Dynamics and Stability of Political Systems

Daron Acemoglu

MIT

February 11, 2009

Motivation

- Towards a general framework?
- One attempt: Acemoglu, Egorov and Sonin: Dynamics and Stability of Constitutions, Coalitions and Clubs.
- General approach motivated by political economy, though potentially applicable to organizational economics, club theory, and international relations as well.

Toward General Insights

- Key trade-off between
	- Payoffs: different arrangements imply different payoffs and individuals care about payoffs.
	- Power: different arrangements reallocate decision-making (political) power and thus affect future evolution of payoffs.
- Strategy: Formulate a general dynamic framework to investigate the interplay of these two factors in a relatively "detail-free" manner.
	- Details useful to go beyond general insights.

Simple Example

- Consider a simple extension of franchise story
- \bullet Three states: absolutism a, constitutional monarchy c, full democracy d
- \bullet Two agents: elite E, middle class M

$$
w_{E}(d) < w_{E}(a) < w_{E}(c) w_{M}(a) < w_{M}(c) < w_{M}(d)
$$

- \bullet E rules in a, M rules in c and d.
- Myopic elite: starting from a, move to c
- \bullet Farsighted elite: stay in a: move to c will lead to M moving to d.
- Same example to illustrate resistance against socially beneficial reform.

Naïve and Dynamic Insights

- Naïve insight: a social arrangement will emerge and persist if a "sufficiently powerful group" prefers it to alternatives.
- Simple example illustrates: power to change towards a more preferred outcome is not enough to implement change
	- **•** because of further dynamics
- Social arrangements might be stable even if there are powerful groups that prefer change in the short run.
- **Key:** social arrangements change the distribution of political power (decision-making capacity).
- **Dynamic decision-making:** future changes also matter (especially if discounting is limited)

Applications

- Key motivation: changes in constitutions and political regimes.
- Extension of franchise (Acemoglu and Robinson 2000, 2006, Lizzeri and Persico 2004)
- Members of a club decide whether to admit additional members by majority voting (Roberts 1999)
- Society decides by voting, what degree of (super)majority is needed to start a reform (Barbera and Jackson 2005)
- EU members decide whether to admit new countries to the union (Alesina, Angeloni, and Etro 2005)
- Inhabitants of a jurisdiction determine migration policy (Jehiel and Scotchmer 2005)
- Participant of (civil) war decides whether to make concessions to another party (Fearon 1998, Schwarz and Sonin 2008)
- Dynamic political coalition formation: Junta (or Politburo) members decide whether to eliminate some of them politically or physically (Acemoglu, Egorov, and Sonin 2008)

Voting in Clubs or Dynamic Franchise Extension

- Suppose that individuals $\{1, ..., M\}$ have a vote and they can extend the franchise and include any subset of individuals $\{M + 1, ..., N\}$.
- \bullet Instantaneous payoff of individual *i* a function of the set of individuals with the vote (because this influences economic actions, redistribution, or other policies)
- Political protocol: majority voting.
- \bullet {1, ..., M} vote over alternative proposals.
- If next period the franchise is $\{1, ..., M'\}$, then this new franchise votes (by majority rule) on the following period's franchise etc.
- Difficult dynamic game to analyze.
- But once we understand the common element between this game and a more general class of games, a tight and insightful characterization becomes possible.

Model and Approach

- Model:
	- **Printe number of individuals.**
	- Finite number of states (characterized by economic relations and political regimes)
	- Payoff functions determine instantaneous utility of each individual as a function of state
	- Political rules determine the distribution of political power and protocols for decision-making within each state.
	- A dynamic game where "politically powerful groups" can induce a transition from one state to another at any date.
- Question: what is the **dynamically stable state** as a function of the initial state?

Main Results of General Framework

- An axiomatic characterization of "outcome mappings" corresponding to dynamic game (based on a simple stability axiom incorporating the notion of forward-looking decisions).
- Equivalence between the MPE of the dynamic game (with high discount factor) and the axiomatic characterization
- Full characterization: recursive and simple
- Under slightly stronger conditions, the stable outcome (dynamically stable state) is unique given the initial state
	- but depends on the initial state
- Model general enough to nest specific examples in the literature.
- In particular, main theorems directly applicable to situations in which states can be ordered and static payoffs satisfy single crossing or single peakedness.

