonstrate the conclusions of this

paper. Each example starts with a benchmark case, and in turn illustrates the impli-

cations of the theory of repeated games, then of the existing literature on reputation,

and finally that of the current paper. They try to weave stories, admittedly simplistic

ones, to give a sense of the results. The first example is meant to be the simpler of
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the two; the second is best postponed until the reader has acquired familiarity with

the concepts and definitions introduced in the main model.

Example 1 (A Skeletal Oligopoly Example): A caveat: This example has special

features that do not appear in the proof but permit simpler analysis.

Consider a market of size 1 for a perishable good served by three firms 0, 1, 2;

throughout we refer to firm 0 as “he” and use “she” for the others. The demand

curve is linear in the total output4 q:

p(q) : =

{
1− q ; q ∈ [0, 1]

0 ; q > 1
.

There is one small side-market of size ε shared by firms 1 and 2 : p(q′) := ε −

q′ ; q′ ∈ [0, ε], where ε is a very small positive number and q′ is the total output in

the side-market. Each market is a Cournot oligopoly at each time t = 1, 2, · · · . For

simplicity, there are no fixed and marginal costs. For the infinitely repeated game,

firm i discounts profits at rate δi; we shall consider the case when all firms are patient

but 0 is more so, i.e. all δi’s are close to 1 but δ0 is relatively closer. For reasons

mentioned in the introduction we add an announcement stage to this game at t = 0,

allowing player 0 to send a message m ∈ Ω about his purported type.

Also note that in the side market of size ε the monopoly profit is ε2

4
, which is

obtained when the total output is ε
2
; in the Cournot Nash equilibrium (CNE) each

firm i = 1, 2 produces ε
3

and earns a profit of ε2

9
< ε2

8
, one-half the monopoly profit.

CASE A: Single Opponent

When there is a single opponent, i.e. firm 2 is absent, the main market is a Cournot

duopoly with complete information. In the main market the monopoly profit πm =

4A firm’s output is chosen from a compact convex set; although, strictly speaking, my results deal
with finite action spaces, an appropriately fine grid of actions can approximate arbitrarily closely
the results that follow.
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1/4 is obtained by choosing the output qm = 1/2. The Nash-threats folk theorem of

Friedman (1971) shows that the point (1
8
, 1

8
), the fair split of the monopoly profit, can

be sustained in a subgame-perfect Nash equilibrium (SPNE) if the players 0 and 1 are

patient because in the CNE each firm has a strictly lower profit of 1
9
. The following

trigger strategy accomplishes it— each firm produces 1
4
, half the monopoly output;

any deviation leads to firms switching to the CNE forever.

Now introduce one-sided incomplete information about 0 through a type space Ω,

which comprises the normal type ω◦ and commitment types ω1, · · · , ωK . The normal

type discounts payoffs as usual. However each commitment type ω 6= ω◦ is defined

by an output Φ1
ω for t = 1 and for each t ≥ 1 a mapping Φt+1

ω from the history of

actions of the other players to an output.

We start with the environment of Fudenberg and Levine: δ1 = 0 (myopic oppo-

nent). If there is a positive probability of a type that selects the Stackelberg output

irrespective of history, 0 can guarantee himself very close to 1
8

if he is patient enough.

Let us now make even player 1 patient, while 0 is patient relative to her. Evans and

Thomas (1997) shows that in now player 0 can get arbitrarily close to his monopoly

payoff of 1
4
. Thus the combination of patience and reputation is enough for player

0 to extract the entire surplus— he enjoys (almost) monopoly profits from the main

market, while the other player gets (almost) nothing in the main market.

CASE B : Multiple Opponents

Now introduce the third player, making the main market an oligopoly and the

side-market a duopoly. Even when we have various commitment types (including the

Stackelberg type) we shall see that the monopoly profits in the main market can be

split equally among i = 0, 1, 2. Quite strikingly, a similar construction can give player

0 any positive payoff, not just 1/12.

Why the marked change in results? Let us describe the equilibrium strategies that
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support this equilibrium. First we describe on-path play. If player 0 declares m = ωo,

then each firm i = 0, 1, 2 produces qi(t) = 1
6
∀i ≥ 0 ∀t ≥ 1 and makes a profit of 1

12

in the main market; in the side market play starts with each i > 0 producing half

the monopoly output and making ε2

8
each. Players i = 1, 2 play as follows. Let ht

denote a t-period history; let ht+ denote the history of the moves of players 1 and 2.

If m = ω 6= ωo, players 1 and 2 are called upon at time t + 1 to produce outputs

σt+1
i (ω, ht) ; i = 1, 2 such that

Φt+1
ω

(
ht+
)

+
∑
i>0

σt+1
i

(
ω, ht

)
= 1,

i.e. all profits are eliminated in the main market; in the side market each firm i = 1, 2

produces ε
4

and earns a profit of ε2

8
as before.

Now we specify off-path play:

Case A: m = ωo: Given that firms are patient, any deviation by 0 may be punished

by a reversion to the CNE in the main market, in which each firm produces an output

of 1
4

in the main market and makes a profit of 1
16

; deviations by i > 0 are punished

by reverting to the CNE in both markets. From the analysis of Friedman we already

know that it is an SPNE when all players are patient.

Case B: m = ω 6= ωo. If 0 deviates from his announced strategy ever, he reveals

himself to be the normal type and, after he is minmaxed to wipe out any gains

resulting from the deviation, play moves to the symmetric cooperative equilibrium

sustained by Cournot-Nash reversion as in the complete information game. This is an

equilibrium if δi ≥ δci for some δci < 1. A deviation by player i > 0 in either market at

any point τ impacts play in both markets. In the main market player j 6= i produces

a total output of 1 − Φt+1
ω

(
ht+
)

for all subsequent periods t + 1 = τ + 1, τ + 2, · · · ,

while i is asked to produce 0. In the side market play moves, starting from τ + 1, to

the point where firm j produces the Stackelberg output of 1
2
ε while i responds with
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her follower output of 1
4
ε; play thus moves to one of the points P1 ≈

(
1
16
ε2, 1

8
ε2
)

or

P2 ≈
(

1
8
ε2, 1

16
ε2
)

in the payoff space. In particular, if i 6= j deviates from Pi then play

remains at Pi.

Finally we verify that player i > 0 does not deviate after any history. The maxi-

mum gain from a one-shot deviation is 1/4, but this leads to a drop in profit in the

side-market from ε2/8 to ε2/16. Incentive constraints for both cases A and B are

satisfied if

(1− δi)
1

4
+ δi

ε2

16
≤ (1− δi) .0 + δi

ε2

8
=⇒ δi ≥

1

1 + ε2/4
=: δ.

Player i does not deviate from Pi because that is strictly worse: If i deviates she

will not be playing a best response to j’s output in the current period, and play will

remain at Pi. Finally, the normal type of player 0 reveals his type truthfully if

(1− δ0)
1

4
+ δ0.0 ≤

1

12
=⇒ δ0 ≥

2

3
.

Define δ := max
{

1
1+ε2/4

, 2
3
, δci

}
. When δi ≥ δ, i = 0, 1, 2, the above is an SPNE.

Here lies the key difference between the single and multiple opponent cases: Mimick-

ing a commitment type gives 0 less than the proposed equilibrium payoff of 1
12

; hence

in the SPNE he reveals his type truthfully. �

Example 2 (Oligopoly with Capacity Constraints) This example is best read af-

ter the reader has seen the formal model. Consider an oligopoly with capacity con-

straints. At each point of time t = 1, 2, ... there is a market of size 1 for a perishable

good ; to be specific the demand function is

p(q) : =

{
1− q ; q ∈ [0, 1]

0 ; q > 1
.

11



There are four firms that serve the market— 0,1,2,3 with capacity constraints

k∗i = .5, .45, .45, .45 and zero marginal and fixed costs (adopted for simplicity). 0 is

the reputation builder. First restrict attention to the reputation game with n = 1.

Player 1′s minmax is 1
16

. So in the complete information repeated game it is possible

for 0 to get anything consistent with player 1 getting her minmax. In particular 0

can get πm− 1
16

= 3
16

. As I argued in example 1 above, player 0 can guarantee himself

very close to 3
16

in the incomplete information game by mimicking a “crazy” type.

The construction is the same as above; to keep this example short I shall not mention

the details of the type space. The assumption on discount factors is also unchanged.

Let us now compute the maxminmax of each firm i > 0 , say firm 1 . This is the

minmax value of i when 0 plays an action that is most favourable to i and all other

try to minmax her. Suppose that firm 0 produces an output of 0, while firms 2 and

3 produce .45 each. The best firm 1 can achieve is obtained by solving:

maxq{1− (.9 + q)}q = .1 ∗ q − q2

The first order condition gives q∗ = 1
20

, which generates a profit of 1
20
∗ ( 1

10
− 1

20
) =

1
400

= Wi , the maxminmax profit of i. This srtictly exceeds the minmax value

wi = 0 of any i > 0 , when all other firms flood the entire market; in other words, 0’s

cooperation is needed to minmax any i > 0. Now we need to check that the condition

N introduced formally later holds; this requires us to check that no matter what 0

does, the others can find an output vector giving each of them more than Wi = 1
400

.

When 0’s output it low the other firms find it easier to attain any target level of

profit. So pick the worst slice of .5. We wish to find a symmetric point in this slice

that gives each player i > 0 strictly more than the maxminmax. Find the maximum

12



symmetric point in the slice:

maxq (
1

2
− 3q) ∗ q ⇒ 1

2
= 6q∗ ⇒ q∗ =

1

12
.

The associated level of profit for each firm i > 0 is (1
2
− 1

4
) ∗ 1

12
= 1

48
> 1

400
. Therefore

the non-emptiness assumption N that I formally introduce later on is satisfied. Now

we have to calculate the lowest profit that 0 could get in any slice subject to the

others getting above 1
400

. Even without exact and painstaking calculations it can

be shown that this profit is very close to 1
100

; the argument follows. Supose the

other firms almost flood the market so that the price is 1
50

; the maximum 0 could

be producing is 0.5, earning a profit of 1
100

. Each of the three remaining firms can

produce at least 1
8
, thereby making a profit of at least 1

8
∗ 1

50
= 1

400
= Wi. Thus all

collusive outcomes of the repeated game that give 0 more than some very low number

(below 1
100

) can be sustained even in the repuational game. Recall that in contrast

0 can guarantee himself 3
16
� 1

100
when only one opponent is present, the presence

of multiple opponents bringing about approximately a 20-fold drop in the minimum

assured profit of player 0.�

1.3 THE MODEL

There are n + 1 players— 0, 1, 2, · · · , n; throughout we refer to firm 0 as “he” and

to the others as “she”. Player 0 is relatively more patient and attempts to build a

reputation; we refer to players i > 0 as the “opponents”. Let us first describe the

temporal structure of the complete-information repeated game, which is perturbed to

obtain the “reputational” or incomplete-information game. At each time t = 1, 2, ...

13



the following normal-form stage-game is played:

G = 〈N = {0, 1, · · · , n}, (Ai)
n
i=0 , (gi)

n
i=0〉 .

N is the player set; Ai is the finite set of pure actions ai available to player i at each

t, while Ai := 4 (Ai) is her set of mixed actions αi. A profile a of (pure) actions

all players is in A := ×ni=0Ai; the pure action profile a+ of the players i > 0 lies in

A+ := ×i>0Ai. A profile of mixed actions α is an element of A. A comment on the

use of subscripts is in order: Profiles are denoted without a subscript, the ith element

of a profile/vector is denoted by the same symbol but with the subscript i, and the

subscript + denotes all players i > 0 collectively. The von Neumann-Morgenstern

payoff function of agent i ≥ 0 is gi : A→ R; and the associated vector payoff function

is given by

g = (g0, g1, · · · , gn) : A→ Rn+1.

For any E ⊂ Rd and any J ⊂ {1, 2, ..., d}, the projection of E onto the plane formed

by coordinates in J is denoted by EJ :

EJ := {eJ |∃e−Js.t. (eJ , e−J) ∈ E } .

The convex hull of any subset E of an Euclidean space is coE; it is the smallest convex

set containing E. For any player i ≥ 0 the minmax value wi and the pure strategy

minmax value wpi are defined5 respectively as

wi := minα−i
maxai

gi(ai, α−i) ; wpi = mina−i
maxai

gi(ai, a−i).

5We adopt the convention that the generic value is v; w is the “worst” value. The mnemonic
advantage hopefully justifies any break with practice.
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Player i gets her minmax wi in game G when the action profile mi is played:

gi
(
mi
i,m

i
−i
)

= maxai∈Ai
gi
(
ai,m

i
−i
)

= wi.

The feasible set of payoffs in G is

F := co {g(a) : a ∈ A} ,

using an PRD (Public Randomization Device)6 available to agents; φt is the observed

value of the PRD in period t, and φt denotes the vector of all realized values from pe-

riod 1 to period t. The weakly individually rational set is F ∗ := {v ∈ F : vi ≥ wi ∀i ≥ 0} .

Monitoring is perfect.

Players 1, 2, ..., n all maximize the sum of discounted per-period payoffs; to reduce

notation and facilitate comparison with the literature on repeated games I take a

common discount factor for the opponents, i.e. δi = δ ∀i > 0.7 Let us now add

incomplete information — the patient player(0) could be one of many types ω ∈ Ω;

the prior on Ω is given by µ ∈ 4(Ω). The type-space Ω contains ω◦, the normal

type of the repeated game, who maximizes the sum of per-period payoffs using his

discount factor δ0. The other types may be represented as expected utility maximizers,

although their utility functions may not be representable as sums of discounted stage-

game payoffs. Consider, for example, the “strong monopolist” in the chain-store game

of Kreps and Wilson; this type has a dominant strategy in the dynamic game to always

fight entry.

6Sorin (1986) and Fudenberg and Maskin (1991) showed that a PRD is without loss of generality
when players are patient. I continue to make this assumption in the interests of expositional clarity.

7Lehrer and Pauzner (1999) look at repeated games with differential discount factors, and find
that the possibility of temporal trade expands the feasible set beyond the feasible set of the stage-
game. This creates no problems for my results because the feasible set of the stage-game continues
to remain feasible even if all δis are not equal .
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Formally each type ω 6= ω◦ is identified with or defined by the following sequence

Φ1
ω ∈ A0,Φ

t+1
ω : At+ → A0.

This sequence Φω := (Φ1
ω,Φ

2
ω, · · · ) specifies an initial (t = 1) action and for each t > 1

maps any history of actions8 played by players 1, 2, · · · , n into an action of player 0.

In what follows we fix (G,Ω, µ), where G is the stage-game, Ω = {ω◦, ω1, · · · , ωK}

is the set of types, and µ is the prior on Ω. It is to be noted that the above model

allows a very rich set of types. The point of the literature on reputation is that the

normal type ω◦ might want to mimic a commitment type ω 6= ω◦ in order to secure

a higher payoff. It is clear that the type space Ω must include appropriate types to

mimic, a feature captured in reputation papers by means of some form of full support

assumption. In order to investigate the maximal impact of reputation, I allow player

0 to mimic strategies with infinite memory as in Evans and Thomas,9 and strategies

with bounded recall as in Celentani et. al.

The dynamic game starts with an announcement phase at t = 0: Player 0 sends

a message m ∈ Ω about his type. Then the repeated game with perfect monitoring

is played out over periods t = 1, 2, · · · . Abreu and Pearce (2009) also employed an

announcement; that it permits considerable analytical simplicity will be seen from

the complexity of the strategies needed when we dispense with the announcement

phase. The normal type of player 0 is free to announce a type m 6= ω◦, his true type.

We assume that commitment types announce truthfully.

EQUILIBRIUM: An equilibrium comprises the following elements, defined recur-

sively over the time index:

(i) a messaging strategy m : {ω◦} → Ω for the normal type of player 0;

8Potentially player 0 could condition his play at t on the PRD up to period t , i.e. on φt , in
addition to at−1

+ . This would not change our results or proofs; the notation is more involved though.
9With two players, i.e. one opponent, it is enough (see Aoyagi and Celentani et. al.) to consider

all types with bounded recall strategies — each commitment type with bounded recall τ ∈ N plays
an action that depends on the actions played by the other player in the past τ periods.

16



(ii) for each i = 0, 1, · · · , n, a map σi(1) : Ω× {φ1} → Ai, and a sequence of maps

σti : Ω× At−1 × {φt} → Ai; t = 1, 2, · · · for each t > 1;

(iii) common beliefs following the history ht−1 of actions up to period t−1, denoted by

µ (. |m,ht−1, σ ) ∈ 4(Ω), are obtained by updating using Bayes rule wherever possible,

where m and σ are respectively the equilibrium announcement function and strategy

profile.

To simplify we shall often use µt−1 for the above beliefs and omit the variable φt

from the domain of the period t strategies. Additionally we stipulate that for ω 6= ωo

the strategy σtω is given by Φω as long as he has not deviated from the latter.10 This

defines a commitment type. Let σω := {σtω}t≥1. The strategy σi of player i > 0 is the

sequence of maps {σti}t≥1; Σi denotes the set of all strategies of player i. As usual, a

strategy profile is

σ := (σ0, σ1, ..., σn) ∈ Σ := Σ0 × Σ1 × · · · × Σn.

In what follows ui( ) refers to the discounted value of a strategy profile to player

i, possibly contingent on a certain history of actions and an announcement; thus

ui (σ |m,ht−1, µt−1 ) is the normalized sum of the future payoffs of player i discounted

to period t, following announcement m and the history ht−1, given that players play

according to the strategy profile σ and beliefs are µt−1. We refer to the payoff of the

normal type of player 0 whenever we use u0( ). We now state the following familiar

definition.

10Strategies need to be specified for all histories including ones off the path. By the very definition
of a commitment type there are no histories where type ω has violated his strategy, hence what
actions we specify here are not important. We assume that any type ω maximizes the discounted
sum of payoffs after a history that is not consistent with the commitment type ω.
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DEFINITION: A tuple
(
m∗, (σ∗0, σ

∗
1, · · · , σ∗n) , {µ (. |m,ht−1, σ∗ )}t>1

)
defines a Per-

fect Bayesian Equilibrium (PBE) if no player has a strictly profitable unilateral de-

viation:

(i) u0 (σ |m∗(ω◦)) ≥ u0 (σ |ω̂ )∀ω̂ ∈ Ω, i.e. the messaging strategy m∗ is optimal for

player 0;

(ii) beliefs µt−1 are obtained by updating the prior using Bayes rule on the equilibrium

path and off-path are restricted so that beliefs (about the type of player 0) cannot be

affected by actions of players i 6= 0;

(iii) for any i ≥ 0 and for any message ω and any t − 1 period history ht−1 we also

have

ui
(
σ∗
∣∣m,ht−1, µt−1

)
≥ ui

(
σ̂i,σ

∗
−i
∣∣m,ht−1, µt−1

)
∀ σ̂i ∈ Σi; ∀ m ∈ Ω; ∀i ≥ 0.

My main result involves constructing a truthtelling PBE, as will be seen in section

5.

