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Abstract

We study the “common prior” assumption when agents have differential information

and preferences beyond subjective expected utility (SEU). We consider interim preferences

consistent with respect to the same ex-ante evaluation and characterize them. Notably,

agents are mutually dynamic consistent with respect to the same ex-ante evaluation if

and only if all the limits of higher-order expectations coincide. Within this framework,

we characterize the properties of equilibrium prices in financial beauty contests. Unlike

the SEU case, the limit price does not coincide with the common ex-ante expectation.

Moreover, high-coordination motives tame ambiguity and make the market price higher

than the ex-ante evaluation of the asset.
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1 Introduction

The common prior assumption is one of the most used and debated concepts in economic theory

(see, e.g., Morris [41]). When the agents are subjective expected utility (SEU) maximizers, this

assumption captures the idea of mutual ex-ante agreement on the preferences over uncertain

prospects. However, preferences that do not reduce uncertainty to a single probability are nor-

matively convincing and consistent with experimental findings. Notably, these departures are

consistent with a decision maker who acknowledges her ambiguity about an objective proba-

bilistic model and has nonneutral attitudes toward it. Therefore, it is crucial to understand

whether the ex-ante mutual agreement can be expressed independently of agents’ attitudes to-

ward ambiguity and, in this case, to study the implications for the agents’ interim preferences

and behavior of this mutual agreement. This paper answers these questions by formalizing

increasing degrees of mutual ex-ante agreement among agents with differential information and

rational preferences such as maxmin expected utility, Choquet expected utility, and variational

preferences.

We first impose restrictions on the agents’ interim preferences that guarantee the existence

of a single ex-ante preference that is jointly “consistent” for all the agents. Next, we show that,

as for the baseline SEU case, all these restrictions can be fully characterized by properties of

the higher-order interim preferences of the agents.

We then embed rational preferences in standard coordination games (e.g., beauty contests

and price competitions), and we derive a complete characterization of equilibrium behavior in

the high-coordination limit in terms of the agents’ higher-order preferences without any ex-ante

agreement restriction. However, when we impose some ex-ante agreement, we find a striking

result: the desire for coordination considerably tames the attitudes toward uncertainty, and

the limit equilibrium behavior in some critical cases is indistinguishable from the ones obtained

under SEU.

Common ex-ante preferences and beyond First, we generalize the notion of conditional

expectation for preferences that are not necessarily SEU but just rational. We start with a

pair of ex-ante and interim expectations, modeling the preferences of the agent before and after

the arrival of information, and require them to be “consistent” in the sense that they jointly

exhibit a reduction or an increase in the uncertainty aversion at the interim stage compared to

the ex-ante one. These consistency properties, which are satisfied by existing updating rules
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for non-SEU preferences (e.g., full Bayesian updating for maxmin preferences), give rise to

the notion of lower and upper conditional expectations, respectively. When both consistency

properties are satisfied, we define the notion of nonlinear conditional expectation. This last case

fully maintains the dynamic consistency of conditional SEU while relaxing linearity.

Armed with this taxonomy, we analyze a multi-agent setting with differential information.

We extend to rational preferences the notion of (nonlinear) higher-order expectations, capturing

the idea of preferences over acts formed by the evaluations attached by other agents to an

original act. This notion is essential for our analysis and is illustrated through a simple asset-

pricing model where agents care about the willingness to pay of the other traders rather than the

fundamental value of an asset. Our first result shows that, under a full-support condition and

the presence of null public information, the higher-order expectations over sequences of agents

converge to a state-independent limit, provided that all the agents appear infinitely often in the

sequence. This result greatly generalizes the corresponding result of Samet [47] beyond SEU

and lays the foundation of our analysis. Moreover, it is easily illustrated in our asset pricing

example by implying the existence of a well-defined and state-independent equilibrium price.

Next, we say that agents share a lower (resp. upper) common ex-ante expectation if their

conditional preferences are less (resp. more) uncertainty averse with respect to the same ex-

ante expectation. The interpretation is that, before observing their private information, the

agents share the same perceived ambiguity about the probabilistic model and the same attitude

toward it. Then, in the interim stage, the agents’ preferences may differ, as the nature of

their private information is different. Therefore, our consistency properties impose restrictions

between periods for each individual as well as restrictions across all individuals. For every profile

of interim expectations, we show that there always exist a lower and an upper common ex-

ante preferences exhibiting the minimal degrees of changes in the attitudes toward uncertainty

between the ex-ante and interim stage.

We characterize these extreme common ex-ante preferences in different ways. First, under

the deterministic convergence property highlighted above, these ex-ante preferences are char-

acterized by the extreme limits of higher-order expectations of the agents. Second, we provide

behavioral axioms that identify the testable conditions that an ex-ante preference needs to

satisfy to be the extreme lower (upper) common ex-ante expectation for a collection of interim

preferences. Finally, we make these concepts operational by providing an algorithm to recover

them from the agents’ interim preferences.
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When all the agents are dynamically consistent with respect to the same unconditional

preference, we say that they share a nonlinear common ex-ante expectation. In other words,

we weaken the assumption of mutual agreement about an objective probabilistic model to that

of mutual dynamic consistency with respect to a common ex-ante rational preference. We

provide a characterization of the existence of a nonlinear common ex-ante expectation that

purely concerns the interim preferences of the agents. There is a nonlinear common ex-ante

expectation if and only if all the interim higher-order (nonlinear) expectations of the agents

converge to the same limit, which coincides with the nonlinear common ex-ante expectation.

On the one hand, this result significantly generalizes the characterization of the common prior

assumption in Samet [47]. On the other hand, it points out that it is the invariance property

of dynamic consistency that allows us to characterize mutual ex-ante agreement in terms of

interim higher-order beliefs, as opposed to the probabilistic nature of beliefs. However, dynamic

consistency with respect to all the information structures of the agents is very restrictive under

ambiguity-averse preferences. Therefore, our result implies that the order of traders in our

asset pricing application is generally relevant under ambiguity aversion.

Coordination and ambiguity Next, we move to the implications for coordination games

of the assumptions on an ex-ante agreement under variational preferences, a large subclass of

rational preferences. We consider an application of our results to beauty contests in market

networks under incomplete information. Here, we analyze the unique equilibrium price in the

limit for strong coordination motives. In general, this limit is characterized by a worst-case

weighted average of the models that are maximally trusted by the agents at the interim stage.

With this result, we can already see that a significant part of the ambiguity aversion of the

agents disappears in the limit equilibrium, as all the probabilistic models that are not maximally

trusted become irrelevant. Moreover, we provide bounds on the limit evaluation of the asset

in terms of the ex-ante preferences that we introduced, thereby assessing the price effect of

interim information.

Our theorem implies that whenever the agents share the same unique ex-ante benchmark

probability model, the limit equilibrium price collapses to the expected value of the asset under

this unique benchmark. This establishes a strong irrelevance result: as coordination motives

prevail, the limit price is unaffected by the uncertainty attitudes of the agents. In turn, this

has important implications. If the common benchmark probability model of the agents is

misspecified, then our result implies mispricing with respect to the true fundamental value
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of the asset, despite agents that are concerned about misspecification. Intuitively, the agents

attach a much higher value to coordination than to the fundamental value of the asset; hence,

in equilibrium, they have little reason to reduce their willingness to pay due to the concern for

misspecification of the shared benchmark probability model.

In general, if a nonlinear common ex-ante expectation exists, then the limit price can lie

strictly above the ex-ante preference, pointing out a key difference with the limit result under

SEU of Golub and Morris [19]. However, this wedge exists only if the agents are ambigu-

ous with respect to each other information structure. Indeed, when agents are unambiguous

about the aggregate information, the standard limit equivalence of the SEU case is restored.

Notably, in this case, agents might still perceive ambiguity about the fundamental, and their

full-coordination limit price decreases in their ambiguity aversion.

The previous results depend only on the best-response structure of the game. In particular,

we can derive the same best-response functions from different games with strong coordination

motives. An example is a price-competition game where firms produce partially differentiated

goods under incomplete information about the demand function.

2 Nonlinear conditional expectations

In this section, we introduce nonlinear conditional expectations. We start by recalling the usual

notion of (linear) conditional expectation. Consider a finite state space Ω endowed with the

power set P (Ω). We let Π be a partition of Ω, and for every ω ∈ Ω, we denote as Π (ω) the

unique element of Π that contains ω.

2.1 Linear case

Consider a probability µ ∈ ∆ (Ω). If Π is a partition of Ω, then a map pµ : Ω×P (Ω)→ [0, 1] is a

regular conditional probability of µ given Π if and only if: (i) For each ω ∈ Ω, pµ (ω, ·) ∈ ∆ (Ω);

(ii) For each F ∈ P (Ω), the function pµ (·, F ) : Ω → [0, 1] is a conditional probability of F

given Π. The function Vµ : Ω× RΩ → R, defined by

Vµ (ω, f) = Epµ(ω,·) [f ] ∀ω ∈ Ω, ∀f ∈ RΩ,

is a regular conditional expectation and has the following properties:
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a. For each ω ∈ Ω the function Vµ (ω, ·) : RΩ → R is normalized, monotone, and linear;1

b. For each f ∈ RΩ the function Vµ (·, f) : Ω→ R is Π-measurable and satisfies

Eµ (f) = Eµ (Vµ (·, f)) and Vµ
(
ω, f1Π(ω) + h1Π(ω)c

)
= Vµ (ω, f) ∀ω ∈ Ω,∀h ∈ RΩ. (1)

In words, (1) contains two properties: the law of iterated expectations and that the update

of µ assigns probability one to the realized partition cell.

2.2 Nonlinear case

Mimicking what we discussed above, we consider two functions V̄ : RΩ → R and V : Ω ×
RΩ → R. In terms of interpretation, V̄ (f) is the unconditional expectation of f , while V (·, f)

describes its conditional expectation.

Definition 1. Let V̄ : RΩ → R. We say that V̄ is an ex-ante (generalized) expectation if and

only if V̄ is normalized and monotone.

This definition amounts to saying that the preference % represented by an ex-ante expec-

tation V̄ is rational (Cerreia-Vioglio et al. [9]). This is a large class of preferences that in-

cludes maxmin expected utility (Gilboa and Schmeidler [17]), Choquet expected utility (Schmei-

dler [48]), variational preferences (Maccheroni et al. [36]), and uncertainty averse preferences

(Cerreia-Vioglio et al. [8]). Monotonicity is a conceptual (although mild) requirement imply-

ing that the agents prefer larger monetary outcomes, whereas normalization requires that the

representing V̄ is the certainty equivalent for the preference.2

Definition 2. Fix a partition Π and V : Ω × RΩ → R. We say that (V,Π) is an interim

(generalized) expectation if and only if for each ω ∈ Ω the function V (ω, ·) : RΩ → R is

normalized, monotone, and continuous and the function V (·, f) : Ω→ R is Π-measurable and

V
(
ω, f1Π(ω) + h1Π(ω)c

)
= V (ω, f) ∀ω ∈ Ω,∀f, h ∈ RΩ. (2)

1A functional T : RΩ → R is normalized if and only if T (k1Ω) = k for all k ∈ R.
2We are implicitly assuming that the utility index u : R → R coincides with the identity function. In the

multi-agent setting of Section 3, this assumption is without loss of generality as long as the risk preferences of
all agents are homogeneous since we can always interpret each f ∈ RΩ as a utility act.
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A conditional expectation is a pair formed by an ex-ante (generalized) expectation and an

interim (generalized) expectation that satisfies some consistency properties.

Definition 3. Let (V,Π) be an interim expectation.

1. We say that (V ◦, V,Π) is an upper conditional expectation if and only if V ◦ is an ex-ante

expectation such that

V ◦ (f) ≥ V ◦ (V (·, f)) ∀f ∈ RΩ. (3)

2. We say that (V◦, V,Π) is a lower conditional expectation if and only if V◦ is an ex-ante

expectation such that

V◦ (f) ≤ V◦ (V (·, f)) ∀f ∈ RΩ. (4)

3. We say that
(
V̄ , V,Π

)
is a nonlinear conditional expectation if and only if it is both a

lower and an upper conditional expectation.

Compared to standard conditional expectations, a nonlinear conditional expectation only

relaxes the assumption of linearity from both V̄ and V , as point 3 implies that

V̄ (f) = V̄ (V (·, f)) ∀f ∈ RΩ. (5)

This is tantamount to weakening the assumption of independence, retaining consequentialism

and dynamic consistency with respect to Π. Consequentialism takes care of (2), while dynamic

consistency is the main axiom behind the law of iterated expectations in (5). However, it is

well known that full-fledged dynamic consistency is restrictive outside the realm of subjective

expected utility, especially with uncertainty-averse preferences (see, for example, Ghirardato

[16], Siniscalchi [51], and Gumen and Savochkin [21]). Therefore, in points 1 and 2, we consider

ex-ante expectations that are consistent with the interim expectation yet possibly exhibit an

increase/reduction in the uncertainty aversion as the agent receives information.3

An upper conditional expectation rationalizes the interim expectation of the agent provided

that it features less uncertainty aversion than the interim preferences. The next example shows

that with maxmin expected utility (see Gilboa and Schmeidler [17]) and full Bayesian updating,

we obtain an upper conditional expectation.

3In Online Appendix E, we show that this somewhat informal use of the terms “uncertainty aversion in-
crease/reduction” is backed by formal axioms linking the ex-ante and interim preferences of the agents.
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Example 1 (Maxmin EU with full Bayesian updating). Let C be a compact and convex set

of probabilities over Ω and let Π be a partition. For all f ∈ RΩ and ω ∈ Ω, define

V C (f) = min
µ∈C

Eµ (f) and VC (ω, f) = min
p∈Cω

Ep (f) (6)

where Cω = {pµ (ω, ·) : µ ∈ C}. It is standard to show that (VC (·) , VC (·, ·) ,Π) is an upper

conditional expectation. N

The observation that Bayesian updating induces an upper common ex-ante expectation also

holds for the class of divergence preferences introduced in Maccheroni et al. [36]. We illustrate

this class in Example 5 below, where we consider multiplier preferences a la Hansen and Sargent

[24].

Another class of preferences that induces an upper common ex-ante expectation is the one

that evaluates a random variable with its value at risk (VaR) paired with Bayesian updating.

Example 2 (Quantile Maximization). Consider a partition Π and a probability µ ∈ ∆ (Ω). In

the ex-ante stage, the agent evaluates every act f ∈ RΩ with the τ -quantile (Rostek [46]), with

τ ∈ (0, 1). That is,

V ◦τ (f) = inf {z ∈ R : µ ({ω ∈ Ω : f (ω) ≤ z}) ≥ τ} .

Analogously, the interim expectation V of the agent in state ω evaluates the act with respect

to the τ -quantile but using the update pµ (ω, ·) in place of µ. Then, for τ sufficiently close

to 0, the pair (V ◦τ , Vτ ,Π) is an upper conditional expectation.4 Importantly, this means that

the widely used VaR, which involves portfolio evaluation by looking at the left tail quantiles,

generally features an increase of uncertainty aversion as information is received. Similarly, one

can link high quantiles with lower conditional expectations. N

Whenever the agent has a lower conditional expectation, her interim preference can be ra-

tionalized by an ex-ante expectation V◦ provided that receiving the interim information reduces

the uncertainty aversion of the agent. The next example shows that with maxmin expected

utility and any updating that selects a subset of the Bayesian updates, we obtain a lower

conditional expectation provided that a weak notion of rectangularity holds.

4In particular, any τ < minω∈Ω pµ (ω, {ω}) would work.
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Example 3 (Maxmin EU and weak rectangularity). Consider the same ex-ante expectation of

Example 1 defined in equation (6). As before, the interim expectation is maxmin EU, but now

with respect to a smaller set of updates. Formally, consider a correspondence D : Ω ⇒ ∆ (Ω)

that is measurable with respect to Π and such that D (ω) ⊆ {pµ (ω, ·) : µ ∈ C}, and define

VD (ω, f) = min
p∈D(ω)

Ep (f) ∀ω ∈ Ω,∀f ∈ RΩ.

For example, D (ω) can be the set of maximum-likelihood (ML) updates :

D (ω) =
{
pµ (ω, ·) : µ ∈ argmaxµ̃∈C µ̃ (Π (ω))

}
.

When the ex-ante set C is weakly rectangular for (Π,D), that is,{∑
E∈Π

ηEµ (E) : ∀E ∈ Π, ηE ∈ D (E) , µ ∈ C

}
⊆ C,

(VC , VD,Π) is a lower conditional expectation.5

We next remark on some points. When D (ω) = Cω for all ω ∈ Ω, that is, when D does not

rule out any Bayesian update, C is weakly rectangular for (Π,D) if and only if C is rectangular

for Π in the sense of Epstein and Schneider [13].6 In this case, (V C (·), VC (·, ·) ,Π) is a nonlinear

conditional expectation. Instead, when D rules out some Bayesian updates, for example, when

D is the maximum-likelihood selection, a (standard) rectangular C implies that (VC , VD,Π) is

a lower conditional expectation only. N

Table 1 summarizes the relation between widely used updating rules for the maxmin model

and our notions of conditional expectations under different assumptions on the structure of C.

This highlights how ML updating tends to induce lower conditional expectations, whereas full

Bayesian updating always induces upper conditional expectations.

Full-support rational preferences We close this section with a notion of full support for

rational preferences. Indeed, as Samet [47], we mostly focus on the case of full support. Given

5With an abuse of notation we let D (E) denote D (ω) for any ω ∈ E and E ∈ Π. Given that D is Π-
measurable, this is well defined.

6C is rectangular if and only if C =
{∑

E∈Π pµE
(E, ·)µ (E) : ∀E ∈ Π, µE ∈ C, µ ∈ C

}
, and we denote the

update of µE on the E cell by pµE
(E, ·).
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D = ML Updating D = Full Bayesian Updating
Arbitrary C Upper Cond. Exp.

Weakly D-Rectangular C Lower Cond. Exp. Nonlinear Cond. Exp.
Rectangular C Lower Cond. Exp. Nonlinear Cond. Exp.

Table 1: Rows correspond to increasingly stronger assumptions on C; Columns correspond to
different updating rules. The empty cell indicates that we do not necessarily have an upper or
a lower conditional expectation.

states ω̄, ω ∈ Ω, we say that ω̄ is V (ω, ·)-essential if and only if there exists an ε > 0 such that

for each f ∈ RΩ and for each δ ≥ 0

V
(
ω, f + δ1{ω̄}

)
− V (ω, f) ≥ εδ. (7)

In the linear case, we clearly have that ω̄ belongs to the support of pµ (ω, ·) if and only if ω̄

is V (ω, ·)-essential. For the general case, we say that an interim expectation (V,Π) has full

support if and only if for all ω ∈ Ω each ω̄ ∈ Π (ω) is V (ω, ·)-essential.7

3 (Un-)common ex-ante preferences

We now consider a finite set of agents I = {1, ..., n}, each endowed with an interim expecta-

tion (Vi,Πi). Given the collection of partitions {Πi}i∈I for the agents, that is, an information

structure, we denote by Πsup and Πinf the meet and the join of the partitions.8 They respec-

tively correspond to the public information among the agents and the aggregate information

collectively held by the agents.

