Dynamics and Stability of Political Systems

Daron Acemoglu

MIT

February 11, 2009

Daron Acemoglu (MIT)

Motivation

- Towards a general framework?
- One attempt: **Acemoglu, Egorov and Sonin:** *Dynamics and Stability of Constitutions, Coalitions and Clubs.*
- General approach motivated by political economy, though potentially applicable to organizational economics, club theory, and international relations as well.

Toward General Insights

- Key trade-off between
 - **Payoffs:** different arrangements imply different payoffs and individuals care about payoffs.
 - **Power:** different arrangements reallocate decision-making (political) power and thus affect future evolution of payoffs.
- *Strategy:* Formulate a general dynamic framework to investigate the interplay of these two factors in a relatively "detail-free" manner.
 - Details useful to go beyond general insights.

Simple Example

- Consider a simple extension of franchise story
- Three states: absolutism *a*, constitutional monarchy *c*, full democracy *d*
- Two agents: elite *E*, middle class *M*

$$w_E(d) < w_E(a) < w_E(c)$$

 $w_M(a) < w_M(c) < w_M(d)$

- E rules in a, M rules in c and d.
- Myopic elite: starting from *a*, move to *c*
- Farsighted elite: stay in a: move to c will lead to M moving to d.
- Same example to illustrate resistance against socially beneficial reform.

Naïve and Dynamic Insights

- *Naïve insight:* a social arrangement will emerge and persist if a "sufficiently powerful group" prefers it to alternatives.
- Simple example illustrates: power to change towards a more preferred outcome is not enough to implement change
 - because of further dynamics
- Social arrangements might be stable even if there are powerful groups that prefer change in the short run.
- **Key:** social arrangements change the distribution of political power (decision-making capacity).
- **Dynamic decision-making:** future changes also matter (especially if discounting is limited)

Applications

- Key motivation: changes in constitutions and political regimes.
- Extension of franchise (Acemoglu and Robinson 2000, 2006, Lizzeri and Persico 2004)
- Members of a club decide whether to admit additional members by majority voting (Roberts 1999)
- Society decides by voting, what degree of (super)majority is needed to start a reform (Barbera and Jackson 2005)
- EU members decide whether to admit new countries to the union (Alesina, Angeloni, and Etro 2005)
- Inhabitants of a jurisdiction determine migration policy (Jehiel and Scotchmer 2005)
- Participant of (civil) war decides whether to make concessions to another party (Fearon 1998, Schwarz and Sonin 2008)
- Dynamic political coalition formation: Junta (or Politburo) members decide whether to eliminate some of them politically or physically (Acemoglu, Egorov, and Sonin 2008)

Daron Acemoglu (MIT)

Marshall Lectures 2

Voting in Clubs or Dynamic Franchise Extension

- Suppose that individuals $\{1, ..., M\}$ have a vote and they can extend the franchise and include any subset of individuals $\{M + 1, ..., N\}$.
- Instantaneous payoff of individual *i* a function of the set of individuals with the vote (because this influences economic actions, redistribution, or other policies)
- Political protocol: majority voting.
- $\{1, ..., M\}$ vote over alternative proposals.
- If next period the franchise is {1, ..., M'}, then this new franchise votes (by majority rule) on the following period's franchise etc.
- Difficult dynamic game to analyze.
- But once we understand the common element between this game and a more general class of games, a tight and insightful characterization becomes possible.

Model and Approach

- Model:
 - Finite number of individuals.
 - Finite number of states (characterized by economic relations and political regimes)
 - Payoff functions determine instantaneous utility of each individual as a function of state
 - Political rules determine the distribution of political power and protocols for decision-making within each state.
 - A dynamic game where "politically powerful groups" can induce a transition from one state to another at any date.
- Question: what is the **dynamically stable state** as a function of the initial state?

Main Results of General Framework

- An axiomatic characterization of "outcome mappings" corresponding to dynamic game (based on a simple *stability* axiom incorporating the notion of forward-looking decisions).
- Equivalence between the MPE of the dynamic game (with high discount factor) and the axiomatic characterization
- Full characterization: recursive and simple
- Under slightly stronger conditions, the stable outcome (dynamically stable state) is unique given the initial state
 - but depends on the initial state
- Model general enough to nest specific examples in the literature.
- In particular, main theorems directly applicable to situations in which states can be ordered and static payoffs satisfy single crossing or single peakedness.