1.4 REPUTATION RESULTS FOR A PATIENT OPPONENT

With the above notation in place I state and summarise the result with a single long-

lived opponent and perfect monitoring, due to Evans and Thomas(ET). This result

is the counterpart for n = 1 of my result, and is therefore the right benchmark, which

stands in stark contrast to my main result in the next section. ET makes the following

simplifying assumption:

Assumption PAM (Pure Action Minmax) : 0 can minmax 1 by playing a pure

action.

This assumption, while restrictive, is adopted for technical simplicity; otherwise mixed
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strategies need to be learnt as in Fudenberg and Levine (1992). Suppose we wish to

approximate the best payoff g∗∗0 for 0 to at most a margin ε of error. Find a sequence

of action profiles/pairs (a∗∗0 (t), a∗∗1 (t))t=1,··· ,T such that 0’s average discounted payoff

over this block of T action pairs is close to g∗∗0 , while 1′s average discounted payoff

exceeds her minmax value:

∣∣∣∣∣ 1

T

T∑
t=1

g0 (a∗∗0 (t), a∗∗1 (t))− g∗∗0

∣∣∣∣∣ < ε/3 and
1

T

T∑
t=1

g1 (a∗∗0 (t), a∗∗1 (t)) > w1.

Let ω̂ be the type that plays as follows:

(a) 0 starts by playing the block of T actions (a∗∗0 (t))Tt=1 ;

(b) if player 1 responds with (a∗∗1 (t))Tt=1 , he repeates this block;

(c) when player 1 deviates for the kth time from playing the role prescribed above,

player 0 minmaxes her for k periods using the pure strategy minmax from PAM

above;

(d) 0 returns to step (a) irrespective of what actions player 1 responded with during

punishment.

The key feature is that the type ω̂ of 0 metes out harsher punishments if 1 continues

to deviate. Define V (δ0, δ1) ⊂ R2 as the set of Bayes-Nash equilibrium payoffs for

discount factors δ0 and δ1 respectively. The associated payoff set for player 0 only

is given by the projection V0 (δ0, δ1) ⊂ R of this set onto dimension 0. It might be

useful to remind the reader of the following notation, which we introduced earlier —

g∗∗0 is the maximum feasible payoff of LR consistent with player 1 getting at least her

minmax.

Proposition 0 (Evans and Thomas, 1997) : Suppose PAM holds and µ (ω̂) > 0,

i.e. the prior µ places a positive weight on ω̂. Given ε > 0 there exists a δmin1 < 1

such that for any δ1 > δmin1 , we have limδ0→1 infV0 (δ0, δ1) > g∗∗0 − ε.
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Proof Sketch: See ET for details; a sketch follows.

Fix ε > 0 ; this is the margin of error we shall allow in approximating the best

payoff g∗∗0 .

Step 1 : We have seen that the block of action profiles/pairs (a∗∗0 (t), a∗∗1 (t))t=1,··· ,T

has the property that 1
T

∑T
t=1 g0 (a∗∗0 (t), a∗∗1 (t)) , is within ε/3 of g∗∗0 , while 1’s average

payoff 1
T

∑T
t=1 g1 (a∗∗0 (t), a∗∗1 (t)) is greater than her minmax value.

Step 2 : Consider the type ω̂ defined above. If µ (ω̂) > 0 , one available strategy

of the normal type of 0 is to declare and mimic ω̂; the payoff from doing this is a

lower bound on his equilibrium payoff.

Step3 : Apply Lemma 1 of ET (the Finite Surprises Property of FL) to show that

if player 0 follows the above strategy at most a certain finite number of punishment

phases can be triggered without player 1 believing that with a high probability he is

facing the type ω̂. Also note that since punishments get progressively tougher, the on-

path play gets almost as bad as being mixmaxed forever, whereas for a patient player

1 the discounted per-period payoff from (a∗∗0 (t), a∗∗1 (t))t=1,··· ,T exceeds her minmax

value.

Together these two observations imply that in any Nash equilibrium a patient

player 1 must eventually (after triggering enough rounds of punishment) find it worth-

while to experiment with the actions (a∗∗1 (t))t=1,··· ,T . Once she does so, by construc-

tion 0 gets a mean payoff which is within ε/3 of 1
T

∑T
t=1 g0 (a∗∗0 (t), a∗∗1 (t)). If δ0 is

close to 1, then the discounted and undiscounted payoffs are very close:

∣∣∣∣∣
T∑
t=1

g0 (a∗∗0 (t), a∗∗1 (t))−
T∑
t=1

δt0.g0 (a∗∗0 (t), a∗∗1 (t))

∣∣∣∣∣ < ε/3

The average discounted payoff is therefore within 2ε/3 of g∗∗0 . Finally we re-use the

fact that 0 is very patient — If 0 is relatively patient, losses sustained while mimicking
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ω̂ cannot cost him more than another ε/3 in terms of payoffs; thus mimicking type ω̂

assures player 0 payoffs within ε of g∗∗0 . �

The upshot is that it is possible to secure very high payoffs for the normal type of

0 in the incomplete information game even when his opponent is also patient, as long

as 0 is relatively patient and has the option to mimic types that punish successive

deviations with increasing harshness.

1.5 THE MAIN RESULT : UPPER BOUND FOR n > 1

This section contains the main result, showing that in a reputational game with

multiple long-lived opponents the minimum equilibrium payoff of 0 is bounded away

from his best payoff g∗∗0 . Proposition 2 also characterizes the gap between the bound

and g∗∗0 . The following concepts are introduced— slice, conditional minmax, and

maxminmax. Any choice of an action a0 ∈ A0 by player 0 induces a game among

the n opponents and the associated (n+ 1)-dimensional payoff set is called slice-a0;

actions in A0 thus have a one-to-one relation with slices.

DEFINITION: The game G(a0) is induced from G where player 0 is restricted

to use action a0:

G(a0) :=
〈
N = {1, . · · · , n}; (Ai)i>0 ; (ĝi)i>0

〉
such that ĝi (a+) = gi (a0, a+)∀a+ ∈ A+.

DEFINITION: Slice-a0 is the conditionally feasible set11 of payoffs in the induced

11This terminology is meant to suggest that conditional on player 0 playing a0, this is the feasible
set of payoffs.
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game G (a0):

F (a0) := co {g(a0, a+) : a+ ∈ A+} ⊂ Rn+1

Notice that the conditionally feasible set lies in the payoff space of n + 1 players

although only n players have non-trivial moves in any slice.

DEFINITION: The conditional minmax of i > 0 in the slice-a0 is the minmax

of i > 0 conditional on G (a0); call it wi (a0).

This is defined as the minmax of player i in G (a0) among players 1, · · · , n, rather

than in the game G among n+1 players. The set of mixed strategy profiles of players

i = 1, · · · , n is denoted by

A+ := A1 × · · · × An, where Aj := 4Aj.

Now we define the conditionally minmaxing punishment of player i > 0 in slice-a0 as

mi (a0) ∈ A+ such that

gi
(
a0,m

i
−i(a0),m

i
i(a0)

)
= maxai

gi
(
a0,m

i
−i(a0), ai

)
= wi (a0) .

Denote gj (a0,m
i(a0)) = wij (a0) as the payoff to player j 6= i when i is being condi-

tionally minmaxed in slice-a0.

DEFINITION: The maxminmax of a player i > 0 with respect to 0 is defined

as the maximum among all conditional minmaxes

Wi := maxa0∈A0wi (a0) .
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It is like the usual minmax but under the additional restriction that when others

(j 6= i and j > 0) try to minmax i > 0, player 0 takes the action that is best for i. In

general the maxminmax is strictly greater than the minmax value12 wi, in as much

as the others require the active cooperation of player 0 to punish i most severely.

Truncate the set F (a0) below Wi to get

F(a0) := {v ∈ F (a0) : vi ≥ Wi ∀ i > 0} .

Both sets F (a0) and F (a0) are compact subsets of Rn+1; the projection of F (a0) onto

the 0th coordinate is denoted by the subscript 0, i.e. F0 (a0) ⊂ R. The worst payoff

for player-0 in the slice-a0 subject to each player i getting above her maxminmax is

w0 (a0) := min F0 (a0) ≡ min {v0 : ( v0, v+) ∈ F(a0)} .

Now consider the maximum of these worst payoffs (one for each slice) for player 0:

l := maxa0∈A0 w0 (a0) ;

if each w0(a0) < w0 set l = w0. This is the maximum among the worst payoffs for

player 0, one for each slice, subject to all others getting at least their maxminmax.

We now introduce a non-emptiness assumption:

Assumption N : W ∈
⋂
a0∈A0

{F+ (a0)},which has a non-empty interior.

N (for Non-emptiness) implies the existence of a point that is inside each slice and

slightly dominates the maxminmax vector W for players i > 0. Recall that F ∗

is the feasible individually rational set of the complete information game. A full-

12wi := minA0wi(α0). ≡ minA−i
maxAi

ui(α−i, ai)
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dimensionality assumption, first introduced in FM, facilitates comparison with the

complete information folk theorems:

Assumption FD (Full Dimensionality): The set F ∗ has dimension n+ 1.

LEMMA 1 : Assumptions N and FD imply that g∗∗0 > l.

PROOF : See the appendix. �

We now state and prove the threat points lemma (TPL), which is useful in establish-

ing the bound below. This lemma states that in every slice a0 we can find an action

profile ρ (a0) for players i > 0 giving each i > 0 strictly greater than her Wi and

player 0 “close” to w0 (a0) in slice a0.

THREAT POINTS LEMMA (TPL): Fix ε > 0. There exists a map ρ : A0 →

A+ such that ∀a0 ∈ A0

gi (a0, ρ (a0)) > Wi ∀i > 0 and g0 (a0, ρ (a0)) < w0 (a0) + ε ≤ l + ε.

PROOF (TPL): Pick any slice a0. Since F (a0) is compact, it follows from the

definition of w0 (a0) that

∃ x1, x2, · · · , xn s.t. (w0 (a0) , x1, x2, · · · , xn) ∈ F (a0) .

By N we can pick x̄ such that x̄ ∈ F+ (a0)∀a0 and x̄i > Wi for all i > 0. Since

x̄ ∈ F+ (a0), for each a0 we can find x̄0(a0) ∈ R such that (x̄0(a0), x̄) ∈ F (a0). Now

for any p ∈ [0, 1], the convexity of F (a0) implies that the convex combination

v(p) := (1− p) (w0 (a0) , x) + p (x̄0(a0), x̄) ∈ F (a0)∀a0.
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Pick p small enough so that (1− p) .w0 (a0) + p.x̄0(a0) < w0 (a0) + ε, which is always

possible because ε > 0 and the LHS tends to w0 (a0) as p → 0. Since v(p) ∈ F (a0),

we can find ρ(a0) ∈ ∆(A+) s.t. g (ρ(a0)) = v(p). This ρ satisfies the statement of the

lemma. �

For any i ≥ 0, let λi (a0) := gi (a0, ρ (a0)) ; a0 ∈ A0, and then define the minimum

of these payoffs across all slices.

λi := mina0 {λi (a0)} .

Thus i > 0 gets at least λi in any slice if all players j > 0 play according to ρ ( )

and 0 mimics the announced type. Since λi (a0) > Wi ∀a0, we also have λi > Wi.

Proposition 2 below shows that vmin0 (δ0, δ1, · · · , δn) can be brought arbitrarily close

to l. The proof, which is constructive, assumes that mixing is ex-post observable; this

is a technically convenient assumption. The argument hinges on our ability to force

the relatively very patient player 0 to reveal himself at the announcement stage, i.e.

to use m(ω◦) = ω◦ at time 0.

How do we ensure that ω◦ does not want to deviate and announce a commitment

type ω? If the normal type is announced, play the complete information equilibrium

σci(l + 3ε), giving player 0 a payoff of l + 3ε; here ε is an arbitrarily small positive

quantity. If a commitment type ω 6= ω◦ is announced, players i > 0 believe that

they are indeed facing type ω. If he is indeed type ω, player 0 must play according

to Φ(ω); after the history ht−1, he must induce slice-Φt
ω

(
ht−1

+

)
at time t. From TPL

above we can construct a “threat point” in each slice according to ρ( ). Players i > 0

use Φ(ω) to keep track of player 0’s actions, and respond to ht−1 with ρ
(
Φt
ω

(
ht−1

+

))
.

From TPL we know that this gives player 0 no more than l + ε, while each player

i > 0 gets strictly more than her maxminmax value Wi. If 0 has never deviated and
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some i > 0 deviates, the deviating player is punished by conditional minmaxing, i.e.

she is minmaxed in the slice that 0 plays. (Since 0 has not deviated he will follow

Φ(ω).) The proof shows that this deters cheating by any i > 0.

Given that players i > 0 don’t deviate, 0 cannot profit by announcing ω 6= ω◦ and

following Φ(ω) because he loses at least 2ε relative to declaring his true type. If he

announces ω 6= ω◦ and then deviates, he immediately exposes himself as the normal

type. This is followed by an equilibrium where all players put probability 1 on the nor-

mal type and play the complete information equilibrium where 0 gets l+2ε. This still

falls ε short of announcing truthfully at t = 0; so a patient 0 will never declare ω and

then reveal himself subsequently. He will follow the equilibrium strategies off-path

too: if he has deviated and announced ω 6= ω◦ he strictly prefers to reveal himself at

the first opportunity. In short, the constructed equilibrium gives 0 less than l + 2ε if

he is ω◦ but announces m 6= ω◦. So he prefers to announce ω◦ truthfully and get l+3ε.

PROPOSITION 2 : Fix ε > 0. When n > 1, under assumptions N and FD

and (ex-post) observable mixed strategies, we have vmin0 (δ0, δ1, · · · , δn) ≤ l+ ε if each

δi is high enough, where l < g∗∗0 .

PROOF : Fix ε > 0 to be small enough that l + 3ε ∈ F ∗0 , where F ∗0 is the pro-

jection of F ∗ onto player 0’s payoff space. By TPL we have ρ : A0 → 4(A+) such

that

g0 (a0, ρ(a0)) ≤ l + ε ∀a0 ∈ A0 and Wi < λi := mina0 {λi (a0)} ∀i > 0.

Recall that for any i and any a0, we defined λi (a0) := mina0 {gi (a0, ρ (a0))} . By N,
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∃η ∈ Rn and ∆ > 0 such that13

η ∈ int (F+ (a0))∀ a0 and Wi < ηi < ηi + ∆ < λi.

For each j > 0 define the vector η(j) ∈ Rn by

ηj(j) = ηj and ηi(j) = ηi + ∆ < λi ∀i 6= j.

Since η lies in the interior of F+ (a0), if ∆ is small we have

η(i) ∈ F+ (a0)∀i > 0 and ∀a0 ∈ A0.

Finally, let σci (v0) denote an equilibrium (SPNE) strategy profile of the complete

information repeated game that gives ω◦ a payoff of v0, and gives players i > 0 any

feasible payoffs vi > wi. We assert that the following strategies are part of a PBE

giving ω0 a payoff of l + 3ε.

EQUILIBRIUM STRATEGIES:

On-path play is as follows. Player 0 reveals his type by making the announcement

m(ω) = ω. If the announced type at t = 0 is ω◦, then by Bayes rule we get µ (ω◦|ω◦) =

1; from t = 1 onwards play the equilibrium strategy profile σci(l+3ε). If m = ω 6= ω◦,

update beliefs to µ(ω|ω) = 1 and start Phase I. In this phase the prescribed play

at t conditional on the (t − 1)-period history ht−1 is ρ
(
Φt
ω

(
ht−1

+

))
∈ 4 (A+), which

gives player 0 an expected payoff w0

(
Φt
ω

(
ht−1

+

))
+ ε ≤ l + ε if he plays according to

Φt
ω.

Off-path play is as follows. Suppose player 0 has never deviated from Φ(ω) in the

past and that player i > 0 deviates at time τ ; then play enters Phase II(i), where

13Pick an η that lies in a small open ball centered at W and in each F+ (a0).
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player i is conditionally minmaxed in slice Φt
ω

(
ht−1

+

)
at time t = τ+1, ..., τ+P , where

the length P of the punishment satisfies the following inequality:

PWi +maxa∈A gi(a) < Pηi +mina∈A gi(a) ∀i > 0....(∗)

This condition is always satisfied for some large enough integer P since Wi < ηi.

During this phase, player i is asked to play a conditional (pure) best response to

mi
−i
(
Φt
ω

(
ht−1

+

))
. Once Phase II(i) is over play moves into Phase III(i).

In Phase III(i) at each t ≥ τ +P + 1, if the history is ht−1 play the action profile

α+(i) such that

g+ (â0, α+(i)) = η(i) , where â0 = Φt(ω)
(
ht−1

+

)
.

This gives and expected payoff vector η(i) in this phase; by construction η(i) in-

corporates a small reward of ∆ for each player j other than the last player(i) to

deviate. If player j unilaterally deviates from Phase II(i) or Phase III(i) then

impose Phase II(j) followed by Phase III(j), and so on.

If type ω◦ has announced m = ω 6= ω◦ and mimicked type ω till time τ − 1,

resulting in history hτ−1, he reveals himself at τ by deviating from Φω by picking a

best response a0(τ) to ρ
(
Φτ
ω

(
hτ−1

+

))
from within the actions that the announced type

ω would not take at τ :

a0(τ) ∈ argmax g0

(
a0, ρ

(
Φτ
ω

(
hτ−1

+

)))
s.t. a0 6= Φτ

ω

(
hτ−1

+

)
.

If player 0 deviates for the first time at τ resulting in the history hτ , set µ(ω◦|ω, hτ ) = 1

and from time τ + 1 start playing σci (l + 2ε).

VERIFICATION OF EQUILIBRIUM:
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After m = ω 6= ω◦ has been announced, we need to check that every player i > 0’s

strategy is unimprovable holding the strategy of the others to be fixed when 0 has

never deviated before (this is enough because if 0 has deviated in the past if we are

in a complete information game, where deterring deviations is well-understood.)

Step 1: Player i > 0 doesn’t deviate from playing according to ρ in Phase I. Her

minimum payoff on the path is λi, while her maximum payoff from a one-shot devia-

tion is (1− δ)M + δ
(
1− δP

)
Wi + δP+1ηi, which converges to ηi as δ goes to 1. By

construction ηi < λi.

Step 2: Player i > 0 does not deviate from Phase II(j) or Phase III(j) because she

ends up with ηi rather than ηi + ∆.

Step 3: Player i > 0 does not deviate from Phase II(i) because she is anyway play-

ing her best response in each slice; any other action else gives a lower payoff in the

current period and also prolongs the punishment; deviating from Phase III(i) is not

profitable because inequality (∗) ensures that restarting the punishment is costly for i.

Step 4: We now reason that ω◦ does not deviate if δ0 ≥M/(M + ε).

(a) If (1−δ0)M < δ0ε, he will not find it profitable to announce ω 6= ω◦ and reveal

himself later.

(b) Consider the off-path situation where ω◦ has announced m 6= ω◦ at time 0.

If he reveals himself by a deviation he gets l + 2ε in the continuation game whereas

mimicking m gives him no more than l + ε. Since (1 − δ0)M < δ0ε, the maximum

cost of revealing himself is outweighed by the gain ε in the continuation equilibrium.

