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Abstract

The first chapter, "Preferences for One-Shot Resolution of Uncertainty and Allais-Type
Behavior", is motivated by experimental evidence that suggests that individuals are more
risk averse when they perceive risk gradually. We address these findings by studying a
decision maker (DM) who has recursive preferences over compound lotteries and who cares
about the way uncertainty is resolved over time. DM has preferences for one-shot resolution
of uncertainty if he always prefers any compound lottery to be resolved in a single stage.
We establish an equivalence between dynamic preferences for one-shot resolution of uncer-
tainty and static preferences that are identified with the behavior observed in Allais-type
experiments. The implications of this equivalence on preferences over information systems
are examined. We define the gradual resolution premium and demonstrate its magnifying
effect when combined with the usual risk premium. In an intertemporal context, preferences
for one-shot resolution of uncertainty capture narrow framing.

In the second chapter, "Ashamed to be Selfish" (jointly written with Philipp Sadowski),
we study a two-stage choice problem, where alternatives are allocations between the decision
maker (DM) and a passive recipient. The recipient observes choice behavior in stage two,
while stage one choice is unobserved. Choosing selfishly in stage two, in the face of a fairer
available alternative, may inflict shame on DM. DM has preferences over sets of alternatives
that represent period two choices. We axiomatize a representation that identifies DM’s
selfish ranking, her norm of fairness and shame. Altruism is the most prominent motive that
can explain non-selfish choice. We identify a condition under which shame to be selfish can
mimic altruism, when only stage-two choice is observed by the experimenter. An additional
condition implies that the norm of fairness can be characterized as the Nash solution of
a bargaining game induced by the second-stage choice problem. The representation is
generalized to allow for finitely many recipients and applied to explain a social decision

maker’s incentive for obfuscation.
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Chapter 1

Preferences for One-Shot
Resolution of Uncertainty and

Allais-Type Behavior

1.1 Introduction

Experimental evidence suggests that individuals are more risk averse when they perceive
risk that is gradually resolved over time. In an experiment with college students, Gneezy
and Potters [1997] found that subjects invest less in risky assets if they evaluate financial
outcomes more frequently. Haigh and List [2005] replicated the study of Gneezy and Potters
with professional traders and found an even stronger effect. These two studies allow for
flexibility in adjusting investment according to how often the subjects evaluate the returns.
Bellemare, Krause, Kroger, and Zhang [2005] found that even when all subjects have the
same investment flexibility, variations in the frequency of information feedback alone affects
investment behavior systematically. All their subjects had to commit in advance to a fixed
equal amount of investment for three subsequent periods. Group A was told that they
would get periodic statements (i.e. would be informed about the outcome of the gamble
after every draw), whereas group B knew that they would hear only the final yields of

their investment. The average investment in group A was significantly lower than in group



B. The authors conclude that "information feedback should be the variable of interest for
researchers and actors in financial markets alike." Such interdependence between the way
individuals observe the resolution of uncertainty and the amount of risk they are willing to
take is not compatible with the standard model of decision making under risk, which is a
theory of choice among probability distributions over final outcomes.!

In this paper, we make the assumption that the value of a lottery depends not only
on its uncertainty, but also on the way this uncertainty is resolved over time. Using this
assumption, we provide a choice theoretic framework that can address the experimental
evidence above, while pinpointing the required deviations from the standard model. We
exploit the structure of the model to identify the link between the temporal aspect of risk
aversion, a static attitude towards risk, and intrinsic preferences for information.

In order to facilitate exposition, we mainly consider a decision maker (DM) whose pref-
erences are defined over the set of two-stage lotteries, namely lotteries over lotteries over
outcomes. Following Segal [1990], we replace the reduction of compound lotteries axiom (an
axiom that imposes indifference between compound lotteries and their reduced single-stage
counterparts) with the following two assumptions: time neutrality, which says that DM does
not care about the time in which the uncertainty is resolved as long as resolution happens
in a single stage, and recursivity, which says that the ranking of second-stage lotteries is
unaffected by the first stage. Under these assumptions, any two-stage lottery is subjectively
transformed into a simpler, one-stage lottery. In particular, there is a single preference
relation defined over the set of one-stage lotteries that fully determines preferences over the
richer domain of two-stage lotteries.

As a first step to link behavior in both domains, we introduce and formally define the

following two properties: the first is dynamic while the second is static.

e Preferences for one-shot resolution of Uncertainty (PORU). DM has PORU if he
always prefers any two-stage lottery to be resolved in a single stage. PORU implies

an aversion to receiving partial information. This notion formalizes an idea first raised

LAll lotteries discussed in this paper are objective, that is, the probabilities are known. Knight [1921]
proposed distinguishing between "risk" and "uncertainty" according to whether the probabilities are given
to us objectively or not. Despite this distinction, we will interchangeably use both notions to express the
same thing.



by Palacios-Huerta [1999] (to be further discussed in the literature review section).
Such preferences capture the idea that "the frequency at which the outcomes of a

random process are evaluated" is a relevant economic variable.

e Negative certainty independence (NCI). NCI states that if DM prefers lottery p to the
(degenerate) lottery that yields the prize x for certain, then this ranking is not reversed
when we mix both options with any common third lottery ¢q. This axiom is similar,
but it is less demanding than Kahneman and Tversky’s [1979] "Certainty effect"
hypothesis, since it does not imply that people weight probabilities non-linearly. NCI
imposes weak restrictions on preferences, just enough to explain commonly observed

behavior in Allais-type experiments.

Theorem 1, our main result, establishes a tight connection between the two behavioral
properties just described; NCI is a sufficient condition to PORU, and within the class of
betweenness-satisfying preferences (Dekel [1986]), it is also necessary.

On the one hand, numerous replications of the Allais paradox in the last fifty years prove
NCI to be one of the most prominently observed preference patterns. On the other hand,
empirical and experimental studies involving dynamic choices and experimental studies
on preference for uncertainty resolution are still rather rare. The disproportional amount
of evidence in favor of each property strengthens the importance of theorem 1, since it
provides new theoretical predictions for dynamic behavior, based on robust (static) empirical
evidence.

Within the betweenness class, axiom NCI has its own static implications. First, it is
equivalent to the following geometrical condition that is imposed on the map of indifference
curves in every unit probability triangle (a diagram that represents the set of all lotteries

over three fixed prizes):

o Steepest middle slope property: for every triple x3 > xo > x1, the indifference curve

that passes through the origin (the lottery that yields xo for certain) is the steepest.

Since this geometrical condition is relatively easy to verify, it proves to be an applica-

ble tool. Second, in theorem 2 we show that NCI is incompatible with the assumption



that preferences are at least twice differentiable. When coupled with such a smoothness
assumption, NCI turns out to be equivalent to the vNM-independence axiom.

In an extended model, we allow DM to take (just before the second-stage lottery is acted
out, but after the realization of the first-stage lottery) intermediate actions that might affect
his ultimate payoff. The primitive in such a model is a preference relation over information
systems, which is induced from preferences over compound lotteries. An immediate con-
sequence of Blackwell’s [1953] seminal result is that in the standard expected utility class,
DM always prefers to have perfect information before making the decision, which allows
him to choose the optimal action corresponding to the resulting state. Safra and Sulganik
[1995] left open the question of whether there are other preference relations for which, when
applied recursively, a perfect information system is always the most valuable. We show that
this property is equivalent to PORU. As a corollary, axiom NCI fully characterizes, within
the betweenness class, such preferences for information.

The idea that individuals prefer one-shot resolution of uncertainty can be quantified.
The gradual resolution premium of any compound lottery is the amount that DM would pay
to replace that lottery by its single-stage counterpart. Similarly to the regular risk premium
(the amount that DM would pay to replace one-stage lottery by its expected value), the
gradual resolution premium is measured in monetary terms. The signs of these two variables
need not agree, that is, positive risk premium does not imply and is not implied by positive
gradual resolution premium. In the case where DM is both risk averse and displays PORU,
however, these two forces magnify each other. We use this observation to explain why
people often purchase dynamic insurance contracts, such as periodic insurance for electrical
appliances and cellular phones, at much more than the actuarially fair rates.

The gradual resolution premium can be very significant, in the sense that if the resolution
process is "long" enough, it might imply an extreme degree of risk aversion. To illustrate
this, we first extend our results to preferences over arbitrary n-stage lotteries. We interpret
the parameter n as the "resolution sensitivity" of an individual. It describes the frequency
with which an individual updates information in a fixed time interval. Qualitatively, the
results remain intact; DM who has preferences for one-shot resolution of uncertainty prefers

to replace each (compound) sub-lottery with its single-stage counterpart. We then look



at preferences of the disappointment aversion class (Gul [1991]). Such preferences satisfy
NCI, and therefore, in a dynamic context, PORU. We show that for any one-stage lottery,
there exists a multi-stage lottery (with the same probability distribution over the terminal
prizes) whose value approximately equals the value of getting the worst prize for sure.
While referring to the problem of repeated investment, Gollier [2001] states that "the central
theoretical question of the link between the structure of the utility function and the horizon-
riskiness relationship remained unsolved." The result above shows that preferences that

display PORU may lead to excessively conservative investment strategies.

1.1.1 Related literature

Palacios-Huerta [1999] was the first to raise the idea that the form of the timing of resolution
of uncertainty might be an important economic variable. By working out an example,
he demonstrates that DM with Gul’s [1991] disappointment aversion preferences will be
averse to the sequential resolution of uncertainty, or, in the language of this paper, will be
displaying PORU. He also discusses a lot of potential applications. Ang, Bekaert and Liu
[2005] use recursive disappointment aversion preferences to study a dynamic portfolio choice
designed to maximize final wealth. The general theory we suggest provides an insightful
way to understand exactly which attribute of Gul’s preferences accounts for the resulting
behavior. It also makes a clear distinction between two notions of disappointment: The
common static notion of disappointment, as it appears in the literature, and the dynamic
version implied by PORU (see section 3).

Loss aversion with narrow framing (also known as "myopic loss aversion") is a com-
bination of two motives: loss aversion (Kahneman and Tversky [1979]), that is, people’s
tendency to be more sensitive to losses than to gains, and narrow framing (Kahneman and
Tversky [1984]), that is, a dynamic aggregation rule that argues that when making a se-
ries of choices, individuals "bracket" them by making each choice in isolation. Benartzi
and Thaler [1995] were the first to use this approach to suggest explanations for several
economic “anomalies”, such as the equity premium puzzle (Mehra and Prescott [1985]).
Barberis and Huang [2005] and Barberis, Huang and Thaler [2006] generalize Benartzi and

Thaler’s work by assuming that DM derives utility directly from the outcome of a gamble



over and above its contribution to total wealth.

The model presented here can be used to address similar phenomena. The combination
of the folding-back procedure and a specific form of non-smooth atemporal preferences
implies that individuals behave as if they intertemporally perform narrow framing. The
gradual resolution premium quantifies this effect. The two approaches are conceptually
different: Loss aversion with narrow framing brings to the forefront the idea that individuals
evaluate any new gamble separately from its cumulative contribution to total wealth, while
we maintain the assumption that terminal wealth matters, and identify narrow framing as
a subjective temporal effect. In addition, we set aside the question of why individuals are
sensitive to the way uncertainty is resolved (i.e. why they narrow frame), and construct a
model that reveals the (context independent) behavioral implications of such considerations.

Rabin [2000] and Safra and Segal [2006] use calibration results to criticize a broad class
of models of decision making under risk. They point out that modest risk aversion over small
stakes gambles necessarily implies absurd levels of risk aversion over large stakes gambles.
Our model resists these critiques. If most uncertainty resolves gradually, then it cannot
be compounded into a single lottery. Our model implies first order risk aversion over each
realized gamble, and therefore neither Rabin’s nor Safra and Segal’s arguments apply.

In this paper, we study time’s effect on preferences by distinguishing between "one-
shot" and "gradual" resolution of uncertainty. A different, but complementary, approach is
to study intrinsic preferences for "early" or "late" resolution of uncertainty. This research
agenda was initiated by Kreps and Porteus [1978], and later extended by Epstein and Zin
[1989] and Epstein and Chew [1989] among others. Grant, Kajii and Polak [1998, 2000]
connect preferences for the timing of resolution of uncertainty to intrinsic preferences for
information. We believe that both aspects of intrinsic time preferences play a role in most
real life situations. For example, an anxious student might prefer to know as soon as possible
his final grade in an exam, but still prefers to wait (impatiently) rather than to get the grade
of each question separately. The motivation to impose time neutrality is to demonstrate the
role of the "one-shot" versus "gradual" effect, which has been neglected in the literature to

date.



The remainder of the paper is organized as follows: we start section 2 by establishing our
basic framework, after which we introduce the main behavioral properties of the paper and
state our main characterization result. In section 3, we elaborate on the static implications
of our model and provide examples. Section 4 first extends our results to preferences over
compound lotteries with an arbitrarily finite number of stages. We then define the gradual
resolution premium and illustrate its effect. In section 5, we relate our approach to the
notion of loss aversion with narrow framing. Section 6 comments on the implications of our
model on preferences over information systems. Section 7 is devoted to an application of
our model to the area of investment under uncertainty. We present our concluding remarks

in section 8. Most proofs are relegated to the appendix.

1.2 The model

1.2.1 Groundwork

Consider an interval [w,b] = X C R of monetary prizes. Let £(X), or simply £!, be
the set of all simple lotteries (lotteries with a finite number of outcomes) over X. Typical
elements of L' are denoted by p, ¢ and r. If p, ¢ € £ and a € (0, 1), then the mixture
ap+ (1 —a)q € L' is the lottery that yields each z with probability ap, + (1 — a) ¢z. We
denote by d, the lottery that gives the prize x with certainty.

Denote by £ (£ (X)), or simply by £2, the set of all simple lotteries over £!. A typical
element of £2is Q = <a1,q1; ...;al,ql> with a; > 0, 22:1 a; = 1 and dell,j=1,2..,1
We call elements of £? two-stage lotteries. We think of each @ € £? as a dynamic two-stage
process where, in the first stage, a lottery ¢/ is chosen with probability aj, and, in the
second stage, a prize is obtained according to ¢7.

Two special subsets of £ are I' = {(1,q) | g€ £'} and A = {{aa,,04,)1%,, zi € X }.
All lotteries in I' and A are fully resolved in a single stage; in every member of I', no
uncertainty is resolved in the first stage, whereas the uncertainty of every lottery in A is
fully resolved in the first stage. Note that both I' and A are isomorphic to £1.

Let V denote the set of all continuous and strictly monotone preference relations over

(sets isomorphic to) £, with a generic element ;. Each =€V is represented by some



continuous function V : £! — R.2

Given V, the certainty equivalent of lottery p is a prize cy (p) satisfying p ~1 d¢,, (),
where ~q is the indifference relation induced from >=;. By continuity and monotonicity,
cy : L1 — X is well defined.

Let > be a preference relation over £2. Let >r and > be the restriction of > to T’

and A respectively. We assume throughout the paper that both >r and =a are in V. On

> we impose the following axioms:
A1 (time neutrality): Vg€ L, (1,q) ~ (qz;, 02, )iy

A2 (recursivity):
<a1,q1;--;ai,qi;--;ocz,ql> - <oz1,q1;--;ocz-,f?; --;az,ql> = (1,¢") = (1,")

By postulating A1, we assume that DM does not care about the time in which the
uncertainty is resolved as long as it happens in a single stage. A2 assumes that preferences
are recursive. It states that preferences over two-stage lotteries respect the preference rela-
tion over single-stage lotteries, in the sense that two compound lotteries that differ only in
the outcome of a single branch are compared exactly as these different outcomes would be

compared separately.

Proposition (Segal [1990]): = satisfies A1l and A2 iff it can be represented by a con-

tinuous function W : L2 — R of the following form:

w <<a1, ql; . Qp, ql>> = V(Oé15cv(q1) +.+ alécv(ql))

Note that under A1 and A2, the preference relation == >r=>a fully determines >.

%(4) A preference relation > on a set Z is a complete and transitive binary relation on Z.
(#t) A real valued function V represents the preference relation > on a set Z if for all z1,22 € Z,
21 7 22 & V(Zl) > V(ZQ)
(447) Continuity is in the topology of weak convergence.
iv) Monotonicity is with respect to the relation of first-order stochastic dominance.
iv) M tonicity i ith t to th lati f first-ord tochastic domi



The decision maker evaluates two-stage lotteries by first calculating the certainty equivalent
of every second-stage lottery using the preferences represented by V', and then calculating
(using V' again) the first-stage value by treating the certainty equivalents of the former
stage as the relevant prizes. As only the function V' matters, we drop its index from the
certainty equivalents in the remainder of the paper. Furthermore, we slightly abuse notation
by writing V(@Q), instead of W (Q), for the value of the two-stage lottery ). Lastly, since
under the above assumptions V(p) = V((1,p)) = V ({¢a;, 6z, )12, ) for all p € L', we simply

write V' (p) for this common value.

1.2.2 Main properties

We now introduce and motivate our two main behavioral assumptions. The first is dynamic,
whereas the second is static.

Preference for one-shot resolution of uncertainty

We model an individual, DM, whose concept of uncertainty is multi-stage and who cares
about the way uncertainty is resolved over time. In this section, we define consistent
preferences to have all uncertainty resolved in "one-shot" rather than "gradually" or vice
versa.

Fix p€ £! and denote its support by S (p), that is, S (p) = {x|p, > 0}. Let

P (p) := {<ai,pi>£1 e L2

K €NandVze S(p)=US(pi), ps sz(laip?;}

P (p) is the set of all two-stage lotteries that induce the same probability distribution
over final outcomes as p does. For example, if p is a lottery that gives the prize x; with
probability 0.3 and the prize xo with the remaining probability, then the two-stage lottery
Q@ = (0.6,¢;0.4,r), where ¢ gives both prizes with equal probability and r yields x9 for sure,
is in P (p).



Let
PO () ={QIQE P (M) N (T UA)N} = {{Lp), (PrrGe) e }

PO (p) contains all elements of P (p) that are resolved in a single stage.

Definition: = displays preference for one-shot resolution of uncertainty (PORU) if Vp € £1
and VQ €P (p), R €PO (p) implies R > Q. If, subject to the same qualifiers, R €P? (p)

implies @ = R, then = displays preference for gradual resolution of uncertainty (PGRU).

PORU implies an aversion to receiving partial information. If uncertainty is not fully
resolved in the first stage, DM prefers to remain fully unaware till the final resolution is
available. PGRU implies the opposite. As we will argue in later sections, these notions
render "the frequency at which the outcomes of a random process are evaluated" a relevant

economic variable.

The Allais paradox and axiom NCI

In a generic Allais-type questionnaire,® subjects choose between A and B, where A = 6309
and B = 0.8400 + 0.209. They also choose between C and D, where C' = 0.250309 + 0.75d¢
and D = 0.2d4090 + 0.85g. The majority of subjects tend to systematically violate expected
utility by choosing the pair A and D.

Since Allais’s [1953] original work, numerous versions of his questionnaire have appeared,
most of which contain one lottery that does not involve any risk. Kahneman and Tversky
use the term "certainty effect" to explain the commonly observed behavior. Their idea is
that individuals tend to put more weight on certain events in comparison with very likely,
yet uncertain, events. Although verbally it might appear to be intuitive reasoning, it is be-
haviorally translated into a nonlinear probability-weighting function, = : [0, 1] — [0, 1], that
individuals are assumed to use when evaluating risky prospects. In particular, this function
has a steep slope near —or even a discontinuity point at— 0 and 1. As we remark below, this
implication has its own limitations. We thus suggest a direct behavioral property that is

motivated by similar insights, but is less restrictive. Consider the following axiom on >i:

3 Also known as "common-ratio effect with a certain prize."

10



Negative Certainty Independence (NCI):* ¥p,q,0, € £ and X € [0,1], p =1 §, implies

Ap+ (1= X)g =1 Moz + (1 — N)g.

The axiom states that if the sure outcome x is not enough to compensate DM for the
risky prospect p, then mixing it with any other lottery, thus eliminating its certainty appeal,
will not result in the mixture of x being more attractive than the corresponding mixture of
p. The implication of this axiom on responses in Allais questionnaire above is: If you choose
B, then you must choose D. This prediction is empirically rarely violated (see for exam-
ple "pattern 2" in Conlisk [1989]). As stated above, the intuition behind NCI is that the
sure outcome loses relatively more (or gains relatively less) than any other lottery from the
mixture with the other lottery, ¢, but it does not imply any probabilistic distortion. This
becomes relevant in experiments like those of Conlisk [1989], who studies the robustness
of Allais-type behavior to small perturbations of the questionnaire which remove boundary
effects. Although violations in that case were no longer systematic, a nonlinear probability
function, as suggested above, predicts that this increase in consistency would be the result
of fewer subjects choosing (the slightly perturbed) A over B, and not because more subjects
choose (the slightly perturbed) C over D. In fact, the latter occurred, which is consistent
with NCI.

Proposition 1: Under A1l and A2, if =1 satisfy NCI, then > display PORU

Proof : We need to show that an arbitrary two-stage lottery, <a1, gt ozl,ql>, is never

preferred to its single-stage counterpart, <1, Zi‘:l ocl-qi>. Using A1 and A2 we have:

<a17q1; m;al,ql> (42) <a1,5c(q1); ...;al,(5C<ql)> ) <1,Z§:1 ai(sc(qi)>

1We use the word "negative" since this axiom can, equivalently, be stated as: Vp, ¢,5, € £ and X € [0, 1),
0z %1 p implies Moz +(1—N)g #1 Ap+(1—A)q. Here >1is the asymmetric part of »1, and 1 is its negation.

11



And by repeatedly applying NCI,

z - (NCI)
Dic1 @ile(gy = a1degry + (1 —a1) ( 22,4 (1_750/((11') =1

&7}

Oélql + (1 — 041) <Zz7él (]__al)éc(ql)> =

o . o (NCI)
Q0o(q2) + (1 — az) ((1—042)q + Zi;ﬁlz (17_ a2)5c(qi)> =1

Ozlql + 052(]2 + Zi#l,? aiéc(qi) = ... =

Qj i) NOD i
aléc(ql) +(1—«) ZZ‘# mq =1 D i g

Therefore, <a1,q1; ...;al,ql> ~ <1,Zli:1 O[Z‘(Sc(qi)> =< <1,Zé:1 aiqi> [ |

The idea behind proposition 1 is simple: the second step of the folding-back procedure
involves mixing all certainty equivalents of the corresponding second-stage lotteries. Apply-
ing NCI repeatedly implies that each certainty equivalent suffers from the mixture at least
as much as the original lottery that it replaces would.

Proposition 1 states that NCI is a sufficient condition for PORU. To show necessity, we
need to impose more structure. For the rest of the section, we confine our attention to a

class of preferences =€V that satisfy the betweenness axiom.