Simple Implications

- A particular social arrangement is made stable by the instability of alternative arrangements that are preferred by sufficiently many members of the society.
 - stability of a constitution does not require absence of powerful groups opposing it, but the absence of an alternative stable constitution favored by powerful groups.
- Efficiency-enhancing changes are often resisted because of further social changes that they will engender.
 - Pareto inefficient social arrangements often emerge as stable outcomes.

Illustration

- Voting in clubs.
- Dynamic taxation with endogenous franchise.
- Stability of constitutions.
- Political eliminations.

• From Acemoglu, Egorov and Sonin: Dynamics of Political Selection

- a small amount of incumbency advantage can lead to the emergence and persistence of very incompetent/inefficient governments (without asymmetric information)
- a greater degree of democracy does not necessarily ensure better governments
- **but**, a greater degree of democracy leads to greater **flexibility** and to better governments in the long run in stochastic environments.

Related Literature

- Papers mentioned above as applications or specific instances of the general results here.
- Dynamic coalition formation—Ray (2008).
- Dynamic political reform—Lagunoff (2006).
- Farsighted coalitional stability—Chwe (1994).
- Dynamic economic interactions with transferable utility—Gomes and Jehiel (2005).
- Dynamic inefficiencies with citizen candidates—Besley and Coate (1999).

Model: Basics

- Finite set of individuals \mathcal{I} ($|\mathcal{I}|$ total)
 - Set of coalitions \mathcal{C} (non-empty subsets $X \subset \mathcal{I}$)
- Each individual maximizes discounted sum of playoffs with discount factor $\beta \in [0, 1)$.
- Finite set of states $\mathcal{S}(|\mathcal{S}|$ total)
- Discrete time $t \geq 1$
- State s_t is determined in period t; s_0 is given
- Each state $s \in \mathcal{S}$ is characterized by
 - Payoff $w_{i}\left(s
 ight)$ of individual $i\in\mathcal{I}$ (normalize $w_{i}\left(s
 ight)>0$)
 - Set of winning coalitions $\mathcal{W}_s \subset \mathcal{C}$ capable of implementing a change
 - Protocol $\pi_{s}(k)$, $1 \leq k \leq K_{s}$: sequence of agenda-setters or proposals $(\pi_{s}(k) \in \mathcal{I} \cup \mathcal{S})$

Winning Coalitions

Assumption

(Winning Coalitions) For any state $s \in S$, $W_s \subset C$ satisfies two properties: (a) If $X, Y \in C$, $X \subset Y$, and $X \in W_s$ then $Y \in W_s$. (b) If $X, Y \in W_s$, then $X \cap Y \neq \emptyset$.

- (a) says that a superset of a winning coalition is winning in each state
- ullet (b) says that there are no two disjoint winning coalitions in any state
- $\mathcal{W}_{s}=arnothing$ is allowed (exogenously stable state)
- Example:
 - Three players 1, 2, 3
 - $\mathcal{W}_s = \{\{1\}, \{1,2\}, \{1,3\}, \{1,2,3\}\}$ is valid (1 is dictator)
 - $\mathcal{W}_s = \{\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$ is valid (majority voting)
 - $\mathcal{W}_s = \{\{1\}, \{2, 3\}\}$ is not valid (both properties are violated)

Dynamic Game

- **(**) Period t begins with state s_{t-1} from the previous period.
- **②** For k = 1,..., K_{st-1}, the kth proposal P_{k,t} is determined as follows. If $\pi_{s_{t-1}}(k) \in S$, then P_{k,t} = $\pi_{s_{t-1}}(k)$. If $\pi_{s_{t-1}}(k) \in I$, then player $\pi_{s_{t-1}}(k)$ chooses P_{k,t} ∈ S.
- If P_{k,t} ≠ s_{t-1}, each player votes (sequentially) yes (for P_{k,t}) or no (for s_{t-1}). Let Y_{k,t} denote the set of players who voted yes. If Y_{k,t} ∈ W_{t-1}, then P_{k,t} is accepted, otherwise it is rejected.
- If $P_{k,t}$ is accepted, then $s_t = P_{k,t}$. If $P_{k,t}$ is rejected, then the game moves to step 2 with $k \mapsto k+1$ if $k < K_{s_{t-1}}$. If $k = K_{s_{t-1}}$, $s_t = s_{t-1}$.
- At the end of each period (once st is determined), each player receives instantaneous utility u_i (t):

$$u_{i}(t) = \begin{cases} w_{i}(s) & \text{if } s_{t} = s_{t-1} = s \\ 0 & \text{if } s_{t} \neq s_{t-1} \end{cases}$$

