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Market outcomes often appear to be less related to fundamentals than traditional economic
theory would suggest. Examples include bubbles in financial markets, speculative currency
crises, and the evolution of technological standards. This dissertation emphasizes the role
of strategic interaction and social learning by rational agents in modeling such phenomena.
Toward this goal, we first develop the theory of dynamic coordination games with private
information and Bayesian social learning. In the first two chapters of the dissertation we
provide a group of theoretical results to characterize the equilibrium set of these games. In
the third and fourth chapters we apply the theory thus developed to examine two specific
economic problems. The first of these investigates the role of a large investor in precipitating

a speculative attack on a currency. The second provides a model of contagious bank failure.



Dynamic Coordination Games:
Theory and Applications

A Dissertation
Presented to the Faculty of the Graduate School
of
Yale University
in Candidacy for the Degree of
Doctor of Philosophy

by
Amil Dasgupta

Dissertation Director: Stephen Morris

December 2001



(© 2002 by Amil Dasgupta
All rights reserved.



Contents

Acknowledgements

Introduction

1 Coordination, Learning, and Delay

1.0.1

1.0.2

Summary of Results . . . . . . ... ... oo oo

Applications . . . . ..o

1.1 The Investment Project . . . . . .. ... ... ... ... ...

1.2 The Benchmark Static Game . . . . . . . . . . . . . . . . ... ...

1.3 The Dynamic Game with Exogenous Order of Actions . . . . . .. ... ..

1.4 The Dynamic Game with Endogenous Order of Actions . . . ... ... ..

1.5 DiISCUuSSION . . . . . o v v e e e e e e e e e e

1.5.1

1.5.2

1.5.3

1.54

1.5.5

Welfare . . . . . . o o
Exogenous vs. Endogenous Ordering . . . . . . .. ... ... ....
Efficiency Gains At Intermediate Costs of Delay . . . ... ... ..
The Costs and Benefits of the Option to Wait . . . . . . ... .. ..

Applications . . . . . . ...

1.6 Concluding Remarks . . . . . . . ... ... . L



1.7 Appendix . . . ... e e e 53

1.71 Proofs . . . . . .. 53

2 Social Learning with Payoff Complementarities 60
2.1 TheModel . . . . . . . . e e 67
2.1.1 The Structure of the Game . . . . . ... ... .. ... ...... 67
2.1.2 A Note on Likelihood Ratios . . . . ... ... ... ... ...... 69
2.1.3 Possible Strategy Profiles . . . ... ... ... ... ... ... 70
2.1.4 The Existence of Trigger Equilibria . . . . . .. .. ... ... .. .. 73

2.2 Properties of Investment Equilibria . . . . . . . . ... 00000 80
2.3 Herding . . . . . . . e e e e e 84
2.3.1 Bounded Likelihood Ratios: Strong Herd Behavior . . . . . ... .. 85
2.3.2 Unbounded Likelihood Ratios: Weak Herd Behavior . . .. ... .. 88

2.4 On the Possibility of Coordination . . . . . ... ... .. ... ....... 94
2.5 Discussion . . . ... Lo e e e e e e e 98
2.6 Appendix . . . ... L e 100
2.6.1 Proof of Proposition2.3 . . . . ... ... ... L. 100
2.6.2 The Single Player Versionof I'(2) . . . . . . .. .. ... ... .... 102

3 A Theory of Currency Crises with Large and Small Traders 105
3.1 Themodel. . . . . . . . . . e e e 110
3.1.1 Imformation . . ... ... .. ... 112
3.1.2 Two benchmark Cases . . . . ... ... ... ... .......... 113

3.2 Equilibrium with Small and Large Traders . . . . . . . .. ... ... .... 116



3.3 Impact of Large Trader . . . . . ... ... ... .. .. ... ... .. 120

3.3.1 Comparative Statics in the Limiting Case . . . . . ... ... .. .. 123
3.3.2 Comparative Statics Away from the Limit . . . . . .. ... ... .. 129
3.4 Sequential Move Game . . . . . . .. ..o oL 132
3.4.1 Equilibrium . . . .. ..o 134
3.4.2 Comparative Statics in the Limit . . . . . . . ... ... ... .... 138
3.4.3 A synthesisofourresults . .. ... ... ... ... ... ..... 141
3.5 Concluding Remarks . . . . . .. ... ... L 143
A Model of the Origin and Spread of Bank Panics 149
4.0.1 National Banking Era Panics . . . . ... ... .. ... ....... 151
4.0.2 Summary of Modeland Results . . . . . ... ... .......... 154
4.0.3 Related Literature . . . . . . . .. ... L oL 156
4.1 The Model . . . . . . . . . e 158
4.1.1 Regional Liquidity Shocks . . . . . . . .. ... .. ... .. ..., 158
4.1.2 Banks, Demand Deposits, and Interbank Insurance . . . . . . .. .. 159
4.1.3 Information and Timing . . . . . . . . .. ... .. ... 162
4.1.4 Depositor Payoffs and Interbank Payments . . .. .. ... ... .. 163
4.1.5 Notation. . . . . . . . . L e 166
4.1.6 Parameter Restrictions . . . . . .. . ... ... ... 0. 167
4.2 Equilibrium . . . ... oL 168
4.3 Contagion . . . . . . . . e e e e e e 176
4.4 Should banks hold interbank deposits? . . . . . . ... .. ... 178
4.5 Closed Forms, Comparative Statics . . . . . . .. ... .. ... .. ..... 182



4.5.1 Expected Interbank Payments . . . ... ... .. ... ....... 183

4.5.2 Limiting Thresholds . . . . . .. ... .. ... .. ... ... ..., 183

4.6 Discussion . . . . . . ... e 188
4.6.1 More regions? Aggregate liquidity shocks? . . . . . ... .. ... .. 188

4.6.2 Learning? . . . . . . . ... e 189
Bibliography 189



Acknowledgments

I would like to thank Stephen Morris for teaching me how to do research in economics.
Stephen helped me to identify and execute my research program with great patience. He
always provided just the right amount of guidance and allowed me to find my own identity
as a researcher. This dissertation would not have been possible without his mentoring.

Ben Polak spent many hours discussing and critiquing my work with an eye for detail
that never ceased to surprise me. I owe him a debt of gratitude for this, and for his kindness
as a mentor in general. Without Ben’s concerned reassurances, I may well have stopped
doing economics in dismay upon receiving my first referee report!

Dirk Bergemann and David Pearce have always been very supportive teachers. They
were diligent in reading my work, and in offering me suggestions. I always walked away
from my conversations with Dirk and David with a fresh perspective on my research, and
with questions that I had never thought of before.

Some other mentors, at Yale and elsewhere, who have been particularly helpful are Don
Brown, Giancarlo Corsetti, Timothy Guinnane, Jonathan Levin, Giuseppe Moscarini, and
Debraj Ray.

It is futile to attempt to thank all my friends who have been of help to this dissertation
at one time or another. An incomplete list must include Hugo Benitez-Silva, Jason Draho,
Nick De Roos, Ana Fernandes, Garth Frazer, Shachar Kariv, Felix Kubler, Yianis Sarafidis,
and Katja Seim. I learned a lot from my conversations with them. In addition, I thank all
the participants at the Tuesday evening Game Theory workshop at Yale for their comments

and suggestions.



I thank my best friend Jennifer Loch. Her company made the years I spent in New
Haven happy ones.

Without the encouragement of my parents, Ashin and Uma Dasgupta, I would not have
come to graduate school. Their firm belief in the value of research and in the richness of
academic life sustained me through my years as a graduate student. My father died at the
end of my first year at Yale. The fortitude with which my mother and he conducted their
lives has given me an example to live by. I dedicate this work to them.

Financial support from the Robert M. Leylan Dissertation Fellowship, graduate fellow-

ships from the Cowles Foundation, and a Yale Enders Fellowship is gratefully acknowledged.



Introduction

Even casual observation of booms and busts in financial markets suggests that observed
economic outcomes may have less to do with “fundamentals” than traditional economic
theory would suggest. “Self-fulfilling”crises, “irrational exuberance”, and “herd behavior”
are but a few of the terms that have been used to informally describe this decoupling.

A common example of self-fulfilling crises is the sudden collapse of a fixed exchange rate
peg under speculative pressure. Consider a mass of speculators deciding whether to attack
a fixed currency peg. Since even weak currency pegs do not fall in a day, a successful attack
takes several periods to mount. To complicate matters, the exact amount of reserves that
a central bank is willing to spend to defend the peg is not known with certainty. Short-
selling has increasing returns to scale. It takes a certain mass of speculators to mount
a successful attack. Finally, since it takes time to mount a successful attack on the peg,
those who choose to wait before attacking are often able to observe some noisy aggregate
statistic summarizing the state of the market which incorporates past choices (e.g. “short”
or “long”). Assuming that each speculator has access to private research, such observation
can productively increase the knowledge of the observer.

The stylized features of situations such as these are incomplete and private information,



strategic complementarities, and multiple periods with observable actions. Information
is incomplete in that agents do not know the true state of the world. However, agents
typically have access to proprietary research or personal intuition about the state of the
world. Thus information is also private. There are strategic complementarities because
individual payoffs depend on the actions of others. Finally, since the situation lasts several
time periods, agents may be able to at least noisily observe the actions of others. Other
examples of such settings include bank runs and panics, bubbles in stock markets, and the
adoption of new untested technologies in the presence of network externalities.

There is a rich tradition of formal and informal economic models that seek to explain
such an apparent decoupling of fundamentals and outcomes, dating back to Keynes (1936).
The more recent game theoretic tradition has given rise to at least two distinct strands
of the literature that analyze such situations. The first strand utilizes static coordination
games. Two leading early examples of these are Diamond and Dybvig’s (1983) analysis
of bank runs, and Obstfeld’s (1986) examination of currency crises. These games take
the coordination problem of agents seriously, but ignore the dynamic component to their
decisions, and the social learning inherent in the original problem. The second, more recent,
strand consists of the so-called “herding models”. Leading early examples of these are
Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992). These models analyze
sequential social learning problems but ignore the strategic elements embodied in the payoff
complementarities that are common to many such settings.

It is of interest to take both the learning (backward-looking) and strategic (forward-

looking) elements in this class of problems seriously, and to examine how they interact. The



essays of this dissertation do so. To achieve this, we model these problems using dynamic
coordination games with private information and observable actions. En route to our goal,
we have to address a theoretical problem. Coordination games, both static and dynamic,
can have multiple equilibria. This can render comparative statics exercises difficult, and
thus reduce the usefulness of the models in analyzing applied problems. Well-developed
theories of equilibrium selection exist for a large class of static coordination games (see
Carlsson and van Damme 1993, and Morris and Shin 2000), and for a subset of dynamic
coordination games without learning (see Frankel and Pauzner 2000, and Burdzy, Frankel,
and Pauzner 2001). The question of uniqueness of equilibria for coordination games with
learning has not received systematic treatment. In the essays of this dissertation, we propose
some tractable first steps towards extending the Carlsson-van Damme equilibrium selection
techniques to a class of dynamic coordination games with social learning.

The essays of the dissertation can be divided into two groups. Chapters 1 and 2 investi-
gate the theory of dynamic coordination games with learning. Chapters 3 and 4 apply this
theory to two specific economic problems. In what follows we briefly summarize each of the
chapters.

The first chapter studies how the introduction of social learning with costs to delay
affects the equilibrium set of coordination games with incomplete information. We consider
a continuum of agents who choose whether and when to invest in a risky project. The
project succeeds if a sufficiently large proportion of agents participate, given the state of
the world, which is indexed by a smooth variable. All agents receive private signals about

this state variable, and agents who choose to invest late also receive a second signal that



noisily summarizes the proportion of early investors. When the risky project succeeds, it
pays a return that increases in the term of participation. Hence, there is a cost to delay in
participation.

We show that this game has a unique monotone equilibrium. A comparison of the equi-
librium of the dynamic game with the equilibria of analogous static coordination games
explicates the role of social learning. In the limit as noise vanishes, social welfare is strictly
ranked in the games we consider, with the highest welfare achieved in the dynamic game with
endogenous ordering. We demonstrate that exogenous asynchronicity is not a substitute
for endogenous asynchronicity. The latter can lead to strict improvement in the efficiency
with which agents can coordinate, relative to any game where the order of actions is prede-
termined. We also show that under endogenous ordering, as noise vanishes, the efficiency
of coordination is maximized at intermediate costs to delay. Our results have implications
for the initial public offerings of debt, as well as for the adoption of new technology under
incomplete information.

The next chapter, written prior to chapter 1, analyzes a similar problem in a more
discrete set-up. Instead of using a continuum of players, and a continuous state variable,
we start with a countable number of players and a pair of states, good and bad. N agents
enter in exogenous order in N periods, and choose whether to invest or not in sequence.
Investment is costly, and pays a positive return if and only if the state is good, and all other
players also choose to invest. Agents receive private signals, which are conditionally i.4.d.
and satisfy a monotone likelihood ratio property, and can perfectly observe the actions of

all their predecessors. This model subsumes the canonical herding model of Bikhchandani,
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Hirshleifer, and Welch (1992) as a special case when the payoff externality is eliminated.

In our setting we demonstrate that agents may exhibit either strong herd behavior
(complete imitation) or weak herd behavior (overoptimism) and characterize the informa-
tional requirements for these distinct outcomes. We also characterize the informational
requirements for coordinated risk-taking in games with finite but unboundedly large num-
bers of players. By using discrete players we are able to incorporate a strategic element
that is missing from the model in chapter 1. Discrete agents, knowing that their actions
will be observed by successors, take this account in making their decisions, i.e., they signal.
Unfortunately, however, this set-up does not possess the tractability of the model of chap-
ter 1. It is difficult, for example, to tractably endogenize the order in which agents make
their choices. In addition, for NV > 2 there may be a multiplicity of equilibria even in the
exogenous order game.

The remaining chapters of this dissertation examine two distinct applications of dynamic
coordination games. The first of these is contained in Chapter 3, which is jointly authored
with Giancarlo Corsetti, Stephen Morris, and Hyun Song Shin. The question we address
is: To what extent do large investors increase the vulnerability of a country to speculative
attacks in foreign exhange markets? To address this issue, we build a model of currency
crises where a single large investor and a continuum of small investors decide whether to
attack a currency based on their private information about fundamentals. We examine
two versions of the model: a static version which abstracts from signalling, and a dynamic
version which allows the large trader to send signals to small traders using her visible

short position in the currency. Even abstracting from signalling, the presence of the large
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investor does make all other traders more aggressive in their selling. Relative to the case
in which there is no large investors, small investors attack the currency when fundamentals
are stronger. Yet, the difference can be small, or null, depending on the relative precision of
private information of the small and large investors. Adding signalling makes the influence
of the large trader on small traders’ behavior much stronger. In particular, when the
large trader is much better informed than the small traders, she can completely solve the
coordination problem in the market. Small investors exhibit herd behavior: they attack
if and only if the large trader attacks. This effect is independent of the size of the large
trader.

Finally, in chapter 4, we examine the question of financial contagion. Financial contagion
is the phenomenon by which a crisis in one financial institution may affect a different
insitution through a variety of channels. Leading examples of such contagion, in the context
of commercial banks, were widespread episodes of bank panics in the United States in
the late 19th and early 20th centuries. We model financial contagion as an equilibrium
phenomenon in a noisy dynamic coordination game with multiple banks. The probability of
bank failure is uniquely determined. We explore how the cross holding of deposits motivated
by imperfectly correlated regional liquidity shocks can lead to contagious effects conditional
on the failure of a financial institution.

We show that contagion is possible in the unique monotone equilibrium of the economy
and characterize exactly when it may exist. At the same time, we identify a direction of flow
for contagious effects, which provides a rationale for localized financial panics. Simulations

identify the optimal level of interbank deposit holdings in the presence of contagion risk. Our
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results suggest that when the probability of bank failure is low, maximal levels of interbank
holdings are optimal. When cross holding of deposits is complete, we demonstrate that the

intensity of contagion is increasing in the size of regionally aggregate liquidity shocks.
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Chapter 1

Coordination, Learning, and Delay

In many applied problems in economics an agent’s payoff from taking an action depends
on some underlying (unknown) state of the world and increases in the mass of other agents

1" Many such settings are also inherently dynamic, encompassing

taking similar actions.
several time periods. Thus agents are presented with several occasions to act, and may
be able to (noisily) observe the actions of others who make choices before them. In the
presence of private information, such observation may help agents improve their knowledge

of payoffs. However, there may be a cost to delay in making choices. We begin by providing

a leading example of such a problem.

1T am grateful to Stephen Morris, Ben Polak, Dirk Bergemann, David Pearce, Don Brown, Sanjeev Goyal,
Johannes Horner, and Yianis Sarafidis for valuable discussions. I thank seminar participants at the Federal
Reserve Bank of Minneapolis, Erasmus Universiteit Rotterdam, the Indian Statistical Institute (Calcutta),
and Yale University for useful comments. An early version of this paper was circulated under the title
“Global Equilibrium Selection in a Dynamic Coordination Game with Social Learning”. Financial support

for this project was provided by Yale University in the form of a Robert M. Leylan Dissertation Fellowship.
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Consider a group of investors deciding whether to invest their resources in a safe domestic
venture or in a risky emerging market project. The risky project requires the participation
of a critical mass of speculators to succeed. Potential investors have private information
(from a combination of publicly available information and personal research) about the
underlying exogenous value of the project. Since investors operate in a common market,
those who choose to wait before investing can at least noisily observe the actions of others
who made their choices earlier. This can provide them with better information. But delay
comes at a cost of remaining vested in the project for a shorter period of time, and therefore
enjoying less of its benefits.? Similar examples include the adoption of new technologies with
network externalities®, currency crises?, and bank runs®.

At the heart of the example we have just described lies a coordination problem. An
individual wishing to invest in the risky project must be convinced that enough fellow

investors will also participate. Thus, we might expect equilibrium underinvestment relative

to the social optimum. However, the standard coordination problem is complicated here

*Chari and Kehoe (2000) study this problem. However, they do not take into account strategic com-
plementarities. In their model, the success of the project depends only on an exogenous state variable.
Two related models that analyze settings with endogenous timing and private information in the absence of

strategic complementarities are Caplin and Leahy (1993) and Chamley and Gale (1994).
3This problem is analyzed by Choi (1997). We discuss this paper further in Section 1.5.5.

4This problem is analyzed by Morris and Shin (1998), in a static model, ignoring learning. They extend
the equilibrium selection techniques of Carlsson and van Damme (1993) to analyze the problem in a unique-
equilibrium setting.

% Analyzed by Goldstein and Pauzner (2000), also ignoring learning, and also in the tradition of Carlsson

and van Damme (1993).
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by dynamics and social learning. Individuals have multiple periods to act. There may be
an incentive to wait and collect more information. This may delay, or even discourage,
investment. On the other hand, observing investment by some investors may encourage
others to join in, and thus lead to greater investment. Finally, the additional information
produced by observational learning may help agents make better choices. Given these
complications, it is natural to ask: How might the presence of dynamics and social learning
affect the level of equilibrium investment relative to benchmark cases?

In order to address this question we model the stylized features outlined above using
a noisy dynamic coordination game with Bayesian social learning and costs to delay. To
establish a benchmark for comparison we also analyze the same coordination problem in the
absence of dynamic elements and learning, i.e., using static coordination games. To avoid
the usual difficulties created by multiple equilibria in static coordination games we rely on
the work of Carlsson and van Damme (1993) and Morris and Shin (1998, 2000). These
authors demonstrate that in the presence of private information, a unique equilibrium is
selected in a large class of static coordination games, commonly referred to as global games.
The static global games analysis provides a tractable benchmark for our results. Comparing
our results to these earlier analyses would address the question raised above. Formally
stated: How does the introduction of social learning with delay costs affect the probability of
coordinated risk-taking in noisy supermodular games? Does learning make a difference? If
so, how? In order to complete the comparison, however, we must first overcome a theoretical
hurdle.

Dynamic coordination games, like their static counterparts, have multiple equilibria

16



when payoffs are common knowledge.® Many such games can have multiple equilibria even
in the absence of complete information, e.g. Dasgupta (1999), Marx (2000), Chamley (2001).
This makes it difficult to compare these games with their static counterparts, and therefore
obscures the role of dynamics and learning.

The theory of equilibrium selection in dynamic supermodular games has received recent
scholarly attention. In an important set of papers, Burdzy, Frankel, and Pauzner (2001),
Frankel and Pauzner (2000), and Frankel (2000) have established that when payoffs are
affected by a stochastic parameter with sufficient stationarity and frequent innovations,
a unique equilibrium is selected in a class of dynamic coordination games where agents
are offered random opportunities to switch between actions.” However, agents in these
models cannot use the observed actions of others to Bayes update their beliefs about the
state of the world. The evolving state variable is observed publicly, and the current value
incorporates all available information about future values. Their results are, therefore, not
directly applicable to the class of problems of interest to us.

To facilitate a precise comparison with static benchmarks, we propose a tractable model
in which the Carlsson-van Damme/Morris-Shin equilibrium selection arguments can be
partially extended to allow for social learning. In our model, a mass of agents choose
whether to invest in a safe project or in a risky project of uncertain underlying value. The

underlying state of the world is indexed by a variable 6, which becomes known at the end of

5For an analysis of dynamic coordination games with complete information, see Gale (1995), who demon-
strates multiplicity. In particular, for a continuum player version of Gale’s model, which shares features

with the model we present below, he demonstrates that there is a continuum of possible equilibria.

"In recent work, Levin (2000) extends their analysis to study overlapping generations games.
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the game, when consumption occurs. Investors have two opportunities to invest before the
end of the game, at times ¢; and #o. The receipts of an agent who invests in the risky project
depend on whether the project is successful. When the project succeeds, it generates a high
payoff which is continuously compounded between the time of investment and the end of the
game. Thus, there is a cost associated with investing later in the game. When the project
fails, it pays nothing. The project succeeds at 8 if a critical mass of agents participate, and
this required mass is inversely related to the value of §. Agents do not know 6 for sure, but
receive informative private signals about it. Agents who act in the later period, observe
a noisy signal of an aggregate statistic based on the proportion of investors in the earlier
period. While this statistic provides them with further information on the underlying state,
as we have noted already, there is a cost associated with delayed investment.