Simple Implications

- A particular social arrangement is made stable by the instability of alternative arrangements that are preferred by sufficiently many members of the society.
	- stability of a constitution does not require absence of powerful groups opposing it, but the absence of an alternative stable constitution favored by powerful groups.
- Efficiency-enhancing changes are often resisted because of further social changes that they will engender.
	- Pareto inefficient social arrangements often emerge as stable outcomes.

Illustration

- Voting in clubs.
- Dynamic taxation with endogenous franchise.
- Stability of constitutions.
- **•** Political eliminations.

• From Acemoglu, Egorov and Sonin: Dynamics of Political Selection

- a small amount of incumbency advantage can lead to the emergence and persistence of very incompetent/inefficient governments (without asymmetric information)
- a greater degree of democracy does not necessarily ensure better governments
- **but**, a greater degree of democracy leads to greater flexibility and to better governments in the long run in stochastic environments.

Related Literature

- Papers mentioned above as applications or specific instances of the general results here.
- Dynamic coalition formation—Ray (2008).
- Dynamic political reform—Lagunoff (2006).
- Farsighted coalitional stability—Chwe (1994) .
- Dynamic economic interactions with transferable utility—Gomes and Jehiel (2005).
- Dynamic inefficiencies with citizen candidates–Besley and Coate (1999).

Model: Basics

- Finite set of individuals $\mathcal{I}(|\mathcal{I}|)$ total)
	- \bullet Set of coalitions $\mathcal C$ (non-empty subsets $X \subset \mathcal I$)
- Each individual maximizes discounted sum of playoffs with discount factor $\beta \in [0, 1)$.
- Finite set of states $S(|S|$ total)
- \bullet Discrete time $t \geq 1$
- State s_t is determined in period t ; s_0 is given
- \bullet Each state $s \in \mathcal{S}$ is characterized by
	- Payoff $w_i(s)$ of individual $i \in \mathcal{I}$ (normalize $w_i(s) > 0$)
	- Set of winning coalitions $W_s \subset \mathcal{C}$ capable of implementing a change
	- Protocol $\pi_s(k)$, $1 \leq k \leq K_s$: sequence of agenda-setters or proposals $(\pi_{\mathsf{s}}(k) \in \mathcal{I} \cup \mathcal{S})$

Winning Coalitions

Assumption

(Winning Coalitions) For any state $s \in S$, $\mathcal{W}_s \subset \mathcal{C}$ satisfies two properties: (a) If $X, Y \in \mathcal{C}, X \subset Y$, and $X \in \mathcal{W}_s$ then $Y \in \mathcal{W}_s$. (b) If $X, Y \in \mathcal{W}_s$, then $X \cap Y \neq \emptyset$.

- (a) says that a superset of a winning coalition is winning in each state
- (b) says that there are no two disjoint winning coalitions in any state
- \bullet $\mathcal{W}_s = \varnothing$ is allowed (exogenously stable state)
- **•** Example:
	- Three players 1, 2, 3
	- $W_s = \{\{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}\$ is valid (1 is dictator)
	- $W_s = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$ is valid (majority voting)
	- $W_s = \{\{1\}, \{2, 3\}\}\$ is not valid (both properties are violated)

Dynamic Game

- \bullet Period t begins with state s_{t-1} from the previous period.
- **2** For $k = 1, ..., K_{s_{t-1}}$, the kth proposal $P_{k,t}$ is determined as follows. If $\pi_{s_{t-1}}(k) \in \mathcal{S}$, then $P_{k,t} = \pi_{s_{t-1}}(k)$. If $\pi_{s_{t-1}}(k) \in \mathcal{I}$, then player $\pi_{s_{t-1}}(k)$ chooses $P_{k,t} \in S$.
- **3** If $P_{k,t} \neq s_{t-1}$, each player votes (sequentially) *yes* (for $P_{k,t}$) or no (for s_{t-1}). Let $Y_{k,t}$ denote the set of players who voted yes. If $Y_{k,t} \in \mathcal{W}_{t-1}$, then $P_{k,t}$ is accepted, otherwise it is rejected.
- \bullet If $P_{k,t}$ is accepted, then $s_t=P_{k,t}.$ If $P_{k,t}$ is rejected, then the game moves to step 2 with $k \mapsto k+1$ if $k < K_{s_{t-1}}$. If $k = K_{s_{t-1}}, s_t = s_{t-1}$.
- \bullet At the end of each period (once s_t is determined), each player receives instantaneous utility $u_i(t)$:

$$
u_i(t) = \left\{ \begin{array}{ll} w_i(s) & \text{if } s_t = s_{t-1} = s \\ 0 & \text{if } s_t \neq s_{t-1} \end{array} \right.
$$