Key Notation and Concepts

- Define binary relations:
 - states x and y are payoff-equivalent

$$x \sim y \iff \forall i \in \mathcal{I} : w_x(i) = w_y(i)$$

• y is weakly preferred to x in z

$$y \succeq_{z} x \iff \{i \in \mathcal{I} : w_{y}(i) \ge w_{x}(i)\} \in \mathcal{W}_{z}$$

• y is strictly preferred to x in z

$$y \succ_{z} x \iff \{i \in \mathcal{I} : w_{y}(i) > w_{x}(i)\} \in \mathcal{W}_{z}$$

- Notice that these binary relations are **not** simply preference relations
 - they encode information about preferences and political power.

Preferences and Acyclicity

Assumption

(Payoffs) Payoff functions $\{w_i(\cdot)\}_{i\in\mathcal{I}}$ satisfy: (a) For any sequence of states s_1, \ldots, s_k in S,

$$s_{j+1} \succ_{s_j} s_j$$
 for all $1 \leq j \leq k-1 \Longrightarrow s_1 \not\succ_{s_k} s_k$.

(b) For any sequence of states $s, s_1, ..., s_k$ in S with $s_j \succ_s s$ (for all $1 \le j \le k$)

$s_{j+1} \succ_s s_j$ for all $1 \le j \le k-1 \Longrightarrow s_1 \not\succ_s s_k$.

- (a) rules out cycles of the form $y \succ_z z$, $x \succ_y y$, $z \succ_x x$
- (b) rules out cycles of the form $y \succ_s z$, $x \succ_s y$, $z \succ_s x$
- Weaker than transitivity of \succ_s .
- These assumptions cannot be dispensed with in the context of a general treatment because otherwise Condorcet-type cycles emerge.

Daron Acemoglu (MIT)

Preferences and Acyclicity (continued)

• We will also strengthen our results under:

Assumption

(Comparability) For $x, y, z \in S$ such that $x \succ_z z, y \succ_z z$, and $x \not\sim y$, either $y \succ_7 x$ or $x \succ_7 y$.

• This condition sufficient (and "necessary") for uniqueness.

Approach and Motivation

- Key economic insight: with sufficiently forward-looking behavior, an individual should not wish to transition to a state that will ultimately lead to another lower utility state.
- Characterize the set of allocations that are consistent with this insight—without specifying the details of the dynamic game.
 - Introduce three simple and intuitive axioms.
 - Characterize set of mappings Φ such that for any φ ∈ Φ, φ : S → S satisfies these axioms and assigns an axiomatically stable state s[∞] ∈ S to each initial state s₀ ∈ S (i.e., φ (s) = s[∞] ∈ S loosely corresponding to s_t = s[∞] for all t ≥ T for some T).
- Interesting in its own right, but the main utility of this axiomatic approach is as an input into the characterization of the (two-strategy) MPE of the dynamic game.

Axiom 1

(Desirability) If $x, y \in S$ are such that $y = \phi(x)$, then either y = x or $y \succ_x x$.

- A winning coalition can always stay in x (even a blocking coalition can)
- A winning coalition can move to y
- If there is a transition to y, a winning coalition must have voted for that

Axiom 2

(Stability) If $x, y \in S$ are such that $y = \phi(x)$, then $y = \phi(y)$.

- Holds "by definition" of $\phi(\cdot)$: $\exists T : s_t = \phi(s)$ for all $t \ge T$; when $\phi(s)$ is reached, there are no more transitions
- If y were unstable $(y \neq \phi(y))$, then why not move to $\phi(y)$ instead of y

Axiom 3

(Rationality) If $x, y, z \in S$ are such that $z \succ_x x$, $z = \phi(z)$, and $z \succ_x y$, then $y \neq \phi(x)$.