Therefore ω◦ announces truthfully. The result follows since ε is arbitrary. �
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COROLLARY : If (v0, v+) ∈ Rn+1 is an equilibrium payoff vector under complete

information and v0 > l, then the payoff v0 is an equilibrium payoff of ω◦ in any

reputational game (Ω, µ) when all players are patient:

[v0 ∈ V ci
0 and v0 > l ]⇒ v0 ∈ V0.

The next proposition concerns the payoffs of all players, not just 0. It is a quasi

folk-theorem result showing that any equilibrium payoff vector v of the complete in-

formation game with limiting patience can be supported as an equilibrium payoff of

the perturbed game if (i) the probability of the normal type is high enough, (ii) v0 > l

and (iii) vi > wi ∀i > 0 (rather than requiring vi to exceed the maxminmax Wi).

PROPOSITION 3 : Assume N, FD, and observable mixing. Fix and strictly in-

dividually rational payoff v of the complete information game. If v0 > l, for any

sequence of priors
(
µk
)
k∈N such that µk(ω◦) → 1 we can construct a sequence of

equilibria
(
σk
)
k∈N in the games

(
Ω, µk

)
satisfying

u
(
σk
)

:=
(
u0

(
σk
)
, · · · , un

(
σk
))
→ v.

PROOF : Fix (v0, v+) ∈ V ci such that v0 > l. Construct a truth-telling equilibrium

σk of the reputational game
(
Ω, µk

)
such that u0

(
σk
)

= v0. If the announced type

is ω◦, then play σci (v0); if m 6= ω◦ then play the equilibrium outlined in Proposition

2 where the normal type gets less than (v0 + l) /2. (Take ε of Proposition 2 as any
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positive no. below (v0 − l) /2.) Note the inequality

µk(ω◦) · v+ +
(
1− µk(ω◦)

)
·M ≥ u+

(
σk
)
≥ µk(ω◦) · v+ +

(
1− µk(ω◦)

)
· (−M).

Our proposition now follows since the upper and the lower bounds on u+

(
σk
)

above

converges to same quantity v+ as µk(ω◦)→ 1. �

REMARK: Note that neither this proposition nor the one before can be obtained

as a consequence of the folk theorem for stochastic games proved in Dutta (1996).

1.6 SOME EXTENSIONS

This section extends the main result to two additional situations of interest. The

earlier section makes an assumption that is critical for the proof to work — prob-

abilites of mixing by any player are ex-post perfectly observable. While this might

be a reasonable assumption in some circumstances, one can equally easily come up

with ones where this is less natural. This creates a problem during the punishment

phases of players i > 0. Note that punishing player 0 for declaring a non-normal type

does not make use of the observability of mixed strategies, because conditional on the

realisation of a public signal each i plays a pure action. Punishing any player i > 0

is problematic when one cannot observe how j 6= i, 0 mixed: If player j 6= i, 0 is not

indifferent between the myopic payoffs of all the actions in the support of mi
j , then

j will not mix with the desired probabilities when minmaxing player i in Phase II(i)

; deviations to actions outside the support of mi
j are readily detected and deterred

in the usual way. The first subsection below addresses this limitation. The second

subsection extends the result to games where the long run player moves first.
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1.6.1 UNOBSERVABLE MIXED STRATEGIES

While the pure strategy minmax does not need mixing to be observable, it is a less

severe punishment than the usual mixed-action minmax, and can support only a

smaller set of payoffs in equilibrium. However FM notes that even when mixing is

not observable we can use the minmax as punishment against players i > 0 in Phase

II(i); the trick is to adjust the continuation values at the end of the minmax phase

depending on the realised sequence of actions of player j during the minmax phase

so that j > 0, j 6= i indifferent between all actions in the support of mi
j.

Proposition 3 : Fix ε > 0. Assume N and FD hold. Even when mixing by i > 0 is

unobservable, we have vmin0 ≤ l.

Proof :14 Fix ε > 0. It is enough to show that there exists a payoff of the incomplete

information game in which player 0 gets v̂0 := l + ε and any i > 0 gets at least Wi.

The following quantities are as in the proof of Proposition 1: η ∈ Rn and ∆ > 0

such that W < η < η +
−→
∆ < λ ,15 where

−→
∆ := (∆, · · · ,∆), λ := (λ1, · · · , λ), and

W := (W1, · · · ,Wn); P is defined as before by (∗) and ρ(.) is the same as in TPL.

If 0 declares himself as normal type( i.e m = ω◦), play the (complete information)

repeated games equilibrium σci (v̂0) giving v̂0 to 0, and at least Wi to all others. If

m 6= ω◦, then start play in Phase I. In describing the phases below we repeatedly

use terms of the form zij. Suppose we order the actions in the support of mi
j (a0)

in increasing order of the expected utility they give when 0 plays a0 and the player

k 6= j, k > 0 play mi
k(a0). Let pij (K) denote the amount by which the expected utility

of the Kth action in the support exceeds that of the first action. Now define

zij :=
1− δj
δPj

τ∑
s=τ

δs−1
j pij (K(s)) ,

14To prevent cluttering of notation we do not make explicit the presence of the PRD in our proofs.
15We define vector inequalities as follows: x < y ⇔ xi < yi∀i ; x ≤ y ⇔ xi ≤ yi∀i and x 6= y ;

x 5 y ⇔ xi ≤ yi∀i.
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where K(s) is the action that j actually played in the sth period of the relevant

phase.16 After player i has been minmaxed or conditionally minmaxed, we transition

to a point adjusted by the quantities zij. Also note that for high δ the magnitude of

zij cannot exceed ∆/2; this ensures that no continuation value below goes outside the

feasible set.

Phase I: In period t play the action n-tuple ρ
(
Φt(m)

(
ht−1

+

))
, where ht−1

+ is the

history of actions upto and including period t − 1. If player 0 deviates from his an-

nounced strategy during any phase, go to Phase II(0). Suppose that 0 has never

deviated from his announced type. If player i > 0 deviates unilaterally from any

phase, switch to Phase II(i): Conditionally minmax i for P periods. Then go to

Phase III (i, zi1, z
i
2, · · · , zin), where (η1 + ∆− zi1, · · · , ηi, . · · · , ηn + ∆− zin) is the ex-

pected payoff vector to players i > 0 at t ≥ τ + P + 1. The ith component of is ηi,

and all other components j > 0 are ηj + ∆− zij; η(i) incorporates a small reward of

∆ for each impatient player j other than the last player(i) to deviate, and zij is the

adjustment that takes away any excess xepected reward and makes player j indiffer-

ent across all the strategies in the support of the mixed action that he needs to play

to punish i > 0. If player j unilaterally deviates from Phase II(i) or Phase III(i)

then impose Phase II(j) followed by Phase III(j), and so on. Consider the other

case— type ω◦ has announced m = ω 6= ω◦. He is instructed to play according to

Φ(m). Suppose his first deviation is at at time τ when we are in PhaseI or II(i) or

III(i) (for some i > 0); if the resulting in history hτ , we set µ (ω◦ |ω, hτ ) = 1; player

0 is then minmaxed for enough periods to wipe out gains, followed by a switch to the

complete information equilibrium σci (λ0 (a0) , λ1 (a0)− z0
1 , · · · , λn (a0)− z0

1).

From the standard folk theorem argument it follows immediately that the proposed

16If 0 has not revealed rationality then the the support of the actions in mi
j (a0) and their ranking

in increasing order of expected utility will vary with a0. Note that in FM the set of actions is the
same at all s = τ, · · · , τ̄ , whereas they could and in general do vary when we are in the incomplete
information game above. If 0 has revealed rationality and is also playing a mixed strategy mi

0 instead
of a pure action, then the above definition is appropriately adjusted.
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strategies constitute a sequentially rational equilibrium following the announcement

m = ω◦. All that remains is to verify that the play following m 6= ω◦ is also sequen-

tially rational, and that the normal type of player 0 has an incentive to tell the truth.

This is done in a number of steps, checking that there is no history such that a uni-

lateral one-step deviation by any j ≥ 0 at the chosen history gives j strictly greater

utility in the continuation game than the proposed equilibrium strategies. That this

suffices follows from the definition of NE and well known results in dynamic program-

ming. We first check the incentive constraints for the impatient players and then for

0.

Step 1: i > 0 has no incentive to deviate from Phase I .

If i deviates the maximum gain is (1− δ) bi + δ
(
1− δP

)
wi + δP+1ηi , which is less

than vi for δ close to 1 because it converges to ηi in the limit and by construction

ηi < vi.

Step 2 : i > 0 has no incentive to deviate from Phase II(j) , where j 6= i.

If i deviates to an action outside the support then i’s per-period payoff in the game

converges to ηi < ηi + ∆/2 in the long run. Thus she does not get the reward ∆/2 ,

which is given for carrying out the punishment. Given the definition of zji , player i’s

utility is independent of the probabilities of mixing.

Step 3 : i has no incentive to deviate from Phase II(i).

If i deviates to an action outside the support, she not only plays a suboptimal re-

sponse in the current period but also re-starts the punishment; this lowers the current

and future utility stream.

Step 4 : i > 0 has no incentive to deviate from PhaseIII(j) , where j 6= i.

Step 5 : i has no incentive to deviate from Phase III(i).

If i deviates the maximum gain is (1 − δ)bi + δ
(
1− δP

)
wi + δP+1ηi. The payoff

from conformity to the equilibrium is ηi. Thus a suffcient condition to rule out any
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profitable deviations is

(1− δ)bi + δ
(
1− δP

)
wi + δP+1ηi < ηi

As δ → 1 the LHS converges to the RHS. Rearranging, the above is equivalent to

bi + δ
(
1 + · · ·+ δP

)
wi <

(
1 + · · ·+ δP

)
ηi.

As δ → 1 the LHS converges to bi + Pwi < (P + 1)ηi , which is what the RHS

converges to. This holds from the definition of P .

Step 6: We now reason that ω◦ does not deviate. If he announced m 6= ω◦ at time

0, then he follows Φ(ω) because he gets a lower payoff by deviating and then playing

the worst possible slice a0 always: He gets λ0 (a0) = mina0
λ0 (a0) at each time. The

normal type annouces ω◦ truthfully because his payoff is v̂0 = l+ε when he announces

truthfully and sticks to the equilibrium, whereas it is less than or equal to v̂0 if he

either announces anything else and faithfully mimics that type or if he announces

ω 6= ω◦ and does not play like the announced type. �

1.6.2 LONG− RUN PLAYER MOVES FIRST

This section extends the results of the previous section to the case where the long-run

player moves first. Given any simultaneous stage game G as above, define the ex-

tensive form stage-game Gseq in which player 0 moves first and players 1,2,...n move

simultanously after observing the action chosen by player 0. There is the obvious and

natural one-to-one mapping from the set of action (n + 1)- tuples of G to the set of

terminal nodes of Gseq ; use that to define utilites for Gseq .

Corollary 4 : Even without announcements there exist sequentially rational equi-
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libria giving (normal )player 0 a payoff of l + ε when the stage game is of the form

Gseq and N holds.

Proof: same as in Proposition 1 above. �

1.7 A LOWER BOUND FOR n > 1

Having already seen that the LR player can be forced down to payoffs arbitrarily close

to l , we end by looking at what payoffs LR can actually guarantee himself. Start by

considering types that have a dominant strategy to play a constant action a0 in every

period (bounded recall zero). Fix any a0 ∈ A0, and ask the question: What can the

LR player guarantee himself by mimicking a type that plays this constant action each

period: at0 = a0 ∀ t = 1, 2, ...? First define the corresponding individually rational

slice F ∗ (a0) defined as follows, where wi is the minmax of i in G:

F ∗ (a0) := {v ∈ F (a0) : vi ≥ wi∀ i > 0} .

Thus both F (a0) and F ∗ (a0) are defined by truncating the slice-feasible payoff set

F (a0) below some level for each player i > 0. In the first case this level is the

maxminmax for each player, and in the second case this is the conditional minmax.

Note that F ∗ (a0) ⊂ Rn+1, the n+ 1-dimensional Euclidean plane. Take the infimum

of the projection of this set onto dimension 0 ; that is the lowest payoff that 0 can get

in an equilibrium if he sticks to a0 for all t. The rough reasoning is that if 0 continues

to play a0 , the others cannot continue to play a strategy profile that gives them less

than their respective minmax values. If all he could do was to mimic a type that

plays a constant action every period (a bounded recall strategy with 0 memory) the

worst he could do is to get the max over a0 ∈ A0 of these minima. Thus we have a

lower bound l0 := maxa0∈A0inf F
∗
0 (a0) ; in any equilibrium player-0 cannot get much

less than l0 when all players are patient and he is relatively patient, and the prior
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places positive weight on all types that play a constant action a0 for all t. A formal

statement follows. We make the following assumption:

Assumption TC: All “crazy” types declare their type truthfully.

This assumption, it should be remarked, is not assuming truthtelling for the entire

game. In no way does it constrain the normal type ω◦’s announcement.17 This

assumption has been used by Abreu and Pearce (2002, 2007) as a shortcut to an

explicit model with trembles or imperfect monitoring, in which the strategies would

eventually be learnt whether or not some irrational types declare truthfully. However

such a model would of necessity be technically challenging to handle, especially in view

of the large type space I wish to support. One might thus justify it as contributing

to technical simplicity.18

Next, a richness assumption will capture the premise of reputational arguments—

Even when we believe that a player is overwhelmingly likely to be of a given type,

we can never be absolutely sure that he is. Naturally reputational arguments are

interesting precisely because they work even when one type — the normal type of the

corresponding repeated game— ω◦ ∈ Ω has high probability mass, i.e. µ(ω◦) ≈ 1.

The following makes the assumption that the prior µ places a positive but arbitrarily

small weight on all types that play a constant action every period.

Assumption ACT (All Constant action Types ) : µ (ω (a0)) > 0 ∀a0 ∈ A0.

Under this rather weak assumption ACT and TC we have the following result

that puts a lower bound on 0’s payoff across all BN equilibria.

17If truthtelling is to hold there it must be derived; otherwise studying reputation is pointless.
18A section of the next chapter extends the analysis to situations where announcements are un-

available; the accompanying proof would not need TC .
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Proposition 5 (Lower Bound): Under TC and ACT there exists a lower bound

l0 (δ0, δ1) on the payoffs on 0 in a BN eq. such that limδ→1limδ0→1l0 (δ0, δ) = l0 ,

where l0 := maxa0∈A0inf F
∗
0 (a0).

Proof: This proof is omitted because it is standard in the existing literature; see for

example Cripps, Schmidt, and Thomas. �

The above step establishes the existence lower bound on 0’s min payoff in BN

eq.19 using strategies that involve playing a single action at all times. Note that the

definition of F ∗(a0) uses the minmax value wi , which would in general be less than

a conditional minmax defined earlier.

In a game where strategies can be learnt because of trembles or imperfect moni-

toring the set F ∗ (a0) would be replaced by the set H (a0), which uses the conditional

minmax rather than the minmax: H (a0) := co {v ∈ F (a0) : , vi ≥ wi (a0)∀ i > 0} .

This would raise the lower bound as wi (a
∗
0) > wi in general. We use F ∗ (a0), which

truncates F (a0) below the minmax wi rather than below the conditional minmax

wi (a0), because there might exist equilibria in which even if player 0 plays a0 always

it is not clear to the others that this is the case; consequently they perceive their

lowest eq. payoff as wi rather than wi (a0).

In general, it is clear that constant action types constitute a small class of strate-

gies; there are uncountably infinite ways of switching between the various actions

in A0, each action amounting to the choice of a “slice” of the game G. The next

step would be to look at increasingly longer strategies of bounded recall, perhaps

using some kind of induction on the memory size and see to what extent they lead

to further improvements. This unfortunately turns out to be a very hard problem

to solve, partly because there are uncountably many “crazy” strategies that 0 could

19This bound thus applies to all BNE, not just the smaller subset of PBE.
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potentially mimic. In principle one could think of each “crazy” strategy as a rule

for transitioning among the slices G ; thus solving the incomplete information game

is akin to solving a class of stochastic games among n rather than n + 1 players,

defined using the repeated game. We then need to find for each game in the class the

worst possible payoff of the normal type, and finally taking sup/max over all these

possible minima(or infima). Since stochastic games are notoriously hard to handle,

this compounds the difficulty. However as we have seen, LR cannot guarantee himself

anything more than l no matter how patient he is relative to his opponents, who are

also patient.

1.8 CONCLUSION

This paper contributes to the literature on reputation that starts with the work of

Kreps, Wilson, Milgrom and Roberts, and is sharpened into powerful and general

theoretical insights by Fudenberg and Levine, and subsequent papers. My paper

analyses reputation formation against multiple patient opponents. I show that there

are some additional insights to be gained from this case, over and above the elegant

theoretical insights of the previous literature with a single opponent. While reputation

is in general valuable even against multiple players, it may not be possible for the

patient player to extract the entire surplus while leaving the others with barely their

minmax values. Let vmin0 be the minimum equilibrium payoff of player 0 in the limit

when all players are patient and 0 is patient relative to the rest. I find an upper

bound l such that vmin0 ≤ l: Any payoff of the (complete information) repeated game

in which 0 gets more than l can be sustained. A single opponent cannot threaten

credibly to punish and thwart a patient player trying to build reputation. But with

more than one patient opponent, there might be ways to commit to punishing even

a patient player for not behaving like the normal type.
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Appendix

Proof of TPL: STEP 1: g∗∗0 ≥ l. For any a0 ∈ A0, ∃a+ such that g0 (a0, a+) =

w0 (a0) and gi (a0, a+) ≥ Wi∀i > 0. Since Wi ≥ wi, either g (a0, a+) ∈ F ∗ or w0 (a0) <

w0. In either case w0 (a0) ≤ g∗∗0 := Max {v0 |(v0, v+) ∈ F ∗}. Since l := max {w0 (a0)}

and a0 is arbitrary, it follows that g∗∗0 ≥ l.

STEP 2: g∗∗0 6= l. Notice that

g∗∗0 = l =⇒ ∃a′0 ∈ A0 such that w0(a
′
0) = l := maxa0w0 (a0) .
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Consider F+ (a′0), which has a non empty interior by N . There cannot be a point

x in F (a′0) where x0 > g∗∗0 because this would contradict the definition of g∗∗0 . So

v0 ≤ g∗∗0 = l for any v ∈ F (a′0). Now we show that the above inequality is actually

an equality. Suppose that ∃v ∈ F (a′0) with v0 = l; i.e. ∃ā+ ∈ A+ such that

g0 (a′0, ā+) < l = g∗∗0 . Since F+ (a′0) has a non empty interior we can take a point

in its interior and convexify it with g (a′0, ā+) such that the convex combination v̄ is

in F (a′0) and v̄0 < l, leading to the contradiction that l = w0 (a′0) ≤ v̄0 < l = g∗∗0 .

So we must have g0 (a′0, a+) = g∗∗0 ∀a+ ∈ A+, which implies w0 ≥ g∗∗0 . The reverse

inequality follows from the definition of these quantities. Therefore w0 = g∗∗0 , which

implies dim (F ∗) ≤ n and therefore contradicts FD.