Key Notation and Concepts

- **o** Define binary relations:
	- states x and y are payoff-equivalent

$$
x \sim y \iff \forall i \in \mathcal{I} : w_x(i) = w_y(i)
$$

 \bullet y is weakly preferred to x in z

$$
y \succeq_{z} x \iff \{i \in \mathcal{I} : w_{y}(i) \ge w_{x}(i)\} \in \mathcal{W}_{z}
$$

 \bullet y is strictly preferred to x in z

$$
y \succ_{z} x \iff \{i \in \mathcal{I} : w_{y}(i) > w_{x}(i)\} \in \mathcal{W}_{z}
$$

• Notice that these binary relations are not simply preference relations

they encode information about preferences and political power.

Preferences and Acyclicity

Assumption

(Payoffs) Payoff functions $\{w_i(\cdot)\}_{i \in \mathcal{T}}$ satisfy: (a) For any sequence of states s_1, \ldots, s_k in S,

$$
s_{j+1} \succ_{s_j} s_j \text{ for all } 1 \leq j \leq k-1 \Longrightarrow s_1 \nsucc_{s_k} s_k.
$$

(b) For any sequence of states s, s_1, \ldots, s_k in S with $s_i \succ_s s$ (for all $1 < i < k$)

$s_{j+1} \succ_s s_j$ for all $1 \leq j \leq k-1 \Longrightarrow s_1 \nsucc_s s_k$.

- (a) rules out cycles of the form $y \succ_z z$, $x \succ_y y$, $z \succ_x x$
- (b) rules out cycles of the form $y \succ_{s} z$, $x \succ_{s} y$, $z \succ_{s} x$
- Weaker than transitivity of \succ_s .
- These assumptions cannot be dispensed with in the context of a general treatment because otherwise Condorcet-type cycles emerge.

Preferences and Acyclicity (continued)

• We will also strengthen our results under:

Assumption

(Comparability) For x, y, $z \in S$ such that $x \succ_z z$, $y \succ_z z$, and $x \nsim y$, either $y \succ z$ x or $x \succ z$ y.

• This condition sufficient (and "necessary") for uniqueness.

Approach and Motivation

- Key economic insight: with sufficiently forward-looking behavior, an individual should not wish to transition to a state that will ultimately lead to another lower utility state.
- Characterize the set of allocations that are consistent with this insight—without specifying the details of the dynamic game.
	- Introduce three simple and intuitive axioms.
	- Characterize set of mappings Φ such that for any $\phi \in \Phi$, $\phi : \mathcal{S} \to \mathcal{S}$ satisfies these axioms and assigns an axiomatically stable state $s^{\infty} \in S$ to each initial state $s_0 \in S$ (i.e., $\phi(s) = s^{\infty} \in S$ loosely corresponding to $s_t = s^{\infty}$ for all $t \geq T$ for some T).
- **Interesting in its own right, but the main utility of this axiomatic** approach is as an input into the characterization of the (two-strategy) MPE of the dynamic game.

Axiom 1

(Desirability) If $x, y \in S$ are such that $y = \phi(x)$, then either $y = x$ or $y \succ_{x} x$.

- \bullet A winning coalition can always stay in x (even a blocking coalition can)
- A winning coalition can move to y
- \bullet If there is a transition to y, a winning coalition must have voted for that

Axiom 2

(Stability) If $x, y \in S$ are such that $y = \phi(x)$, then $y = \phi(y)$.

- Holds "by definition" of $\phi(\cdot)$: $\exists T : s_t = \phi(s)$ for all $t \geq T$; when ϕ (s) is reached, there are no more transitions
- **•** If y were unstable $(y \neq \phi(y))$, then why not move to $\phi(y)$ instead of y

Axiom 3

(Rationality) If x, y, $z \in S$ are such that $z \succ_x x$, $z = \phi(z)$, and $z \succ_x y$, then $y \neq \phi(x)$.