A3 (single-stage betweenness) ¥V p,q € L' and a € [0,1], p =1 ¢ implies p =1 ap +

l1-a)g=1q

A3 is a weakened form of the vNM-independence axiom. It implies neutrality toward

randomization among equally-good prizes/lotteries. It yields the following representation:

Proposition (Dekel [1986]): =1€ V satisfies A3 iff there exists a local utility function
u: X x[0,1] — [0,1], which is continuous in both arguments, strictly increasing in the first
argument and satisfies u(w,v) = 0 and u (b,v) =1 for all ve [0, 1], such that for all p €

LY, V(p) is defined implicitly by:

V(p) =X sexu (@, V(p) pa

12



NCI in the probability triangle

The betweenness axiom (A3), along with monotonicity, implies that indifference curves
in any unit probability triangle are positively sloped straight lines. To demonstrate this
result using the representation theorem, note that for any lottery p over a given triple
z3 > x3 > 21, V(p) = pru(z1, V(p)) + (1 — p1 — p3)u(ze, V(p)) + psu(zs3, V(p)). The slope
of any indifference curve in the corresponding two-dimensional space,

A= {(p1,p3)| p1,p3 >0, p1 +p3 <1} is given by:

u(ze,v) —u(r1,v)

V =
p(Vizs, w2, 21) u(x3,v) = u(z2,v)

which is positive and independent of the vector of probabilities. By definition, the slope
represents the marginal rate of substitution between ps and p1, and as explained by Machina
[1982], changes in the slope express local changes in attitude towards risk: the greater the

slope, the more risk averse DM is.

Definition: >; has the steepest middle slope property if for every triple zg > xo > 1

and for all v € (V(dz,),V (0zs)),
K (V(5w2) ‘x37$2; 371) > W (V|$3,$2,x1)

that is to say, this property holds if for every three prizes x3 > x2 > x1, the indifference

curve through d,, is the steepest.

Observe that NCI implies the steepest middle slope property. To see this, let IV( 5ey) =
{p e A:p ~1d5,} and let @1 := p(V(04,) |23, 22, 21). Take any lottery p € IV(612)' For
any A € [0,1] and ¢ € A, both Ap+ (1 —X)g and A\é; + (1 — \)g are in A (a convex set) and
by the triangle proportional sides theorem, the line segment that connects them has a slope
that equals . But NCI requires that Ap+ (1 — X)g =1 Ad; + (1 — A)g and since indifference
curves are upward sloping, the indifference curve that passes through Ap + (1 — \)g must

have a slope no greater than . Since A and g were arbitrary, the result follows.

13



1.2.3 Characterization

Definition : =5 is betweenness-recursive if it satisfies A1 — A2 and its restrictions to V

satisfy A3.

Theorem 1: For any betweenness-recursive preferences, the following three statements

are equivalent:

(i) = displays PORU.

(it) =1 satisfies NCL.

(ii1) =1 has the steepest middle slope property.

A characterization of PGRU is analogously obtained by reversing the weakly preferred sign

in NCI, and replacing steepest with flattest in (iii) .

The detailed proof is in the appendix. The main step in it is to establish, using cer-
tain properties of preferences from the betweenness class, that PORU is equivalent to the

following condition:

. B ) .
Ci: [st(mu@,v)px u(c(p),v)| =20Vpe L and Vo € V(L)

where V(El) = {V‘Elp € L with v = V(p) }.5 We interpret C; by exploiting the main
idea behind the construction of the local utility function, u (z,v). As explained by Dekel
[1986], and demonstrated in figure 1, one can think of u (z,v) as a collection of functions
that are derived in the following way: Fix an indifference hyperplane with a value v (denoted
by I, in figure la) and construct a collection of parallel hyperplanes relative to it. This

collection can be taken to represent some expected utility preferences with an associated

®The specific normalization V (£") = [0, 1] is inessential for this result.
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Bernoulli function u, (). For every lottery p, we can then calculate V(p,v) := E, [u, (2)],
its expected utility relative to the value v (figure 1b). Repeat this construction for every
value of v (which is bounded above and below, since X is bounded) to get the collection
of functions {uy (2)},ey(c1) that are equal to u(z,v). Ci then implies that DM becomes
the most risk averse at the true lottery value. That is, if relative to V(p), the true utility
level, DM is just indifferent between p and the certain prize c(p), then relative to any other
value v, he (weakly) prefers the lottery. The graphical illustration of C; in the probability
triangle is precisely item (ii7) in the theorem (figure 1c), whereas item (i7) is its direct
behavioral interpretation. The proof is completed by ensuring sufficiency of item (i) to

C; and using proposition 1.

Ivp)
Iu\v(x_j)

Ly

(=7]
1
=

&

=]
[
=)

Figure 1: la: Fixing an indifference curve of level v. 1b: Constructing the local utility
function w, (). lc: Putting them together, E, [u (z,V (p))] = u (x2, V(p)), but
E, [u(x,v)] > u(x2,v) for v # V(p).
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Theorem 1 ties together three notions that are defined on different domains: PORU is a
dynamic property, NCI is a static property, and the third item is a geometrical condition,
which applies to single-stage lotteries with at most three prizes in their support. The core of
the theorem is the equivalence of PORU and NCI, which suggests that being prone to Allais-
type behavior and being averse to the gradual resolution of uncertainty are synonymous.
This assertion justifies the proposed division of the space of two-stage lotteries into the
one-shot and gradually resolved lotteries. On the one hand, numerous replications of the
Allais paradox in the last fifty years prove that the availability of a certain prize in the
choice set is important and affects behavior in a systematic way. Moreover, we have no
firm evidence of a consistent attitude towards lotteries, all of which lie in the interior of
a probability triangle. On the other hand, empirical and experimental studies involving
dynamic choices and experimental studies on preference for uncertainty resolution are still
rather rare. Theorem 1 thus provides new theoretical predictions for dynamic behavior,
based on robust (static) empirical evidence.

The applicability of the steepest middle slope property stems from its simplicity. In
order to detect violation of PORU, one need not construct the (potentially complicated)
exact choice problem. Rather, it is sufficient to introspect the slopes of one-dimensional
indifference curves. This, in turn, is a relatively simple task, at least once a local utility

function is given.

1.3 Static implications

1.3.1 NCI and differentiability

In most economic applications, it is assumed that individuals’ preferences, and therefore the
utility functions that represent them, are not only continuous, but also at least twice differ-
entiable.® The following result demonstrates that among the betweenness class, smoothness

and NCI are inconsistent, in the sense that coupling them leads us back to expected utility.

SDebreu [1972] provides, for any k > 0, a formal definitions of k*"- order differentiable preferences.
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Theorem 2: Suppose u(zx,v) is at least twice differentiable with respect to both its ar-
guments, and that all derivatives are continuous and bounded. Then preferences satisfy

NCI if and only if they are expected utility.

Expected utility preferences are characterized by the independence axiom that implies
NCI. To show the other direction, we fix v and denote by x (v) the unique x satisfying
7 = u(x,v). Combining the geometrical characterization (theorem 1 item (4ii)) of NCI with
differentiability implies that for any > z (v) > w, the derivative with respect to v of
the slope of an indifference curve on the corresponding probability triangle must vanish at
7. We use the fact that this statement is true for any z > x (v) and that v is arbitrary
to get a differential equation with a solution on {(z,v) |v < u(x,v)} given by u(z,v) =
Rt (v) gt (x) + f!(v), and h'(v) > 0. We perform a similar exercise for z < z (v) < b
to uncover that on the other region, {(z,v)|v < u(z,v)}, u(z,v) = h? (v) ¢? (z) + f2 (v),
and h?(v) > 0. Continuity and differentiability then imply that the functional form is
equal in both regions, therefore for all z, u(z,v) = h(v)g(z) + f (v), and h(v) > 0. The

uniqueness theorem for betweenness representations establishes the result.

1.3.2 Examples

Expected utility preferences are a trivial example of preferences that in a dynamic con-
text satisfy PORU; DM with such preferences is just indifferent to the way uncertainty is
resolved. The following is an important class of preferences for which, when applied recur-
sively, PORU is a meaningful concept:

Preferences that satisfy the mixed-fan hypothesis. This set consists of all prefer-
ences whose indifference curves, in any unit probability triangle, have the following pattern:
Moving northwest, they first get steeper ("fanning out") in the lower-right sub triangle
(the less-preferred region), and then get flatter ("fanning in") in the upper-left sub triangle
(the more-preferred region). Before giving examples from this class, we first state sufficient

restrictions on the local utility function to satisfy the mixed-fan hypothesis.”

"Neilson [1992] provides sufficient conditions for smooth (in the sense of theorem 2) betweenness pref-
erences to satisfy the mixed-fan hypothesis. The additional requirement, that the switch between "fanning
out" and "fanning in" always occurs at the indifference curve that passes through the origin (the lottery
that yields the middle prize for certain), renders those conditions empty, as is evident from theorem 2.
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Denote by L (x) := {p €LY : 6,1 p} the lower contour set of z € X.

Sufficient conditions for mixed fan: If u(x,v) is a local utility function of the form

ul (z,v) V-1(v) € L(x)
u? (z,v) V7i(v) ¢ L(w)

u(z,v) —v=

with the following restrictions:
(1) oz a@ (a:,v) <0,

(2) 2 89081} u? (z,v) <0, and

(3) ingg %ul (z,v) > sup a%uz (z,v)

then preferences satisfy the mixed-fan hypothesis.

Chew [1989] axiomatizes semi-implicit weighted utility. The local utility function he

considers is

() (x—v) z>v

gl

u(z,v) —v=
(z)(x—v) z<w

[S

with w (z) > 0, w(x) > 0, w’ (z) > 0, W' (z) > 0. To ensure that these preferences satisfy
the mixed-fan hypothesis, we add the restriction that irglcfw (x) > supw (z).

Gul [1991] proposes a theory of disappointment aversion. Hexderives the local utility
function

7925(:3:;&’ ¢(x)>wv

¢(x)  ¢(z)<w

u(z,v) =

with § > 0 and ¢ : X — R increasing.

Gul’s notion of disappointment aversion amounts to dividing the support of each lottery
into two groups, the elated outcomes and the disappointed outcomes, and giving the disap-
pointed outcomes a uniformly greater weight when calculating the expected utility of the

lottery.® For these preferences, the sign of 3, the coefficient of disappointment aversion, un-

8 Although Gul’s preferences imply probability transformation, this transformation is done endogenously.
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ambiguously determines whether preferences satisfy PORU or PGRU (see Artstein-Avidan
and Dillenberger [2006]).

PORU can be interpreted as dynamic disappointment aversion. As suggested by Palacios-
Huerta [1999], one may argue that being exposed to the resolution process bears the risk of
perceiving intermediate outcomes as disappointing or elating, and if DM is more sensitive to
disappointments, he would prefer to know only the final result. The term "disappointment
aversion preferences" usually refers to Gul’s static model. Our dynamic notion of disappoint-
ment aversion is translated into a strong restriction on indifference maps across probability
triangles. Although Gul’s model satisfies both, it is a boundary case. To emphasize the
distinction between these two notions, we provide examples of other betweenness-satisfying
preferences that were suggested as one-parameter generalizations of Gul’s static model but,
nevertheless, dynamically violate PORU. As implied by theorem 1, to track down violations
of PORU, it is enough to show that neither of the preferences below satisfy the steepest
middle slope property.?

Nehring [2005] suggests preferences which are represented by an implicit utility function

of the following form:

(¢(z) — ¢ (v)" T >v
—B(d(v) = ¢(2)" z<v

u(z,v) —v=

with a, 8 > 0. Gul’s model corresponds to the case of o = 1, and disappointment aversion
implies 5 > 1.

Nehring interprets u (z,v) —v as relative utilities (outcomes are evaluated psychologically
relative to a certain reference point) and ¢ (z) as absolute utilities. He shows that such a
class is uniquely characterized by the "bi-linearity" property: There exists a monotonic and
continuous function 7 : [0,1] — [0,1] and a mapping ¢ : X — R, such that preferences

restricted to binary lotteries are represented by the function:

It is the value of each elated prize, and not its probability, which is explicitly down-weighted.

9Gul’s preferences are one parameter (/) richer than expected utility preferences. The economic inter-
pretation of 8 in a dynamic context is not evident. Indeed, one of Gul’s axioms (axiom 4 in his paper) is
necessary to identify 3, but is unrelated to NCI. It is imposed in order to rule out further deviations from
the expected utility model.
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V(pbe +(1—p)éy) =m(p)o(z)+ (1 —7(p)) ¢ (y), for x > y. Unless a =1 (and 8 > 1),
no member of this class of preferences satisfies NCI.

Routledge and Zin [2004] provide a different one-parameter extension of Gul’s model,
enabling the identification of outcomes as disappointing only when they lie sufficiently below

the (implicit) certainty equivalent. They derive the representation:

S =3 p@)o@)-8Y, | p@)é0cm) - )

with 0 < 1. Note that in Gul’s model § = 1 (where 5 = 0 corresponds to expected utility).

Unless § = 1, these preferences also do not satisfy NCI.

1.4 Gradual resolution premium

For further purposes, we first extend our results to finite-stage lotteries.

1.4.1 Extension to n-stage lotteries

Fix n € N and denote the space of finite n-stage lotteries by £L". We interpret the parameter
n as the "resolution sensitivity" of an individual. It describes the frequency with which
an individual updates information in a fixed time interval, which is a characteristic of
preferences. The extension of our setting to £™ is the following (a formal description is
given in the appendix): Occupied with a continuous and increasing function V : £! — R,
DM evaluates any n-stage lottery by folding back the probability tree and applying the same
V in each stage. Preferences for one-shot resolution of uncertainty implies that DM prefers
to replace each (compound) sub-lottery with its single-stage counterpart. The equivalence
between PORU and NCI remains intact. In what follows, we will continue simplifying
notation by writing V(Q) for the value of any multi-stage lottery (). We sometimes write

Q" to emphasize that we consider an n-stage lottery.
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1.4.2 Definitions

Denote by e(p) the expectation of a lottery p € £, that is, e(p) = >, zp,. Let G (p, ) :=
> >z Pz We say that lottery p second-order stochastically dominates lottery ¢, and denote
it by p sosd g, if for all t < K, St o [G (p,2hs1) — G (q,2511)] [xhe1 — 2] > 0, where
o <11 < ... < 2 and {zg, 21, ...,7x} = S (p) US (q). DM is risk averse if Vp, ¢ € L} with
e(p) =e(q), p sosd g implies p =1 q.

For any p € L', the risk premium of p, denoted by rp (p), is the number satisfying
de(p)—rp(p) ~1 D- rp(p) is the amount that DM would pay to replace p with its expected

value. By definition, rp (p) > 0 whenever DM is risk averse.!’

Definition: Fix p € £!. For any Q €P (p), the gradual resolution premium of Q, de-

noted by grp(Q), is the number satisfying <1, 6C(p)_grp(Q)> ~ Q.

grp(Q) is the amount that DM would pay to replace @) with its single-stage counterpart.
By definition, PORU implies grp(@) > 0. Since ¢ (p) =e(p) —rp(p), we can, equivalently,
define grp(Q) as the number satisfying <1, 6e(p)_rp(p)_grp(Q)> ~ Q.M

Observe that the signs of the two variables above, rp (p) and grp (Q), need not agree.
In other words, (global) risk aversion does not imply, and is not implied by, PORU. Indeed,
Gul’s symmetric disappointment aversion preferences (see section 3) are risk averse if and
only if > 0 and ¢ : X — R is concave (Gul’s [1991] theorem 3). However, for sufficiently
small § > 0 and sufficiently convex ¢, one can find a lottery p with rp(p) < 0, whereas

B > 0 is sufficient for grp (Q) > 0 for any @ €P (p). On the other hand, if ' (v) > 0 and

10Weak risk aversion is defined as follows: For all p, de(py = p- This definition is not appropriate once we
consider preferences that are not expected utility. The definition of the risk premium, on the other hand, is
independent of the preferences considered.

" Gimilarly to the risk premium, the complete resolution premium is measured in monetary units. For
this reason, these two premiums are different from the timing premium for early resolution, as suggested by
Chew and Epstein [1989], which is measured in terms of probabilities.
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A (v) > 1 for all v,'? then the local utility function

has the property that u(-,v) is concave for all v. Therefore, DM is globally risk averse
(Dekel’s [1986] property 2), and hence rp (p) > 0 Vp € £!. However, these preferences do

not satisfy NCI,'3 meaning that there exists a lottery p and Q €P (p) for which grp (Q) < 0.

1.4.3 The magnifying effect

In the case where DM is both risk averse and has PORU, these two forces, as reflected in
the two premiums previously defined, magnify each other. Understanding this, insurance
companies, when offering dynamic insurance contracts, can require much greater premiums
than the actuarially fair ones and still be sure of consumers’ participation. This can explain
why people often buy periodic insurance for moderately priced objects, such as electrical
appliances and cellular phones, at much more than the actuarially fair rates. '

To illustrate, consider the following insurance problem: An individual with Gul’s pref-
erences, with a linear ¢ and a positive coefficient of disappointment aversion (3, owns an
appliance (e.g. a cellular phone) that he is about to use for n periods. The individual gets
utility 1 in any period the appliance is used and 0 otherwise. In each period, there is an
exogenous probability (1 — p) that the appliance will not work (it might be broken, fail to
get reception, etc.). The individual can buy a periodic insurance, which guarantees the

availability of the appliance, for a price z € (1 —p, 1). Therefore, if he buys insurance for

some period, he gets a certain utility of (1 — z), and otherwise he faces the lottery in which

"2 The condition that ) (v) is non-decreasing is both necessary and sufficient for u (,) to be a local utility
function. See Nehring [2005].

13Look at the slope of an indifference curve for values z3 > v > 2 > x1. We have: u(Vizs,z2,21) =
% In this region, the slope is increasing in v if x3 > % + v. For a given v, we can
always choose arbitrarily large xs that satisfies the condition, and construct, by varying the probabilities, a
lottery whose value is equal to v. Apply this argument in the limit where v = z2 to violate condition (%7)
of theorem 1.

" A popular example is given by Tim Harford ("The Undercover Economist", Financial Times, May 13,
2006): "There is plenty of overpriced insurance around. A popular cell phone retailer will insure your $90
phone for $1.70 a week—mearly $90 a year. The fair price of the insurance is probably closer to $9 a year
than $90."
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with a probability p he gets 1, and with the remaining probability he gets 0. For simplicity,
assume that the price of a replacement appliance is 0, so that the individual either still has
it from the last period or gets a new one for free in the beginning of any period.

Let p be the probability distribution over final outcomes (without insurance). Denote
by X the total number of periods in which the appliance works. Since X is a binomial
random variable, Pr(X = k) = (Z)pk (1-— p)n_k, for k = 0,...,n. Applying Gul’s formula,

one obtains:

T (P A=) R (14 8) Y ()P (L )"k
L+ 85 (D (1 —p)"

where h (p, B, n) is the unique natural number such that all prizes greater than it are elated

VB,n (1/7\)

and all those smaller than it are disappointed.

Let @ be the corresponding gradual (n-stage) lottery as perceived by DM. Its value is:

1

Vﬁ,n (Q) = (1+B(1 “p

S (R L

Using standard backward induction arguments, it can be shown that DM will buy in-

surance for all periods if 8 > % > (0. In that case, z < 1 — ‘/’3%@). Nevertheless,

if B is not too high,' we have 1 —p < 1 — %*L(@ < z, meaning that DM would not buy
insurance at all if he could avoid being aware of the gradual resolution of uncertainty.'S
This observation explains why and how the attractiveness of a lottery depends not only on
the uncertainty embedded in it, but also on the way this uncertainty is resolved over time.

Since Vg, (p) decreases with 3, rp (B |p,n) := np — Vg, (p) is a strictly increasing
function of 5. The behavior of the gradual resolution premium, grp (8 |p,n) = Vs, (D) —

Vg (@) is more subtle. We have the following result:

o7 o
pr+n(l-p)=17 (1—z)(1—p")—p(1—pn—1)—1
5Nayyar [2004] termed such a situation an "insurance trap". Note that DM still acts rationally given

that without insurance he is forced to be exposed to Q™ rather than to p.

15The condition is: 1+ 8 < min{
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Proposition 2: In the insurance problem described above:

(1) Strict PORU in the interior: grp (B |p,n) > 0 V3 € (0,00)

(19) Weak PORU in the extreme: grp (0|p,n) =0 and Bllrgogrp (Blp,n)=0

(i71) Single-peakness: There erists 3* (p,n) <oo such that either 0 < 3 < 3 < f3*

or * < B < B implies

grp (B |p,n) < grp (8" |p,n) < grp (6% |p,n)

See figure 1.1.

arp(B| pin)

|
B Ko,K0+1 B Ko+1,K0+2 B B n-1,n

Figure 1.1: grp(8|p,n). B k41 is the value of 3 where h (8 |p,n) decreases from (n — k)

to (n— (k+1)). grp(B|p,n) is non-differentiable in each such gy ;1. ko is the smallest
n—k'

natural number that solves: max -

k'>n(1-p)

Recall that in Gul’s model, the sign of the parameter § unambiguously determines
whether preferences display PORU or PGRU. In its original context, greater § implies
greater disappointment aversion (as well as greater risk aversion). Since we argued that
PORU can be interpreted as dynamic disappointment aversion, it might seem intuitive to
expect the gradual resolution premium to be an increasing function of 4. This intuition
is wrong and, in fact, item (ii) remains valid independent of the decision problem under
consideration. In order to see this, note that grp(5|p,n) is defined as the difference of two

functions, both strictly decreasing with 5. When § = 0, DM cares only about the expected
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value of the lottery. When g is sufficiently large, all prizes but 0 become elated, and hence
the value of p converges to 0. Correspondingly, the value of the gradual lottery converges to
the value of the worst sub-lottery that by itself approaches 0. Since item (i) reinforces the
result of theorem 1 and states that grp(S |p,n) is actually strictly positive on the positive
reals, and since grp(8 |p,n) is a continuous function, there must exist a finite 3, denoted §*
in figure 2, in which grp(8|p,n) is maximized. Item (iii) sheds further light on the behavior
of moderate disappointment-averse individuals. It suggests that §* (p,n) is unique, and
that grp(8|p,n) is single-peaked. Behaviorally speaking, a moderately disappointment-
averse individual is more inclined to pay a higher premium, whereas individuals, who are
either approximately disappointment-indifferent or very disappointment-averse, would not
pay a substantial premium.

The analysis of the insurance problem suggests that, given n, extreme values of 5 neu-
tralize the magnifying effect of the gradual resolution premium. In general, this premium
can be very significant. By varying the parameter n, we change the frequency at which DM
updates information. Our next result shows that high frequency of information updates
might inflict an extreme cost on DM; a particular splitting of a lottery drives down its value

to the value of the worst prize in its support.

Proposition 3: Consider disappointment aversion preferences with some ¢ : X — R
and B > 0. For any € > 0, and for any lottery p = Z;nzl pjoz;, there exists T <oo and a
multi-stage lottery QT € P (p) such that V(QT) < min ¢ (z;) + €.
zj€supp(p)
Let p be a binary lottery that yields 0 and 1 with equal probabilities. Consider n tosses
of an unbiased coin. Define a series of random variables {z;}/_, with z; = 1 if the i'" toss

is "heads" and z; = 0 if it is "tails". Let the terminal nodes of the n-stage lottery be:

1 if 3lii12 > 5
0.501 +0.560 if Y7z =15
0 if Y,z <3
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Note that the value of this n-stage lottery, calculated using recursive disappointment
aversion preferences, is identical to the value calculated using recursive expected utility
and probability H_O’ﬁ < 0.5 for "heads" in each period. Applying the weak law of large

numbers,

Pr (Z?:l 2 < g) —1

and therefore, for n large enough, the value approaches ¢ (0). We use a similar construction
to establish that this result holds true for any lottery.