We first establish the benchmark static analysis for this model. The static models,
which enforce simultaneous moves, are, by definition, devoid of social learning. We define
two natural static games, based upon the time (¢; or t2) at which they are played. Following
these static models we examine dynamic extensions, which allow us to incorporate learning.
There are two natural ways to do this. We may allow for asynchronicity while prespecifying
exogenously the order in which the different agents must act. Alternatively we may consider
a model where agents are allowed to choose both their actions and the time at which they

act We consider each of these four models in turn.

1.0.1 Summary of Results

To explore the implications of our dynamic analysis, we first establish some existence and

uniqueness results. We show that as long as noise is small enough there is a unique monotone
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equilibrium in each of the dynamic games we consider. This is true regardless of whether
the order of actions is specified exogenously (Proposition 1.3), or chosen endogenously
(Proposition 1.4). In the limit as noise vanishes, we can solve for these equilibria in
closed form. We show that these dynamic equilibria are “well behaved”: As we vary model
parameters to bring the dynamic games “close” to the limiting static games, the dynamic
equilibria converge smoothly to their static counterparts. These convergence results are
shown in Corollaries 1.1 and 1.2 and discussed below in Sections 1.3 and 1.4.

The comparison of the equilbria of the static and dynamic games of exogenous and
endogenous order provides insights into the role of dynamics and learning. Our results
address two related but distinct issues. The first pertains to the equilibrium probability of
coordinated investment. The second pertains to social welfare. We deal with these in turn.

As noise vanishes, we show that there exists a strict ranking of the probability of co-
ordinated investment across the different games. The endogenous order dynamic game
maximizes the probability of investment. This is followed by the first period static game,
which in turn is followed by the exogenous order dynamic game. The lowest probability of
investment is achieved in the second period static game. This is summarized in Corollary
1.3 and discussed below in Sections 1.4 and 1.5.

In a related finding, we show that ezogenous ordering cannot substitute for endogenous
ordering. As noise vanishes, for almost all parameter values, there exists no ex ante ex-
ogenous ordering of agents that can replicate the probability of coordinated achieved by
the endogenous order dynamic game. This is because the endogenous coordination game

utilizes the revealed preference of a group of agents to invest early, while the exogenous
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order game does not. We illustrate that this result is robust to the presence of significant
amounts of private information in the games. This is discussed further in Section 1.5.2.

We demonstrate that as noise vanishes, the probability of coordinated investment in the
endogenous order dynamic game is mazximized for intermediate cost to delay. An intuition
for this follows from the observation that the efficiency of coordination depends on the total
mass of agents who can be persuaded to invest during the course of the game. The cost
of delay has opposite effects on the masses of agents who invest early or late. A large cost
to delay persuades more agents to invest early. But at the same time it dissuades agents
who did not invest early from doing so later based on their updated information. We call
this non-monotone relationship the coordination effect of introducing a costly delay option.
We illustrate numerically that it is robust to the presence of significant amounts of private
information. This is discussed further in Sections 1.5.3 and 1.5.4.

We show that the effect of introducing learning with exogenous ordering can be given a
particularly clean characterization. The relationship between the equilibria of the exogenous
order dynamic game and the two benchmark static games is essentially determined by the
exogenous parameter specifying the division of players between the two periods. However,
we show that later players in the dynamic game are able to use the additional information
obtained by observing their predecessors to make more accurate choices.

We now turn to the question of social welfare. In the limit as noise vanishes, social
welfare is a monotone increasing function of the equilibrium probability of coordinated
investment. Thus, in the noise-free limit, social welfare is ranked as above: highest in the

endogenous order game, followed by the first period static game, followed by the exogenous

20



order game, and finally the second period static game. However, away from the limit, in
addition to the coordination effect, the introduction of the costly option to delay has two
other effects. When the option to delay is exercised, it leads to better information and
higher welfare (the learning effect), but since the option is costly, leads to lower payoffs and
therefore lower welfare (the direct payoff effect). The total welfare effect of introducing a
costly delay/learning option into a coordination game results from the interaction of these
three effects.

We illustrate that for low levels of private information, the coordination effect dom-
inates the learning effect and social welfare is maximized at intermediate levels of delay
costs. However, for high levels of private information, the learning effect dominates the
coordination effect, and thus, for sufficiently noisy endogenous order dynamic coordina-
tion games, social welfare is maximized at minimal cost of delay. The interaction of the

coordination, learning, and direct payoff effects is summarized in Section 1.5.4.

1.0.2 Applications

Our model has implications for at least two classes of applied problems. We outline them
here. A more detailed discussion is provided in Section 1.5.5. First, consider a government
financing an uncertain project by offering a debt contract, in a setting in which secondary
markets for the debt contract may be missing or illiquid. Under these circumstances, our
model suggests that it may be beneficial to “stagger” the initial offering to allow investors
multiple opportunities to invest, and sort themselves over time. Then, under the results
outlined above, the coordination effect will ensure that the project will succeed with higher

probability than if the entire debt package was offered simultaneously.
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Second, our results provide a fresh perspective on the question of whether it is beneficial
or harmful to allow firms who are switching between technologies to have the option to delay
or not. The so called “penguin effect”® can lead to socially suboptimal delay in this context.
Choi (1997) suggests that in settings with incomplete information and network externalities,
it may be socially optimal for agents to forfeit their option to wait and learn and to make
choices simultaneously. In direct contrast with Choi, we find that introducing a costly
option to delay and learn can enable agents to sort themselves efficiently over time, and
lead to strict gains in the efficiency of coordination. Thus, the penguin effect, while present
in our model, enhances rather than diminishes social welfare.

The rest of the paper is organized as follows. In the next section we describe the
investment problem. In section 1.2 we analyze the problem using the static approach of
Morris and Shin. Sections 1.3 and 1.4 extend the analysis to include dynamic elements. In
section 1.3 the problem is analyzed using a dynamic coordination game with exogenously
specified order of actions. Section 1.4 relaxes the exogeneity of order. Sections 1.5 and 1.6

discuss and conclude.

1.1 The Investment Project

The economy is populated by a continuum of risk neutral agents, indexed by [0, 1], each of

whom has one unit of resources to invest. They must choose between investing in a safe

8The tendency for agents in strategic settings to wait to act second, in order to gain more information,
avoid intermediate or final miscoordination costs from temporary or permanent “stranding” in a ex post

suboptimal technology. See Farrell and Saloner (1986)
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project, which gives a gross payoff of 1, and a risky project of uncertain value. Uncertainty
is summarized by a state variable § which is distributed N(0,1) and is revealed at time T,
when consumption occurs. There are two periods in which an agent might be able to invest
in the risky project: t € {t1,t2}. We require that 7' > to > t1, i.e. at the times when agents
have opportunities to invest, the value of the project is unknown.

Proceeds from investing in the risky project depend on whether the project succeeds
or not. The success of the project, in turn, depends on the actions of the agents and the
realized value of 6. In particular, if p denotes the total mass of agents who invest at the
times when opportunities are available, then investment succeeds if p > 1 — 6. Payoffs from

the risky project can be summarized as follows:
e When the project fails, it pays 0.

e When the project succeeds, it pays an instantaneous rate of return R > 0, which is
continuously compounded over the length of time that an agent has held the invest-

R(T—t;)

ment. Thus, for an agent who invests at time ¢;, returns are e , conditional on

the success of the project.

Our payoffs are motivated by, and very similar to, those of Chari and Kehoe (2000). The
major difference is that we incorporate strategic complementarities, i.e., we allow the suc-
cess or failure of the project to depend not only on the exogenous state, but also on the

endogenous number of agents who choose to invest.?

?A second, minor, difference between our models is that Chari and Kehoe (2000) allow agents Ty > 2
occasions to invest, where T) < T, while we set 71 = 2. The generalization of our model to include more

than two periods presents no conceptual difficulties, but comes at great algebraic cost, given the strategic
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We now perform some useful normalizations. We recast the game in terms of payoffs
to switching from the safe project to the risky one, and divide through by eBT—t)  Let
c= eR(T%tl), and let k£ = 1 — eR(1i—12) We label the act of switching at t = ¢; by I;, and at
t =ty by I5. The act of never switching is denoted N. Thus, we may now represent agent’s

utilities by the following schedule:

l—c ifp>1-86
u(li,p,0) = ¢ (1.1)

—c otherwise

1—k)—c ifp>1-¢
u(lz,p,0) = < (1.2)

—c otherwise

u(N,p,0) = 0 (1.3)

Note that k£ € (0,1 — ¢), because ty € (t1,T). Thus, k represents a cost to delay, the payoff
forfieted by an agent due to her delay in switching.
At the beginning of ¢ = t; agents observe the state of fundamentals with idiosyncratic

noise. In particular, each agent ¢ receives the following signal at the beginning of the game:

z; = 0+ o¢; (1'4)

where € is distributed Standard Normal in the population and independent of 6.
We now present a sequence of (progressively more complex) games that can be used
to study this investment problem. We begin with the benchmark static case analyzed by

Morris and Shin, and then extend by introducing dynamic elements.

complementarities. We conjecture that the results will be very similar.
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1.2 The Benchmark Static Game

To analyze this investment problem within the framework of static global games in the style
of Morris and Shin requires that we place an ad hoc restriction on the actions of players:
they must all either move at t = t1, or they must all move at t = t3. This defines two
natural static global games, which are mutually exclusive.

The first such game is one in which all players act at ¢ = ¢; and payoffs are given by
(1.1) and (1.3). We label this game I'y; ;. We label the other game, in which players all
move at t = to and payoffs are given by (1.2) and (1.3), by I's;2. We analyze I'y;; and
extend our results by symmetry to I's o.

It is useful to begin with a preliminary definition. Note that in these games, agents’

strategies map from their private information into their action spaces.

Definition 1.1. An agent i is said to follow a monotone strategy if her chosen actions are

increasing in her private information, i.e., if her strategy takes the form:

I when x; > z*
oi(x;) =
N otherwise
We shall call equilibria in monotone strategies monotone equilibria. Monotone equilibria
can be given a natural economic interpretation: when an agent chooses to invest, she
correctly believes (in equilibrium) that all agents who have more optimistic beliefs than her
also choose to do so.
If a continuum of players follow monotone strategies, a threshold level emerges naturally

in the underlying state variable of the game. Therefore, we look for monotone equilibria

which take the form (z7,,,0;, ;) where agent i invests iff z; > z3,, and investment is
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successful iff 6 > 6, ;. Now we may state:

Proposition 1.1 (Morris and Shin). !© If 0 < /27, there is a unique monotone equi-
librium in Ty 1. As o — 0, it is given by the pair:
iB:t,l =G 9:15,1 =cC

Proof: The following are necessary for the equilibrium:
The marginal agent, who receives signal z7, ; must be indifferent between investing or
not, i.e.

Pr(0 2 03 1]75,,) = c

: 2 - L .
Since 0|z ~ N(1355, 1757), the indifference condition can be written as:

o* |- z:t,l2
L= Pr(f0 < 0, |z3,) =1 - (- H) = ¢
1402
Thus,
th,l =1+ 02)9;5,1 +ov1+ 02<I>71(c) (1.5)

The critical mass condition requires that:
Pr(z > xg40051) =1— 05,
Substituting the indiffirence condition into the critical mass condition we get
®(0b3y1 +V1+0207(c)) = by, (1.6)
Consider the function

F(05,,) = (ot +V1+ a2®7(c)) — st.1

10This result is a special case of Morris and Shin (2000c): Proposition 3.1. It can be obtained by setting

the precision of the public signal to 1.
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Clearly as 63, ; — 1, F(-) <0, and as 6, ; — 0, F(-) > 0. Differentiating yields
FI( :t,l) = U¢(‘) -1

If o < v/2m, then F'(0};, ;) < 0 for all 6}, ;, which establishes the first part of the result.
Letting o — 0 in (1.5) establishes the second part. [ |

The corresponding result for I'y; o follows immediately:

Proposition 1.2 (Morris and Shin). If o < v/27, there is a unique monotone equilibrium
inLgo. As o — 0 it is given by the pair:

C C
Tgo = T Ost0 = T %

We now extend our analysis to introduce dynamic elements. The simplest way to achieve
this is to require that some exogenous proportion of agents have to choose their actions at
t = t1, and the rest must do so at ¢ = to. Even in this simplest of dynamic frameworks, we

are able to incorporate Bayesian social learning, as we show below.

1.3 The Dynamic Game with Exogenous Order of Actions

We now modify the game to last the length of the investment project: ¢ € {¢1,%2}. The
continuum of agents is divided up (exogenously) into two (possibly unequal) groups. Agents
i € [0, A] must choose their actions at ¢t = ¢;. Agents ¢ € (A, 1] must choose their actions at
t = to. The payoffs to this game are given by (1.1 - 1.3).

We can now incorporate Bayes social learning. Agents who act in period 2 are able to
observe a statistic based on the proportion of time 1 agents who chose to invest, which we

denote by p;. Hence, they effectively observe a “market share”. However, agents observe
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such a market share statistic with some idiosyncratic noise, which may be small. We shall
be particularly interested in the case where the observation becomes essentially public, i.e.
in the limit as such idiosyncratic noise vanishes. Thus, agents (A, 1] receive an additional
signal:

yi = &7 Hp1) + (1.7)

where 7 is Standard Normal in the population, and independent of €. The specific trans-
formation of p; by the inverse standard normal CDF is an algebraic simplification only (to
obtain closed forms), and serves no other purpose in the arguments that follow. As is appar-
ent, the standard case of perfect observation of the past (as is common in the literature on
herds and cascades, see Bikhchandani, Hirshleifer, and Welch 1992 for example) is obtained
in the limit as 7 — 0. We label this game I'.; and look for Bayes Nash equilibria of this
game.

Players (A, 1] observe two noisy signals,  and y. Let s(z,y) denote a sufficient statistic
for (x,1y). We look for monotone equilibria which take the form (7, s%,,0%,), such that:!!

1. Players [0, A] invest iff z; > =},

2. Players (A, 1] invest iff s; > s%,

3. Investment is successful iff § > 67,

Necessary conditions for such an equilibrium are as follows. Conditional upon receiving

"UWhen a sufficient statistic exists, as it does in our problem, restricting attention to monotone equilibria

where second period agents condition upon their sufficient statistics is without loss of generality.
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signal =}, player ¢ for 7 € [0, A\] must be indifferent between investing and not investing:

Pr(9 > 03,]a%,) = c (1.8)

*

Conditional upon receiving signals that lead to sufficient statistic s},

player 7 for i €
(A, 1] must be indifferent to investing and not investing:

c

Pr(0 > 0cy|se,) = 1%

(1.9)

Finally, at state 6, just the correct proportion of agents must choose to invest for

Investment to be successful:
APr(z > zg,107,) + (1 — A)Pr(s > sg,|07,) =1 -6, (1.10)

Note that 0|z is distributed N(3%5, l%rg) The mass of people who invest in period 1

at state 6 is
60—zt

— @ exr
p1 (7(7 )

Substituting into the definition of the second period signal, y, we get:

*
0—z;,

Yi = + 7

Defining z; = oy; + =}, we get

zi =0+ (O’T)’I]i

and thus z;|0 is distributed N (0, 0272). Then, using Bayes’s Rule we know that

140? _=; 1
o2 1_1_;2 + 2% 1
0|xi’zi ~ N 1+0.2 + 1 ? 1_|_0.2 + 1
o2 0272 o2 o272
Substituting for z;,
g 1
Ti + Y + 2Ty, o?

1+024+ % 1402+ %
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Thus if we define:

RPN SNt
. "LI'L+ 7-_2yl+ 7—2x€.’£

si = 1.11
' 1+o02+ % (L)
then
0.2
0lz,y=0ls ~ N |5, ——— 1.12
=,y = 0| 702+ % (1.12)

Since s; is a linear function of two conditionally Normal variables = and y, it is easy to see

that:

(1.13)

1 2 221 2
si|0~N[ +7 o*t*(1+1°) ]

1+ 72+027277 (1472 4 0272)2
Now we can rewrite the necessary conditions for the equilibrium as follows.

Equation (1.8) can be re-written as:
zh, = (14 0%)05, + ov/1+ 0237 (c) (1.14)

Using (1.12), equation (1.9) can be rewritten as:

* * g _ C
o= O+ 37 (5 (1.15)
1+o02+ 2%
Finally, substituting from (1.14) and (1.15) into equation (1.10) we get:
A1—8(00%,+/1+ 028! 1-N)(1-3(—2__g Tt () 1-6
( - (U ezt +o (C)))+( - )( - (\/14-—7'2 ezt U’Tm )) ex

Rearranging, we get:

oT " W _ c N
bcr + o 1( — ) =62,
Vit Vit e
(1.16)

AO(00, + V1402071 (c))) + (1 — X)®(

Equations (1.8), (1.9), and (1.16) are the dynamic counterparts of equations (1.5) and (1.6)

in the proof of Proposition 1.1. Thus, taking the derivative, and re-utilizing methods used
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above, we note that if

Ao+ (1 — \)———— < V21

then there is a unique solution to this equation. Letting o — 0 enables us to obtain closed

forms, and we can state:

Proposition 1.3. If 0 < there is a unique monotone equilibrium in Ley. In

Vo
MY

the limit as o — 0, it is given by the triple:

.T:I:>\C+(1_)\)ﬁ SZI:AC—I—(]‘_A)ﬁ ezmz)\c{-(]__A)ﬁ

We note in passing that as we let 7 — oo, and thus eliminate learning in this game, the
condition for uniqueness converges to the usual static condition for uniqueness: o < v/27.

Now that we have demonstrated the existence and uniqueness of monotone equilibria in
Iy, we can compare the selected equilibrium to those of I'g; ; and I'g; 2. A clean comparison
can be obtained by comparing the selected threshold levels in the fundamentals in the

different games. The findings are summarized in:
Corollary 1.1. Aso — 0:

o 051 <Oy <O

e AsA— 1,00, — 05,

e As A =0, 0z, — 05,

Thus, the outcome in the dynamic game with Bayes learning when the order is specified
exogenously is not fundamentally different from the outcomes in the individual static games.

The differences are driven solely by the parameter determining the exogenous ordering. As
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all agents are forced to act in the first or second periods the selected equilibrium converges
smoothly to the selected equilibria of the corresponding static games.

Intuitively, by making players act according to the exogenous division parameterized by
A, we are effectively forcing them to play two static coordination games, but with different
payoffs. The outcome is simply a convex combination of the outcomes in the two static
games, weighted by the mass of agents that play each of them.

However, period 2 players in I'¢; have access to more precise information than players
in I'g;2. Thus, we would expect them to do better on average than players in I'g;o. It
turns out that they do. The relevant question is: When the project succeeds (fails) what
proportion of later players choose to invest (not invest) in Iy, versus players in I'y; 27 To
answer this, we note that the proportion of players who choose a particular action in an
arbitrary game I' at any level of fundamentals 6 is determined by the difference between
0 and 0. In T'c;, the proportion of period 2 agents who choose to invest at state 0 is

given by Pr(s > s%.|0). Using the definitions and results above, this can be rewritten to

be & [ e or g _ V1tT'tolr?g-1(_c ) | The proportion of agents who choose

\/% o V1472 ez 1+72 1-k

1+
to invest in Tz at state 6 is given by Pr(z > z7,;,|0). This can similarly be rewritten as

d (% — 000 — V1 +02<I)_1(ﬁ)). Label ér = 6 — 6f.. It is easy to see that there

exists 7 > 0 such that for all 7 < 7, if dr,, , = dr,, > 0, then

or., oT Vi+r2+o272__, ¢

® - 0rp — O (——
L N v B
Vit

51_‘:315,2 % 2 -1 c
@( pn _Ust,Q_ 1+0'® (ﬂ)

In words, when investment is successful, and learning is accurate enough, a larger proportion
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of period 2 agents choose to invest (thus, choose the right action) in I'c; than in I'go. If
0r,, = 0r., < 0, then the inequality is reversed. Thus, when investment fails, a larger
proportion of period 2 agents choose not to invest in I'y; than in 'y 5. In other words, on
average later agents may be able to improve their welfare in the dynamic game. We shall

return to a more detailed discussion of welfare in Section 1.5.12

1.4 The Dynamic Game with Endogenous Order of Actions

We now further augment the original game to allow agents to endogenize the order of
actions. The payoffs of the game are still given by (1.1-1.3) and the information structure
is summarized as in the previous section by (1.4) and (1.7). However, now agents may
also choose when to invest, if at all. In particular, in period 1, agents have the choice
to invest or not. If they invest, then their choice is final. If they choose not to invest,
however, they get another opportunity in period 2 to make the same choice, based on the
additional information they receive at that time. As we have noted earlier, the payoffs to
the investment project given in (1.1-1.3) induce an endogenous cost to delay in investing.
Now that they may choose both their actions and the timing of their actions, agents will

rationally trade off the possible excess gains to acting early against the option value of

2Readers familiar with the literature on global games may have noticed that the uniqueness results proved
thus far are restricted to monotone strategy equilibria. For static global games Carlsson and van Damme
(1993, later generalized by Frankel, Morris, and Pauzner 2000) prove a stronger result: the unique monotone
equilibrium is also the unique strategy profile surviving the iterated deletion of dominated strategies. Existing
arguments for this stronger result do not generalize to our dynamic game due to Bayesian learning. The

existence of non-monotone equilibria, which are complex objects in this setting, remains an open question.
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waiting and collecting more information in period 2. We call this game T'¢;, and look for
Bayes Nash equilibria.
As in the game with exogenous ordering, we look for equilibria in which agents choose

monotone strategies with thresholds (z7,,, s%,,), such that:

1. Invest at t =ty iff z; > z},,. Otherwise choose to wait.

2. Conditional on reaching ¢ = ¢, with the option to invest, invest iff s; > s¥,

In I'y;; and I, it was apparent that when agents followed monotone strategies there were
corresponding equilibrium thresholds in the fundamentals above which investment would
be successful, and below which it would fail. This characterization is not immediate in the
current game (since the decisions to invest or not in the two periods are not independent)
and requires closer examination.

When agents follow monotone strategies as outlined above, at any 6, a mass Pr(z >
zin|0) + Pr(z < zk,,s > sk,|0) will choose to invest. Thus, investment is successful at 6 if
and only if:

Pr(z > z},0) + Pr(z < z

en?

s>si,10)>1-0

Is there a critical 8* above which investment is successful and below which it is not? The

answer is in the affirmative, as we show below:

Lemma 1.1. Fiz any (z*,s*). Let

G(0) = Pr(z > z*|0) + Pr(z < z*,s > s*|0) — 1+ 6

There is a unique solution to



The proof is in the appendix.
Given Lemma 1.1, we can now look for monotone equilibria of the form (z},, s}, 0%,)
where z},, and s}, are defined as above, and investment is successful if and only if 8 > 67 .