- A winning coalition can move to y and to z
- \bullet A winning coalition can stay in x
- When will a transition to y be blocked?
	- If there is another z preferred by some winning coalition
	- If this z is also preferred to x by some winning coalition (so blocking γ will lead to z, not to x)
	- If transition to z is credible in the sense that this will not lead to some other state in perpetuity

Stable States

- **•** State $s \in \mathcal{S}$ is ϕ -stable if $\phi(s) = s$ for $\phi \in \Phi$
- **•** Set of ϕ -stable states: $\mathcal{D}_{\phi} = \{s \in \mathcal{S} : \phi(s) = s \text{ for } \phi \in \Phi\}$
- We will show that if ϕ_1 and ϕ_2 satisfy the Axioms, then $\mathcal{D}_{\phi_1} = \mathcal{D}_{\phi_2} = \mathcal{D}$
	- Even if ϕ is non-unique, notion of stable state is well-defined
	- But $\phi_1^{} \left(s\right)$ and $\phi_2^{} \left(s\right)$ may be different elements of ${\cal D}$

Axiomatic Characterization of Stable States

Theorem

Suppose Assumptions on Winning Coalitions and Payoffs hold. Then:

- **1** There exists mapping φ satisfying Axioms 1-3.
- ² This mapping *φ* may be obtained through a recursive procedure (next slide)
- \bullet For any two mappings ϕ_1 and ϕ_2 that satisfy Axioms 1–3 the the sets of stable states of these mappings coincide (i.e., $\mathcal{D}_{\phi_1} = \mathcal{D}_{\phi_2} = \mathcal{D}$).
- ⁴ If, in addition, the Comparability Assumption holds, then the mapping that satisfies Axioms $1-3$ is "payoff-unique" in the sense that for any two mappings ϕ_1 and ϕ_2 that satisfy Axioms 1–3 and for any $s \in \mathcal{S}$, ϕ_1 (s) $\sim \phi_2$ (s).

Recursive Procedure

Theorem (continued)

Any φ that satisfies Axioms 1–3 can be recursively computed as follows. Construct the sequence of states $\left\{ \mu_{1},...,\mu_{|\mathcal{S}|} \right\}$ with the property that if for any $I \in (j, |\mathcal{S}|], \mu_I \nsucc \mu_j, \mu_j$. Let $\mu_1 \in \mathcal{S}$ be such that $\phi(\mu_1) = \mu_1$. For $k = 2, ..., |\mathcal{S}|,$ let

$$
\mathcal{M}_{k} = \left\{ s \in \left\{ \mu_{1}, \ldots, \mu_{k-1} \right\} : s \succ_{\mu_{k}} \mu_{k} \text{ and } \phi \left(s \right) = s \right\}.
$$

Define, for $k = 2, ..., |\mathcal{S}|$,

$$
\phi(\mu_k) = \begin{cases} \mu_k & \text{if } M_k = \emptyset \\ z \in M_k \colon \nexists x \in M_k \text{ with } x \succ_{\mu_k} z \quad \text{if } M_k \neq \emptyset \end{cases}
$$

(If there exist more than one $s \in \mathcal{M}_k$: $\nexists z \in \mathcal{M}_k$ with $z \succ_{\mu_k} s$, we pick any of these; this corresponds to multiple *φ* functions).

.

Extension of Franchise Example

- **•** Get back to the simple extension of franchise story
- \bullet Three states: absolutism a, constitutional monarchy c, full democracy d
- \bullet Two agents: elite E, middle class M

$$
w_{E}(d) < w_{E}(a) < w_{E}(c) w_{M}(a) < w_{M}(c) < w_{M}(d)
$$

•
$$
W_a = \{\{E\}, \{E, M\}\}, W_c = \{\{M\}, \{E, M\}\},
$$

 $W_d = \{\{M\}, \{E, M\}\}$

• Then: $\phi(d) = d$, $\phi(c) = d$, therefore, $\phi(a) = a$

- \bullet Indeed, c is unstable, and among a and d player E, who is part of any winning coalition, prefers a
- Intuitively, if limited franchise immediately leads to full democracy, elite will not undertake it

Example (continued)

- Assume $W_c = \{\{E, M\}\}\$ instead of $W_c = \{\{M\}, \{E, M\}\}\$
- Then: $\phi(d) = d$, $\phi(c) = c$, and, $\phi(a) = c$
- \bullet a became unstable because c became stable
- Now assume $W_a = W_c = W_d = \{\{E, M\}\}\$ and

$$
w_{E}(a) < w_{E}(d) < w_{E}(c) w_{M}(a) < w_{M}(c) < w_{M}(d)
$$

 \bullet a is disliked by everyone, but otherwise preferences differ • Then: $\phi(d) = d$, $\phi(c) = c$, and $\phi(a)$ may be c or d • In any case, $\mathcal{D} = \{c, d\}$ is the same