Ignoring the dynamic aspect of risk aversion might be misleading. We have already
argued that a substantial fraction of many insurance premiums we observe in daily life can
be attributed to the gradual resolution premium. Proposition 3 proves that this effect is

quantitatively important, if the parameter n is sufficiently large.

1.5 PORU, "loss aversion with narrow framing" and the final-

wealth hypothesis

Loss aversion with narrow framing (also known as "myopic loss aversion") is a combination
of two motives: loss aversion (Kahneman and Tversky [1979]), that is, people’s tendency to
be more sensitive to losses than to gains, and a dynamic aggregation rule, narrow framing
(Kahneman and Tversky [1984]), that argues that when making a series of choices, indi-
viduals "bracket" them by making each choice in isolation. When applied to behavior in
financial markets, narrow framing means that individuals tend to evaluate long-term in-
vestments according to their short-term returns. Benartzi and Thaler [1995] were the first
to use this approach and suggest explanations for several economic “anomalies”, such as
the equity premium puzzle (Mehra and Prescott [1985]). Barberis and Huang [2005] and
Barberis, Huang and Thaler [2006] generalize Benartzi and Thaler’s work by assuming that
DM derives utility directly from the outcome of a gamble over and above its contribution
to total wealth.

The model presented in this paper can be used to address the same phenomena ad-

dressed with the loss aversion with narrow framing approach. Both models assume time
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neutrality. The combination of a specific form of non-smooth atemporal preferences and the
folding-back procedure accounts for PORU. In an intertemporal context, these two features
are analogous to loss aversion and narrow framing, respectively. The gradual resolution pre-
mium is the cost an individual incurs from frequently evaluating the outcomes of a dynamic
random process.

The loss aversion with narrow framing approach challenges the hypothesis that only
final wealth matters. Rabin [2000] and Safra and Segal [2006] give a parallel critique on a
broad class of smooth models of decision making under risk. These authors use calibration
results to argue that modest risk aversion over small stakes gambles necessarily implies
absurd levels of risk aversion over large stakes gambles. Both Safra and Segal [2006] and
Barberis Huang and Thaler [2006] argue that if DM faces some background risk, then a
similar problem persists even if preferences are non-differentiable (i.e. if preferences display

first-order risk aversion!”)

; merging new gambles with preexisting ones eliminates the effect
of first-order risk aversion.

Our model is consistent with risk aversion over small stakes gambles and only moderate
risk aversion over large stakes gambles even if individuals face background risks. If most
risks resolve gradually, then they cannot be compounded into a single lottery. Our model
then implies first order risk aversion over each realized gamble. In other words, the mere
existence of other risks is not enough to apply Rabin-type critique. Such an argument is
only compelling if DM compounds risks that are resolved over a long period.

The conceptual difference between the two approaches is twofold. First, loss aversion
with narrow framing brings to the forefront the idea that individuals evaluate any new
gamble separately from its cumulative contribution to total wealth. Both the reference
points relative to which gains and losses are computed and the way they dynamically adjust
are usually set exogenously.'® We, on the other hand, maintain the assumption that terminal
wealth matters, and identify narrow framing as a preference parameter. The similarity

between "disappointment aversion" and "loss aversion" has already been pointed out in

YRirst order risk aversion means that the premium a risk averse DM is willing to pay to avoid an actuarially
fair random variable t€ is proportional, for small ¢, to ¢. It implies "kinked" indifference curves along the
main diagonal in a states-of-the-world representation (Segal and Spivak [1990]).

'8Koszegi and Rabin [2006] offer a model in which the reference point is determined endogenously.
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Gul [1991] and stimulates further comparisons between these two notions. The novel insight
provided by proposition 3 is that the (temporal) effect of narrow framing can be achieved
even without giving up the assumption that utility depends on overall wealth, and that this
effect is quantitatively important. Second, we set aside the question of why individuals are
sensitive to the way uncertainty is resolved (i.e. why they narrow frame),'? and construct a

model that reveals the (context independent) behavioral implications of such considerations.

1.6 PORU and the value of information

We now reconsider the case of two-stage lotteries (n = 2). Let us suppose that just before
the second-stage lottery is played, but after the realization of the first-stage lottery, DM can
take, in the face of the remaining uncertainty, some action that might affect his ultimate
payoff. The primitive in such a model is a preference relation over information systems
(as we formally define below), which is induced from preferences over compound lotteries.
Assume throughout this section that preferences over compound lotteries satisfy A1l and
A2. An immediate consequence of Blackwell’s [1953] seminal result is that in the standard
expected utility class, DM always prefers to have perfect information before making the
decision, which allows him to choose the optimal action corresponding to the resulting
state. Schlee [1990] shows that if > is of the rank-dependent utility class (Quiggin [1982]),
then the value of perfect information will always be non-negative. This value is computed
relative to the value of having no information at all, and therefore Schlee’s result is salient
about the comparison between getting complete and partial information. Safra and Sulganik
[1995] left open the question of whether there are preference relations, other than expected
utility, for which perfect information is always the most valuable. We show below that such
preferences are fully characterized by PORU. Combining this result with theorem 1 reveals
its implication on betweenness-recursive preferences.

More formally, let S = {s1,...,sny} be some finite set of states. Each state s € S occurs

with probability ps. The outcome of a lottery will depend both on the resulting state and

19Barberis and Huang [2006] suggest two different underlying sources of narrow framing. The first is based
on a non-consumption utility, such as regret, and the second relates narrow framing to the "accessibility"
of the uncertainty people confront. As these authors mention, each such motive, if taken literally, predicts
different duration of narrow framing.
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on an action DM has made. For this we let A = {a1,...,apr} be a finite set of actions. Let
u: A xS — R be a function that gives the outcome u (a, s) if action a € A is taken and
the realized state is s € S. (This outcome corresponds to the final prize z € X.)

The first-stage lottery can be thought of as a randomization over a set J = {j1, ..., jm}
of signals indexed by j (where signal j indicates that p/ was selected in the first-stage
lottery). Let w: .S x J — [0, 1] be a function such that = (s, ) is the probability of getting
the signal 5 € J when the prevailing state is s € S. We naturally require that for all
s €S, Zjeﬂr (s,7) = 1 (so that when the prevailing state is s, there is some probability
distribution on the signal DM might get). The function 7 is called an information structure.
It automatically induces a splitting of the lottery into two stages, where with probability
aj(m) =3 gesm (s, 7) psr, p’ is the second-stage lottery.

A full information structure, I, is a function such that for all s € S there exists j (s) € J
with Pr(s|j (s)) = % =1, and for all j # j (s) one has Pr(s|j) = 0. In other
words, in the sum above defining «;, there is only one summand. The null information
structure, ¢, is a function such that Pr(s|j) = Pr(s) for all s € S and j € J.

Define a*(s) as the optimal action if you know that the prevailing state is s, that is,
u(a*(s),s) := maxgea u(a,s). Let VP (I) be the value of the lottery that assigns proba-
bility ps to the outcome u(a*(s),s). After a signal j has been given, DM chooses the best
a under the circumstances, namely a that maximizes the value of the lottery that assigns
probability ! to gain the outcome wu(a,s). We let V(p/*) stand for the value of the j™*
lottery maximized over the choice of an action a € A. Finally, let VP(7) be the value of

the lottery where the action is taken after receiving signal j, that is, the compound lottery

assigning probability a;(m) = Y o7 (', 7) psr to p7*.

Definition: > displays preferences for perfect information if for any information struc-

ture 7 and for any payoff function u, VP (I) > VP ().
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Proposition 4: If = satisfies A1 and A2, then the two statements below are equivalent:

(1) = displays PORU

(ii) = displays preferences for perfect information.

Analogously, PGRU holds if and only if for any information structure 7 and for any

payoff function u, VP (1) > VP (¢)

Showing that (i) is necessary for (i7) is immediate. For the other direction, we note
that two forces reinforce each other: First, getting full information means that the under-
lying lottery is of the "one-shot resolution" type, since uncertainty is completely resolved
by observing the signal. Second, better information enables better planning; using it, a
decision maker with monotonic preferences is sure to take the optimal action in any state.
The proof distinguishes between the two prime motives for getting full information: The
former, which is captured by PORU, is intrinsic, whereas the latter, which is reflected via
the monotonicity of preferences with respect to outcomes, is instrumental. The result for
PGRU is similarly proven. The null information structure is of the "one-shot resolution"

type and it has no instrumental value.

Corollary: If = satisfies A1 and A2, then = displays preferences for perfect information

whenever =1 satisfies NCI.

Proposition 4 is independent of A3. By adding A3 as a premise we get:

Corollary: For any betweenness-recursive preferences, = displays preferences for perfect

information iff =1 satisfies NCI.
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1.7 Application to investment under uncertainty

The concept of option value was initially demonstrated by Arrow and Fischer [1974], and
later recognized in the works of McDonald and Siegel [1986], Pindyck [1991], and Dixit
and Pindyck [1994]. These authors point out that if an investor has a choice over when to
implement an (irreversible) investment decision, then investing according to the net present
value (NPV) of a project is not adequate; waiting leaves room for new information that DM
might use to make better decisions. In other words, the availability of future signals always
favors delaying the investment.

This result rests on the assumption that decision makers are expected utility maximizers,
and it ceases to hold once we relax that assumption. In particular, PORU suggest another
effect that should be taken into account: The harmful effect of the gradual resolution of
uncertainty, induced by an informative signal, can outweigh the benefit of getting more
information from this same signal.

To illustrate, consider the following three-period investment problem.?’ In the first
period, an investor decides whether or not to invest in a certain machine. The investment
requires an immediate cost of C' dollars. If he chooses to invest (option A), he will be able to
produce in both the second and the third period. In the second period, the demand is certain
and the investor is sure to receive variable profits 72 > 0. In the third period, the demand
is uncertain and the profits are determined by the realization of a finite random variable
73, Denote by p the probability distribution over the third-period profits 73, i = 1,..,n.
If the investor decides not to invest in the first period (option B), he may still invest in
the second period. In that case he waives 72, but he is able, before making the investment
decision, to learn the realization of a signal j that is correlated with 73 and comes from a
finite set J = {J1, ..., Jm}. Thus, if he invests in the second period after receiving the signal
4, his third-period’s profits are distributed according to the conditional distribution p?. Let
aj be the unconditional probability of getting the signal j € J. The discount rate between
any two successive periods is 7.

Assume that DM has disappointment aversion preferences with linear ¢ and positive S.

*'Based on an example given in Gollier [2001]
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The value of option A, V4, is given by:

P
s
1L+ (1+r)2

VA=_C V (p)

Let z; := max {0, —C+ 1—L,V(p]) } The value of option B is denoted V2 and is the unique

value v that solves:

v — 1 Zj:zj>'u Z,]a] + (1+/8) Zj:zj'g’u Z]aj
I+r 1+62j22j§vaj

Let Q = <aj,pj>;n:1 be the compound lottery such that for each i, p; = Zj ajpg. Denote
its value by V (Q). Further let AV := VA — VB, The investor chooses option A if and only

if:

(1+7) (7r2 —rC)
net presz;n; value

V(')
s DV (p9)<min[V(Q),C(14r)] Y (C - (1+r)>
(1+7) LB ven<vi@ @

option value

+ (Vi -V(Q)
—_——

gradual resolution premium

The first component is the regular NPV rule: Invest today if the forgone second-period
profits are larger than the interest gained due to delaying the investment. This would be
the decision criterion in the absence of a signal for the case = 0, when DM is risk neutral
and simply maximizes the NPV of the investment.

The second component is the flexibility value, or the option value, of delaying the in-
vestment. It reflects the idea that occupied with more information, DM can refrain from
investing if he learns that the demand is likely to be too low. This term is positive and is

an increasing function of 3.
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Since @ €P (p), the last term is the gradual resolution premium, grp (Q): investing
today saves DM the need to be aware of the gradual resolution of uncertainty. This term is
non-negative for 5 > 0.

As we mentioned above, if a standard expected utility maximizer prefers to invest in
period two, even under the null-information system, then he clearly does so when the
information system is finer. However, for strictly positive values of § this is not necessarily
true. For example, suppose 8 =1, C =50, r = 0.1, 72 = 5 and 7r;?’ € {0,1000,2000}. Let
p = $80+ 301000+ 502000, and Q = (8o, 1/3; £61000 + §2000,2/3) € P (p). Since 72 = rC, in
the absence of a signal, DM is simply indifferent between investing in period 1 and investing
in period 2. The signal is useful in that if the investor learns that the quantity demanded
is zero, he will choose not to invest. Nevertheless, this option value is not sufficient to
compensate him for the compound lottery he must face in case he chooses to view a signal,
and he strictly prefers option A. Therefore, the NPV rule should be twice adjusted, taking
into account both the second and the third effects.

In the general case, it is not obvious which effect, the option value or PORU, dominates.
Similarly to the assertion in proposition 2, there exists a finite value 8* in which the gradual
resolution premium is maximized.?! This observation implies the following:

(i) There exists 3, such that for all 3 > 3 the option value is dominant.
(7i) If the option value is dominant at 5*, so it is dominant for all g > g*.
(i4i) There exists 3, such that the option value is dominant for all 3 € (0, 3].

The setting above can be used to distinguish between decision makers with PORU and
decision makers who have preferences for early or late resolution of uncertainty. The avail-
ability of an informative signal would induce decision makers with preferences for early
resolution of uncertainty to choose option B. Independently of its instrumental value, a
signal leads to an earlier, yet not complete, resolution of uncertainty. Therefore, the only
possible confusion would be between the behavior of individuals with PORU and individ-

uals who prefer late resolution of uncertainty. This confusion can be avoided by altering

*LSince ﬁlim (V(p) — V(Q)) = 0, there exists 3 := max {B|(V(p) —V(Q))|s =5} and B < oco. Thus

(V(p) — V(Q)) is a continuous function on the compact interval [07 ﬁ}, and hence achieves its maximum on

this domain.
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the resolution process in option A. Suppose that under that option, the uncertainty about
period 3 returns would already have been resolved in period 2. Due to the time neutrality
assumption, such a change has no effect on individuals with PORU. Individuals with pref-
erences for late resolution of uncertainty, on the other hand, would be worse off under this

alternative.

1.8 Conclusion

Searching for a better understanding of decision-making under risk, and disentangling de-
cision makers’ attitude towards risk and time have been two active fields of research in
economics. This paper contributes to both fields. We study preferences over multi-stage
lotteries and explicitly assume that the way uncertainty is resolved over time matters. Be-
ing exposed to the resolution process bears the risk of perceiving intermediate outcomes
as disappointing or elating. Individuals who are more sensitive to disappointment suffer
from getting partial information and, therefore, strictly prefer ez-ante all uncertainty to be
resolved in a single point in time. Behaviorally, these individuals will display higher risk
aversion if uncertainty is resolved gradually. We formally define such dynamic preferences
for one-shot resolution of uncertainty (PORU), and show that they can be modeled using
a single, static preference relation. Our main result states that to characterize PORU,
one needs to impose on these static preferences a property, negative certainty independence
(NCI), which is identified with Allais-type behavior, the most compelling argument against
the independence axiom. In other words, being prone to Allais-type behavior and being
averse to the gradual resolution of uncertainty are synonymous. This equivalence provides
clear predictions for dynamic preferences, and calls for further experimental testing to be
done. Our model also predicts a specific attitude towards information. Although we ac-
commodate situations where people avoid information that is instrumental to their decision
making, perfect information will never be rejected, and will always be preferred to any other
information system.

The frequency with which an individual evaluates lotteries over time is a preference

parameter in our model, and its effect is measured by the gradual resolution premium. The
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more often an individual updates information, the more sensitive he is to gradual resolution.
We show that this effect can be quantitatively important, implying extreme degrees of risk
aversion.

If most actual risks that individuals face are resolved gradually over time, then these risks
cannot be compounded into a single lottery and, therefore, the gradual resolution premium
should not be disregarded. Rabin and Thaler [2001] state that "...it is clear that loss aversion
and the tendency to isolate each risky choice must both be key components of a good
descriptive theory of risk attitudes." Our model shows that in an intertemporal context,
both features, and especially the isolation component, can be addressed independently of

studying framing effects.

1.9 Appendix

1.9.1 Extension to n-stage lotteries, a formal description

The following is a formal description of any compound lottery, or a probability tree. Let
T be a finite set of (chance) nodes. Let >, "predecessor of", be a partial order on T with
x >p y if « precedes y. For any node t € T, let PRE (t) = {x:x >, t} be the set of
predecessors of t. For any t,t’ € T, we say that ¢ is an immediate predecessor of ¢, and
denote it by ¢ i, ¢/, if t € PRE (¢') and " € PRE (') such that t € PRE (t) An initial
node is any t € T' with PRE (t) = @. A pair (T, ) is a tree if it has a single initial node,
and if for all £ € T', PRE (t) is totally ordered by >, (so that each node ¢ has no more than
one immediate predecessor).

We say that T is of length n if each complete path in T is of length n. Denote by T*
the set of stage k’s nodes. We have UZLI T* =T. A node s is an immediate successor of ¢
iff ¢ is an immediate predecessor of s, that is , s ;s t <=t >, 5. Let F' (t) = {z : © >y t}.
Let (p;),er be a collection of probability distributions, one for each node, over F'(t). If
F (z) = @, we say that z is a terminal node. Denote by T"*! the set of all terminal nodes.
We identify 77*! as the set of ultimate prizes. For any k€ {1,2,...,n}, we identify ¢ € T*
as a compound lottery, starting at time k, of length n 4+ 1 — k. In order to agree with other

notations in the text, we write any such lottery as Q"% (¢). Finally, let I'* be the set of
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lotteries of the following form: For all j # [, every ¢t € TV is a trivial node (i.e. |F ()| = 1).
In time [, a certain one-stage lottery is acted out.
Let =, be a complete and transitive binary relation over £", on which we impose the

following axioms:

For any [ € {1,2,..,n}, let I‘é be the member of T with the single-stage lottery being q.
A1l : Vg e LY and for all 1,I' € {1,2,..,n}, c ~y Ffll.

A2 : Fiz t* € T™. Suppose that for all t € T/{t*}, F (t) is the same in both Q™ and Q.
If Q™ yields the lottery q in t* and Q" yields the lottery ¢'in t*, then Q" =, Q" <+

7 = T

The implied value of any compound lottery is the following: For any ¢ € T", define
WH(Q' (1)) = V(Q' (), and recursively for k =n —1,n —2...,1 and for all t € T*, let

) (o). )

where ¢(Q' (s)) € X is the certaity equivalent of ¢(Q' (s))

Lastly, and using the representation above, we extend the definition of PORU to this
richer domain. Let Q", Q"/ € L™ be two compound lotteries that are equal except in one
sub-lottery of length n 41—k, k € {2,3,...,n — 1} that originates from some t* € T*. For-
mally, for all t € T such that t* ¢ PRE (t), F () is the same in both Q" and Q™. Denote
the associate (different) sub-lotteries by Qg‘l}l_k (t*) and Qgt,l_k (t*), respectively. Let p
be the lottery that for all s € F' (t*) gives the prize cy (Q”H_(kH) (s)) with probability

pe+ (s). Define the set P (p) just as before.

Definition: =, display PORU if for all Q™, Q" € £" and p € L' as described above,

wntl—k (Qgﬁl_k (t*)) = V(p) and Wn+i=k (Qgﬂ_k (t*)) =W (QQ) for some Q? € P (p)

imply Q™ =, Q™.
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Theorem 1°: under A1', A2', A3, theorem 1 remains intact.

For brevity, we omit the detailed proof. It simply involved a repeated use of A1’, A2/,

and A3 to transform the problem into the framework of theorem 1.

1.9.2 Proofs

Proof of theorem 1

Define f, (v) = > cs(p) [t (2,v) — v] py. Thus V(p) is the unique solution to f, (v) = 0.
Note that whenever p = Y, aip’ we have f,(v) = >, a;fyi (v). Since f, (v) = 0 has
a unique solution and for all z € (w,b), u(z,V(dy)) > u(w,V(dy)) and u (b, V() >
u (x,V(dp)), showing that V(p) > V(Q) VQ € P (p) is equivalent to showing that f,(V(Q)) >
0VQe P (p). To show the latter, we subtract from it 0 =, a; f,i (V (pi)), which does not

change the expression, and regroup the terms as follows:

L (V@) =) aify (V(Q)
=i [l (V@) — fr (V)]
=202 s (0@ V(@) = VIQ) = (v (2, V() = V()] pi
=202 g [ @ V@) = (@ V()] e+ D eV (0) - V(Q)
=YY g S V@I = Y (@ V()
+Y eV (p) - V(Q)
=D 0D o L@ V@)= Y iV (p) + Y iV (p) - V(Q)

= Zz i [ZmeS(pi) w (@, V(@) Py~ (C (pz) ’V(Q))]

Claim 1:

ZO@ [ersw) u(z,V(Q))ph —u(c (p) ’V(Q))] >0 VYp and VQ € P (p)

%
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iff
i |2, VIQIR — (e () V@) > 0 and v@e P ).

Proof: The "if" part is obvious. For the "only if" part, assume that for some j and
for some v # V (p7), u (¢ (p?) ,v) — 2 zes(pi) U (z,v)ph > 0. Pick ye X and ae (0,1) such
that V (1, (ady + (1 — a) 5C(pj))> = v (by betweenness and continuity, such y and « exist.)
Let Q = <a,5y; (1-a) ,pj> (hence V(Q) = v). Finally , let p := ady + (1 — a)p’. Note

that Q€ P (p). By construction we have
rw)=01-a) |:Z:E€S(pj) u(z,v)pl — u (c (p7) ,v)| <0
so V(p) <V(Q)-||

Since p was arbitrary, we get the following necessary and sufficient condition for PORU:

: — 1
Cl ’ |:Z£C€S(p) U ($,U)px U(C (p) ,U) > 0 Vp and Yov € V([, ) .

Claim 2: C; iff for every triple z3 > x3 > 1, the indifference curve through d,, is

the steepest.

Proof: (only if): Fix 3 > x9 > z1. By continuity, for every such triple there exists a
p € (0,1) such that pdg, + (1 —p)dz, ~1 d4,. Therefore, the vertex (0,0) that represents the
lottery d,, and the point (1 — p,p) lie on the same indifference curve. This indifference set
is of the original preferences, and hence the value attached to it is V(pdz, + (1 — p)dg, ) :=
V(p) = pu(x3,V(p)) + (1 —p)u(z1,V(p)) = u(ze,V(p)). By Cq, for any other v, if we
pass through (1 — p,p) the (artificial) indifference curve corresponding to the value v, it
must lie weakly above the curve from the same collection that passes through (0,0). Since
the betweenness property implies that indifference curves are straight lines (so their slopes

are constant), the result follows.
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(if): Take a lottery p with |S (p)] = n — 1 that belongs to an indifference set I, :=
{p >, u(z,v)p, =v}in a (n — 1)-dimensional unit simplex A (n). Assume further that
for some x, € (w,b) with x, ¢ S (p), (1,0,,) € I,>*. By monotonicity and continuity,?® p
can be written as a convex combination ar + (1 — a)) w, for some a € (0,1) and r,w € I,
with |S(r)] = |S(w)| = n — 2. By the same argument, both r and w can be written,
respectively, as a convex combination of two other lotteries with size of support equal n — 3
and that belong to I,,. Continue in the same fashion to get an index set J and a collection
of lotteries, {qj}je], such that for all j € J, ‘S(qj)‘ = 2 and ¢/ € I,. Note that by
monotonicity, if y,z € S (qj ) then either z > x, > y or y > x, > 2. By construction, for
some a1, ...,y With aj >0 and 3,05 =1, 37, a;jq¢’ =p. Let V(q,v) := Y, qyu (x,v). By

hypothesis, V (¢7,v") > u (x,,v") for all j € J and for all v' € V(A (n)) and therefore also

V(p, v’) = Zj Och(qj, v') = Zx Zj ozjq;u (a:, v’)
Zj a;u (:cv,v') =u (:Uy, U/) = (c (p) ,U') Al

WV

Claim 3: NCI and C; are equivalent.