Necessary conditions for such equilibria are as follows:

The indifference equation for those players who arrive at period 2 with the option to

invest:
Pr(0 > Olst) = 7= (1.17)
The critical mass condition is:

Pr(z > x},10%,) + Pr(z < z},,s > sy, |05,) =1 — 02, (1.18)

We can rewrite equation (1.17) as

* * (o _ C
St = Ot + o (5 ) (1.19)
1+ O'2 + 72

Substituting this into equation (1.18) gives us:

Pr(z > z*|6,) + Pr(z <a%,s > 0, + M|0;,) =1 -0,

where M = —Z——®~1(:%.). Now we note:

1/1—|—(72—|—_%2 1=k
Lemma 1.2. Fiz any z*. Let 6 be defined by G(é,x*) =0 where

G(0,z*) = Pr(z > z*|0) + Pr(z < z*,s >0+ M|0) —1+6

2
IfO' < %,

1. For each x*, there is a unique 6.

2. & € (0, 52)-
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The proof is in the appendix. Now consider the third equation characterizing the mono-
tone equilibrium, the indifference condition of players in period 1. In period 1, agents trade
off the expected benefit of investing in period 1 against the expected benefit of retaining
the option value to wait. Thus the marginal period 1 investor who receives signal z, must

satisfy:

Pr(0 > Ogp|e,) — ¢ = Pr(0 > 0g,, 8 2 sep|wen)[(1 — k) — c] + Pr(0 < 0y, 8 > sep|2e,)(—¢)

(1.20)

4oz, (x2,)
dz},

Lemma 1.2 implies that we can write 6%, = 07 (z,) where 0 <

< Using

1
1+o2"
this, and substituting from equation (1.19) into equation (1.20), we can express the period

1 indifference condition purely in terms of z,, as L(z},) = R(z},), where

L(zey) = Pr(0 > 0 (zen)lzen) — ¢

R(‘TZn) = (1_k_C)PT(9 Z ozn(x:n)’s 2 Hzn(ili:n)-l—M'.’I}:n)—CP’f‘(o < G:n(‘x* )’S Z ozn(x:n)—i_MLIZn)

en

Given the posterior distribution of 8 given z, and Lemma 1.2, we know that L(-) is monotone
increasing in z},,. Since s is positively but imperfectly correlated with 6 conditional on z,
intuitively the first term in R(-) also increases in z¥, but at a slower rate than L(-).!3

In addition, the rate of increase of this term is “dampened” because it is multiplied by

1—k —c < 1. The second term the R(-) has an ambiguous rate of change with z3,,, since it
represents the intersection of two events, one of which becomes more likely as z},, increases,

while the other becomes less likely under the same circumstances. Heuristically, therefore,

BAswelet 7 = 0, s = 8, M — 0, and thus the first term in R(-) becomes identical to the first term in

L(-) while the second term vanishes.
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the rate of change of the second term of R(-) due to z}, is small. Thus, based on this
informal argument, we would expect that L(z},) increases faster in z, than R(z},), which
implies that there is a unique 7, which solves L(-) = R(-). A more formal argument, given
in the appendix, establishes that this is true, and we can state:

\/i

Proposition 1.4. If o < 7 , there exists a unique monotone equilibrium in Ty .

Vv 1472

The proof is in the appendix.!*
While we cannot give closed form to the equilibrium thresholds in general, a clean
characterization emerges as we let noise become small. Observe that as we let 7 — 0,

equation (1.18) reduces to:
* * 11—k *
Len = een + 0 1(Teen) (1'21)

At the same time, equation (1.20) becomes:
& 1:3-532 —Oen _ ¢
a - _I_ k
Vito? ¢

02, +0® 1 (15202,)

Combining these two, we get:

(P 1_|_0.2 - O:n _ &
’711(72 c+k

Which simplifies to:

o @—1(1;kogn)_ o \_ ¢
V1+o? V1+o? ctk

Clearly, as o — 0, the unique solution to this is given by

2

c+k)(1—k)

* o __
een_

Thus we can now summarize:

14This condition reduces to the familiar condition o < v/27 as 7 — 0.
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Proposition 1.5. In the limit as 7 — 0, 0 — 0, the unique equilibrium thresholds of Tep
can be written as:

c? « c? X c?

" AR R T erna R T er iR

Two important sets of properties about these limiting thresholds are immediate. First,
as the cost to delay gets arbitrarily large or small (i.e. as k tends to the boundaries
of its feasible range), the thresholds converge smoothly to the unique thresholds of the

corresponding static games.'5

Corollary 1.2. Convergence to static games:
e As7—=0,k—0,0—0, 2}, = o0, s, >c, 0, >c
e Ast—=0,k—=1—-¢c,0—0, 2}, ¢, s;, >00,0;, =c

Thus, as the cost of delay becomes small, nobody invests in the first period, and the
entire mass of agents play the static game (with vanishing noise) in the second period.
Similarly, as the cost of delay becomes large, nobody who waits till the second period ever
invests, and the entire mass of agents play a static coordination game in the first period.

A more interesting conclusion emerges upon comparison of the thresholds of the en-
dogenous order dynamic game with those of the static games and exogenous order dynamic
game as noise vanishes. In particular, a clean and economically important result is apparent
when comparing the threshold levels of the fundamentals in the unique monotone equilibria

of these games.

15To understand the behavior of ¥, and s?, as it pertains to Corollary 1.2, it is easiest to use equations

(1.21) and (1.17) respectively.
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Corollary 1.3. As noise vanishes, for all ¢ € (0, %),k € (0,1 —¢),A€(0,1):
0:71 < min[ejt,la 0:75,2] < 9;}

Thus, when 6 is in [0,1] coordinated investment becomes more probable when we let
agents choose both how to act and when to act. The endogenous sorting of agents acts
as an implicit coordination device which makes it more likely that they shall coordinate
efficiently for any given level of the fundamentals. We shall return to discuss this in further
detail later in the paper.

Note that 6}, has a non-monotonic relationship with k. It is minimized at k = % We

shall return to discuss this property further in Section 1.5.3. Figure 1.1 plots the limiting

thresholds in the different games for ¢ = 0.3, A = 0.5, over different values of k.

Figure 1.1: Limiting Thresholds: ¢ = 0.3,A = 0.5

Finally, we consider whether there is “excess delay” in this equilibrium. In the unique

monotone equilibrium of I',,, a proportion of agents choose to postpone their investment
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decision until period t2. Such waiting can be socially costly, since there is a cost to delay.
Loosely adopting Bolton and Harris’s (1999) terminology, we may be tempted to ask whether
there is “too little experimentation” in our model: whether “too few” agents choose to invest
early in equilibrium.'® While Corollary 1.3 ensures that there is no decentralized solution
that leads to a higher probability of investment than in I, it remains of interest to examine
whether a informationally constrained social planner may be able to do better.!” Is there a
rule of behavior that could be implemented by an informationally constrained planner that
increases the level of experimentation and also the probability of coordinated investment?

The answer turns out to be in the affirmative, as we show below:

Proposition 1.6. There erist monotone decision rules parameterized by the threshold pair

(2,3) such that ¥(o,7,c, k), the induced state-variable threshold 6(z, 3) satisfies: 6 < 6% .

When (o, 7) is sufficiently small, this decision rule improves on social welfare relative to
T'en. The result follows immediately upon the construction of a variant of I'¢,, by eliminating

the payoff externality. The proof is presented in the appendix.

6There are important differences between the role of experimentation in Bolton and Harris (1999) and
in our model. In their model, agents are discrete, and therefore individual experimentation leads to better
social information. This creates a free-rider problem in the production of information. This informational
externality is missing in our model with a continuum of agents. The actions of individual agents are invisible

to players in the game.

"For our purposes, an informationally constrained planner is a planner who has no information herself,

but may specify the strategies of agents as a function of their own information.
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1.5 Discussion

We have presented a sequence of models to study a multi-period investment problem char-
acterized by incomplete information, strategic complementarities, social learning, and costs
to delayed decision-making. It is useful to compare the results obtained from these different
analyses. We begin by comparing welfare across the different models.

1.5.1 Welfare

We are particularly interested in welfare comparisons in the limit as social learning becomes
public and accurate. It is useful to explicitly write down expressions corresponding to ex
ante social welfare in the different games.

In the limit as 7 — 0, we denote ex-ante social welfare in the first-period static coordi-

nation game I's; 1 by W 1(c,0). It is given by:
Pr(0> 05,75 > z5,)(1 —c) + Pr(0 <05,z > x5 ,)(—c)
Similarly, for I'y; o, welfare Wy o(c, k, o) is given by:
Pr(0 > 05,0,z > x55)([1 — k] —c) + Pr(0 <055,z > 75 5)(—c)
For the exogenous order dynamic game, I'¢;, welfare We,(c, k, A, o) is defined as:
APr(0>06,,,x>xz.,)1—c)+Pr(0 <6,z >z.)(—c)]+1—-NPr@>6,)(1—-k —c)

Finally, for the endogenous order dynamic game, I, ex-ante social welfare W, (c, k, o) is
given by:
PT‘(H > H:n’w > x:n)(l - C) + Pr(e < eznax > x:n)(_c) + PT‘(@ > eznax < x:n)([l - k] - C)
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Note that as we let noise vanish in the games, i.e., as ¢ — 0, the product probability

terms simplify and we get the following clean welfare ranking:

Remark 1.1. As noise vanishes, for all c € (0,3),k € (0,1 —¢),A € (0,1):
Wen(c, k) > W 1(c) > Wegl(c, k, X) > W a(c, k)

As 0 — 0, ex-ante welfare in each game becomes a monotone decreasing function of its
unique equilibrium fundamental threshold. The lower the threshold, the higher is ex-ante
social welfare. Thus, Remark 1.1 follows immediately upon inspection of Corollary 1.3.

It is also interesting to perform a welfare comparison away from the limit, i.e., for strictly
positive o. Figures 1.2 through 1.5 demonstrate this comparison for a representative set
of parameter values. In each case, we set ¢ = 0.3, and vary k over its permissible range.
For the exogenous order dynamic game, we set A = 0.5. We then plot social welfare for
small (Figures 1.2 and 1.3) and large (Figures 1.4 and 1.5) levels of private information. We
omit plotting W o as it is of little interest. As is apparent upon inspection of the figures,
over wide ranges of parameter values, the welfare rankings summarized in Remark 1.1 are
robust to the presence of private information. In particular, welfare in I, is always higher
than in I'y; ; and I'p;. For low values of k, and for high levels of noise, however, welfare
under I';; can occasionally be greater than welfare under I'y; ;. The intuition for this is
straightforward. Since we let 7 — 0, learning becomes complete in period 2. Thus, when
the cost of delay is sufficiently small, enforcing a large number of agents to act in period 2
provides them with greater information. Since agents make mistakes for large ¢ in period
1, welfare can be higher in I'¢; than in I'y; ;. For further discussion of related issues see

Section 1.5.4.
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We now consider two properties that emerge from Remark 1.1 and upon inspection of
figures 1.2 to 1.5. The first of these is the marked difference between the welfare properties

of the games with endogenous and exogenous ordering of agents.

1.5.2 Exogenous vs. Endogenous Ordering

The dynamic games with exogenous and endogenous order are apparently quite similar. In

both games subsets of agents move in each period, and late movers learn from the actions
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of early movers by paying a delay cost. It may seem, therefore, that there may be some way
to parametrize the game with exogenous order of moves to match the equilibrium outcomes

of the game with endogenous order. Remarkably, the answer turns out to be no.

Remark 1.2. Ezrogenous asynchronicity is not a substitute for endogenous asynchronicity.

As noise vanishes, there ezists no A € (0,1) such that Wegz(c, k, \) > Wep(c, k).

The intuition behind this apparently surprising conclusion is as follows. The exogenous
order game is parametrized by A: each value of A corresponds to a specific ex ante ordering of
agents. However, any ex ante sorting of agents involves selecting a homogenous subsample
of agents to make early choices. By definition, only some of these agents will choose to
invest. The others wont invest in period one, and due to exogenous sorting, lose their
investment option forever. However, these same agents who did not invest early in "¢, may
have invested ex post in I, where they would have have another chance to do so. Thus, for
any given mass of early investors, there is always a larger pool of second period investors
under endogenous ordering than under exogenous ordering. In other words, endogenous
ordering is more efficient, since it exploits the revealed preference of a subgroup of agents

to make early decisions.

1.5.3 Efficiency Gains At Intermediate Costs of Delay

From inspection of Figures 1.2 and 1.3 it is apparent that when noise is small in I'¢,, the
welfare of agents is maximized for intermediate costs of delay. In the limiting case as noise
vanishes, the formal result is implied by Proposition 1.5:

Remark 1.3. As noise vanishes, welfare in the endogenous order game is maximized for
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intermediate costs to delay. In particular, there ezists k* € (0,1 — ¢) such that k* =

argmazWep(c, k).

This conclusion too may seem surprising, but it is simple to explain. When 6 is in [0, 1],
ex ante social welfare increases in the total proportion of agents who invest in the game
(adding up the proportions in periods 1 and 2). A high cost of delay makes it unattractive
for agents to wait. Thus, increasing the cost of delay persuades more agents to invest early.
However, ex post in period two, a high cost of delay makes it unattractive for the remainder
of agents to invest. Thus, increasing the cost of delay has opposite influences on the mass
of agents who choose to invest in periods one and two. As a result, to maximize the total
mass of agents who invest, it is natural that an intermediate cost of delay would be optimal.
It is important to note here, that this argument does not depend on the size of the noise.
The formal result is shown only for the case where noise vanishes, as we can obtain closed
forms only in this case. However, there is no reason to suspect that the phenomenon of
improved coordination at intermediate costs of delay is affected by the size of o or 7. We
shall illustrate this point numerically in Section 1.5.4.

Another puzzle remains. Careful readers may have noticed that while welfare in the
endogenous order game is maximized at intermediate ranges of k for small noise (figures 1.2
and 1.3), at higher levels of noise (figures 1.4 and 1.5), welfare is maximized for low costs of
delay. To understand this dichotomy, we must understand precisely how the costly option

to wait makes a difference in our dynamic coordination games.
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1.5.4 The Costs and Benefits of the Option to Wait

The introduction of a costly option to wait into a dynamic coordination game has three
effects. First, when the option is exercised, it leads to better information, and therefore
higher welfare. We call this the learning effect. However, since the option is costly, its use
leads to lower payoffs, and therefore lowers welfare. Let us call this the direct payoff effect.
Finally, the option to wait and the resultant endogenous asynchronicity improves coordi-
nation, by lowering (for intermediate values of k) the threshold above which investment is
successful (and therefore the ex ante probability of successful coordinated risk taking). We
call this the coordination effect. The total welfare gains for different levels of £ in I'¢,, result
from the interaction of these three effects.

Note that the learning effect is independent of the size of k, since the informativeness of
observational learning is independent of the measure of agents who choose to invest early
(as long as the measure is strictly positive). The direct payoff effect is clearly increasing in
the size of k. Thus, for low levels of k, the positive learning effect dominates the negative
direct payoff effect. However, the coordination effect has a non-monotonic relationship with
k. As noise vanishes, this relationship is clearly demonstrated by Figure 1.1. We plot the
effect of k on the coordination threshold (along with welfare plots) in figures 1.6 through
1.9. As we have noted above in Section 1.5.3, and as is apparent upon inspection of figures
1.6 through 1.9, the coordination effect is noise-independent. We can now explain the shape
of the welfare functions in the endogenous order game by appealing to the intuition that
we have just built up.

With endogenous ordering, the proportions of early and late investors are sensitive to
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k. As Corollary 1.2 indicates, the outcomes of the endogenous order dynamic coordination

game converge smoothly to those of the two limiting static games as k tends to the limits

of its permissible range. As k gets very small, most investors choose to wait and the game

resembles very closely the the second period static coordination game. As k becomes very

large, essentially all agents choose to act early or not at all, so that the game resembles the

first period static coordination game. For intermediate levels of k agents sort themselves

over time.
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When social learning becomes public and perfect, agents who choose to wait do not
make errors in period 2. With positive noise, agents who decide to act in period 1 may
still make mistakes. When noise is small, the chances that agents investing in period one
will make mistakes is small. Thus, what matters for social welfare is how well agents are
able to coordinate, i.e., the coordination effect dominates the learning effect. Thus, welfare
in I'g, tends to track the coordination threshold as a function of k. Welfare follows a bell-
shaped curve as a function of k. This is best seen in figure 1.6. However, when noise gets
large, the value of the learning effect becomes much larger. For small values of k, most
agents choose to wait, get the benefit of the learning effect, and welfare is high. But for
somewhat larger values of k, a significant proportion of agents choose to invest early. These
agents tend to make many mistakes, since ¢ is large. Thus, welfare can be significantly
reduced, even though the positive contribution of the coordination effect is maximized at
intermediate values of k. Thus, when noise is large, welfare in I'c;, can be a monotonic

decreasing function of k.

1.5.5 Applications

The sequence of models outlined in this paper contain the stylized features observed in
at least two large classes of applied problems. The first of these is the financing of risky
projects where there are increasing returns to scale from participation. The second is the
adoption of new technologies in the presence of uncertainty and network externalities. The
welfare results presented above have implications for both of these problems. We consider

them in turn.
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Staggered Debt Offerings

Consider an emerging market government that wants to float a bond to finance a long-term
investment project using foreign investment. In addition, suppose that for reasons that we
do not model, a secondary market in such bonds is likely to be absent or highly illiquid,
with high transaction costs. Our results imply that when uncertainty about the state of the
emerging economy is not overly large, it may be better for the government to float the bond
in two pieces over time, and to provide information about initial rates of participation. In
a nutshell, it may be optimal to “stagger” the initial offering of debt.

Let 0 represent the underlying value of the emerging economy. It is natural to assume
that if the underlying fundamentals of the economy are realized to be very good (6 > 1)
then domestic government can be wealthy enough to unilaterally finance the project, and
the project succeeds even without foreign participation. On the other hand, if the economy
ends up in a very bad state (6 < 0) the project may fail even if all available foreign investors
participated. Under these circumstances, we have demonstrated that in all our models, there
is some threshold, 8%, above which the project succeeds endogenously and below which it
fails. Assuming that the emerging market government cares only about the success or failure
of the project, its goal must be to make 8* as low as possible. Then, Corollary 1.3 implies
that it is best to offer investors at least two opportunities to invest, and let them choose

endogenously between the two.
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The Penguin Effect

Now consider a group of firms choosing whether to switch between a safe current technology
and a risky unknown technology characterized by network externalities. In this context,
it is unclear whether offering firms the option to delay switching is beneficial. While the
option to delay can lead to the provision of more information, it can also lead to “too
much” waiting, which can be socially suboptimal. There may be a tendency for players to
delay making choices because doing so lets them make more informed choices, avoid interim
payoff losses, and avoid being “stranded” in a suboptimal technology by later adopters who
do not conform. Farrell and Saloner (1986) term this general phenomenon the “penguin
effect”, by analogy to penguins who often delay entering the water, hoping that others
might do so first to test for the presence of predators. In a complete information model
with multiple equilibria, they identify parameter ranges in which the option to wait can
be harmful, because it leads to socially suboptimal delay. In a more recent paper, Choi
(1997) provides a model of technology adoption under incomplete information, in which
the penguin effect reappears. In his model, the use of technology by one user reveals its
value to other users. Thus, the fear of being stranded in an ex post inferior technology may
lead people to always want to choose second, which can produce socially suboptimal delay.
Under certain ranges of parameters, Choi (1997) shows that forfeiting the option to wait
and learn may be socially optimal.

Our results provide a different perspective on the penguin effect. We show that when a
large number of firms are allowed the option to delay switching to obtain more information

at some cost, they will sort themselves over time efficiently. In particular, for intermediate
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costs of delay, such endogenous sorting can improve efficiency, and lead to strict welfare
improvements. This is true no matter how small the level of private information and
therefore how small the benefit from waiting and learning. Thus, even though the penguin
effect is present in our model for the same reasons as in Choi (1997)'® its presence leads to

improved, not diminished social welfare.

1.6 Concluding Remarks

In this paper we have explored the role of learning and delay in coordination problems
under incomplete information. En route, we have established a simple template for partially
extending the Carlsson-van Damme equilibrium selection technique for static coordination
games to dynamic coordinations games with learning. We conclude with some remarks on
the generality of these results. We begin with theoretical considerations.

For tractability and closed forms, we have made two main simplifying assumptions in
this model. The first is the assumption of Gaussian noise. This assumption, taken together
with our choice of market statistic function, ® !(-), allows us to construct a simple one-
dimensional sufficient statistic. We conjecture that the results shall not change substantively
by relaxing these assumptions. As 7 — 0, it makes no difference what market statistic
function we choose, as long as it is monotone increasing. We conjecture that the ordinal
properties of our results will hold true for models with noise generated from any one-

dimensional exponential family and for any choice of monotone increasing market statistic

18Note that as 7 — 0, the use of one technology by a positive measure subset of agents fully reveals the

value of the technology to agents who wait, just as in Choi (1997).
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function. We are currently considering such generalizations.