Back to Dynamic Game

Assumption

(Agenda-Setting and Proposals) For every state $s \in S$, one (or both) of the following two conditions is satisfied: (a) For any state $q \in S \setminus \{s\}$, there is an element $k : 1 \leq k \leq K_s$ of sequence π_s such that π_s (k) = q. (b) For any player $i \in \mathcal{I}$ there is an element $k : 1 \leq k \leq K_{s}$ of sequence π_s such that $\pi_s(k) = i$.

- Exogenous agenda, sequence of agenda-setters, or mixture.
- This assumption ensures that all proposals will be considered (or all agenda-setters will have a chance to propose)

Definition

(Dynamically Stable States) State $s^{\infty} \in \mathcal{S}$ is a dynamically stable **state** if there exist a protocol $\{\pi_s\}_{s \in S}$, a MPE strategy profile σ (for a game starting with initial state $s_0)$ and $\mathcal{T} < \infty$, such that in MPE $s_t = s^\infty$

Slightly Stronger Acyclicty Assumption

Assumption (Stronger Acyclicity) For any sequence of states s, s_1, \ldots, s_k in S such that $s_i \nsim s_j$ (for any $1 \leq j < l \leq k$) and $s_i \succ_s s$ (for any $1 \le j \le k$)

$$
s_{j+1} \succsim_s s_j \text{ for all } 1 \leq j < k-1 \Longrightarrow s_1 \npreceq_s s_k.
$$

Moreover, if for x, y, s in S, we have $x \succ_{s} s$ and $y \not\succ_{s} s$, then $y \not\succ_{s} x$.

- Stronger version of part (b) of Payoffs Assumption.
- First part: \succ -acyclicity as opposed \succ -acyclicity
- **•** Second part: slightly stronger than acyclicity
	- but weaker than transitivity within states, i.e., $x \succ_{s} s$, $y \not\succ_{s} s$, then $y \nsucc_{s} x$, whereas transitivity would require $x \succ_{s} s$, $s \succ_{s} y$, then $x \succ_{s} y$, which implies our condition, but is much stronger.
- Alternative (with equivalent results): voting yes has a small cost.

Noncooperative Characterization

Theorem

(Noncooperative Characterization) Suppose Assumptions on Winning Coalitions and Payoffs hold. Then there exists $\beta_0 \in [0, 1)$ such that for all $\beta \ge \beta_0$, the following results hold.

1 For any mapping φ satisfying Axioms 1–3 there is a protocol $\{\pi_s\}_{s \in S}$ and a MPE σ of the game such that $s_t = \phi(s_0)$ for any $t \geq 1$; that is, the game reaches $\phi(s_0)$ after one period and stays in this state thereafter. Therefore, $s = \phi(s_0)$ is a dynamically stable state.

Noncooperative Characterization (continued)

Theorem

... Moreover, suppose that Stronger Acyclicity Assumption holds. Then:

- 2. For any protocol $\{\pi_s\}_{s\in S}$ there exists a MPE in pure strategies. Any such MPE σ has the property that for any initial state $s_0 \in \mathcal{S}$, it reaches some state, s^{∞} by $t = 1$ and thus for $t \geq 1$, $s_t = s^{\infty}$. Moreover, there exists mapping $\phi : \mathcal{S} \to \mathcal{S}$ that satisfies Axioms 1-3 such that $s^{\infty} = \phi(s_0)$. Therefore, all dynamically stable states are axiomatically stable.
- 3. If, in addition, Assumption (Comparability) holds, then the MPE is essentially unique in the sense that for any protocol $\{\pi_s\}_{s\in S}$, any MPE strategy profile in pure strategies σ induces $s_t \sim \phi(s_0)$ for all $t > 1$, where ϕ satisfies Axioms 1-3.

Dynamic vs. Myopic Stability

Definition

State $s^m \in \mathcal{S}$ is *myopically stable* if there does not exist $s \in \mathcal{S}$ with $s \succ_{s^m} s^m$.