- A winning coalition can move to y and to z
- A winning coalition can stay in x
- When will a transition to y be blocked?
 - If there is another z preferred by some winning coalition
 - If this z is also preferred to x by some winning coalition (so blocking y will lead to z, not to x)
 - If transition to z is credible in the sense that this will not lead to some other state in perpetuity

Stable States

- State $s\in\mathcal{S}$ is ϕ -stable if $\phi\left(s
 ight)=s$ for $\phi\in\Phi$
- Set of ϕ -stable states: $\mathcal{D}_{\phi} = \left\{ s \in \mathcal{S} \colon \phi\left(s\right) = s \text{ for } \phi \in \Phi
 ight\}$
- We will show that if ϕ_1 and ϕ_2 satisfy the Axioms, then $\mathcal{D}_{\phi_1}=\mathcal{D}_{\phi_2}=\mathcal{D}$
 - Even if ϕ is non-unique, notion of stable state is well-defined
 - But $\phi_{1}\left(s
 ight)$ and $\phi_{2}\left(s
 ight)$ may be different elements of ${\cal D}$

Axiomatic Characterization of Stable States

Theorem

Suppose Assumptions on Winning Coalitions and Payoffs hold. Then:

- There exists mapping ϕ satisfying Axioms 1–3.
- This mapping φ may be obtained through a recursive procedure (next slide)
- Solution For any two mappings ϕ_1 and ϕ_2 that satisfy Axioms 1–3 the the sets of stable states of these mappings coincide (i.e., $\mathcal{D}_{\phi_1} = \mathcal{D}_{\phi_2} = \mathcal{D}$).
- If, in addition, the Comparability Assumption holds, then the mapping that satisfies Axioms 1–3 is "payoff-unique" in the sense that for any two mappings ϕ_1 and ϕ_2 that satisfy Axioms 1–3 and for any $s \in S$, $\phi_1(s) \sim \phi_2(s)$.

Recursive Procedure

Theorem (continued)

Any ϕ that satisfies Axioms 1–3 can be recursively computed as follows. Construct the sequence of states $\{\mu_1, ..., \mu_{|S|}\}$ with the property that if for any $l \in (j, |S|], \mu_l \not\succ_{\mu_j} \mu_j$. Let $\mu_1 \in S$ be such that $\phi(\mu_1) = \mu_1$. For k = 2, ..., |S|, let

$$\mathcal{M}_{k} = \left\{ s \in \left\{ \mu_{1}, \dots, \mu_{k-1} \right\} : s \succ_{\mu_{k}} \mu_{k} \text{ and } \phi\left(s\right) = s \right\}$$

Define, for k = 2, ..., |S|,

$$\phi\left(\mu_{k}\right) = \begin{cases} \mu_{k} & \text{if } \mathcal{M}_{k} = \varnothing \\ z \in \mathcal{M}_{k} \colon \nexists x \in \mathcal{M}_{k} \text{ with } x \succ_{\mu_{k}} z & \text{if } \mathcal{M}_{k} \neq \varnothing \end{cases}$$

(If there exist more than one $s \in \mathcal{M}_k$: $\nexists z \in \mathcal{M}_k$ with $z \succ_{\mu_k} s$, we pick any of these; this corresponds to multiple ϕ functions).

Daron Acemoglu (MIT)

Extension of Franchise Example

- Get back to the simple extension of franchise story
- Three states: absolutism a, constitutional monarchy c, full democracy d
- Two agents: elite E, middle class M

$$w_E(d) < w_E(a) < w_E(c)$$

 $w_M(a) < w_M(c) < w_M(d)$

•
$$\mathcal{W}_a = \{\{E\}, \{E, M\}\}, \mathcal{W}_c = \{\{M\}, \{E, M\}\}, \mathcal{W}_d = \{\{M\}, \{E, M\}\}$$

• Then: $\phi(d) = d$, $\phi(c) = d$, therefore, $\phi(a) = a$

- Indeed, c is unstable, and among a and d player E, who is part of any winning coalition, prefers a
- Intuitively, if limited franchise immediately leads to full democracy, elite will not undertake it

Daron Acemoglu (MIT)

Example

Example (continued)