From the perspective of applications, a natural extension would allow agents to choose
the cost of delay, rather than pre-specify it in the model. It would also be desirable to let
the cost of delay depend on the actions of agents in the early period. We conjecture that
neither of these modifications would significantly modify our arguments, and hold promise

for further interesting results.
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1.7 Appendix

1.7.1 Proofs
Lemma 1.1 Fiz any (z*,s*). Let
G(0) = Pr(z > z*|0) + Pr(z < z*,s > s*|0) — 1+ 6

There is a unique solution to

G#) =0
. 2 * .. — * . .
Proof: Since s = %, writing ¢ = 0 + o¢, y = aTw + 77, and substituting, we
2 2 2.2 2
get s = 1+T1;;LTU2720 + ez (Te +1). Then s > s* =y > 147 Lo T 1;7 0, where

v = 7€ + 1. Thus, we can rewrite:

A(0) poo
G(0) = 1 — B(A(0)) +/ /Bw) fle,)dyde — 1+ 6

where A(0) = =Y and B(9) = LT’ 40’72 ox _ 11’:20. Differentiating under the double

aT

integral:

00 A(8)
G'(0) = —A'(0)$(A(0)) + A'(0) 0 f(A(6,7)dy — B'(0) /_ fe; B(0)de + 1

Writing the joint densities as products of conditionals and marginals:
fle=A(0),7) = ¢(A(0))f(~]e = A(0))

fle;y = B(0)) = $(B(9))f(ely = B(®))
writing ¢(-) to denote the standard normal PDF of ¢, and ¢(-) to denote the (non-standard)

Normal PDF for . Finally,




Now we can rewrite G’'(0) as:

22, A(8)
+ 1T B ) / f(ely = B@®)de +1

oT o

~p(A(6)

Y — A
1 /B o [01e= 4000

i.e. G'(6) > 0. Note that limg_, o G(0) = o0, and limg_, _, G(#) = —oo. Thus there exists

a unique solution to G(6) = 0. [ ]

Lemma 1.2 Fiz any z* Let 0 be defined by G(0,z*) = 0 where
G0,z*) =Pr(z >z*|0)+ Pr(z <z*,s >0+ M|§)—1+0

If o < 22—,
147

g

1. For each z*, there is a unique 6

2. & €0, 1+la2)

Proof: As above, we know that s = 1+rl2j::5272é + 1+72(:a272 (e + 7). Since s* = 6+ M,

SZS*E’)’ZO'TGA-F%M. Let

. 1424 g2s2
B(g):mg_FwM

aT

~

Note that B'(6) = o7, and so, using the proof of Lemma 1.1,

5 o ) o X . pAGa) .
0G(0,27) _ lqﬁ(A(H,ac*)) [1 — fyle= A(H,x*)ch] —UT¢(B(0))/ flely=B(0

o0 o B(6) —oo

where ¢(-) denotes the non-standard Normal pdf of 7. Let
0 ~
Pi= [ fOle=A6,5")dy
B(9)

A6 ,z*) X
Po= [ sty = B

—0oQ
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Since the variance of v is 1 + 72, ¢(-) < W, and P, < 1, clearly if 0 < —'13:,
VitT
G (,z*)

o 0. Similarly,

df(ar) _ 2E)
a0
Let Q = _6G{§Z,*m*)’ where Q > 0. Then,
df(z*) Q
dz* Q- quAS(-)Pg +1
It is easy to check, that when o < 7 +‘/ﬁ
Vite?
1 do(z*
i)
1+o0 dx*
Since 0 < HLZT implies that o < V2r , we are done. |
Vige? Vitr?2
Proposition 1.4 If o < HLf, there exists a unique monotone equilibrium in T'¢y,.
Vitr?

Proof: Initially, agents trade off the expected benefit of investing in period 1 against the
expected benefit of retaining the option value to wait. Thus the marginal period 1 investor

who receives signal z},, must satisfy:

P’r‘(@ > 0:n|$2n) —Cc= PT’(9 > 0:71’ s 2> 3:n|$2n)[(1 - k) - C] + Pr(@ < ezna s> SZn‘:I::n)(_C)

(1.22)
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Since 6}, = g(x},), we can rewrite equation (1.19) as:

Sen = 9(Tep) + M (1.23)

Write z for z},, and let

G(z) =Pr(0>0,,|zr) —c—(1—k—c)Pr(0 >6},,s > s.,|z) + cPr(0 <0;,,s > si,|)

Note that
* 02’” B l—l——wo'g
Pr(O > 06n|m) =1- Q)(f)
Vito?
[
Let A(z) = ——2t". Given z,
Vito?
’z+ 0+ oty

§ = —
14724 0272

Rearranging terms, we can write this as

z o z
T I TTrr ot [m””]
kv S .o o,
where z = o is distributed N (0,1) conditional on z. Let v = T T Then,

s > s* is equivalent to

S 172407

LV, e

c

Alx) +7vV1+ 712+ (72'r2<1>_1(—1 —

)

Let

14+ 72+ 0212 _ c
B(z) = T Alz) + V14 72 4+ 02729 1(—1 — k)

Now, we may rewrite:
G(z) = 1—®(A(x)) — (1 — k — ¢)Pr(z > A(z),v > B(z)) + cPr(z < A(z),v > B(z))
Differentiating under the double integral and rearranging we get:
G'(z) = —¢(A(@)A'(z) [1 - (1 = k) P1] + B'(2)$(B(2)) [(1 — k)P, —
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where by ¢(-) we denote the non-standard normal density of v, and P; and P, are defined

as follows:
Pi= [ oz = Ay
B(z)

Po= [ Jly=B@)
A(z)

Using standard formulae for computing conditional distributions of Normal random vari-

ables (see, for example, Greene 1996), we know that:

V14 0? o1 c ) 72(1+4 o?)
V147240272 1-k7 1472+ 0272

zly = B(z) ~ N(A(z) + )

Thus,

o0 c
Bo= [ gl =B =1

and therefore

G'(z) = —¢(A(2)A'()[1 — (1 — k) P1]

Under the conditions of the theorem A’(z) < 0 and therefore the proof is complete. [ |

Lemma 1.3. Fiz any 0 € [0,1]. Let & be defined by H(&,0) =0, where

~

H(f,z) = Pr(0 > 0|z) —c—Pr(s>0+M,0 > 0|z)(1—k—c) +Pr(s >0+ M,0 < 0|z)(c)

Then

420) S
df

Proof: Using the proof of Proposition 1.4 above, we can write

~

H(0,z) = 1-®(A(z,0))—(1—k—c)Pr(z > A(z,0),y > B(z,0))+cPr(z < A(z,0),v > B(z,0))
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where

-
A(:L‘,H): T
s

R 1472+ 0212 A c
B =———A V1+72 4027287 (——
(z,0) it (,0) +TV1+ 72+ 0?7 (l—k)
Note that
A A
a— <0, 8—A >0
ox o6

Then, using the same analysis as above, we have:

o = (4@ 2 - (1~ BP]
where Py = f;c(’z,é) f(vlz = A(z, 6))dry, where z|z ~ N(0,1) and v = \/ﬁz + 717 as above.
Similarly,

0H 0A

o5 =~ dAE) sl - (- k)R]
Thus, %—ZI and %Ig are of opposite sign and bounded away from zero. Thus, by the implicit
function theorem:%(f) > 0. [ |

Proposition 1.6 There exist monotone decision rules parameterized by the threshold pair

(2,3) such that ¥(o,7,c, k), the induced state- variable threshold 0(&,3) satisfies: 0 < 0%,.

Proof: We construct the game ' in which payoffs are still given by 1.1 through 1.3, but

the condition for the success of the project p > 1 — 0 is replaced by the condition 6 > 0.

This eliminates the payoff externality.
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In this game, agents who arrive at to with the option to invest will choose to invest if

s > § where

Cc

Pr(6 > 0)3) = T—

ie.,
oT 1 c

(0]
it TR

Agents at t1 will choose to invest if x > Z where:

§ =

Pr(@>0|z) —c=Pr(60 >0,s > 3|z)(1 —k—c)+ Pr(0 <0,s > §|z)(—c)

Using methods similar to those given above, we can rewrite this to be:

~

0= H(z,0) = 1-®(A(&,0))—(1—k—c)Pr(z > A(%,0),y > B(%,0))+cPr(z < A(&,0),v > B(&,0))

where z, v, A(-), and B(-) are defined as in the proof of Proposition 1.4 and § = 0. Now,
appealing to Lemma 1.3, and because 67, > 0 = é, we conclude that £ < z},. In addition,
it is clear that 5 < s7,.

Now, returning to [, let a social planner force agents to play according to (z, 8). Let
6 be the level of @ above which p(f) > 1 — 6 under (&,3). Since & < z*, and § < s*, it

en?

follows that 6 < 6%, [
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Chapter 2

Social Learning with Payoff

Complementarities

Observers of financial market booms and busts, both casual and experienced, will often
note that behavior in the market is characterized by an excess of optimism or pessimism.
There appears to be a tendency for market participants to “jump on the bandwagon.”!
They get so carried away by the decisions of others around them that they simply imitate
their predecessors, paying no attention to any information about fundamentals that they

may receive, or making no effort to gather such information. It is as though they were all

moving in a herd. When the market tanks, traders tend to exit the market quicker then

!Stephen Morris provided invaluable guidance for this project. I also gratefully acknowledge useful con-
versations with David Pearce, Ben Polak, Giuseppe Moscarini, Dirk Bergemann, Hyun Song Shin, Jonathan
Levin, Felix Kubler, and participants at the Yale seminar on game theory. Part of this project was supported
by the NSF and the Cowles Foundation. A previous version of this chapter was circulated under the title:

“Learning, Signalling, and Coordinating: A Rational Theory of “Irrational Exuberance.””

60



they would have if they took into account the fundamentals of the economy. When the
market booms, traders get excessively optimistic compared to levels that are justified by
the underlying fundamentals. This, perhaps, is what Alan Greenspan was referring to in
his now famous “irrational exuberance” speech of December 5, 1996, at the heart of the
stock market boom of the 1990s. Given the pertinence of such market herd behavior in
both good times and bad, there is clearly a need to analyze the probem carefully. To begin,
let us try to separate the central stylized characteristics of situations such as stock market
booms and panics, currency crises, or bank runs.

The salient features of such situations are as follows. A number of market participants
are called upon to make similar decisions (buy/sell, long/short, withdraw/remain etc.) at
about the same time. Since they are all in the same market, they can observe each other’s
actions. Each participant has non-trivial private information (ideas, intuition, acquired
knowledge) about the fundamentals of the situation. These are, after all, educated financial
traders. In order to make their decisions, partipants may use either their private informa-
tion, or the public information generated by observing their predecessors’ actions, or both.
However, participants also have to worry about their successors, because each person’s pay-
off depends upon the actions of everybody else. Even if a few predecessors have chosen to
go short on the market, a trader may worry that his successors will not, thus preventing
a market downturn and leaving him stranded. In short, there are strategic complementari-

ties?. The observation that agents seem to herd, then, amounts to noting that later agents

2A term coined by Bulow, Geanakoplos, and Klemperer (1985), otherwise refered to as positive payoff

externalities,network externalities, supermodularities etc. in various specific contexts.
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pay “too much” attention to the choices of their predecessors and “too little” attention to
their own private information.

In this paper, we propose a game theoretic model to study such situations. There are
n risk neutral agents in our model who act in an exogenous sequence and choose either to
invest or not. There are two states of the world, a state that is conducive to investment, and
a state that is not. Agents receive signals that are informative about the state of the world
in a stochastic sense: very roughly, higher signals increase the likelihood of the state being
good. Conditional on the state, the signal generating process is independent and identical
across agents. At the point when they have to choose their actions, agents are able to
observe the choices of their predecesors and their own private signals (but not the signals
of their predecessors). Finally, there are strong strategic complementarities. Investment
leads to a positive net payoff only if the state is good and all other agents also choose to
invest. Otherwise, it generates negative net return. Not investing costs and pays nothing,
independent of the state of the world.

In this set up, we show that it is inevitable that agents shall become progressively more
optimistic as more and more predecessors choose to invest (Proposition 2.5). This is nat-
ural and to be expected. However, it turns out that such optimism can take excessive
forms, depending on the properties of the information system of the game. If the informa-
tion system has the property that likelihood ratios for individual agents are bounded (i.e.
agents can exhibit only limited amounts of personal skepticism based upon their available
information), then agents may literally start to imitate others and ignore their own payoff

relevant information (strong herd behavior). Indeed, under these circumstances, such “ir-
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rational exuberance” is the only outcome of rational behavior (Proposition 2.6). We are
able to tightly characterize the informational requirements that would lead to such strong
herd behavior for linear information systems (Propositions 2.7 and 2.8). However, we also
show that if the information system is rich enough to allow agents to exhibit unbounded
personal skepticism, i.e., possesses the unbounded likelihood ratio property, such extreme
forms of exuberance are ruled out. The exclusion of strong herd behavior does not mean
that overoptimism vanishes. In fact it is quite possible that agents do not ignore their
private information but are overoptimistic in comparison to the case where information is
aggregated efficiently in the market. We call such phenomena weak herd behavior and lay
down informational conditions necessary and sufficient for weak herding to occur. We show
that for the important class of Gaussian information systems weak herding occurs with
positive probability.

It is apparent from the structure of the model that if players do not exhibit strong herd
behavior, it shall be harder and harder to persuade the first player to invest as the number
of agents gets progressively larger. In order to address these concerns, we characterize the
informational requirements that shall create the possibility of coordinated investment even
in games with unbounded likelihood ratios when the number of players is arbitrarily large
(Propositions 2.9 and 2.10).

The study of situations where people’s decisions are influenced by those of others around
them is not new. Stylized versions of situations similar to ours have been extensively
studied in the literature. The pioneering papers are by Banerjee and by Bikhchandani,

Hershleifer, and Welch, both in 1992. Variations, generalizations, and applications have
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also been studied. Lee (1993) provides conditions on the action choices of agents in a
generalized herding model that guarantee herding. Gul and Lundholm (1995), Chamley
and Gale (1994), and Chari and Kehoe (2000) examine similar models but allow the order
of action to be endogenous. Froot, Scharfstein, and Stein (1992), Chari and Kehoe (1997),
Avery and Zemsky (1998), and Lee (1998), among others, apply herding models to study
various financial situations. For a recent selective survey of this literature see Bikhchandani,
Hershleifer, and Welch (1998). However, all these models are characterized by a common
feature: individual payoffs are unaffected by the actions of others. The only externality
present in these models is an informational one. Agents are concerned about each other’s
choices only to the extent that prior actions generate information about the state of the
world. There are no strategic complementarities. Therefore, agents in these models exhibit
only backward-looking behavior. As a result, it becomes much harder to apply these models
to real financial situations.

In many settings, in addition to the informational externality, it is essential to incorpo-
rate direct payoff externalities. The situations discussed above are but a few of a plethora
of possible examples. When payoff complementarities exist, agents must be concerned not
only with the actions of their predecessors but also with those of their successors. Thus,
in situations such as these, agents would exhibit both backward-looking (learning) and
forward-looking (strategic) behavior. This strategic component complicates the arguments
in the models of Banerjee, and Bikhchandani, Hershliefer, and Welch. Games with payoff
complementarities that capture strategic behavior by agents have been studied in the litera-

ture with the goal of explaining situations similar to the ones above. For example, Obstfeld
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(1986), Cole and Kehoe (1996), and Morris and Shin (1998) model currency crises in vari-
ous degrees as static coordination games under uncertainty with payoff complementarities.
However, the static nature of these games excludes the learning behavior seen in sequential
action models. Finally, the interaction of sequential action with strategic complementarities
creates signalling behavior in our model, an effect that is missing from both herding models
and static coordination games. Agents are concerned about the signals that their action
choices send to their successors. We are, therefore, able to capture the learning behavior
of herding models, the strategic behavior of static coordination games, and the signalling
behavior absent from both of these previous classes of models in one unified framework.

Our analysis also helps to understand better the way in which information plays a
role in creating strong herding in markets. We provide two versions of the model featuring
qualitatively different information systems, one in which the private information of agents is
rich enough to allow them to exercise unlimited personal skepticism (unbounded likelihood
ratios) and one in which this is not possible. We demonstrate that that latter is necessary
(but not sufficient) for strong herd behavior and characterize the precise conditions under
which strong herding takes place under additional assumptions. This provides a foundation
upon which to build a theory of optimal information structure in such games, paving the
way for mechanism design in situations where market participants must be prevented from
herding or persuaded to herd upon risky but socially productive alternatives.

In an important recent contribution, Smith and Sorensen (2000) provide similar charac-
terizations of the informational prerequisites for herd behavior. Their model generalizes the

traditional herding literature by allowing for heterogeneous preferences and makes explicit
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the conditions under which Bayesian learning may be incomplete as opposed to confounded.
Our setting retains the identical preferences of traditional herding models, but adds in pay-
off complementarities with the goal of capturing the other relevant strategic aspects of
a market boom or bust, thereby unifying the literature on herding with static models of
coordination.

Choi (1997) builds network externalities into a model of sequential action under un-
certainty. His model is one of strategic technology choice by firms. Firms choose between
two competing technologies with unknown values. It is beneficial for firms to choose the
technology that shall be adopted by most other firms because of network externalities.
While this model is ostensibly similar to ours, it is significantly different in spirit. First,
once a technology is used by a firm, its true value becomes common knowledge amongst
participants in the game. Thus, after the first player has chosen a technology, the rest of
the game is effectively one of complete information. Second, since firms receive no private
signals about the alternative technologies, there is no private information in Choi’s model.
Herding happens purely due to the network effect and risk aversion. Herding, in the tradi-
tional sense, is simply the phenomenon by which followers may pregressively (suddenly or
gradually) disregard their private information in favour of already available public signals.
A proper analysis of herding requires a fully-specified model that explicitly distinguishes
between private and public information. Our model provides such a framework.

Two other recent papers that contain elements of strategic complementarities and herd-
ing are Jeitschko and Taylor (2001) and Corsetti, Dasgupta, Morris, and Shin (2000). In

the former, agents play pairwise coordination games due to random matching, but learning
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is not “social” since agents observe only their own private histories. In the latter, a se-
quential coordination game is set up to explore the influence of a large trader in a model of
speculative currency attacks with private information. When the large trader is arbitrarily
better informed in comparison to the rest of the market, smaller traders exhibit strong herd
behavior in the sense of our model.

The rest of the paper is organized as follows. In section 2.1 we lay out the model.
Section 2.2 demonstrates two important properties of the equilibria of this game. Section 2.3
defines strong and weak herding in our setting and provides informational requirements for
their occurence. In section 2.4 we characterize the informational requirements to ensure the
possibility of coordination in numerous-player versions of our game. Section 2.5 discusses

and concludes.

2.1 The Model

2.1.1 The Structure of the Game

There are n agents who choose whether to invest (I) or not (N). We write a; € A; = {I, N}
fori =1,2,...,m, and A = x?_; A;. There are two states of the world: a state G which is
good for investment, and a state B which is bad for investment. Nature selects which state
of the world occurs. Investing is risky. For an agent to get positive net return (of 1) from
investing, it is necessary that the state is conducive to investment, i.e., G, and that all other
agents also choose to invest. If even one of these conditions are violated, then investment
generates negative net return of —c. Not investing is safe. It generates a constant return

of 0 independent of the actions of other agents and the state of the world. Agents’ payoffs
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can thus be represented by the mappings (u; : {G,B} x A = IR)}"_, defined for each 7 by:

1 when a; =1 and a; = I for all j # 1,
u;(G,ai,a—;) = ¢ —¢ when a; = I and a; = N for some j # 1,

0 whena; =N

—c whena; =1
ui(B,aj,a ;) = <

0 whena;, =N

\

Agents act sequentially, in the order 1, 2,....,n. Each agent observes the actions of those
who have preceded her. In addition, each agent receives a private signal (her type), which
summarizes her private information about the state of the world. In particular, agent
receives signal s; € S = [s,5] C Ror S; = Rfor all 5. Conditional on the state, the signals
are independent and identically distributed. For each i, s; is distributed according to some
continuous, state-dependent density, f(.). We require that in state G, private signals have

full support.* f(.) satisfies the following (strict) monotone likelihood ratio property (MLRP):

~

(s|B
flsla@

hN—

is strictly decreasing in s. We shall sometimes refer to these stochastic processes as

~

making up the information system for the game, and write f = {f(.|G), f(.|B)} to denote
it.
Agents share a common prior over the state of the world: Pr(G) =1— Pr(B) =7 €

[0,1]. They are expected utility maximizers.

3For notational convenience, we shall use s and § below to denote lower and upper bounds for S even

when S = IR, assuming implicitly that § = co and s = —oo when this is the case.

4This is done to eliminate the trivial case where an agent may discover for sure that the state is B. In

such a case, there is no strategic content left in the game.
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For future reference, we shall denote the game we have just described by I'(n), where
the argument refers to the number of players in the game. Unless otherwise stated, we shall
assume that n € Z,,, i.e. the number of players is finite. In what follows, we consider
Weak Perfect Bayesian Equilibria of I'(n) which are defined below. We preface our analysis

by some brief remarks about the information system.

2.1.2 A Note on Likelihood Ratios

As we have noted above, the signals in I'(n) can be generated either from some closed
subinterval of IR, or from IRitself. This distinction is made to explicitly distinguish between

two versions of the game: the case with bounded likelihood ratios and the case with un-

bounded likelihood ratios.5 We denote the likelihood ratio by r(s) = I(s B)

FGIG) The full support

assumption on f(s|G) ensures that r(s) is well defined on S. When S = [s,5] C IR the
MLRP property and the boundedness of probability density functions implies that there
exist bounds B > 0 and T < oo such that r(s) € [B,T] for s € S. B = 0 when f(s|B)
is not full support. When S = IR, the MLRP property implies that r(s) is unbounded
above and asymptotes to 0 below. Conversely, when r(s) is unbounded above or below, the
boundedness of probability density functions that S =R

Intuitively, the case with unbounded likelihood ratios can be thought to be the version
of I'(n) when players exhibit unbounded personal skepticism, i.e. may observe some private
information that reverses any level of optimism they may have enjoyed ex ante. The case

with bounded likelihood ratios is the reverse: players are only boundedly skeptical. A

®While the distinction is formal, i.e., represents alternative modelling strategies, it is useful in classifying

the results of the game.
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certain level of ex ante optimism cannot be reversed by any private information, however
discouraging. The properties of r(.) shall turn out to be crucial to our analysis of I'(n), and

we shall return to this point again below.

2.1.3 Possible Strategy Profiles

How does an agent, say i, decide whether to invest or not? When agent i is called upon
to act, she knows only what her predecessors have done and the value of her own signal.
Hence, her strategies take the form of mappings from her predecessors’ actions and her own
private signal to her action set. Formally, for each i, o; : (Xj<;4;) x § = {I,N}. Given

this notation, we first provide a useful definition:

Definition 2.1. Player i follows a trigger strategy in I'(n) if she chooses her actions

according to the map

I  when s; >t; and aj =1 Vj <1
oi(si, (aj)j<i) =

N otherwise

for some t; € R where R = IRU {—o0} U {00}, the augmented real line.

We call t; player i’s trigger. An equilibrium in which each player follows a trigger
strategy is called a trigger equilibrium.

It is important to note that while players’ signals are drawn from some subset of the
real numbers IR, triggers are drawn from the augmented real line, &, because players may
follow strategies of “always invest” (corresponding to a trigger of —oo if S = IR) or of “never

invest” (corresponding to a trigger of oo if S = IR).
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Given the payoff complementarities, it is clear that in any equilibrium if a; = N for some
J <1, 0i((aj)j<i,si) = N for all s;, since investing is a strictly dominated action. Thus,
agent i’s decision problem is interesting only in the instance that a; = I for all j < 4. In this
instance, since we know by definition (a;);<; = (I,...,I), an agent’s equilibrium strategy
is formally just some function of her private signal. Thus, for notational convenience, we
can now drop the explicit dependence of the strategies o; on the observed history of actions
(a;)j<i- When the argument is suppressed, it is tacitly assumed that a; = I for all j < i.