In a multi-agent setting, it is convenient to view Vi as an operator from RΩ to RΩ. In this

case, the ω-th component of this operator is Vi (ω, f) for all f ∈ RΩ. This rewriting turns out

to be useful in formally discussing higher-order expectations. For instance, given two agents

i, j ∈ I and an act f ∈ RΩ, the expectation of agent i at state ω about the evaluation of act f

by agent j is Vi (ω, Vj (f)). Moreover, if we do not fix a state ω ∈ Ω, we obtain the second-order

evaluation (of i through j) Vi ◦ Vj : RΩ → RΩ.

7For example, full support rules out a maxmin V (·, ω) with a set of probabilities Cω ⊆ ∆ (Ω) that includes
some p with support strictly included in Π (ω).

8That is, Πsup is the finest among all partitions that are coarser than each Πi, and Πinf is the coarsest among
all partitions that are finer than each Πi.
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Following Samet [47], we call a sequence (it)t∈N in I an I-sequence if and only if for each

individual i ∈ I, i = it for infinitely many t indexes.

Definition 4. We say that a collection {(Vi,Πi)}i∈I of interim expectations exhibits conver-

gence to a deterministic limit if and only if for all I-sequences ι = (it)t∈N and for all f ∈ RΩ,

there exists kf,ι ∈ R such that

lim
t→∞

Vit ◦ Vit−1 ◦ ... ◦ Vi2 ◦ Vi1 (f) = kf,ι1Ω.

In this case, for each I-sequence ι = (it)t∈N ∈ IN define V̄ι : RΩ → R by V̄ι (f) = kf,ι.

If there is convergence to a deterministic limit, then the sequences of higher-order expecta-

tions of the agents converge to a limit whose value, being a constant function of the state, is

trivially common knowledge. Our first result shows that there is convergence to a deterministic

limit, provided that all the interim expectations of the agents have full support and there is no

non-trivial public event. Moreover, the rate of convergence is quasi-exponential ; that is, it is

exponential in the number of times that all the agents have been repeated in the sequence.

Theorem 1. If {(Vi,Πi)}i∈I is a collection of full support interim expectations such that Πsup =

{Ω}, then {(Vi,Πi)}i∈I exhibits convergence to a deterministic limit. Moreover, there exist

ε ∈ (0, 1) and C ∈ R+ such that for each I-sequence (im)m∈N and for each τ, t ∈ N with

τ ≥ 2|Ω|, if every i ∈ I appears at least τ times in (i1, ..., it), then

∣∣∣∣V̄ι (f) 1Ω − Vit ◦ ... ◦ Vi1 (f)
∣∣∣∣
∞ ≤ Cετ ||f ||∞ ∀f ∈ RΩ.

Quasi-exponential convergence provides a bound on the approximation error for computing

the limit higher-order expectation of f given ι using the t-th order expectation. In particular,

the bound improves in t only if additional expectations of all the agents are involved. This

theorem generalizes Proposition 2 of Samet [47] in several dimensions. Most importantly, it

allows for nonlinear expectations. This generality makes it impossible to represent the operators

as stochastic matrices, but Proposition 5 in the Appendix shows that, for the class of rational

preferences we consider it is still possible to extract a useful network of connections between

agent-state pairs from the nonlinear operators. Loosely speaking, pair (i, ω) is connected to

(j, ω′) if agent i believes that while in state ω agent j nonlinear interim expectation is responsive

to the payoff in state ω′. We then show that the full support of the interim expectations paired

10



with the absence of non-trivial public events implies that this network is strongly connected

and that iterations of nonlinear operators with such underlying strongly connected structures

induce convergence to a deterministic limit.

We next illustrate the relevance of iterated expectations and the meaning of quasi-exponential

convergence to a deterministic limit in a stylized asset-pricing model.

Example 4 (Forecasting the forecaster). Consider a state-contingent asset f ∈ RΩ in a discrete-

time economy with t ∈ N periods. Each index i ∈ I represents a continuum of speculative

traders with the same interim expectations (Vi,Πi). Let (i1, ..., it) ∈ I t, with t ∈ N, be a finite

sequence of agents’ classes. In period 0, an external agent is endowed with the asset. In period

1, she has to sell the asset to one of the agents in class i1. The price is determined by Bertrand

competition among the potential buyers. In period 2, the agent of class i1 holding the asset

has to sell it to an agent in class i2 according to the same procedure as above and then leaves

the economy. This scheme proceeds until period t when the agent of class it holding the asset

is paid its realized value.9

We can easily solve for the unique equilibrium by backward induction. In period t, the

willingness to pay for the asset of an agent in class it, and therefore the (state-contingent)

equilibrium price, is exactly Vit (f). Given Bertrand competition among potential buyers, for

an agent in class it−1, the (state-contingent) value of the asset is then Vit−1 ◦ Vit (f). Iterating

this backward reasoning up to period 1, the initial (state-contingent) price of the asset isVi1 ◦
Vi2 ◦ ... ◦ Vit−1 ◦ Vit (f) ∈ RΩ. This highlights the importance of higher-order expectations in

market interactions.10

Next, suppose that the assumptions of Theorem 1 are satisfied and consider an infinite

sequence of classes (it)t∈N . We can focus on I-sequences as, if the identity of classes are i.i.d.

draws with full support on I, then with probability 1, an I-sequence is realized. With this,

Theorem 1 guarantees that, for a truncation (i1, ..., it̄) of (it)t∈N such that each agent appears

sufficiently many times, the dependence of the initial equilibrium price on the realized state

of the world is arbitrarily (and exponentially) small. Intuitively, the willingness to pay of an

9This model is a variation of classical models of sequential speculative trading such as Harrison and Kreps
[27], Morris [42], and Allen et al. [1], where we also allow for non-SEU preferences of the traders. Recently,
Condorelli et al. [11] also considered a model of sequential sales on a random tree without restricting to Bertrand
competition but allowing for the use of all incentive compatible mechanisms of trade.

10Toward pointing out the direct role of higher-order expectations, the example assumes that the agents
know the class of the potential buyers (and hence their interim expectations). In Section 4, we characterize the
equilibrium of the related beauty-contest game where the relevant class of buyers is uncertain.
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agent in class i1 does not significantly depend on the state as she knows that the selling value

depends on a large number of subsequent transactions. This and the assumption Πsup = {Ω}
imply that many of the subsequent buyers will care about the value of the asset also in states

that are ruled out by the information of i1. N

3.1 Common ex-ante expectations

A natural question that emerges in this setting is whether the interim preferences of the agents

are consistent with a common ex-ante expectation.

Definition 5. We say that V◦ (resp. V ◦) is a lower (resp. upper) common ex-ante expectation

for {(Vi,Πi)}i∈I if and only if (V◦, Vi,Πi) (resp. (V ◦, Vi,Πi)) is a lower (resp. upper) conditional

expectation for all i ∈ I. When V̄ is both a lower and an upper common ex-ante expectation

for {(Vi,Πi)}i∈I , we say that V̄ is a nonlinear common ex-ante expectation for {(Vi,Πi)}i∈I .

We let V◦ and V◦ denote the sets of lower and upper common ex-ante expectations for

{(Vi,Πi)}i∈I respectively. Clearly, their intersection is the set of nonlinear common ex-ante

expectations for {(Vi,Πi)}i∈I . It is plain that in the case each Vi (ω, ·) is SEU, the nonemptiness

of this intersection amounts to the existence of a common prior.

The sets V◦ and V◦ might contain multiple elements. However, an important role will be

played by two selections: (i) the least uncertainty averse lower common ex-ante expectation

and (ii) the most uncertainty averse upper common ex-ante expectation. Let

V∗ (f) = sup
V◦∈V◦

V◦ (f) and V ∗ (f) = inf
V ◦∈V◦

V ◦ (f) ∀f ∈ RΩ

denote the pointwise maximum and minimum of the elements of V◦ and V◦. We now characterize

V∗ and V ∗ in terms of the higher-order expectations of the agents.

Proposition 1. Let {(Vi,Πi)}i∈I be a collection of interim expectations. Then V∗ and V ∗ are,

respectively, a lower and an upper common ex-ante expectation for {(Vi,Πi)}i∈I . Moreover, if

{(Vi,Πi)}i∈I exhibits convergence to a deterministic limit, then, for every f ∈ RΩ,

V∗ (f) = inf
ι∈IN:ι is an I-sequence

V̄ι (f) and V ∗ (f) = sup
ι∈IN:ι is an I-sequence

V̄ι (f) . (8)
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The interpretation is that by looking at the lowest (resp. highest) limit of the iterated

expectations, we exactly identify the minimal changes in uncertainty aversion between the ex-

ante and interim stages needed to jointly rationalize the interim preferences of the agents. In

turn, this implies that V∗ (f) ≤ V ∗ (f) for all f ∈ RΩ, that is, the ex-ante preferences V∗ and

V ∗ are ranked in terms of their uncertainty aversion. In light of this result, we often refer to

V∗ and V ∗ as extreme ex-ante expectations.

Combining our previous results, we get a characterization for the existence of a nonlinear

common ex-ante expectation V̄ for {(Vi,Πi)}i∈I : under convergence to a deterministic limit,

there exists a common ex-ante expectation if and only if the deterministic limit of all the I-

sequences of higher-order expectations is the same. This generalizes the main result of Samet

[47] to the class of rational preferences.11

Corollary 1. Let {(Vi,Πi)}i∈I be a collection of interim expectations that exhibits convergence

to a deterministic limit. The following statements are equivalent:

(i) There exists a nonlinear common ex-ante expectation V̄ for {(Vi,Πi)}i∈I ;

(ii) For each f ∈ RΩ there exists kf ∈ R such that for each I-sequence (it)t∈N

lim
t→∞

Vit ◦ Vit−1 ◦ ... ◦ Vi2 ◦ Vi1 (f) = kf1Ω.

(iii) We have V∗ = V ∗.

In this case, for each f ∈ RΩ, we have V∗ (f) = V ∗ (f) = V̄ (f) = kf .

As an immediate consequence of Theorem 1 and Corollary 1, we get that our characterization

of the nonlinear common ex-ante expectation holds provided that agents’ interim preferences

have full support and there is no public information.

Next, we illustrate how upper, lower, and nonlinear common ex-ante expectations are related

to the equilibrium asset price in our Example 4.

Example (Forecasting the forecaster continued). In the setting of Example 4, fix an I-sequence

ι = (in)n∈N and recall that the initial equilibrium price of asset f , for the game with length t, is

11Our full-support condition, paired with the absence of non-trivial public information, implies that
{(Vi,Πi)}i∈I exhibits convergence to a deterministic limit. However, sometimes this can be verified directly
and independently of the full-support assumption (cf. Example 5).
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equal to the random variable Vit ◦ Vit−1 ◦ ... ◦ Vi2 ◦ Vi1 (f). In this case, by Theorem 1, as we let

t go to infinity, the limit price is deterministic and equal to V̄ι (f). Moreover, by Proposition

1, the limit initial price satisfies

V◦ (f) ≤ V̄ι (f) ≤ V ◦ (f) (9)

for all upper and lower common ex-ante expectations V◦ ∈ V◦ and V ◦ ∈ V ◦, and, more ac-

curately, V̄ι (f) ∈ [V∗ (f) , V ∗ (f)]. For example, equation (9) implies that if the traders are

maxmin agents and share the same set of ex-ante probabilistic models C ⊆ ∆ (Ω), then, under

full Bayesian updating, the initial limit price with private information V̄ι (f) is smaller than

the common ex-ante evaluation V ◦ (f) = minp∈C
∫
fdp. Indeed, the initial equilibrium price is

the result of a compounded pessimistic evaluation due to full Bayesian updating and iterated

minimization across all the updated probabilistic models.

Next, assume that the agents have a nonlinear common ex-ante expectation V̄ . For a

sufficiently long truncation of (it)t∈N, the initial equilibrium price is approximately state-

independent and equal to the common ex-ante evaluation V̄ (f) of the asset. In words, under

a nonlinear common ex-ante expectation, the order of trades does not affect the initial price.

Conversely, for any two arbitrary I-sequences truncated at t̄ ∈ N, we can falsify the existence

of a nonlinear common ex-ante expectation by checking whether the corresponding equilibrium

prices are sufficiently different. N

On the one hand, Corollary 1 provides sufficient conditions for the existence of a nonlinear

common ex-ante expectation, as well as a way to compute it. On the other hand, mutual

dynamic consistency with respect to all the information structures of the agents is very restric-

tive under ambiguity-averse preferences, as pointed out by Ellis [12]. Therefore, our corollary

implies that the order of trades in Example 4 is generally relevant for the equilibrium price

and more so with ambiguity aversion. This creates scope for the manipulation of the frequency

with which agents with a given information structure can trade to affect the equilibrium price

paid to the agent initially holding the asset. In other words, without SEU, for example, under

ambiguity-averse preferences, there is scope for the optimal design of the sequential trading

protocol by the asset holder. For example, fix an I-sequence ι that does not attain the supre-

mum in equation 8. Proposition 1 implies that there exists an asset f and a trading length τ ,

such that there is a strict incentive for the initial asset holder to add an additional final buyer

at period τ + 1.
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We close this section by providing a concrete example where there exists a nonlinear common

ex-ante expectation.

Example 5 (Multiplier expectations and misspecification aversion). Here, we consider multi-

plier preferences (see Hansen and Sargent [24], axiomatized in Strzalecki [53]). Let µ ∈ ∆ (Ω)

have full support and let Π be a partition. Define

V̄λ,µ (f) = min
µ′∈∆(Ω)

{Eµ′ (f) + λR (µ′||µ)} ∀f ∈ RΩ (10)

and

Vλ,µ (ω, f) = min
p∈∆(Ω)

{Ep (f) + λR (p||pµ (ω, ·))} ∀ω ∈ Ω,∀f ∈ RΩ (11)

where λ > 0 and R (·||·) is the relative entropy. The agent has a probability model of reference

µ, but she does not fully trust it. She is willing to consider other models µ′, nevertheless the

farther they are in terms of relative entropy from µ (resp., its update), the less plausible they

are, and the smaller role they play in the minimization (10) (resp., (11)). Here, λ is a parameter

that captures the agent’s aversion to the potential misspecification of µ: the lower λ, the more

the decision maker considers other probability models p. It is well known that
(
V̄λ,µ, Vλ,µ,Π

)
is

a nonlinear conditional expectation (see Maccheroni et al. [37, Section 5.2]). Next, assume that

each agent has an information partition Πi and her conditional interim expectations (Vi,λ,µ,Πi)

are computed according to (11) with respect to Πi. In this case, the common prior µ uniquely

defines the nonlinear common ex-ante expectation V̄λ,µ.

It is possible to generalize multiplier expectation so as to take into account i) ambiguity

aversion as in Hansen and Sargent [26] and Cerreia-Vioglio et al. [10] or ii) time-varying

aversion to misspecification as in Maenhout [38], Hansen and Sargent [25], and Lanzani [35].

To formalize (i), rather than a single model, let us fix a set M ⊆ ∆ (Ω) of probabilities

with full support over Ω. The interpretation is that the agents are ambiguity averse, consider

multiple structured models M, and are aware that each µ ∈ M is only an approximation.

Define V̄λ,M (f) = minµ∈M V̄λ,µ (f) and assume that agent i’s conditional interim expectation

is Vi,λ,M (ω, f) = minµ∈M Vi,λ,µ (ω, f). With this, V̄λ,M is a common upper ex-ante expectation.

To formalize (ii), consider instead a single model M = {µ}, but let the conditional interim

expectation of i at ω be Vi,λi(ω),µ (ω, f). Observe that if λi (ω) ≤ λ for all ω ∈ Ω and i ∈ I, then

V̄λ,µ is a common lower ex-ante expectation. The interpretation is that the misspecification

aversion of each agent falls every time that they receive additional information about the state.
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N

3.2 Axiomatization and computation of extreme ex-ante expecta-

tions

In this section, we explain how extreme ex-ante expectations are characterized axiomatically,

and we operationalize them by providing an algorithm to compute them. Readers chiefly

interested in the application to beauty contests can skip this subsection.

3.2.1 Axiomatic characterization

We develop a full-fledged axiomatization in Online Appendix E. Here, we sketch our findings.

We start by considering a collection of preference relation
{(
%, {%ω,Πi}ω∈Ω

)}
i∈I where % is

interpreted as the ex-ante preference and each %ω,Πi corresponds to the interim preferences of

agent i in state ω.

Under monotonicity and weak order, these preference relations are represented, respectively,

by functions V̄ and Vi (ω, ·) that are normalized and monotone. We next impose the axioms

corresponding to the information interpretation of these preferences. We first require that for

every i ∈ I and every ω, ω′ ∈ Ω, Πi (ω) = Πi (ω
′) implies %ω,Πi=%ω′,Πi , as interim preferences

should not reflect more information than the one available to the agent. We then require that

states outside Πi (ω) are null for preference %ω,Πi , an axiomatic form of consequentialism.

With this, the key task becomes to provide axioms that link the ex-ante and interim pref-

erences so that the former is a lower ex-ante expectation for the former. The key axiom turns

out to be dynamic subconsistency: For each f ∈ RΩ and for each g measurable with respect to

the partition Πi,

g %ω,Πi f, ∀ω ∈ Ω =⇒ g % f.