- Assume $\mathcal{W}_c = \{\{E, M\}\}$ instead of $\mathcal{W}_c = \{\{M\}, \{E, M\}\}$
- Then: $\phi\left(d
 ight)=d$, $\phi\left(c
 ight)=c$, and, $\phi\left(a
 ight)=c$
- a became unstable because c became stable
- Now assume $\mathcal{W}_{a}=\mathcal{W}_{c}=\mathcal{W}_{d}=\{\{E,M\}\}$ and

$$w_E(a) < w_E(d) < w_E(c)$$

 $w_M(a) < w_M(c) < w_M(d)$

• *a* is disliked by everyone, but otherwise preferences differ • Then: $\phi(d) = d$, $\phi(c) = c$, and $\phi(a)$ may be *c* or *d* • In any case, $\mathcal{D} = \{c, d\}$ is the same

Back to Dynamic Game

Assumption

(Agenda-Setting and Proposals) For every state $s \in S$, one (or both) of the following two conditions is satisfied: (a) For any state $q \in S \setminus \{s\}$, there is an element $k : 1 \le k \le K_s$ of sequence π_s such that $\pi_s(k) = q$. (b) For any player $i \in \mathcal{I}$ there is an element $k : 1 \leq k \leq K_s$ of sequence π_s such that $\pi_s(k) = i$.

- Exogenous agenda, sequence of agenda-setters, or mixture.
- This assumption ensures that all proposals will be considered (or all agenda-setters will have a chance to propose)

Definition

(Dynamically Stable States) State $s^{\infty} \in S$ is a dynamically stable **state** if there exist a protocol $\{\pi_s\}_{s \in S}$, a MPE strategy profile σ (for a game starting with initial state s_0) and $T < \infty$, such that in MPE $s_t = s^{\infty}$

Slightly Stronger Acyclicty Assumption

Assumption (Stronger Acyclicity) For any sequence of states s, s_1, \ldots, s_k in S such that $s_j \approx s_l$ (for any $1 \le j < l \le k$) and $s_j \succ_s s$ (for any $1 \le j \le k$)

$$s_{j+1} \succeq_s s_j$$
 for all $1 \leq j < k-1 \Longrightarrow s_1 \not\geq_s s_k$.

Moreover, if for x, y, s in S, we have $x \succ_s s$ and $y \not\succ_s s$, then $y \not\succ_s x$.

- Stronger version of part (b) of Payoffs Assumption.
- Second part: slightly stronger than acyclicity
 - but weaker than transitivity within states, i.e., x ≻_s s, y ≯_s s, then y ≯_s x, whereas transitivity would require x ≻_s s, s ≻_s y, then x ≻_s y, which implies our condition, but is much stronger.
- Alternative (with equivalent results): voting yes has a small cost.

Noncooperative Characterization

Theorem

(Noncooperative Characterization) Suppose Assumptions on Winning Coalitions and Payoffs hold. Then there exists $\beta_0 \in [0, 1)$ such that for all $\beta \geq \beta_0$, the following results hold.

• For any mapping ϕ satisfying Axioms 1–3 there is a protocol $\{\pi_s\}_{s \in S}$ and a MPE σ of the game such that $s_t = \phi(s_0)$ for any $t \ge 1$; that is, the game reaches $\phi(s_0)$ after one period and stays in this state thereafter. Therefore, $s = \phi(s_0)$ is a dynamically stable state.

Noncooperative Characterization (continued)

Theorem

... Moreover, suppose that Stronger Acyclicity Assumption holds. Then:

- For any protocol {π_s}_{s∈S} there exists a MPE in pure strategies. Any such MPE σ has the property that for any initial state s₀ ∈ S, it reaches some state, s[∞] by t = 1 and thus for t ≥ 1, s_t = s[∞]. Moreover, there exists mapping φ : S → S that satisfies Axioms 1–3 such that s[∞] = φ(s₀). Therefore, all dynamically stable states are axiomatically stable.
- 3. If, in addition, Assumption (Comparability) holds, then the MPE is essentially unique in the sense that for any protocol $\{\pi_s\}_{s\in S}$, any MPE strategy profile in pure strategies σ induces $s_t \sim \phi(s_0)$ for all $t \geq 1$, where ϕ satisfies Axioms 1–3.

Dynamic vs. Myopic Stability

Definition

State $s^m \in S$ is myopically stable if there does not exist $s \in S$ with $s \succ_{s^m} s^m$.