If she observes investment by all her predecessors, then agent i has some beliefs (pos-
terior) about the state of the world, say m; € [0,1]. Her expected utility from investing
depends upon this posterior belief, her private signal, and the strategies of her successors.

Formally, EU;(m;, i, (04)>i) = (1)P; + (—=¢)(1 — F;), where

P, = Pr(G,(oj(sj) = I)j>ilsi)

Pr(G)Pr((o;(s;) = 1)j>i, si|G)
Pr(G)Pr(s;|G) + Pr(B)Pr(s;|B)
miPr((oj(s;) = 1)j>i|G) f(si|G)

7 f(8i|G) + (1 — m;) f (s B)
miPr((oj(s;) = 1);>i|G)

-l

where the third equality follows from the conditional independence of the signals.® Given

this notation, we define a Weak Perfect Bayesian Equilibrium for I'(n).

Definition 2.2. A Weak Perfect Bayesian Equilibrium of I'(n) is a tuple of strategies

(01,...,00) and a tuple of posterior beliefs (w1, ...,m,) where for each i, m; : (a;)j<i — [0,1]

5Note that we could divide by f(s|G) above because of our assumption of full support in state G.
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which satisfy the following conditions:

1. Given m;, 0; is a best response to o_; after every possible history.

2. If the observed history of play can happen with positive probability in the equilibrium

path prescribed by o, then m; is derived from the original priors by Bayesian updating.

If not, then m; is any member of [0, 1].
In the specific setting of our model, these conditions translate into the following;:

1. For each i, if a; = N for any j < 4, then 0; = N. If a; = I for all j <4, then 0; =1

if and only if

miPr((o;(sj) = I);>ilG)

f(si| B)

(1+c¢c)—c>0
mi+ (1= ™) )

2. If Pr(oj(sj) =1 Vj <i) >0, then 7; is obtained by updating m; = 7 using Bayes’

rule. If not, then 7; is any member of the interval [0, 1].

It turns out that in any Weak Pefect Bayesian Equilibrium, each player in I'(n) will

follow a simple trigger strategy as we demonstrate below.
Proposition 2.1. Any Weak Perfect Bayesian Equilibrium of T'(n) is a trigger equilibrium.

Proof: Let (01,...,0,) be any WPBE of I'(n). We shall show that each player follows
a trigger strategy. We already know that each player ¢, conditional on having observed a

history of investment, follows o; = I if and only if

miPr((o;(s;) = I);j>ilG)

f(si|B)

(1+c¢)—c>0
mi+ (1= ﬂ-i)f(-siﬁ)

EU; =
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Since EUj;(s;) is clearly increasing and continuous in s;, player ¢ will adopt then invest only
if s; > t; where t; is defined by EU;(¢;) = 0. Upon not observing a history of investment,

player 4 will not invest for sure. Thus, player 7 follows:

I whens; >t;anda; =1Vj <1
oi(si, (aj)j<i) =
N otherwise

which is exactly a trigger strategy as defined above. But this immediately implies that any

WPBE of I'(n) is a trigger equilibrium. [ |

Proposition 2.1 allows us to restrict our attention to trigger equilibria. Thus, the Weak
Perfect Bayesian Equilibria of I'(n) are n-tuples, (¢, ...,t,) € R™ where player 7 follows a
trigger strategy with trigger ¢;. Henceforth, we shall refer to equilibria of I'(n) simply as

trigger equilibria.

2.1.4 The Existence of Trigger Equilibria

Case 1: Bounded Signal Support

To demonstrate the existence of pure strategy equilibria, we define the best response func-

tion:

Definition 2.3. Consider a set of triggers t € [s,3|". Denote the best response mapping

by B : [s,5]" — [s,5]" and the ith component of B(t) by Bi(t). Then, Bi(t) = r~ (E;), where

™ 1+c¢ Pr(s > t;|G)
E; = P >ti|G) -1 =7 7
l-7| ¢ JI;IZ r(s 2 |G) Jl;[iPr(s > t;|B)

if B € [B,T] If E; < B, ﬂz(t) =sandif B; > T, ﬁz(t) = s.
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The strict MLRP property implies that 5(.) is single valued, and the continuity of f(.|G)
and f(.|B) imply that §(.) is continuous. Thus, 5(.) is a continuous function that maps
[s, 8]", a compact and convex set, into itself. Therefore, by Brouwer’s Fixed Point Theorem,
there is a t* € [s, 5]" such that 8(¢t*) = t*. Thus a trigger equilibrium of I'(n) exists.

However, since the argument above admits the possibility that ¢* lies on the boundary of
S, this leaves open the possibility that the only equilibrium of I'(n) is the trivial equilibrium
in which ¢; = 5 for all j, and thus nobody invests in equilibrium.

In fact, the extreme form of strategic complementarities embodied in I'(n) ensures that
there is always a trivial trigger strategy equilibrium in which nobody ever invests. Let us
construct such an equilibrium. Consider the problem of a player, say ¢, with posterior belief
7; upon observing investment by her predecessors, who is sure that all her successors (if any)
will invest. Let t(m;) be the trigger selected by such a player. Clearly, ¢(m;) is decreasing
in m;. Let 7* be defined by Pr(s > t(n*)|G) = —*. Note that for some € € (0,7%],

Ttc
Pr(s > t(r* — €)|G) < 1%

Now consider the problem of player ¢ — 1 with posterior beliefs ; 1, who observes signal
8;—1. She knows that upon observing investment by her, player ¢ will have posterior beliefs
7* — €. She will certainly not invest if Pr(G,s > ¢(7* — €)|si—1) < 155, i-e., if she does not
assign sufficient probability to the event that the state is good and (at least) her immediate

successor invests (if her immediate successor doesn’t invest, it matters not to player i — 1

what later player do). But notice that

Cc

TimaPr(s 2 Hm” = OIG) _ po s 4t — 0)[6) <

mi—1+ (1= Wi—l)—fcg"gg B l+c

PT(G,S > t(7T* — e)‘s) =

where the first inequality corresponds to the case where s; 1 = 5. This means that if player
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1 — 1 knew that upon observing her invest player ¢+ would have beliefs 7* — ¢, then she would
assign probability strictly less than FCC to the event that the state is good and that player
1 will invest, regardless of her own prior belief. So, player ¢ — 1 will not invest.

Now it is easy to see that the strategy set (3,3, ..., 3) is a Perfect Bayesian Equilibrium
if upon seeing investment by a predecessor each player has probabilistic beliefs given by
7m* — € for any € € (0,7*]. Given these beliefs off the equilibrium path, the first player will
never find it profitable to deviate from her equilibrium strategy to “never invest.” This
is because even if she believed that players 3, ...,n would invest for sure conditional upon
investment by their predecessors, she would still assign too low a probability to the event
that the state is good and that player 2 (with beliefs given by 7#* — € upon seeing player 1
invest) will invest. Thus, the first player will not invest, and so all her successors will set
their triggers optimally to infinity (i.e., never invest) 7.

However, this is not a very interesting equilibrium, and it is natural to wonder if there
is a non-trivial trigger equilibrium of I'(n). In such an equilibrium players would choose

interior triggers, and therefore allow for the possibility of coordinated investment. Formally,

we refer to these equilibria as investment equilibria.

Definition 2.4. Trigger equilibrium (t1,...,t,) € R™ of ['(n) is an investment equilibrium

ift; <35 forallj=1,..,n.

Investment equilibria allow for the possibility of coordinated investment.

In order to ensure the existence of investment equilibria, we must lay down some suffi-

"These out of equilibrium beliefs are sufficient but not necessary to support the (8, ..., 8) strategy profile

as an equilibrium.
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cient conditions on the information system of the game. This requires a preamble.

Cousider the following situation. Players 1 through n — 1 choose to invest blindly, i.e.,
t; = ... = t,—1 = s. Consider player n’s best response to such strategies (upon observing
investment by all her predecessors), t,. Given our definition of the best response function
above,

In other words,

ty =1t |2 !
" l—-7ec

This uniquely defines ¢, in terms of the parameters (c), the prior (7), and the information

system (f). We write t, = Uy(c, 7, f), or U, for short. Further, we require, that

c

Pr(s 2 Uu(e, DIG) >

Call this Condition U,,.
Now consider the situation where players 1 through n — 2 choose to invest blindly, i.e.,
t] = ... = tp—o = s, while player n plays according to trigger U,. Now, player n — 1 will

choose her trigger according to:

1

tpoqg =71 [ T (jPr(sn > U,|G) — 1)]
1-7 c

Note that Condition ¥,, ensures that ¢,_1 is well defined in terms of the parameters, and

we write t,_1 = Up_1(c, 7, f) or U,_; for short. Now we require that

c

Pr(s > Uy—1|G)Pr(s > U,|G) > T+e

Call this Condition V,,_;.

We continue iteratively in this way, defining U,,_o(c, 7, f), ..., U1(c, 7, f), and conditions
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V,_9,...,¥1. Now we are ready to define the useful properties of the information system

promised above.

Definition 2.5. Let Ui(c,7, f),...,Up(c,m, f) and the conditions ¥1,..., ¥, be defined as

above. We say Property ¥ holds if conditions Vo through V,, hold simultaneously, i.e., if

H/ x|Gd:c>—
Uj (e, f) l+ec

Given ¢ and w, the property defined above imposes a restriction on the information
system, i.e., on the stochastic process generating the private information processes of the
agents. Stated in words, Property ¥ simply says that in the good state, the information
system must be reliable enough, i.e., generate signals above predetermined levels (the U;’s)
with sufficient probability. This property turns out to be useful for the case with unbounded
likelihood ratios.® However, for the present case with bounded likelihood ratios, we need a

slightly stronger condition. Finally, therefore, a last definition.

Definition 2.6. We say that f satisfies Property U+ in I'(n) if it satisfies Property ¥ and

if
T 14+¢
1—=x

[[Prs>U5lG)-1| > B

§>1

Then the following result holds:

Proposition 2.2. When Property Y+ holds, there exist L,U € S with L < U and U < §

such that for t € [L,U], B(t) € [L,U].

8 As we shall see below, Property ¥ turns out to be sufficient to guarantee existence of investment equilibria

in I'(n) when S =1R
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Proof: Let L = (Ll,Lz, ...,Ln), where L,’ = ﬂ((Ul, ceey Ui—l); (Li—i-la ...,Ln)) where U; is
defined as above. Let U = (U, Us,...,Uy,). Clearly, L < U. Let t € [L,U]. Since Property

U+ holds, U; < 8, thus ¢ is interior in [s, 3] and 8(t) € (B,T). Thus,

™ 1+c¢ Pr(s > t;|G)

Bi(t) =r" HPr(s > t]G) -1

l-7| ¢ i i Pr(s > t|B)
Notice that
_ 1+c¢ Pr(s > U;|G)
Li=r1 T Pr(s > L;|G) — 1 =77
i=r 1-7| ¢ H r(s 2 L4|G) t1 Pr(s > Uj|B)
J>t j<i

and since L <t < U, B;(t) > L;. Similarly, notice that

T 1+¢
1—7 c

Uj=r"1 HPr(s >U;|G) -1

3>t

and thus g;(t) < U;. [ ]

Corollary 2.1. When Property ¥+ holds, there is an investment equilibrium in I'(n) with

bounded signal support.

Proof: When Property U+ holds, there exists a compact and convex set [L,U] C [s, 3]
with L < 5 such that B(t) € [L,U] for all ¢ € [L,U]. Observation of the best response
mapping establishes immediately that £(.) is continuous on [L,U]. Thus, by Brouwer’s

Fixed Point Theorem, f(.) has a fixed point in [L, U]. |

We now turn to the case for existence of trigger equilibria in the case with unbounded

signal support (thus unbounded likelihood ratios).
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Case 2: Signals drawn from R

Since we do not have to worry about endpoint problems when S = IR, the best response
mapping is more simply defined than above. Given a set of triggers ¢t € IR, the best

response is defined to be B(t) € IR?, where

T 1+¢
1—= c

Pr(s > t|G)
i<i Pr(s Z tj|B)

Bit) =r" [IPr(s>t16) -1

7>i
Given this definition, we are ready to examine the existence of trigger equilibria for the
game with S =R
As in the case with bounded signal support, a trivial trigger equilibrium with infinite
triggers exists. Such an equilibrium can be constructed with an argument identical to the
one above. However, the no-investment equilibrium is not very interesting, and we naturally
turn to the existence of investment equilibria. The question of existence of investment
equilibria is more involved when signals are drawn from IR, since the underlying signal
generating process has unbouded support, making it impossible to directly appeal to a
fixed point theorem. However, a subtler argument establishes that if Property ¥ holds,

then investment equilibria exist even in this case. The following result is crucial.

Proposition 2.3. If Property ¥ holds, then there existt € IR' and t € IR® such that for all

teR" t < Bt) <t
The proof of this result is involved. It is relegated to the appendix.

Corollary 2.2. When Property ¥ holds, there is an investment equilibrium in T'(n) with

S=IR
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Proof: Proposition 2.3 tells us that there exists [t,£ | C IR” such that for all t € R",
B(t) € [t,t ]. Thus, in particular, for all ¢ € [t,¢ ], B(t) € [t,# ]. Inspection of the best
response mapping establishes that for all ¢ € [t,¢ ], B(.) is single-valued and continuous.
Clearly [t,% ] is compact and convex. Now, by a simple application of Brouwer’s fixed point
theorem, we note that there exists ¢t* € [t,7 | such that t* = (¢*). Thus, a bounded equi-

librium of I'(n) exists. u

Next we examine some pertinent properties of these investment equilibria.

2.2 Properties of Investment Equilibria

In this section we demonstrate two key structural properties of investment equilibria. The
properties apply to investment equilibria of I'(n) in general, regardless of whether the un-
derlying signals have bounded or unbounded support. Thus, in order to ensure the existence
of these equilibria we tacitly assume that Properties ¥ or ¥+ hold, depending on which
version of I'(n) we are considering.

The first of these properties encapsulates a simple relation between the relative magni-

tudes of triggers in any investment equilibrium of I'(n).

Proposition 2.4. Suppose (t1,t,...,t,) is any investment equilibrium of T'(n). Then, t; is
decreasing as a function of t; for j < 4, and increasing as a function of t; for j > 4. In
other words, an agent’s equilbrium triggers is increasing in the triggers of her successors,

and decreasing in the triggers of her predecessors.

Proof: The proof follows directly upon examination of the best response correspon-
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dence. Let (¢1,t9,...,ty) be any investment equilbrium of I'(n). Then, by the definition of

the best response mapping;:

4| 7 l+c
1-7 c

Pr(s > t;|G)
i Pr(s > t;|B)

[[Prs>t16) -1

J>i

ti:r

Now it is apparent that ¢; is increasing in ¢; for § > 4 and decreasing in ¢; for j < 7 since

d Pr(s>z|QG)

Pr(s>qB) 18 Increasing in . |

r(s) is decreasing an

The intuition behind this result is simple. In equilibrium, conditional upon observing
investment by a predecessor, the higher the predecessor’s trigger, the higher the signal the
predecessor must have observed. The MLRP property of the information system of I'(n)
implies that higher private signals make players more optimistic about the state of the
world. Large signals are “good news” for would-be investors. They make it likelier that
the state is GG, which in turn makes it likelier that other players will receive relatively high
signals. Thus, observing investment by a predecessor with a high trigger conveys more
“good news” for a player, and makes her more optimistic about the state of the world, and
about the probability that her successors will also invest. Agents in this model have two
sources of information, both of which affect their level of optimism: the public information
encapsulated in the observed decisions of their predecessors, and the private information
contained in their signals. Thus, when an agent observes more encouraging public infor-
mation (investment by predecessors with high triggers), she requires less persuasive private
information in order to choose to invest. Thus, she picks a lower trigger. Similarly, if an
agent believes that her successors have extremely high triggers, then she may be concerned

that they shall not invest with higher probability, and “leave her stranded” if she chooses to
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invest. Thus, she will be inclined in equilibrium to require more persuasive private evidence
for the fact that the state is G before deciding to invest. In other words, she will choose a
higher trigger.

The above proposition has an immediate consequence for the two player version of our

game, as we note below:
Corollary 2.3. There is a unique investment equilibrium in I'(2).

In an investment equilibrium, the process by which agents become more optimistic (or
pessimistic) about the state of the world is by Bayesian learning. Agents update their priors
about the state of the world by Bayes’ Rule upon observing their predecessor’s actions. As
we have just argued, observation of investment by a predecessor with a high trigger makes
an agent more optimistic about the state of the world than the observation of investment by
a predecessor with a low trigger. Intuitively, it seems also likely that observing investment
by two predecessors makes an agent (at least weakly) more optimistic about the state of
the world than observing investment by one predecessor.? Thus, upon observing investment
by more and more predecessors, later players will require less and less persuasive private
information in order to invest. In other words, the greater the mass of public evidence in
favour of a good state, the lower the level of private evidence required to make investors

take potentially productive but risky actions. The following result captures this intuition.

Proposition 2.5. In any Investment Equilibrium of T'(n), (t1,...,ts), t; > tjq1 for j =

1,..,n—1.

°If the second predecessor has a trigger of s or —oo, then her decision to invest does not affect the

optimism of succeeding players. Hence the relation if weak.
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Proof: In equilibrium (¢1, ..., t,), consider the magnitudes of ¢; and ;1. We know from

the definition of the best response mapping;:

i—1
f(t:|B) T |14+ec & 1 Pr(s; > t|G)
= Pr(s; > t;|G) — 1 e
ft c j_llH = ]1;[1 Pr(s; > t;|B)

f(ti+1|B) T |[1+c ! Pr(s; > t;|Q)
= Pr(s; > t;|G) —1 _— ==
FtalG) 1= AL Prtss =10 = 505 0)

Note that Pr(s > t;+1|G) <1 and % > 1 due to the MLRP property of f. Note

that the equalities follow in both cases if and only if ¢;41 = sor — 00 and t; = sor — o

respectively. Thus, [[7_;, ) Pr(s; > tj|G) < [I;_; o Pr(s; > t;|G) and H; 111];: Zjigf% <

i Pr(s;>t|G)
J=1 Pr(s;j>t;[B)

This means that }cgzigg < }cgziﬂgg, and thus t; > t;11. ¢

This proposition implies that conditional upon observing investment by predecessors,
later players shall tend to invest more easily, i.e., for larger ranges of private information.
Very roughly speaking, this means that later agents are less concerned about the content of
their private information than earlier agents. This is because the observation of investment
by predecessors make later players progressively more optimistic.

Is it possible that Bayesian learning has made players “too optimistic” relative to some
(as yet unspecified) superior social alternative? Could there be versions of I'(n) where
successors completely ignore their private information upon observing predecessors invest,

and thereby clearly act suboptimally in a social sense? These questions are addressed in

the following section.
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2.3 Herding

In settings with sequential decision making in the presence of uncertainty, private informa-
tion, and observed public actions, agents are said to “herd” if they blindly imitate their
predecessors’ choices without heed to their own private information. In other words, herd
behavior occurs when, in the words of Douglas Gale (1996) “imitation dominates informa-
tion.” Interpreting this concept literally in terms of our trigger equilibria, agents herd in
equilibrium if one or more successors set their triggers to s, the lower bound of the sig-
nal generating process. This means that conditional upon observing investment by their
predecessors, some agents choose to invest for all possible values of their private signals.
The strongest version of such herd behavior is if all successors choose to blindly imitate
the first player. We shall call this type of behavior strong herding. For our purposes, we
shall also define a much weaker form of herd behavior. When strong herding occurs, later
agents become so optimistic that they pay no attention whatsoever to their private infor-
mation. However, it is not difficult to imagine situations in which agents do not become
optimistic enough that to imitate blindly, but still become overoptimistic compared to a
situation where private information was aggregated efficiently in the market. We shall call
such phenomena weak herding. The idea is formally defined later in the paper.

It turns out that strong herding can occur in I'(n) only if signals are drawn from a
bounded support, i.e. the likelihood ratios are bounded. However, in the case where signals
are drawn from IR and likelihood ratios are unbounded, there can still be weak herding. In
what follows, we lay down the informational prerequisites for strong and weak herding in

'(n).
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2.3.1 Bounded Likelihood Ratios: Strong Herd Behavior

We begin with a definition.

Definition 2.7. An investment equilibrium t of T'(n) exhibits strong herding if s < t; < §

and t; = s for j > 2.

In words, this simply means that all followers choose to completely ignore their private
information. This definition, taken together with Proposition 2.4 leads to a very useful

property of strong herding equilibria.

Proposition 2.6. If investment equilibrium t of T'(n) ezhibits strong herding, it is unique.

Proof: Let t = (t1,s,...,8) where s < t; < 5 be a strong herding equilibrium. Suppose
it is not unique. Let z be an investment equilibrium, with z # ¢t. Since z # t, clearly, there
is a j, j > 2 such that z; > ?;. Proposition 2.5 implies that if this is so, zo > ?3. For
simplicity, let z; = t; for j > 3. Let 22 > t3. Then, by Proposition 2.4 we know z; > 1;
(equilibrium triggers are increasing in those of successors). But this in turn implies, also by
Proposition 2.4, that 2y < to (equilibrium triggers are decreasing in those of predecessors).

This is a contradiction. [ |

Proposition 2.6 tells us that if I'(n) has a strong herding equilibrium, it is unique in the
class of investment equilibria. Corollary 2.3 tells us that the two player game has a unique
equilibrium. Together the two imply that in order to analyze whether I'(n) has a unique
strong herding equilibrium, it is sufficient to look at I'(2). In what follows, therefore, we

lay down the conditions under which I'(2) has a strong herding equilibrium.
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Let (t1,t2) be any investment equilibrium of I'(2). Recall that r(s) € [B,T]. Then,

r(t) = —— |1 —Ci_cPr(s > 15|G) — 1]

m 1Pr(s>t|G)

ty) = =
r(t2) 1—mcPr(s >t|B)

For t to be a strong herding equilibrium, we need ty = s. So t; = r—! (ﬁ%) But if

to = s, then r(t2) > T. This implies
— w1
PT(SZT 1<mE) |G) 2 1_7.‘.
Pr(s>r-1 (L ) |B) &

1—7
This condition defines precisely the informational requirements for strong herding in T'(2),

cT

o=

and therefore for I'(n). It is apparent that there is no unique way of characterizing the
information systems that satisfy such a condition. However, it is possible to provide tight
characterizations over broad classes of information systems. Below, we provide such a
characterization for all information systems where the signal generating processes are linear
in the signals.