Corollary

- **■** State $s^{\infty} \in S$ is a (dynamically and axiomatically) stable state only if for any $s' \in S$ with $s' \succ_{s^\infty} s^\infty$, and any ϕ satisfying Axioms 1–3, $s' \neq \phi(s')$.
- \bullet A myopically stable state s^m is a stable state.
- \bullet A stable state s^{∞} is not necessarily myopically stable.
	- E.g., state *a* in extension of franchise story

Inefficiency

Definition

(Infficiency) State $s \in S$ is *(strictly) Pareto inefficient* if there exists $s' \in S$ such that $w_i(s') > w_i(s)$ for all $i \in \mathcal{I}$. State $s \in S$ is (strictly) winning coalition inefficient if there exists a winning coalition $\mathcal{W}_s \subset \mathcal{I}$ in s and $s' \in S$ such that $w_i \left(s' \right) > w_i \left(s \right)$ for all $i \in \mathcal{W}_s$.

 \bullet Clearly, if a state s is Pareto inefficient, it is winning coalition inefficient, but not vice versa.

Corollary

■ A stable state $s^{\infty} \in S$ can be (strictly) winning coalition inefficient and Pareto inefficient.

2 Whenever s^{∞} is not myopically stable, it is winning coalition inefficient.

Applying the Theorems in Ordered Spaces

- The characterization theorems provided so far are easily applicable in a wide variety of settings.
- In particular, if the set of states is ordered and static preferences satisfy single crossing or single peakedness, all the results provided so far can be applied directly.
- \bullet Here, for simplicity, suppose that $\mathcal{I} \subset \mathbb{R}$ and $\mathcal{S} \subset \mathbb{R}$ (more generally, other orders on the set of individuals and the set of states would work as well)

Single Crossing and Single Peakedness

Definition

Take set of individuals $\mathcal{I} \subset \mathbb{R}$, set of states $\mathcal{S} \subset \mathbb{R}$, and payoff functions w. (\cdot) . Then, single crossing condition holds if whenever for any $i, j \in \mathcal{I}$ and x, $y \in S$ such that $i < j$ and $x < y$, $w_i(y) > w_i(x)$ implies $w_i(y) > w_i(x)$ and $w_i(y) < w_i(x)$ implies $w_i(y) < w_i(x)$.

Definition

Take set of individuals $\mathcal{I} \subset \mathbb{R}$, set of states $\mathcal{S} \subset \mathbb{R}$, and payoff functions w. (\cdot). Then, single-peaked preferences assumption holds if for any $i \in \mathcal{I}$ there exists state x such that for any $y, z \in S$, if $y < z < x$ or $x > z > y$, then $w_i(y) \leq w_i(z)$.

Generalizations of Majority Rule and Median Voter

Definition

Take set of individuals $\mathcal{I} \subset \mathbb{R}$, state $s \in \mathcal{S}$, and set of winning coalitions \mathcal{W}_s that satisfies Assumption on Winning Coalitions. Player $i \in \mathcal{I}$ is called quasi-median voter (in state s) if $i \in X$ for any $X \in \mathcal{W}_s$ such that $X = \{j \in \mathcal{I} : a \leq j \leq b\}$ for some $a, b \in \mathbb{R}$.

- That is, quasi-median voter is a player who belongs to any "connected" winning coalition.
- \bullet Denote the set of quasi-median voters in state s by M_s (it will be nonempty)

Definition

Take set of individuals $\mathcal{I} \subset \mathbb{R}$, set of states $\mathcal{S} \subset \mathbb{R}$. The sets of winning coalitions $\{W_s\}_{s\in S}$ has monotonic quasi-median voter property if for each $x, y \in S$ satisfying $x < y$ there exist $i \in M_x$, $j \in M_y$ such that $i \leq j$.

A Weak Genericity Assumption

- Let us say that preferences w. (\cdot) , given the set of winning coalitions $\{W_s\}_{s\in S}$, are *generic* if for all x, y, $z \in S$, $x \succeq_z y$ implies $x \succ_z y$ or $x \sim y$.
- This is (much) weaker than the comparability assumption used for uniqueness above.
	- In particular, it holds generically.

Theorem on Single Crossing and Single Peakedness

Theorem

Suppose the Assumption on Winning Coalitions holds.