Corollary

- State s[∞] ∈ S is a (dynamically and axiomatically) stable state only if for any s' ∈ S with s' ≻_{s[∞]} s[∞], and any φ satisfying Axioms 1–3, s' ≠ φ(s').
- A myopically stable state s^m is a stable state.
- § A stable state s^{∞} is not necessarily myopically stable.
 - E.g., state a in extension of franchise story

Inefficiency

Definition

(Infficiency) State $s \in S$ is (strictly) Pareto inefficient if there exists $s' \in S$ such that $w_i(s') > w_i(s)$ for all $i \in \mathcal{I}$. State $s \in S$ is (strictly) winning coalition inefficient if there exists a winning coalition $\mathcal{W}_s \subset \mathcal{I}$ in s and $s' \in S$ such that $w_i(s') > w_i(s)$ for all $i \in \mathcal{W}_s$.

• Clearly, if a state *s* is Pareto inefficient, it is winning coalition inefficient, but not vice versa.

Corollary

A stable state s[∞] ∈ S can be (strictly) winning coalition inefficient and Pareto inefficient.

Whenever s[∞] is not myopically stable, it is winning coalition inefficient.

Applying the Theorems in Ordered Spaces

- The characterization theorems provided so far are easily applicable in a wide variety of settings.
- In particular, if the set of states is ordered and static preferences satisfy single crossing or single peakedness, all the results provided so far can be applied directly.
- Here, for simplicity, suppose that $\mathcal{I} \subset \mathbb{R}$ and $\mathcal{S} \subset \mathbb{R}$ (more generally, other orders on the set of individuals and the set of states would work as well)

Single Crossing and Single Peakedness

Definition

Take set of individuals $\mathcal{I} \subset \mathbb{R}$, set of states $\mathcal{S} \subset \mathbb{R}$, and payoff functions $w_{\cdot}(\cdot)$. Then, single crossing condition holds if whenever for any $i, j \in \mathcal{I}$ and $x, y \in \mathcal{S}$ such that i < j and x < y, $w_i(y) > w_i(x)$ implies $w_j(y) > w_j(x)$ and $w_j(y) < w_j(x)$ implies $w_i(y) < w_i(x)$.

Definition

Take set of individuals $\mathcal{I} \subset \mathbb{R}$, set of states $\mathcal{S} \subset \mathbb{R}$, and payoff functions $w_{\cdot}(\cdot)$. Then, single-peaked preferences assumption holds if for any $i \in \mathcal{I}$ there exists state x such that for any $y, z \in \mathcal{S}$, if $y < z \le x$ or $x \ge z > y$, then $w_i(y) \le w_i(z)$.

Generalizations of Majority Rule and Median Voter

Definition

Take set of individuals $\mathcal{I} \subset \mathbb{R}$, state $s \in S$, and set of winning coalitions \mathcal{W}_s that satisfies Assumption on Winning Coalitions. Player $i \in \mathcal{I}$ is called quasi-median voter (in state s) if $i \in X$ for any $X \in \mathcal{W}_s$ such that $X = \{j \in \mathcal{I} : a \leq j \leq b\}$ for some $a, b \in \mathbb{R}$.

- That is, quasi-median voter is a player who belongs to any "connected" winning coalition.
- Denote the set of quasi-median voters in state s by M_s (it will be nonempty)

Definition

Take set of individuals $\mathcal{I} \subset \mathbb{R}$, set of states $\mathcal{S} \subset \mathbb{R}$. The sets of winning coalitions $\{\mathcal{W}_s\}_{s\in\mathcal{S}}$ has monotonic quasi-median voter property if for each $x, y \in \mathcal{S}$ satisfying x < y there exist $i \in M_x$, $j \in M_y$ such that $i \leq j$.

A Weak Genericity Assumption

- Let us say that preferences $w.(\cdot)$, given the set of winning coalitions $\{\mathcal{W}_s\}_{s\in\mathcal{S}}$, are *generic* if for all $x, y, z\in\mathcal{S}, x\succeq_z y$ implies $x\succ_z y$ or $x\sim y$.
- This is (much) weaker than the comparability assumption used for uniqueness above.
 - In particular, it holds generically.

Theorem on Single Crossing and Single Peakedness

Theorem

Suppose the Assumption on Winning Coalitions holds.