Steps 1 and 2 taken together imply that g∗∗0 > l. �
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Chapter 2

Reputation with Multiple

Opponents: Mixed Strategy Types

2.1 INTRODUCTION

The literature on “reputation” perturbs a complete information game by introducing

a small probability that one player could be committed to various dynamic game

strategies; this small room for doubt leads to a dramatic change in the equilibrium

payoffs when a sufficiently patient player with private information about his type

exploits it to build “reputation”. Work on reputation has not studied cases where

multiple non-myopic opponents interact with one another, not just with the relatively

patient player; my work is the first1 to investigate how far the results for a single

opponent extend to settings with multiple non-myopic opponents(i = 1, 2, · · · , n;n >

1) and one relatively patient player(0), who attempts to build reputation.

The basic issue in the reputation literature is: How high a payoff can 0 guarantee

1As mentioned in the introduction to the earlier chapter of this thesis, Fudenberg and Kreps
(1987) is the only paper to my knowledge that has multiple opponents playing 0, who is trying to
build a reputation. However their framework is significantly different from mine; in particular, the
opponents do not affect one another’s payoffs through actions. They are concerned with the effect of
0’s actions being observed publicly rather than privately by each opponent when the basic “contest”
is an entry deterrence game.
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himself when he has access to an appropriate set of types to mimic and is patient

relative to the other players? The first general result on reputation, due to Fudenberg

and Levine (1989), henceforth FL, applies to a long-lived player 0 playing an infinitely

repeated simultaneous stage-game against a myopic opponent: As long as there is a

positive probability of a type that plays the Stackelberg action2 at each time, a

sufficiently patient reputation-builder can approximate his Stackelberg payoff. When

a patient player 0 faces a single myopic opponent, allowing for a rich enough space of

types leads to a discontinuity in the (limiting) set of equilibrium payoffs as we go from

the complete information to the incomplete information game: Even small ex-ante

uncertainties are magnified in the limit, and the effect on equilibria is drastic. Does

the same message hold in variants of the basic framework?

Reputation was introduced into the literature by Kreps and Wilson (1982), and

Milgrom and Roberts (1982) in the context of finite-horizon chain-store games. They

showed that arbitrarily small amounts of incomplete information suffice to give an

incumbent monopolist a rational motive to fight early entrants in a finitely repeated

entry game even if in each stage it is better to acquiesce once an entry has occurred; in

contrast the unique subgame-perfect equilibrium of the complete information game is

marked by entry followed by acquiescence in every period (this is Selten’s well-known

chain-store paradox ). Another paper by the above-named four explains cooperation

in the finitely repeated prisoner’s dilemma using slight incomplete information, al-

though there is no cooperation in the unique subgame perfect equilibrium of the

corresponding complete-information game.

Schmidt (1994) was the first to consider a non-myopic opponent; subsequent pa-

pers by Aoyagi (1996), Celentani et. al (1994), Evans and Thomas (1997, henceforth

ET) all consider only one non-myopic opponent. Let us be precise about the discount

2If player 0 were given the opportunity to commit to an action, the one he would choose is called
the Stackelberg action. In other words, the Stackelberg action maximises his utility if his opponent
plays a best response to whichever action he chooses.
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factors δ0, δ1, · · · , δn at the cost of some additional notation. All four papers just

mentioned deal with the limiting case where all players are patient but 0 is relatively

patient, i.e. δi → 1 ∀i > 0 and 1−δ0
1−δi → 0 ∀i > 0. One standard justification of a

higher discount factor for 0 is that he is a large player who plays with several oppo-

nents, who play relatively infrequently. This assumption is not needed by my work,

although it is in this context that my work stands in sharp contrast to the previous

literature. Here is the main result established by the last mentioned three papers:

As the (relatively impatient) opponent also becomes patient in absolute terms, the

payoff of the patient player tends towards g∗∗0 = max {v0 |(v0, v1) ∈ F ∗},3 where F ∗ is

the feasible and individually rational set of payoffs; i.e. he gets the most that is con-

sistent with individual rationality of the opponent, player 1. Their results thus show

that g∗∗0 lower bounds v0
min, the minimum equilibrium payoff of 0 in the incomplete

information game as all players become patient( with 0 being more patient).

Now we turn to a key contribution of my paper. The immediate generalisation of

the bound obtained by Aoyagi, CFLP, and ET for n = 1 to multiple(n > 1) opponents

is g∗∗0 = max {v0 |(v0, v1, · · · , vn) ∈ F ∗} . One obvious case where this holds is the one

where the more patient player(0) is playing a series of independent games with the

other n players.4 When players 1, ...n are myopic, i.e. their discount factors are 0,

the above bound follows readily from the analysis of FL; if the other players are

also patient the bound derives from (an n-fold repetition) of the analysis of ET.

However the previous chapter of this thesis finds that this is not true in general: The

presence of additional opponents each with the ability to punish and play out various

repeated game strategies complicates the situation. With a single patient opponent5

3We adopt the convention that the generic value is v; w is the “worst” value; and b denotes the
best. The mnemonic advantages hopefully justify any break with practice.

4By “independent” I mean that the payoff of any player i > 0 is independent of the actions of
player j > 0, j 6= i . This game is the concatenation of n two-player games, each of which has player
0 as one of the two players. Furthermore, the types of player 0 are independent across these games,
in the sense that observing the play in any one game conveys no information about the type of 0 in
any other game.

5L equals the Stackelberg payoff of 0 in FL.
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the previous literature establishes that vmin0 ≥ L = g∗∗0 . It is interesting that, under

some non-emptiness restriction that rules out cases like the immediate extension

above, a world with multiple opponents gives an upper bound on how high a payoff

“reputation” can guarantee 0. In the earlier chapter I defined a bound l such that

all complete information (i.e. without the perturbed type space) equilibrium payoffs

that give player 0 more than l can be sustained in the limiting set of Perfect Bayesian

Equilirbrium (PBE) payoffs even under incomplete information, and even when I

allow arbitarily complex history-dependent types such as those used by Schmidt,

Aoyagi, CFLP, and ET; that sequential rationality is satisfied in the construction of

the above equilibria makes the task even more onerous. Finally, l could be much

lower than g∗∗0 , and even as low as the minmax value of player 0. This means that

while reputation is in general valuable to a player, its impact is less dramatic when

there are multiple opponents; above a certain payoff for player 0 the perturbed game

is no different from the original repeated game of complete information.

Let us now take a closer look at the literature with only one patient opponent. Re-

call FL’s argument for a single myopic opponent: If the normal type mimics the type

that plays the “Stackelberg action” in every period, then eventually the opponent will

play a best-response to the Stackelberg action if she is myopic, thereby assuring 0 of

the Stackelberg payoff. By making the opponent patient, Schmidt introduces a twist

in the tale: even if the normal type of player 0 perseveres with the Stackelberg action

of the stage-game, a non-myopic opponent need not play a period-by-period best re-

sponse if she fears that she is facing a perverse type that plays like the commitment

type on the path but punishes severely if she plays a best response to the commit-

ment type.6 The source of the problem is that off-path strategies are not learnt in

6A related problem is that even if the normal type and a commitment type are the only types,
the non-myopic opponent could still fear that play will move to a bad equilibrium of the complete
information game after normal type of 0 reveals rationality. If the opponent’s best response to the
commitment type of 0 does not give the normal type of 0 his best possible payoff, then one may
indeed tempt 0 to reveal himself and punish the opponent for best-responding to the commitment
type.
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any equilibrium with perfect monitoring; this could lead to a very weak lower bound

on vmin0 , in particular one lower than the Stackelberg bound of FL. Schmidt shows

that FL’s positive reputation result extends only to “conflicting interest games” —

games where the reputation builder wants to commit to an action that minmaxes the

other player; in these games the opponent, myopic or not, has no choice about how to

respond — she must play her static best-response or get less than her minmax value,

which is impossible in equilibrium. Later Cripps, Schmidt, and Thomas (CST, 1996)

considers arbitrary stage-games and obtains a tight bound that is strictly below the

bound of FL. Their bound is “tight” in the sense that there exist equilibria that give

0 payoffs just above this bound.

Subsequent papers argue that CST takes a somewhat bleaker view of reputation

effects than warranted. Two of these, Aoyagi and CFLP, both differ from Schmidt

and CST in that there is no issue whether strategies can be learnt: Trembles in the

first paper and imperfect monitoring in the second ensure that all possible triggers

are pressed and latent fears do not remain. When strategies are eventually learnt,

reputation is once again a potent force. In particular the lower bound on payoffs is

as high as feasibility would allow, and in general the long-run player does even better

than getting the static Stackelberg payoff. The final decisive step towards restoring

a high lower bound was taken by Evans and Thomas (ET, 1997); they showed that

CST gets a weak lower bound because all irrational types are assumed to impose

punishments of bounded length; under limiting patience ET extends FL’s result to

the case of a single long-lived opponent playing an arbitrary simultaneous stage-game

under perfect monitoring. Assign a positive prior probability to a type that plays

some block of actions, expects a block of replies in return, and punishes for k periods

the kth deviation from the desired responses; then the lower bound, with a sufficiently

patient opponent, tends towards the best feasible payoff for 0 subject to the opponent

getting her minmax payoff; thus ET shows that the bound g∗∗0 in Aoyagi and CFLP
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applies independently of the monitoring structure. In terms of the framework used

in the literature, my work adds more opponents to Schmidt’s framework.

As mentioned earlier in this section, my work shows that adding more impatient

players, who interact with one another, could significantly weaken the impact of

reputation. This is proved in the earlier chapter, which makes two important simpli-

fications — it assumes (1) that there is the option to send messages, and (2) that the

reputation-builder can commit only to pure strategies of the dynamic game. While

each assumption may be natural enough and likely to be satisfied in a range of appli-

cations, this chapter seeks to dispense with these and extend the qualitative result.

We first note why the assumptions have bite. Both the availability of announcements

and the notion of a type as a pure (rather than mixed) strategy of the dynamic game

are important for the exact numerical bound and, more substantively, the technique

of proof: At each t, the history determines uniquely the pure action that 0 plays if he

is indeed the announced type. This enables the other players to mete out a suitably

tailored punishment at each time t+1 if the normal type of player 0 is trying to mimic

a non-normal type; furthermore, any deviation from the announcement is immedi-

ately detected by the others. Such tailored punishments and immediate detection

may no longer be feasible in either of the following two cases — (i) types are pure

strategies of the dynamic game but announcements are not available, or (ii) types

could be committed to mixed strategies, either a constant mix independent of history

or an arbitrary mixed strategy of the dynamic game. Focus first on the second of the

two sources of difficulty pointed out above; suppose we allow for types that commit

to mixed strategies of the dynamic game. First, the presence of such types means

that the previous bound won’t work because at each step there is more freedom for

player 0: instead of playing exactly one action from A0 he can mix among these

actions, each such mix inducing a game among the remaining n players. One could

still extend the result to mixed strategy behavioural or crazy types when mixing is
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ex-post observable; the bound needs to be redefined to allow for the extra flexibility

available to player 0, but the proof remains unchanged in essence —the normal type

of 0 cannot get more than the bound if he sticks to his announced mixing proba-

bilities; if he deviates he reveals himself immediately as the normal type. However,

matters are more complicated when types are committed to mixed strategies that

are unobservable even ex-post, because deviations are not readily detected. In the

latter case the normal type may announce one strategy and follow another that takes

the sting out of whatever punishments are intended for him; if the two strategies are

observationally indistinguishable— for example if they have the same support on the

path— it is impossible to detect deviations on a period-by-period basis. A similar

difficulty arises in case (i) above: When there is no scope for messaging, even when

the opponents observe a deviation from the equilibrium strategy suggested for the

normal type, they cannot learn exactly what type they are facing, as a given devia-

tion may be consistent with a number of different behavioural types. Therefore, they

are unable to determine the right punishment. We address these two issues in turn

and show that the qualitative message does not rely critically on these.

The plan of this chapter is as follows: section 2 reminds the reader of the model;

section 3 retains the assumption that types are pure strategies of the dynamic game,

but does not need an announcement phase at the start of the game; the one after

allows player 0 to send messages, but broadens the types-space to include types

that are committed to mixed/behavioural strategies of the dynamic game; section 5

concludes. The combination of both these extensions — mixed-strategy types without

announcements — is left for future research.
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2.2 THE MODEL

The model follows the notation of the previous chapter; differences from the baseline

model are indicated in the appropriate sections. For the sake of completeness we

remind the reader of the notation. There are n+1 players — 0, 1, 2, · · · , n; throughout

we refer to player 0 as “he” and to the others as “she”. Player 0 is relatively more

patient and attempts to build a reputation. At each time t = 1, 2, · · · the players

play a simultaneous stage-game

G = 〈N = {0, 1, · · · , n} , (Ai)
n
i=0 , (gi)

n
i=0〉 .

N is the set of players; Ai is the finite set of pure actions of player i in the stage-

game, and Ai := 4 (Ai) is the set of mixed actions αi of player i. An action profile

a of all players is in A := ×ni=0Ai ; the action vector a+ of the players i > 0 lies in

A+ := ×i>0Ai. Throughout, the ith element of a profile/vector is denoted by the same

symbol but with the subscript i ; the subscript + denotes all players i > 0 collectively.

The payoff function of agent i ≥ 0 is gi : A → R ; and the vector payoff function is

g = (g0, g1, · · · , gn) : A → Rn+1. For any E ⊂ Rd and any J ⊂ {1, 2, · · · , d}, the

projection of E onto the plane formed by coordinates in J is denoted by EJ :

EJ :=
{

(ej)j∈J

∣∣∣∃ (ek)1≤k≤d,k/∈J s.t. (el)1≤l≤d ∈ E
}
.

The convex hull of any subset E of an Euclidean space is coE; it is the smallest convex

set containing E. For any player i ≥ 0 the minmax value wi and the pure strategy

minmax value wpi are defined respectively as

wi := minα−i
maxai

gi (α−i, ai) ; wpi = mina−i
maxai

gi (a−i, ai) .
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The feasible set of payoffs in G is F := co {g(a) : a ∈ A}, using an PRD7(Public

Randomisation Device) available to agents; φt is the observed value of the PRD in

period t , and φt denotes the vector of all realised values from period 1 to period

t. The individually rational set is F ∗ := {v ∈ F : vi ≥ wi ∀i ≥ 0}. Monitoring is

perfect. This chapter also make the simplifying assumption that mixing by players

1, 2, ..., n is observable ex-post.

Players 1, 2, · · · , n all maximise the sum of discounted per-period payoffs; to re-

duce notation and facilitate comparison with the literature on repeated games I take

a common discount factor, i.e. δi = δ ∀i > 0.8 Let us now add incomplete informa-

tion — the patient player(0) could be one of many types ω ∈ Ω; the prior on Ω is

given by µ ∈ 4(Ω). The type-space Ω contains ω◦, the normal type of the repeated

game, who maximises the sum of per-period payoffs using his discount factor δ0. The

other types may be represented as expected utility maximisers, although their utility

functions may not be sums of discounted stage-game payoffs. Consider, for example,

the “strong monopolist” in the chain-store game of Kreps and Wilson; this type has

a dominant strategy in the dynamic game to always fight entry. In section 3 below,

each type ω 6= ω◦ is identified with or defined by the following sequence

Φ1(ω) ∈ A0,Φt+1(ω) : At+ → A0.

This sequence Φ(ω) := (Φ1(ω),Φ2(ω), · · · ) specifies an initial (t = 1) action and for

7Given any payoff v in the convex hull of pure action payoffs, Sorin constucted a pure strategy
without public randomisation alternating over the extreme points so as to achieve exactly v when
players are patient enough. This does not immediately allow us to get rid of the PRD because the
construction of Sorin need not satisfy individual rationality — after some histories the continuation
payoff could be below the IR level. Fudenberg and Maskin extended his arguments and showed that
this could be done so that after any history all continuation payoffs lie arbitrarily close to v ; if v
is strictly individually rational so are the continuation values lying close enough. Taken together
these papers showed that a PRD is without loss of generality when players are patient. I continue
to make this assumtion in the interests of expositional clarity.

8Lehrer and Pauzner (1999) look at repeated games with differential discount factors, and find
that the possibility of temporal trade expands the feasible set beyond the feasible set of the stage-
game. This creates no problems for my results because the feasible set of the stage-game continues
to remain feasible even if all δi’s are not equal .
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each t > 1 maps any history of actions9 played by players 1, 2, · · · , n into an action

of player 0. In section 4 we expand the potential set of types to allow the reputation-

builder to commit to mixed strategies of the dynamic game: Each type ω 6= ω◦ will

then be defined by the following sequence

Φ1(ω) ∈ 4 (A0) ,Φt(ω) : At−1 →4 (A0) .

Fix (G,Ω, µ), where G is the stage-game, Ω = {ω◦, ω1, · · · , ωK} is an arbitrary finite

set of types, and µ is the prior on Ω. In order to give reputation effects room to

operate I allow a very rich set of types; in particular any of the complex history-

dependent behavioural types employed by CFLP or ET may be included in Ω. The

limiting payoff set of the complete information game is V ci;V is the limit of the PBE

payoffs of the incomplete information game as δi → 1 and 1−δ0
1−δi → 0 for all i > 0; and

vmin0 denotes the infimum of 0’s payoffs in V . My results are of the form vmin0 ≤ l.

2.3 REPUTATION WITHOUT ANNOUNCEMENTS

The previous chapter of this thesis poses the problem as a signalling game, where 0 is

first given the opportunity to state his type. While adding an announcement phase

is a natural modification, one might still wonder if the result goes through without

announcements.10 The earlier chapter implicity assumes that a “crazy” type does not

misrepresent its type, although a normal type may choose to mimic a “crazy” type.

Truth-telling is incentive compatible for the “crazy” types, but only weakly so. If we

modify the result to work even without an announcement stage, this assumption is

9Potentially player 0 could condition his play on the PRD upto period t + 1 , i.e. on φt+1 , in
addition to at

+. This would not change our results or proofs; the notation is more involved though.
10The results on the previous section titled “Long-run Player Moves First” goes through even

without annoucements, which are irelevant when 0’s action is observed before the normal players
1,2,...n move. It is interesting to compare this with FL, where the result is immediate if the patient
player moves first.
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little more than a technical convenience. Fortunately one can indeed show that the

main result extends, although at the cost of added complexity of the strategies.11

At each t = 1, 2, · · · ,∞ players i ≥ 0 simultaneously choose actions ai ∈ Ai.

The public history of actions upto and including time t is ht ∈ At. An equilibrium

comprises the following elements, defined recursively over the time index:

(i) for type ω 6= ω◦ of 0 a period-1 action σω(1) ∈ A0 ; and a sequence of maps

σω(t) : At−1
+ → A0; t > 1 ;

(ii) for each i ≥ 0 a map σi(1) : {φ1} → Ai , and for each t > 1 maps

σi(t) : At−1 × {φt} → Ai ;

(iii) beliefs µ (. |ht−1, σ ) ∈ 4 (Ω), following the history ht−1 and given the equilibrium

strategy profile σ, are obtained by updating using Bayes’ rule wherever possible.

Additionally we stipulate that for ω 6= ωo the strategy σω is given by Φ(ω) , as long as

ω has not violated his own precepts. This in effect defines a “crazy” or “behavioural”

type. Let σω := {σω(t)}t≥1. The strategy σi of player i ≥ 0 is the collection of maps

{σi(t)}t≥1 ; the set of all strategies of player i is Σi. As usual, a strategy profile is

σ := (σ0, σ1, · · · , σn) ∈ Σ := Σ0 × Σ1 × · · · × Σn.