In considering the case for linear signal generating processes we limit attention without
loss of generality to a support of [0,1]. In addition, since it is the ratio of densities and
not the individual densities that are important in our model, we normalize the density in
state G to be uniform (U[0, 1]) also without loss of generality. Given the strict MLRP, this
means that f(s|B) is decreasing and linear in s. We are now ready to provide two results

characterizing when strong herding will occur in I'(n).

Proposition 2.7. Suppose S = [0,1]. Let f(s|G) = 1. Consider the class of densities in

state B that are linear in the signal and that do not have full support. Then, for a given c
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and for any prior ™ we can construct an information system such that T'(n) has a unique

equilibrium with the strong herding property.

Proof: Let f(s|B) = a — bs, where a > 0 and b > 0. Since f(s|B) is a density, it
must integrate to 1 over its support. The support is given by [0, 7] where since f(s|B) is
not full support we require that a < b. Also, foa/b(a — bs)ds = 1 implies b = % Putting
this two relations together, we get a > 2. Thus, f(s|B) = a — %s, and since f(s|G) =1,

r(s) = f(s|B). Thus, clearly, 0 < r(s) < a. Let k = {Z-%. By the conditions defining a

1-7

strong herding equilibrium (¢, ¢2), we require that r(¢;) = k which implies ¢; = a%(a — k).
To ensure that this is an investment equilibrium, we require that ¢; < 1, i.e., a — % < k.

To ensure that the equilibrium is not trivial, we require ¢; > 0, i.e., a > k. Finally, in order

Pr(s>t1]|GQ)

PrisShlB) > a, which, upon algebraic simplification implies

to make 7(t2) > a, we require k

a=2 > k. Clearly, for

that we require f_Q > k. Thus we want a > 2,a >k, a— % < k, and .

_2
a

a

any given k, by picking a large enough, we can satisfy these conditions, which are necessary

and sufficient for the existence of a unique investment equilibrium with strong herding. W

Proposition 2.8. Suppose S = [0,1]. Let f(s|G) = 1. Consider the class of densities in
state B that are linear in the signal and full support. Then there is no equilibrium of T'(n)

with the strong herding property.

Proof: Let f(s|B) = a —bs where a > 0 and b > 0. Since f(s|B is a density it must
integrate to 1 over it’s support. The support in this case is given by [0,1] and in order
to ensure this full support, we require that a > b. So, fol(a — bs)ds = 1 which implies

b = 2(a — 1). Together, these imply a < 2 and, since b > 0, a > 1. Thus, 1 < a < 2.
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So, f(s|B) = a—2(a—1)s and r(s) = f(s|B). Clearly, 2 —a < r(s) < a. Let k = =1
(t1,t2) is a strong herding equilibrium if and only if t; = r (k) = % Also, since

0 < t1 < 1 by definition of strong herding, a > k and a > 2 — k. Finally, to = 0 if and only

if k Pr(s>t1]|G)

Pr(s5t1|B) > a. Upon algebraic simplification, this yields, a < k. But we have already

required a > k. This is a contradiction. |

Thus, in the class of linear information systems with bounded likelihood ratios, I'(n) can
have a strong herding equilibrium if and only if the the signal generating process in state
B is not full support. This provides a criterion for mechanism design in contexts where
players need to be coordinated upon some socially productive risky action (or prevented
from coordinating upon a socially unproductive one). If it was possible for the mechanism
designer to provide private information via linear stochastic processes to the players, she
would know exactly how to make all but one player ignore their own private information, or,
by the same token, how to force players to pay more attention to their private information.

We now address the question of herd behavior when likelihood ratios are unbounded.

2.3.2 TUnbounded Likelihood Ratios: Weak Herd Behavior

It is apparent by inspection of the best response mapping that when r(s) is unbounded,
i.e., when S = IR it is impossible to have strong herding in I'(n). However, the lack of
extreme informational inefficiencies in such instances does not mean that there aren’t any.
Inefficiencies in the aggregation of information can lead to “excessive optimism” in I'(n).
How can we measure such excessive optimism?

Information about the state of the world in I'(n) is generated by the sequence of payoff
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relevant private signals that the players receive. The problem is that the signals are private,
i.e., only the original recipient of the signal can observe its true value. Others must be
satisfied with simply observing the actions chosen by the original recipient and guessing
from this action what the recipient’s signal may have been. If information was efficiently
aggregated, each agent would be able to observe the equivalent of all signals that had been
received (by herself or others) at the point of time they she is called upon to act. This could
be achieved, for example, by a social planner, who could observe each agent’s signal and
announce it to the rest of the group.!? Let us denote this variation of I'(n) with observed

signals by I'(n). We can now define weak herding in I'(n).

Definition 2.8. An investment equilibrium t in T'(n) is said to exhibit weak herding if there
exists i > 1 such that with positive probability t; < t;, where t is the unique equilibrium in

I'(n).

In other words, an investment equilibrium of I'(n) exhibits weak herding if at least one
follower becomes excessively optimistic with positive probability. In what follows we present

in brief the game with observed signals. For brevity, we simply consider the two-player case.

ONote that it is not easily possible to simply get each agent to simply announce their signals, since there
are significant credibility problems inherent in such announcements. Once an agent has chosen to invest,
she has a clear incentive to get her successors to invest, regardless of the actual state of the world, and thus

has motive to overstate her signal.
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I'(2) with Observed Signals

Let w2 denote player 2’s updated prior after she has observed her predecessor’s signal.

Clearly,

() - ™ f(SﬂG)
1—-m 1-—m7f(s1|B)’

where s; is the realization of player 1’s signal. Upon observing player 1 invest, player 2’s
expected utility from investing is given by

T2

EU(I) =

(I4+¢)—c

if she observes private signal so. Her expected utility from not investing is 0. Since EUs(I)

is clearly increasing and continuous in s, player 2 shall choose a trigger strategy, where her

mo 1

trigger to is defined by fo = 7~—1(177T2 E)’ e,

. m 1f(s1]G)
b= L F e B)

We are now ready to provide a characterization of weak herding in I'(2). Recall that by

Pr(s>t1]|G)
Pr(s>t1]|B)

definition of the best response mapping in I'(2), to = r_l(L%

T ). The investment

equilbrium ¢ possesses the weak herding property if with positive probability, to < #s, i.e.

with positive probability

Pr(s > 1|G) _ f(s1]G)
Pr(s > t1|B) = f(s1|B)

It is apparent that this property shall hold for large classes of full support distributions on IR,
particularly those with thin tails. A natural example of this is the Gaussian Distribution.
In what follows, we present a few examples of how weak herding occurs with positive

probability in I'(2) when the information system is Normal.
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The results are presented in Table 2.1. We assume ¢ = 1, 7 = 0.6, f(-|G) = N(5,0?),
f(:|B) = N(0,0?), and vary the standard deviation of the signal generating processes. In
each case, in the table below, we provide, the unique equilibrium triggers of I'(2), the ranges
of signals for which weak herding occurs, as well as the corresponding ex ante probability of
weak herd behavior. We call the upper and lower bounds of the weak herding range why,

and why, respectively.'!

StDev Equilibrium WH Range | Pr(Herding)
o t1 to whr, why (ex ante)
1 2.419 1.449 2.419 || 2.908 1%
2 2.199 0.645 2.199 || 3.477 12%
3 1.910 -0.344 1.910 || 4.187 22%
4 1.559 -1.478 1.559 || 4.937 27%
5 1.123 || -2.735 1.123 || 5.712 32%
10 -3.011 || -10.471 || -3.011 || 9.647 46%

Table 2.1: Signal Ranges for Weak Herding

The comparison of I'(2) with the game with observed signals raises an obvious related
question. If inappropriate aggregation of information in I'(2) represents a source of potential

inefficiency, so do the strategic complementarities built into the payoffs. Conditional upon

" Naturally, in each of the cases above, it is also possible that weak herd behavior shall not occur, since
the signals received shall be high enough to justify, or even dwarf, the optimism inherent in the trigger
equilibrium. The point of this exercise with unbounded likelihood ratios is to demonstrate that overoptimism

is likely, not inevitable, as the outcome of rational behavior in I'(2).
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investment by their predecessors, when agents choose whether to invest or not, they take
into account only their personal gains and losses from investing, not the gains and losses to
society as a whole. When agent 2 chooses not to invest (conditional upon agent 1 having
already invested) she imposes an immediate cost of —c on Agent 1. Agent 2 does not
take this cost into account, and thereby may possibly be too conservative in her investment
strategy relative to the social optimum. In order to compare I'(2) with the alternative game
that incorporates both observed signals and awareness of social costs, we have to consider
the single-agent decision problem. In this, one agent chooses successively to invest or not,
and gains the sum of the payoffs to individual players in I'(2). This means that she earns 2
at the end if she chooses to invest twice and the state is G, —2c if the state is B, —c if she
chooses to invest exactly once, and 0 if she does does not invest at all. The agent remembers
her history of signals when choosing to invest. The comparison of the equilibrium of this
single agent decision problem with the trigger equilibria of I'(2) turns out to be similar to
the comparison with the case of observed signals above. The broad conclusions are that the
trigger equilibrium of I'(2) is inefficient for sure, and can exhibit both overoptimism and
overpessimism with positive probability. The single agent version of I'(2) is worked out in
the appendix.

The lack of the strong herding property in equilibria of I'(n) when S = IR raises another
interesting question. When an equilibrium of I'(n) exhibits the strong herding property, it is
possible to coordinate an infinite number of players upon risky investment. However, when
the equilibria of I'(n) lack the strong herding property it is natural to wonder whether it is

possible to coordinate larger and larger numbers of players upon investment in equilibrium.
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Intuitively, since all players in the game choose finite triggers, as the number of players get
larger and larger, it may be harder and harder to convince the first player to take a risk
and invest, since there are more and more later players who could “leave him stranded” by
choosing to not invest after he does so. What would happen in I'(n) with S = IRas n grew
larger and larger? Is it still possible to make Player 1 invest in equilibrium?

Recall that in our discussion to date, we have assumed that the information system
in T'(n) satisfied Property ¥, which guaranteed the existence of a investment equilibrium
when S = IR However, a cursory glance at the definition of Property ¥ might lead one to
believe that as one increased the number of players, the information system may no longer
satisfy W. However, note that ¥ is only sufficient and not necessary for the existence of
equilibria in this model. Whether we can satisfy ¥ in I'(n) as n grows larger, and whether an
equilibrium might exist even if W is violated, depends crucially on the information structure
chosen for the game. Thus, in considering the effects of increasing n, we are effectively
proposing an exercise in comparative information systems. In order to give some structure
to such a comparative exercise, it is necessary to parametrize the information system. For
this purpose, we henceforth consider Gaussian (Normal) information systems for arbitrary
(general) parameter values. This is simply an analytical simplification. Several of our
results will not be contingent on the precise functional form of the Gaussian distribution,
and we shall point out generalizations in due course. With this in mind, we progress to
characterizing the informational requirements for creating the possibility of coordinated

investment in I'(n) when S = IR
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2.4 On the Possibility of Coordination

The existence of investment equilibria in I'(n) ensures the possibility of coordinated invest-
ment by the participants in the game. It is intuitive that it should be harder to coordinate
progressively larger numbers of players upon a risky but socially productive action in our
setting. In this section, we explore the informational conditions that will allow us to ensure
that it is at least possible to coordinate a large number of players upon a productive risky
action.

Our new setting specializes the original setting in one sense. The information system
f={f(|G), f(.|B)} is specified to be Gaussian. In the good state, signals are generated
by some arbitrary Gaussian process with mean p > 0 and standard deviation ¢ > 0. In the
bad state, signals are generated by a Gaussian process with mean 0 and standard deviation
o. Choosing the standard deviation to be identical in both states ensures the strict MLRP
property of f. The choice of 0 as the mean of the signal generating process in the bad state
is without loss of generality. It is easy to see that what matters is the difference between
the two means. Thus, y the mean in the good state could also be viewed as the difference
of means between the two states: y = ug — up- up is set to 0 for notational simplicity. In
sum, therefore, f = {N(u,0), N(0,0)}. We denote this information system by f(u,o).

In this new setting consider what happens in I'(n) as n gets bigger. It is easy to see that
as the number of players gets large, it becomes harder for f to satisfy Property ¥. Whether
¥ is violated or not turns out to depend on the initial level of optimism of the players.
We shall show below that for initial priors above a certain cutoff point determined solely

by the parameters, we can always find an information system to satisfy ¥, and thus ensure
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the existence of an investment equilibrium. On the other hand, for priors below this cutoff
point, there is some finite n for which ¥ is violated in I'(n). However, ¥ is only sufficient
and not necessary for the existence of an investment equilibrium. Thus, the violation of
U does not exclude the possibility of investment equilibria. In fact, we shall show that for
any nondegenerate prior on the states, we can find an information system that ensures the
existence of an investment equilibrium for I'(n) where n is as large as we please in the set

of integers. The following propositions explicate these points.

Proposition 2.9. If m > I, then for any n € Z there exists a f(u,0) with o large and
finite such that Property U is satisfied in T'(n). If m < & there exists n € Zy such that

U is violated for T'(n).

Proof: Adapting the best response mapping to the specific context of the Gaussian

information system f(u,o), we know that ¢; is defined by:

2 Z—l
we — 2ut; s 1+c¢ Pr(sj > t|G)
= Pr(s; > -1
exp( 552 ) T H r(s; > t;|G) Pris, > t, |B)
j=i+1 7j=1
This implies,
2 n i—1
U o ™ 1+¢ Pr(s; > t;|G)
ti==——1 Pr(s; > t;|G) —1 _— = 2.1
2 e c H rlsj 2 4G) Ll Pr(s; > t;|B) 21)
Jj=i+1 7j=1 J J

Now, recalling the definitions of Uj(c, 7, f) for j = 2,...,n from section 2.1.4, we can

write

Un:%— 2111[ T <1+C—1>] (2.2)



o? T 1+4+c¢

F 1—7 c

n

II Pris; >Ujl6) -1 (2.3)
j=it+l
Now consider the case where 7 > %-. This means that In [% (% — 1)] > 0. Equa-

tion (2.2) now implies that U, is decreasing as a function of o. In particular, U, = & — J,0?

for some J, € IR, . This means that by picking o high enough we can ensure that

ln[ n (1::01%(32Un|c:)—1)]:m[l7r (1+0Pr(22—Jno—g)—1>]>1

1—-7 -7 c

where z is the standard Gaussian variable.
But from equation (2.3), this in turn ensures that U,_; is also decreasing in 0. In
particular, U,_1 = % — Jn_1(0)o? for some with 0 < J,_1(0) < J, for o < co. So we can

pick ¢ high enough to ensure that

™ 1+c¢ u ol
> — - = > — —=)—-1 1
In [1 ( c Pr(z Jno 2)Pr(z Jp—10 2) )] >

where z is the standard normal variable. This ensures that U, _s is decreasing in o, U,_9 =
L — Jp_a(o)o? with J,_o(c) < Ju—1(0) < J, for any o < oo.. Notice that as o gets
arbitrarily large, the J;’s get arbitrarily close to each other. Therefore, continuing in this
way, for any finite n, we can clearly choose o high enough (but finite) to satisfy Property
¥ in I'(n).

Next consider the case where m < 1Z;. By analogy to the above, we know that this means
that U, is increasing as a function of o. Thus, U, is bounded below by & (corresponding

to o = 0). But notice that U,_1,U,_2,...etc. are all bounded below by % because by
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equation (2.3) we observe that they are all of the form

2
U; = —a—ln[ T (1”,]—1)]
I 1—7m c

where J < 1. But clearly 2¢J—1 < 1£¢_1 < 1. Thus, the product H_?:Q Pr(s; > U;|G)

IS

is bounded below by [Pr(s > £|G)]"~!. This clearly vanishes as n — oo. Thus, there exists

an n € Z, for which ¥ is violated in I'(n). [ |

This result is ostensibly counterintuitive but powerful. It says that if sufficiently opti-
mistic players are offered sufficiently garbled information about the state of the world, then
there exists the possibility for coordinated investment regardless of how large the number
of players is, as long as the number is finite and known. What makes the result strong is
that the level of initial optimism is independent of the number of players.

What if the beliefs of potential players fell below the range that guarantees the existence
of an investment equilibrium from Proposition 2.97 It turns out that there is an alterna-
tive way to ensure the possibility of coordinated investment that is independent of the
initial priors: to provide sufficiently accurate (instead of sufficiently garbled) information

to players.

Proposition 2.10. Fizn € Z,, and > 0. Let M > 0 be such that [1 —®(—M —p)]" 1 >
T5s- Then we can find (¢,0) > 0 such that t = (t1,...,1,) where t1 € [§ — €, 5 + €], and

t; < —M for j =2,..,n is a trigger equilibrium of I'(n)

Proof: Recall from equation (2.1) that

o? e 1+e¢
—In
u 1-7m c

t1 =

N R

[IPr(s; >416) -1

=2
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Our choice of M above means that ¢; is well defined for o < 1.

p a? s 1+ec Pr(s > t1|G)
2

— —1 P > Fs -1l 7
w ol c ]1;12 r(sj 2 11G) Pr(s > t1|B)

to =

Notice that as ¢ — 0 and resultantly ¢; — %, the thin tailed property of the Gaussian

Pr(s>t1]|G)

PrissulB) 7 In particular, this term explodes much faster

distribution ensures that
than 02 — 0 so that ¢, — —oo. Thus, for a given M > 0, we can clearly find (¢, ) > 0 such
that ¢; € [§ —€, 54 €] and t3 < —M. But notice that in this setting ¢ > ¢3 > ... > t,. Thus

clearly t; < —M for j = 2,...,n and we have found a f(u,0) to rationalize ¢ as a bounded

equilibrium of T'(n). [ |

Proposition 2.9 and Proposition 2.10 lay down sufficient informational conditions to cre-
ate the possibility of coordination in I'(n) for any n € Z;, no matter how large. Jointly
they imply that for initially optimistic individuals, either very good or very bad quality infor-
mation creates the possibility of coordinated investment. Intermediate quality information
does not guarantee the possibility of coordination. Sufficiently good quality information
always creates the possibility of coordinated investment regardless of whether agents are

initially optimistic or not.

2.5 Discussion

The results presented in the preceding sections provide a general framework within which
to view phenomena associated with herd behavior such as market panics, bank runs, and
currency crashes. We unify two prior strands of the literature that address such phenomena:

sequential choice models with Bayesian learning without payoff complementarities (herding
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models), and static coordination games with payoff complementarities without Bayesian
learning. It is apparent that agents involved in bank runs and financial panics in general have
to simultaneously solve coordination problems (captured by the static games literature),
learn from their predecessors (captured by the herding literature), and send effective signals
to other market participants (not captured by either prior class of models). This model,
albeit in extremely stylized form, captures all these three aspects to the behavior of agents
within one framework.

An important message that emerges from our analysis is that information matters. In
particular, the stochastic properties of the information that agents receive is relevant in
determining outcomes. In the preceding sections, we have demonstrated that herd behavior
emerges in equilibrium in varying degrees depending on the properties of the information
system. In particular, if the information system is such that agents can exhibit only limited
amounts of personal skepticism (bounded likelihood ratios), we have demonstrated that
very extreme forms of herd behavior can emerge as the unique outcome of rational behav-
ior. If information systems are such that agents exhibit unbounded personal skepticism
(unbounded likelihood ratios), however, the outcomes of the model are less extreme, but by
no means represent the efficient aggregation of information. Agents may still exhibit the
excessive optimism (or pessimism) that is often observed in the market.

While our model takes an essential step towards appropriately modeling the strategic
aspect of market booms and busts, and extends the herding literature by incorporating
forward-looking behavior on the part of agents, it admits several caveats. One of these is

that we require complete coordination on the part of agents to achieve positive payoff from
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investment. A richer model would allow for payoffs from investment to be a continuous and
increasing function of the number of investors. The arguments in such a model would be
complicated by combinatorial considerations, because the order of action matters in models
such as ours. However, we conjecture that the broad results will be similar to ours. In
particular, in a set-up similar to this, we antipate that agents will still follow trigger strate-
gies, and that later agents will choose smaller triggers exhibiting strong or weak herding
along the lines of this model. In particular, since requiring complete agreement encourages
greater conservatism on the part of players in their choices of action, we conjecture that
herd behavior would occur more easily in games where positive payoffs may be earned even
without complete agreement.

Other potential extensions of the model would allow players to choose their time of entry
into the market, i.e., endogenize the order of actions, or allow for imperfect observation of
prior choices. Richer models such as these would more closely approximate the reality of
financial market booms and panics. This model provides a benchmark against which to

compare such future models.

2.6 Appendix

2.6.1 Proof of Proposition 2.3

Consider the largest and smallest possible triggers that can be chosen by the players. Sup-
pose initially we allow players to choose triggers in an unrestricted way, i.e., anywhere in
R. Call the bounds corresponding to this t° and #°. We denote the jth component of £° by

t;% and of #¥ by t_jo. So, t* = (—o0, ..., —00) and #¥ = (oo, ..., 00).
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Now consider best responses to triggers chosen in [t°,#°]. What range would these
best responses lie in? Call this range [t!,#']. What is t_ll? t_11 is a best response to
(t2°, ..., t,°) = (=00, ..., —00). Thus, in the spirit of the computations above, ¢! is defined
by the solution to the equation, Pr(G|z) = 1%, which implies }cgjiiigg =1 Thus, t;' e R"?
How about t_21? It is a best response to 1% and (t_30, o t_no). Since 1% = 0o Player 2 assumes
upon observing investment that Player 1 must have received an infinitely high signal, or,
equivalently, that the state must be G.!* So t,! = —co. By the same token ﬁl = —oo for
j =3,...,n. How about &;'? This is a best response to (£3°, ..., £,°) = (o0, ..., 00). So, Player
1 knows that Players 2 through n will never invest. So, her best response must be to set

her own trigger to co. Thus, {1 = oc. Similarly, fjl — o for j = 2,...,n — 1. However, t,"

is a best response to (£1°,...,t,-1°) = (=00, ..., —00), and so, by reasoning identical to the

and thus, ,' =t € R

case of t;! that f,' is defined as the solution to Pr(G|z) = Tog) i

Thus,

(', = ((t11, —o0, ..., —00), (00, ..., 00, 1))

Now consider best responses to triggers in [¢!,#!]. What range would these best responses
lie in? Call this range [t?,7?]. Notice first that t;2 = #;' € IR because they are best
reponses to the same triggers. Also, by an argument identical to that constructed for
computing ﬁl = —o¢ for 5 = 2,...,n, we observe that EQ = —o0 for j = 2,...,n. Similarly,

for j = 1,...,n — 2, each of t_jQ is a best response to at least one successor trigger of

’In particular, t,' = U, (c,, f) defined above.