It captures a form of higher uncertainty aversion for the ex-ante preference (for the uncertainty

revealed by Πi). Indeed, it requires that if an act g that is certain conditional on Πi is interim

preferred to an arbitrary act f , then this preference is maintained at the ex-ante stage (see

also Gul and Pesendorfer [20] for a weaker form of this axiom that requires reduction of the

uncertainty aversion after at least one event in Πi). We show that if and only if this axiom is

satisfied, jointly with the ones mentioned above, the representing pair V̄ and {Vi (ω, ·)}ω∈Ω,i∈I

is a lower common ex-ante expectation.
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Finally, we show that to single out the extreme lower ex-ante expectation; the pair must

have “as much dynamic consistency as possible”. Indeed, we show that V∗ represents the unique

preference % that satisfies the aforementioned axioms together with {%ω,Πi}ω∈Ω,i∈I and is such

that (i) for every act f ∈ RΩ there is at least one agent that is dynamically consistent in the

evaluation of that act and (ii) that all the agents are dynamically consistent with respect to the

acts measurable with respect to any of the partitions Πi. Formally, (i) for each f ∈ RΩ there

exists i ∈ I such that V̄ (f) = V̄ (Vi (·, f)) and (ii) for i, j ∈ I if h is Πi-measurable, V̄ (h) =

V̄ (Vj (·, h)). Notably, in the proof of this result (Proposition 10 in the Online Appendix), we

rely on the convergence to a deterministic limit of the agents’ higher-order expectations that

we established in Theorem 1.12

3.2.2 Algorithm to construct extreme common ex-ante expectations

We provide an operational algorithm to compute V∗ starting from an arbitrary collection of

interim expectations {(Vi,Πi)}i∈I . Differently from the characterization of V∗ in Proposition 1,

this algorithm is simpler as it does not involve a minimization over the infinite set of I-sequences.

Let

V̂ (f) = max
ω∈Ω

f (ω) ∀f ∈ RΩ.

Clearly, V̂ is an ex-ante expectation. Next, define recursively the sequence
{
V̂ τ
}
τ∈N

of real-

valued functions over RΩ by V̂ 1 = V̂ and

V̂ τ+1 (f) = min
i∈I

V̂ τ (Vi (f)) ∀f ∈ RΩ,∀τ ∈ N.

For example, V̂ 2 (f) = mini∈I maxω∈Ω Vi (ω, f) assigns to each act f its worst most favorable

interim expectation across all agents. In general, V̂ τ+1 assigns to f its worst most favorable

τ -th order interim expectation across all sequences of τ agents.

Proposition 2. We have that limτ V̂
τ exists and it is equal to V∗.

12The last result that singles out V∗ is proved for the case of two players. It is known that extending the results
about iterated expectations from the two-player to arbitrarily many players involves additional difficulties; see
Hellman [28]. The reason here is the same as there: with multiple players, I-sequences are not equivalent to
permutation sequences in which players always show up in the same order. Still, the direction of the result
in which the axiom implies that the ex-ante expectation is the extreme lower ex-ante expectation holds for
arbitrary players. More generally, a similar analysis can be conducted for (extreme and non) upper ex-ante
expectations.
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The simplification here is twofold: first, the sequence defined above is one-dimensional

rather than a Ω-random variable; second, at every step, the minimization is taken over the set

of agents rather than (finite or infinite) sequences of agents.

4 Equilibrium and (un-)common ex-ante preferences

In this section, we consider the equilibrium implications of common ex-ante expectations for

a class of coordination games. In each of the following applications, the equilibrium σβ =(
σβi

)
i∈I
∈
(
RΩ
)n

is described by the following fixed-point condition:

σβi (ω) = Vi

(
ω, (1− β) f̂ + β

∑
j∈I

wijσ
β
j

)
∀ω ∈ Ω,∀i ∈ I. (12)

Here, f̂ ∈ RΩ is a payoff-relevant fundamental, β ∈ (0, 1) parametrizes the relative importance

of coordination with other agents over adaptation to the fundamental, and W = {wij}i,j∈I ∈
Rn×n is a stochastic matrix where each wij captures the relative importance of agent j for i.

The interpretation is that the equilibrium outcome for agent i coincides with her (gener-

alized) expectation of a combination of the fundamental and the equilibrium outcomes of the

other players. This kind of fixed-point condition is ubiquitous in models of asset pricing with

beauty contests (cf. Morris and Shin [43]), networks of financial institutions (cf. Jackson and

Pernoud [33]), and price competition (cf. Angeletos and Pavan [2]) as we show in Section 4.4.

In the SEU case, the high-coordination limit (β → 1) of the equilibrium strategies is used to

select an equilibrium of the pure-coordination games and can be related to the common prior

expectation of the asset (cf. Shin and Williamson [50] and Golub and Morris [19]). Analogously,

the characterization of this limit and its relation to the ex-ante preferences we have defined will

be the main focus of our analysis.

4.1 Beauty contests: coordination and equilibrium

As a leading application, we consider a beauty-contest model with random matching and private

information (as in Golub and Morris [19]) that generalizes the forecasting the forecaster example

of Section 3. Each i ∈ I represents a continuum of agents sharing the same information partition

Πi. Time is discrete, and there is a random variable f̂ ∈ RΩ denoting the only asset in this
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economy that is sequentially traded with random matching. Let β ∈ (0, 1). At every period

t ∈ N, if an agent in class i holds the asset, with probability (1− β), she has to liquidate the

asset and obtain its fundamental (uncertain) value f̂ . With complementary probability β, she

privately has to sell the asset to an agent from a randomly selected class and then leaves the

game. The matching probabilities, conditional on not liquidating the asset, are described by

a stochastic matrix W , where wij is the probability with which an agent in class i is matched

to class j. In particular, the random matching and liquidation are independent of the state.13

After the realization of the matched class j, the agents in j compete a la Bertrand, offering a

price to the asset holder in i, who decides to whom to sell the asset. This mechanism implies

that in equilibrium, the offered price is equal to the (common) willingness to pay for the asset

of the agents in class j. If an agent in class j acquires the asset, then the game continues to

period t+ 1.14

We study the equilibria of this game for variational preferences (cf. Maccheroni et al.

[36]).15 A collection of interim expectations {(Vi,Πi)}i∈I is variational if and only if for every

i ∈ I and ω ∈ Ω, there exists a lower semicontinuous, grounded, and convex cost function

ci,ω : ∆ (Ω)→ [0,∞] such that

Vi (ω, f) = min
p∈∆(Ω)

{Ep (f) + ci,ω (p)} (13)

for all f ∈ RΩ.16 Variational interim expectations exhibit violations of subjective expected

utility due to aversion to ambiguity, a widely documented trait. The interpretation is that each

agent considers the evaluation of the act under many probabilistic models, and ci,ω penalizes

more the models (subjectively) deemed less plausible. In particular, the probabilistic models p

for which ci,ω (p) = 0 represent the “benchmark” models that i trusts the most in state ω. All

the examples of preferences we have introduced, except quantile maximization, are variational.

13For simplicity, we assume that each agent treats the liquidation and matching process as unambiguous.
This is best seen as an extreme form of the fact that the agent is less ambiguous about events involving her
directly than the ones about the fundamental state of the economy.

14Observe that there is no relevant learning over time since the past owners of the asset have left the game.
Moreover, conditional on non-liquidation, even if the asset holder would learn something about the state ω ∈ Ω
from the offers of the agents in j, accepting the highest offer is still dominant.

15Maxmin expected utility and multiplier preferences are a particular case of variational preferences. More-
over, Choquet expected utility preferences are a particular case of maxmin preferences provided that the repre-
senting capacity is convex.

16A cost function c is grounded if and only if minp∈∆(Ω) c (p) = 0.
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Assumption 1 The collection of interim expectations {(Vi,Πi)}i∈I has full support, is

such that Πsup = {Ω}, and is variational and W is strongly connected.

A (Markov) strategy for an agent in class i ∈ I is a random variable σi ∈ RΩ that is

measurable with respect to the information structure Πi. In particular, from the point of view

of agents in i, the strategies σj ∈ RΩ of agents in any class j are state-dependent offers that can

be evaluated through their interim preferences. Let Σ denote the set of profiles of strategies

for the n classes of agents, respectively. For every β ∈ (0, 1], if we fix a profile of strategies

σ = (σj)j∈I ∈ Σ, then the corresponding (state-dependent) willingness to pay for asset f̂ of any

agent in class i ∈ I is:

Sβ,i (σ) = Vi

(
(1− β) f̂ + β

∑
j∈I

wijσj

)
∀ω ∈ Ω. (14)

The equilibria of this game correspond to the fixed points of the map Sβ (·) : Σ → Σ, that is,

σβ ∈ Σ is an equilibrium if and only if it satisfies equation (14).

Proposition 3. For every β ∈ (0, 1), there exists a unique equilibrium σβ ∈ Σ of the game.

Moreover, there exists C ∈ R+ such that, for every β ∈ (0, 1),

max
i,j∈I,ω,ω′∈Ω

∣∣∣σβi (ω)− σβj (ω′)
∣∣∣ ≤ (1− β)C max

ω,ω′∈Ω

∣∣∣f̂ (ω)− f̂ (ω′)
∣∣∣ . (15)

The inequality in equation (15) gives a bound on the maximum level of disagreement among

the equilibrium asset evaluations. The RHS is monotonically decreasing in β and linearly

vanishes as we let coordination become more important, that is, β → 1. This implies that the

price of the asset becomes constant across states and agents in the limit.

4.2 Beauty contests: coordination and misspecification neutrality

In this section, we characterize the unique equilibrium σβ as coordination becomes more and

more important, i.e., β → 1. Define the set of interim benchmark beliefs

Q =
{
q ∈ (∆ (Ω))I×Ω : ∀ (i, ω) ∈ I × Ω,∀ω′ ∈ Πi (ω) , qi,ω′ = qi,ω, ci,ω (qi,ω) = 0

}
.

Each q ∈ Q is a collection of interim beliefs for all the agents and states that are (i) measurable

with respect to the information of the corresponding agents and (ii) most trusted in the given
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state. This q can be combined with the network structure W to obtain an interaction structure

W q ∈ R(I×Ω)×(I×Ω)
+ among agent-state pairs, capturing both the interim beliefs of the agents as

well as the strength of their links. Formally, we let

wq(i,ω)(j,ω′) = wijqi,ω (ω′) ∀i, j ∈ I,∀ω, ω′ ∈ Ω. (16)

Under SEU interim preferences, there is a unique interaction structure (introduced by Golub

and Morris [19]) pinned down by the network W and the posterior beliefs of the agents. In

the present setting, model uncertainty translates into a multiplicity of relevant interim beliefs,

hence into a multiplicity of interaction structures. However, this multiplicity is disciplined by

both the information and the interim preferences of the agents.

Lemma 1. For each q ∈ Q, there exists a unique (row vector) γq ∈ ∆ (I × Ω) such that

γq = γqW q.

This is a consequence of the connectedness properties of each W q implied by Πinf = {Ω},
full support of {Vi,Πi}i∈I , and that W is strongly connected. We are now ready to state the

main result of this section.

Theorem 2. For all i ∈ I and ω ∈ Ω,

V∗

(
f̂
)
≤ lim

β→1
σβi (ω) = min

q∈Q

∑
(j,ω′)∈I×Ω

γqj,ω′Eqj,ω′
(
f̂
)

. (17)

Therefore, if there exists a nonlinear common ex-ante expectation V̄ for {(Vi,Πi)}i∈I , then, for

all i ∈ I and ω ∈ Ω,

V̄
(
f̂
)
≤ lim

β→1
σβi (ω) .

First, we observe that, in the limit where the coordination motive prevails, the equilibrium

price is independent of the realized state and the agent’s identity. In particular, the limit

selects an equilibrium of the pure coordination game where the asset is payoff irrelevant. This

generalizes a well-known fact under subjective expected utility (cf. Golub and Morris [19]).

Second, the constant limit price equals the most cautious average of the benchmark evalu-

ations of f̂ that are consistent with the network structure. Notably, the cautious selection of

the benchmark models q from Q induced by the market interaction has two roles. While se-

lecting beliefs that evaluate the asset in a cautious way (i.e., to keep the first-order evaluations
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Eqi,ω
(
f̂
)

low), it also determines how the heterogeneous evaluations are aggregated through

the eigenvector centrality γq of the interaction structure.

Third, our formula points out that the strong coordination motives in the market attenuate

the ambiguity concern exhibited by the equilibrium evaluation. Intuitively, the asymmetric

information of the traders combined with their coordination motive implies that the equilibrium

prices are less variable across states than the fundamental itself. Indeed, when evaluating the

asset conditional on private information Πi (ω), the agent does not only need to take into

consideration what f pays in the states in Πi (ω). Indeed, facing the possibility of trading the

asset to those j such that wij > 0, they have to take into account their evaluation, which will

also depend on the asset payment in the states in ∪ω̂∈Πi(ω)Πj (ω̂), i.e., the states that j believes

are possible in one of the states i believes to be possible. It is this dependence on more states

that dampens the variability of the asset price compared to the underlying fundamental, and,

of course, this dampening is only amplified by the fact that the evaluation of j itself depends

on the ones of their neighbors k such that wjk > 0. Therefore, the uncertainty-averse traders

evaluate owning the asset more favorably than the fundamental.

More formally, we have

lim
β→1

σβi (ω) ≥ Vi

(
ω, f̂

)
∀i ∈ I,∀ω ∈ Ω,

since each collection of beliefs q ∈ Q satisfy ci,ω (qi,ω) = 0 for all i ∈ I and ω ∈ Ω. In turn, this

immediately yields the lower bound in equation (17) and, when there exists a common ex-ante

evaluation, we actually have V∗

(
f̂
)

= V̄
(
f̂
)

, implying that the equilibrium price is higher

than the shared ex-ante evaluation. This is a sharp difference with respect to the case of SEU

interim preferences where, under a common prior, the limit equilibrium price coincides with

the prior expectation.

We next show that in several important cases, this ambiguity reduction completely mutes

the agent’s concern.

Corollary 2. Assume that, for all i ∈ I and ω ∈ Ω, it holds arg minp∈∆(Ω) ci,ω (p) =
{
q∗i,ω
}

.

For all i ∈ I and ω ∈ Ω,

lim
β→1

σβi (ω) =
∑

(i,ω)∈I×Ω

γq
∗

i,ωEq∗i,ω
(
f̂
)

.
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Moreover, if the collection
{
q∗i,ω
}
i∈I,ω∈Ω

admits a common prior µ∗ we have

lim
β→1

σβi (ω) = Eµ∗
(
f̂
)

.

This result characterizes an extreme form of ambiguity-aversion reduction. Indeed, when-

ever each interim preference has a unique most trusted benchmark model, the limit equilibrium

price is equal to an ex-ante SEU evaluation of the asset, implying that only the interim bench-

mark models matter as the importance of coordination grows. This reduction is particularly

stark when the agents’ benchmark models are consistent with a common prior µ∗. In this

case, the ex-ante evaluation of the asset according to this probabilistic model is the limit price

equilibrium, and this limit is the same regardless of the ambiguity attitudes and the network

structure. Therefore, whenever µ∗ is highly misspecified with respect to the “objective” prob-

ability model ν∗, there is a divergence between the limit market price limβ→1 σ
β
i (ω) and the

rational-expectations value Eν∗
(
f̂
)

pair to the full gap Eµ∗
(
f̂
)
−Eν∗

(
f̂
)

, with no attenuation

whatsoever despite the shared concern for misspecification.

In the next example, we illustrate this phenomenon within the class of multiplier preferences

with Bayesian updating from a common prior.

Example 6. Suppose that, as in Example 5, in the ex-ante stage, the agents share the same

unique benchmark model µ∗ ∈ ∆ (Ω), but they are averse to misspecification with possibly

different attitudes: each i ∈ I evaluates f̂ as

min
p∈∆(Ω)

{
Ep
(
f̂
)

+ λiR (p||µ∗)
}

where (λi)i∈I ∈ Rn
++ is a profile of misspecification concern indexes. After having observed their

own private information, the agents update the benchmark model to pµ∗,i (ω, ·). Therefore, the

interim evaluation of i at ω is

Vi (ω, f) = min
p∈∆(Ω)

{Ep (f) + λiR (p||pµ∗,i (ω, ·))} ∀f ∈ RΩ.

In this case, Corollary 2 implies that

lim
β→1

σβi (ω) = Eµ∗
(
f̂
)

∀i ∈ I,∀ω ∈ Ω.
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That is, the ambiguity is completely washed out, and the price converges to the expected eval-

uation of the asset, independently of the attitudes towards misspecification. If these attitudes

are homogeneous, i.e., λi = λ for all i ∈ I, then there exists a common ex-ante expectation

V̄ (f) = min
p∈∆(Ω)

{Ep (f) + λR (p||µ∗)} ∀f ∈ RΩ

and a wedge between V̄
(
f̂
)

and limβ→1 σ
β
i (ω) arises whenever the asset pays a different amount

in each state. More generally, the wedge between V∗ and limβ→1 σ
β
i (ω) remains present even

when the misspecification attitudes are heterogeneous. N

4.3 Beauty contests: unambiguous information structure

Here, we consider an important special case: the agents are unambiguous with respect to the

information structure while still possibly perceiving ambiguity about the fundamental f̂ , i.e.,

there is no strategic ambiguity. In this case, the first-order expectations of the agents exhibit

perceived ambiguity and ambiguity aversion, whereas the higher-order expectations do not;

that is, they are SEU. Formally, we say that the information structure is unambiguous if and

only if for every i ∈ I, Vi is Πinf-affine, that is

Vi (ω, (1− α)h+ αg) = (1− α)Vi (ω, h) + αVi (ω, g)

for all α ∈ (0, 1), for all ω ∈ Ω, and for all g, h ∈ RΩ where g is Πinf-measurable. This

implies that Vi is linear over the vector space of elements g ∈ RΩ that are Πinf-measurable.

This restriction is reasonable, for instance, in games where the agents repeatedly interact and

can observe the actions of the coplayers after each interaction. In this case, if the agents are

correctly specified, then their beliefs will converge to the true distribution on Πinf .

Proposition 4. If the information structure is unambiguous, then for all i ∈ I and ω ∈ Ω,

lim
β→1

σβi (ω) ∈
[
V∗

(
f̂
)
, V ∗

(
f̂
)]

.

Moreover, if there exists a nonlinear common ex-ante expectation V̄ for {(Vi,Πi)}i∈I , then, for

all i ∈ I and ω ∈ Ω,

lim
β→1

σβi (ω) = V̄
(
f̂
)

.
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Whenever the traders are not ambiguous regarding events in their information structures,

the extreme ex-ante preferences give both an upper and lower bound for any possible equilibrium

selection. Next, observe that whenever a nonlinear common ex-ante expectation exists, the

identity V̄ = V∗ = V ∗ implies that the limit equilibrium limβ→1 σ
β is well defined and equal

to the ex-ante evaluation. This is an implication of the common prior assumption under SEU

(cf. Golub and Morris [19]) that we extend to the unambiguous-information case. Finally,

comparing the second parts of Theorem 2 and of Proposition 4, we observe that the only

ambiguity the market interaction can tame is the one about the information structures of the

agents.