In what follows ui(•) refers to the discounted value of a strategy profile to player i,

possibly contingent on a certain history of actions; thus ui (σ |ht−1 ) is the sum of the

per-period payoffs of player i discounted to the beginning of period t, following the

history ht−1, and given that players play according to the strategy profile σ. We refer

11The critical value of the discount factor required for the proof to work would in general be
dependent on the cardinality of the type-space, but the limiting value is independent of the fine
details.
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to the payoff of the normal type of player 0 when we use u0(•) . Our equilibrium

concept is stated below.

Definition : A tuple
(
σ∗0, σ

∗
1, · · · , σ∗n, {µ (. |ht−1, σ∗ )}t>1

)
defines a Perfect Bayesian

Equilibrium (PBE) if no player has a strictly profitable unilateral deviation, i.e. for

any i ≥ 0 and any (t− 1)-period history ht−1 we have

ui
(
σ∗
∣∣ht−1

)
≥ ui

(
σ̂i,σ

∗
−i
∣∣ht−1

)
∀ σ̂i ∈ Σi.

First, a few comments on the intuition and the strategy of proof of Proposition

1 below, which extends Proposition 1 of the previous chapter to the current scenario

where announcements are unavailable. Consider a strategy σci of players 0, 1, · · · , n

in the repeated game giving player 0 a payoff of l + ε and any i > 0 at least Wi.

We shall now construct an equilibrium of the incomplete information game in which

ω◦ plays according to σci0 . Consider the following strategy profile. Players start by

playing according to σci; as soon as 0 deviates from σci0 the prior µ is appropriately

modified. Find the behavioural type ω∗ of player 0 who gets the highest probability in

the updated beliefs. The equilibrium strategy asks players i > 0 to play ρ (Φ(ω∗))the

next period. Of course it is possible that the actual action played by 0 in the next

period is something other than Φ(ω∗). It is important to note that if |supp(µ)| = K ,

then along any path there can be at most K points where all types that are currently

in the support do not behave identically; this is the content of Lemma 1. At each such

point at least one type is eliminated from the support of the posterior derived from

µ by Bayesian updating. Thus there can be no more than K mistakes in predicting

the strategy of 0. Consequently in at most K periods can the normal type of player

0 get more than v̂0 := l + ε. More than K mistakes is a 0-probability event under

the equilibrium strategy and leads players 1, 2..., n to (rightly) believe that they are

facing the normal type who has deviated. Although this means that the normal type
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of player 0 cannot gain by deviating at more than K points, it is not enough for my

proof to go through. There are two potential problems with this line of argument.

First, since each deviation gives player 0 a one-shot gain, it might be tempting for a

normal-0 to deviate at points of time that are very far apart. It might take so long

for his true type to be discovered that punishments could become irrelevant from the

point of view of the current period. Since he can choose any strategy he wishes, there

is nothing to prevent him from deviating at points of time very far apart. To prevent

this we apply a “real-time” correction. When a mistake has been made in predicting

the strategy of 0, the others are asked to apply an immediate correction by minmax-

ing 0 to wipe out the gains that a normal type of 0 would have accumulated by that

mistake. This need not be viewed as a punishment but as a corrective. The second

potential problem is : Why would i > 0 stick to her assigned role? The argument

combines the proof of Proposition 1 of the preceeding chapter with the observation

that if i deviates she can escape punishment, and perhaps even get high payoffs,

for at most K periods; if δ is high enough, then punishments cannot be avoided for

long enough— conditionally minmaxing her is enough. Before we state Lemma 1

formally, we recall the following — µ (•|ht−1, σ) denotes the posterior at the start of

the period t derived from the prior µ, conditional on the history of play upto period

(t−1) and the equilibrium strategy σ; for convenience we sometimes denote it by µt−1.

LEMMA 1 (Finite Non-identical Play Property ): Suppose ω◦ /∈ supp (µT ),

for some T > 0. Along any path of play, equilibrium or otherwise, there can be at

most |Ω− {ω◦}| = K − 1 periods after T where all types of player 0 that are still in

the support of the posterior beliefs do not play the same action.

Proof: Let A (µt−1) denote all actions that have positive probability of being played

in period t by player 0 given µt−1. Suppose that suppA (µt−1) > 1. If a0(t) /∈

suppA (µt−1), then Bayes’ rule imposes no restrictions on how µt is to be derived
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from µt−1; so we set µt(ω
◦) = 1. Otherwise, if a0(t) ∈ suppA (µt−1), we must have

supp (µt) ≤ supp (µt−1) − 1, since all types in the support of µ(t − 1) that were ex-

pected to play the action at0 may now be dropped from the support of µ(t). For

any path of play where suppA (µt) > 1 for t = t1 < t2 < ... < tK , we must have

suppA (µs) = 1 ∀s > tK . �

Proposition 1 below formalises the argument in the above paragraph using lemma

1(FNPP). The proof continues to employ the simplifying assumption that mixing by

players i > 0 is observable ex-post; as we have seen in the previous chapter, relaxing

this is fairly uncomplicated.

PROPOSITION 1 (Upper Bound Without Announcements) Under as-

sumptions N and FD, vmin0 ≤ l even if announcements are unavailable.

Proof : Fix ε > 0. We constuct a PBE of the incomplete information game in which

player 0 gets v̂0 = l+ ε and any i > 0 gets at least Wi. Using TPL from the previous

chapter choose η ∈ Rn,∆ > 0 such that

Wi < ηi < ηi + ∆ < λi ∀i > 0.

As before, λi is the maximum payoff of player i across all slices when in each slice

players i > 0 play accoding to ρ. Define the length P of the punishment phase such

that

PWi +K ×maxa∈A gi(a) < Pηi +K ×mina∈A gi(a) ∀i > 0 · · · (∗)

In what follows a “deviation” by player 0 in period t from a strategy profile σ is taken

to mean that in period t player 0 plays an action a0(t) /∈ A (µ(. |ht−1 , σ)). Beliefs are

updated using Bayes’ rule following an event that has positive probability; following

a 0-probability event under σ, the posterior puts probability 1 on the normal type of
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player 0 as in lemma 1 above. Let σci(v0, vi, · · · , vn) denote the equilibrium(SPNE)

strategy profile of the complete information repeated game that gives ω◦ a payoff

of v0, and gives player i > 0 a payoff of vi; when arguments are omitted it means

that we do not impose any restrictions on those payoffs except that they exceed the

corresponding minmax levels.

Let ω∗(t) be the type on which µt−1 places the highest probability; if more than one

type has this property choose the one with the lowest index when Ω is enumerated in

any fixed way. (Indeed we could just as well choose this using any other deterministic

algorithm.) Now let a∗o (t) := Φt (ω∗(t)). Note that if A (µt−1) contains only one

action, then this action is a∗o (t). Then define

Ψt (µt−1) := ρ (a∗o (t)) = ρ (Φt (ω∗(t))) ∈ A+,

the n-tuple of actions that delivers v̂0 = l + ε in slice-a∗o (t). We assert that the

following strategies are part of a PBE giving ω0 a payoff of v̂0 := l+ ε. Play proceeds

according to the following phases.

Phase I: In period t play the action n-tuple Ψt (µt−1) ∈ A+. If a∗o (t) = a0(t), i.e. if

the other players correctly anticipated the action of player 0, continue in PhaseI. If

a∗o (t) 6= a0(t) but a0(t) ∈ supp (µt−1), i.e. player 0 played an action that was in the

support but not the action a∗o (t) that the others had bargained for, switch to Phase

Adjust : Minmax 0 for P periods, and return to Phase I if there are no deviations

by players i > 0.

Now we specify how to react to deviations. Suppose player 0 has never deviated(i.e.

all actions played by 0 have been consistent with some type of 0, normal or not), and

that player i > 0 deviates at time τ ; then play enters Phase II(i), followed by Phase

III(i).

Phase II(i) : Player i is conditionally minmaxed in slice a∗o (t)
(
ht−1

+

)
at time t =
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τ + 1, · · · , τ + P .

Phase III(i) : Give the expected payoff vector η(i) to players i > 0 at t = τ + P +

1, τ +P + 2, · · · ,∞. The ith component of η(i) is ηi, and all other components j > 0

are ηj + ∆; η(i) incorporates a small reward of ∆ for each player j > 0 other than

the last player(i) to deviate.

If player 0 deviates during any phase— including the case a0(t) /∈ supp (µt−1)— ,

we set µ (ω◦ |ω, hτ ) = 1; player 0 is then minmaxed to wipe out gains, followed by a

switch to σci (λ0 (a0) , λ1 (a0) , · · · , λ (a0)), where a0 ∈ argmin {λ0 (a0)}.

This may be verified to be a sequentially rational equilibrium, in a manner similar

to Proposition 1 of the previous chapter. �

2.4 REPUTATION WITH TYPES THAT MIX

All previous results are proved for a type space Ω = {ω◦, ω1, · · · , ωK}, where the

behavioural types ω1, · · · , ωK are committed to pure dynamic game strategies, i.e.

each type ω ∈ Ω−{ω◦} plays in each period t = 1, 2, ... a unique action Φt(ω)
(
ht−1

+

)
∈

A0 conditional on the history ht−1
+ of action profiles of players 1, 2, · · · , n. Each type

ω 6= ω◦ is thus identified with or defined by the following sequence of mappings

Φ1(ω) ∈ A0,Φt(ω) : At−1
+ → A0

, which specifies an initial action (for t = 1) and for each t > 1 maps any history of

actions played by players 1, 2, · · · , n into an action of player 0. This notion of a type

as a pure (rather than mixed) strategy of the dynamic game is important both for

the exact numerical bound and, more substantively, the technique of proof: At each

t, given the history ht−1, the pure action Φt(ω)
(
ht−1

+

)
that 0 plays is known to the

other players 1, 2, · · · , n; this enables them to not only mete out a suitably tailored

punishment, but also detect deviations by the reputation builder as soon as they
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occur. For the case of mixed strategy crazy types we maintain the earlier notation —

fix (G,Ω, µ), where G is the stage-game, Ω = {ω◦, ω1, · · · , ωK} is an arbitrary finite

set of types, and µ is the prior on Ω. Each type ω 6= ω◦ is now identified with or

defined by the following sequence

Φ1(ω) ∈ 4 (A0) ,Φt(ω) : At−1 →4 (A0)

,where each A0 has been replaced by4 (A0), and and type ω’s period-t strategy maps

from At−1 rather than At−1
+ . For a behavioural type it is unnecessary to specify how

he plays after having himself deviated in the past, because this is inconsistent with the

definition of a behavioural type as one that is committed to playing in a certain way.

When we consider pure strategy types, all the relevant information is summarised in

the history ht+ of the opponents’ moves; with mixed strategy types several actions

may be consistent with any given type, and we can specify how 0 plays conditional on

his earlier realised actions. Therefore the domain of Φt(ω) is At−1 rather than At−1
+ .

Using relatively standard techniques I extend my results in proposition 3 of the

chapter before to the case where mixing by players 1, · · · , n is not observable ex-

post; however allowing the reputation-builder to commit to mixed strategies requires

significantly different techniques. Before a formal statement of the proposition let

me try to explain the key issues involved, starting with the conceptually simpler

case when 0′s mixed strategies are ex-post observable. First, the presence of types

that mix means that the previous bound won’t work because at each step there is

more freedom for player 0: instead of playing exactly one action from A0 he can

mix among these actions, each such mix inducing a game among the remaining n

players. We must redefine the upper bound to allow for the extra flexibility available

to player 0, but the proof remains unchanged in essence — if he deviates he reveals

himself immediately to be a normal type; micmicking another type faithfully isn’t a
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profitable deviation from playing like a normal type. Matters are more complicated

when types are committed to mixed strategies that are unobservable even ex-post,

because deviations are not readily detected. This point is explained in greater depth

further in the section.

The notation below closely follows that for pure types. Here is the concept of a

slice when there are mixed-strategy types:

Definition : For any α0 ∈ A0, the slice-α0 is formally the game G (α0) induced

from G by replacing A0 by {α0} , and restricting the domain of gi to {α0} × A+ to

get ĝi, i.e.

G(a0) :=
〈
N := {0, 1, · · · , n} ; {a0} , (Ai)i>0 ; (ĝi)i≥0

〉
.

Our earlier upper bound was defined by taking the max of w0 (a0) over all actions

a0 ∈ A0. Now we need to take the supremum over all probability distributions α0 on

A0. This is clearly a larger set and consequently the upper bound cannot decrease.

We now redefine the bound l. First, for each mixed action α0 ∈ 4 (A0) we have an

induced game G (α0) as before.

Definition : The conditional minmax of i > 0 in the slice-α0 is the minmax of i > 0

conditional on the slice G (α0) ; call it wi (α0).

Definition : The maxminmax of a player i > 0 with respect to 0 is defined as the

supremum of all conditional minmaxes:

Wi := supα0wi (α0) .

Start by defining

F (α0) := {v ∈ F (α0) : vi ≥ Wi∀ i > 0} .

Note that F (α0) ⊂ Rn+1, the projection of F (α0) onto the 0th coordinate is denoted
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by adding the subscript 0 , i.e. F0 (α0) ⊂ R. First, observe that the worst payoff for

player-0 in the slice-α0 subject to each player i > 0 getting above her maxminmax is

w0 (α0) := inf F0 (α0) ≡ inf { v0 : (v0, v+) ∈ F (α0)} .

The new upper bound is given by the supremum of these infima over all slices :

l := supα0w0 (α0) ≡ supα0inf F0 (α0) .

Even with this new bound, designing and enforcing a punishment for announcing a

non-normal type proves challenging. To avoid further complications at this point, we

retain the announcement phase. Since announcements are available we allow player

0 to send an initial message m and subsequent messages mt at each time t = 1, 2, · · · .

We also make the simplifying assumption that a Random Public Device (PRD) is

available. For simplicity assume that mixing by players i > 0 is observable ex-post,

even though we cannot observe mixing probabilities chosen by 0; this simplifies the

proof considerably without affecting the essence of the result.12

With types that mix the crux is that detecting deviations is no longer immediate

— ω◦ can announce some ω 6= ω◦ but behave like σ∼ 6= σ(ω); there is no way

to immediately detect a discrepancy between the initially announced type and the

actual play if, for example, σ(ω) and σ∼ have the same support in A0 at each t on

the path of play. The key to resolving this problem is that while there is no way

of detecting a deviation period by period, one may monitor the distribution of the

actions of 0 over time. More precisely, given any announced ω we can define for each

12In other words, even if we assumed that mixing by all players 0, 1, ..., n is unobservable even
ex-post we can define and prove a non-trivial upper bound on reputation. We would then use the
minmax (wp

0) of 0 over A+ rather than 4A+ during the adjustment phase, to be defined shortly.
The new bound would merely be max{wp

0 , l},where l is the bound defined above. In particular the
above argument works unchanged when (a) wp

0 = w0, or (b) wp
0 ≤ l , where (a) implies (b). Since

l < g∗∗0 , so is max{wp
0 , l}, ensuring that the bound will be non-trivial.
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period t an excess reward function ξt, which measures the excess of the realised payoff

of 0 over the expected payoff. Over time a Law of Large Numbers(henceforth LLN)

would, we might hope, assure us that player 0 won’t be too much above his expected

payoff if he is playing according to the initially announced type.

At a technical level, one should note that classical LLNs use independent and

identically distributed random variables. The requirement that the random variables

ξt be identical is easily relaxed since they are uniformly bounded in variance. (This

follows immediately from the payoff functions gi : A → R being uniformly bounded

by ±M , where M := maximaxa |gi(a)| ; it follows that |ξt| ≤ 2M ∀t , which together

with Eξt = 0 implies that V ξt ≤ 4M2. )

The first condition (independence) is not unfortunately not met because types

condition their t period play on the history of actions upto t − 1; in other words, a

type can play a different mix at different histories. To avoid this problem we could

assume that the type space Ω contains only constant (mixed) action types, i.e. each

ω 6= ω◦ plays α(ω) ∈ 4A0 after all histories. Then players i > 0 also need to play

a constant profile ρ (α(ω)) to punish 0 for declaring a non-normal type ω. Since the

mixed action profile is history-independent as long as there are no deviations, ξt’s are

indeed IID; this case is readily covered by LLNs. However reputational arguments

derive considerable power from the reputation builder’s ability to condition his future

actions on the past play of his opponents.

Fortunately, even when one allows such permissive history-dependent behavioural

types that mix we can show that our construction admits of an appropriate LLN (for

dependent random variables) is applicable. We now formally define the excess payoff

functions and state the appropriate LLN.

Definition : The excess payoff function ξα : A → R is defined by ξα(a) :=

g0(a)− g0(α) , where α is any mixed action profile.
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This is the excess payoff to player 0 when the action profile played is a and the

desired mixed action was α. Using this we next define the excess payoff given any

announced type ω and any t− 1 period history ht−1 when players follow the punitive

plan encoded in ρ(◦).

Definition : ξt (ω, ht−1) (a) := ξβ(a) , where β = (Φt(ω) (ht−1) , ρ (Φt(ω) (ht−1)))

Before proceeding further we state some results that will enable us to state an appro-

priate weak law of large numbers. Let Y1, Y2, · · · be a sequence of zero-mean random

variables , and let It−1 is the information filtration at time t− 1 . Then we define the

following:

Definiton : {Yt}t≥1 is a Martingale Difference Sequence if E (Yt |It−1 ) = 0∀t.

The next property records that the random variables ξt form a MDS, where It−1

now denotes the filtration generated by ξt−1, ..., ξ1 :

Property : E (ξt |It−1 ) = 0 and V ξt ≤ 4M2 ∀ω, ht−1.

Either of the following theorems may, for example, be used (for the first see Badi

Baltagi, pg. 218).

THEOREM 1: Let {Yt}t≥1 be a MDS. If
∑T

t=1
σ2

t

t2
<∞∀T then 1

T

∑T
t=1 Yt 7−→prob 0.

Fact 1 :
∑∞

t=1
1
t2

is a convergent series.

THEOREM 2 (Chow):: Let {Yt}t≥1 be an MDS w.r.t {It}t≥1. If for some r ≥ 1
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,
∑T

t=1

(
E |Yt|2r

)
/tr+1 <∞, then 1

T

∑T
t=1 Yt 7−→a.s. 0.

Fact 2 : Convergence almost surely implies convergence in probability.

LEMMA 2 : Along any equilibrium path and any ω, we have 1
T

∑T
t=1 ξt 7−→prob 0.

PROOF : The proof follows from the properties of the excess payoff functions and

either (a) Theorem 1 and Fact 1, or (b) Chow’s theorem, Fact 1, and Fact 2 when we

take r = 1 . �

LEMMA 3 : For any ω and any history ht , ∃ N and δ̄0 ∈ (0, 1) such that if

δ0 > δ̄0 , the total discounted sum of excess payoffs

T∑
t=1

ξt + δ0ξt+1 + · · ·+ δN−1
0 ξt+N−1

N
< ε.