13This is an ad hoc refinement that we introduce for this iterative process. It is important to note that

the refinement is irrelevant for investment equilibria.
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00. So, for j = 1,...,n — 2, 2 = co. However, t, 1> is a best response to predecessors
(t1!, —00, ..., —o0) and successor f,' € IR Thus, ¢, 1> is chosen to solve the equation

Pr(G, s, > ty'|s1 > tl,z) = and thus clearly, ¢, ,° € IR Finally, note that since

_c
1+c?
triggers are decreasing as best responses to their predecessors and since t_lo < t_ll while

ﬁo = ﬁl for j =2,...,n, tp° < t,*. Thus,

(t2,12) = ((t1%, =00, ..., =00), (00, ..., 00, tr_1 2, tn>))

By iterating this argument it is easy to see that
3,13 = ((t_13, —00, ..., —00), (00, ...,OO,tn__23,tn__13,t_n3))
and so on, until finally
"+ ) = ((t_1n+1’ ---;t_nn+1); (G )

ie, (", ") e R x R™.

It is clear that the iterative process defined above satisfies the property that ¢/ > t/~! for
all j and # < #~! for all j. Thus, since (¢**1,#*!) € R* xIR* and (¢/,#) € [t" T, #+1]? for
all 7 > n+ 1, the trigger bound sequence is monotonic and bounded. So it must converge.

Thus there exist ¢ € IR* and ¢ € IR” such that for allt e R", ¢t <B(t) < t. o

2.6.2 The Single Player Version of I'(2)

Consider a modification to I'(2) in which a single player makes all choices, in order, con-
strained by the same signal structure. She remembers her past signals. Her payoffs are
given by the total payoffs at the end of the game contingent upon both her choices in pe-
riods 1 and 2, by summing the final payoffs from these choices. Thus, payoffs are given by

the following:
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2 whena; =1 and as =1,

—c whena; =1 and as = N,

u(G,a1,a2) = <
—c whena; =N and ay =1,
\ 0 whena; =N
.
—2¢ whena; =1 and ay =1,
—c whenay =1 and a3 = N,
u(B,a1,a2) = <

—c whena; =N and ay =1,

0 when a1 = N

\

We denote the decision maker’s updated beliefs about the state after observing the signal

in period 1 by me. Clearly

7w f(s1]G)
1-m 1—7f(s1|B)

Now, the expected utility to the decision maker of investing in period 2, conditional upon
having invested in the previous period is given by

T2

EUy(I) = (24 2c) — 2c.

The expected utility to the decision maker of not investing in period 2 conditional upon
having invested in period 1 is simply —c. Thus, by employing arguments made repeatedly

above, the decision maker shall choose a trigger t’2 given by

b m f(s1|G)2+¢
=T 1(1—7rf(81|B) ¢ )

Clearly then, the unique trigger equilibrium of I'(2) is socially optimal only if

Pr(s1 > t1|G)
Pr(31 Z t1|B)

f(s1]G)

:(2+c)f(31|B)'
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This, of course, happens with zero probability given the assumptions on the signal gener-
ating processes. The trigger equilibrium shall be characterized by both overoptimism and

underoptimism compared to the socially optimal case with positive probability (for finite

c).
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Chapter 3

A Theory of Currency Crises with

Large and Small Traders

A commonly encountered view among both seasoned market commentators and less experi-
enced observers of the financial markets is that large traders can exercise a disproportionate
influence on the likelihood and severity of a financial crisis by fermenting and orchestrating
attacks against weakened currency pegs.! The famously acrimonious exchange between the

financier George Soros and Dr. Mahathir, the prime minister of Malaysia at the height of

1This chapter is coauthored with Giancarlo Corsetti, Stephen Morris, and Hyun Song Shin. It is currently
circulating under the title “Does One Soros Make a Difference? A Theory of Currency Crises with Large
and Small Traders”. We are grateful to the editor, James Dow, and four anonymous referees for their
constructive comments. We have also benefited from comments and advice from Richard Clarida, Hélene
Rey, Andres Velasco, Shang-Jin Wei and seminar participants at the Bank of Italy, the Board of Governors
of the Federal Reserve Bank, Columbia University, Harvard University, the NBER IFM meeting, and the

New York Federal Reserve Bank.
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the Asian crisis is a prominent example in which such views have been aired and debated.
The issues raised by this debate are complex, but they deserve systematic investigation.

At one level, the task is one of dissecting the problem in search of the possible mech-
anisms (if any) that may be at play in which a large trader may exercise such influence
on the market outcome. What is it about the large trader that bestows such influence?
Is it merely that this trader can bring to bear larger resources and hence take on larger
trading positions? What if the information of the large trader is no better than the small
traders in the market? Does the large trader still exercise a disproportionate influence?
Finally, does it make a difference to the market outcome as to whether the trading position
of the large trader is disclosed publicly to the market? If so, does such “transparency”
of the trading position enhance financial stability or undermine it? This last question is
especially important given the emphasis placed by policy makers on the public disclosures
by the major market participants as a way of forestalling future crises.?

We propose to investigate these issues in a model of speculative attacks in which a large
trader interacts with a continuum of small traders. The large trader is ‘large’ by virtue of
the size of the speculative position that he can take on as compared to the small traders.

The two types of traders face a monetary authority defending a currency peg, and stand

to gain if their attack on the peg is successful, but stand to lose if the attack fails to break

2The response of the regulators and official bodies to the financial turbulence of 1998 has been to call
for greater public disclosures by banks and hedge funds. The recent document from the Financial Stability
Forum (2000) reiterates similar calls by the BIS, IOSCO, and the President’s Working Group. In contrast,
the private sector is more ambivalent towards the value of public disclosures. See, for instance, Counterparty

Risk Management Policy Group (1999).
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the peg. Both types of traders are well informed about the underlying fundamentals, but
they are not perfectly informed. Moreover, we allow the possibility that the information
precision of one type of trader is higher than another. We can examine the case in which
the large trader is better informed than the small trader and contrast this with the case in
which small trader is relatively better informed.

To anticipate our main conclusions to these questions, we can summarize our findings

as follows.

e As a general rule, the presence of the large trader does increase the incidence of
attack against a peg. The reason is not so much that the large trader’s market power
manufactures these crises, but rather that the presence of the large trader makes the
small traders more aggressive in their trading strategies. In other words, the large

trader injects a degree of strategic fragility to the market.

e However, within this broad general finding, the relative precision of information be-

tween the two types of traders matters.

— When a typical small trader is better informed than the large trader, the influence
of the latter on the market is moderate. His presence can make little or no

difference on small traders’ strategies.

— But when the large trader is better informed than a typical small trader, his

influence is much larger.

e Finally, the influence of the large trader is magnified greatly when the large trader’s

trading position is revealed to the small traders prior to their trading decisions. Thus,
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when the large trader moves first, and his position is disclosed publicly to other traders
before their trading decisions, the impact of the large trader is that much larger. The
reason for this added impact lies in the signalling potential of the large trader’s first
move. To the extent that a speculative attack is the resolution of a coordination
problem among the traders, the enhanced opportunity to orchestrate a coordinated

attack helps to resolve this collective action problem.

The technical and modelling innovations necessary to reach our main conclusions deserve
some attention by itself, and it is to these that we now turn. The theoretical framework
employed in this paper is an extension of the incomplete information game formulation
used in Morris and Shin (1998). In this earlier setting, the argument makes heavy use
of the fact that the game is symmetric - that is, all the speculators are identical. This
assumption is clearly not available to us in the current setting. It is not at all obvious
that the argument used in Morris and Shin (1998) to prove uniqueness of equilibrium is
applicable in asymmetric payoffs settings, and one of the contributions of our current paper
is to demonstrate that this argument can be used with some modifications.

There is a more subtle, but important theoretical contribution. The incomplete infor-
mation game approach of Morris and Shin (1998) is an instance of a more general approach
to equilibrium selection pioneered by Carlsson and van Damme (1993), in which the type
space underlying the game is generated by adding a small amount of noise in the signals of
the players concerning some payoff relevant state. Carlsson and van Damme refer to such
games as “global games”, and the general class of such games turn out to have a rich and

interesting structure. Morris and Shin (2000) discuss some general results and applications.
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Analysis using global games should be seen as a particular instance of equilibrium selec-
tion through perturbations, but it is important to disentangle two distinct sets of results
concerning global games. The first question is whether a unique outcome is selected in
the game. A second, more subtle, question is whether such a unique outcome depends on
the underlying information structure and the structure of the noise in the players’ signals.
One of the remarkable results for symmetric binary action global games is that the answer
to the second question is ‘no’. In other words, not only is a unique equilibrium selected
in the limit as the noise becomes small, but the selected equilibrium is insensitive to the
structure of the noise (see Morris and Shin (2000) section 2). However, our second bullet
point above points to the fact that, in our model, the structure of the noise does make a dif-
ference. The equilibrium outcome depends on whether the large trader is relatively better
or worse informed as compared to the small traders. Thus, in our asymmetric global game,
although we have a unique equilibrium being selected, this unique equilibrium depends on
the noise structure. It is this latter feature that allows us to draw non-trivial conclusions
concerning the economic importance of information. Frankel, Morris and Pauzner (1999)
explore the equilibrium selection question in the context of general global games.

Our examination of the sequential move version of the game necessitates a further ex-
tension the current state of the art. When moves occur sequentially in which the actions
of the early movers are observable to the late movers, herding and signalling effects must
be taken into consideration, as well as the usual strategic complementarities. Although a
general analysis of sequential move variations of global games is rather intractable, the fact

that small traders (individually) are of measure zero in our model allows us to focus atten-
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tion on the signalling effects of the large trader. This simplifies the analysis sufficiently for
us to derive explicit closed form solutions to the game.3

The paper is organized as follows. Section 2 lays out the basic framework and establishes
two benchmark results in setting the stage for the general analysis. Section 3 character-
izes the unique equilibrium in a simultaneous move trading game. Section 4 explores the
comparative statics properties of the equilibrium to changes in the traders’ information
precision. The focus here is on the interaction between the size of the large trader and

his information precision. Section 5 investigates the sequential move version of the game.

Section 6 concludes.

3.1 The model

The focus of our analysis is on the mechanism by which a fixed exchange parity is abandoned
as a result of a speculative attack on the currency. Consider an economy where the central
bank pegs the exchange rate. There is a single “large” trader and a continuum of “small”
traders. The distinguishing feature of the large trader is that he has access to a sufficiently
large line of credit in the domestic currency to take a short position up to the limit of
A < 1. In contrast, the set of all small traders taken together have a combined trading limit
of 1 — A.

We envisage the short selling as consisting of borrowing the domestic currency and

selling it for dollars. There is a cost to engaging in the short selling, denoted by ¢ > 0.

3Dasgupta (1999) has examined some of the issues that arise with many large players and multi-period

signalling.

110



The cost ¢ can be viewed largely as consisting of the interest rate differential between the
domestic currency and dollars, plus transaction costs. This cost is normalized relative to
the other payoffs in the game, so that the payoff to a successful attack on the currency is
given by 1, and the payoff from refraining from attack is given by 0. Thus, the net payoff
to a successful attack on the currency is 1 — ¢, while the payoff to an unsuccessful attack is
given by —t.

Each trader must decide independently, and (for now) simultaneously whether or not
to attack the currency. The strength of the economic fundamentals of this economy are
indexed by the random variable €, which has the (improper) uniform prior over the real
line.*

Whether the current exchange rate parity is viable depends on the strength of the
economic fundamentals and the incidence of speculative attack against the peg. The
incidence of speculative attack is measured by the mass of traders attacking the currency
in the foreign exchange market. Denoting by £ the mass of traders attacking the currency,

the currency peg fails if and only if

£>0 (3.1)

So, when fundamentals are sufficiently strong (i.e. § > 1) the currency peg is maintained

irrespective of the actions of the speculators. When 6 < 0, the peg is abandoned even in

“Improper priors allow us to concentrate on the updated beliefs of the traders conditional on their signals
without taking into account the information contained in the prior distribution. In any case, our results with
the improper prior can be seen as the limiting case as the information in the prior density goes to zero. See
Hartigan (1983) for a discussion of improper priors, and Morris and Shin (2000, section 2) for a discussion

of the latter point.
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the absence of a speculative attack. The interesting range is the intermediate case when
0 < 8 < 1. Here, an attack on the currency will bring down the currency provided that
the incidence of attack is large enough, but not otherwise. This tripartite classification of
fundamentals follows Obstfeld (1996) and Morris and Shin (1998). Although we do not
model explicitly the decision of the monetary authorities to relinquish the peg, it may be
helpful to keep in mind the example of an economy endowed with a stock of international
reserves, where the central bank is willing to defend the exchange rate as long as reserves
do not fall below a predetermined critical level. The central bank predetermines this level
based on its assessment of the economic fundamentals of the country. The critical level is low
when fundamentals are strong (6 is high): the central bank is willing to use a large amount
of (non-borrowed and borrowed) reserves in defending the exchange rate. Conversely, the
critical level is high when fundamentals are weak (@ is low). Even a mild speculative attack

can convince the central bank to abandon the peg.

3.1.1 Information

Although the traders do not observe the realization of €, they receive informative private

signals about it. The large trader observes the realization of the random variable

y=0+71n (3.2)

where 7 > 0 is a constant and 7 is a random variable with mean zero, and with smooth
symmetric density g (-). We write G (-) for the cumulative distribution function for g (-).

Similarly, a typical small trader 7 observes

T; =0+ o¢; (3.3)
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where ¢ > 0 is a constant and the individual specific noise ¢; is distributed according to
smooth symmetric density f () (write F (-) for the c.d.f.) with mean zero. We assume that
g; is i.i.d. across traders, and each is independent of 7.

A feature already familiar from the discussion of global games in the literature is that
even if ¢ and 7 become very small, the realization of # will not be common knowledge
among the traders. Upon receiving his signal, the representative trader ¢ can guess the
value of 8, and the distribution of signals reaching the other traders in the economy, as well
as of their estimate of 8. He cannot, however, count on the other traders to know what
he knows — and agree with his guesses. The other traders will have to rely exclusively on
their own information to form their beliefs. This departure from the assumption of common
knowledge of the fundamentals, no matter how small, is key to the results to follow. The
relative magnitude of the constants o and 7 indexes the relative precision of the information
of the two types of traders.

A trader’s strategy is a rule of action which maps each realization of his signal to one of
two actions - to attack, or to refrain. We will search for Bayes Nash equilibria of the game
in which, conditional on each trader’s signal, the action prescribed by this trader’s strategy
maximizes his conditional expected payoff when all other traders follow their strategies in

the equilibrium.

3.1.2 Two benchmark Cases

Before proceeding to our main task of solving the game outlined above, we present a brief
discussion of the coordination problem under two special cases to set a benchmark for our

main results. The first is when all traders are small (A = 0), the second is when the sole
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trader is the large trader himself (A = 1).

Small traders only

The case when A = 0 takes us into the symmetric game case of Morris and Shin (1998).
We will conduct the discussion in terms of switching strategies in which traders attack the
currency if the signal falls below a critical value z*. We will show later that this is without
loss of generality, and that there are no other equilibria in possibly more complex strategies.
The unique equilibrium can be characterized by a critical value 8* below which the currency
will always collapse, and a critical value of the individual signal z* such that individuals
receiving a signal below this value will always attack. To derive these critical values, note
first that, if the true state is 6 and traders attack only if they observed a signal below z*,

the probability that any particular trader receives a signal below this level is

prob(z; < z* | 6) = F (xa_ 9) (3.4)

Since the noise terms {¢;} are i.i.d., the incidence of attack £ is equal to this probability.
We know that an attack will be successful only if £ > 6. The critical state 6* is where this

holds with equality. Thus, the first equilibrium condition — a “critical mass condition” — is

F(JU _0*) = 0" (3.5)

g

Given z*, any realization of the fundamental 8 < 6* is associated with a successful specu-
lative attack on the currency.
Second, consider the optimal trigger strategy for an trader receiving a signal z;, given

0*. The trader has the conditional probability of a successful attack of

prob(6 < 0" | z;) = F (9 - 5”) , (3.6)

g
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and hence attacks if and only if his expected gross payoff is at least as high as the cost of
attack . As the expected payoff to attacking for a marginal trader receiving a signal z*

must be 0, the “optimal cutoff” condition for z* is

F (9* — x) =t (3.7)

g

Solving for the equilibrium entails solving the pair of equations above. Equation (3.7) gives
0* = z*+0F ! (t); substituting into (3.5) gives 0* = F (—F ' (t)) =1-F (F ' (¢)) = 1-t.

We obtain the following proposition
Proposition 3.1. If A =0,

¥ = 1—t—oF 1(t)

0 = 1-t

The currency will collapse for any realization of the fundamental # smaller than 1 — ¢,
while each individual trader will attack the currency for any realization of his signal below

1—t—oF 1 (t).° Note that this trigger tends to 1 — ¢ as o — 0.

A single large trader

We now consider the opposite extreme case of A = 1, in which there is a single large trader.
This reduces the game to a single person decision problem, and implies a trivial solution to
the coordination problem described above. As this single trader controls the market, there

is no need of an equilibrium condition equivalent to the “critical mass condition” (3.5). The

For t < 1/2, F~'(t) is a negative number, so that * > 6*. As ¢ — 0, i.e. letting the private signal

become arbitrarily precise, the optimal cutoff point will tend to the fundamental threshold, z* — 6.
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only condition that is relevant for a single large risk-neutral trader is the “optimal cutoff”:

he will attack the currency if and only the expected payoff from a speculative position is

o)
T

Thus he attacks if and only if y < y* = 1 — 7G~! (t). Note that the trigger y is smaller

non-negative, that is when

than one, but tends to 1 as 7 — 0.

3.2 Equilibrium with Small and Large Traders

We can now turn to the general case when there are both small and large traders. We
will show that there is a unique, dominance solvable equilibrium in this case in which both
types of traders follow their respective trigger strategies around the critical points z* and
y*. The argument will be presented in two steps. We will first confine our attention to
solving for an equilibrium in trigger strategies, and then proceed to show that this solution
can be obtained by the iterated deletion of strictly interim dominated strategies.

Thus, as the first step let us suppose that the small traders follow the trigger strategy

around z*. Because there is a continuum of small traders, conditional on @, there is

no aggregate uncertainty about the proportion of small traders attacking the currency.

Since F (T“*U_e) is the proportion of small traders observing a signal lower than z* and

therefore attacking at 6, an attack by small traders alone is sufficient to break the peg at 6

if(1-X\NF (‘”*0__0) > 6. From this, we can define a level of fundamentals below which an

attack by the small traders alone is sufficient to break the peg. Let 6 be defined by:

(1—)\)F(x*_Q> —0 (3.8)

g
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Whenever 0 is below 0, the attack is successful irrespective of the action of the large trader.
Note that @ lies between 0 and 1 — A. Clearly 8 is a function of z*.
Next, we can consider the additional speculative pressure brought by the large trader.

If the small traders follow the trigger strategy around z*, the incidence of attack at 6

attributable to the small traders is (1 — \) F’ (m*a—a)_ If the large trader also chooses to
attack, then there is an additional A to this incidence. Hence, if the large trader participates
in the attack, the peg is broken whenever A+ (1 — \) F (%) > 0. Thus we can define the
critical value of the fundamentals at which an attack is successful if and only if the large

trader participates in the attack. It is defined by

/\+(1—/\)F<x _5)=5 (3.9)

0 lies between 6 and 1.

Although our notation does not make it explicit, both § and @ are functions of the
switching point £*. In turn, z* will depend on the large trader’s switching point y*. Our
task is to solve these two switching points simultaneously from the respective optimization
problems of the traders. A large trader observing signal y assigns probability G (Eny) to
the event that 6 < 0. Since his expected payoff to attacking conditional on y is G (_;—y) —1t,

his optimal strategy is to attack if and only if y < y*, where y* is defined by:

G (5_'”*) =t (3.10)

T

Now consider a small trader. Conditional on signal x, the posterior density over 8 for this

trader is given by

1y <0_”:> (3.11)
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When 6 < 0, the strategies of the small traders are sufficient for a successful attack. When
0 € (Q, 5] the peg breaks if and only if the large trader attacks, while if # > 6, the peg
withstands the attacks, irrespective of the actions of the traders. Thus, the expected payoff

to attack conditional on signal z can be written as

e

The first term is the portion of expected payoff attributable to the region of 6 where 6 < 6.
The second term is the portion of expected payoff that is attributable to the interval (Q, 5] .
Here, one must take into account the fact that the attack is successful if and only if the
large trader attacks. The probability that the large trader attacks at 6 given his trigger
strategy around y* is given by G (#), so that the payoffs are weighted by this value.
Beyond 0, the attack is never successful, so that the payoff to attack is zero. Since the cost

of attack is ¢, the trigger point x* for the small trader is defined by the equation:

S e

There is a unique z* that solves this equation. To see this, it is helpful to introduce a

Ql'—‘

change of variables in the integrals. Let

(3.14)

and denote

0—= and SEH_I
o o

I3
Il

(3.15)

Then, the conditional expected payoff to attacking given signal z* is
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9 9
1 0—z* 1 0—z* y*—0
(5w () e () w
—00 9
_ / F(2)dz + / f(z)G<y*T_9) dz
= F(2)dz + / f(z)G(M%UZ—G_l(t)) dz
s 36
_ /f(z) dz+/f(z)G(§ (-2~ (1)) dz (3.16)
—00 4
where the third line follows from the fact that
y* =0 —-71G1(t) (3.17)

Hence, (3.13) gives:

d 8
/f(z)dz+/f(z)a(f(5—z)—G—l(t))dz—t:o (3.18)
—0o0 é

However, note that both § and § are monotonically decreasing in z*, since

@ __ 1 <0
dz* ~ (1-=Nf()+o
dé 1

i TN o

Since the left hand side of (3.18) is strictly increasing in both § and 4, it is strictly decreasing

*

in z*. For sufficiently small z*, the left hand side of (3.18) is positive, while for sufficiently
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large z*, it is negative. Since the left hand side is continuous in z*, there is a unique
solution to (3.18). Once z* is determined, the large trader’s switching point y* follows
from (3.10).