4.4 Additional application: price competition

As mentioned above, the previous analysis only depends on the equilibrium equation (12)

regardless of the specifics of the underlying game. Here, we provide an alternative foundation

of (12) based on a price-competition model. Concretely, n firms compete on prices. We fix

a random variable f̂ ∈ RΩ
+ representing the state of the economy, and we let y denote its

realization. Each firm i chooses the price xi ∈ R+ for its good, has 0 production costs, and

its payoff function ui : Rn
+ × R+ → R depends on the state y as well as the entire profile of

prices x ∈ Rn
+: ui (x, y) = Di (x, y)xi where Di : Rn

+ × R+ → R is the demand function faced

by firm i and is defined as Di (x, y) = β
∑

j∈I wijxj + (1− β) y− xi/2 for some β ∈ (0, 1) and a

stochastic and strongly connected matrix W with wjj = 0 for all j ∈ I. The demand faced by

firm i negatively depends on its own price and positively depends on the state of the economy

and on the prices of the other firms, respectively, with coefficients (1− β) and β. As usual,

the interpretation is that the firms compete on the same market with partially differentiated

products, and wij captures the similarity of products i and j. Suppose also that {(Vi,Πi)}i∈I
is a collection of maxmin (cf. Example 1) interim preferences. In particular, let Ci,ω ⊆ ∆ (Ω)

denote the set of interim probabilistic models of agent i at state ω.

As before, a strategy σi ∈ RΩ
+ of agent i is measurable with respect to Πi. Given a

strategy profile σ−i for the coplayers of i, the problem faced by i given state ω ∈ Ω is

maxxi∈R+ minp∈Ci,ω Ep
((

(1− β) f̂ + β
∑

j∈I wijσj

)
xi − x2

i

2

)
. With this, the first-order condi-
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tion characterizing the equilibrium σβ for every β ∈ (0, 1) is

σβi (ω) = min
p∈Ci,ω

Ep

(
(1− β) f̂ + β

∑
j∈I

wijσ
β
j

)
∀ω ∈ Ω,∀i ∈ I, (18)

which is just a particular case of equation (12), so that, mutatis mutandis, all the previous

analysis applies to this price-competition game as well.

5 Related literature

Our work lies at the intersection of several strands of literature, including decision theory, game

theory, and information economics. Our Theorem 1 and Corollary 1 generalize to rational

preferences the common-prior characterization of Samet [47]. In the case of SEU, the latter

has been previously extended to compact spaces of uncertainty in Hellman [28] and to more

general payoff-relevant spaces in Golub and Morris [18].

More recently, the existence of a nonlinear common ex-ante expectation for non-ambiguity-

neutral preferences under both dynamic consistency and consequentialism has been studied by

Ellis [12]. This paper shows that if the agents’ information has a product structure in addition

to the previous properties, then their interim preferences cannot exhibit violations of Savage’s

sure-thing principle for acts that are measurable with respect to the aggregate information.

However, the following facts limit the implications of this critical result for our analysis: (i) We

also consider and characterize weaker versions of common dynamic consistency, which allow

for violations of Savage’s sure-thing principle (ii) We never impose a product structure for the

information of the agents which in turn would rule out hard evidence about the interim types

of the opponents (e.g., E-mail-game like information structures have such hard evidence) (iii)

For the class of games that we consider in Section 4, even the residual ambiguity about the

fundamental state is relevant for the equilibrium outcomes.

Our applications generalize the standard beauty-contest settings in Shin and Williamson

[50], Allen et al. [1], or Golub and Morris [19] by allowing for ambiguity aversion and obtaining

notable equilibrium implications. In general, our work proposes a viable theory for games

under incomplete information without SEU. In this regard, Epstein and Wang [14] introduce

a universal type space for a class of preferences very similar to the rational one analyzed in

the current paper. We improve on this work by characterizing the collections of finite type

26



spaces that admit some degree of ex-ante mutual agreement within this universal type space.

On the more applied side, we contribute to a recent growing literature that studies the joint

effect of ambiguity aversion and differential information on equilibrium prices (see Huo et al.

[29] and the citations therein). On the technical side, the fixed-point equations describing the

equilibrium of the beauty context is a special case of the class of nonlinear fixed point equations

we extensively study in Cerreia-Vioglio et al. [7].

Relatedly, we improve on the analysis of incomplete-information games under uncertainty of

Kajii and Ui [31] by considering variational preferences and deriving equilibrium properties for

a specific class of coordination games. Moreover, we focus here on simultaneous-move games

rather than analyzing the effect of ambiguity aversion in multistage games such as Battigalli et

al. [3]-[4], and Hanany et al. [23], which in turn provide a very different set of results.

Our results are complementary to the extended literature on no-trade results without

SEU. On the one hand, Billot et al. [5], Rigotti et al. [45], and Strzalecki and Werner

[54] study efficient allocations under ambiguity with public information, as opposed to the

private-information setting of the current paper. On the other hand, Kajii and Ui [32] and

Martins-da-Rocha [39] provide no-trade characterizations of the existence of common ex-ante

benchmark beliefs.

Finally, our work is related to the extended literature on updating non-SEU preferences

under (relaxations of) consequentialism and dynamic consistency as in Ghirardato [16], Ep-

stein and Schneider [13], Maccheroni et al. [37], Hanany and Klibanoff [22], and Gumen and

Savochkin [21]. However, we take an interim approach rather than deriving or studying a given

updating rule, as in the works above. We derive the ex-ante preferences that are consistent

with the given interim ones. This allows us to connect our results to existing updating rules

by comparing the prescribed ex-ante preferences with the ones we obtain from the interim

preferences and derive new insights into their implications in strategic interactions.

6 Conclusion

The results of this paper can also be used as a stepping stone for further analysis of games

beyond SEU. Here, we highlight some open questions and future research avenues.

First, as already stressed, despite our analysis following an interim approach, our results

can be used in games of incomplete information with general preferences under uncertainty
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and a given set of updating rules. Indeed, the disagreement bound in Proposition 3 and the

limit characterization in Theorem 2 did not put any intertemporal restriction on the agents’

preferences. So, for example, if all the agents are maxmin, share the same ex-ante set of

probability models, and update their beliefs with full Bayesian updating, then our results

give tools to study how the equilibrium outcomes change with respect to the agents’ private

information.

Second, our framework enables us to revisit some classical results for SEU agents on incom-

plete information games to understand whether they carry on with more general preferences.

An example is a result established in Nielsen et al. [44] that if a stochastically monotone func-

tion (often interpreted as the price of an asset) of the beliefs is common knowledge across the

players, their beliefs coincide. The result extends beyond SEU, provided that the information

structure is unambiguous but may fail more generally.

Third, our framework and results are the first steps toward a general analysis of approximate

common knowledge under model uncertainty. The standard analysis based on p-belief operators

of Monderer and Samet [40] can be extended to a setting with multiple interim beliefs, for

example, by requiring that all the interim probability models assign probability p to an event.

In particular, within this richer framework, we can also ask about the strategic implications of

approximate common unambiguity of an event, that is, for each agent, all the interim belief of

that agent assigns the same probability to that event.

Relatedly, approximate common knowledge has been recently studied in a learning setting

under SEU by Frick et al. [15]. Their common-learning results complement Samet’s convergence

result on higher-order expectations by showing that their KL divergence relative to the prior

distribution decreases monotonically along any sequence. On the one hand, our Theorem 1

offers an alternative distance between higher-order and prior expectations. On the other hand,

our setting can be used to analyze common learning in the presence of ambiguity, for example,

by resorting to the learning rules studied in Lanzani [35], [34].

Finally, our analysis is a stepping stone to obtaining equilibrium refinements in complete in-

formation games. Indeed, in the SEU world, Kajii and Morris [30] pioneered a robust approach

that selects only the subset of equilibria that are limit points of every sequence of incomplete

information games, approximating the original complete information game. An even sharper

refinement would only select equilibria that are limit points, including elaborations under in-

complete information and non-SEU preferences.
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A Appendix: Mathematical preliminaries

In this appendix, we state and prove some key mathematical results used in the main analysis.

The statements and proofs of the ancillary lemmas are relegated to Online Appendix D.

Since Ω is finite, with a small abuse of notation, we equivalently view Ω as the set J =

{1, ..., n̄}. We also denote the elements of the canonical basis of Rn̄ by ej for all j ∈ J . The

composition of normalized, monotone, and continuous operators is an operator which shares

the same properties. A normalized and monotone operator T : Rn̄ → Rn̄ is linear if and only if

there exists a stochastic n̄× n̄ matrix M such that T (f) = Mf for all f ∈ Rn̄. All products of

n̄× n̄ matrices are to be intended backward/left, that is, Πk+1
l=1 Ml = Mk+1Πk

l=1Ml = Mk+1...M1

for all k ∈ N. Define In̄ to be the n̄× n̄ identity matrix. Given j, j′ ∈ J we say that j is strongly

monotone with respect to j′ (under T ) if and only if there exists εjj′ ∈ (0, 1) such that for each

f ∈ RΩ and for each δ ≥ 0

Tj

(
f + δej

′
)
− Tj (f) ≥ εjj′δ. (19)

We say that j is constant with respect to j′ if and only if

Tj

(
f + δej

′
)
− Tj (f) = 0 ∀f ∈ RΩ,∀δ ≥ 0. (20)

We say that T is dichotomic if and only if for each j, j′ ∈ J , j is either strongly monotone or

constant with respect to j′.

Definition 6. Let T be a monotone operator. We say that A (T ) is the indicator matrix of T

if and only if its jj′-th entry is such that

ajj′ =

{
1 j is strongly monotone wrt j′

0 otherwise
∀j, j′ ∈ J.

The indicator matrix A (M) of an n̄ × n̄ nonnegative matrix M is defined to be such that

ajj′ = 1 if and only if mjj′ > 0 and ajj′ = 0 if and only if mjj′ = 0. We say that A (T ) is

nontrivial if and only if for each j ∈ J there exists j′ ∈ J such that ajj′ = 1. The indicator

matrix A (T ) of a monotone operator T induces a natural partition of J . Recall that given a

nonnegative n̄× n̄ matrix A with nonnull rows, we can partition the set J = {1, ..., n̄} with the

partition {Jl (A)}mA+1
l=1 of essential and inessential indexes of A. The first mA sets consist of

the essential classes while JmA+1 (A) consists of all inessential indexes and it might be empty.
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This is the case if A is symmetric, that is, ajj′ = aj′j for all j, j′ ∈ J . Instead, there always

exists at least a nonempty class of essential indexes J1 (A), see, e.g., Seneta [49]. We call

Π (A) = {Jl (A)}mA+1

l=1 the partition of A. When A = A (T ) where T is normalized, monotone,

and continuous and A (T ) is nontrivial, we denote by Π (T ) the partition Π (A (T )).

Lemma 2. Let (V,Π) be an interim expectation with full support. The following statements

are equivalent:

(i) ajj′ = 1;

(ii) Π (ωj) = Π (ωj′).

In particular, A (V ) is symmetric, ajj = 1 for all j ∈ J , Π (V ) = Π, and V is dichotomic.

Proof. (i) implies (ii). Let j, j′ ∈ J . Since ajj′ = 1, we have that j is strongly mono-

tone with respect to j′. By contradiction, assume that Π (ωj) 6= Π (ωj′). Since Π is a par-

tition, it follows that Π (ωj) ∩ Π (ωj′) = ∅. Since (V,Π) is an interim expectation and j is

strongly monotone with respect to j′, we thus have that there exists εjj′ ∈ (0, 1) such that

0 = V
(
ωj, 01Π(ωj) + 1{ωj′}1Π(ωj)

c

)
− V (ωj, 0) = V

(
ωj, 1{ωj′}

)
− V (ωj, 0) ≥ εjj′ > 0, a con-

tradiction.

(ii) implies (i). Note that Π (ωj) = Π (ωj′) only if ωj′ ∈ Π (ωj). Since (V,Π) is an in-

terim expectation with full support, we have that each ω̄ ∈ Π (ωj) is V (ωj, ·)-essential and, in

particular, so is ωj′ , yielding that ajj′ = 1.

By the previous part of the proof and since Π (ωj) = Π (ωj) for all j ∈ J and A (V ) is

{0, 1}-valued, we thus have that both ajj′ = 1 and aj′j = 1 hold if and only if Π (ωj) = Π (ωj′),

proving that A (V ) is symmetric, ajj = 1 for all j ∈ J , and Π (V ) = Π. Finally, for all j, j′ ∈ J ,

if j is not strongly monotone with respect to j′, we can conclude that ajj′ = 0 and ωj′ 6∈ Π (ωj).

Since V
(
ω, f1Π(ω) + h1Π(ω)c

)
= V (ω, f) for all ω ∈ Ω and for all f, h ∈ RΩ, this implies that

V
(
ωj, f + δ1{ωj′}

)
= V

(
ωj, f1Π(ωj) + δ1{ωj′}1Π(ωj) + 01Π(ωj)

c

)
= V (ωj, f)

for all f ∈ RΩ and for all δ ≥ 0, yielding that j is constant with respect to j′. This implies that

V is dichotomic. �

Given a stochastic matrix M , we denote by δ (M) = minj,j′∈J :mjj′>0mjj′ and d (M) =

minj∈J mjj. The next result builds on [6, Proposition 5].
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Proposition 5. If T : Rn̄ → Rn̄ is normalized, monotone, continuous, and such that A (T ) is

nontrivial, then there exists a compact and convex set M (T ) of n̄× n̄ stochastic matrices such

that A (M) ≥ A (T ) for all M ∈ M (T ) and for each f ∈ Rn̄ there exists M (f) ∈ M (T ) such

that T (f) = M (f) f . Moreover, if T is dichotomic, then M (T ) can be chosen to be such that

A (M) = A (T ) for all M ∈M (T ).

Proof. For each j, j′ ∈ J if j is strongly monotone with respect to j′, consider εjj′ ∈ (0, 1) as

in (19) otherwise let εjj′ = 1/2. Define M̃ to be such that m̃jj′ = ajj′εjj′ for all j, j′ ∈ J where

ajj′ is the jj′-th entry of A (T ). Since each row of A (T ) is not null, for each j ∈ J there exists

j′ ∈ J such that ajj′ = 1 and, in particular, m̃jj′ > 0. This implies that
∑n̄

l=1 m̃jl > 0 for all

j ∈ J . Define also ε = min
{

minj∈J
∑n̄

l=1 m̃jl, 1/2
}
∈ (0, 1). Define the stochastic matrix M̄ to

be such that m̄jj′ = m̃jj′/
∑n̄

l=1 m̃jl for all j, j′ ∈ J . Clearly, we have that for each j, j′ ∈ J ,

m̄jj′ > 0 if and only if m̃jj′ > 0 if and only if ajj′ = 1. This yields that A
(
M̄
)

= A (T ). Next,

consider f, g ∈ Rn̄ such that f ≥ g. Define g0 = g. For each j′ ∈ {1, ..., n̄− 1} define gj
′ ∈ Rn̄

to be such that gj
′

j = fj for all j ≤ j′ and gj
′

j = gj for all j ≥ j′ + 1. Define gn̄ = f . Note that

f = gn̄ ≥ ... ≥ g1 ≥ g0 = g. It follows that

Tj (f)− Tj (g) =
n̄∑

j′=1

[
Tj

(
gj
′
)
− Tj

(
gj
′−1
)]
≥

n̄∑
j′=1

ajj′εjj′
(
gj
′

j′ − g
j′−1
j′

)
=

n̄∑
j′=1

m̃jj′ (fj′ − gj′)

=

(
n̄∑
l=1

m̃jl

)(
n̄∑

j′=1

m̄jj′ (fj′ − gj′)

)
≥ ε

n̄∑
j′=1

m̄jj′ (fj′ − gj′) ∀j ∈ J.

This implies that

f ≥ g =⇒ T (f)− T (g) ≥ εM̄ (f − g) = ε
(
M̄f − M̄g

)
. (21)

Define S : Rn̄ → Rn̄ by S (f) = T (f)−εM̄f
1−ε for all f ∈ Rn̄. By definition of S and (21) and since

M̄ is a stochastic matrix and T is normalized, monotone, and continuous, it is immediate to

see that S is normalized, monotone, and continuous. We can rewrite T to be such that

T (f) = εM̄f + (1− ε)S (f) ∀f ∈ Rn̄. (22)

Consider the set M (S) of Lemma 5. Define M (T ) = εM̄ + (1− ε)M (S). Since M (S)

is compact and convex, A (T ) = A
(
M̄
)
, and ε ∈ (0, 1), it follows that M (T ) is compact
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and convex and A (M) ≥ A
(
M̄
)

= A (T ) for all M ∈ M (T ). By (22) and since for each

f ∈ Rn̄ there exists M̂ (f) ∈ M (S) such that S (f) = M̂ (f) f , for each f ∈ Rn̄ we have that

T (f) = M (f) f where M (f) = εM̄ + (1− ε) M̂ (f) ∈M (T ).

Finally, consider j, j′ ∈ J . Since A (M) ≥ A (T ), if the jj′-entry of A (T ) is 1 so is the one

of A (M) for all M ∈ M (T ). Assume that the jj′-entry of A (T ) is 0. Since A (T ) = A
(
M̄
)
,

the jj′-entry of A
(
M̄
)

is 0 too. Since T is dichotomic, it follows that for each f ∈ Rn̄ and for

each δ ≥ 0

ε

n̄∑
l=1

m̄jlfl + (1− ε)Sj
(
f + δej

′
)

= ε
n̄∑
l=1

m̄jl

(
fl + δej

′

l

)
+ (1− ε)Sj

(
f + δej

′
)

= Tj

(
f + δej

′
)

= Tj (f) = ε

n̄∑
l=1

m̄jlfl + (1− ε)Sj (f) .

Since ε ∈ (0, 1), we can conclude that Sj
(
f + δej

′)
= Sj (f) for all f ∈ Rn̄ and for all δ ≥ 0,

that is, j is constant with respect to j′ under S. By Lemma 5, we have that mjj′ = 0 for all

M ∈ M (S). Since M (T ) = εM̄ + (1− ε)M (S) and m̄jj′ = 0, we can conclude that the

jj′-entry of A (M) is 0 for all M ∈ M (T ). Since j and j′ were arbitrarily chosen, we can

conclude that A (M) = A (T ) for all M ∈M (T ). �

Theorem 3. Let {Ti}i∈I be a finite collection of normalized, monotone, and continuous di-

chotomic operators. If 1) A (Ti) is symmetric for all i ∈ I, 2) ai,jj = 1 for all i ∈ I and for

all j ∈ J , 3) the meet of the partitions {Π (Ti)}i∈I is {Ω}, then for each I-sequence (im)m∈N
and for each f ∈ Rn̄ we have that limm→∞ Tim ◦ ... ◦ Ti1 (f) exists and is a constant vector.