Before an exact statement of the proposition and its proof, let me present a sketch

highlighting the key features of the construction. Recall the structure of announce-

ments — player 0 sends an initial message m ∈ Ω at t = 0, and at each time t ≥ 1

a message mt ∈ Ω just before the stage-game G is played. (Thus each t is a length

rather than instant of time.) Beliefs are formed in the natural way — in keeping

with Bayes’ rule players i > 0 put probability 1 on the announced type m; following

any unexpected message or play, players put probability 1 on the normal type. As

before the normal type is asked to send the message ω◦ at all t. Any type ω 6= ω◦

sends the message ω at all t. If m = ω◦, then play moves to the SPNE of the com-

plete information game (see Fudenberg and Maskin (1986) giving player 0 a payoff

of v0 = l + 4ε. If m = ω 6= ω◦, then play starts in Phase Ia, where for N periods

play is according to ρ(◦), which tracks the (mixed) strategy of player 0 and punishes

him on each slice. By the definition of ρ(.) the expected payoff of 0 at each time t
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does not exceed l + ε. However even if 0 mixes according to the initially announced

type, there is a positive probability that the discounted sum of actual excess payoff

during any PhaseIa exceeds l + ε. In order to ensure that these excess payoffs to

not accrue, we need to do a review after the N periods of Phase Ia,— which was

not necessary when Φt(m) (ht−1) was a degenerate distribution over the actions in

A0. If the realised payoff of 0 during the block of N periods exceeds the target payoff

(= l + ε) by more than ε the other players mixmax 0 for exactly NP periods so as

to wipe out any gain over and above the permissible limit of ε. (If δ is high then

players i > 0 would rather carry out a costly punishment for NP periods than be

punished into the future. ) At the end of this adjustment phase we move back to

the start of Phase Ia for another cycle of N periods. This ensures that if we target

l + ε, then 0 cannot get more than l + 2ε. With types that mix it is thus a posi-

tive probability event that the adjustment phase is triggered even on the equilibrium

path; we need to ensure that this is not often enough to reduce the expected utility

from the equilibrium path to where players 1, · · · , n would rather face punishment

than carry out this expensive threat against player 0. However if we choose N to be

a large enough integer this probability can be made arbitrarily small, say θ; lemma

2, together with the fact that players are patient, assures us of this. The proof makes

the argument exact by computing bounds on the payoffs of players i > 0 during the

on-path play, and verifies that appropriate incentives are in place. It would be amiss

to not mention the pioneering work of Radner, whose “review stategies” this resem-

bles. In the repeated principal-agent model Radner(1985) shows that one can get

approximately effcient subgame perfect Nash equilibria by using a very similar form

of statistical testing followed by a reversion to the stage-game that is Pareto-worse

compared to the suggested point. The critical difference is that in Radner’s work it

is enough to monitor the realisation of successes and failures generated by the (unob-

servable) actions of the agent and then use a LLN for IID random variables; this is
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not so for my proof for a couple of reasons. First, note that a WLLN for independent

trials is applicable in our case only when player 0 plays a constant mixed action in

each period; otherwise a LLN for dependent random variables is called for. Secondly,

unlike in Radner’s model, the variable being monitored is generated by the actions

of not just the player who is being monitored but by others as well — so we need

to give appropriate incentives so that the others play actions that allow us to keep

tabs on 0’s actions statistically. In other words, the outcomes (success or failure) are

independent over periods in Radner’s case, but in mine I need the other players to

choose their actions in a (complicated) history-dependent way so as to ensure that

the excess rewards form a martingale difference sequence.

Since players i > 0 carry out this strategy the normal player 0 cannot get more

than v0 − 2ε by declaring m = mt = ω 6= ω◦ and following σ∼; this is strictly worse

than the payoff to declaring m = mt = ω◦ and following the SPNE σci(v0) of the

complete information game. What does the strategy ask ω◦ to do after declaring

m 6= ω◦ ? He is then asked to reveal himself at the first possible opportunity. For

example, if type ω◦ has until time τ mimicked ω then he is asked to send the message

mτ+1 = ω◦ and reveal himself ; if τ belongs to a Phase Ia that started at s < τ

then play switches to a game of complete information that gives player-0 a payoff of

v0 − ε = l + 3ε from s onwards. (This can be done in such a way that others get

payoffs above their respective wi. Note that in order to give 0 a payoff of l+ 3ε from

the start of the current phase Ia players i > 0 might need to give him more than l+3ε

in the continuation game when he deviates. If all players are patient this will cost

them no more than a small amount π, which would still be above their maxminmax.

Note: Indeed all we need is to give i > 0 a payoff above the minmax wi, which is in

general lower than the maxminmax Wi.) The following proposition is the analogue

of proposition 1 of chapter 2 for types spaces containing behavioural types that mix

when mixed strategies ( and mixing is not ex-post observable).
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PROPOSITION 2: Under assumptions N and FD (with announcements), we

have vmin0 ≤ l even if the type space contains behavioural types committed to strate-

gies that involve mixed and/or have infinite memory.

PROOF : Fix an arbitrarily small ε > 0. (Note: As we shall see readily ε can-

not be so large that the target payoffs are infeasibly high.) It is sufficient to find a

PBE in which ω0 gets an equilibrium payoff of v0 := l+4ε. In what follows let σci(x0)

denote a SPNE for the complete information game that gives player 0 a payoff of x0.

First we describe the strategy profile that gives ω◦ a payoff of v0 in the reputational

game. We assume for convenience that a PRD is available.

Description of the Strategy Profile :

The normal type is asked to send the message ω◦ at all t, and play according to

σci (v0). Conditional on having announced a non-normal type until date τ , ω◦ is ex-

pected to reveal himself at the start of τ + 1 by sending the message ω◦. (Any type

ω 6= ω◦ sends the message ω at all t and plays according to Φ(ω).) The path of play

for players i > 0 depends on the initial announcement, as detailed below.

Case I (m = ω◦): If m = ω◦, then play the strategy profile σci (v0) starting at time

t = 0.

Case II (m 6= ω◦): If m 6= ω◦ and no player has ever deviated, then we are in Phase I.

In what follows we use a PRD; therefore “deviation” by i > 0 refers to deviation from

a pure action contingent on the realised draw; for player 0, a “deviation” is said to

occur at period t only when an action a0(t) not in the support of Φt(m) (ht−1) is

played.

We first define the following quantities. Lemma 4 assures us that with mixed types

there is an “appropriate” punishment in each slice:
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LEMMA 4 : Fix any slice α0 ∈ 4A0. ∃ρ(α0) ∈ ∆A+ such that

g0 (α0, ρ(α0)) ≤ l + ε and λi(α0) := gi (α0, ρ(α0)) > Wi + γ for some γ > 0,

where γ depends on ε.

PROOF : similar to corresponding lemma of the previous chapter.

This implies that λi := supα0λi(α0) > Wi+γ. Now fix the n+2 quantities π, (ηi)i>0 ,∆

s.t. Wi < ηi < ηi + ∆ < λi − π < λi. Since Wi < ηi by construction, we can find a

large enough interger P , which will later be seen to be the length of the conditional

minmaxing phase, such that

PWi +max gi (a) < Pηi +min gi (a)∀i > 0....(∗)

We start in Phase Ia: During the first N periods, where N is chosen to satisfy lemma

3 above, and the prescribed play at t conditional on the t − 1-period history ht−1 is

ρ (Φt(m) (ht−1)), the mixed action profile that gives player 0 a low expected payoff(no

more than l + ε) in Φt(m) (ht−1). After N periods we now do a review, which was

not necessary when Φt(m) (ht−1) was a degenerate distribution over A0. If the re-

alised payoff of 0 during the block of N periods does not exceed the target payoff

by more than ε, we start another Phase Ia; otherwise the other players mixmax 0

for NP periods, wiping out any gain over and above the permissible limit of ε, while

the normal type of 0 is instructed to play some pure best reply during this stage.

At the end of this adjustment phase IIb we move back to the start of phase Ia for

another cycle of N periods. By lemma 3 we can find a large enough integer N which

is independent of the discount factors and the type ω such that the probability of the

average discounted excess payoff being more than 2ε after N periods falls short of θ,
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whre θ > 0 will be chosen to be suitably small later on.

Suppose player 0 has never deviated from his announced strategy in the past and

that player i > 0 deviates from the prescribed path at time τ ; then play enters

Phase IIi , where player i is conditionally minmaxed in slice Φt(m) (ht−1) at time

t = τ, τ + 1, · · · , τ + P , where P is the length of the punishment. Once Phase IIi

is over play moves into Phase IIIi , where the play is such that η(i) is delivered at

t = τ + P + 1, τ + P + 2, · · · ,∞ ; recall that the ith component of this vector is ηi

, and all other components j > 0 are ηj + ∆. If player j unilaterally deviates from

Phase IIi or Phase IIIi, then impose Phase IIj followed by Phase IIIj, and so on.

Conditional on an announcement m = ω 6= ω◦, players believe that they are

indeed facing type ω until 0 deviates from Φ(m) or sends a message m 6= ω and

reveals himself to be the normal type. Once the continuation game is a complete

information game, any player including 0 may be punished by minmaxing by the

other players P periods (see * above ). If player 0 reveals himself as the normal type

at the start of a Phase Ia then play re-adjusts to give him v0 − ε = l + 3ε from

the start of the current Phase Ia. If he reveals normality during a Phase Ib then

the minmaxing continues until the current phase is played out, and thereafter play

switches to σci (v0 − ε).

Checking that the Strategy Profile Constitutes a PBE:

Step 1 : Player 0 will not deviate :

(i) From standard results for the complete information game it follows that 0 does

not deviate after he reveals himself to be a normal type.

(ii) ω◦ will reveal himself with m = ω◦ and get v0 because the maximum following

any announcement m 6= ω◦ is below v0 − 2ε.

(iii) Following m 6= ω◦ , in Phase Ia the normal type in indifferent between

revealing himself at any point within the current phase, because it will give him the
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same utility from the start of the current Ia ; delaying revelation until after the

current phase is strictly worse.

Step 2 : Player i > 0 will not deviate :

(i) during Phase Ia : When Phase Ia has just been started let player i’s utility

be vai . Let T := N − 1 + NP . The following inequality follows from the recursion

structure:

vai
1− δ

≥ λi
(
1 + δ + δ2 + · · ·+ δN−1

)
+ θ

{
(−M)

(
δN + · · ·+ +δT

)
+ δT+1 vai

1− δ

}
+(1− θ) vai

1− δ
δN

=⇒ vai ≥
λi
(
1− δN

)
−MθδN

(
1− δT−N+1

)
{1− (1− θ)δN − θδT+1}

As θ → 0, the right-hand side tends to
λi(1−δN)
(1−δN )

= λi ; thus ∃θ∗ s.t θ ≤ θ∗ ⇒ vai ≥

λi − π. The total discounted value at the start of Phase Ia comprises the following

terms: First we have N periods during each of which which player i expects to get no

less than λi, given the announced type and the construction of ρ(◦); with probability

θ this is followed by an adjustment phase in which player i gets no less than −M and

subsequently play moves to the next Phase Ia, whereas with the remaining probability

1− θ Phase Ia is repeated.

(ii) during Phase Ib : When Phase Ib (the adjustment phase) has just been

started let player i’s utility be vbi . It is easy to see that if i does not have an incentive

to deviate at the start of the adjustment phase then she will not do so later, because it

is at the start that the player has to be ready to mete out a possibly costly punishment

for the greatest number, viz. NP , periods. The minimum utility from carrying

this out is
{

(−M)
(
1 + · · ·+ +δNP−1

)
+ δNP

va
i

1−δ

}
, where vai is as above. If δ is high

enough, this is close to vai . If i deviates, play eventually settles down in an equilibrium

that gives ηi to player i. By construction ηi < λi − π, and λi − π ≤ vai from the step

71



above. It therefore follows that a deviation by any i > 0 from Phase Ib proves costly.

(iii) Player i does not deviate from IIIj or IIj because, in expected value, she

ends up losing the reward ∆ and any gains from the deviation are wiped out.

(iv) Player i does not deviate from IIi because, in expectation, she is playing her

best response anyway; deviation worsens both the current as well as the future payoff.

Likewise deviation from IIIi is unprofitable because of condition (*). �

2.5 CONCLUSION

The earlier chapter showed that additional insights were to be gained from studying

reputation formation against multiple patient opponents ; this chapter shows that the

message stands even if two key assumptions are relaxed in turn— that announcements

are available and that all non-normal types are pure strategy types. The message of

both these chapters is that it may not be possible for the patient player to extract the

entire surplus while leaving the others with barely their minmax values. Let vmin0 be

the minimum equilibrium payoff of player 0 in the limit when all players are patient

and 0 is patient relative to the rest. I characterise an upper bound l such that vmin0 ≤ l

: Any payoff of the (complete information) repeated game in which 0 gets more than

l can be sustained, even when 0 is patient relative to the others and we allow him

to commit to mixed(behavioural) strategies of the dynamic game. Furthermore, this

bound does not rely on the details of the type-space Ω. To summarise, while a single

opponent cannot credibly threaten to punish and thwart a patient player building

reputation, the presence of multiple opponents can provide very powerful checks and

balances on what reputation is able to guarantee.
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APPENDIX

PROOF OF LEMMA 3 : By lemma 2 we know that for any θ > 0, ∃N large

enough so that for any t and any initial t-period history ht−1 we have

Pr

(∣∣∣∣∣
T∑
t=1

ξt + ξt+1 + ...+ ξt+N−1

N

∣∣∣∣∣ > ε

2

)
≤ θ.

Now the absolute distance between the disocunted and undiscounted means is, given

N ,

∣∣∣∣∣
T∑
t=1

ξt + δ0ξt+1 + ...+ δN−1
0 ξt+N−1

N
−

T∑
t=1

ξt + ξt+1 + ...+ ξt+N−1

N

∣∣∣∣∣
≤

N−1∑
k=1

(
1− δk0

)
|ξt+k|

N
≤
(
1− δN0

)
(N − 1)M

N
<
ε

2

, when δ0 > δ̄0 , where δ̄0 solves the equation obtained when the last inequality is

replaced by an equality; thus the discounted excess payoff over any N periods will

with probability 1− θ not exceed ε
2

+ ε
2

= ε. �
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Chapter 3

Ideologues beat Idealists: A

Paradox of Strategic Voting 1

We’d like to vote for the best man, but he’s never a candidate. — Frank

Hubbard

3.1 INTRODUCTION

It is often the case that voters expect to have more information after the election and

before a policy choice is made, as the following hypothetical but plausible scenario

shows. A presidential election is in the offing, and the result hinges on one central

issue — How best to respond to a country that could pose a threat. Voters could be

divided on this issue — some support a direct confrontation (policy-0), while the less

hawkish prefer a diplomatic response(policy 1). Voters are aware that their ranking

of policies could change after elections are held, but before a policy choice is made;

these we call “shocks”. These shocks could be weak or inconclusive; voters then react

to this “idiosyncratic” shock depending on their personalities. However there is a

chance that some very conclusive evidence will come to the fore, either for or against

1Co-authored with Vinayak Tripathi.
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the said country being a threat, and cause all voters to agree on what the right

policy is ; this we call a “common” shock. If it is proved that the enemy was close

to developing nuclear weapons, then even the pacifist prefer confrontation; similarly,

everybody prefers a diplomatic response when there is no doubt that the adversary

is technologically incapable of mounting a serious military threat. Two candidates

contest on the following platforms. The first, B, is known to prefer policy 0 come

what may; the other, K, is an unbiased candidate who credibly promises to wait until

final rankings are formed after the shocks are received, and to then take the action

that the majority prefer. Who stands a better chance of being voted to power in

a (simple) majority election? One might expect the unbiased candidate to be the

natural choice of the population, especially when there is a significant probability of

a common shock that makes the committed policy bad for all voters: In the case of a

common shock, the unbiased candidate always implements what all voters prefer. We

find, perhaps counterintuitively, that voters may prefer the first candidate, thereby

committing to a policy rather than waiting to learn their true rankings. This problem

is greatly aggravated when voters are rational and their strategies constitute a Nash

equilibrium or, equivalently, voters base their decision on the scenario where they are

pivotal. This voting equilibrium survives a high chance that new evidence exposes the

committed alternative as being undesirable for all voters, i.e. a high probability of a

common shock away from the policy committed to. Political satirist Frank Hubbard’s

quip, quoted at the start of the paper, could be turned on its head — (Often) we

wouldn’t like to vote for the best man even if he were a candidate!

We emphasize that the electorate is faced with a choice between two candidates,

one of whom always offers a fixed policy from which he derives private benefits, while

the other is one who offers a state-contingent plan. Had the electorate’s choice had

been between two policies in the above environment with shocks to rankings, then

there would have been a positive probability of each policy being the socially optimal
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one. What makes our inefficiency quite stark is that the unbiased candidate must,

in any state of the world, implement the policy that maximises social welfare, but he

still loses. When voters choose between two policies each voter chooses the one that

he expects to prefer at the next date. As we shall see, this could give rise to inefficient

choices as documented by earlier work discussed later in greater depth. A somewhat

finer reasoning enters into the decision of the voter when he is strategic and must

choose between the two candidates B and K. To evaluate K’s plan the voter must

now take into account not merely his own ranking of policies but others’ rankings and

their equilibrium voting strategies; this is because he needs to keep track of where

the ex-post social optimum will be. This added element leads the pivotal voter to a

new form of inefficiency when he conditions his decision on being pivotal, which fuels

his fear of being in a precarious majority even if that is unconditionally very unlikely.

This point is elaborated in our examples and proofs.

What are the implications of the common shock for our result ? A common shock

captures a situation in which a large number of voters change their rankings in a

correlated fashion, as opposed to independently. 2 This feature enriches the insights

to be gained from our model: Presence of common uncertainty both adds realism and

serves as a test of the robustness of our results. In the event of an common shock,

the unbiased candidate provides perfect insurance to all voters in the electorate and

therefore a high chance of such an event pushes voters away from the suboptimal or

committed candidate. We show that the inefficiency is robust to a high probability of

a common shock. When the committed candidate comes to power, the common shock

exacerbates the degree of social inefficiency as it creates the possibility of the entire

electorate suffering a poor policy choice. On a more reassuring note, in the absence

of common shocks, the probability that an elected committed candidate implements

2This can be rationalized as follows - each individual’s utility function is comprised of a private
value component and a common value component. The common shock might significantly alter the
common values component of the utility thereby precipitating a correlated shift in rankings.
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the socially optimum policy approaches unity for large populations.

The choice between the committed and the unbiased candidate can also be thought

of as the choice between picking a policy immediately and waiting until further infor-

mation makes a more informed choice possible. We show that even with a substantial

chance of a common shock, the electorate might choose to act in haste and do the

former. Examples of public referenda fit this formulation more naturally. In October

1992, the Swedish Nuclear Fuel and Waste Management Company (SKB), an organi-

zation charged with the responsibility of safely disposing nuclear waste, proposed to

conduct a study to determine the feasibility of locating a repository. One of the towns

that seemed worthy of further investigation was Storuman, in northern Sweden. The

proposal polarized the community into those who opposed bringing nuclear waste to

Storuman and those who believed that likely economic benefits made the investiga-

tion worthwhile. The findings of the SKB would not be binding on the city and if

Storuman were deemed feasible it would still be up to the city council to decide, pre-

sumably in keeping with public opinion and the interest of the city, whether to allow

SKB to actually go ahead with builing a nuclear waste dump. A 1995 referendum

asked “whether SKB should be allowed to continue the search for a final repository

location in Storuman”. The outcome was an overwhelming ‘no’ (70.5%): the public

opted to reject it outright rather than allow more information to be disclosed by a

scientific study.