Proof:

C; —»NCI: Assume p =1 §,. Using the observation that for any two lotteries p and
¢, V(p) = V(q) is equivalent to f,(V(q)) > 0, we have ) . pzu(z;,V(p) = u(x,V(p).
By C; and monotonicity, >, ps,u (zi,v) > u(x,v) for all v, and in particular for v =
V(Ap + (1 — X)g).2* Calculating the expected utility of the two lotteries Ap + (1 — \)q and
Az + (1 —X)q relative to the value V(Ap + (1 — \)q) and using again the observation above,
establishes the result.

NCI— C;j : Suppose not. Then there exists a lottery p ~c(p) with

[ers(p)u(x,v)px —u(c(p) ,v)] < 0 for some v. Pick y € X and a € (0,1) such that

>2The analysis would be the same, though with messier notations, even if |S(p)| = n, i.e., if z€ S(p).

23These two assumptions guarantee that no indifference set terminates in the relative interior of any
k < n — 1 dimensional unit simplex.

241f p ~ 8, the assertion is evident. Otherwise, we need to find p* that is both first order stochastically
dominated by p and satisfies p* ~ ., and use the monotonicity of u(,v) with respect to its first argument.
By continuity such p* exists.
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V(ap+ (1 = a)dy) = v. Wehavev < au (c(p),v)+(1—a)u (y,v) = V(adep) + (1 — @)dy,v),

or adepy + (1 — a)dy =1 ap+ (1 — a)dy, contradicting NCL||

Note that by reversing the inequality in C; and the weakly-prefer sign in NCI, we derive

the analogous conditions for PGRU.R

Proof of theorem 2

Since for expected utility preferences NCI is always satisfied, it is enough to demonstrate
the result for lotteries with at most 3 prizes in their support.

For z € [w,b], denote by V(d) the unique solution of v = u(x,v). Without loss of
generality, set u(w,v) = 0 and u(b,v) =1 for all v € [0,1]. Fix 7 € (0,1). By monotonicity
and continuity there exists z (v) € (w,b) such that v = V (é,)). Take any = > z (v) and
note that pu (Viz,z (v),w) = % , the slope of the indifference curves on the
space {(pw,Dz) | Pw, Pz = 0, Dy + px < 1}, is continuous and differentiable as a function of
von [0,V ()]

Since v € (0,V(d)), theorem 1 implies that u (V|z,z (v),w) is maximized at v = 7. A

necessary condition is:
9 u(z (v) )

o |u(z,v) — u(z (T),7)

=0

Or,? using ¥ = u(z (v),,) and denote by u; the partial derivative of u with respect to

its ¢*" argument,

uz (z (v),0) [u(z,v) — 0] = [uz(x,v) —ug (z (0),v)]T (1.1)

Note that by continuity and monotonicity of u(x,v) in its first argument, for all = €
(z (v),b) there exists p € (0,1) such that pdy, + (1 —p) s ~1 dy@m), or u(x,v) (1 —p) =
u(x (v),v) = v. Therefore, and using again theorem 1, (1) is an identity for x € (x (v),b),

so we can take the partial derivative of both sides with respect to x and maintain equality.

25 oy
% gecond order conditions would be :

uz22 (z (V) ,0) v
u22 (,7) u (z, )

A
N
=
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We get:

ug (x (0),0) uy(x,0) = ugy(z,0)v

Since wu is strictly increasing in its first argument, u1(z,v) > 0 and v > 0. Thus: zfll(g;))
M = [ (v) independent of =, or by changing order of differentiation: 8% [Inwuy(x,v)] is
independent of x.

Since T was arbitrary, we have the following differential equation on {(z,v) | v < u(z,v) }:

a% lIn s (2, )] = 1 (0)

By the fundamental theorem of calculus, the solution of this equation is:

aav[lnul(x,v)] = 1(v)

Inwuy(z,v) =Inui(z,0) + [l (s)ds
ur(z,v) = ui(x,0) exp ([l (s) ds)
u(z,v) —u(z (v),v) = exp ([_,l(s) ds) / ui(t,0)dt

z(v)
u(x,v) — v =exp (f (s )ds) (u(z,0) — u(z (v),0))

e

Note that the term

exp (gt (o)) = exp (2,21 )

S

is well defined since by the assumption that all derivatives are continuous and bounded and
that u; > 0, we use L’Hopital’s rule and implicit differentiation to show that the term
ug (x (s),s
m 2@ )8 @ (s) s) () + ua (2 () )
s—0 S 5—0
1 —ug(z(s),s)

NEORy

= lsigoum(x(s),s) +ug21 (7 (s),s)

is finite and hence (f OUQ(I(S) )ds> is finite as well.
To uncover u(z,v) on the region {(z,v)| v > u(z,v)}, fix again some v € (0,1) and

the corresponding z (v) € (w,b) (with v = u(x (v),v)). Take any = < z(v) and note
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that @ (V|b,z (v),z) = [%} the slope of the indifference curves on the space

{(pzs20) | PzyPp >0, pr+pp <1}, is continuous and differentiable as a function of v on
[V (dz) 0.
Since T € (V(dz),b), by using theorem 1 we have:
9 [u(z(v),v) — u(z,v)

R 1 —u(z (0),v) =0

or,

(ug (z (v),0) —uz (x,0)) [1 — 0] = —ua(z (v),v) [ — u(z,?)] (1.2)

Using the same argumentation from the former case, (2) holds for all z € (w,z (7)), so
we can take the partial derivative of both sides with respect to x and maintain equality.
We get:

—ug (x,7) [1 — 0] = ui(x,0)ua(z (0),0)

Since w is strictly increasing in its first argument, u;(x,7) > 0 and 1 — v > 0. Thus:

% = —UQFTE?}’E) = k(v) independent of x, or by changing order of differentiation:

8% [lnuj(z,v)] is independent of x.

Since T was arbitrary, we have the following differential equation on {(z,v) | v > u(z,v) }:

3}
p™ Inui(z,v)] =k (v)

Its solution is given by

aav[lnul(x,v)] .
— w(el) - o) = [L k(s
— w(ew) = e 1) - [L k(s
— (2, v) = (e, exp ( fslzvk(s)ds> o
— u(e) (e (). 0) = exp ([ k(s)ds) / " e
— u(ev) v = ~[uz (0),1) — ule, ]exp ([ k() ds)
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which is again well defined since

exp (fslzvk; (s) ds) = exp <fslzv - st)
and

ilﬁrr% — % = lggl ug1 (2 (8),8) 2’ (s) +uz21 (x(s),5)
), 5)

1—ug(x(s

(2 (3).9)

= ligl uo1 (z (s),s) + u21 (z(s), )

is finite, and hence the whole integral is finite.

So far we have:

[u(x,0) — u(z (v),0)] exp (fsiowds’) z >z (v)
u(xz,v) —v = - . ) 1 (1.3)
— ol (v) 1) — ulw, 1)] (exp ([, - 2fH02ds)) @ <a(v)
We add the following restrictions:
(i) u(b,v) =1 for all v € [0, 1], which implies:
1 —u(x(v),0)]exp <fSUOst> =1-v
(ii) u(w,v) = 0 for all v € [0, 1], which implies:
-1
u(z (v),1) | exp fl_ _ (:E(S)’s)ds =
§=v [1— s]
Substituting into (3) to get:
) o= | 10~ ©).0) ity 2> »

We further require:
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(iii) Continuity at = x (v) . This is immediate since

lim (u(z,v)—v)= lim (u(z,v)—v)=0
z—_x(v) z—4x(v)

(iv) Differentiability at z (v) for all v:

1—w
w@ @) O mwo) G
(e (®).1) [ - ulz(@©),)]ux @), 1)
(@ (),0) [ u(z(v),0)] u(z (©).0) (15)

Let r(z,v) := %ﬂ%;}) Given ve (0,1), note that

—1111((;’00)) x> x(v)

—1;111((5267’11)) x <x(v)

r(z,v) =

But since u is continuous and r (z,v) is well defined, 7 (z,v) must be continuous as well.

Therefore, we require:
upi(z (v),0)  un(z(v),1)

ui(x (v),0) ui(x (v),1)

and since this is true for any v and the function z (v) is onto, we have for all = € (w, b):

_ull(:c,O) B _ull(a:, 1)
up(x,0)  wug(z,1)

which implies that for some a and b, u(z,1) = au(z,0) +b. But u(0,1) = u(0,0) = 0 and

u(1,1) = u(1,0) = 1, hence, by continuity, b = 0 and a = 1, or u(z,1) = u(x,0) := z (x) for

all z € [w, b]. Plug into (4) to get:
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and into (5) to get:

v B [1—1] .
e Do) " D
Substituting (7) into (6) we have:
w(z,v) —v=[z(x) =z (z(v)]m(v) (1.8)

and using the boundary conditions, (i) and (ii), again we find that

uw(w,v) —v=0—v=1[0—2z(z(v))]mv)

v—2z(x(v)m()=0 (1.9)
and
u(b,v) —v=1—v=[1—-z(x(v))]m(v)

l=m()+v—2z(x@®)m()=m@) (1.10)

where the second equality is implied by (9). Therefore m (v) = 1 and using (7) and (8) we
have

u(x,v) = z (z)

which implies that the local utility function is independent of v, hence preferences are

expected utility.ll

Proof of the sufficient conditions for mixed fan

Note that in the two-dimensional probability simplex, an indifference set is defined by
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v = pgu(r1,v) + (1 — pzy, — Pag)u(x2,v) + pryu(zs,v). The slope of an indifference curve

u(x2,v)—u(r1,v)

w(s )= . Using theorem 1, it is evident that the requirement
3,0)—u(z2,v)

. . Op;
is then given by.ﬁ =
> u(z,v)py = u(c(p),v) is equivalent to having the indifference curve through the (0,0)
vertex being the steepest. Denote by v; the solution to ¢ (z;,v) — v = 0. By monotonicity,

for any triple 3 > 2o > x1, and for any v€ (vy,v3), V! (v)€ L(x3) and V! (v) ¢ L (x1)

but for the middle prize, xs, both are possible. Let u; denotes the partial derivative of u

with respect to its i*" argument. The derivative (with respect to v) at ¥ of In (ZZ 13) is
1

[uz(z2,0)—ua(z1,0)] _ [u2(z3,V)—ua(w2,0)]
u(z2,0)—u(z1,0) u(x3,0)—u(x2,0)

given by . By assumptions (1)-(3), if V=1 (9) € L (z2),
this term is positive ("fanning out") whereas If V! (9) ¢ L (z2), it is negative ("fanning
in"). In particular, the indifference curve in the level v = ¢! (z2,v) = ¢? (z9,v) is the

steepest.ll

Proof of proposition 2
Let AV (B |p,n) :=grp(S|p,n), anb for k = 2,3,...,n — 1, denote AV (5 |p,n) with
h(B|p,n) =n—kby AV (3|p,n). It can be shown that

vV® (Bp,n)
(L =p) " (+8 (S5 520 ) = (G208 — (o)) +1
(+80=p) (B (5 Godo) D) (1 =p) +1)

= npB(1—p)

The denominator of AV®*) (3|p,n) is always positive, whereas the coefficient npg3 (1 — p)
is strictly positive for 5 > 0. At 8 = 0 the nominator is equal to 1 — (Z:,lc) (1-— p)kilp”_k
which is positive since (271) (1-— )k_1 p" % is simply the probability of n — k successes
in n — 1 trials of a Bernoulli random variable with parameter p. We then note that the

nominator is also increasing with 8. Indeed, this is the case if (Z;Zékﬂ) (j+’;72)pj ) >

n— k—l—l) (j+k—2) _ ( n—2

i nfkfl) . Therefore, item

Pk (njl(;il)) which is true since p < 1 and Z
(i) is implied. Since 5 = 0 implies expected utility, the first part of item (i¢) is immidiate.
For the second part of item (i), observe that as [ increases, the value of the sequential

lottery (V(Q™)) is (smoothly) strictly decreasing and converges to 0, the value of the worst

prize in its support. The value of the one stage lottery (V' (p)) is affected in two ways when
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B increases: First, given a threshold h (8 |p,n), the value is (smootly) strictly decreasing

with 3. Second, h (8 |p,n) itself is a decreasing step-function of 5. For § large enough, all

Sy (DpF(-p)"*k
1+8(1-p)" gjoo 0.

To show the existence of 8* (item (iii)), pick 8/ > 0 such that grp(8'|p,n) = ¢ > 0.

prizes but 0 are elated and the value of the lottery is given by

Since ma grp(B|p,n) = 0, there exists 3 := max {6 !grp (Blp,n) = %} and 8 <oo. Thus
—00
grp(f |p,m) is a continuous function on the compact interval [O,E, and hence achieves its

maximum on this domain. For single-peakness, we have the following two claims:

Claim 1: Vk = 2,3,...,n— 1, AV®) (B|p,n) is either strictly increasing or single-peaked

on (0,00).
Proof: By differentiating AV ®*) (3|p,n) with respect to /3, one gets:

0
a2V Blp.n)
Cg*+ (240" (1= p)* —20"(,"2) 1 =p)*) B+ (L =p)p* = p"(37}) (1 = p)")

P (8498~ 1 (BB (p+ DF 1)

. L n—(k+1) (j4+k—2\
Where C' is some constant, and A := (Zj:() (’ i )p7)
The roots of %AV(]“) (B |p,m) are the roots of the second-degree polynomial in 3 that
appears in the nominator.
Evaluated at § = 0, this polynomial is equal to (pk — ppF —p" (Z:]i) (1-— p)k> Note
that
k k nfn—1 k n—1\ , k-1
— — 1-— >0+—=1> 1-—
<p pp p(n_k)( p)) (n_k>p (1-p)
which is true as claimed before. In addition, the slope of that polynomial at § = 0 is
equal to the coefficient of 3, 24p* (1 —p)k — 2p" (nfgzl) (1 —p)k, which is positive since
—(k+1) (j+k—2y j . -2
(S350 ) > (52
To summarize, both the slope and the intercept of the polynomial in the nominator are
positive at 5 = 0. Therefore, if C > 0 then %AV(’“) (B |p,m) has no positive roots, and
otherwise it has exactly one positive root.||

Note that AV (8 |p,n) is a continuous function that is not differentiable in the points
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where h(B|p,n) changes. For k = 2,3,..,n — 1, let 8,4y be the value of 8 where
h (8 |p,n)decreases from (n — k) to (n — (k+1)). Using the same notations as above, we

claim that at the switch point, the slope of the resolution premium decreases.

Claim 2: lim %AV“‘:) (Blp,n) > lim %AV(’“H) (Blp,n)

B——Br,k+1 B—=+Bk,k+1
Proof: Apart from at 3 = 0, where AV®) (0|p,n) = AVEHD (0 |p,n) = 0, it can be

shown that the two curves cross at exactly one more point, given by

np — (n — k)

Bl k1= (Z;:éHl) (n—k—j) (ﬁl;fl)pj) (1—p)r*t

Note that 8.4 > 0 iff p > ”Tfk To prove the claim it will be sufficient to show that

%AV(’“) (0lp,n) < %AV(k‘H) (0|p,n), since this implies that at 3y, 1, AVERD (B1p,n)

crosses AV (8 |p,n) from above. Now:

k_ ok _n(n—1 1— k
%Av(k) (0[p,n) :np(p PP pp(kn—k)( »)*) and

pFHt—pphtl—pr( "t ) (1—p)F T
LAVED 0]p,n) = np! aESEhE

O Ayt 9 Ay
S0 a,BAV (O|p,n)>aﬁAV (Olp,n)

<:>in(— +1)Fp" n=b) n-1 - n—1 >0
pk P PP\ —k+n P\ok4n—1 —k+n-—1
— n—1 n n—1 _ n—1 S0

P\ _k+n P\ok+n-1 —k+n-1

—p> (71;’1—"171) — (n_k)”

( :7";:”) + ( — kn~|»_n1 —1 ) n

To complete the proof we verify that both claims above are also valid for the two extreme
cases, k = 1 (where only the best prize, n is elation) and & = n (only the worst prize, 0 is
disappointment).

k = 1: Using the same notation as used above we have:

n—2

AVO Blp,n) =npB | > 0 | (p—1)°

Jj=0

6+1
(1+(1-=p)B) 1+ (1-p")B)
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and

0 (1—pp™) 2 +28+1

— Ay =n(l- —p"

a5 (Blp,n) =n(1—p)(p p)(_BernB_l)z(_ﬁerﬁ_l)g
for all 3> 0so AV (ﬁ |p,n) is strictly increasing with 3 (claim 1).

For the second claim, similar calculations as above establish that:

0 n—1
S5 AV ) > AV Olpn) = p>

so claim 2 follows as well.

k=mn:

(1
Let C (nz_:l (”]_.1);07*1 (—1)3_1>, S0
j=1
o /82( )n+1 1
RN .n)=Cnp?(p—
oV Pleum) = O =) (o T e pa 1)

which is clearly single peaked on (0,00) (claim 1), and, again by similar calculations:

0 0 1
Y v (n—1) -
85AV (O|p, )>65AV (O|p,n)<:>p>n

which is claim 2.

Combining claim 1 and claim 2 ensures that AV (S |p,n)is single-peaked on (0,00).H

Proof of proposition 3

We first show that the claim is true for any lotteries of the form pd, + (1 — p) é,, with
x> y.

Case 1, p=0.5:

Construct the compund lottery Q™ € P (0.50, + 0.59,) as follows:

In each period Pr ("success") = Pr ("failure") = 0.5.
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Define:

1 ["success"]
2% = i=1,2,3,..
0 ["failure"]

The terminal nodes are:

5, it Y > T
0.50, +0.56, if Y1,z =12
5y if Z?:l 2 < %

Claim:

Tim V(Q") = V(6,) = 6 ()

Proof of claim: We use the fact that Value of the lottery using recursive Gul preferences
and probability 0.5 for "success" in each period is equal to the value of the lottery using
recursive expected utility and probability % for "success" in each period.

Since z]s are i.i.d random variables, the weak law of large numbers implies:

Limziop, 05 o
n 1+ £0.5

or,
Pr (Z?Zl zi < g) — 1

Therefore

V@) = ¢@Pr (Xl s> )+

0.5¢ (z) + (1 + 5)0.5¢ (y) n n
1+ 305 Pr (Eizl = 5) +

6 () Pr (Yiyzi < 5) = o)

case 2, p < 0.5:

Take Q"™ = (2p,Q"; 1 — 2p, §,), with Q™ as defined above.
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case 3, p > 0.5:

Fix e > 0. Using the construction in case 1, obtain Q”* with V/(Q"*) € (¢ (y), ¢ (y) + 5).
Re-construct a lottery as above, but replace ¢, with Q™ in the terminal node. By the same
argument, there exists 75 and V(QT172) € (¢ (y),¢ (y) +¢). Note that the underlying

probability of y in Q71172 is 0.25. Therefore, by monotonicity, the construction works for

3+4k

any p < 0.75. Repeat in the same fashion to show that the assertion is true for p¥ < Ak

k=1,2,.., and note that p* — 1.||

Now take any finite lottery Z?lej&;j and order its prizes as 1 < 3 < ... < Ty,
Repeat the construction above for the binary lottery x,,—1, 2, to make its value arbitrarily
close to ¢ (;;,—1). Then mix it appropriately with x,, o and repeat the argument above.
Continue in this fashion to get a multi-stage lottery over zo, ..., z,, with a value arbitrarily

close to ¢ (x2). Conclude by mixing it with 1 and repeat the construction above.ll

Proof of proposition 4

It is obvious that (i) is necessary for (i7). To show sufficiency, we introduce the inter-
mediate lotteries @ and p’, where the compound lottery @ assigns probability aj(m) to 7,
and p’ assigns probability pg to the outcome u (a* (s), s). Clearly, since for each state s and
for any action a we have u (a,s) < u(a*(s),s), by monotonicity of the value of a lottery
with respect to the relation of first-order stochastic dominance, V (p’*) < V(p’), and hence,
by the same reason, also VP(r) < V(Q).

However, now @ is simply the folding back of the two-stage lottery, which when played
in one-shot is the lottery corresponding to full information structure, I. Thus by (i) we
have that VP(I) > V(Q). Combining the two inequalities establishes the result.

Similarly, it is obvious that PGRU is necessary for ¢ being the least valuable informa-
tion structure. To show sufficiency, define V(a,p) as the value of a lottery in which with
probability ps you get the outcome u (a,s). Let a= argmaxV (a,p), then VP(¢) = V(a,p).
Let @ be a two-stage lottery that assigns probability a:(w) to p/ and p’ assigns probabil-
ity pl to the outcome u (a,s). By definition, V(p?) < V(p’*) for all j, and therefore, by

monotonicity, V(Q) < VP(w). However, now @ is simply the folding back of the two-stage
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lottery, which when played in one-shot is the lottery corresponding to ¢.Thus by (i) we

have that VP(¢) < V(Q). Combining the two inequalities establishes the result.ll
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Chapter 2

Ashamed to be Selﬁsh (with Philipp Sadowski)

2.1 Introduction

2.1.1 Motivation

The notions of fairness and altruism have attracted the attention of economists in different
contexts. The relevance of these motives to decision making is both intuitively convincing
and well documented. For example in a classic “dictator game,” where one person gets to
anonymously divide, say, $10 between herself and a partner, people tend not to take the
whole amount for themselves, but to give a sum of between $0 and $5 to the other player.
They act as if they are trading off a concern for fairness or for the other person’s incremental
wealth and a concern for their own.! Thus, preferences for fairness as well as preferences
for altruism have been suggested and considered (for example Fehr and Schmidt [1999],
Anderoni and Miller [2002], and Charness and Rabin [2002]).

Recent experiments, however, show that this interpretation may be rash: Dana, Cain
and Dawes (2006) study a variant of the same dictator game, where the dictator is given
the option to exit the game before the recipient learns it is being played. If she opts out,
she is given a specified amount of money and the recipient gets nothing, as the game has
not taken place. It turns out that about a third of the participants choose to leave the

game when offered $9 for themselves and $0 for the recipient. Write this allocation as ($9,

!See for example Camerer (2003).
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$0). Such behavior contradicts altruistic concern regarding the recipient’s payoff, because
then the allocation ($9, $1) should be strictly preferred. It also contradicts purely selfish
preferences, as ($10, $0) would be preferred to ($9, $0). Instead, people seem to suffer
from behaving egoistically in a choice situation where they could dictate a fairer allocation.
Hence, if they can avoid getting into such a situation, they happily do so. Real-life scenarios
with this character could be:

e donating to a charity over the phone but wishing not to have been home when the call
came,

e crossing the road to avoid meeting a beggar.