Moreover, for each I-sequence (im)m∈N and for each τ, t ∈ N with τ ≥ 2n̄, if i appears at least

τ times in (i1, ..., it) for all i ∈ I, then

∣∣∣∣∣∣ lim
m→∞

Tim ◦ ... ◦ Ti1 (f)− Tit ◦ ... ◦ Ti1 (f)
∣∣∣∣∣∣
∞
≤
(

1− δ2n̄
2
n̄2
)τ2−n̄

2−1

||f ||∞ ,

where δ = infi∈I,M∈M(Ti) δ (M) > 0.

Proof. Define

t̂ : = 2n̄
2

.

By Proposition 5, we have that In̄ ≤ A (Ti) = A (M) for all M ∈ M (Ti) and for all i ∈ I.
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Since M (Ti) is compact for all i ∈ I and I is finite, this implies that

δ : = inf
i∈I,M∈M(Ti)

δ (M) > 0.

Define also

δ̂ : = δt̂n̄
2

> 0.

Consider f ∈ Rn̄ and an I-sequence (it)t∈N. Define ft = Tit ◦ ... ◦ Ti1 (f) ∈ Rn̄ for all t ∈ N
and set f0 = f . By Proposition 5, there exists a sequence {Mt}t∈N of n̄× n̄ stochastic matrices

such that Mt ∈M (Tit) and Tit (ft−1) = Mtft−1 for all t ∈ N. Set t0 = 0. Define recursively the

following subsequence th+1 = min {m > th : {ith+1, ..., im} ⊇ I}, for all h ≥ 0. We next proceed

by steps.

Step 1 : A
(

Π
th+1

t=th+1Mt

)
≥ In̄ and Π

(
A
(

Π
th+1

t=th+1Mt

))
= {Ω} for all h ∈ N0.

Proof of the Step. Fix h ∈ N0. Since In̄ ≤ A (Tit) = A (Mt) for all t ∈ {th + 1, ..., th+1}, we have

that A (Mt) has a strictly positive diagonal and it is symmetric for all t ∈ {th + 1, ..., th+1}. By

Lemma 4 and since {th + 1, ..., th+1} ⊇ I and the meet of the partitions {Π (Ti)}i∈I is {Ω}, so

is the meet of the partitions {Π (Mt)}th+1
t=th+1, yielding that Π

(
A
(
Mth+1

...Mth+1

))
= {Ω}. By

Lemma 4, we also have that A
(

Π
th+1

t=th+1Mt

)
≥ A (Mt) ≥ In̄ for all t ∈ {th + 1, ..., th+1}. �

Step 2 : δ
(

Π
th+1

t=th+1Mt

)
≥ δn̄

2
for all h ∈ N0.

Proof of the Step. Fix h ∈ N0. By Lemma 6 and since A (Mt) = A (Tit) is symmetric,

δ (Mt) ≥ δ > 0, and d (Mt) > 0 for all t ∈ N, the statement follows. �

Define M̄h = Π
th+1

t=th+1Mt for all h ∈ N0. By Steps 1 and 2 and [8, Lemma 4.8 and

Theorem 4.19], we have that Πm
h=0M̄h converges to a stochastic matrix M whose rows co-

incide to each other and, in particular, that
∣∣∣∣M − Πτ−1

h=0M̄h

∣∣∣∣
∞ ≤

(
1− δ̂

) τ
t̂
−1

for all τ≥t̂.
This implies that Πm

l=1Ml → M and, in particular, that for each τ, t ∈ N, if i appears at

least τ≥t̂ times in (i1, ..., it) for all i ∈ I, then ||M − Πt
l=1Mt||∞ ≤

∣∣∣∣M − Πτ−1
h=0M̄h

∣∣∣∣
∞ ≤(

1− δ̂
) τ
t̂
−1

. Finally, it follows that limm→∞ Tim ◦ ... ◦ Ti1 (f) = limm→∞Πm
l=1Mlf = Mf,

and, in particular, that for each τ, t ∈ N, if i appears at least τ≥t̂ times in (i1, ..., it) for

all i ∈ I, then ||limm→∞ Tim ◦ ... ◦ Ti1 (f)− Tit ◦ ... ◦ Ti1 (f)||∞ = ||Mf − (Πt
l=1Mt) f ||∞ ≤(

1− δ2n̄
2
n̄2
)τ2−n̄

2−1

||f ||∞ proving the statement. �
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B Appendix: Section 3

In this appendix, we prove the results of Section 3. The statements and proofs of the ancillary

lemmas are relegated to Online Appendix D.

Proof of Theorem 1. By Lemma 2 and since {(Vi,Πi)}i∈I is a finite set of full support interim

expectations, we have that A (Vi) is symmetric, Π (Vi) = Πi, and Vi is dichotomic for all i ∈ I.

Moreover, we have that ai,jj = 1 for all j ∈ J and for all i ∈ I. By Theorem 3 and since the

meet of {Π (Vi)}i∈I is {Ω}, we can conclude that for each I-sequence ι = (it)t∈N and for each

f ∈ RΩ we have that limm→∞ Vim ◦ ... ◦ Vi1 (f) = kι,f1Ω for some kι,f ∈ R. Moreover, there

exist δ̂ =
(
infi∈I,M∈M(Vi) δ (M)

)2n̄
2
n̄2

∈ (0, 1) and t̂ = 2n̄
2 ∈ N such that for each I-sequence

(im)m∈N and for each τ, t ∈ N, if i appears at least τ ≥ t̂ times in (i1, ..., it) for all i ∈ I,

then ||kf,ι1Ω − Vit ◦ ... ◦ Vi1 (f)||∞ ≤
(

1− δ̂
) τ
t̂
−1

||f ||∞. Finally, the last part of the statement

follows setting C = 1

1−δ̂ and ε =
(

1− δ̂
) 1
t̂
. �

Whenever {(Vi,Πi)}i∈I exhibits convergence to a deterministic limit, pick an arbitrary ω ∈ Ω

and define V? : RΩ → R and V ? : RΩ → R by V? (f) = infι∈IN:ι is an I-sequence V̄ι (f) (ω) and

V ? (f) = supι∈IN:ι is an I-sequence V̄ι (f) (ω) for all f ∈ RΩ. Clearly, we have that V? ≤ V ?.

Proof of Proposition 1. The first part of the statement immediately follows by Lemma 8.

Since V? (resp. V ?) is a pointwise infimum (resp. supremum) of normalized and monotone

functionals, so is V? (resp. V ?). Fix f ∈ RΩ and i ∈ I. Consider also an I-sequence ι′. Since

{(Vi,Πi)}i∈I exhibits convergence to a deterministic limit, we have kVi(f),ι′1Ω = limt→∞ Vi′t ◦
Vi′t−1

◦ ... ◦ Vi′2 ◦ Vi′1 (Vi (f)) = limt→∞ Vi′′t ◦ Vi′′t−1
◦ ... ◦ Vi′′2 ◦ Vi′′1 (f) = kf,ι′′1Ω where ι′′ is the

I-sequence such that ι′′1 = i and ι′′t = ι′t−1 for all t ∈ N\ {1}. This implies that kVi(f),ι′ = kf,ι′′ ≥
infι∈IN:ι is an I-sequence kf,ι = infι∈IN:ι is an I-sequence V̄ι (f) = V? (f). Since ι′ was arbitrarily chosen,

this implies that V? (Vi (f)) = infι∈IN:ι is an I-sequence V̄ι (Vi (f)) = infι∈IN:ι is an I-sequence kVi(f),ι ≥
V? (f) , proving that V? ∈ V◦. Next, consider V ′ ∈ V◦ and suppose by contradiction that

V ′ (g) > V? (g) for some g ∈ RΩ. Since V ′ (g) > V? (g), there exists an I sequence ι such that

V ′ (g) 1Ω > limt→∞ Vit ◦ Vit−1 ◦ ... ◦ Vi2 ◦ Vi1 (g) = kg,ι1Ω. Since V ′ is normalized and continuous

at kg,ι1Ω by Lemma 7, V ′ (g) > V ′ (kg,ι1Ω) = V ′
(
limt→∞ Vit ◦ Vit−1 ◦ ... ◦ Vi2 ◦ Vi1 (g)

)
≥ V ′ (g),

a contradiction. This proves that V? = V∗. A symmetric argument shows that V ? = V ∗. �

Denote by P the set of permutations of agents, that is, bijections ρ : {1, ..., n} → {1, ..., n}.
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Given ρ ∈ P , we denote by Vρ : RΩ → RΩ the operator defined by

Vρ = Vρ(1) ◦ Vρ(2) ◦ ... ◦ Vρ(n). (23)

As usual, we also denote by V t
ρ the composition Vρ ◦ ... ◦ Vρ︸ ︷︷ ︸

t-times

for all t ∈ N and for all ρ ∈ P .

Proof of Corollary 1. We prove the equivalence between (i) and (ii). The equivalence between

(ii) and (iii) immediately follows by Proposition 1.

(i) implies (ii). By assumption, for each I-sequence ι = (it)t∈N and for each f ∈ RΩ we

have that limm→∞ Vim ◦ ... ◦ Vi1 (f) = kι,f1Ω for some kι,f ∈ R. By Lemma 7 and since V̄

is an ex-ante expectation and
(
V̄ , Vi,Πi

)
is a nonlinear conditional expectation, we have that

kι,f = V̄ (kι,f1Ω) = V̄ (limm→∞ Vim ◦ ... ◦ Vi1 (f)) = limm→∞ V̄ (Vim ◦ ... ◦ Vi1 (f)) = .... = V̄ (f),

proving the implication.

(ii) implies (i). Fix a permutation ρ̄ ∈ P . Define the I-sequence (ik)k∈N by ik = ρ̄ (kmodn)

for all k ∈ N such that kmodn 6= 0 and ik = ρ̄ (n) for all k ∈ N such that kmodn = 0. Define

V̂ : RΩ → RΩ by V̂ (f) = limτ→∞ V
τ
ρ̄ (f) for all f ∈ RΩ. By assumption, we have that V̂ is

well defined and V̂ (f) is a constant function for all f ∈ RΩ. Since Vρ̄ is the composition of

normalized, monotone, and continuous operators, so is V τ
ρ̄ for all τ ∈ N and, by passing to the

limit, V̂ is normalized and monotone. By assumption, we also have that V̂ (f) = limτ→∞ V
τ
ρ (f)

for all f ∈ RΩ and for all ρ ∈ P . Since V̂ is normalized and monotone and V̂ (f) is a constant

function for all f ∈ RΩ, we also have that V̂
(
V̂ (f)

)
= V̂ (f) for all f ∈ RΩ, that is, V̂ ◦ V̂ = V̂ .

Define also V̄ : RΩ → R by V̄ (f) = V̂1 (f) for all f ∈ RΩ. Since V̂ ◦ V̂ = V̂ , it is immediate to

see that V̄ is an ex-ante expectation such that V̄ ◦ V̂ = V̄ . This implies that for each f ∈ RΩ

and for each ρ ∈ P

V̄ (Vρ (f)) = V̄
(
V̂ (Vρ (f))

)
= V̄

(
lim
τ→∞

V τ
ρ (Vρ (f))

)
= V̄

(
lim
τ→∞

V τ+1
ρ (f)

)
= V̄ (f) . (24)

Consider i ∈ I. Consider any permutation such that ρ̃ (1) = i. By (24), we have that V̄ ◦Vρ̃◦Vi =

V̄ ◦ Vi. Consider the permutation ρ̂ such that ρ̂ (i′) = ρ̃ (i′ + 1) for all i′ ∈ {1, ..., n− 1}
and ρ̂ (n) = i. Define also Ṽ = V̄ ◦ Vi. It follows that Ṽ is an ex-ante expectation. Since

V̄ ◦ Vρ̃ ◦ Vi = V̄ ◦ Vi, we can conclude that Ṽ ◦ Vρ̂ = V̄ ◦ Vi ◦ Vρ̂ = V̄ ◦ Vρ̃ ◦ Vi = V̄ ◦ Vi = Ṽ .

By induction, this implies that Ṽ ◦ V τ
ρ̂ = V̄ ◦ Vi = Ṽ for all τ ∈ N. By (24) and Lemma 7 and

since Ṽ is an ex-ante expectation, V̄ ◦ V̂ = V̄ , and Ṽ ◦ V τ
ρ̂ = V̄ ◦ Vi = Ṽ for all τ ∈ N, we can
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conclude that V̄ (f) = V̄
(
V̂ (f)

)
= V̄

(
Vi

(
V̂ (f)

))
= Ṽ

(
limτ→∞ V

τ
ρ̂ (f)

)
= V̄ (Vi (f)) for all

f ∈ RΩ, yielding that V̄ ◦ Vi = V̄ . Since i was arbitrarily chosen, the statement follows. �

Proof of Proposition 2. By induction, we have that each V̂ τ is an ex-ante expectation.

Fix f ∈ RΩ. Since each Vi is an interim expectation, if τ ≥ 2, then we have that V̂ τ+1 (f) =

mini∈I V̂
τ (Vi (f)) = mini∈I mini′∈I V̂

τ−1 (Vi′ (Vi (f))) ≤ mini∈I V̂
τ−1 (Vi (f)) = V̂ τ (f). Since f

was arbitrarily chosen, this implies that V̂ τ+1 ≤ V̂ τ for all τ ∈ N\ {1}. Define V̂ ∞ : RΩ →
R by V̂ (f) = limτ V̂

τ (f) for all f ∈ RΩ. Since
{
V̂ τ (f)

}
τ∈N

is an eventually decreasing

sequence bounded from below by minω∈Ω f (ω), V̂ ∞ is a well defined ex-ante expectation. By

construction, we have that V̂ τ+1 (f) ≤ V̂ τ (Vi (f)) for all f ∈ RΩ and i ∈ I. By passing to

the limit, we obtain that V̂ ∞ (f) ≤ V̂ ∞ (Vi (f)) for all f ∈ RΩ and for all i ∈ I, which in turn

yields that V̂ ∞ ≤ V∗ by definition of V∗. By induction assume that V̂ τ ≥ V∗. It follows that

V̂ τ+1 (f) = mini∈I V̂
τ (Vi (f)) ≥ mini∈I V∗ (Vi (f)) ≥ V∗ (f) for all f ∈ RΩ, proving the inductive

step. This yields that V̂ ∞ ≥ V∗ and, in particular, V̂ ∞ = V∗. �

C Appendix: Section 4

In this appendix, we prove the results of Section 4. The statements and proofs of the ancillary

lemmas are relegated to Online Appendix D.

The elements of
(
RΩ
)n

are vectors of n components, f , where each component i, fi, is an

element of RΩ. We endow
(
RΩ
)n

with the norm ‖ ‖∗ :
(
RΩ
)n → [0,∞) defined by ‖f‖∗ =

supi∈I ‖fi‖∞ for all f ∈
(
RΩ
)n

. Define f̂ ∈
(
RΩ
)n

as f̂i = f̂ for all i ∈ I. For every monotone

operator R :
(
RΩ
)n → (

RΩ
)n

define the adjacency matrix Ā (R) ∈ {0, 1}(n×n̄)×(n×n̄) as follows.

For every i, j ∈ I we set ā(i,ω)(j,ω′) (R) = 1 if and only if there exist f ∈
(
RΩ
)n

and δ ≥ 0 such

that Ri,ω

(
f + δej,ω

′)−Ri,ω (f) > 0. Moreover, we say that a class of indices Z, ∅ 6= Z ⊆ I ×Ω,

is closed and strongly connected with respect to a matrix A ∈ {0, 1}(n×n̄)×(n×n̄) if and only if (i)

for each z, z′ ∈ Z there exists a path {zl}Kl=1 ⊆ Z such that azlzl+1
= 1 for all l ∈ {1, ..., K − 1},

z1 = z and zK = z′; (ii) for each z ∈ Z, azz′ = 1 implies z′ ∈ Z.

Proof of Proposition 3. By Lemma 14, it follows that, for every β ∈ (0, 1), Sβ is a contraction

with respect to the supnorm and it admits a unique fixed point σβ ∈ Σ. With this, the result

follows by Lemma 12 and applying [7, Theorem 2] with T = S1. �

Next, let W ⊆ R(n×n̄)×(n×n̄)
+ denote the set of stochastic matrices over I × Ω and define

∂S1 (0) =
{
Ŵ ∈ W : ∀ (i, ω) ∈ I × Ω, wi,ω ∈ ∂S1,i,ω (0)

}
, where ∂S1,i,ω (0) ⊆ ∆ (I × Ω) is the
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superdifferential of the concave functional S1,i,ω at 0. Let s ∈ int (∆ (I)) denote the unique

probability vector that satisfies s = sW , where uniqueness and strict positivity follow from the

fact that W is strongly connected.

Proof of Lemma 1. By Lemma 12, there exists a unique class of indices Z, ∅ 6= Z ⊆ I × Ω,

that is closed and strongly connected with respect to A (S1) and, in addition, every row of

A (S1) is not null. Given that S1 is concave and {(Vi,Πi)}i∈I is a collection of full support

interim expectations such that Πsup = {Ω}, it follows easily from the definition of ∂S1 (0) that,

for each Ŵ ∈ ∂S1 (0), Z is the unique closed and strongly connected class of indices with

respect to A
(
Ŵ
)

. Fix q ∈ Q. By Lemma 13, W q ∈ ∂S1 (0), so that Z is the unique closed

and strongly connected class of indices with respect to A (W q). Next, observe that, for each

γ ∈ ∆ (I × Ω), we have γ = 1
2
γI + 1

2
γW q = γ

(
I+W q

2

)
if and only if γ = γW q. In addition,

given that A
(
I+W q

2

)
≥ A (W q), it follows by [6, Corollaries 8.1 and 8.2] and [52, Theorem 2.2.5]

that there exists a unique γq ∈ ∆ (I × Ω) such that γq = γq
(
I+W q

2

)
. By the previous claim, γq

is also the unique probability vector such that γq = γqW q. Given that q ∈ Q was arbitrarily

chosen, the statement follows. �

Proof of Theorem 2. First, recall that S1 is normalized, monotone, translation invariant,

concave and, by Lemma 10, S1 (f) = f if and only if there exists m ∈ R such that fi = fi′ = m1Ω

for all i, i′ ∈ I. With this, for all (i, ω̃) ∈ I × Ω,

lim
β→1

σβi (ω̃) = min
{η∈∆(I×Ω):∃q∈Q,η=ηW q}

∑
(i,ω)∈I×Ω

ηi,ωf̂ (ω) = min
q∈Q

∑
(i,ω)∈I×Ω

γqi,ωf̂ (ω) ,

where the first equality follows by [7, Lemmas 2 and 9 and Proposition 14] and the second

equality follows by Lemma 1. Next, fix q ∈ Q and observe that

∑
(i,ω)∈I×Ω

γqi,ωEqi,ω
(
f̂
)

=
∑

(i,ω)∈I×Ω

γqi,ω

 ∑
(j,ω′)∈I×Ω

qi,ω (ω′)wij f̂ (ω′)

 =
∑

(i,ω)∈I×Ω

γqi,ωf̂ (ω) .