In an article published in the Op-Ed section of the L.A. Times3, Bruce Schulman

argues that changing sides has been costly in American politics of late. Candidates

spend resources trying to explain away changes in their stand on key issues, from

affirmative action to foreign policy. Even fairly incontrovertible evidence of having

changed does not dissuade them for arguing otherwise. Schulman suggests that po-

litical candidates do not wish to come across as opportunists who pander to the

3Schulman, Bruce J. 2007 April. ”Beware the politician who won’t flip-flop”, Op-Ed, L.A. Times.
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electorate for political gain. This line of reasoning is also explored by Kartik and

McAfee [18] who modify the Hotelling/Downs model of electoral competition to in-

clude voters with an explicit preference for candidates with character . The results

in our paper offer a different explanation for why political candidates might prefer to

commit to an ideology rather than update their stands as new information becomes

available. We argue that in an environment with changing preferences, the best con-

ceivable flip-flopper, one who adjusts his position to what is best for society at large,

cannot expect to win against an ideologue. Office seeking candidates might therefore

prefer to be perceived as having ideological biases although the electorate does not

intrinsically value this trait.

The results in this paper also offer insights into the type of candidates who enter

an election. If entering an election is costly and candidates have to choose a plan on

which to run, we show that a unbiased candidate may choose not to enter the race.

In this case, the electorate will not be presented with the option of voting for the best

candidate, as in the tongue-in-cheek quote at the start of the paper.

Our work is closely related to three strands of literature— the first, on status-quo

bias against reforms that are put to vote; the second, on pivotal voting; and the

third, on spatial competition and the median-voter result. The status-quo bias in

reform is well documented — changes that are known to benefit a majority ex-post

are not passed ex-ante because some of the would-be winners under the reform vote

against the reform; see for example Samuelson and Zeckhauser[16]. Fernandez and

Rodrik4 [FR] provide a rigorous explanation in the context of trade reforms, to our

knowledge the first that does not appeal to risk-aversion. Their explanation is based

on the identity of the winners within the majority group being unknown at the time

of voting. All voters of a group are ex-ante identical and hence maximise the expected

value of the group, behaving in effect like the representative voter of the group. This

4* # first drew out attention to this paper, and pointed out a very natural link between our work
and theirs.
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brings us to the second strand of related literature, which uses the concept of pivotal

voting, first introduced in the ‘Theory of Voting ’ by Farquharson[5]. More recently

this difference has been exploited by Austen-Smith and Banks [17] and Feddersen

and Pesendorfer [12] to analyse information aggregation in elections. The following

comment is intended to avoid legitimate confusion about the role of pivotal voting in

our model. Usually the difference between sincere and pivotal voting arises from the

fact that the private signal of each voter i affects the valuation of other voters j 6= i:

When j is pivotal, he can infer the distribution of signals of other voters i(6= j) and

thus updates his rankings conditional on being pivotal. We consider a model with

private values, i.e. any voter’s ranking of alternatives does not depend on others’

signals or rankings. But, as we just argued, there is no additional information about

voter j’s ranking of policies contained in his being pivotal; so why should his vote

depend on it at all? The paradox is resolved as follows: When voter j is pivotal, he

can infer the probabilities with which the alternative policies will be implemented at

the next date by the unbiased candidate K ; this determines voter j ’s preferences

over the candidates and thereby influences the outcome of the voting. Lastly, our

work may also be linked to models of spatial voting, notably the pioneering work of

Downs and Hotelling. In some senses we provide a framework that argues why the

reverse, in a very loose sense to be described later, of the median voter result might

hold; in our model a candidate with an extreme position beats an unbiased candidate.

The remainder of our paper is organised as follows: Section 1 puts our contribution

in perspective with illustrative examples; Section 2 sets up the model, presents the

decision problems of the sincere and pivotal voters, and characterises the resulting

equilibria; Section 3 looks at situations where the voting rule at the initial date differs

from that used at the subsequent date; Section 4 provides a discussion of the candidate

entry problem; and Section 5 concludes.
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3.2 ILLUSTRATIVE EXAMPLES

Example 1

We begin with an example that captures the logic of FR. To fix ideas, consider two

sectors in an economy — X and Y, with 76 workers in sector in X, and 25 in sector Y.

Workers of sectors X and Y are referred to as type-0 and type-1 voters respectively.

A simple majority election allows voters to choose whether to stick to the status-

quo policy (0) or to implement a reform policy (1). A voter who prefers the policy

implemented gets a utility of 1, while others get 0. The shocks are as follows: With

probability 0.2 there is a common shock that moves all voters to 1; with probability

0.8 there is an idiosyncratic shock that makes each worker of type-0 become a type-1

with probability p independently of the others. The original model of FR does not

have a common shock, but we add it for realism and to facilitate comparison of their

model with ours.

Case 1: p is not too small. If p = .25, the expected number of people who prefer

policy-1 at the next date will be 0.2∗101+0.8(25+0.25∗76) ≈ 56 which is more than

half; so the efficient outcome requires the reform to be passed. But it is not known

who the beneficiaries of reform in sector X will be when there is an idiosyncratic

shock because all individuals in X are ex-ante identical. Therefore the expected gain

to a current type-0 from the reform is 0.2 ∗ 1 + 0.8 ∗ 0.25 ∗ 1 = 0.4, which is less than

the utility from policy-0, 0.8 ∗ 0.75 = 0.6. The type-0 voter prefers policy 0, and the

reform is defeated even though it is welfare improving.

Case 2: p very small, i.e. the idiosyncratic shock is small and does not change the

balance of power. Say, p = .1. The expected number of people who prefer policy-1

at the next date is 0.2 ∗ 101 + 0.8 ∗ (25 + 0.1 ∗ 76) ≈ 46. Then policy-0 maximises

social welfare and all type-0 voters support it because the gain from the reform is

0.2 ∗ 1 + 0.8 ∗ .1 ∗ 1 ≈ .28; there is no inefficiency.

Essentially what each voter does is guard the interests of the group to which he is
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most likely to belong at the next date. In the above example each type-0 voter is

more likely to remain a type-0. Starting with a case where type-0’s are in a majority,

this is inefficent if and only if each type-0 is more likely to stay than to switch and

the type-1’s are expected to be in a majority at the next date. Although the model

of FR is not directly comparable to ours, their work essentially points out the above

source of inefficiency.

Note that there is no way for one voter to be pivotal in the framework above.

What if we were to introduce a means by which each voter could be pivotal in the

example above? Suppose that instead of there being exactly 76 and 25 workers in the

two sectors, we have a model in which a worker was randomly chosen by nature to be

of type-0 with probability ≈ 0.75. If type-0’s and type-1’s vote for different candidates

in equilibrium, this assigns a positive probability to each voter being pivotal. Would

this change how a typical voter behaves? Note that the voter in FR knows the

probability that he will prefer each alternative; he votes for that which generates the

highest expected utility. This is a weakly dominant strategy, even when every voter

assigns positive probability to being pivotal. Thus the logic outlined in the above

example works even if each voter can be pivotal.

As we shall see, our framework allows us to distinguish between pivotal and sin-

cere voting. We show that a combination of two features— voting over candidates

instead of policies, and strategic voting — makes the inefficiency more pervasive, al-

though either one alone would not do so. Thus inefficiency may result even when the

probability of switching in response to an idiosyncratic shock p is very small, as the

following example shows.

Example 2:

Let us now turn to our framework. There are 101 voters, and two alternative policies,

0 and 1. At date-0, the initial date, nature chooses each voter’s type, which is the

policy he ranks higher. Types are drawn independently — type 0 with probability
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.75, and type 1 with probability .25; each voter learns his own type. However there

is uncertainty in rankings — voters understand that when it is time to implement a

policy at the next date (date 1), their ranking of policies could be different. Each

voter gets a utility of 1 if his preferred alternative is implemented, and 0 otherwise.

There are two candidates — B, the first one, is known to have private benefits from

implementing policy-0; the second, K, is the unbiased candidate who behaves like the

social-planner and implements the policy that the majority prefers at date 1.

Next period one of two shocks is possible: With probability 0.2, a common shock

causes all voters will switch together towards 1 and with probability 0.8 there is an

idiosyncratic shock and each voter switches independently towards 1 with probability

p = .1 as in case 2 above. We should emphasize here that candidate K is the efficient

choice regardless of the shock.

Case a (Sincere Voting): The utility of a type-0 voter from voting B is 1− 0.2− 0.8 ∗

0.1 = 0.72 , since he gets a utility of 1 as long as he stays a type-0. Unconditionally,

type-0’s are expected to be in the majority at both dates with probabilities close

to 15. So if a type-0 voter is sincere and does not condition on being pivotal, his

probability of agreeing with K is very close to 1, and he votes for him. There is no

inefficiency as in case 2 above.

Case b (Strategic/Pivotal Voting): But the rational voter recognises that his vote

matters only when he is pivotal. The utility from voting B is still 0.72, because B

chooses a fixed policy. The utility from voting K is now 1− 0.8 ∗ 0.9 ∗ (1− (0.9)50) ≈

0.28. Conditional on the pivotal scenario, the majority will become the minority with

probability close to 1 if there is an idiosyncratic shock. The pivotal type-0 voter then

ends up in the minority if he is not among those who switch. Conditioning on the

knife-edge majority therefore leads him to vote against the reform.

Nature’s draw is almost certain to result in type-0’s being in a majority at date

5It can be checked that if the type-0’s are in a majority at date 0, they can become a minority
with probability of the order of 10−23.
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0; consequently the inefficent choice B is almost certain. A candidate committed to a

fixed policy beats the unbiased candidate, even though the probability of idiosyncratic

change is very low! If candidate B is elected, the probability that the policy chosen

is bad for the everyone is 0.2; this gives a sizeable lower bound on the degree of

inefficiency6. It might appear at first glance that what the rational voters should try

to guard against is the common shock towards 1, when B proves bad for everybody ;

but the logic of pivotal voting leads to a surprising conclusion.

In the framework of FR, pivotal and sincere voting yield the same results because

voting is over alternative policies not over candidates: Whether or not a voter is

strategic, it is a weakly dominant strategy for him to vote the alternative he prefers

in expectation. The others’ strategies are not relevant given that values are private.

The voter is presented with a choice between lotteries whose outcomes are independent

of other voters’ types and how they vote. As explained in the introduction, our model

also has private values, but the strategic element has bite because a pivotal voter can

infer the types of other voters and therefore what candidate K is likely to do at the

next date.

Inefficiency a la’ Fernandez and Rodrik is possible only when the efficient policy

hurts the current majority on average; we refer to this as the type I inefficiency. In

terms of our model, an idiosycratic swing in rankings must large enough to change

the balance of power and to reduce the erstwhile majority to a minority. If p is small

then there cannot be any inefficiency. We shall see that, in contrast, the inefficiency

displayed by our pivotal voter is more pervasive— it can happen even when idiosyn-

cratic shocks are extremely unlikely to change the balance of power (in expectation).

( As noted earlier, the common shocks tilt all voters towards the unbiased candidate.)

In terms of our results, our main proposition shows that the inefficiency persists even

when the probability p of any voter changing sides is small, and there is a substantial

6The majority is most likely to switch only when there is an common shock in favour of policy 1.
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probability of a common shock, which helps K. We refer to this as type-II inefficiency.

In summary, our work differs from FR on three counts — model, methodology, and

implications. First, in our model voters choose between candidates rather than policy

alternatives. Since one candidate offers a policy that is conditional on the electorate’s

final rankings of policies, a pivotal voter must take into account the voting strategies

of others; as a consequence he behaves differently from the sincere voter. Finally, from

a substantive point of view the pivotal argument implies that inefficiency remains even

when the “idiosyncratic” shock ( one that does not affect all voters the same way) is

unlikely to precipitate a large change., i.e. p is small.

3.3 THE MODEL

We consider a simple two-period model with voters in S = {1, 2, ..., 2n + 1}, where

n > 1, and a set of policies A = {0, 1}. At date 0, nature draws each voter’s type

t0i ∈ {0, 1} from a Bernoulli distribution with Pr{t0i = 0} = q > 1/2. The voter’s type

on a particular date specifies the policy he prefers on that date. Elections are held

at date 0 as well. There are two candidates to choose from — B and K. Candidate

B is known to derive private benefits from the policy 0 7, while K is an unbiased

candidate who promises to maximise social welfare. After the elections, each voter’s

type changes according to a stochastic process described below. Once each voter’s

date 1 type t1i is determined, K implements the ex-post social optimum policy if he

has been elected at date-0; if B was elected, he chooses policy 0. If a ∈ A is the policy

implemented at date 1, the utility of voter i is given by

ui(a; t1i ) =

 1 if a = t1i

0 otherwise
.

7q > 0.5 is without loss of generality as long as there is a candidate who derives private benefits
from implementing the policy that is favoured by the majority at date 0.

84



Fig. 1 below summarizes the temporal structure of the game.

 

Date 0 Date 1 

 

Action/ 

policy 

chosen by 

incumbent 

Date 1 

types 

drawn 

Date 0 

types 

drawn 

Election 

held 

Fig.1: Timeline

Voter’s types change over time as new information is revealed to them. Informative

signals arrive according to the following process. With probability δ, a public signal

favouring one of the policies arrives, forcing everyone to one side; all voters then prefer

policy 0 with probability π or policy 1 with probability 1 − π. With probability µ,

idiosyncratic private signals arrive, leading to independent changes in voters’ rankings.

These signals favour policy 0 with probability φ and policy 1 with probability 1− φ.

If the signal favours policy 0, each voter of type t0i = 1 (henceforth, type-0) switch

to policy 0 with probability p independently of the others, while the voters of type-

0 stick to their original preferences ; if it supports 1 then all 1 types stay put but

each type-0 changes to 1 with probability p independently of the others. Lastly, no

information arrives with probability 1− δ − µ; in that case we have t1i = t0i∀i . Later

we shall make the simplifying assumption that π = φ ; this is in no way important

for our results and merely permits cleaner algebra and succint interpretations of the

derived results. In a realistic case, one would expect δ to be small relative to µ-

it is more likely that individuals do not switch en-masse but rather in response to

information that each voter chooses to interpret as either strong enough to switch to

the other side or too weak to make a difference. All results continue to hold inspite

of the relative magnitudes of δ and µ as long as δ < µ . In the rest of the paper, we

refer to the δ-event as being a common shock, and the µ-event as an idiosyncratic

shock. Fig. 2 below summarizes the signal structure.
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Fig. 2: Schematic Representation of Changing Types

Each voter’s type at date 0 is private information; everything else, including the

rationality of voters and the stochastic process for the change of types from date 0 to

date 1 is common knowledge. It also seems realistic to say that a voter does not know

the exact types of the others, but has a general sense of the dispersion in opinion.

Since our focus will be on symmetric pure strategy equilibria, assuming types are

private information will allow voters to rationally condition on the pivotal scenario.

3.3.1 THE SINCERE VOTER

We use the sincere voter to shed light on the forces that influence the decisions of

a pivotal or sophisticated voter. The sincere voter does not condition on the state

in which he is pivotal, but instead picks the candidate who, given the unconditional

distribution of date 0 and date 1 types, is more likely to agree with him at date 1.

He uses a weakly dominated strategy: when he is not pivotal his vote does not affect

the result, and when he is indeed pivotal, his vote may not coincide with that of

the rational pivotal voter. While falling short of rationality in one of many ways.

the sincere voter provides a very useful benchmark against which to compare the

results for the pivotal voter, and also facilitates comparison with previous work. An
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interesting point emerges from the comparison: When all voters are strategic the net

outcome could be worse. As we shall see, the sincere voter can only generate one

of the two forms of inefficiency discussed below. We should also like to remark at

this point that our sincere voter is similar to Harsanyi’s rule-utilitarian voter[10]. A

rule-utilitarian is one who votes according to the rule that maximises social utility if

everyone else follows the same rule. This concept is further extended by Feddersen

and Sandroni [6], and by Coate and Conlin [3] to include group rule-utilitarians, who

choose the action that is best for the group when everybody in the group follows it.

Our sincere voter chooses like the group-rule utilatarian voter.

Since q > 0.5, the vote of the sincere type-0 voter determines the outcome of the

election in a large population. We find in Proposition 1 below that the type-0 voter

supports K either when (1) type-0’s are expected to be in a majority at date 1 , or

(2) type-1’s are expected to be in a majority at date 1, but the typical type-0 voter

is very likely to switch preferences at the next date i.e. p is ‘high’. The only case in

which he votes B is the one where the majority is likely to be at 1 at the next date

but any given voter is very likely to stay put i.e. p is ‘low’. In other words, he prefers

to commit and safeguard his interests today as he might not have enough support to

do so at the next date.

PROPOSITION: When q ∈ (0.5, 1) and n is large enough, sincere type-0 voters

vote B if and only if q(1 − p) < 1/2 and p < 1
2
(1 − δ

µ
). Otherwise they vote K. The

sincere type-1 voters always vote K. When type-0 voters support B, the probability

that B wins goes to 1 as n→∞.

PROOF: The expected utility of a sincere type-0 voter i when B is elected is

given by

Ui(B, 0) = 1− µ(1− φ)p− δ(1− π)

; the second term corresponds to the loss incurred when the voter sways to an id-

iosyncratic 1-signal and the third term is the loss due to an common 1-signal. When
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K is elected, the expected utility is

Ui(K, 0) = 1− µ(1− φ)pΛ01 − µ(1− φ)(1− p)Λ10 − µφΠ1

, where Λ01 is the probability that the date 1 majority is at 0 when type-0 voter

i switches to 1 in response to an idiosyncratic 1-shock, Λ10 is the probability that

the date 1 majority is at 1 when voter i ignores the idiosyncratic 1-signal and Π1

is the probability that the majority stays at 1 despite an idiosyncratic 0-signal.8

The three negative terms correspond to the three potential sources of loss under

K. Note that losses can only be incurred under K when idiosyncratic signals arrive.

Conditioning on an idiosyncratic 1-signal, the probability that an arbitrary voter

supports policy 0 at date 1 is q(1 − p) for large n. If we define the random variable

X01 ∼ Binomial(2n, q(1− p)) as the number of voters (barring one) who support

policy 0 at date 1 following an idiosyncratic 1-signal, then Λ01 = Pr{X01 > n +

1} = Pr{ 1
2n
X01 > 1

2
+ 1

2n
}. The Weak Law of Large Numbers guarantees that

limn→∞ Pr
{∣∣ 1

2n
X01 − q(1− p)

∣∣ < ε
}

= 1 for any ε > 0. If q(1 − p) > 0.5, there

exists an n large enough and an ε > 0 so that

Pr

{∣∣∣∣ 1

2n
X01 − q(1− p)

∣∣∣∣ < ε

}
≤ Pr

{
1

2n
X01 >

1

2
+

1

2n

}
≡ Λ01 ≤ 1.