Our explanation of this type of behavior is the following: Whether a person’s actions
are observed or not plays a crucial role in determining her behavior. We term "shame"
the motive that distinguishes choice behavior when observed from choice behavior when
not observed. In our model, individuals are selfish when not observed. Thus, concern for
another person’s payoff is motivated not by altruism, but by avoiding the feeling of shame
that comes from behaving selfishly when observed.? The interpretation is that, if people
are observed, they feel shame when they do not choose the fairest available alternative.?

We axiomatically formalize the notion of shame and its interaction with selfishness as
described above. To this end, we consider games like the one conceived by Dana et al (2006)
as a two-stage choice problem. In the first stage, the decision maker (DM) chooses a “menu,”
a set of payoff-allocations between herself and the anonymous recipient. This choice is not
observed by the recipient. In the second stage, she makes a potentially anonymous choice
from the alternatives on this menu, where the recipient observes the chosen alternative in full
knowledge of the menu.* DM has well-defined preferences over sets of alternatives (menus).

Our interpretation of shame as the motivating emotion allows considerations of fairness to

2To distinguish shame from guilt, note that guilt is typically understood to involve regret, even in private,
while, according to Buss (1980), "shame is essentially public; if no one else knows, there is no basis for shame.
[--.] Thus, shame does not lead to self-control in private.” We adopt the interpretation that even observation
of a selfish behavior without identification of its purveyor can cause shame.

3In a parallel work, Neilson (2006-b) entertains a very similar notion of shame. The questions and the
methodology of the two works are different. Section 6 comments in more detail.

41f the exit option is chosen in the aforementioned experiment by Dana et al, as in our setup, the recipient
does not observe that there was a dictator, who could have chosen another allocation. In their experiment,
the recipient is further unaware that another person was involved at all. It would be interesting to see how
informing the recipient that some other person had received $9 would change the experimental findings.
This would correspond to our setup.
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impact preferences only through their effect on second-stage choices, where the presence
of a fairer option reduces the attractiveness of an allocation. The underlying normative
notion of fairness is central to our model, because assumptions on the norm of fairness
are indirect assumptions on DM’s preferences. Assuming a particular norm of fairness is
difficult, descriptively as well as normatively. Instead, we pose what we consider minimal
normative constraints on fairness.

Our representation results establish a correspondence between DM’s norm of fairness
and her choice behavior. On the one hand, this illustrates how those minimal constraints
on fairness impact choice. On the other hand, the particular norm of fairness used by DM

can be elicited from her choice behavior.

2.1.2 Illustration of Results

Denote a typical menu as A = {(a1,a2),(b1,b2),...}, where the first and second compo-
nents in each alternative are, respectively, the private payoff for DM and for the recipient.
We pose axioms on DM’s preferences over menus that allow us to establish a sequence of
representation theorems. To illustrate our results, consider a special case of those represen-
tations:

U(A) = Qhax [u(a1) + By (a1,a2)] — B(bfﬁf)}é,q [¢ (b1,D2)],

where u and ¢ are increasing in all arguments. w is a utility function over private payoffs
and ¢ (a1, a2) is interpreted as the fairness of the allocation (ay, az).

Alternatively, if we denote by a* and b* the two maximizers above, it can be written as:

U(A) = u(aq) — B e (b1, b3) — ¢ (ag, a3)).
value of private payoff shame

This representation captures the tension between the impulse to maximize private payoff
and the desire to minimize shame from not choosing the fairest alternative within a set. It
evaluates a menu by the highest utility an allocation on the menu gets, where this utility
depends on the menu itself. The utility function that is used to evaluate allocations is

additive and has two distinct components. The first component, u (a;1), gives the value of a
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degenerate menu (a singleton set) that contains the allocation under consideration. When
evaluating degenerate menus, which leave DM with a trivial choice under observation, we
assume her to be selfish: she prefers one allocation to another if and only if the former gives
her a greater private payoff, independent of the recipient’s payoff. The second component is
“shame.” It represents the cost DM incurs when selecting (a1, as) in the face of the fairest
available alternative, (b7, b3).

As shame is evoked whenever this fairest available alternative is not chosen, we can
relate choice to a second binary relation "fairer than," which represents DM’s private norm
of fairness. We assume that DM’s private norm of fairness induces a Fairness Ranking of
all alternatives, which is represented by ¢ (a1,a2). We further assume that DM’s norm
of fairness satisfies Solvability, implying that the fairness ranking is never satiated in one
player’s payoff, and the Pareto criterion in payoffs, implying that ¢ is increasing in all
arguments.

In the special case considered here, the shame from choosing (a1, as2) in stage two is
B (¢ (b1,b3) — ¢ (a1,a2)). Hence, even alternatives that are not chosen may matter for
the value of a set, and larger sets are not necessarily better. To see this, consider the
representation above with u (a1) = a1, 8 = % and ¢ (a1,a2) = ajag. Compare the sets
{(10,1),(4,3)}, {(10,1)} and {(4,3)}. Evaluating these sets we find U {(10,1),(4,3)} =9,
U{(10,1)} =10 and U {(4, 3)} = 4. To permit such a ranking, we assume a version of Left
Betweenness, which allows smaller sets to be preferred over larger sets. Left Betweenness
weakens the Set Betweenness assumption first introduced by Gul and Pesendorfer (2001),
henceforth GP. Theorem 1 establishes that our weakest representation, which captures the
intuition discussed thus far, is equivalent to the collection of all the above assumptions.

Selfishness leaves no room for altruism. Suppose, however, that only the second stage
of the procedure is observed (for example, because DM, as in the classic dictator game,
never gets to choose between menus). In this case, our representations might conform with
DM behaving as if she had direct interest in the recipient’s welfare and had to trade off
this altruistic motive with concerns about her private payoff. We argue that it is hard
to reconcile such an interpretation with observing any choice reversal in stage two. Thus,

when observing stage two in isolation, shame can mimic altruism only if the induced choice
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ranking is set independent. Theorem 2 establishes that, given the assumptions made so far,
an additional separability assumption on preferences over sets, Consistency, is equivalent to
the existence of such a ranking. In the special case of our representation considered above,

the induced choice behavior satisfies Consistency. To see this, regroup the terms as follows:

U(A) = @ [u(a1) + By (a1, a2)] — ﬁ(bflg;@ [ (b1, b2)].

/

Vv
second stage choice criterion effect of fairest alterative

We further specify the norm of fairness by assuming that the private payoffs to the two
players have Independent Fairness Contributions: The fairness contribution of raising one
player’s payoff can not depend on the level of the other player’s payoff. The idea is that
interpersonal utility comparisons are infeasible. With this additional assumption, Theorem
3 establishes that there are two utility functions, v; and wve, evaluated in the payoff to DM
and the recipient respectively, such that the value of their product represents the fairness
ranking, ¢ (a1,a2) = v1 (a1)v2 (a2). Thus, the fairest alternative within a set of alterna-
tives can be characterized as the Nash Bargaining Solution (NBS) of an associated game.
Because the utility functions used to generate this game are private, so is the norm.> We
argue that when based on true selfish utilities, the NBS is a convincing fairness criterion in
our context. Those utilities, however, may not be publicly known, especially in anonymous
choice situations, and therefore, DM may not be able to base her evaluation on true selfish
utilities. Nevertheless, one can assess the descriptive appeal of the representation by asking
whether the utilities comprising the norm at least resemble selfish utilities.

Example: Let u(a1) = a1, ¢ (a1,a2) = v1 (a1)v2 (a2) = ajaz and § = % This implies
that selfish utility « is risk neutral and unbounded, and that the utilities v, which are used
to generate the fairness ranking, coincide with w. Shame is half the difference between
the Nash-product of the fairest and the chosen alternatives. Reconsider the experiment
by Dana et al (2006) mentioned above, with the added constraint that only integer val-
ues are possible allocations. The set A = {(10,0) (9,1) (8,2),...,(0,10)} then corresponds

>Therefore, the fairness ranking could also be represented by a different functional, based on different
utilities.
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to the dictator game. It induces the imaginary bargaining game with possible utility-
allocations {(10,0) (9,1)(8,2),...,(0,10),(0,0)}, where the imaginary disagreement point
is (:phgio (vit (2),v3" (y)) = (0,0). According to the NBS, (5,5) would be the outcome of
the ﬁargaining game. Its fairness is 5 -5 = 25. To trade off shame with selfishness, DM
chooses the alternative that maximizes the sum of private utility and fairness, a1 4+ ajas2,
which is (6,4). Its fairness is 6 - 4 = 24 and the shame incurred by choosing it is % Hence
U (A) = 5.5. From the singleton set B = {(9,0)}, which corresponds to the exit option
in the experiment, the choice is trivial and U (B) = 9. This example illustrates both the

tension DM is exposed to when choosing from a large set and the reason why she might

prefer a smaller menu.

Finally, Theorem 4 extends the former representations by allowing DM to be responsible
for the welfare of many other recipients. This extension is then applied to model a social
decision maker who is able to alter the transparency of her policies’ consequences. Policies
create social value, but also have a redistributive component. DM faces a trade-off when
choosing the transparency of her policies: More transparency makes it easier for the public
to perceive fair choices as such, while less transparency makes it harder for society to detect
selfish choices. Shame, therefore, might lead her to implement policies with relatively opaque
consequences.

The organization of the paper is as follows: Section 2 presents the basic model and a
representation that captures the concepts of fairness and shame. Section 3 isolates a choice
criterion from the choice situation. Section 4 further specifies the fairness ranking. Section
5 extends the representation to finitely many other players and suggests an application to
a social decision maker. Section 6 points out connections to existing literature and section

7 concludes.
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2.2 The Model

Let K be the set of all finite subsets of R%L.G Any element A € K is a finite set of alternatives.
A typical alternative a = (a1,a2) is interpreted as a payoff pair, where a; is the private
payoff for DM and ag is the private payoff allocated to the (potentially anonymous) other
player, the recipient. Endow K with the topology generated by the Hausdorff metric, which
is defined for any pair of non-empty sets, A, B € K, by:

dp (A, B) := max |maxmind (a,b) , maxmind (a,b) |,
acAbeB beB acA

where d : R%r — R, is the standard Euclidian distance.

Let > be a continuous preference relation (weak order) over K. We write A > B if DM
strictly prefers A to B. The associate weak preference, = and the indifference relation, ~
are defined in the usual way.

The choice of a menu A € K is not observed by the recipient, while the choice from any
menu is. We call the impact this observation has on choice "shame." Of course various other
regarding preferences that are not impacted by observation could be present as well. We
do not account for those, as our aim is not to describe a range of possible attitudes toward
others, but to derive a tractable representation according to which DM distinguishes the
two stages in an intuitive way.

The first axiom specifies DM’s preferences over singleton sets.

P, (Selfishness) {a} > {b} if and only if a1 > b;.

A singleton set {a} is a degenerate menu that contains only one feasible allocation,
(a1,a2). It leaves DM with a trivial choice to be made when being observed in the sec-
ond stage. Therefore, the ranking over singleton sets can be thought of as the ranking
over allocations that are imposed on DM. We contend that there is no room for shame in
this situation; choosing between two singleton sets reveals DM’s “true” preferences over

allocation outcomes. The axiom states that DM is not concerned about the payoff to the

SWith R, we denote the positive reals including 0. R, denotes the positive reals without 0.
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second player when evaluating such sets; she compares any pair of alternatives based solely
on the first component, her private payoff. If, for example, DM had an altruistic concern
for fairness in the dictator game previously described, she would strictly prefer the menu
{(9,1)} to {(9,0)}. Py rules out such altruistic concerns. Negative emotions regarding the
other player, such as spite or envy, are ruled out as well.

The next axiom captures that shame is a mental cost, which is invoked by unchosen

alternatives.

P, (Strong Left Betweenness) If A = B, then A = AU B. Further, if A = B
and 3C such that AUC = AUBUC, then A= AU B.

We assume that adding unchosen alternatives to a set can only increase shame. There-
fore, no alternative is more appealing when chosen from AU B, than when chosen from one
of the smaller sets, A or B. Hence, A > B implies A = AU B.” Furthermore, if additional
alternatives add to the shame incurred by the original choice from a menu AUC, then they
must also add to the shame incurred by any choice from the smaller menu A. Thus, if there
is C' such that AUC = AUBUC and if A > B, then A - AU B.

Shame, which is the only motive DM knows beyond selfishness, must refer to some
personal norm that determines what the appropriate choice should have been. In our in-
terpretation, this norm is to choose one of the fairest available allocations. Interpreting
"fairness" as a property of an allocation, which is independent of the menu it is on, we

consider a binary relation > ; over Ri as a second primitive.

Definition: If b ~; a, we say that DM considers b to be fairer than a.

Some of the axioms below are imposed on = rather than on > and are labeled by F'

instead of P. The underlying notion of fairness is at the heart of those assumptions.® To

"This is the "Left Betweenness" axiom. It appears in Dekel, Lipman and Rustichini (2005) and is a
weakening of "Set Betweenness" as first posed in GP.

8In everyday language, "fair" is sometimes used to capture various different notions. According to
the Merriam-Webster Collegiate Dictionary (Tenth Edition, 2001) "Fair implies an elimination of one’s
own feelings, prejudices, and desires so as to achieve a proper balance of conflicting interests." This is the

64



make them descriptively intuitive, we emphasize their normative appeal, implying that DM
will want her norm of fairness to satisfy them. Making these assumptions directly on >y is
natural. The relation - is not directly observable, but the next axiom relates it to observ-
able choice behavior. One contribution of our work is that the implications of F-axioms on

>~ are most easily understood from the representation.

P (Shame) If 3A € K with a € A, such that A = AU {b}, then b ~; a.?

A = AU {b} implies that b adds to the shame incurred by the original choice in A.
The interpretation is that DM is concerned about not choosing one of the fairest available

alternative. Thus, b must be fairer than any alternative in A, in particular b > a.

Definition: We say that DM is susceptible to shame if there exists A and B with A = AUB.

Fi (Fairness Ranking) ¢ is an anti-symmetric and negatively transitive binary relation.

Our discussion rests on the assumption that DM can rank alternatives according to
their fairness. In Ri and with increasing utility from self-payoffs, this assumption is not
unreasonably restrictive.?

Combined with Ps, F} implies that only one alternative in each menu, the fairest, is

responsible for shame.
F5 (Pareto) If DM is susceptible to shame, then a>b and a# b imply a =; b.
According to this axiom, absolute, as opposed to relative, well-being matters; the Pareto

criterion excludes notions such as "strict inequality aversion." The resulting concept of fair-

ness must have some concern for efficiency. In the case where there truly is no potential for

definition of "fair" we base our arguments on.

9The notion of "fairer than" is analogous to the definition of "more tempting than" in Gul and Pesendorfer
(2005).

107f, instead, there were a globally most prefered self-payoff, this assumption would rule out very reasonable
preference rankings.
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redistribution, we believe that people find the Pareto criterion a reasonable requirement for

one allocation to be fairer than another.!!

F3 (Solvability) If (a1,0) ¢ (b1,b2) then 3x such that (ay,x) ~f (b1,b2). Analogously,
if (0,a2) #f (b1,b2) then Jy such that (y,az) ~y (b1, ba).

Ignoring the qualifier, the axiom states that in order to make two allocations deemed
equally fair, any variation in the level of one person’s payoff can always be compensated
by appropriate variation in the level of the other person’s payoff. This requires > never
to be satiated in any person’s payoff. Relying on Fj5, the qualifiers take into account that
monetary payoffs are bounded below by 0. For example, F3 implies that there is a sum x,
such that (x,1) ~f (10,10). This assumption captures the insight that any fairness ranking
with a concern for efficiency must go beyond the Pareto principle and trade off, in some
manner, payoffs across individuals.

As = is continuous, > is continuous in all alternatives for which P3 relates = to .
F; — Fy imply that this is the case on Ry x R ;.!? Assuming that > ¢ 1s continuous even in
alternatives for which P3 does not relate > to >y has obviously no implication for choice.

For ease of exposition, we assume in all what follows that - is continuous on all of R%r.

1Tn many contexts, people would disagree with the statement that the allocation (1mallion, 6) is fairer than
(5,5). On the basis of the definition in footnote 10, however, we claim that the opposition to (1million, 6)
as a fair allocation can only be based on the implicit premise that there must be some mechanism to divide
the gains more evenly (Such a mechanism would imply the availability of a third option, which would render
both of the above allocations unfair.) In an explicit choice situation this premise cannot be sustained. The
Pareto property has indeed been advocated in the philosophical literature on fairness. Rawls (1971), for
example, proposes the idea of "original position," a mental exercise whereby a group of rational people must
establish a principle of fairness (e.g. when distributing income) without knowing beforehand where on the
resulting pecking order they will end up themselves. Requiring that the allocation satisy Pareto makes much
sense in such an environment.

125 ; is relevant for choice in alternative b, if and only if there is ¢ with ¢ <¢b and ¢; > b1, which requires
c2 < ba. Thus b2 > 0 is necessary for the construction of c.
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Theorem 1 If DM is susceptible to shame, then = and -y satisfy P, — P3 and
'y — F3 respectively, if and only if there exist continuous and strictly increasing functions
u:Ry - R, ¢ Ri — R and a continuous function g : Ri X @ (Ri) — R, weakly
increasing in its second argument and satisfying: g (a, x) E 0 whenever ¢ (a) § x, such that
the function U : K — R defined as U (A) = max [u (a1) — g (a, maxy (b))} represents >

and ¢ represents .

If DM is not susceptible to shame, g = 0.

All detailed proofs are in the appendix. We now highlight the important steps. As both
= and > are continuous binary relations, they can be represented by continuous functions
U:K—Rand p: Ri — R respectively. ¢ is an increasing function as implied by Pareto
(F»). The combination of Strong Left Betweenness (Ps), Shame (Ps) and Fairness Ranking
(F1) implies GP’s Set Betweenness (SB) property: A = B implies A = AUB = B. GP
demonstrate that imposing SB on preferences over sets makes every set indifferent to a
certain subset of it, which includes at most two elements (Lemma 2 in their paper). Hence
we confine our attention to a subset of our domain that includes all sets with cardinality
no greater than 2. Selfishness (P;) and P3 imply that a set {a, b} is strictly inferior to {a}
if and only if a; > b; and b >, a. We can then strengthen GP’s Lemma 2 and state that
any set is indifferent to some two-element set that includes one of the fairest allocations
in the original (larger) set. Using Solvability (F3) we show the continuity of the second
component, the function g, in the representation.

The representation in Theorem 1 highlights the basic trade-off between private payoff
and shame as the only concepts DM may care about. There are at most two essential
alternatives within a set, to be interpreted as the "chosen" and the "fairest" alternative, a
and b respectively. For the latter, its fairness, ¢ (b), is a sufficient statistic for its impact on
the set’s value. DM suffers from shame, measured by ¢ (a, ¢ (b)), whenever ¢ (a) < ¢ (b),
where ¢ (a) is the fairness of the chosen alternative. The representation captures the idea
of shame being an emotional cost that emerges whenever the fairest available allocation is
not chosen. Its magnitude may depend on the fairness of the chosen allocation.

The main contribution of Theorem 1 is the provision of a way to elicit DM’s fairness
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ranking, >, from choice behavior: all functions in the representation are continuous and
hence, for b € Ry x R4 4 and b > a, there is ¢, such that U ({a,c}) > U ({a,b, c}). Since
it is continuous, ¢ is then uniquely determined on its entire domain, ]R%r.

Note that the properties of the function g and the max operator inside imply that the
second term is always a cost (non-positive). The other max operator implies that DM’s
payoff will never lie below by, which is her payoff as suggested by the fairest allocation.
Thus, any deviations by DM from choosing the fairest allocation will be in her own favor.
These observations justify labeling said cost as "shame."

From the representation, it is easy to see that the induced choice correspondence,

acA

C(4) = {argmax [u (1) — g (a’ bea” (b)ﬂ }

may be context dependent in the sense that a higher degree of shame may affect choice. In
other words, if we define a binary relation "better choice than," >., by a >, b if 3B with
b € B, such that BU {a} > B, then this binary relation need not be acyclic. This feature
may be plausible when shame is taken into account. In the next section we spell out the

implications of enforcing a context-independent criterion for choice.

2.3 A Second-Stage Choice Ranking

In many situations, only second-stage choice may be observable. For example, the standard
dictator game corresponds only to second-stage choice in our setup. Typical behavior in
various versions of this game, where subjects tend to give part of the endowment to the
recipient, is often interpreted as motivated by an altruistic motive. We interpret altruism
to imply that the recipient’s welfare is a good, just as selfishness implies that DM’s private
payoff is a good.!® If DM had those two motives, she would have to make a trade-off be-
tween them. As in the case of two generic goods, very basic assumptions would lead to a
context-independent choice ranking of alternatives. As we point out at the end of section

2, we can define a binary relation "better choice than," ., by a >, b if B with b € B,

'3 This interpretation is based on the following definition of altruism (Merriam-Webster Collegiate Dictio-
nary [Tenth Edition, 2001] ): " Unselfish regard for or devotion to the welfare of others." We understand this
definition as ruling out any considerations that condition on available but unchosen alternatives.
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such that BU{a} > B. This binary relation need not be acyclic: Different choice problems,
A and B, may lead to different second-stage rankings of a and b, for a,b € AN B. If no
cycles occur, second-stage behavior might look as if it were generated by, for instance, a
trade-off of selfishness and altruism, even though observation of stage-one choice would rule
this out. If, on the other hand, cycles are observed in stage-two choice, simple altruistic
motives cannot be solely responsible for behavior that is not purely selfish. In this section
we identify a condition on preferences that makes DM’s second-stage choice independent
of the choice set. This implies finding a function ¥ : Ri — R that assigns a value to each

a € A, such that a is a choice from A only if ¢ (a) > ¢ (b) for all b € A.

Definition: X := {(a,b):{a} > {a,b} > {b}} is the set of all pairs of alternatives gen-

erating strict Set Betweenness.

For any set of two allocations {a, b}, we interpret the preference ordering {a} > {a,b} >
{b} as an indication of a discrepancy between what DM chooses (a) and the alternative she
deems to be the fairest (b), which causes her choice to bear shame. This shame, however,
is not enough to make her choose b.

Combined with Fj, Shame (Ps) implies that choice between sets depends on the fairness
of the fairest alternative in the set. The next axiom relates choice to the fairness of the

chosen alternative as well: The fairer DM’s choice, the less shame she feels.

Py (Fairer is Better) If for {a} ~ {a’} we have {(a,b),(a’,b)} C X and a >; &/,
then {a,b} » {a’,b}.

Axiom P4 implies that only the fairness of the chosen alternative matters for its impact
on shame.
Given P; — Py and F} — F3, an additional separability assumption is equivalent to sep-

arable shame, and thus to a set-independent choice ranking.
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P5 (Consistency) If
{(a, b),(a,d), (a’,b’) , (a’,d') ,(c,b), (c',b') ,(c,d), (c',d')} C X,

then {a,b} ~ {a’,b'} and {a,d} ~ {a’,d’'} imply {c,b} > {c',b'} & {c,d} > {c/,d'}.