- **1** If preferences satisfy single crossing and the monotonic quasi-median voter property holds, then Assumptions on Payoffs above are satisfied and the axiomatic characterization (Theorem 1) applies.
- **2** If preferences are single peaked and all winning coalitions intersect (i.e., $X \in \mathcal{W}_{x}$ and $Y \in \mathcal{W}_{y}$ imply $X \cap Y \neq \varnothing$), then Assumptions on Payoffs are satisfied and Theorem 1 applies.
- **3** If, in addition, in part 1 or 2, preferences are generic, then the Stronger Acyclicity Assumption is satisfied and the noncooperative characterization (Theorem 2) applies.
	- Note monotonic median voter property is weaker than the assumption that $X \in \mathcal{W}_x \wedge Y \in \mathcal{W}_y \Longrightarrow X \cap Y \neq \varnothing$.

Voting in Clubs

- N individuals, $\mathcal{I} = \{1, \ldots, N\}$
- N states (clubs), $s_k = \{1, \ldots, k\}$
- Assume single-crossing condition

for all $1 > k$ and $j > i$, $w_i(s_i) - w_i(s_k) > w_i(s_i) - w_i(s_k)$

• Assume "genericity":

$$
\text{for all } l > k, w_j(s_l) \neq w_j(s_k)
$$

- Then, the theorem for ordered spaces applies and shows existence of MPE in pure strategies for any majority or supermajority rule.
- **It also provides a full characterization of these equilibria.**

Voting in Clubs

- If in addition only odd-sized clubs are allowed, unique dynamically stable state.
- Equilibria can easily be Pareto inefficient.
- **If** "genericity" is relaxed, so that w_i (s_i) = w_i (s_k), then the theorem for ordered spaces no longer applies, but both the axiomatic characterization and the noncooperative theorems can still be applied from first principles.
- Comparison to Roberts (1999): much simpler analysis under weaker conditions, and more general results (existence of pure-strategy equilibrium, results for supermajority rules etc.)
- Also can be extended to more general structure of clubs
	- e e.g., clubs on the form $\{k n, ..., k, ..., k + n\} \cap \mathcal{I}$ for a fixed n (and different values of k).

An Example of Elite Clubs

• Specific example: suppose that preferences are such that

$$
w_{j}\left(s_{n}\right) > w_{j}\left(s_{n'}\right) > w_{j}\left(s_{k'}\right) = w_{j}\left(s_{k''}\right)
$$

for all $n' > n \geq j$ and $k', k'' < j$

- individuals always prefer to be part of the club
- individuals always prefer smaller clubs.
- Winning coalitions need to have a strict majority (e.g., two out of three, three out of four etc.).

o Then.

- ${1}$ is a stable club (no wish to expand)
- $\{1, 2\}$ is a stable club (no wish to expand and no majority to contract)
- ${1, 2, 3}$ is not a stable club (3 can be eliminated)
- $\{1, 2, 3, 4\}$ is a stable club
- More generally, clubs of size 2^k for $k = 0, 1, ...$ are stable.
- \bullet Starting with the club of size *n*, the equilibrium involves the largest club of size $2^k < n$.

Example: Taxation

- Suppose there are k individuals $1, 2, \ldots, k$, and k states s_1, s_2, \ldots, s_k , where $s_i = \{1, 2, ..., j\}$.
- Suppose winning coalition is a simple majority rule of players who are enfranchised:

$$
\mathcal{W}_{s_j} = \{X \in \mathcal{C} : \#(X \cap s_j) > j/2\}.
$$

• Suppose player *i's* payoff is

$$
w_i\left(s_j\right)=\left(1-\tau_{s_j}\right)A_i+G_{s_j}
$$

where A_i is player i 's productivity; $\mathit{G}_{\mathit{s_j}}$ and $\tau_{\mathit{s_j}}$ are the public good and the tax rate voting franchise is s_j .

Assume $A_i>A_j$ for $i < j,$ so the first players are the most productive ones

Example: Taxation (continued)

- ${\tau}_{s_j}$ is the tax rate determined by the median voter in the club s_j (or by one of the two median voters with equal probability in case of even-sized club)
- The technology for the production of the public good is

$$
G_{s_j} = H\left(\sum_{i=1}^k \tau_{s_j} A_i\right),
$$

where H is strictly increasing and concave.