It follows that

q(1− p) > 0.5⇒ lim
n→∞

Λ01 = 1 and lim
n→∞

Λ10 = 0 ; q > 0.5⇒ lim
n→∞

Π1 = 0

For large n and q(1− p) > 0.5, the type-0 voter then votes K, the unbiased candidate

for all δ ≥ 0. When q(1 − p) < 0.5 , the date 1 majority is expected to be at 1

and for large n, Λ01 → 0, Λ10 → 1 and Π1 → 0. The type-0 voter then votes K if

8Λ01 =
∑2n

j=n+1

(
2n
j

)
θj(1 − θ)2n−j ,Λ10 =

∑n−1
j=0

(
2n
j

)
θj(1 − θ)2n−j ,Π1 =

∑n−1
j=0

(
2n
j

)
ψj(1 −

ψ)2n−j , θ = q(1− p), ψ = q + (1− q)p
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p > 1
2

(
1− δ(1−π)

µ(1−φ)

)
. Under π = φ, this reduces to p > 1

2

(
1− δ

µ

)
.

Let us now turn to the sincere 1-voter. His expected utility from B is given by

Ui(B, 1) = (δπ + µφp)

; he gets a utility of 1 iff he switches to 0 himself, in response to either an idiosyncratic

or an common 0-signal. His utility from K is

Ui(K, 1) = δ + µφpΠ00 + µφ(1− p)Π11 + µ(1− φ)Λ1

, where Πab is the probability that, following an idiosyncratic 0-signal, the majority

is at a when our voter is at b; Λ1is the probability that, following an idiosyncratic

1-signal, the majority is at 1. By arguments similar to the ones made for the sincere

0-voter above,

q > 0.5⇒ lim
n→∞

Π00 = 1 and lim
n→∞

Π11 = 0

q(1− p) > 0.5⇒ lim
n→∞

Λ1 = 0 ; q(1− p) < 0.5⇒ lim
n→∞

Λ1 = 1.

When q(1 − p) < 0.5 , we can therefore reduce the decision for large n to one of

comparing δπ + µφp with the quantity (δ + µ(1− φ) + µφp) that he gets from K.

Since δ(1−π)+µ(1−φ) > 0, he votes K. When q(1−p) < 0.5, he compares δπ+µφp

from B with δ + µφp from K and votes K. Thus the sincere type-1 voter votes K for

all values of q ∈ (0.5, 1)and all p ∈ (0, 1).

When either (1) q(1 − p) > 0.5, or (2) when q(1 − p) < 0.5and p > 1
2

(
1− δ

µ

)
,

both the type-0’s and 1’s vote K and he wins with probability 1. When q(1−p) < 0.5

but p < 1
2

(
1− δ

µ

)
, the type-0’s vote B while the 1’s vote K; since q > 0.5, B is the

more likely winner; his exact probability of winning is Σ2n+1
k=n+1

(
2n
k

)
qk(1−q)2n−k, which

is greater than 0.5 for all n and tends to 1 as n→∞. �

Fig. 3 below summarizes the behaviour of the type-0 voter for large enough n. In
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regions II and IV, the type-0 voter elects K as he expects to remain in the majority if

there is an idiosyncratic shock, and has nothing to lose by voting K; when there is an

aggregative 1-signal, he is better off with K as B would still continue to implement

the alternative 0, which gives B private benefits; with an common 0-signal, both B

and K implement 0. In region I, the date 1 majority is expected to prefer policy 1,

but since p is high each type-0 expects to switch and be in the subsequent majority.

So he votes for K, who always picks the right alternative when there is an aggregative

shock. Finally in region III, the sincere type-0 voter picks the socially suboptimal

candidate B because the majority is likely to prefer 1 at the next date, but given that

p is small he would probably stay put at 0.

Fig. 3: Voting Behaviour of the Type-0 Voter

The sincere voter is nothing but the representative agent of the group, one who

90



maximises the value of the group9This is easy to see - all agents of a group are ex-ante

identical, and the probabilities that appear in the decision of the sincere voter are the

expected proportions in the decision of the representative agent. The probability of

switching, for example, is now to be interpreted as the expected proportion of type-0’s

who switch when there is an idiosyncratic 1-signal.

3.3.2 THE PIVOTAL VOTER

The situation is very different when we require the strategies to constitute a Nash

equilibrium. We conjecture the following Nash equilibrium in pure strategies : each

voter of type-0 votes B, and all type-1’s vote K; then we solve for the range of

parametric values where this is indeed the case.10 Let Ui(c | c0, c1; t0i , piv) denote

the utility of the pivotal voter of date 0 type t0i when he votes for candidate c, the

type-0’s vote for candidate c0 and the type-1’s vote for candidate c1. Consider a

pivotal type-0 voter. When he is pivotal the utility of voting for B is the same as that

for the sincere voter:

Ui(B | B,K; 0, piv) = 1− µ(1− φ)p− δ(1− π)

The utility of voting for K is now different :

Ui(K | B,K; 0, piv) = δ + (1− µ− δ) + µφ+ µ(1− φ)
{

(1− p)n+1 + p
}

Utility from K is 1 whenever there is an common signal, no signal, or an idiosyncratic

0-signal. If an idiosyncratic 1-signal arrives, the type-0 voter gets 1 if nobody switches

or if he himself switches. The pivotal voter prefers B when

9The sincere voter’s behaviour is akin to the notion of group rule utilitarianism introduced by
Harsanyi.

10We ignore trivial equilibria in which all voters support the same candidate. Our focus is on
symmetric equilibria in which all voters of a type vote the same way.
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Ui(B | B,K; 0, piv) > Ui(K | B,K; 0, piv)

⇔ δ(1− π) + µ(1− φ)p < µ(1− φ)(1− p){1− (1− p)n} (3.1)

Under the assumption π = φ, the condition reduces to

f(p, n) = 1− 2p− (1− p)n+1 >
δ

µ
.

Fig 4: Simulation Results for “Small” n

Fig. 4 above shows how f(p, n) compares to a threshold of δ/µ for different values

of n. Since f(n+1, p) > f(n, p) for all p in (0, 1),the range of values of p for which the

committed candidate wins is growing with n; as n↑ ∞, the negative term (1− p)n+1

goes rapidly to 0, and the condition reduces to 1− 2p > δ
µ
⇔ p < 1

2
(1− δ

µ
).11 There

11If we turn to the case when there is no common shock, i.e. δ = 0, then 0’s vote B if (1−p)n+1 <
1 − 2p. Using a quadratic Taylor series expansion, a sufficient condition for this is 1 − (n + 1)p +
(n+1)n

2 p2 < 1 − 2p, or (n+1)n
2 p < n − 1. i.e. p < 2(n−1)

n(n+1) . For 7 voters, for example, this effect is
observed for p < 1/3. Thus with δ = 0, the bias towards commitment is very much a reality even
with relatively few voters.
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exists a p > 0 satisfying the above if δ < µ, i.e. if the probability of an common

switching signal is less than that of a idiosyncratic signal. The only requirement is

that a signal that causes the entire population to switch to one side is less likely than a

signal that causes voters to switch idiosyncratically, - surely a reasonable assumption.

So δ may be quite large, even close to but less than one-half, provided that it is less

than µ.

For n large, (??) reduces to

δ(1− π) + µ(1− φ)p < µ(1− φ)(1− p) (3.2)

The LHS of (3.2) is the loss from voting for B and getting him elected - the first

term is the loss when the entire population switches to 1 at date 1, the second is

when voter i responds to an idiosyncratic signal and finds himself on the wrong side

vis-a-vis B. The RHS is the loss when K is elected. Note that the pivotal voter reacts

very differently to the possibility of an idiosyncratic switch depending on who is in

power- B or K. When B is in power, the loss is when voter i himself switches whether

or not others switch. With K in power, i no longer fears switching even if others

don’t; what he fears is staying put when others switch.

PROPOSITION 2: When q ∈ (0.5, 1) and n is large enough, there exists a

Nash equilibrium with pivotal voters in which all type-0’s vote B and all type-1’s vote

K when p < 1
2
(1− δ

µ
). B wins with a probability that tends to 1 in large populations.

When p > 1
2
(1− δ

µ
) all voters (type-0 and 1) prefer K to B.

PROOF: The argument above shows that for large enough n, the pivotal type-0

voters prefer B if p < 1
2
(1 − δ

µ
) and the type-1 voters conform to the conjectured

equilibrium strategy. Since q > 0.5, the Weak Law of Large Numbers ensures that

almost surely, a majority of voters support 0 on election day and therefore B wins.

Finally to show that the above conjecture indeed gives us a NE, we show that the
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pivotal type-1’s will vote K. Expected utility from B is

Ui(B | B,K; 1, piv) = δπ + µφp

, while that from K is

Ui(K | B,K; 1, piv) = (1− µ− δ) + δ + µ(1− φ) + µφ(1− p)n+1 + µφp.

Under µ = φ, type-1 ’s vote K if φ(µ+ δ) < 1, which necessarily holds. �

For large n, there are two forms of inefficiencies illustrated above. The first, which

corresponds to region III of Fig. 3 and is exhibited by both sincere and pivotal voters,

was discussed in Section 2.1. The difference between the sincere and the pivotal voter

is in region IV: the pivotal voter prefers the committed candidate even when, following

an idiosyncratic shock, he expects to remain in the majority. What drives the fear of

the pivotal voter is that his decision is conditional on himself being pivotal, thereby

unravelling the effect of q. In contrast to the decision of the sincere voter for large n,

his decision depends only on the value of p and not that of q. The interaction among

pivotal voters enters through the size of the population: when n is large it is almost

certainly the case that, starting from a pivotal situation, the pivotal 0-type voter will

be in minority if he does not switch following an idiosyncratic signal. The proposition

below summarises this.

PROPOSITION 3 When p < 1
2
(1 − δ

µ
) and p < 1 − 1

2q
, sincere voting results

in election of the unbiased candidate, while pivotal voting almost surely results in the

election of the committed candidate. If B wins, he implements a suboptimum policy

with a probability that is bounded below by the probability of an common 1-type shock

δ(1− π) > 0. All sincere voters vote K, whereas the pivotal type-0 and 1 vote B and

K respectively. Thus for large n, B wins with a probability arbitrarily close to unity

if voters are fully rational; K wins if they are sincere.
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REMARK For all n, not necessarily large, and q > 0.5 the probability of an

inefficient decision is bounded below by δ(1− π)/2. This follows since B wins with a

probability bounded below by 0.5 for all n.

Finally, returning to Fig. 4 , we note that for small n, it is not the case that the

pivotal type-0’s prefer B for all values of p less than a certain threshold. For very

small p the condition reduces to δ < 0, which is impossible. What is the reason for

this difference? Recall that the pivotal agent’s fear is of being left behind - of not

switching to the other side while at least one other person on his side defects and

destroys a fragile majority. But the fewer the voters the less likely is this fear, and so

the dominant fear is that of an common 1-shock that would render B undesirable for

all voters.

3.4 VARYING THE VOTING RULE

The previous sections proceeded under the assumption that the voting rule used at

date 0 is the same as the decision rule used at date 1 by the unbiased candidate K.

Recall that an interpretation of our framework, one that we mention earlier, is the

choice between acting now or waiting; with this interpretation it is indeed natural to

suppose that the voting rule at 0 and K ’s rule at 1 are the same. But if we think of

it as an electoral contest, one is naturally led to investigate the properties when the

two rules are different. This section accordingly looks at an m− rule at date 0, to be

defined shortly. In this section, we examine the behaviour of the pivotal voter for a

range of such voting rules.

As one would expect, increasing m from 1
2

makes it difficult for B to win, and

helps mitigate the inefficiency generated by the pivotal voter. However the inefficient

equilibrium turns out to be robust in a large range of (m, p) values. To see this, let

us re-examine the conjectured equilibrium in which type-0’s vote B and type-1’s vote
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K, and analyze the pivotal type-0 voter’s decision. Recall that q > 0.5 means that in

the symmetric equilibrium the vote of the type-0 voters is the deciding vote. Under

the new voting rule, the pivotal voter conditions on the state of the world in which

k voters are of type-0 , where k
2n+1

< m ≤ k+1
2n+1

. If m(1 − p) > 1
2

and n is large,

by the law of large numbers we know that it is highly likely the majority at date

1 will remain at 0. The pivotal voter is therefore not conditioning on a precarious

majority and this allays his fear of being left behind while the majority switches

to policy 1 at the next date. Under this condition we thus find that the inefficient

equilibrium conjectured above fails to exist. By providing a buffer between the point

the pivotal voter conditions upon and the simple majority, the m− rule reduces the

type-0 voter’s incentive to protect himself by voting for the committed candidate B.

When the above condition is not met the inefficient symmetric equilibrium survives.

More formally, the utility of the pivotal voter of type-0 when he votes B , given

that all 0’s vote B and K ’s vote 1 following the dictates of the equilibrium, is identical

to that in the previous section and is given by

Ui (B|B,K; 0, piv) = 1− µ (1− φ) p− δ (1− φ)

, where we have assumed φ = π for simplicity. The utility of the pivotal voter above

from voting K can be written as

Ui (K|B,K; 0, piv) = δ + (1− µ− δ) + µφ+ µ (1− φ) {pΘ1 + (1− p)Θ0}

, where Θa is the probability that the majority prefers policy a ∈ {0, 1} at date 1,

conditional upon starting at date 0 from a situation in which k+ 1 voters are of type-

0 and the rest of type-1. The four terms correspond to the situations in which the

pivotal voter i of type t0i = 0 gets a utility of 1 by voting B and thereby electing him.

The first term δ is for an common shock, when all voters agree on the policy and B
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implements it ; the next is when no additional information arrives and i continues to

be in a m−supermajority and thus in a simple majority at date 1; the third term is

for the common shock towards 0 , when the majority for 0 is bolstered; the last terms

is for the indiosyncratic shock towards 1— i gets 1 iff he switches and the majority

swings to 1 or if he stays put and so does the majority. Depending on whether p is

large or small relative to the value m , Θ0 or Θ1is much larger than the other in the

limit. Let us first consider the case when p < 1 − 1
2m

. By the Weak Law of Large

Numbers, for any ε > 0,

lim
n→∞

P (|fraction of popln. supporting policy 0 at next date −m(1− p)| < ε) = 1

It follows then that if we choose a small enough ε then limn→∞Θ0 = 1 and limn→∞Θ1 =

0. Therefore, the utility from voting for K converges to

lim
n→∞

Ui (K|B,K; 0, piv) = 1− µ (1− φ) p

For the pivotal voter to prefer candidate B, it is therefore necessary for δ (1− φ) < 0.

Since this is not true, the conjectured equilibrium does not exist when the electorate

is large and p < 1− 1
2m

.

When p > 1 − 1
2m

, a similar argument gives limn→∞Π0 = 0 and limn→∞Π1 = 1.

The utility from voting for K then converges to

lim
n→∞

Ui (K|B,K; 0, piv) = 1− µ (1− φ) (1− p)

In this case, the pivotal voter prefers voting B when δ < µ(1 − 2p), or equivalently

p < 1
2
(1− δ

µ
). Note that this constraint is identical to the one derived for the simple

majority rule. Fig. 5 shows how the pivotal type−0 voter’s relative preference for each

candidate varies with the parameter p for different m− rules. For each m, the voter
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prefers candidate B to K for values of p where the curve lies above 0. Note that as

m→ 1
2

, the inefficiency is possible for smaller and smaller values of p. When m = 1
2

, any p > 0 can give rise to the inefficient equilibrium for large enough electorates;

this is the content of the previous section.

Fig. 5: Simulation Results for m-Rules with m > 1
2

PROPOSITION 4: The inefficient equilibrium exists for large electorates when

1− 1
2m

< p < 1
2
(1− δ

µ
). The set of values of p which supports the inefficient equilibrium

shrinks as m increases. If m > µ
µ+δ

, the inefficient equilibrium does not exist for any

value of p.

PROOF: We have already verified that the pivotal type − 0 voters will conform to

the behaviour of the inefficient equilibrium when p is in the range specified. Now we

show that the pivotal type− 1′s will vote K. Expected utility from B is

Ui(B | B,K; 1, piv) = δπ + µφp

98



, while that from K is

Ui(K | B,K; 1, piv) = δ + µ(1− φ)Π1 + µφp

Under φ = π, and p > 1− 1
2m
, type− 1 ’s vote K if φ < 1, which necessarily holds.�

It follows immediately from the last inequality in the proposition above that the

inefficient equilibrium cannot arise for the unanimity rule (m = 1). While our frame-

work is not directly comparable to the information aggregation models, it might be

interesting to note that this result contrasts with the inferiority of the unanimity rule

documented previously.

3.5 IMPLICATIONS FOR CANDIDATE ENTRY : A DISCUSSION

So far our work proceeded under the assumption that candidate preferences were

common knowledge. If we now choose to move back one step in time, we might ask

which candidates actually enter an election. Let c > 0 denote the cost of entering an

election; this includes the cost of filing nomination, campaigning, etc. The candidate

could be either one who cares about his legacy and when in office picks the alternative

that the majority prefer, or a partisan who benefits from one of the two alternatives

independently of the electorate’s rankings. Let us consider a simple extension of the

model where q has not been revealed when the candidates decide to enter. Suppose

q is equally likely to be 0.25 and 0.75 and let b denote the benefits from being in

office for any type of candidate. If there is a potential candidate of each type and

b > 2c, then in equilibrium one 0-candidate and a 1-candidate will both choose to

enter. When q = 0.25 the 1-candidate wins with a probability arbitrarily close to 1

for a large enough n ; with q = 0.75 the 0-candidate wins. The legacy candidate will

therefore choose not to enter the fray as his expected gain from entry will fall short of

the cost c > 0 — He cannot win the election irrespective of what value of q is drawn.
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As political satirist Frank Hubbard once said, “We’d all like to vote for the best man

but he’s never a candidate”. We see that extreme candidates do better than one who

is completely unbiased and proposes to implement the ex-post majority’s preferred

policy. In a loose sense this hints that gradual resolution of uncertainty might have

something to do with the entry of biased candidates.

3.6 CONCLUSION

Many papers look at information aggregation in voting and the role of pivotal voting.

They almost always have the feature that voters’ rankings of policies do not change

betweent the time they vote and the time a policy is implemented. The role of

the electoral process is to aggregate their private signals. We relax this framework

and allow rankings to change; this leaves the electoral system prone to widespread

inefficiency. This paper illustrates two forms of inefficiency. When voters who are in

a majority today are more likely to be in a minority tomorrow, they oppose social-

welfare improving policies. This requires a probability of idiosyncratic switching

large enough to reduce the ex-ante majority to an ex-post minority. Perhaps a large

range of electoral situations is better described by a model in which the probability

of voters changing idiosyncratically is small. This, one might even assert, is the

rule rather than the exception. We should hope that in such a case the inefficiency

will be mitigated, if not eliminated. We argued above that this is not the case —

In the unique (informative) symmetric Nash equilibrium, voters prefer to elect the

ideologue rather than elect an unbiased candidate, who waits for all information to

be revealed and thereafter takes the optimal decision. The key to understanding this

paradoxical result is that the pivotal voter finds himself in a fragile majority that is

easily overturned; even though such a situation is (unconditionally) unlikely, he bases

his vote on this situation and commits to the alternative that he currently prefers.
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This continues to hold even if there is a large chance that everybody will dislike the

committed candidate’s choice due to an common shock.
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