This proves the equality in (17).

We now prove the left inequality in (17). Fix ı̄ ∈ I. By the previous part, we know that there

exists m ∈ R such that limβ→1 σ
β
i (ω) = m for all (i, ω) ∈ I ×Ω. By contradiction, assume that

V∗

(
f̂
)
> m. By Lemmas 7 and 15, we can conclude that m = V∗ (m1Ω) = limβ→1 V∗

(
σβi

)
≥

V∗

(
f̂
)
> m yielding a contradiction.
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The second part of the statement directly follows by the first part and by Theorem 1 and

Corollary 1. �

Proof of Corollary 2. The first part of the statement follows from Theorem 2 and from the

fact that, by assumption, Q = {q∗}. By Lemma 1, there exists a unique probability vector

γq
∗ ∈ ∆ (I × Ω) such that γq

∗
= γq

∗
W q∗ . Now, for each (i, ω) ∈ I × Ω, define γµ

∗ ∈ ∆ (I × Ω)

as γµ
∗

i,ω = siµ
∗ (ω) and observe that∑

(j,ω′)∈I×Ω

γµ
∗

j,ω′w
q∗

(j,ω′)(i,ω) =
∑

(j,ω′)∈I×Ω

sjµ
∗ (ω′)wjiq

∗
j,ω′ (ω) =

∑
j∈I

sjwji
∑
ω′∈Ω

µ∗ (ω′) pµ∗,j (ω′, ω)

= µ∗ (ω)
∑
j∈I

sjwji = µ∗ (ω) si = γµ
∗

i,ω.

This show that γµ
∗

= γµ
∗
W q∗ , proving that γq

∗
= γµ

∗
. Finally, we have

∑
(i,ω)∈I×Ω γ

q∗

i,ωEq∗i,ω
(
f̂
)

=∑
(i,ω)∈I×Ω γ

µ∗

i,ωEq∗i,ω
(
f̂
)

=
∑

(i,ω)∈I×Ω siµ
∗ (ω)Epµ∗,i(ω,·)

(
f̂
)

= Eµ∗
(
f̂
)

, proving the second part

of the statement. �

Proof of Proposition 4. Fix β ∈ (0, 1). By Lemma 14, we have that σβi = Sβ,i
(
σβ
)

=

Vi

(
(1− β) f̂ + β

∑n
l=1 wilσ

β
l

)
for all i ∈ I. This implies that σβi is Πi-measurable and, in

particular, Πinf-measurable for all i ∈ I. Since Vi is Πinf-affine, this implies that

σβi = Vi

(
(1− β) f̂ + β

n∑
l=1

wilσ
β
l

)
= (1− β)Vi

(
f̂
)

+ β
n∑
l=1

wilVi

(
σβl

)
∀i ∈ I. (25)

By Lemma 9, since Vi is Πinf-affine for every i ∈ I, we have that V∗ is such that

V∗ ((1− α)h+ αg) ≥ (1− α)V∗ (h) + αV∗ (g) (26)

and V ∗ is such that

V ∗ ((1− α)h+ αg) ≤ (1− α)V ∗ (h) + αV ∗ (g) (27)

for all α ∈ (0, 1) and for all g, h ∈ RΩ where g is Πinf-measurable. By (25), (26), (27) and since

each Vi

(
f̂
)

is Πi-measurable, hence Πinf-measurable, we have that, for each i ∈ I, V∗

(
σβi

)
=

V∗

(
(1− β)Vi

(
f̂
)

+ β
∑n

l=1 wilVi

(
σβl

))
≥ (1− β)V∗

(
f̂
)

+β
∑n

l=1wilV∗

(
σβl

)
, and V ∗

(
σβi

)
=
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V ∗
(

(1− β)Vi

(
f̂
)

+ β
∑n

l=1wilVi

(
σβl

))
≤ (1− β)V ∗

(
f̂
)

+ β
∑n

l=1wilV
∗
(
σβl

)
. Define x∗ ∈

Rn to be such that x∗i = V∗

(
σβi

)
− V∗

(
f̂
)

for all i ∈ I. We can conclude that x∗ ≥ βWx∗.

Assume by contradiction that x∗i′ = mini∈I x∗i < 0. Since W is a stochastic matrix, we have

x∗i′ ≤ (Wx∗)i′ . Since β ∈ (0, 1), it follows that x∗i′ < β (Wx∗)i′ , yielding the contradiction

x∗i′ < β (Wx∗)i′ ≤ x∗i′ . Therefore, we must have V∗

(
σβi

)
≥ V∗

(
f̂
)

for all i ∈ I and for all

β ∈ (0, 1). By taking the limit for β → 1 in the previous inequality and by Lemma 7 and

Theorem 2, we get limβ→1 σ
β
i (ω) ≥ V∗

(
f̂
)

for all ω ∈ Ω and for all i ∈ I. Analogous steps

yield that limβ→1 σ
β
i (ω) ≤ V ∗

(
f̂
)

for all ω ∈ Ω and for all i ∈ I. The second part of the

statement follows from the first part, Theorem 1, and Corollary 1. �
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D Online appendix: Omitted proofs

Lemma 3. Let S, T : Rn̄ → Rn̄ be monotone and define Â = A (T ◦ S), Ã = A (S), and

A = A (T ). If there exists k ∈ J such that ajk > 0 and ãkj′ > 0, then âjj′ > 0. In particular,

we have that:

1. If {Th}h∈{1,...,H} is a collection of monotone operators from Rn̄ to Rn̄ and the jj′-th entry

of ΠH
h=1A (Th) is strictly positive, then the jj′-th of A (TH ◦ ... ◦ T1) is strictly positive.

2. If t ∈ N and the jj′-th entry of A (T )t is strictly positive, then the jj′-th of A (T t) is

strictly positive.

Proof. By assumption, there exists k ∈ {1, ..., n̄} such that ajk, ãkj′ > 0, that is, there exist

εjk, εkj′ ∈ (0, 1) such that for each f ∈ Rn̄ and for each δ ≥ 0, Sk
(
f + δej

′)−Sk (f) ≥ εkj′δ and

Tj
(
f + δek

)
−Tj (f) ≥ εjkδ. Since S is monotone, this implies that S

(
f + δej

′) ≥ S (f)+εkj′δe
k

for all f ∈ Rn̄ and for all δ ≥ 0. Since T is monotone, this yields that for each f ∈ Rn̄ and for

each δ ≥ 0, Tj
(
S
(
f + δej

′)) ≥ Tj
(
S (f) + εkj′δe

k
)
≥ Tj (S (f))+εjkεkj′δ. Since εjkεkj′ ∈ (0, 1),

this proves that, under T ◦ S, j is strongly monotone with respect to j′, proving that âjj′ > 0

and the main part of the statement.

1. Consider a collection of H monotone operators from Rn̄ to Rn̄: {Th}h∈{1,...,H}. We prove

by finite induction the statement that, for each l ∈ {1, ..., H}, if the jj′-th entry of Πl
h=1A (Th)

is strictly positive, then the jj′-th of A (Tl ◦ ... ◦ T1) is strictly positive.

Initial step. Assume l = 1. In this case, we trivially have that A (T1) = Πl
h=1A (Th).

Inductive step. Assume the statement is true for l. We prove it is true for l+1. Define S = Tl◦...◦
T1 and T = Tl+1. As before, set Ã = A (S), A = A (T ), and Â = A (T ◦ S) = A (Tl+1 ◦ ... ◦ T1).

Finally, define by a
(l)
jj′ (resp., a

(1)
jj′ and a

(l+1)
jj′ ) the generic jj′-th entry of Πl

h=1A (Th) (resp.,

A (Tl+1) and Πl+1
h=1A (Th)). Observe that a

(l+1)
jj′ =

∑n̄
k=1 a

(1)
jk a

(l)
kj′ . If the jj′-th entry of Πl+1

h=1A (Th)

is strictly positive, then a
(l+1)
jj′ > 0, yielding that a

(1)
jk , a

(l)
kj′ > 0 for some k ∈ J . By inductive

hypothesis, we have that a
(l)
kj′ > 0 implies that ãkj′ > 0 as well as ajk > 0. By the main part of

the statement, we can conclude that âjj′ > 0, proving the inductive step.

The statement follows by finite induction.

2. By point 1, the statement trivially follows. �

Lemma 4. Let {Bk}k∈{1,...,K} be a finite collection of n̄ × n̄ nonnegative matrices such that

bk,jj > 0 for all k ∈ {1, ..., K} and for all j ∈ J . If A (Bk) is symmetric for all k ∈ {1, ..., K},

1



then A (BK ...B1) ≥ A (Bk) for all k ∈ {1, ..., K} and Π (A (BK ...B1)) is coarser than Π (Bk)

for all k ∈ {1, ..., K}.

Proof. Define B = ΠK
k=1Bk. By induction, we prove that A (Πm

k=1Bk) ≥ A (Bk) ≥ In̄ for all

k ∈ {1, ...,m} and for all m ∈ {1, ..., K}. By definition and since b1,jj > 0 for all j ∈ J , if

m = 1, then A (Π1
k=1Bk) = A (B1) ≥ In̄. By point 1 of Lemma 3 and inductive hypothesis

and since bk,jj > 0 for all k ∈ {1, ..., K} and for all j ∈ J , if m,m + 1 ∈ {1, ..., K}, then

A (Bm+1)A (Πm
k=1Bk) ≥ In̄A (Bk) and

A
(
Πm+1
k=1 Bk

)
≥ A (A (Bm+1)A (Πm

k=1Bk)) ≥ A (In̄A (Bk)) = A (Bk) ≥ In̄ ∀k ∈ {1, ...,m}.

By point 1 of Lemma 3 and inductive hypothesis, we also have that A (Bm+1)A (Πm
k=1Bk) ≥

A (Bm+1) In̄ and

A
(
Πm+1
k=1 Bk

)
≥ A (A (Bm+1)A (Πm

k=1Bk)) ≥ A (A (Bm+1) In̄) = A (Bm+1) ≥ In̄.

The statement follows by finite induction. In particular, this yields that A (BK ...B1) ≥
A (Bk) ≥ In̄ for all k ∈ {1, ..., K}. Consider k ∈ {1, ..., K}. Since A (Bk) is symmetric,

any index j ∈ J is essential under Bk. Let l ∈ {1, ...,mBk} and j ∈ Jl (Bk). We have two cases:

1. j ∈ Jl′ (A (B)) for some l′ ∈
{

1, ...,mA(B)

}
. Consider j′ ∈ Jl (Bk). It follows that j

Bk←→ j′.

Since A (B) ≥ A (Bk), we have that j
A(B)←→ j′, yielding that j′ ∈ Jl′ (A (B)). This implies

that Jl (Bk) ⊆ Jl′ (A (B)).

2. j ∈ JmB+1 (A (B)). Consider j′ ∈ Jl (Bk). It follows that j
Bk←→ j′. Since A (B) ≥ A (Bk),

we have that j
A(B)←→ j′, yielding that j′ ∈ JmB+1

(A (B)). Otherwise, since j
A(B)←→ j′, if

j′ 6∈ JmB+1
(B), then j′ would be essential under A (B) and so would be j, a contradiction.

This implies that Jl (Bk) ⊆ JmB+1 (A (B)). �

Lemma 5. If T : Rn̄ → Rn̄ is normalized, monotone, and continuous, then there exists a

compact and convex set M (T ) of n̄ × n̄ stochastic matrices such that for each f ∈ Rn̄ there

exists M (f) ∈M (T ) such that T (f) = M (f) f . Moreover, if j is constant with respect to j′,

then mjj′ = 0 for all M ∈M (T ).

Proof. Let j ∈ J . Define the binary relation%∗j on RΩ by f %∗j g if and only if Tj (λf + (1− λ)h) ≥
Tj (λg + (1− λ)h) for all λ ∈ (0, 1] and h ∈ Rn̄. By [2] and since Tj is normalized, monotone,

2



and continuous, we have that there exists a compact and convex set Cj of ∆ ({1, ..., n̄}) such

that

f %∗j g ⇐⇒ 〈f, p〉 ≥ 〈g, p〉 ∀p ∈ Cj (28)

and

Tj (f) = αj (f) min
p∈Cj
〈f, p〉+ (1− αj (f)) max

p∈Cj
〈f, p〉 ∀f ∈ Rn̄ (29)

where αj : Rn̄ → [0, 1]. Observe also that if j is constant with respect to j′, then ej
′ ∼∗j 0. By

(28), it follows that

pj′ = 0 ∀p ∈ Cj. (30)

Since Cj is compact, for each f ∈ Rn̄ define pmin,f , pmax,f ∈ Cj such that 〈f, pmin,f〉 =

minp∈Cj 〈f, p〉 and 〈f, pmax,f〉 = maxp∈Cj 〈f, p〉. By (29) and since Cj is convex, it follows

that pj,f = αj (f) pmin,f + (1− αj (f)) pmax,f ∈ Cj such that Tj (f) = 〈f, pj,f〉 for all f ∈ Rn̄.

Fix f ∈ Rn̄. Since j was arbitrarily chosen, define M (f) to be the matrix whose j-th row

entries correspond to the entries of pj,f . It follows that T (f) = M (f) f . Moreover, M (f)

belongs to the setM (T ) of matrices M whose j-th row belongs to Cj. Since each of these sets

is compact and convex, so isM (T ). Since f was arbitrarily chosen, the statement follows. By

construction ofM (T ) and (30), it follows that if j is constant with respect to j′, then mjj′ = 0

for all M ∈M (T ). �

Lemma 6. Let M and M̄ be two n̄ × n̄ stochastic matrices. If A
(
M̄
)

is symmetric and

0 < d
(
M̄
)
, then we have that A

(
M̄M

)
≥ A (M) and

1. δ
(
M̄M

)
≥ δ (M), provided A

(
M̄M

)
= A (M).

2. δ
(
M̄M

)
≥ δ (M) δ

(
M̄
)
, provided A

(
M̄M

)
> A (M).

Moreover, if {Mk}∞k=1 is a sequence of n̄× n̄ stochastic matrices such that A (Mk) is symmetric,

δ (Mk) ≥ δ > 0, and d (Mk) > 0 for all k ∈ N, then

δ

(
m∏
k=1

Mk

)
≥ δn̄

2 ∀m ∈ N. (31)

Proof. Since d
(
M̄
)
> 0, it follows that m̄jj > 0 for all j ∈ J . This implies that the jj-th entry

of A
(
M̄
)

is 1 for all j ∈ J , and, in particular, if the jj′-th entry of A (M) is strictly positive, so

3



is the one of A
(
M̄
)
A (M). By point 1 of Lemma 3, we can conclude that A

(
M̄M

)
≥ A (M).

We have two cases:

1. A
(
M̄M

)
= A (M). Set M̂ = M̄M and consider m̂jj′ > 0. We next prove that for each

l ∈ {1, ..., n̄}
mlj′ = 0 =⇒ m̄jl = 0. (32)

By contradiction, assume that there exists l̄ ∈ {1, ..., n̄} such that ml̄j′ = 0 and m̄jl̄ > 0.

Since A
(
M̂
)

= A
(
M̄M

)
= A (M) and m̂jj′ > 0 and ml̄j′ = 0, we would have that

mjj′ > 0 and m̂l̄j′ = 0. Since A
(
M̄
)

is symmetric, we would also have that m̄l̄j > 0,

yielding that m̂l̄j′ ≥ m̄l̄jmjj′ > 0, a contradiction with m̂l̄j′ = 0. By (32), we can conclude

that m̂jj′ =
∑n̄

l=1 m̄jlmlj′ ≥
∑n̄

l=1 m̄jlδ (M) = δ (M), proving the statement.

2. A
(
M̄M

)
> A (M). Set M̂ = M̄M . In this case, if m̂jj′ > 0, then m̄jl̄ml̄j′ > 0 for some

l̄ ∈ {1, ..., n̄} and, in particular, m̄jl̄,ml̄j′ > 0. It follows that m̂jj′ =
∑n̄

l=1 m̄jlmlj′ ≥
m̄jl̄ml̄j′ ≥ δ

(
M̄
)
δ (M), proving the statement.

Consider a sequence {Mk}∞k=1 of n̄× n̄ stochastic matrices such that A (Mk) is symmetric,

δ (Mk) ≥ δ > 0, and d (Mk) > 0 for all k ∈ N. By induction and the previous part, we have

that A

(
m+1∏
k=1

Mk

)
= A

(
Mm+1

m∏
k=1

Mk

)
≥ A

(
m∏
k=1

Mk

)
for all m ∈ N. Define f : N→ {0, 1} by

f (1) = 1 and

f (m+ 1) =


1 if A

(
m+1∏
k=1

Mk

)
> A

(
m∏
k=1

Mk

)

0 if A

(
m+1∏
k=1

Mk

)
= A

(
m∏
k=1

Mk

) ∀m ∈ N.

By induction, we prove that

δ

(
m∏
k=1

Mk

)
≥ δ

∑m
k=1 f(k) ∀m ∈ N. (33)

Initial step. Assume m = 1. Since f (1) = 1, δ

(
m∏
k=1

Mk

)
= δ (M1) ≥ δ = δ

∑m
k=1 f(k).

4



Inductive step. Assume the statement is true for m ∈ N. We prove it is true for m + 1. Since

A

(
m+1∏
k=1

Mk

)
≥ A

(
m∏
k=1

Mk

)
, we have two cases:

1. A

(
m+1∏
k=1

Mk

)
> A

(
m∏
k=1

Mk

)
. In this case, we have that f (m+ 1) = 1. By the first part

of the statement and inductive hypothesis, we have that

δ

(
m+1∏
k=1

Mk

)
= δ

(
Mm+1

m∏
k=1

Mk

)
≥ δ (Mm+1) δ

(
m∏
k=1

Mk

)
≥ δδ

∑m
k=1 f(k) = δ

∑m+1
k=1 f(k).

2. A

(
m+1∏
k=1

Mk

)
= A

(
m∏
k=1

Mk

)
. In this case, we have that f (m+ 1) = 0. By the first part

of the statement and inductive hypothesis, we have that

δ

(
m+1∏
k=1

Mk

)
= δ

(
Mm+1

m∏
k=1

Mk

)
≥ δ

(
m∏
k=1

Mk

)
≥ δ

∑m
k=1 f(k) = δ

∑m+1
k=1 f(k).