Example: Taxation (continued)

• In light of the previous theorem, to apply our results, it suffices to show that if $i, j \in s_k, s_{k+1}$, then

$$
w_{j}(s_{k+1})-w_{j}(s_{k})>w_{i}(s_{k+1})-w_{i}(s_{k+1})
$$

whenever $i < j$.

o This is equivalent to

$$
(1-\tau_{s_{k+1}}) A_j - (1-\tau_{s_k}) A_j \geq (1-\tau_{s_{k+1}}) A_i - (1-\tau_{s_k}) A_i,
$$

Since $A_j < A_i$, this is in turn is equivalent to

$$
\tau_{s_{k+1}} \geq \tau_{s_k}.
$$

• This can be verified easily, so the theorem for order spaces can be applied.

Stable Constitutions

- N individuals, $\mathcal{I} = \{1, \ldots, N\}$
- In period 2, they decide whether to implement a reform (a votes are needed)
- a is determined in period 1
- **a** Two cases:
	- Voting rule a: stable if in period 1 no other rule is supported by a voters
	- Constitution (a, b) : stable if in period 1 no other constitution is supported by b voters
- **•** Preferences over reforms translate into preferences over a
	- Barbera and Jackson assume a structure where these preferences are single-crossing and single-peaked
	- Motivated by this, let us assume that they are strictly single-crossing
- Stable voting rules correspond to myopically (and dynamically) stable states
- Stable constitutions correspond to dynamically stable states

Political Eliminations

- The characterization results apply even when states do not form an ordered set.
- \bullet Set of states S coincides with set of coalitions C
- **•** Each agent $i \in \mathcal{I}$ is endowed with political influence γ_i
- Payoffs are given by proportional rule

$$
w_i(X) = \begin{cases} \gamma_i/\gamma_X & \text{if } i \in X \\ 0 & \text{if } i \notin X \end{cases} \text{ where } \gamma_X = \sum_{j \in X} \gamma_j
$$

and X is the "ruling coalition".

• this payoff function can be generalized to any function where payoffs are increasing in relative power of the individual in the ruling coalition

Political Eliminations (continued)

Winning coalitions are determined by weighted (super)majority rule $\alpha \in [1/2, 1)$

$$
\mathcal{W}_X = \left\{ Y : \sum_{j \in Y \cap X} \gamma_j > \alpha \sum_{j \in X} \gamma_j \right\}
$$

- Genericity: $\gamma_{\mathcal{X}} = \gamma_{\mathcal{Y}}$ only if $\mathcal{X} = \mathcal{Y}$
- Assumption on Payoffs is satisfied and the axiomatic characterization applies exactly.
- **If players who are not part of the ruling coalition have a slight** preference for larger ruling coalitions, then Stronger Acyclicity Assumption is also satisfied.

Other Examples

- **o** Inefficient inertia
- **•** The role of the middle class in democratization
- **•** Coalition formation in democratic systems
- Commitment, (civil or international) conflict and peace

Political Selection

- A related problem: how does a society select its government (rulers, officials, bureaucrats)
	- different levels of competence
	- \bullet rents from being in office
	- some degree of incumbency advantage
- How do political institutions, affecting the degree of incumbency advantage, impact on the "efficiency" of governments?
- What types of political institutions enable greater flexibility, allowing the society to adopt to changes in environments by changing the government?

Summary of Main Results

- More democratic regimes not necessarily better in deterministic environments.
- More democratic regimes are more resistant to shocks
	- because they are more flexible
	- they can absorb larger shocks
	- an ideal democracy will fully adjust to any shock
- Even negative political shocks may increase the competence of government
	- at the cost of less flexibility in the future
- Consequently, democratic regimes potentially preferable because of their flexibility advantage.

Concluding Remarks

- A class of dynamic games potentially representing choice of constitutions, dynamic voting, club formation, dynamic coalition formation, organizational choice, dynamic legislative bargaining, international or civil conflict.
- Common themes in disparate situations.
- A framework for general analysis and tight characterization results.
- Simple implications: social arrangements are unstable not when some winning coalition (e.g., majority) prefers another social arrangement, but when it preferes another stable social arrangement
- We show that this gives rise to inefficiencies: a Pareto dominated state may be stable, even if discount factor is close to 1

Persistence and Change in Institutions

- Using this framework in order to analyze issues of persistence and change systematically.
- Missing:
	- Stochastic shocks and more generally stochastic power switches.
	- Dynamics with intermediate discount factors.
	- Good mapping between the shoes of the first lecture and the general model.
	- And of course, strategy for empirical work
- • Much to do as we go forward.