We make no claim about the normative or descriptive appeal of this assumption. Instead,
we view it as an empirical criterion: If the condition is not met, observation of stage-two
choice should suffice to distinguish altruism from shame as the motive behind DM’s other-
regarding behavior. The axiom requires independence between the impact of the chosen

and the fairest alternative on the set ranking:
{(a, b),(a,d), (a’,b’) , (a', d') ,(c,b), (c’,b’) ,(c,d), (c’,d’)} cX

implies that from each of the sets {a,b},{a,d},{a’,b’'},{a’,d'},{c,b},{c,b’'},{c,d}
and {c’,d’}, the alternative listed first is chosen in the second stage despite the availabil-
ity of a fairer alternative, which is listed second. Assume, without loss of generality that
{a} = {a’}. Suppose there are two pairs of fairer and less attractive alternatives, b, b’
and d,d’, such that for each of them pairing their members with a and a’, respectively,
gives rise to indifference. In the context of Theorem 1, this implies that both pairs induce
the same shame differential, which exactly cancels the selfish preference of {a} over {a’}:
{a,b} ~ {a’,b’} and {a,d} ~ {a’,d’}. Then, the axiom states that pairing the members of
b,b’ or d,d’ with any other chosen alternatives ¢ and ¢/, respectively, must also lead to the
same differential in shame. In particular, {c,b} > {c/, b’} implies {c,d} > {c’,d’}. Again,

the validity of this technical assumption in a given context is an empirical question.

Theorem 2 If DM is susceptible to shame, then = and =y satisfy P — Ps and Fy — F3
respectively, if and only if there exist continuous and strictly increasing functions wu :
Ry — R and ¢ : RZ — R, such that the function U : K — R defined as U (A) =

max [u(a1) + ¢ (a1,a2)] — max [ (b1, b2)] represents = and ¢ represents > .
ac €
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The proof constructs a path in the (ai, az)-plane such that the fairness ¢ (a) increases
along this path. Then, on two neighboring indifference curves in the (a, ¢ (b))-space, ¢ (b)
increases, as a varies along the path. Relying on Ps, these indifference curves allow us to
rescale ¢ (b) to make the representation of = quasi-linear.'* Separability is then immediate.
Since the proof of Theorem 2 is a special case of the proof of Theorem 4, we only go through
the more general case in detail in the appendix.

The representation isolates a choice criterion that is independent of the choice problem:

DM’s behavior is governed by maximizing

u(ar) + ¢ (a,a2).
The value of the set is reduced by

maxp (b1,02),

a term that depends solely on the fairest alternative in the set. Grouping the terms differ-
ently reveals the trade-off between self-payoff, u (a1), and the shame involved with choosing
a from the set A:

_ > 0.
max [p (b1,b2) — ¢ (a1,a2)] > 0

Note that now shame takes an additively separable form, depends only on the fairness of
both alternatives, and is increasing in the fairness of the fairest and decreasing in that of
the chosen alternative. If P, — P4 and Fy; — F3 hold, then, according to Theorem 2, P; is

equivalent to having a set-independent choice ranking.

2.4 Specifying a Fairness Ranking

In this section we impose one more axiom on >y to further characterize the fairness ranking.

It asserts that the fairness contribution of one person’s marginal payoff cannot depend on

4 A more elaborate discussion on this technique appears after Theorem 3.
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Figure 2.1: Independent Fairness Contributions.
the initial payoff levels.

F4 (Independent Fairness Contributions) If (a1,a2) ~¢ (b1,b2) and (a},a2) ~¢ (a1, b2)
~f (blvbé)} then (allabQ) ~f (alvbIQ)'

The axiom is illustrated in figure 1. If a1 = a) or by = bf, this axiom is implied by
Fy, F5 and the continuity of . For a; # ay and by # b, the statement is more subtle.

Consider first a stronger assumption:

F; (Strong Independent Fairness Contributions) (ai,a2) ~f (b1,b2) and (a},a2) ~¢

(b1,05) imply (a),b2) ~¢ (a1,bh).

The fairness contribution of one person’s marginal payoff cannot depend on the initial
payoff level of the other person: It is unclear to DM how much an increase in monetary
payoff means to the recipient, because even if the (marginal) utility of the recipient were
known to DM, she could not compare it to her own, as interpersonal utility comparisons
are infeasible. The qualifier in F} establishes that DM considers the fairness contribution of
changing her own payoff from a; to a) given the allocation (a1, a2) to be the same as that of

changing the recipient’s payoff from by to b, given (b1, b2). F then states that starting from
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the allocation (a1, b2), changing a1 to a} should again be as favorable in terms of fairness as
changing be to b}. This is the essence of Independent Fairness Contributions. The stronger
qualifier (b1,b5) ~¢ (a1,b2) ~¢ (@), a2) in Fy weakens the axiom. For example, the fairness
ranking (a1, a2) = (b1, b2) if and only if min (a1, az) > min (b1, b2) is permissible under Fy,

but not under Fj.'5

Theorem 3 - satisfies F1 — Fy, if and only if there are continuous, increasing and un-

bounded functions vi,vs : Ry — Ry, such that ¢ (a) = v1 (a1) va (a2) represents > .

Luce and Tukey (1964) prove the necessity and sufficiency of Solvability and the Cor-
responding Trade-offs Condition (the label they use for Fj ) to admit an additive repre-
sentation. To show how a proof works, we repeatedly use axiom Fj to establish that if
(ar,a2) ~; (a5, ab) and (a1, ds) ~; (a}, @), then (a1, az) ~s (@}, a5) & (a,d2) ~ (@, ).
With this knowledge, we can create a monotone increasing mapping as — 7 (az) that trans-
forms the original indifference map to be quasi-linear with respect to the first coordinate
in the (a1, (a2)) plane. Keeney and Raiffa (1976) refer to the procedure we employ as the
lock-step procedure. Quasi-linearity implies that there is an increasing continuous function
£ : Ry — R, such that ¢ (a) := £ (a1) + 7 (a2) represents >¢. Define vy (a1) := exp (£ (a1))
and vy (a2) := exp (v (az2)). Then vi,vy : Ry — R4 are increasing and continuous and if
we redefine ¢ (a) := vy (a1) v2 (a2), it represents > ;.

This representation suggests an appealing interpretation of the fairness ranking DM is
concerned about: She behaves as if she had in mind two increasing and unbounded utility

f16 and one for the recipient. By mapping the alternatives within

functions, one for hersel
each set into the associated utility space, any choice set induces a finite bargaining game
where only the disagreement point is unspecified. DM then identifies the fairest alternative

within a set as if she also had in mind a disagreement point, that makes this alternative

15 Fy is refered to as the Hezagon condition or the Corresponding Trade-offs Condition (Keeney and Raiffa
[1976]), Fy as the Thomsen condition. With F» and F3, Fj is implied by Fy. See Karni and Safra (1998)
for a proof.

Y6 This utility function need not agree with her true utility for personal payoffs, u. The interpretation is
that DM is concerned about the recipient’s perception of her choice. The recipient, however, may not know
DM’s true utility, especially under anonymity.

73



the Nash Bargaining Solution!” of the game.'® Moreover, the fairness of all alternatives can
be ranked according to the same functional, namely the Nash product.

Remember that F3 requires trading off marginal payoffs. The tension of having to
trade off marginal payoffs without being able to compare their welfare contribution (Fy) is
common in a range of social-choice problems.'® Our axioms are weak in the sense that they
do not constrain DM in this trade-off, as long as she takes into account that the fairness
contribution of increasing one person’s payoff should not depend on the other’s payoff. The
power of Theorem 3 is that it bases a representation on these weak assumptions. The
downside is that the form of this representation is not unique, as the utilities v1 and vo
are not observable independent of the norm of fairness. For example, there is another pair
of increasing utility functions such that DM is concerned about their sum, that is, she
acknowledges efficiency as the only fairness criterion.

To underline the appeal of the Nash product as a descriptive representation of fairness,?”
we now point out how DM might reason within the constraints of the axioms:

We justified the Pareto criterion, F5, as a plausible axiom for the fairness ranking. As
argued above, concern for fairness requires the acknowledgment of some form of interper-
sonal comparability of preferences’ intensity. If utilities were known cardinally, symmetry in
terms of utility payoffs is the other criterion we would expect the ranking to satisfy.?! In our
context, this implies independence of the role people play, dictator or recipient. However,
utilities are inherently ordinal, rendering such a comparison infeasible. At best we can, if we
assume people to have cardinal utilities that reflect their attitudes toward risk, determine
marginal utilities up to scaling. Mariotti (1997), for example, considers a context in which

“interpersonal comparisons of utility are meaningful; that is, there exists an (unknown)

'"See Nash (1950).
18The imaginary disagreement point is determined by ( lim . (vi' (x),v3" (). It could be some finite

z,y)—
and weakly positive pair of utility payoffs. In particular it could be (0, 0), which corresponds to DM imagining
that players walk away in the case that no agreement is reached. It could also be negative. This corresponds
to DM imagining that players have an extra incentive to find an agreement: there is a cost to disagreement.

YFor a review, see Hammond (1990).

20Even though u and v; do not have to agree, our interpretation might be more convincing when they
resemble each other empirically. In particular it is more appealing if DM’s actual utility from self-payoff u
is unbounded.

21 This reasoning leads Rawls (1971) to suggest Pareto and Symmetry as the two criteria a decision maker
under a veil of ignorance should respect.
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rescaling of each person’s utility which makes utilities interpersonally comparable.” At the
same time, however, "interpersonal comparisons of utility are not feasible.” Assume there
is a correct interpersonal utility scaling, but DM cannot determine it. Can she guarantee
that for this unknown scaling both symmetry and Pareto are satisfied? They would have to
be satisfied for all potential scalings. Mariotti establishes that the NBS is the only criterion
with this property.

Even more appealing is an interpretation of the NBS as the fairest allocation that is
related to Gauthier’s (1986) principle of "moral by agreement": Trying to assess what is
fair, but finding herself unable to compare utilities across individuals, DM might refer to
the prediction of a symmetric mechanism for generating allocations. In particular, DM
might ask what would be the allocation if both she and the recipient were to bargain
over the division of the surplus. To answer this question, she does not need to assume the
intensities of the two preferences. This is a procedural interpretation that is not built on the
axioms: DM is not ashamed of payoffs, but of using her stronger position in distributing
the gains. It is, then, the intuitive and possibly descriptive appeal of the NBS in many
bargaining situations that makes it normatively appealing to DM in our context.?? Theorem
3 establishes the behavioral equivalence of this interpretation and our axioms.

The Pareto and the Solvability axioms, F» and F3 respectively, rule out fairness rankings
with (z,0) ~ (0,y) for all z, y. In particular the Nash product with linear utility functions
v1, vg is ruled out as a criterion for fairness. Such orderings could easily be accommodated
by posing Pareto and Solvability only on Ri 4. As a consequence, ¢ would be strictly in-
creasing only on R2++ and vy, vy would only have to be weakly positive, vy, v : Ry — R,.23
These weaker axioms would still rule out the Maximin as a criterion for fairness.
Remark: Any concern DM has about fairness originates from being observed. Conse-
quently, DM should expect a potentially anonymous observer to share her notion of what

is fair: Her private norm of fairness, which we observe indirectly, should reflect her con-

22The descriptive value of the NBS has been tested empirically. For a discussion see Davis and Holt (1993)
pages 247-55. Further, multiple seemingly natural implementations of it have been proposed (Nash [1953] ,
Osborne and Rubinstein [1994]).

23 As can be seen in the proof of Theorem 2, this would imply the possibility of (—oco, —oc) as an imaginary
disagreement point, which corresponds to DM imagining that players have to find an agreement (infinite
cost of disagreement).
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cern about not violating a social norm. If the observed choice situation is anonymous, DM
does not know the recipient’s identity and is aware that the recipient does not know hers.
Therefore, the ranking cannot depend on either identity. Combining this with the idea that
fairness of an allocation should not depend on the role a person plays, whether dictator or

recipient, one might want to pose symmetry of the fairness ranking in terms of direct payoffs.

F5 (Symmetry) (ai,a2) ~¢ (a2,a1).

Adding this assumption constrains v1 (a) = vz (a) in the representation of Theorem 3.
The numerical example given in the introduction features the combination of Theorem 2
and Theorem 3, where all functions involved are the identity. For brevity, we will not repeat

it here.

2.5 Multiple Recipients and an Application

In order to expand the range of possible applications of our representation, we first extend

our results to finitely many agents.

2.5.1 Multiple Recipients

The underlying idea is that DM (without loss of generality individual 1) is concerned about
N — 1 > 2 other individuals, whose payoffs depend on her choice. In analogy to section 2,
let K be the set of all finite subsets of Rf . Any element A € K is a finite set of alternatives.
A typical alternative a = (a1, ag, ...,ay) is interpreted as a payoff vector, where a,, is the
payoff allocated to individual n. We write, for example, (am, an,a_nm ) as the alternative
with payoff a,, to individual m, payoff a,, to individual n and a_,, ,, € Rf ~2 lists all other
individuals’ payoffs in order. We endow K with the topology generated by the Hausdorff
metric.

Let > be a continuous preference relation over K. Most of the axioms we pose on > in
section 2 can be readily applied to = on this new domain. We define >~ in analogy to the

previous definition. Instead of F3 we write
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F) (Weak Solvability) If (a,,0) #; b then for all m # n, there exists a such

that (am,an,0) ~5 b.

The axiom states that it is always possible to equate the fairness of an allocation with
payoff to only one individual to that of an initially fairer allocation by giving appropriate
payoffs to any second individual. This property requires the fairness ranking never to be

satiated in any individual payoff.

Definition: The pair of possible payoffs to individuals m and n is Preferentially Indepen-
dent with respect to its Complement (P.1.C.), if the fairness ranking in the (a,,, a,)-space is

independent of a_,, .

F} (Pairwise Preferential Independence) For all m,n € {1,.., N}, the pair of possible

payoffs to individuals m and n is P.1.C.

Similarly to Fy, this axiom must hold if the contribution of one person’s marginal private

payoff to the fairness of an allocation cannot depend on another person’s private payoff level.

Theorem 4 Assume N > 3 and that DM is susceptible to shame.

(i) > and > satisfy P1—Ps and Fy, F5 and FN respectively, if and only if there exist contin-

wous and strictly increasing functions u: Ry — R and ¢ : Rf — R such that the function

U: K — R defined as U (A) = max [u(a1) + ¢ (a1, a2, ..., an)] — max [¢ (b1, ba, ..., by)] rep-
acA becA

resents = and o represents =j.

(ii) = also satisfies FY if and only if there exist continuous and strictly increasing func-

N
tions vy, ..,un : Ry — Ry, where vy, ..,un are unbounded such that ¢ (a) = []v; (a;) .
il

Theorem 4 is analogous to Theorem 2. For the proof, note that the analogue of Theorem
1 can be established by substituting a_; for as in the theorem and in the proof, where now

P Rf — R. To establish the analogue of Theorem 3, namely that there are N increas-
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ing unbounded functions vy, .., vy, such that the fairness ranking >; can be represented
N

by ¢ (a) = [[vi (a;) if and only if it satisfies Fy, Fp, Fi¥ and F}¥, we first state a stronger
il

version of F:,fv :

FN' (Solvability) If (an,a ) #¢ b then for all m # n, there exists an, such that

(am7 Qn, a—m,n) ~f b.

We observe that Continuity, Fy, Fo and F:,fv imply Solvability. To see this, assume
(an,a_,) #¢ b. By Fb, (an,0) #f (an,a_,) and hence (using F1) (an,0) %5 b. By Fi',
there exists a,, such that (@, a,,0) ~¢ b. By Fy again, (4, an,2) =¢ b for all z € Rf*Q.
Therefore, by Continuity, there must be a,, € Ry for which (am, an,a_mn) ~5 b. We can

then apply:

Theorem (Luce and Tukey [1964]) Pairwise Preferential Independence and Solvability

imply the existence of an additive representation of ;.

The proof of this theorem can be found in Kranz et al (1971). We illustrate the idea for
the case N = 3 by showing that F}¥ implies Fy for (without loss of generality) the pair of
individuals 1 and 2, independent of the payoff to individual 3:

For any (a(l), a9, ag) and any af, define al and a} such that
(a1, a9, a8) ~¢ (a},a3,a3) ~¢ (af,ad,as) .
Applying F}¥ twice implies that
(a1, a3,a3) ~¢ (al,a3,a3) ~5 (a},a3,a3) .
For any a?, define a4 and a3 such that

(af,a3,a8) ~y (af,a3,a) ~f (al,al,a3) ~s (a1, a},al).
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We have to show that (a?,a},a3) ~y (ai,a3,a3) for any value of as: (a?,a3, a3) ~g

(a%,ag,aé), so by F}¥ also (a%,a%,ag) ~ (a%,a%,aé). Similarly (a?,a%,ag) ~ (a?,a%,a%),

so by Fj¥ also (ai,a3,a}) ~5 (at,ad,al). Using transitivity, (a?,a},a}) ~; (a},a3,a3) and
by Fj¥ this is independent of a3. Hence (a?,ad, as) ~; (ai,a3,as) for any value of as.
The existence of utility functions according to which >y is represented by the Nash

product follows, as before, where additivity is implied by Luce and Tukey’s theorem. We

gave the intuition for the remainder of the proof of Theorem 4 after stating Theorem 2.

2.5.2 An Application to Obfuscation by a Social Decision Maker

It is often argued that individuals who make social choices are faced with very rigid con-
straints. Shame at acting against the interests of others could be one such constraint,
moderating individuals’ decisions as compared to their selfish interest. We build on this
interpretation to explain why a social decision maker may implement policies with relatively
opaque consequences. To first illustrate by simple example why such lack of transparency
(or obfuscation) might be valuable to DM at all, consider an indivisible good that can be
assigned to one individual. All individuals have the same probability of needing it the most.
Under obfuscation, this uncertainty never gets resolved, hence all allocations are equally fair
and DM can take the good for herself without shame. If, on the other hand, the uncertainty
does get resolved before DM chooses an allocation, she can only claim the good without
shame in the event that she values it the most.

The literature that studies obfuscation in policy making usually considers redistribu-
tive policies. As an example, Tullock (1983) uses the decision of where to locate a new
road: Depending on the road’s location, some citizens will gain, others might lose. These
consequences will not be entirely transparent at the time of decision making.

While building a road in a certain location clearly has a redistributive component, we
assert that it may also generate value for the society as a whole. In this section, we therefore
consider more general policies, which carry both an uncertain social value and an uncertain
distribution of gains among citizens. All citizens (including DM) have identical information

with respect to both types of uncertainty at every stage of the process.?* Evaluating poli-

2'This assumption stands in contrast to the usual asymmetric-information assumption (either among
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cies requires some degree of public deliberation, for example, the consultation of experts.
Before this deliberation takes place, DM can limit the degree to which deliberation will re-
solve uncertainty. She does so by choosing the transparency level of the policies that will be
considered.?® We assume that even for the lowest feasible transparency level, deliberation
will reveal DM’s selfish payoff from each relevant policy. This assumption is intuitive due to
DM’s arguably exposed role. It is also appropriate when addressing DM, who is constrained
by shame. Finally, it is crucial for the results established below, as the assumption intro-
duces an asymmetry between DM and all other citizens despite the information structure
assumed above: The probability that DM’s preferences will become public is larger than
that of any other citizen’s. Therefore, when deciding on the transparency of policies, DM
has to trade off the benefit of obfuscation, which makes selfish choices seem more fair, and
the value of transparency, which reveals efficient choices as such.

The time sequence is as follows: Firstly, DM chooses the transparency level for the
policies under consideration. Secondly, public deliberation symmetrically reduces the un-
certainty about the consequences of those policies. The higher the transparency level was
set, the less uncertainty remains. Lastly, DM chooses one policy. It is important to note
that, in slight contrast to our model, stage-one choice does not alter, in terms of expected
payoffs, the set of policies that are relevant for stage-two choice. Instead, it alters the ex-
pected differential in fairness between the policies in which DM will have a selfish interest,
and those that will be perceived as fairest.

Formally, consider a very large population of N individuals indexed by 7. Let = R
be identified both as the set of possible policy choices a € €2 and as the type space. When
referring to a particular individual ¢, we denote her type as x; € . Individual ¢’s selfish
preferences are commonly known to be represented by u : RT™ — R, which is continuous
and strictly decreasing with the (standard Euclidian) distance, d (a,z;), between the im-
plemented policy a and her type x;. Types are identically and independently distributed

according to a Normal distribution with an unknown mean, 8 € R, and known variance

citizens or between citizens and DM), that is used to explain the choice among different methods of redis-
tribution. See, for example, Coate and Morris (1995) and a survey in Wittman (1989).

Z5For example, DM can set the agenda of issues she wants to address: Instead of debating the location of
the road, she could also choose to deliberate introducing a tax. The individual consequences of the tax are
presumably more transparent than those of the location of the road.
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02 > 0. The (conjugate) common prior distribution of § is Normal, § ~ N (%, 7%), where

I/g := 12 and, without loss of generality, 8y = 0. Thus, o captures the uncertainty about

the redistributive consequences of policies, while v relates to the uncertainty about the
value generated for society as a whole. Let Q" be the set of all possible type profiles of
length n < N, with a typical element z" = (z1,..,2,). Upon observing the realization
" € Q", each individual, including DM, updates her beliefs according to Bayes’ rule.

The resulting common posterior distribution of 6 is Normal as well, § ~ N (E, 7%), with

v2g?

97 _ (w1t txn)
n = v2+no

2
ey and vz =

5. Note that 1 € ™. Since we identify DM as individual
1, her type is always revealed for n > 1.

After the entire population observes ™, DM makes a social choice a € ). We assume
that DM’s preferences satisfy P} — P5 as well as Fl,Fg,Fng and Fiv . As is implied by

Theorem 4, DM would like to choose a to maximize

N N
w(d(0,21)) + By [Tu(d (0,29) — max [ 3 T (d (0.2)|.
i=1 € i=1

where, for simplicity, we assume h to be linear (h (z) = Syz). After observing 2™, however,
N

ZTp41s ..., £ remain unknown, so [Ju (d(a,z;)) cannot be evaluated. To accommodate the
i=1

uncertainty about the distribution of types in the population, we assume instead that the

expected fairness of an allocation conditional on ",

N
E|[Ju(d(a,x;))|z"

=1

is what determines shame. Thus, the relevant characteristics of a policy are both its prox-
imity d(a,x1) to DM’s type z1 and its expected fairness. According to our representation,

the action that the public perceives as the fairest is

a* ;= argmaxF [Hu(d (a,x;)) |93"] .
acf) i=1

DM’s choice is then governed by maximizing the term

u(d(a,z1)) + By <E Lﬁlu (d(a,z;)) ]m"] -F [Hlu (d(a*,z;)) \x”]) .
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Note that for fixed n and large population size, N — oo, a* — 0,,.

Before z™ is observed by both DM and the public, DM can pick n € [1,7], @ << N. The
number n is interpreted as the transparency level of policies in §2: The more transparent
the policies are, the larger the number of individuals whose type becomes revealed by the
public deliberation. Different transparency levels n introduce different distributions over
expected fairness, while leaving d (a, z;) unchanged. Thus, the choice of n is equivalent to
stage-one choice of different distributions over menus with the same cardinality that differ
in the expected fairness of their elements. In contrast to the policy choice, we assume that
the choice of the transparency level, n, is free of shame.? This assumption could rest on
the fact that the transparency level is chosen before any uncertainty is resolved and, hence,
cannot bias the ex post expected fairness of any policy. Alternatively, the public might
simply be unaware of transparency as a choice dimension.