Thus, (33) follows by induction. Since

{
A

(
m∏
k=1

Mk

)}
m∈N

is an increasing sequence with

upper bound the n̄× n̄ square matrix whose entries are all 1s, we observe that f (k) = 1 for at

most n̄2 indices, yielding that
∑m

k=1 f (k) ≤ n̄2 for all m ∈ N, proving (31). �

Lemma 7. If V̄ : RΩ → R is an ex-ante expectation, then it is continuous at constant functions.

Proof. Consider k ∈ R and a sequence of functions {fm}m∈N ⊆ RΩ such that fm → k1Ω. Since

fm → k1Ω and Ω is finite, we have that limm→∞minω∈Ω fm (ω) = k = limm→∞maxω∈Ω fm (ω).

Since V̄ is normalized and monotone, we also have that minω∈Ω fm (ω) ≤ V̄ (fm) ≤ maxω∈Ω fm (ω)

for all m ∈ N. By passing to the limit and since V̄ is normalized, we have that limm→∞ V̄ (fm) =

k = V̄ (k1Ω), proving continuity at k1Ω. �

Lemma 8. The sets V◦ and V◦ are nonempty and V∗ and V ∗ are well defined and respectively

a lower and an upper common ex-ante expectation for {(Vi,Πi)}i∈I .
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Proof. Define V◦ (f) = minω∈Ω f (ω) and V ◦ (f) = maxω∈Ω f (ω) for all f ∈ RΩ. It is immediate

to see that both V◦ and V ◦ are ex-ante expectations. Next, fix f ∈ RΩ, and observe that since

Vi (ω, f) ∈
[

min
ω′∈Ω

f (ω′) ,max
ω′∈Ω

f (ω′)

]
∀ω ∈ Ω, ∀i ∈ I,

we have that V◦ (Vi (f)) = minω∈Ω Vi (ω, f) ≥ minω′∈Ω f (ω′) = V◦ (f) and V ◦ (Vi (f)) =

maxω∈Ω Vi (ω, f) ≤ maxω′∈Ω f (ω′) = V ◦ (f) for all i ∈ I. This proves that V◦ and V ◦ are

respectively lower and upper common ex-ante expectations for {(Vi,Πi)}i∈I , hence that V◦ and

V◦ are nonempty. We next show that V∗ and V ∗ are well defined lower and upper common

ex-ante expectations for {(Vi,Πi)}i∈I . First, observe that

V∗ (k1Ω) = sup
V◦∈V◦

V◦ (k1Ω) = sup
V◦∈V◦

k = k ∀k ∈ R

and that, for all f, g ∈ RΩ with f ≥ g, we have V∗ (f) = supV◦∈V◦ V◦ (f) ≥ supV◦∈V◦ V◦ (g) =

V∗ (g), where the inequality follows from monotonicity of each V◦ ∈V◦. With this, V∗ is an ex-

ante expectation. Next, fix f ∈ RΩ and V◦ ∈V◦. For each i ∈ I, we have V◦ (f) ≤ V◦ (Vi (f)) ≤
supV ′◦∈V◦ V

′
◦ (Vi (f)) = V∗ (Vi (f)). Given that V◦ ∈V◦ was arbitrarily chosen, it follows that

V∗ (f) = supV◦∈V◦ V◦ (f) ≤ V∗ (Vi (f)) proving that V∗ is a lower common ex-ante expectation.

With exactly the same steps we can show that V ∗ is an upper common ex-ante expectation.�

Lemma 9. Let {(Vi,Πi)}i∈I be a collection of interim expectations that exhibits convergence to

a deterministic limit. The following facts are true:

1. If Vi is concave for all i ∈ I, then V∗ is concave. If in addition Vi is positive homoge-

neous (resp. translation invariant) for all i ∈ I, then V∗ is positive homogeneous (resp.

translation invariant).

2. If Vi is Πinf-affine for all i ∈ I, then

V∗ ((1− λ) f + λg) ≥ (1− λ)V∗ (f) + λV∗ (g)

and

V ∗((1− λ) f + λg) ≤ (1− λ)V ∗ (f) + λV ∗ (g)

for all λ ∈ (0, 1) and for all f, g ∈ RΩ where g is Πinf-measurable.

6



Proof. 1. Consider an I-sequence ι = (ik)k∈N ∈ IN. Consider f, g ∈ RΩ and λ ∈ (0, 1). Since

Vi1 is concave, we have that Vi1 (λf + (1− λ) g) ≥ λVi1 (f) + (1− λ)Vi1 (g). By induction,

assume that Vik ◦Vik−1
◦ ...◦Vi2 ◦Vi1 (λf + (1− λ) g) ≥ λVik ◦Vik−1

◦ ...◦Vi2 ◦Vi1 (f)+(1− λ)Vik ◦
Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (g). Since Vik+1
is a concave interim expectation, we have that

Vik+1
◦ Vik ◦ Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (λf + (1− λ) g)

≥ λVik+1
◦ Vik ◦ Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (f) + (1− λ)Vik+1
◦ Vik ◦ Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (g) .

By passing to the limit, we obtain that V̄ι (λf + (1− λ) g) 1Ω ≥ λV̄ι (f) 1Ω + (1− λ) V̄ι (g) 1Ω,

proving that V̄ι is concave. Since ι was arbitrarily chosen, we have that V̄ι is concave for every

I-sequence ι. Finally, given that, by Proposition 1, we have V∗ (f) = infι∈IN:ι is an I-sequence V̄ι (f)

for all f ∈ RΩ, it follows that V∗ is concave. With similar steps we can prove the second part

of the first item.

2. Consider an I-sequence ι = (ik)k∈N ∈ IN. Consider f, g ∈ RΩ where g is Πinf-measurable,

and λ ∈ (0, 1). Since each Vi is Πinf-affine, we have that Vi1 (λf + (1− λ) g) = λVi1 (f) +

(1− λ)Vi1 (g). By induction, assume that Vik ◦ Vik−1
◦ ... ◦ Vi2 ◦ Vi1 (λf + (1− λ) g) = λVik ◦

Vik−1
◦ ... ◦ Vi2 ◦ Vi1 (f) + (1− λ)Vik ◦ Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (g). Since Vik+1
is Πinf-affine and

Vik ◦ Vik−1
◦ ... ◦ Vi2 ◦ Vi1 (g) is Πinf-measurable, we have that

Vik+1
◦ Vik ◦ Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (λf + (1− λ) g) = Vik+1

(
Vik ◦ Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (λf + (1− λ) g)
)

= λVik+1
◦ Vik ◦ Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (f) + (1− λ)Vik+1
◦ Vik ◦ Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (g) .

By passing to the limit, we obtain that V̄ι (λf + (1− λ) g) 1Ω = λV̄ι (f) 1Ω + (1− λ) V̄ι (g) 1Ω,

proving that V̄ι is Πinf-affine. Since ι was arbitrarily chosen, we have that V̄ι is Πinf-affine for ev-

ery I-sequence ι. Finally, given that, by Proposition 1, we have V∗ (f) = infι∈IN:ι is an I-sequence V̄ι (f)

for all f ∈ RΩ, it follows that

V∗ ((1− λ) f + λg) ≥ λ inf
ι∈IN:ι is an I-sequence

V̄ι (f) + (1− λ) inf
ι∈IN:ι is an I-sequence

V̄ι (g)

= (1− λ)V∗ (f) + λV∗ (g)

for all λ ∈ (0, 1) and for all f, h ∈ RΩ where g is Πinf-measurable. The statement for V ∗ follows

from completely symmetric steps. �
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Lemma 10. Let f ∈
(
RΩ
)n

. The following statements are equivalent:

(i) S1 (f) = f ;

(ii) There exists m ∈ R such that fi = fi′ = m1Ω for all i, i′ ∈ I.

Proof. (i) implies (ii). By assumption, we have that fi = Vi (
∑n

l=1 wilfl) for all i ∈ I. By

Proposition 5 and Lemma 2, for each i ∈ I there exists an n̄ × n̄ stochastic matrix Mi whose

diagonal is strictly positive and it is such that: 1) A (Vi) = A (Mi) is symmetric, 2) Π (Mi) = Πi,

and 3) Vi (
∑n

l=1 wilfl) = Mi (
∑n

l=1wilfl) =
∑n

l=1wilMifl. It follows that f is also a fixed point of

the operator S̃ :
(
RΩ
)n → (

RΩ
)n

where S̃i (g) =
∑n

l=1wilMigl for all i ∈ I. We next show that

S̃ (f) = f only if there exists m ∈ R such that fi = fi′ = m1Ω for all i, i′ ∈ I. By contradiction,

assume that there exist ı̄, ı̄′ ∈ I and ωj̄, ωj̄′ ∈ Ω such that fı̄
(
ωj̄
)

= maxi∈I maxj∈J fi (ωj) >

mini∈I minj∈J fi (ωj) = fı̄′
(
ωj̄′
)
. By induction, note that for each t ∈ N

S̃ti (g) =
∑

i∈It+1:i1=i

wi1i2 ...witit+1Mi1 ...Mitgit+1 ∀g ∈
(
RΩ
)n

and
∑

i∈It+1:i1=iwi1i2 ...witit+1 = 1. Since W is strongly connected, there exists a sequence of

agents (̄ı1, ..., ı̄t̄+1) such that t̄ ∈ N, {ı̄1, ..., ı̄t̄} ⊇ I, and ı̄1 = ı̄t̄+1 = ı̄ with wı̄l ı̄l+1
> 0 for all

l ∈ {1, ..., t̄}. By Lemma 4 and since {ı̄1, ..., ı̄t̄} ⊇ I, we have that Π (A (Mı̄1 ...Mı̄t̄)) is coarser

than Π (Mi) = Πi for all i ∈ I. Since Πsup = {Ω}, we can conclude that Π (A (Mı̄1 ...Mı̄t̄)) = {Ω},
yielding that Mı̄1 ...Mı̄t̄ is strongly connected. By Lemma 4 and since the diagonal of each Mı̄l

is strictly positive, we also have that Mı̄1 ...Mı̄t̄ has a strictly positive diagonal. This implies

that Mı̄1 ...Mı̄t̄ is primitive, that is, there exists τ ∈ N such that each entry of (Mı̄1 ...Mı̄t̄)
τ is

strictly positive. Since W is strongly connected there exists a sequence of agents
(
ı̂1, ..., ı̂t̂+1

)
such that t̂ ∈ N, ı̂1 = ı̄, and ı̂t̂+1 = ı̄′ with wı̂l ı̂l+1

> 0 for all l ∈
{

1, ..., t̂
}

. Next, recall

that by Euclid’s algorithm for each l ∈ {1, ...., τ t̄+ 1} there exists unique ql ∈ N0 and r′l ∈
{0, ...., t̄− 1} such that l = qlt̄ + r′l. We define rl = r′l if r′l ∈ {1, ...., t̄− 1} and rl = t̄ if r′l = 0.

Consider the sequence of agents
(
ı̃1, ..., ı̃τ t̄+t̂+1

)
where ı̃l = ı̄rl for all l ∈ {1, ...., τ t̄+ 1} and

ı̃l = ı̂l−τ t̄ for all l ∈
{
τ t̄+ 1, ..., τ t̄+ 1 + t̂

}
. By construction, we have that wı̃l ı̃l+1

> 0 for all

l ∈
{

1, ..., τ t̄+ 1 + t̂
}

. Since f is a fixed point of S̃, note that S̃τ (f) = f for all τ ∈ N and fı̄ =

S̃τ t̄+t̂ı̄ (f) =
∑

i∈Iτt̄+t̂+1:i1=ı̄wi1i2 ...wiτt̄+t̂iτt̄+t̂+1
Mi1 ...Miτt̄+t̂

fiτt̄+t̂+1
. Define f i = Mi1 ...Miτt̄+t̂

fiτt̄+t̂+1
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for all i ∈ Iτ t̄+t̂+1 such that i1 = ı̄. We have that

fı̄ =
∑

i∈Iτt̄+t̂+1:i1=ı̄

wi1i2 ...wiτt̄+t̂iτt̄+t̂+1
f i. (34)

Since each Mi is an n̄ × n̄ stochastic matrix and maxj∈J fi (ωj) ≤ fı̄
(
ωj̄
)

for all i ∈ I, we

have that maxj∈J f
i (ωj) ≤ fı̄

(
ωj̄
)

for all i ∈ Iτ t̄+t̂+1 such that i1 = ı̄. We focus on the

summand wı̃1 ı̃2 ...wı̃τt̄+t̂ ı̃τt̄+t̂+1
Mı̃1 ...Mı̃τt̄+t̂

fı̃τt̄+t̂+1
= wı̃1 ı̃2 ...wı̃τt̄+t̂ ı̃τt̄+t̂+1

f ı̃. By construction, we

have that wı̃1 ı̃2 ...wı̃τt̄+t̂ ı̃τt̄+t̂+1
> 0 and Mı̃1 ...Mı̃τt̄+t̂

fı̃τt̄+t̂+1
= (Mı̄1 ...Mı̄t̄)

τ Mı̂1 ...Mı̂t̂
fı̂t̂+1

. Set

g = Mı̂1 ...Mı̂t̂
fı̂t̂+1

= Mı̂1 ...Mı̂t̂
fı̄′ . Since each Mı̂l is an n̄ × n̄ stochastic matrix with strictly

positive diagonal, so is Mı̂1 ...Mı̂t̂
. Since maxj∈J fı̄′ (ωj) ≤ fı̄

(
ωj̄
)

and fı̄′
(
ωj̄′
)
< fı̄

(
ωj̄
)
, this

implies that minω∈Ω g (ω) ≤ g
(
ωj̄′
)
< fı̄

(
ωj̄
)

and maxω∈Ω g (ω) ≤ fı̄
(
ωj̄
)
. Since each entry of

(Mı̄1 ...Mı̄t̄)
τ is strictly positive and f ı̃ = (Mı̄1 ...Mı̄t̄)

τ g, we can conclude that f ı̃ (ω) < fı̄
(
ωj̄
)

for all ω ∈ Ω. By (34) and since wı̃1 ı̃2 ...wı̃τt̄+t̂ ı̃τt̄+t̂+1
> 0 and maxj∈J f

i (ωj) ≤ fı̄
(
ωj̄
)

for all

i ∈ Iτ t̄+t̂+1, this implies that

0 =
∑

i∈Iτt̄+t̂+1:i1=ı̄

wi1i2 ...wiτt̄+t̂iτt̄+t̂+1

[
f i
(
ωj̄
)
− fı̄

(
ωj̄
)]
≤ wı̃1 ı̃2 ...wı̃τt̄+t̂ ı̃τt̄+t̂+1

[
f ı̃
(
ωj̄
)
− fı̄

(
ωj̄
)]
< 0,

a contradiction.

(ii) implies (i). Since each Vi is normalized and W is a stochastic matrix, the statement is

trivial. �

Lemma 11. Fix i, j ∈ I and ω, ω′ ∈ Ω. The following are equivalent:

(i) wij > 0 and ω′ ∈ Πi (ω);

(ii) a(i,ω)(j,ω′) (S1) = 1;

(iii) ā(i,ω)(j,ω′) (S1) = 1.

Proof. (i) implies (ii). By Lemma 2, there exists ε > 0 such that

Vi

(
ω, f + δeω

′
)
− Vi (ω, f) ≥ εδ ∀f ∈ RΩ,∀δ ≥ 0.
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Next, fix f = (fl)
n
l=1 ∈

(
RΩ
)n

and δ ≥ 0, and observe that

S1,i,ω

(
f + δej,ω

′
)
− S1,i,ω (f) = Vi

(
ω,

n∑
l=1

wilfl + wijδe
ω′

)
− Vi

(
ω,

n∑
l=1

wilfl

)
≥ εwijδ

proving the statement by setting ε(i,ω)(j,ω′) = εwij.

(ii) implies (iii). Immediate.

(iii) implies (i). We prove the statement by contradiction. Fix f = (fl)
n
l=1 ∈

(
RΩ
)n

and δ ≥ 0

and observe that S1,i,ω

(
f + δej,ω

′)−S1,i,ω (f) = Vi
(
ω,
∑n

l=1 wilfl + wijδe
ω′
)
−Vi (ω,

∑n
l=1 wilfl).

Therefore, if either wij = 0 or ω′ 6∈ Πi (ω), then S1,i,ω

(
f + δej,ω

′)
= S1,i,ω (f). Given that f and

δ were arbitrarily chosen, we obtain a contradiction. �

Lemma 12. There exists a unique class of indices Z, ∅ 6= Z ⊆ I×Ω, that is closed and strongly

connected with respect to A (S1) and, in addition, every row of A (S1) is not null.

Proof. We have that Sβ (f) = S1

(
(1− β) f̂ + βf

)
for all β ∈ (0, 1). Fix λ ∈ (0, 1) and define

Sλ1 = λI + (1− λ)S1. Clearly, we have that, for each f ∈
(
RΩ
)n

, Sλ1 (f) = f if and only if

S1 (f) = f . Therefore, by Lemma 10, Sλ1 (f) = f if and only if there exists m ∈ R such that

fi = fi′ = m1Ω for all i, i′ ∈ I. By [1, Corollary 1 and part 2 of Proposition 1], it follows that

there exists a unique class of indices Z ′, ∅ 6= Z ′ ⊆ I ×Ω, that is closed and strongly connected

with respect to Ā
(
Sλ1
)
. It is easy to see that every row of Ā (S1) is not null and that Z ′ is also

closed and strongly connected with respect to Ā (S1). In addition, by Lemma 11, every row of

A (S1) is not null and Z ′ is closed and strongly connected with respect to A (S1). Finally, the

statement follows by setting Z = Z ′. �

Lemma 13. We have {W q ∈ W : q ∈ Q} ⊆ ∂S1 (0).