- If preferences satisfy single crossing and the monotonic quasi-median voter property holds, then Assumptions on Payoffs above are satisfied and the axiomatic characterization (Theorem 1) applies.
- ② If preferences are single peaked and all winning coalitions intersect (i.e., $X \in W_x$ and $Y \in W_y$ imply $X \cap Y \neq \emptyset$), then Assumptions on Payoffs are satisfied and Theorem 1 applies.
- If, in addition, in part 1 or 2, preferences are generic, then the Stronger Acyclicity Assumption is satisfied and the noncooperative characterization (Theorem 2) applies.
 - Note monotonic median voter property is weaker than the assumption that X ∈ W_x ∧ Y ∈ W_y ⇒ X ∩ Y ≠ Ø.

Voting in Clubs

- N individuals, $\mathcal{I} = \{1, \dots, N\}$
- N states (clubs), $s_k = \{1, \dots, k\}$
- Assume single-crossing condition

for all l > k and j > i, $w_j(s_l) - w_j(s_k) > w_i(s_l) - w_i(s_k)$

• Assume "genericity":

for all
$$l > k$$
, $w_j(s_l) \neq w_j(s_k)$

- Then, the theorem for ordered spaces applies and shows existence of MPE in pure strategies for any majority or supermajority rule.
- It also provides a full characterization of these equilibria.

Voting in Clubs

- If in addition only odd-sized clubs are allowed, unique dynamically stable state.
- Equilibria can easily be Pareto inefficient.
- If "genericity" is relaxed, so that $w_j(s_l) = w_j(s_k)$, then the theorem for ordered spaces no longer applies, but both the axiomatic characterization and the noncooperative theorems can still be applied from first principles.
- Comparison to Roberts (1999): much simpler analysis under weaker conditions, and more general results (existence of pure-strategy equilibrium, results for supermajority rules etc.)
- Also can be extended to more general structure of clubs
 - e.g., clubs on the form $\{k n, ..., k, ..., k + n\} \cap \mathcal{I}$ for a fixed n (and different values of k).

An Example of Elite Clubs

• Specific example: suppose that preferences are such that

$$w_{j}\left(s_{n}\right) > w_{j}\left(s_{n'}\right) > w_{j}\left(s_{k'}\right) = w_{j}\left(s_{k''}\right)$$

for all $n' > n \ge j$ and k', k'' < j

- individuals always prefer to be part of the club
- individuals always prefer smaller clubs.
- Winning coalitions need to have a strict majority (e.g., two out of three, three out of four etc.).

• Then,

- {1} is a stable club (no wish to expand)
- $\{1,2\}$ is a stable club (no wish to expand and no majority to contract)
- $\{1, 2, 3\}$ is not a stable club (3 can be eliminated)
- {1, 2, 3, 4} is a stable club
- More generally, clubs of size 2^k for k = 0, 1, ... are stable.
- Starting with the club of size n, the equilibrium involves the largest club of size 2^k ≤ n.

Daron Acemoglu (MIT)

Example: Taxation

- Suppose there are k individuals 1, 2, ..., k, and k states s_1, s_2, \ldots, s_k , where $s_j = \{1, 2, \ldots, j\}$.
- Suppose winning coalition is a simple majority rule of players who are enfranchised:

$$\mathcal{W}_{s_j} = \{X \in \mathcal{C} : \# (X \cap s_j) > j/2\}.$$

• Suppose player *i*'s payoff is

$$w_{i}\left(s_{j}\right) = \left(1 - \tau_{s_{j}}\right)A_{i} + G_{s_{j}}$$

where A_i is player *i*'s productivity; G_{s_j} and τ_{s_j} are the public good and the tax rate voting franchise is s_j .

• Assume $A_i > A_j$ for i < j, so the first players are the most productive ones

Example: Taxation (continued)

- τ_{s_j} is the tax rate determined by the median voter in the club s_j (or by one of the two median voters with equal probability in case of even-sized club)
- The technology for the production of the public good is

$$\mathcal{G}_{s_j} = \mathcal{H}\left(\sum_{i=1}^k au_{s_j} \mathcal{A}_i
ight)$$
 ,

where H is strictly increasing and concave.

Example: Taxation (continued)

• In light of the previous theorem, to apply our results, it suffices to show that if $i, j \in s_k, s_{k+1}$, then

$$w_{j}\left(s_{k+1}\right) - w_{j}\left(s_{k}\right) > w_{i}\left(s_{k+1}\right) - w_{i}\left(s_{k+1}\right)$$

whenever i < j.