We are interested in finding the optimal transparency level, that is, the optimal first-
stage choice according to DM’s selfish preferences. DM faces the following trade-off: On
the one hand, she benefits from high transparency, which reduces the uncertainty about
the fairness of policies and allows the public to interpret fair choices as such. On the other
hand, she benefits from low transparency, as it gives her selfish payoff more weight in public
observation, limiting the public’s ability to detect selfish behavior.

To determine DM’s optimal transparency choice, n*, define the ratio of the standard
deviations o and v as s := 7 and let s = s* solve 2 + 352 — 3s% — 655 — 25 =0, s* ~ 0.84.

Ignoring the integer constraint on n, we state:

Proposition n* (s) exists and is unique. For s < s*, m = n*(s) is the solution to
2+ (2m+1)s2—3st —22m+1)s® — m(m+1)s® = 0, which is decreasing in s. For

s>s*, n*(s)=1.

Note that the optimal transparency level does not depend on DM’s susceptibility to

shame, 3,.2" This means that while for the case of a standard economic agent with 3, = 0,

26Due to this assumption, the model nicely fits our general framework.
2TThe proposition is only concerned with the transparency choice. The allocation DM chooses in the
second stage obviously does depend on [, as it determines the extent to which DM yields to shame at the
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the choice of n is arbitrary, even a small positive 85 implies the same unique amount of

obfuscation as an arbitrarily large S does. Note as well that absolute uncertainty is

irrelevant for the optimal transparency choice, only relative uncertainty s = 2 matters.

This makes the prediction of the proposition very robust.
The proof of the proposition is in the appendix. It establishes that DM’s utility is

decreasing in the absolute value of the random variable X, := 6, — 1, and that X,

P(|Xn|=2)

is normally distributed. Then DX =2)

can be shown to satisfy the Monotone Likelihood

Ratio Property (MLRP). Since DM’s utility is decreasing in z, she strictly prefers m over n if

P(|Xn|=2)
p(|Xm|=2)

algebra, that this is the case if and only if 2+ (m + n) s? — 35* — 2 (m +n) s — mns® < 0.

and only if is increasing in z. Assuming n > m, we find, with some straightforward
Thus DM has well-defined preferences over levels of transparency, n, and these preferences
depend only on s. We then establish that n* (s) is unique and for s < s* is also decreasing.
As a result, if DM prefers n = 1 to n = 2, then n*(s) = 1 is her globally preferred
transparency level. If she prefers n to both n — 1 and n + 1, then n* (s) = n is her globally
preferred level.

Before interpreting this proposition, consider again the trade-off DM faces: Since her
utility is decreasing in the random variable | X, | := |% — ‘, she would like the mean of the
public posterior on types to be as close as possible to her type. Since DM’s type is always
observed (and thus always affects the posterior), it has a higher expected weight in the
posterior than any other citizen’s, which is only observed with probability ”T_l The lower
n is, the greater the advantage DM has over other citizens. Lowering n, however, increases
the weight that the common prior gets in the public posterior. Since types are correlated,
this is not in DM’s interest. Now consider the proposition in the context of this trade-off:
DM prefers to consider more opaque policies for the future if the standard deviation of the
distribution of benefits across the population, measured by o, becomes larger compared to
the uncertainty about which policy is socially optimal, which is measured by v. Intuitively,
in this case she is concerned about the situation where her selfish preferences conflict with
considerations of fairness. Therefore, she would like her own selfish preferences to impact

the public posterior as much as possible. Since her preferences always become public, she

cost of her selfish interest.
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Figure 2.2: n as a function of s.

would like other citizens’ preferences to remain unobserved. Conversely, she prefers more
transparent policies if the uncertainty is more about the socially optimal policy and less
about the distribution of gains. In this case, she is mostly concerned about the situation
where her selfish preferences are in line with considerations of fairness but an uninformed

public would perceive her as selfish if she chose accordingly. Figure 2.2 shows n* (s).

2.6 Related Literature

Other-regarding preferences have been considered extensively in economic literature. In par-
ticular, inequality aversion as studied by Fehr and Schmidt (1999) is based on an objective
function with a similar structure to the representation of second-stage choice in Theorem
3.28 Both works attach a cost to any deviation from choosing the fairest alternative. In
Fehr and Schmidt’s work, the fairest allocation need not be feasible and is independent of
the choice situation. In our work, the fairest allocation is always a feasible choice and it
is identified through the axioms. This dependence of the fairest allocation on the choice
situation allows us to distinguish observed from unobserved choice.

The idea that there may be a discrepancy between DM’s preference to behave “pro-

socially” and her desire to be viewed as behaving pro-socially is not new to economic

28 Neilson (2006-a) axiomatizes a reference-dependent preference, that can be interpreted in terms of Fehr
and Schmidt’s objective function.
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literature. For a model thereof, see Benabou and Tirole (2006).

Neilson’s (2006-b) work is motivated by the same experimental evidence as ours. He
also considers menus of allocations as objects of choice. Neilson does not axiomatize a
representation result, but points out how choices among menus should relate to choices
from menus, if shame were the relevant motive. He relates the two aspects of shame that
also underlie the Set Betweenness property in our work; DM might prefer a smaller menu
over a larger menu either because avoiding shame compels her to be generous when choosing
from the larger menu, or because being selfish when choosing from the larger menu bears
the cost of shame.

The structure of our representation resembles the representation of preferences with self-
control under temptation, as axiomatized in GP. GP study preferences over sets of lotteries
and show that their axioms lead to a representation of the following form:

UeP (4) = max {uGP (a) + 07 (a)} — max {UGP (b)}

with " and v“F both linear in the probabilities and where A is now a set of lotteries.
In their context, u“" represents the "commitment"- and v©" the "temptation"-ranking.
While the two works yield representations with a similar structure, their domains - and
therefore the axioms - are different. In particular, the objects in GP’s work are sets of
lotteries. They impose the independence axiom and indifference to the timing of the reso-
lution of uncertainty. This allows them to identify the representation above that consists
of two functions that are linear in the probabilities. Each of these functions is an expected
utility functional. The objects in our work, in contrast, are sets of allocations and there
is no uncertainty. The natural way to introduce uncertainty to our model is to treat our
representation as the utility function, which should be used to calculate the expected utility
of lotteries over sets. Therefore, DM would typically not be indifferent to the timing of the
resolution of uncertainty.?? However, one of GP’s axioms is the Set Betweenness axiom,
A= B = A>» AUB = B. We show that our axioms Strong Left Betweenness (Ps), Shame

(P3) and Fairness Ranking (F1) imply Set Betweenness. Hence, GP’s Lemma 2 can be

29In section 5.2 we account for uncertainty, which can be translated into uncertainty over sets.
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employed, allowing us to confine attention to sets with only two elements.

Our model is positive in nature, but it is interesting to contrast moral or normative
elements in its interpretation with those in the context of the temptation literature: In
a work related to GP, Dekel, Lipman and Rustichini (2005) write: “...by ’temptation’ we
mean that the agent has some view of what is normatively correct, what she should do, but
has other, conflicting desires which must be reconciled with the normative view in some
fashion.” According to this interpretation, the commitment ranking is given a normative
value. In our work, shame is based on deviating from some fairness norm that tells DM
what she should do. This norm conflicts with DM’s selfish commitment ranking.

Empirically, the assumption that only two elements of a choice set matter for the magni-
tude of shame (the fairest available alternative and the chosen alternative) is clearly simpli-
fying: Oberholzer-Gee and Eichenberger (2004) observe that dictators choose to make much
smaller transfers when their choice set includes an unattractive lottery. In other words, the
availability of an unattractive allocation seems to lessen the incentive to share.

Lastly, it is necessary to qualify our leading example: The experimental evidence on the
effect of (anonymous) observation on the level of giving in dictator games is by no means
conclusive. Behavior tends to depend crucially on surroundings, like the social proximity of
the group of subjects and the phrasing of the instructions, as, for example, Bolton, Katok
and Zwick (1994); Burnham (2003); and Haley and Fessler (2005) record. On the one hand,
there is more evidence in favor of our interpretation: In a follow-up to the experiment cited
in the introduction, Dana et al (2006) verify that dictators do not exit the game if second-
stage choice is also unobserved. Similarly, Pillutla and Murningham (1995) find evidence
that people’s giving behavior under anonymity depends on the information given to the
observing recipient. In experiments related to our leading example, Lazear, Malmendier
and Weber (2005) as well as Broberg, Ellingsen and Johannesson (2008) even predict and
find that the most generous dictators are keenest to avoid an environment where they could
share with an observing recipient.?’ Broberg et al further elicit the price subjects are
willing to pay in order to exit the dictator game, finding that the mean exit reservation

price equals 82% of the dictator game endowment. On the other hand, this is in contrast

30This nicely underlines our interpretation of "shame" as a motive.
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to evidence collected by Koch and Normann (2005), who claim that altruistic behavior
persists at an almost unchanged level when observability is credibly reduced. Similarly,
Johannesson and Persson (2000) find that incomplete anonymity - not observability - is
what keeps people from being selfish. Ultimately, experiments aimed at eliciting a norm
share the same problem: Since people use different (and potentially contradictory) norms in
different contexts, it is unclear whether the laboratory environment triggers a different set of
norms than would other situations: Frohlich, Oppenheimer and Moore (2000) point out that
money might become a measure of success rather than a direct asset in the competition-like
laboratory environment, such that the norm might be "do well" rather than "do not be
selfish."3! More theoretically, Miller (1999) suggests that the phrasing of instructions might
determine which norm is invoked. For example, the reason that Koch and Normann do
not find an effect of observability might be that their thorough explanation of anonymity
induces a change in the regime of norms, in effect telling people "be rational," which might
be interpreted as "be selfish." Then being observed might have no effect on people who,

under different circumstances, might have been ashamed to be selfish.

2.7 Conclusion

We study a decision maker who cares about others’ well-being only when being observed.
We term the motive that distinguishes choice behavior when observed from choice when
unobserved "shame." Theorem 1 features a representation that captures the tension between
the interest to maximize private payoff and the shame that results from not choosing the
fairest alternative within a set. Theorem 2 identifies a set-independent choice criterion
with the help of a separability axiom. If there is a set-independent choice criterion, the
representation should be more tractable for applications. More importantly, the separability
assumption provides a criterion on preferences over sets to decide whether or not the period-
two choice of alternatives might look as if it was generated by an altruistic concern. In

Theorem 3 we further specify the norm of fairness. We show that the fairest alternative in a

31Qurely the opposite is also conceivable: Subjects might be particularly keen to be selfless when the
experimentor observes their behavior. This example is just ment to draw attention to the difficulties faced
by experimenters in the context of norms.
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set can be interpreted as the Nash Bargaining Solution of an associated game. Because the
utility functions used to generate this game are private, so is the norm. The most appealing
interpretation relies on the descriptive power of the NBS in many bargaining situations,
giving it normative appeal as the solution to a symmetric mechanism. Lastly, Theorem 4
extends Theorem 2 to situations where DM faces multiple other individuals whose welfare
depends on her choice. We apply our model to a social decision maker, whose selfish utility
is correlated with fairness. She faces a trade-off when choosing the transparency of her
policies: Being more transparent makes it easier for the public to perceive fair choices as
such, while less transparency makes it harder for society to detect selfish choices. In our
setup, the optimal transparency level is unique and is independent of DM’s susceptibility
to shame.

Let us conclude with another experiment to suggest how to incorporate uncertainty into
our model. Dana, Weber and Kuang (2005) make a dictator face a choice between $5 and
$6 for herself. An anonymous recipient will receive either $5 or $1. Which recipient payoff
is paired with which dictator payoff is determined by a coin flip. The dictator can reveal
(without being observed) the outcome of the coin flip prior to her decision. The authors find
that many dictators choose not to reveal the outcome. This action seems weakly dominated,
because whether or not the dictator is willing to give up $1 in order to give the recipient the
extra $4, knowing whether such a trade-off is necessary should not hurt DM. We propose
to interpret the revealed and the unrevealed conditions as two different choice situations.
If all functions in the combination of Theorem 2 and Theorem 3 are identities, and if DM

subscribes to the vINM axioms, the utilities to be compared are

U({(6,3),(5,3)}) =6

versus

1 1 1 1
§U({(6, 5),(5,1)}) + iU ({(6,1),(5,5)}) = 56 + 55 =55

This could explain the observed behavior. However, since in the experiment the recipient

knows the full instructions and does not observe DM’s decision to reveal, observability

88



would require a more involved interpretation. To ease the application of our model, it
would be interesting to see how the subject’s behavior changes if the recipient is only told

the information DM has after her decision to reveal or not.

2.8 Appendix

2.8.1 Proof of Theorem 1

Let U : K — R be a continuous function that represents >. Define u (a1) = U ({(a1,0)}).
By P, u(a1) = U ({(a1,a2)}) independent of as, with u (a;) continuous and strictly in-
creasing.

Let ¢ : Ri — R be a continuous function that represents > ;.By F», ¢ is also strictly

increasing.

Claim 1.1 (Right Betweenness): A= B= AUB > B.

Proof: There are two cases to consider:

Case 1) Va € A, 3b € B such that b >; a. Let A = {al,aQ...,aN} and Cy = B. Define
Cn =Ch1U{a"} forn=1,2,..,N. According to Fi, there exists b € B such that a™ ¢ b.
By Ps, C,—1 % C,. By negative transitivity of >, Cy 3¢ Cy or AUB > B.

Case 2) Ja € A such that a = b, Vb € B. Let B = {bl,b2...,bM}. Define Cy = A and
Cp = Cp1 U{b™} for m =1,2,.., M. By P, VC such that a € C, C % CU{b™}. Hence,

Cm—1 % Cp. By negative transitivity of >, Cp % Cpr or AUB = A = B, hence AUB = B.||

Combining Claim 1.1 with P, guarantees Set Betweenness (SB): A= B= A > AUB =
B. Having established Set Betweenness, we can apply GP Lemma 2, which states that any

set is indifferent to a specific two-element subset of it.

Lemma 1.1 (GP Lemma 2): If > satisfies SB, then for any finite set A, there ex-

ist a,b € A such that A ~ {a,b}, (a,b) solves mail(éni%U ({a’,b'}) and (b,a) solves
a’cAb’c

pinmaxU ({2, b).
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Define f: R%2 x R — R such that f (a,b) = u(a1) — U (a,b), where U : R2 xR2 - Ris
a function satisfying:

U({a,b}) = max min ﬁ(a’,b') = min max lj'(a’,b’) 32
a’e{a,b}b’e{ab} b’c{a,b}a’c{a,b}

By definition we have f (a,a) = 0 for every a € R%. Note as well that
{a} - {a,b} = f(a,b) >0,

as otherwise we would have:

u(a1) — max {fgca(:i)z)o f(a,a)=0

U bp =max (" 1 (b R RN ST

,b)=0

For a decision maker who is not susceptible to shame, U ({a,b}) = max {u(a1),u (b1)}.
Hence setting f (a,b) = 0 is consistent with her preferences. The following claims help us

to further identify f for a decision maker who is susceptible to shame.

Claim 1.2: (i) [¢(a) < ¢ (b) and a; > b;] < {a} > {a,b}
(i) [p(a) < ¢ (b) and a; < b1] = {a} ~ {a,b}
(iii) [¢ (a) = ¢ (b) and a; > b;] = {a} ~ {a,b} > {b}.

Proof: (i) If ¢ (b) > ¢ (a) then there exists A such that a € A and A > A U {b}.
As a1 > by & {a} > {b}, by P, {a} > {a,b}. Conversely if {a} > {a,b}, then b > a and
hence ¢ (a) < ¢ (b). Further from SB and P, a; > b;.

(i) If a1 < by then by SB {b} = {a,b}. Since ¢ (b) > ¢ (a), there is no B such that
b € B and B >~ BU {a}, hence {b} ~ {a,b}.

(iii) By P {a} = {b} and SB {a} = {a,b}. As ¢(a) = ¢(b), using (i) we have
{a} ~{a,b}|

32Note that maxminU ({a, b}) = maxmin | max min U (a’,b’)| = maxminU (a,b).
acAbEA acAbEA |a’'E{a,b}b/c{a,b} acAbeA
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Let (a* (A),b* (A)) be the solution of

maxminU ({2',b'})

so (b*(A),a* (A)) solves minmaxU ({a’,b’}).

b’eAa’c A

Claim 1.3: There exists b € argmaxy (a’) such that A ~ {a’,b} for some a’ € A and
a’cA
b* (4) =b.

Proof: Assume not, then there exist a,c such that A ~ {a,c}, (a,c) = (a*(A4),b* (4)).
Therefore,

{a,b} - {a,c} ~ {a,b,c} ~ A%Vb € argmaxy (a’)
a’cA

and hence ¢ >~ b, which is a contradiction. ||

For the remainder of the proof, let I¢(y) := {b’: ¢ (b") = p}. That is, It(¢ (b)) is the

~ equivalence class of b. Define

Y (a,0) = {b' €Is(p): {a} = {a,b'} = {b'}}

We make the following four observations:

(1) {a} = {a,b} = {b}, {a} > {a,c} and b > c imply {a,c} = {a, b}.

(2) {a} = {a,b} > {b}, {a} > {a,c} > {c} and b ~¢ c imply {a,c} ~ {a, b}.

(3)beY (a,p),b ~;band {b} > {b'} imply b’ € Y (a, ¢).

(4) If {a} > {a,b} > {b} , {b'} > {b} and b’ € I;(¢ (b)), then either {a,b'} ~
{a,b} = {b'} or {a,b’} ~ {b'} = {a,b}.

To verify these observations, suppose first that (1) did not hold. Then {a,b} > {a,c}

and {a,b} > {b}, hence by SB {a,b} >~ {a,b,c} and therefore ¢ >; b, which is a con-

#Note that if (a,c) ((c,a)) solves the maximin- (minimax-) problem over A4, it clearly solves this problem
over the subset {a, b, c} for all b € A\ {a, c}.
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tradiction. If (2) did not hold, we would get a contradiction to b ~ ¢ immediately. Next
suppose that (3) did not hold. Then {a} = {a,b} > {b} = {b’} ~ {a,b’}. Note that by
SB {b} = {b,b’} and, applying SB again , {b} = {a,b,b’}. But then {a,b} > {a,b,b’},
contradicting b’ ~¢ b. To verify (4), assume {a,b’} > {b’}. Then by Claim 1.2 (i)
{a} = {a,b’} = {b'} and then by observation (2) {a,b’} ~ {a,b}. If on the other hand
{a,b'} ~ {b'}, then if {a,b} > {a,b}, {a,b} > {b} and SB imply {a,b} > {a,b,b’}, a

contradiction to b’ € I¢(¢ (b)). Note that by Claim 1.3 we cannot have {b’} > {a,b’}.||

Next we claim that ¢ (b) is a sufficient statistic for the impact of b on a two element set.

Claim 1.4: There exits a function U satisfying the condition specified above such that
¢ (b) > ¢ (a) implies f (a,b) = g (a, (b)), where g : R2 x R — R is weakly increasing in

its second argument.

Proof: Such U exists, if and only if f (a,b) = g (a, ¢ (b)) is consistent with > . Therefore
it is enough to consider the constraints > puts on f. Given a and b, look at all ¢ such that
¢ (b) > ¢ (c). We should show that f (a,b) > f(a,c).

First note that if ¢ (b) > ¢ (a) > ¢ (c), then f(a,b) > 0 > f(a,c) is consistent with
—. If p(a) > p(b) > ¢(c), then 0 > f(a,b) > f(a,c) is consistent with >. If a; = 0,
then f(a,b) > f(a,c) > 0 is consistent with >. Therefore, confine attention to the case
where a; > 0 and ¢ (b) > ¢ (c) > ¢ (a).

By Claim 1.2 (i), F» and F3, there exists b’ € Ir(¢ (b)) such that {a} > {a,b’}. Thus,
there are two cases to consider:

1) Y (a6 (b)) £0.

2) Y (a,¢ (b)) = 0.

Case 1) Suppose Y (a, ¢ (b)) # 0. Define f (a,b) := f (a,b’) for some b’ € Y (a, ¢ (b))
(note that by observation (2) f(a,b’) = f(a,b”) Vb/,b"” € Y (a,¢ (b)) and using ob-
servations (3) and (4), this definition is consistent with >=.) If Y (a,¢(c)) # 0 then
by observation (1) {a,c} = {a,b} and hence f(a,b) > f(a,c). If Y (a,¢o(c)) = 0

then V¢’ € I¢(c), {a,c¢'} ~ {c’}. By F, and continuity of >y, there exists ¢’ € If(c)
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with ¢, < b, for some b’ € Y (a,¢(b)). Then by Claim 1.1, P; and observation (1)
{a} = {a,c'} = {a,b} = {b} = {c}, so ¢ € Y (a,¢(c)). Contradiction.

Case 2) Suppose Y (a, ¢ (b)) = 0. Define f(a,b) :=u(a;) —u(0). If Y (a,¢(c)) # 0,
then f (a,c) < u(a1) = f(a,b). If Y (a,¢(c)) = 0 then f (a,c) = u(a1) = f (a,b).|

Let S:={(a,p):Y (a,p) # 0}. Note that S is an open set.
Claim 1.5: There is g (a, ), which is continuous.

Proof: If Y (a,¢) # 0, then g(a,¢) = u(a1) — U ({a,b}) for some b € Y (a,¢), and
is clearly continuous. If Y (a,¢) = (), then ¢ < ¢ (a) implies g (a, p) < 0, while p > ¢ (a)
implies g (a,¢) > u(a1) — u(0). Define a switch point (a, ) to be a boundary point of S
such that there exists b € R?2 with ¢ (B) = @. For p = ¢ (a) define g (a, ) := 0 and for
P > ¢ (a) define g (a,9) := u(a1) — u(0).

Consider a sequence {(a",¢™)} — (a,p) in S. Pick a sequence {b™} with b €
Y (a”, ¢")Vn. Define {b]'} = {min [%,b’f’,a} } Define b3 to be a solution to ¢ (b}, b5) =
©". By F» and Fj, by is well defined. Note that by observation (3) b™ = (b},05) €
Y (a”, ¢™). Lastly, let /Z;? = b7 and /b\g be the solution to (b?,b”) = ». We have
U({a™,b"}) = u(al) —g(a™, ¢"). If in the switch point » = ¢ (a), then U ({a, B”}) =
u(a1). By continuity, U ({a,b"}) — U ({ﬁ, b”}) — 0, hence

n—oo

~ o~

lim g (a",¢") = lim [u(al) —u(a1)] =wu(a1) —u(a1) =0=g(a,p).

n—oo n—oo

If in the switch point » > ¢ (@), then U ({ﬁ, g”}) = u (3717“) = u (b}). By the same

continuity argument
lim g (a”,¢") = lim [u(a]) —u(b})] =u(a1) —u(0) =g (a,p).
n—oo n—oo

For ¢ < ¢ (a) let g (a, ) < 0. This satisfies the constraint on f. So g can be continuous

in both arguments and increasing in ¢ and such that for any sequence {(a”, ¢")} in S, with
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{(@", o™} — (a,p) , we have nlLrI;og (@™, ™) = 0.

That the representation satisfies the axioms is easy to verify. This completes the proof

of Theorem 1.3‘H

2.8.2 Proof of Theorem 2

Theorem 2 and Theorem 4 (i) are analogous, where Theorem 2 covers the case N = 2, while
Theorem 4 (i) covers the case N > 3. We prove Theorem 4 (i) below by first establishing
that the analogous version of Theorem 1 holds. From there on the proof of Theorem 2 is

identical to the proof of Theorem 4 (i), with ag substituted for a_.