Proof. For every (i, ω) ∈ I × Ω, by [5, Theorem 2.3.9], we have that

∂S1,i,ω (0) = {ρ ∈ ∆ (I × Ω) : ∃q̃i,ω ∈ ∂Vi (ω, 0) , ρ (j, ω′) = wij q̃i,ω (ω′)}

where ∂Vi (ω, 0) denotes the superdifferential of the concave functional Vi (ω, ·) evaluated at

0 ∈ RΩ. With this, the statement follows by the definition of ∂S1 (0), the definition of each W q

in equation (16), and by [7, Theorem 18]. �

Lemma 14. If β ∈ (0, 1], then Sβ is a β-contraction. In particular, there exists a unique

σβ ∈
(
RΩ
)n

such that Sτβ

(
f̂
) ‖ ‖∗→ σβ, Sβ

(
σβ
)

= σβ, and
∥∥σβ∥∥∗ ≤ ∥∥∥f̂∥∥∥∞.
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Proof. Given that {(Vi,Πi)}i∈I is a variational collection of interim expectations, it follows

that Vi (ω, ·) is concave and translation invariant for all i ∈ I and for all ω ∈ Ω. Therefore, by

[4, p. 346], we have that

‖Sβ,i (f)− Sβ,i (g)‖∞ =

∥∥∥∥∥Vi
(

(1− β) f̂ + β
n∑
l=1

wilfl

)
− Vi

(
(1− β) f̂ + β

n∑
l=1

wilgl

)∥∥∥∥∥
∞

≤

∥∥∥∥∥(1− β) f̂ + β

n∑
l=1

wilfl − (1− β) f̂ − β
n∑
l=1

wilgl

∥∥∥∥∥
∞

=

∥∥∥∥∥β
n∑
l=1

wil (fl − gl)

∥∥∥∥∥
∞

≤ β

n∑
l=1

wil ‖fl − gl‖∞ ≤ β ‖f − g‖∗ ∀i ∈ I,∀f ,g ∈
(
RΩ
)n
,

proving that ‖Sβ (f)− Sβ (g)‖∗ = supi∈I ‖Sβ,i (f)− Sβ,i (g)‖∞ ≤ β ‖f − g‖∗ for all f ,g ∈
(
RΩ
)n

.

By the Banach contraction principle, for each β ∈ (0, 1) we have that Sτβ

(
f̂
) ‖ ‖∗→ σβ as well as

Sβ
(
σβ
)

= σβ where σβ is the unique fixed point of Sβ for all β ∈ (0, 1). Finally, by [4, p. 346]

and since Vi is normalized, we have that

‖Sβ,i (f)‖∞ =

∥∥∥∥∥Vi
(

(1− β) f̂ + β
n∑
l=1

wilfl

)∥∥∥∥∥
∞

≤ (1− β)
∥∥∥f̂∥∥∥

∞
+β

n∑
l=1

wil ‖fl‖∞ ∀i ∈ I,∀f ∈
(
RΩ
)n
.

By induction, this implies that
∥∥∥Sτβ (f̂

)∥∥∥
∗
≤
∥∥∥f̂∥∥∥

∞
for all τ ∈ N. By passing to the limit, the

statement follows. �

Lemma 15. We have V∗

(
Sτβ,i

(
f̂
))
≥ V∗

(
f̂
)

for all i ∈ I, for all β ∈ (0, 1), and for all τ ∈ N

where f̂ ∈
(
RΩ
)n

is such that f̂i = f̂ for all i ∈ I. Moreover, we have V∗

(
σβi

)
≥ V∗

(
f̂
)

for all

i ∈ I and for all β ∈ (0, 1).

Proof. Fix β ∈ (0, 1). By Theorem 1, {(Vi,Πi)}i∈I exhibits convergence to a deterministic limit,

hence, by Lemma 9, V∗ is concave. This implies that for each i ∈ I, and for each f ∈
(
RΩ
)n

V∗ (Sβ,i (f)) = V∗

(
Vi

(
(1− β) f̂ + β

n∑
l=1

wilfl

))
≥ (1− β)V∗

(
f̂
)

+ β

n∑
l=1

wilV∗ (fl) .

We now prove the statement for τ = 1. We have that for each i ∈ I, V∗

(
S1
β,i

(
f̂
))

=

V∗

(
Sβ,i

(
f̂
))
≥ (1− β)V∗

(
f̂
)

+ β
∑n

l=1wilV∗

(
f̂l

)
= V∗

(
f̂
)

. Assume that the statement
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is true for τ ∈ N. Observe that for each i ∈ I, V∗

(
Sτ+1
β,i

(
f̂
))

= V∗

(
Sβ,i

(
Sτβ

(
f̂
)))

≥

(1− β)V∗

(
f̂
)

+ β
∑n

l=1 wilV∗

(
Sτβ,l

(
f̂
))
≥ V∗

(
f̂
)

. The statement follows by induction. By

Lemma 14, the previous part of the proof, and since by Lemma 9 V∗ is a continuous ex-ante

expectation, we have that V∗

(
σβi

)
= V∗

(
limτ S

τ
β,i

(
f̂
))

= limτ V∗

(
Sτβ,i

(
f̂
))
≥ V∗

(
f̂
)

for all

i ∈ I and β ∈ (0, 1) proving the statement. �

E Online appendix: An axiomatic foundation

In this section, we consider a decision maker with preferences over monetary acts or utility

profiles, that is, RΩ. We model the decision maker preferences via a binary relation % on RΩ.

We next list four important properties:

A 1 (Weak order). The binary relation % is complete and transitive.

A 2 (Certainty equivalent). For each f ∈ RΩ there exists k ∈ R such that f ∼ k1Ω.

A 3 (Continuity). For each f, g, h ∈ RΩ the sets

{λ ∈ [0, 1] : λf + (1− λ) g % h} and {λ ∈ [0, 1] : h % λf + (1− λ) g}

are closed.

A 4 (Monotonicity). For each f, g ∈ RΩ and for each h, k ∈ R

f ≥ g =⇒ f % g and h > k =⇒ h1Ω � k1Ω.

On the one hand, transitivity and monotonicity are common assumptions of rationality

while completeness reflects the burden of choice the decision maker faces. On the other hand,

continuity is a technical assumption which will allow us to represent preferences through a

continuous utility function. The assumption of certainty equivalent shares both features. It

allows us to show that preferences admit a utility function, possibly not continuous, yet it

takes a clear behavioral interpretation: the decision maker for each random variable admits an

equivalent amount which received with certainty makes her indifferent to the random prospect.

The above axioms define the following two nested class of preferences.
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Definition 7. Let % be a binary relation on RΩ. We say that % is a rational preference

if and only if it satisfies weak order, certainty equivalent, and monotonicity. We say that

% is a continuous rational preference if and only if it satisfies weak order, continuity, and

monotonicity.

It is easy to show that continuous rational preferences are rational preferences. Continuous

rational preferences were studied by Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci, and

Siniscalchi [2]. The next result is a version of their Proposition 1.

Proposition 6. Let % be a binary relation on RΩ. The following statements are equivalent:

(i) % is a rational preference;

(ii) There exists a normalized and monotone functional Ṽ : RΩ → R such that

f % g ⇐⇒ Ṽ (f) ≥ Ṽ (g) . (35)

Moreover, we have that:

1. The functional Ṽ is continuous if and only if % is a continuous rational preference.

2. The functional Ṽ is the unique normalized functional satisfying (35).

Proof. (ii) implies (i). It is routine.

(i) implies (ii). Since % satisfies certainty equivalent, for each f ∈ RΩ define kf to be such

that kf1Ω ∼ f . Since % satisfies weak order and monotonicity, we have that kf is unique. Define

Ṽ : RΩ → R by Ṽ (f) = kf for all f ∈ RΩ. Since % satisfies weak order and monotonicity, we

have that

f % g ⇐⇒ kf1Ω % kg1Ω ⇐⇒ kf ≥ kg ⇐⇒ Ṽ (f) ≥ Ṽ (g) ,

proving (35). Clearly, if f = k1Ω for some k ∈ R, we have that Ṽ (k1Ω) = Ṽ (f) = kf = k,

proving that Ṽ is normalized. Finally, since % satisfies monotonicity, if f ≥ g, then f % g and

Ṽ (f) ≥ Ṽ (g), proving that Ṽ is monotone.

1. The “Only if” is routine. “If”. Since % satisfies weak order, continuity, and monotonicity,

we have that % satisfies certainty equivalent. It follows that Ṽ as defined above represents %.
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Since % satisfies continuity, it follows that for each f, g ∈ RΩ and for each c ∈ R{
λ ∈ [0, 1] : Ṽ (λf + (1− λ) g) ≤ c

}
= {λ ∈ [0, 1] : c1Ω % λf + (1− λ) g}

where the latter set is closed. By [3, Lemma 42], we have that Ṽ is lower semicontinuous. By

[3, Appendix A.3], upper semicontinuity follows similarly.

2. Assume that V̂ is normalized and satisfies (35). We have that for each f ∈ RΩ

V̂ (f) = V̂
(
V̂ (f) 1Ω

)
=⇒ f ∼ V̂ (f) 1Ω =⇒ Ṽ (f) = Ṽ

(
V̂ (f) 1Ω

)
= V̂ (f) ,

proving that V̂ = Ṽ . �

We can now discuss conditional preferences. We assume that there are two periods 0 and

1. At 0, the decision maker has no information and has also preferences over RΩ. At time 1,

the decision maker observes an event E from a partition Π of Ω and updates her preferences.

We model this by a pair
(
%, {%ω}ω∈Ω

)
.

A 5 (Rationality). The binary relation % is a rational preference and %ω is a continuous

rational preference for all ω ∈ Ω.

A 6 (Conditional preferences). For each ω, ω′ ∈ Ω

Π (ω) = Π (ω′) =⇒ %ω=%ω′ .

We thus assume that original and updated preferences are rational, where the latter are also

assumed to be continuous. At the same time, we assume that if two states belong to the same

event, then the corresponding updated preferences must be the same, incorporating exactly

nothing more than the information embedded in Π.

For each partition Π we define byB (Π) the subset of elements of RΩ which are Π-measurable.

A 7 (Consequentialism). For each f, h ∈ RΩ and for each ω ∈ Ω, f1Π(ω) + h1Π(ω)c ∼ω f .

A 8 (Dynamic subconsistency). For each f ∈ RΩ and for each g ∈ B (Π), g %ω f for all ω ∈ Ω

implies g % f .

On the one hand, consequentialism imposes that updated preferences are only influenced by

the states that are still relevant/possible. On the other hand, dynamic subconsistency is a form
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of monotonicity and it states that if interim f is weakly worse than a Π-measurable act g, no

matter which event realized in Π, then g is weakly better than f also at time 0. By switching the

order of f and g, we can symmetrically define dynamic superconsistency. The usual assumption

of dynamic consistency is equivalent to assume dynamic sub and superconsistency.

Definition 8. Let
(
%, {%ω}ω∈Ω

)
be a collection of binary relations on RΩ. We say that(

%, {%ω}ω∈Ω

)
is a dynamic subconsistent rational preference if and only if it satisfies the prop-

erties of rationality, conditional preferences, consequentialism, and dynamic subconsistency.

The next result provides a behavioral foundation for nonlinear conditional expectations.

Proposition 7. Let
(
%, {%ω}ω∈Ω

)
be a collection of binary relations on RΩ. The following

statements are equivalent:

(i)
(
%, {%ω}ω∈Ω

)
is a dynamic subconsistent rational preference;

(ii) There exist two functions V̄ : RΩ → R and V : Ω × RΩ → R such that
(
V̄ , V,Π

)
is a

lower conditional expectation and for each ω ∈ Ω

f %ω g ⇐⇒ V (ω, f) ≥ V (ω, g) and f % g ⇐⇒ V̄ (f) ≥ V̄ (g) .

Proof. (ii) implies (i). It is routine.

(i) implies (ii). By Proposition 6 and since
(
%, {%ω}ω∈Ω

)
satisfies rationality, we have that

there exists a normalized and monotone function V̄ : RΩ → R and a collection of normalized,

monotone, and continuous functions {Vω}ω∈Ω from RΩ to R such that V̄ represents % and Vω

represents %ω for all ω ∈ Ω. Define V : Ω×RΩ → R by V (ω, f) = Vω (f) for all (ω, f) ∈ Ω×RΩ.

By point 2 of Proposition 6 and since
(
%, {%ω}ω∈Ω

)
satisfies conditional preferences, we have

that for each ω, ω′ ∈ Ω

Π (ω) = Π (ω′) =⇒ %ω=%ω′ =⇒ V (ω, ·) = V (ω′, ·) ,

proving that V (·, f) is Π-measurable for all f ∈ RΩ. Since
(
%, {%ω}ω∈Ω

)
satisfies consequen-

tialism, we have that for each ω ∈ Ω and for each f, h ∈ RΩ

f1Π(ω) + h1Π(ω)c ∼ω f =⇒ V
(
ω, f1Π(ω) + h1Π(ω)c

)
= V (ω, f) .
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Finally, for each f ∈ RΩ define g ∈ RΩ by g (ω) = V (ω, f) for all ω ∈ Ω. It follows that

g ∼ω g1Π(ω) ∼ω f for all ω ∈ Ω and for all f ∈ RΩ. Since
(
%, {%ω}ω∈Ω

)
satisfies dynamic

subconsistency, we can conclude that g % f and, in particular, V̄ (f) ≤ V̄ (g) = V̄ (V (·, f)) for

all f ∈ RΩ. �

If
(
%, {%ω}ω∈Ω

)
were to satisfy dynamic superconsistency in place of subconsistency, the

result above would yield a foundation for upper conditional expectations. Finally, by assuming

both, we would obtain a foundation for nonlinear conditional expectations. Clearly, in Proposi-

tion 7, linear conditional expectations are obtained by requiring in (i) % and each %ω to satisfy

the axiom of independence. Similarly, maxmin conditional expectations, as in Example 1, are

obtained by imposing c-independence.

E.1 Different information structures

We now consider different information structures, that is, partitions {Πi}ni=1. Consequently, we

consider the collection
{(
%, {%ω,Πi}ω∈Ω

)}n
i=1

.

Corollary 3. Let
{(
%, {%ω,Πi}ω∈Ω

)}n
i=1

be a collection of binary relations on RΩ. The following

statements are equivalent:

(i)
(
%, {%ω,Πi}ω∈Ω

)
is a dynamic subconsistent rational preference for all i ∈ {1, ..., n};

(ii) There exist n + 1 functions V̄ : RΩ → R and Vi : Ω × RΩ → R such that
(
V̄ , Vi,Πi

)
is a lower conditional expectation for all i ∈ {1, ..., n}, for each ω ∈ Ω and for each

i ∈ {1, ..., n}

f %ω,Πi g ⇐⇒ Vi (ω, f) ≥ Vi (ω, g) and f % g ⇐⇒ V̄ (f) ≥ V̄ (g) .

Proof. By Proposition 7 and the uniqueness part of Proposition 6, the statement immediately

follows. �

Proposition 8. Let
{(
%, {%ω,Πi}ω∈Ω

)}n
i=1

be a collection of dynamic subconsistent rational

preferences on RΩ. The following statements are equivalent:
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(i) For each i ∈ {1, ..., n} and for each h ∈ B (Πi) if g ∈ B (Πj) for some j ∈ {1, ..., n} is

such that g ∼ω,Πj h for all ω ∈ Ω, then g ∼ h;

(ii) V̄ (h) = V̄ (Vj (·, h)) for all h ∈ B (Πi) and for all i, j ∈ {1, ..., n}.

Proof. (ii) implies (i). It is routine.

(i) implies (ii). Consider i ∈ {1, ..., n} and h ∈ B (Πi). Define g ∈ RΩ by g (ω) = Vj (ω, h)

for all ω ∈ Ω. Clearly, g ∈ B (Πj). Moreover, it follows that g ∼ω,Πj g1Πj(ω) ∼ω,Πj h for all

ω ∈ Ω. We can conclude that g ∼ h and, in particular, V̄ (h) = V̄ (g) = V̄ (Vj (·, h)). Since h

as well as i and j were arbitrarily chosen, the statement follows. �

We call the assumption of point (i) above: dynamic consistency for Π-measurable acts.

Proposition 9. Let
{(
%, {%ω,Πi}ω∈Ω

)}n
i=1

be a collection of dynamic subconsistent rational

preferences on RΩ. The following statements are equivalent:

(i) For each f ∈ RΩ there exists i ∈ {1, ..., n} such that if g ∈ B (Πi) and g ∼ω,Πi f for all

ω ∈ Ω, then g ∼ f ;

(ii) For each f ∈ RΩ there exists i ∈ {1, ..., n} such that V̄ (f) = V̄ (Vi (·, f)).

Proof. (ii) implies (i). It is routine.

(i) implies (ii). Consider f ∈ RΩ and i as in point (i). Define g ∈ RΩ by g (ω) = Vi (ω, f)

for all ω ∈ Ω. Clearly, g ∈ B (Πi) and g ∼ω,Πi f for all ω ∈ Ω, yielding that g ∼ f and, in

particular, V̄ (f) = V̄ (g) = V̄ (Vi (·, f)). Since f was arbitrarily chosen, the statement follows.

�

We call the assumption of point (i) above: “always some dynamic consistent”.

Proposition 10. Let
{(
%, {%ω,Πi}ω∈Ω

)}2

i=1
be a collection of dynamic subconsistent rational

preferences on RΩ with Πsup = {Ω} and full-support interim expectations. The following state-

ments are equivalent:

(i) The collection satisfies dynamic consistency for Π-measurable acts and always some dy-

namic consistent;

(ii) V̄ = V∗.
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Proof. For every t ∈ N, let (V1 ◦ V2)t denote the t-th fold iteration of the operator V1 ◦ V2 :

RΩ → RΩ. Let (V2 ◦ V1)t be similarly defined. By Theorem 1, it follows that (V1 ◦ V2)t and

(V2 ◦ V1)t converge to a deterministic limit. Denote the corresponding limiting functionals by

V̄12 and V̄21. Moreover, V∗ (f) = min
{
V̄12 (f) , V̄21 (f)

}
for all f ∈ RΩ and V̄ ≤ V∗.

(ii) implies (i). By Propositions 8 and 9, it is routine.

(i) implies (ii). By Proposition 8, we have that

V̄ (V1 (h)) = V̄ (V2 (V1 (h))) and V̄ (V2 (h)) = V̄ (V1 (V2 (h))) ∀h ∈ RΩ. (36)

Consider f ∈ RΩ. By Proposition 9, we have that either V̄ (f) = V̄ (V1 (f)) or V̄ (f) =

V̄ (V2 (f)). In the first case, we are going to show that

V̄ (f) = V̄
(
(V2 ◦ V1)t (f)

)
.

By (36) and since V̄ (f) = V̄ (V1 (f)), the statement follows for t = 1. If the statement holds

for t, since (V2 ◦ V1)t (f) ∈ B (Π2), we have that

V̄
(
(V2 ◦ V1)t (f)

)
= V̄

(
V1 (V2 ◦ V1)t (f)

)
= V̄

(
V2

(
V1 (V2 ◦ V1)t

)
(f)
)

= V̄
(
(V2 ◦ V1)t+1 (f)

)
,

proving the inductive step. The statement holds by induction. By passing to the limit, we

obtain that V̄ (f) = V̄21 (f) ≥ V∗ (f) and V̄ (f) = V∗ (f). In the case V̄ (f) = V̄ (V2 (f)), a

similar argument yields that V̄ (f) = V∗ (f). �
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