• This is equivalent to

$$(1 - \tau_{s_{k+1}}) A_j - (1 - \tau_{s_k}) A_j \ge (1 - \tau_{s_{k+1}}) A_j - (1 - \tau_{s_k}) A_j,$$

• Since $A_j < A_i$, this is in turn is equivalent to

$$\tau_{s_{k+1}} \geq \tau_{s_k}.$$

• This can be verified easily, so the theorem for order spaces can be applied.

Daron Acemoglu (MIT)

Stable Constitutions

- N individuals, $\mathcal{I} = \{1, \dots, N\}$
- In period 2, they decide whether to implement a reform (a votes are needed)
- a is determined in period 1
- Two cases:
 - Voting rule a: stable if in period 1 no other rule is supported by a voters
 - Constitution (*a*, *b*): stable if in period 1 no other constitution is supported by *b* voters
- Preferences over reforms translate into preferences over a
 - Barbera and Jackson assume a structure where these preferences are single-crossing and single-peaked
 - Motivated by this, let us assume that they are strictly single-crossing
- Stable voting rules correspond to myopically (and dynamically) stable states
- Stable constitutions correspond to dynamically stable states

Political Eliminations

- The characterization results apply even when states do not form an ordered set.
- \bullet Set of states ${\cal S}$ coincides with set of coalitions ${\cal C}$
- Each agent $i \in \mathcal{I}$ is endowed with political influence γ_i
- Payoffs are given by proportional rule

$$w_i(X) = \left\{ egin{array}{cc} \gamma_i / \gamma_X & ext{if } i \in X \ 0 & ext{if } i \notin X \end{array}
ight.$$
 where $\gamma_X = \sum_{j \in X} \gamma_j$

and X is the "ruling coalition".

• this payoff function can be generalized to any function where payoffs are increasing in relative power of the individual in the ruling coalition

Political Eliminations (continued)

• Winning coalitions are determined by weighted (super)majority rule $\alpha \in [1/2, 1)$

$$\mathcal{W}_{X} = \left\{ Y : \sum_{j \in Y \cap X} \gamma_{j} > \alpha \sum_{j \in X} \gamma_{j}
ight\}$$

- Genericity: $\gamma_X = \gamma_Y$ only if X = Y
- Assumption on Payoffs is satisfied and the axiomatic characterization applies exactly.
- If players who are not part of the ruling coalition have a slight preference for larger ruling coalitions, then Stronger Acyclicity Assumption is also satisfied.

Other Examples

- Inefficient inertia
- The role of the middle class in democratization
- Coalition formation in democratic systems
- Commitment, (civil or international) conflict and peace

Political Selection

- A related problem: how does a society select its government (rulers, officials, bureaucrats)
 - different levels of competence
 - rents from being in office
 - some degree of incumbency advantage
- How do political institutions, affecting the degree of incumbency advantage, impact on the "efficiency" of governments?
- What types of political institutions enable greater flexibility, allowing the society to adopt to changes in environments by changing the government?

Summary of Main Results

- More democratic regimes not necessarily better in deterministic environments.
- More democratic regimes are more resistant to shocks
 - because they are more *flexible*
 - they can absorb larger shocks
 - an ideal democracy will fully adjust to any shock
- Even negative political shocks may increase the competence of government
 - at the cost of less flexibility in the future
- Consequently, democratic regimes potentially preferable because of their flexibility advantage.

Concluding Remarks

- A class of dynamic games potentially representing choice of constitutions, dynamic voting, club formation, dynamic coalition formation, organizational choice, dynamic legislative bargaining, international or civil conflict.
- Common themes in disparate situations.
- A framework for general analysis and tight characterization results.
- Simple implications: social arrangements are unstable not when some winning coalition (e.g., majority) prefers another social arrangement, but when it preferes another **stable** social arrangement
- We show that this gives rise to inefficiencies: a Pareto dominated state may be stable, even if discount factor is close to 1

Persistence and Change in Institutions

- Using this framework in order to analyze issues of persistence and change systematically.
- Missing:
 - Stochastic shocks and more generally stochastic power switches.
 - Dynamics with intermediate discount factors.
 - Good mapping between the shoes of the first lecture and the general model.
 - And of course, strategy for empirical work
- Much to do as we go forward.