2.8.3 Proof of Theorem 3

Luce and Tukey [1964] prove the necessity and sufficiency of Solvability (which is implied
by Negative Transitivity, Weak Solvability, Pareto and Continuity (apply corollary 1 in the
text to the case N=2)) and the Corresponding Trade-offs Condition (the label they use for
Fy ) to admit an additive representation.®> To see how a proof works, consider the Lock-Step
Procedure,® as illustrated by Figure 2.3:

By I3, = indifference curves are downward sloping and continuous. Fix (a?, ag) and

as > aY. Recursively construct a flight of stairs between the indifference curves through

(08, a3) and (), a3).

In the direction of increasing as (and hence decreasing aq) :
a} solves (a}',ay) ~y (a,a)) . F3 guarantees that a solution exists whenever

(0,a%) <y (a},a3). If (0,a%) =5 (a,ay), the flight of stairs terminates.

n+1 0 1

ay ™ solves (aft,ay ™) ~¢ (ad,al). A solution exists by F3, as (af,0) <y (al,a3) by Fb.

In the direction of decreasing as (and increasing a;):

a;" solves (a;™,a;"™) ~¢ (ad,a}). A solution exists by F3, as (0,a5"") < (ad, ad)

by Fg.

31f I, and F3 were only posed on R2 | as suggested in section 3, we would have to choose b >0 and
bT > 0 to use these axioms. This is possible for any switch point other than (a,$) = (0, (0)), for which
continuity can be established easily.

35 Their theorem is stated in section 5.1 of the text.

#08ee Keeney and Raiffa (1976).
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A

a  a a; a; a,

Figure 2.3: Lock-Step Procedure, Constructing a flight of stairs.

ay " solves (a7",a3™) ~ (af,a3). F3 guarantees that a solution exists whenever

(al_",O) =t (a?,ag). If (al_”,(]) = (a?,ag), the flight of stairs terminates.
By construction (aff“, ag”) ~F (a’f, agﬂ) and then by Fy,

(aft,ay™?) ~; (a7™!,a5™). Thus we have constructed a discrete set of points on another
indifference curve from the initial two curves. Repeating this procedure we can fill Ri with
countable sets of points on countably many indifference curves.

Now consider a particular indifference curve that lies between two members of this set,
as illustrated in Figure 2.4: Define <a%,a%> implicitly by <a%, a%) ~ <a(1), a%) and

1
2
ai,a

ay,a? | and through (a(l), ag) as described above. Then we have in direction of decreasing

NSRS

> ~ (a(l), ag). Construct a flight of stairs between the indifference curves through

N

n+1 n+1 n n n—1 n n+41 n+42
ag: {a;? ,ay® | ~y <af , af) and (a;? ,a3 | ~5 (a;?® ,ay® | . Therefore, by construc-
n  ntl ntl  nt2 n—1 n+1 n  nt2
3 2 2 2 2 2 2 2 2
tion ( ai,a, ~rla? ,a, and then by Fy, (a;? a4 ~r (af,ay .
Proceed analogously in the direction of increasing as.
This demonstrates that if the vertical distance, measured in second component’s units,
1

between the indifference curves through (af,a9) and (af,a3) in af is the same as between

those through (af,a}) and (a,a3) in a?~!, then it is also the same between those through
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ad;

2
a2 ) b *
a” \ \
a *
a

_] \
a,

a? a?/Z a: a:/Z a(l) a-]1/2 a]l a]

Figure 2.4: Lock-Step Procedure, Completing the indifference map.

1 n 1 n—1
(a?,ad) and (a?,af) in af and between those through (a?,af) and (al,a}) in a;? .

Repeating this procedure we can generate a dense set of points on indifference curves that
are dense in Ri. Then continuity of > allows us to complete the entire map. Hence, if
(a1,a2) ~ (a1, a3) and (a1, a2) ~ (a,d3), then (a1, az) ~y (a3, a3) < (a1, a2) ~y (a1, a3).

As aresult, we can create a mapping as — 7y (az) that transforms the original indifference
map to be quasi-linear (vertically parallel indifference curves). The algorithm, which is
formally described below, involves proceeding in infinitesimal steps and equalizing the step
heights .

Set v (1) := 0. To determine v (a2) for az > 1, pick an arbitrary a; and let aj solve

37

(a1,a2) ~y (a(l), 1+ A), where A will be infinitesimal for the integration.”’ This solution

exists by F3. Then for every aj € (1, ag]:3®
Let af solve (a},a}) ~5 (af,1+ A).
Let aj* solve (a}*, a3+ A) ~f (af,1+ A).

Let a} solve (a},ab) ~y (af,1).

37 As established above, the result of this mapping will be independent of the choice of a;.
38 The existence of solutions in the two cases below is guaranteed by the same reasoning as in the above
discussion.
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Let da), solve (a}*,ah + dab) ~y (af, 1).
Note that by F, ab < ab and a), + dabh < al + A.
Define implicitly dv (a}) := 7 (ab + da}y) — 7 (a}), where

~ v (a) for a < a
’)’(a): i} () X 2 §
v (a3) +a— a} for a > a}

and then o 0
wmg:vm+/mm9:/mma
1 1

Analogously determine 7 (ag) for ag < 1: Pick an arbitrary a? and let a; solve (a1, az) ~y
(af,1). Then for every a} € [ag, 1):
Let af solve (a3, a3) ~5 (af,1).
Let a}* solve (a}*,a3 — A) ~y (af, 1).
Let af solve (af,ay) ~ (af,1+ A).
Let dah, solve (ai*, ay — dab) ~5 (af, 1+ A).
Note that ay < a3 and a5 + day < a3 + A by F.

Define implicitly dvy (a3) := v (a}) — 7 (afy — dal), where

- v (a) for a > a¥
@ = { e
v(a3) —a+ a3 for a < a¥

and
a2 1
M@%—MU+/MMD——/MWQ<&
1 as

Then v : Ry — R, is a continuous and increasing function. The > ; indifference curves are
quasi-linear with respect to 7 (az), so there is an increasing continuous function § : Ry — R,

such that £ (a1) + 7 (az2) generates the same indifference map. Hence re-defining

¢ (a) ==& (ar) + v (az)

97



represents > 7. Define

v1 (a1) :==exp (£ (a1)) and vy (ag2) := exp (7 (a2)) .

Then vy,v2 : Ry — Ry, are increasing and continuous and if we re-define, yet again,
¢ (a) :== vy (a1) v2 (ag), it represents >;. By F3, the functions v, v must be unbounded.

That the representation satisfies the axioms is easy to verify.ll

2.8.4 Proof of Theorem 4

(i) The analogue of Theorem 1 can be established by substituting a_; for az in the theorem
and in the proof, where now ¢ : Rﬂ\rf — R.

Let ¢ be a representation of ~;. Let  := asel]%%go (a) and ¢ := aigrﬁfﬁgo (a), if they are
well defined. Otherwise, take » = oo and p = —o0.

As before, let S := {(a’,¢') : Y (a’,¢') # 0}. By F§¥ and the representation analogous
to Theorem 1, u (a1) —u (0) > g (a, ¢) for (a,p) € S.

Let =g be a binary relation on S defined by (a,¢) >s (a,p) < {a,b} > {5,5}
Vb e Y (a,p) and Vb € Y (a,B).

Define Ug : RY x (¢,%) — R such that Us (a, ) := U (a,b) for some b € Y (a,¢). By
Theorem 1, »g is a weak order that can be represented by Ug. Note that the Consistency

axiom (Ps) is relevant precisely on this domain. For (a, ) ¢ S define

0 for p(a) < ¢

Us (a,p) := {u(al) for ¢ (a) > ¢

Claim 4.1: Ug is continuous in all arguments.

Proof: Since the utility function is continuous on S, and because outside of S the function
was chosen to be either a constant (hence continuous) or a continuous function, the only
candidates for discontinuity are points on the boundary of S. There are two cases:

Case 1) ¢ (a) = ¢: Take (a,p) € bdr (S). Since (a, ) is a boundary point, it must be
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that ¢ (a) = ¢. Now let {a”, ¢"} be a sequence in S which converges to (a, ¢). By the defin-
ition of S, U ((aff, aﬁl) ,go”) =u(al)—g ((a’f, a’ll) ,4,0"). Because preferences are continu-
ous and using the properties of g from Theorem 1, we have nhl& u(al)—g ((a?, a’il) ,cp”) =
u (a1) as required.

Case 2) p (a) < ¢: Take (a,p) € bdr (S). Again, let {a™, ¢"} be an arbitrary sequence

in S which converges to (a, ). By the definition of S,
Us ((af,a%) ") = u(af) — g ((af,a,) ") > inf {u (ba) : @ (b) = " and by < af}

Since > is continuous, we have

lim u (a?) -9 ((a?v azl) a@n) = u (al) -9 ((alv a,1) 790) >

n—o0

iréf{u(bl) cp(b)=pand by <a1} = u(0).

where the last equality is implied by Fi'. As (a,9) ¢ S, we claim that
u(ar) —g((a1,a-1),p) < irﬁf {u(b1) : ¢ (b) =¢ and {b} ~ {a,b}} = w(0). If not, then
u(a1) — g((a1,a-1),¢) = u(c1) > u(0). But for any ¢ with ¢; > 0, using F§', we could
find ¢’ with ¢} < ¢1 and ¢ (¢’) = ¢ (¢). Using Theorem 1, this would imply that (a, ) € S,
which is a contradiction. Combining we have T}Ln;o u(at) — g ((at,a"),¢") = u(0), as

required. ||

Definition: For (a,¢) € S, define Ig(a,¢) := {(a’,¢') : (&',¢') ~5 (a,9)} € S. That

is, Is (a, ¢) is the =g equivalence class of (a,p).
Let af : RZ x (,%) — Ry be the solution to

u(aj (a,9)) =u(a1) —g(a,¢) =Us(a,p).

a} is the "first component equivalent" functional on S.3 Since u (a1) > u (a1) — g (a,¢) >

u (0) and >g is continuous, af is well defined and we have (a,¢) >s (a,p) < af (a,¢) >

#Formally, Vx € RY ™", {(a} (a,9),x)} ~ {a,b},Vb €Y (a,¢)
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ai (a,®).

Claim 4.2: The shame g (a, ¢) is strictly increasing in ¢.

Proof: Assume to the contrary that there is ¢’ > ¢ and (a,¢’) ~g (a,¢) for some a.

n

Then for ¢ > ¢” > ¢ > ¢ we must have (a,¢”) ~g (a,¢"”) as shame is weakly in-
creasing in . Now pick a’ such that (a’,¢) =g (a/,¢’) and (a’,¢),(a’,¢’) € S. This is
possible by continuity of Ug, since for a” such that ¢ (a”) = ¢ the definition of Ug yields
Us (a”,p) > Ug(a”,¢'). Then by Ps, (a’,¢") =g (a’,¢"), a contradiction to shame being

weakly increasing in .||

Claim 4.3: For all (a, ) and » € (¢ (a1,0),%) there exists a such that (a, ) € Is (a, ¢).

Proof: Define ¢* implicitly by Us ((a1,0),¢*) = Us(a,p). This is possible by the In-
termediate Value Theorem, as Us ((a1,0),¢ (a1,0)) = u(a1) > Us (a,¢) > Us ((a1,0), ),
where the last inequality is due to Py and Claim 4.2. There are two cases to consider:
Case 1) p > ¢*: Then Uy ((a1,0),9) < Us (a, ¢) according to the monotonicity of shame.
By FYV there is @y (p) that solves ¢ (a1,a2 (9),0) = @. Then Us((a1,a2 (9),0),p) >

Us (a, ) and by the Intermediate Value Theorem there is a2 (¢) € [0,a2 (¢)) such that

Case 2) p < ¢*: Then

Us ((ai< (av 90) 70) 7&) < Us (aa 90) < Us ((abo) 7(77) :

By the Intermediate Value Theorem there is a; () € [a] (a,¢) ,a1] such that

Us ((al (877) 70) ’SND) = Us (aa 90) ||
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Combining the two cases we see that ¢ parametrizes a path

a (@) == { (a1 (9),0) for o < o~
(2e) (a1,32 (), 0) for § > "
of allocations. According to Claim 4.2 ¢ (a) must be strictly increasing along this path.
This implies a(a ) (¢) is strictly increasing in its first component for » < ¢* and in its
second component for ¢ > *.

Now we construct a g indifference class close to the original one:

Claim 4.4: For a, ) (¢) as defined above, cp/I—cl/cp(a’@) (p) that solves

—_—

(Bag) (@), + doiay) () € Is (a ¢ + do)

is increasing in @.

Proof: Assume ¢’ > @. There are two cases to consider:
~/

Case 1) ¢' > ¢*: Then Gy(a ) (') = a1, G1(ay) (?) < a1 and Gy ) () > o(ay) (@)

P, implies

s

(a(a,go) (QND) P+ d(p(a,ap) (@)) =s (5(a,<p) (S~D,) 790/?6790(51,@) (@)) .

~/ ~/

Case 2) @ < ¢*: Then A2(a,p) (go) = Qy(a,p) (p) =0 and a1 (a,p) (<p ) > A1 (a,p) ().

As g is increasing in a1,

—_~—

(5(a,go) ((7)) P+ d(p(a,ap) (&)) <s (5(:—1,@) (a/) s d(p(a,go) (&)) :

P / —_—

As shame increases in ¢, we must have ¢ + dy(, ) (@) > e+ dP(a,e) (9) in both cases. ||

Now we define a re-scaling ¢ +— v () in order to transform the original indifference map
of Us (a, ) to be quasi-linear. We proceed similarly to the proof of Theorem 3. Choose

o € (g,@) and define ~ ((po) := 1. Further set ~ (cpo —|—dcp) := 1 + dvy, where dyp is
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infinitesimal. To define ~ (¢) for ¢ # ©°, pick a such that Plag) < Y. As goz‘a#)) < ¢, this
implies (’Ozﬁa,w) < min [, ¢"]. Choose a” such that (a° ¢°) € Is (a, ). We will look at the
increasing graphs @ and @?E(p(a7<p) (p) as defined above. Consider two cases for applying
the Lock-Step Procedure:

Case 1) ¢ > °: Define a climbing flight of stairs between the graphs @ and P+dp(a ) (¥)
recursively: Let ¢" 1! solve (ﬁ(aW) (™) ,<p”+1) ~g (aO, oY + d(p). The solution exists by the
construction of a, . (¢™)-

Case 2) ¢ < ¢ Define a descending flight of stairs between the graphs @ and  +
dP(a,p) ($) recursively: Let 0~ "1 solve (ﬁ(a#p) (o7 1) o) ~g (a2 " + dp).

Then 7 (@) can be determined analogously to the proof of Theorem 2 by equalizing all
step-heights to dy and integrating. Due to Ps this definition is independent of the choice
of a’.

Now the indifference map of Ug (a, ) is quasi linear in 7 (¢), where v : R4 — R is
strictly increasing and continuous. Further remember that Ug (a, ¢) is strictly decreasing
in ¢. Therefore, there exists H : RY — R, such that H (a) — v (¢) represents >g on S.

Define ug (a1) := H (a) — lim -~y (y). Because of P,

p—p(a)
ug (a1) if {a} ~{a,b} > {b}
U({a,b}) =4 H(a)—~(¢(b)) if {a} = {a,b} = {b}
us (b1) if {a} > {a, b} ~ {b}

represents > confined to the collection of all two element sets. Therefore, H (a) = ug (a1) +
v (p (a)) must hold. Hence

U(A) = max [us (a1) + 7 (v (a))] — max [v (¢ (b))]

represents = on K, where ¢ represents >, and ug and 7 are strictly increasing. Since ¢
represents > ¢, so does 7 (¢). Hence, there is a representation ¢ of ¢, such that v is the
identity and

U (4) = max [u, (1) + o ()] — max o (b))

beA
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represents > on K.

(ii) To establish the analogue of Theorem 3, namely that there are N increasing un-
bounded functions vi,..,vyN, such that the fairness ranking >~; can be represented by
¢ (a) = vi(a1) - ... - vy (ay), if and only if it satisfies Fy, Fo, Fi¥ and Fj¥ we apply the
Theorem of Luce and Tukey, just as in the proof of Theorem 3. It establishes the existence
of an additive representation &; (a1) + ... + {x (an) of >=y. Define v, (ay) := exp (§, (an))
for all n € {1,.., N}. Then vy,..,uxy : R — R4 are increasing and continuous and if we
re-define ¢ (a) := v; (a1)-...-vn (an), it represents ;. By Fi¥, the functions vy, .., vy must
be unbounded.

That the representations satisfy the axioms is easy to verify.ll

2.8.5 Proof of Proposition

Define the random variable X,, := 0,, — x1.
Claim 5.1: DM’s utility is a decreasing function of | X, |

Proof: DM chooses a to maximize

u(d(a,z1)) + BN <E L]f[lu (d(a,z;)) ]x”] —-F [lj_v[u(d(a*,:vi)) |:c"]> .

i=1

N

Since 0 is a sufficient statistic for z*¥, we can write:

B el | = £ |2 | Tu@@a))o] o]

=1 i=1

This expression is single peaked as a function of a:

£ |Mu@@a) ] =5 | Mu-0.20) 0] = ra-0).

i1

where f is symmetric and single peaked, with a peak in 0 and .*° Write 7 () for the

density function corresponding to § ~ N (E, 7%) It is single peaked with peak in 6.

10The first equality is justified, since only the distance, which is symmetric, enters the utility functions.
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Thus,
B Mu@@a)e"| = [ fla-0)m @)as

is the convolution of two symmetric single peaked functions, with peak in 0 and 6, re-
spectively. Then E []]_V[u (d(a,x;)) ]w”} is single peaked with peak in @ = ,,. This means
that fairness is maxi:;zed at a* = 0,, and, therefore, shame is increasing with ‘% — a’.
By assumption, DM’s selfish utility is decreasing with |a — z1|. Therefore, DM in effect
chooses |6, — a| € [0, |Xy|]. Fix X, and denote by [ (|X,|) DM’s optimal choice of |6, — a
and V (1 (| Xy|),|Xn|) the associated (total) utility. Then for | X]| < | Xp|,

max {0, |X,’l’ — (| Xu]} <X = 1(X0))

and

min{|X;L

(X))} < L(1X])

with at least one inequality strict. Therefore,

V(L (1Xn]), 1Xal) <V (min {| X[, 1(Xal) } [ X))
and by definition

V- (min {[ X0 LX)} | X5]) < V(X)) [X0]) -

Combining the two inequalities establishes the result. ||

For given 6, note that

X, |0 ~N<_ 6 (=1 (2v2+m2)+v4)>.

v? +no?’ (no? + 12)>2
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6

Define H,, (0) := 20, so Hy, (0) ~ N (0 V7> Then

T 124 no2 ? (V2+m72)2

o? (02 (n—1) (21}2 + naQ) + v4)>

[(Xn — Hy (0)] [Hy (0) ~ N (Oa (n0_2 + V2)2

Let hy, (Hy, (0)) and g, (X,, — Hy, (f)) denote the associated density functions. The convo-

lution

[ (Hy (0)) g (X0 — Hy (6)) dH,, ()

yields

2( 2( _ 2 2 4 6
x, ~n (0.7 (02 (m—1) (2v +nz)+v)+v ‘
(no? + v?)

Hence for every n, *!

52 V2 4+ no? 2
p(|Xn| = 2) ocexp [— ( )

2 (62 (02 (n —1) (202 + no?) + v*) + v%)

Consequently
P (|Xn| = 2)
p (| Xm| = 2)
9 v24no? 2
_c (02(02(n—1)(2v2+no?)+vt)+00)
o exp 5 (v2mo?)°

T 0202 (m—1) (20 mo?) tvh)+u5)

52
= :exp —Ecyﬂ(m,n) )

Thus, the ratio % satisfies the Monotone Likelihood Ratio Property (MLRP): If

Cv,o (mvn) < (>) O, then w

UK =2) increases (decreases) with z. Since DM’s utility is de-
creasing in z, she will strictly prefer m over n (n over m) if and only if ¢, , (m,n) < (>)0.
In the text we define the ratio of the standard deviations o and v as s := ?. s is a sufficient

statistic for (v,0). Assuming n > m, we find, with some straightforward algebra, that

cs (m,n) < (>)0, if and only if 2 4+ (m +n) s — 3s5* — 2 (m +n) s® —mns® < (>)0.

1'We use the fact that for a Normal distribution with mean 0, p (X, = z) = p(X, = —z). With o we
denote "proportional to".
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Claim 5.2: For n > m, ¢s (m,m + 1) < 0 implies ¢; (n,n + 1) < 0.

Proof:

24+ (m+(m+1)s>=3sT—=2(m+(m+1)s*—m(@m+1)s® <0

is equivalent to

2 — 35 m2+m
< 940 8 .2
om+l 2 T o1

Let lhs := %;ffi and rhs = 2s% + %38 — 2. Consider two cases:
i) 2 —3s?>0: % (lhs) < 0 and % (rhs) > 0 implies ¢s (n,n + 1) < 0 for n > m.
ii) 2 — 3s* < 0: Then for all m, lhs < 0 and 7hs > 0, which implies cs (n,n + 1) < 0 for

n > m.||
s* as defined in the text solves ¢ (1,2) = 0.

Claim 5.3: For s < s*, ¢s (m,m+ 1) = 0 has a unique solution n* (s) € Ry. For s > s*,

no positive solution exists.

Proof: Assume first s < s*: To show existence, note that due to the quadratic term
in m, m — oo implies ¢s (m, m + 1) — —oo for all s. Since ¢ (m,m + 1) is continuous in

m, it is sufficient to show that ¢, (1,2) > 0 for all s < s*. ¢4 (1,2) > 0 is equivalent to
24352 —3s* - 655 —2s2 >0

or

2/82 +3> 352+ 65 +25° Vs < s*.

For this last inequality % (lhs) < 0 and % (rhs) > 0. Since 2/5*2 4 3s* = 35*2 4+ 65*4 4-25%6,
¢s (1,2) > 0 must hold for all s < s*. Hence a solution m = n* (s) exists. Its uniqueness

follows directly from claim 5.1.
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Consider now the case s > s*: In that case ¢s(1,2) < 0. Claim 1 implies that no solution

exists to the equation c¢s (m,m + 1) = 0 for any m € Ry .||

Claim 5.4: n* (s) is decreasing in s.

Proof:
24+ +(n*+1)s* =35t =2 + (n* + 1) —n* (n* +1)s5=0

is equivalent to
2/s*—3s> 4 n?4nt g

_ noER 6.
m* + 1 ST o1’

0

n*

For this equality a%*(lhs) < 0 and g (rhs) > 0 for all s, while g(lhs) < 0 and

S

% (rhs) > 0 for all n*.||

Thus, if DM prefers n = 1 to n = 2, then n*(s) = 1 is her globally preferred value.
If she prefers m to both m — 1 and m + 1, then n*(s) = m is her globally preferred
value. Neglecting the integer constraint, m = n*(s) is the unique positive solution to
2+ (m+(m+1))s2—3s* —2(m+ (m+1))s® —m(m+1)s8 = 0, if a solution exists.

Furthermore, n* (s) is a decreasing function.ll
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