To this point, we have confined our attention to trigger strategies, and have shown that
there is a unique equilibrium within this class of strategies. We can show that confining
our attention to trigger strategies is without loss of generality. The trigger equilibrium
identified above turns out to be the only set of strategies that survive the iterated elimination
of strictly interim dominated strategies. The dominance solvability property is by now
well understood for symmetric binary action global games (see Morris and Shin (2000) for
sufficient conditions for this property). The contribution here is to show that it also applies

in our asymmetric global game. The argument is presented separately in appendix A.

3.3 Impact of Large Trader

Having established the uniqueness of equilibrium, we can now address the main question of
whether there is any increased fragility of the peg, and how much of this can be attributed
to the large trader. There are two natural questions. Do the small traders become more
aggressive sellers when the large trader is in the market? Secondly, does the probability of
the peg’s collapse increase when the large trader is in the market? These questions relate

to the following comparative statics questions.

e How does the switching point z* for the small traders depend on the presence of the

large trader?

e How is the incidence of attack by the small traders at a given state (i.e. £(#)) affected
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by the large trader’s presence?

e How is the probability of the peg’s collapse at a given state 8 affected by the presence

of the large trader?

e How is the ex ante probability of the peg’s collapse affected by the large trader?®

This final bullet point may seem incongruous when taken at face value, since our model
has made use of the assumption that 6 has an (improper) uniform prior distribution, so
that the ex ante expectations are not well defined. However, there is an interpretation of
our model that allows us to comment on this issue for general priors over §. When the
signals received by the traders (small and large) are very precise relative to the information
contained in the prior, then a uniform prior over 8 serves as a good approximation in
generating the conditional beliefs of the traders. Then, the equilibrium obtained under
the uniform prior assumption will be a good approximation to the true equilibrium. If
we can say something about the critical state € at which the peg collapses, then we may
give an approximate answer for the ex ante probability of collapse by evaluating the prior
distribution H (-) at this state. We will comment below on one instance when this type of
argument can be made.

A more substantial theme in our comparative statics exercise is to disentangle the effects
of the size of the large trader (through the size of the trading position that he can amass)
from his precision of information relative to small traders. If we can interpret the large

trader as a coalition of small traders who pool their resources as well as their information,

5We are grateful to a referee for encouraging us to address this question.
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then it would be natural to assume that the large trader has very much better information

”. There may be other reasons to do with resources

as compared to individual small traders
that a large player can bring to bear on research or access to contacts in policy circles
that makes it more reasonable to assume that the large trader is better informed than the
typical small trader. However, there is no reason in principle why the large trader must be
better informed. In any case, the separation of the effects of size from that of information
is a valuable exercise in understanding the impact of each, and so we will be careful in
distinguishing these two effects.

For the purpose of the comparative statics exercise, it may help the reader to gather

together and restate the key relationships that determine equilibrium. Using the notation

6= ngw*, and § = &% that we introduced earlier, we restate equations (3.8), (3.9), (3.10)

and (3.18) as follows.

(I1-N(A-F(@)) =0 (3.19)

A+(1=-X(1-F(5))=06 (3.20)

b (5 ~ y*> _ (3.21)

4 )
/ F(2)dz + /f (2) G (g (-2 -Gt (t)) dz =t (3.22)
—o0 3

These four equations jointly determine the switching points z* and y* and the critical states

# and . Obtaining definitive answers to the comparative statics questions can sometimes

"We are grateful to a referee for pointing this out to us.
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be difficult for general parameter values, although we will examine a number of simulation
exercises below that suggest that the equilibrium behaves in intuitive ways. In contrast to
the difficulties for general parameter values, the limiting case where both types of traders
have very precise information gives us quite tractable expressions that yield relatively clear

cut results. Sometimes, even closed form solutions of the equilibrium are possible.

3.3.1 Comparative Statics in the Limiting Case

Let us examine the properities of the equilibrium in the limiting case where

o
c—0, 7—=0, and — —r
T

In other words, both types of traders have more and more precise information, but the
noisiness of the small traders’ signals relative to the large trader’s signal tends to r. We
allow r to be infinite, in which case the large trader’s information becomes arbitrarily more
precise than the small traders’ signals.

One reason for the tractability of the limiting case is that we can identify  as the critical
state at which the peg fails. That is, the peg fails if and only if & < §. We can see from
equation (3.21) that as 7 — 0, we must have y* — @, or else the left hand side of (3.21)
will be either 0 or 1 instead of being equal to ¢. Hence, in the limit, the large trader always
attacks in states smaller than § and refrains from attack at states greater than 6. Of course,
when the small traders also have very precise information, their switching strategies must
be such that they attack precisely when the true state is to the left of . Thus, in the limit,
we must have

f=y*=0 (3.23)
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and the peg fails if and only if # < §. This means that the comparative statics questions
raised above in the first three bullet points collapse to a single question of whether the true
state 6 is to the left or right of the critical state . Also, the fourth bullet point concerning
the ex ante probability of the peg’s failure can be given an approximate answer. Thus,
following the earlier discussion, if H (-) is the prior distribution function for 4, then the ex
ante probability of the peg’s failure is given approximately by H (f). Thus, comparative
statics on the prior probability of collapse can be reduced to the behaviour of #. In this
sense, the comparative statics questions all hinge on the behaviour of the critical state 6.
In solving for the critical state 6 in the limiting case, it is important to distinguish two
cases. We can distinguish the case when § < 1 — X from the case where § > 1 — \. In the
former case, § = 6. However, when § > 1 — ), § < 6. In general, we can characterize the

equilibrium value of  in the limit as follows.

Proposition 3.2. In the limit as 0 — 0,7 — 0 and Z — r, the critical state 0 tends to
A+ (1-=X) (1 —F (5)), where § falls under two cases. If @ > 1 — A, then 6 is the unique

solution to )
)
/ FRC(r(—2) -G (1) de =t (3.24)
—00
If <1 — )\, then 0 is the unique solution to
L I}
/ F(2)dz+ /f ()G (r(F—2) -G () dz =t (3.25)
—00 L
where
- A
—_ 1 A
L=F (F((S) 1_/\).
The proof of this result is given in appendix B. We know from (3.20) that § = X +

(1—X) (1 — F (4)), and the main task in the proof is to show that equation (3.22) takes the
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two cases above when taking into account whether @ is smaller or larger than 1— ). However,
this result allows us to give a definitive answer to the question of how the critical state @
depends on the relative precision of information between the small and large traders. In
both equations (3.24) and (3.25), we see that the left hand side is strictly increasing in both
r and §. Hence, as r increases, § must decrease. Since § tends to A + (1 — \) (1 —F (5)),

we have:

Proposition 3.3. In the limit as 0 — 0,7 — 0 and Z — r, the critical state 0 is strictly

increasing in r.

In other words, when the small traders’ information deteriorates relative to the large
trader, the critical state moves up, increasing the incidence of attack and raising the prob-
ability of the failure of the peg.

Interestingly, it is not always possible to give a definitive answer to the question of
whether  is increasing in ) - the size of the large trader. When ) is small, so that
6 < 1— ), we are in the range covered by equation (3.25). The left hand side of this
equation is decreasing in A\ through its effect on L so that d is increasing in A.  Since
=X+ (1-X)(1—F(d)), the overall effect of X is given by

ds
dA

do _ .
—=F()—-1=-XNf(o
B p)-1-27 )
whose sign cannot be tied down definitively. Tt is only when ) is large (so that § > 1 — ))

that we have an unambiguous increase in 6 as A increases. This is so, since the left hand

side of (3.24) does not depend on A, so that g—g =F (8) > 0.

Proposition 3.4. In the limit as 0 — 0,7 — 0 and 7 — r, the critical state 0 is strictly

increasing in \ provided that A > 1 — 6.
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Thus, when we separate the “size effect” of the large trader from the “information
effect”, we have the following conclusion. Whereas the incidence of attack on the currency
is unambiguously increasing in the information precision of the large trader, the local effect
of an increase in the size of the large trader may be negligible or even negative when the
large trader is small. However, even though the size effect is ambiguous locally, we have an
argument that shows that it is always positive globally. That is, the critical state # when
A > 0 cannot be smaller than the critical state when A = 0.

We do this by solving for the critical state in two special cases. The first is when r — oo
(when the large trader is arbitrarily better informed), and the second is when » = 0 (when
it is the small traders who are arbitrarily better informed). We know from proposition 3.3
that the solution of § is monotonic in . Thus, if we can show that the closed form solution
to r = 0 is non-decreasing in A, we will have shown that the size effect is non-negative in a
global sense. Both closed form solutions can be obtained as a corollary to proposition 3.2.

First, consider the case where 7 — co. Then, both equations (3.24) and (3.25) become
5
/ f(z)dz=1
—00
so that F (§) =¢. Since § =X+ (1 —X) (1 — F (4)), we have
O=XA+(1-X)(1-1

Next, consider the case where r = (0. Here, we need to keep track of the two cases in

proposition 3.2. Equation (3.24) becomes

(1-1)F (5) =t
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while (3.25) reduces to

- A
F(§)—t——=1t
) =175
so that
_ = if0>1-
F(8) =
= f0<1-2X
. ~ N 5 . . F(3
Since # = A+ (1 — ) (1—F((5)), we have 8 > 1 — X if and only if A > %, and
) L if A>t
F(0) =
ﬁ if A<¢
Thus, we can obtain the expression for the critical state 0 as follows.
- A+ (1-A) (1—1%) if A >t
1—t if A<t
These closed form solutions are presented in the following table.
Limiting properties of the equilibrium:
Equilibrium value of the critical state 0
by size and relative precision of the large trader
Size: | A >t t>A>0 | A=0
Information
precision
7 o0 1—t+ M 1—t+ At |1—t
21-X
%—>0 1—t+)\t—t1—_t 1—1¢ 1—1¢
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The two closed form solutions define the bounds on the critical state §. We know from
proposition 3.3 that the critical state is increasing in r, so that the function that maps A
to the critical state for general values of 7 must lie in the triangular region bordered by the
two closed form solutions. Note, in particular that for any r and any A, the critical state
at X is no lower than at zero. Thus, the size effect is positive in a global sense, even if it
may fail to be positive locally.

As an illustration of the global size effect, we report in figure 3.1 the plot generated
by a simulation exercise where o = 0.01, 7 = 0.01 (so that r = 1) and ¢t = 0.4. F and G

are Standard Normal. The dotted lines are the solutions for 8 for the two special cases as

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
T T T T T T T

L L L L L L L L L
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 3.1: § at » = 1 as a function of A ; t = 0.4, 0 = 7 = 0.01

shown already in the table. The solid line is the plot for o = 7 = 0.01 as A varies. We can

see that the size effect in this case is positive both locally and globally.
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3.3.2 Comparative Statics Away from the Limit

In contrast to the clean comparative statics results in the limiting case, the results away
from the limit are not so clear cut. Take, for instance, the question of the probability
of the collapse of the peg conditional on some state . By the definition of the critical
states @ and @, the peg will always fail to the left of @, never fail to the right of 8, but
in the interval in between 6 and @, failure depends on whether the large trader attacks or
not. The probability that the large trader attacks at 6 is given by G (@), but since
y*29—704@Lﬂmpmmmmydam%kmgmmbyG(%ﬁ—GAQQ.ﬁmm,me

probability that the peg will fail at state 0 is

)
1 ifo<@

X G(“e—G*@D ife<6<a

0 ifo>6

\

In comparison, we know from the analysis of the case where A = 0 (i.e. with no large trader)
that the fail fails if and only if 8 < 1 —¢. Thus, the question of whether the peg is more
likely to fail with the large trader depends on the relative sizes of § and # compared to 1 —¢.
To address this and other related questions, it is useful to consider bounds on the critical

states § and 6. In particular, we can show that:
Proposition 3.5. For any o and 7, and X > 0, the critical states 8 and 0 satisfy
mm@—uA+u—AN1—ﬁﬁ}<:é<A+u—nu—ﬂ

min{l—k—t,(l—)\) (1_1%_,5)}

IA

O <min{l -XA\A+(1-X)(1-¢t)}

The proof of this result is given in appendix C. For the immediate question at hand

concerning the relative sizes of § and 6 compared to 1 — ¢, we now that § > 1 — ¢, but
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it is possible that # < 1 —¢. Thus, in general, we cannot give a definitive answer to
whether the presence of the large trader increases the probability of the peg’s collapse. For
states @ € (6,1 —t) the probability of collapse decreases, but for states 6 € (1 — 1, é), the
probability of collapse increases. Beyond this, we cannot say anything further. This lack
of a definite answer stands in contrast to the limiting case that we examined above.

In order to examine the effect of the large trader on the small traders’ strategies, we
examined a number of numerical calculations on the threshold z* of the small traders’
switching strategies. We were particularly interested in putting to the test a conjecture
that, in some instances, the presence of the large trader would make the smaller traders
less aggressive than in the case without the large trader®. The reasoning is as follows.
The presence of the large trader makes coordination easier and therefore, all else being
equal, promotes aggression. However, if the large trader is less well informed than the
small traders, his presence may actually make coordination harder because the correlation
between his choice and that of the small traders will be low.

This conjecture is intuitively plausible, and we examined a number of numerical solutions
for the equilibrium threshold z* when o is small but 7 is large. However, the simulations
have so far proved inconclusive. In those cases where o — 0, we found that the terms of
order ¢ are smaller than the error bounds of the simulations, however accurate. For the
various cases we have examined where ¢ and 7 are bounded away from zero, we do not find

support for the conjecture - the thresholds z* are higher with the large trader than without.

& This conjecture is due to a referee, and the phrasing of the conjecture is taken verbatim from his/her

report. We record our thanks to this referee for suggesting this conjecture.
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We regard these simulations as being inconclusive, and so it is an open question whether
the conjecture is borne out in a concrete example.

Finally, we report on the numerical calculations of a benchmark case where F' = G =
N(0,1), and 0 = 7. We plotted the threshold value z* for the small traders as a function of
the (common) precision of the signals of the two types of traders when A = 0.5. Figure 3.2
is for t = 0.4, and figure 3.3 is for t = 0.6. The dotted line is the threshold without the
large trader, while the solid line is the threshold with the large trader. Whether the curves
are upward sloping curves or downward sloping depends on whether z* is positioned the
left or right of the critical states  and . This, in turn depends on whether ¢ is less than
or greater than 0.5. The two figures reveal that the threshold with the large trader is

everywhere higher than the threshold without.

2.8

2.4
T

2.0

- ——  With Large Trader
— — Without Large Trader

0.8
N\

0.4

In(o)=In(T)

Figure 3.2: z* with and without the large trader; ¢ = 0.4, A = 0.5

In gathering together our discussion, the overall conclusion we draw from our analysis

is that both the “size effect” and the “information effect” are important determinants in
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Figure 3.3: z* with and without the large trader; ¢ = 0.6, A = 0.5

increasing the probability of collapse. The conclusions are most clear cut in the limiting
cases where both o and 7 go to zero, but even away from the limit, numerical calculations
reveal that the equilibrium exhibits both types of effects in a consistent way. Having said
this, we do not doubt that counterexamples can be obtained for suitably extreme parameter

values.

3.4 Sequential Move Game

An important feature of large traders is their visibility in the market - a feature that is only
captured to a limited extent by our framework so far. Market participants know the degree
of precision of the large trader information, but have no prior information about the exact
speculative position of the large trader. In this section, we explore the predictions of our

model under a more general assumption regarding observability of actions. Specifically, we
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let the speculative position taken by any market participant to be observable by the rest of
the market. We will see that in equilibrium the large trader will have an incentive to move
before the others, so as to maximize his influence.

The analytical framework adopted in this section has essentially the same features of
the model presented in Section 2. The main difference is that, instead of analyzing a
simultaneous move by all traders, we now allow traders to take a speculative position in
either of two periods, 1 and 2, preceding the government decision on the exchange rate. At
the beginning of each period, each trader gets a chance to choose an action. However, once
he has attacked the currency, he may not do so again and may not reverse his position. So,
each trader can choose when, if at all, to attack the currency.

Traders receive their private signal (x; and y) at the beginning of period 1. In addition,
traders are now also able to observe at the beginning of period 2, the action choices of other
traders in period 1. Thus, traders can learn from the actions of other market participants,
and also use their own actions to signal to other traders. We assume that individual small
traders ignore the signalling effect of their actions.” Payoffs are the same as in section 2,
and are realized at the end of period 2. Payoffs do not depend on the timing of traders’

actions, i.e., there are no costs of waiting.!?

9Levine and Pesendorfer (1995) and others have provided formal limiting justifications for this standard

assumption in continuum player games.

00Qur two period game is best interpreted as a discrete depiction of a continuous time setting, in which
the difference between the time periods is very small and represents the time it takes traders to observe and

respond to others’ actions.
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3.4.1 Equilibrium

We begin by making two simple observations about timing incentives in the sequential move
game. Small traders will always have an incentive to postpone any action until period 2.
Each trader perceives no benefit to signalling, because he believes that he has no power
to influence the actions by others by attacking early. On the other hand, he will learn
something by waiting to attack: he will find out the large trader’s action and he may learn
more about the state of the world. There are no costs of waiting, but there is a weak
informational benefit to doing so. So it is a dominant strategy for each small trader to
wait to period 2 before deciding whether to attack or not. But if small traders wait until
period 2, the large trader knows that in equilibrium he can never learn from the actions
of the small traders. On the other hand, he knows that if he attacks in period 1, he will
send a signal to the small traders, and thereby influence their actions. In particular, since
the large trader is concerned with coordinating his actions with those of the continuum of
small traders, he benefits from signalling to the small traders. Thus the large trader has a
weak incentive to attack in period 1, if he is ever going to attack. Given that small traders
wait until period 2, it is a dominant strategy for the larger trader to move early. For these
reasons, we assume in the analysis that follows that the large trader moves in period 1 and
the small traders moves in period 2.

We first characterize trigger equilibria in this game. Suppose that the large trader,
acting first, chooses to attack only if his signal is lower than y*. If he does not attack in
period 1, small traders that receive a low enough signal may nonetheless attack the currency,

thinking that they can bring the currency down alone. This will define a threshold z* for the
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signal of small traders, below which these would attack in period 2 even if the large trader
has not attacked in period 1. But if the large trader does attack the currency in period 1,
then of course this sends a signal to the small traders that (based upon his information) the
large trader believes the economy to be weak enough to risk speculating. When the large
trader attacks in period 1, small traders would therefore be inclined to attack for a larger
range of signals they might receive. This defines a different threshold z* for their signal,
where in equilibrium z* < z*. We should note here that these thresholds need not be finite.
As shown below, there are situations in which the move by the large trader in period 1 will
completely determine the behavior of small traders.

Since traders’ signals are correlated with fundamentals, corresponding to these triggers
are critical mass conditions, i.e. threshold levels for the fundamentals below which there
will be always a successful attack. As before, we can derive two conditions, depending on
whether the large trader participates in the attack, (@), or not (8).

A trigger equilibrium is then a 5-tuple (y*,g*,f*,Q, 9). The equilibrium conditions

described above now become:

e y* solves the equation

Pr(0<f|y=y")=t (3.26)
e z* solves the equation
Pr(0<8|y>y*and z; =2%) =t (3.27)

if a solution exists. If the LHS is strictly larger than the RHS for all z;, z* = oo.

Conversely, if the LHS is strictly smaller than the RHS for all z;, z* = —o0.
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e T* solves the equation
Pr(0<f|y<y andz;=7%) =t (3.28)

if a solution exists. If the LHS is strictly larger than the RHS for all z;, T* = oo.

Conversely, if the LHS is strictly smaller than the RHS for all z;, 5 = —o0.

e 0 solves the equation

(1-A)Pr(s; <z* [0 =60) =0 (3.29)
e 0 solves the equation

A+(1-NPr(z; <z |0=0)=0 (3.30)

To solve the model, recall that, in our setting, the information system and the definition

of the large trader’s signal implies

Y = T+ TnN—0¢g;

vt = 0-71G7(t)

Now, consider a small trader’s posterior probability assessment of a successful attack con-

ditional upon observing the large trader attack in period 1 and the signal z;. Using the

above expressions, such probability can be expressed as

Pr(0<6|y<y*)

z; — 0

= Pr (61' >

™ —o0g; <0 —x; — TG_l(t)>

We can thus derive Z* by solving the following equation

Pr (q > ”_”*0_0 , Tn —og; < 0 —TF — 'rGfl(t))
Pr(tn—oe; <6 —z* — 7G~(t))

=t (3.31)
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By the same token, z* can be derived by the analogous condition for the case in which the
large trader has not attacked the currency in period 1:

Pr (g,- > E*(T—_Q , Tn —og; >0 —x* — TGfl(t))
Pr(tn—oe; >0 — z* — 7G~(t))

—t (3.32)

It is apparent that neither of these equations can be solved in closed form in the general
case, without making further parametric assumptions on the distribution functions of the
error terms. We therefore resort to two types of analysis. One is to follow the procedure
used in section 4, and examine the limiting cases for different relative precisions of the large
trader’s information.

Before we do so, however, we report the results of some numerical calculations on the
critical states § and . These critical states take on added significance in the sequential
version of our game, since the action of the large trader is observed by the small traders.
In figures 3.4 through 3.7 we report the plots for the critical states # and @ for a variety
of parameter combinations. As before, F' and G are Standard Normal. In all cases, the
numerical plots deliever intuitive answers. As the precision of the large trader’s information
improves (so that we move left in all the plots), we can see that the upper critical state
increases, while the lower critical state @ falls. This implies that the pivotal influence of
the large trader is greater when his information becomes more precise. Note, in particular,
that @ approaches 1 when the large trader’s signal becomes more precise. In other words,
when 7 is small, the large trader’s action precipitates the attack whenever the peg can be
broken.

This and other properties of the sequential game can be examined by analysing the

limiting properties of the equilibrium.
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Figure 3.4: 0 ;t=10.4, \=0.5,0 = 1.0 Figure 3.5: § ;t=04,A=0.5,0=1.0
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Figure 3.6: 0 ;t=0.4,A=0.1, 0 = 1.0 Figure 3.7: § ;t =04, A=0.1,0=1.0

3.4.2 Comparative Statics in the Limit

We now discuss the limiting properties of the model allowing for differences in the informa-
tion precision across traders of different size. We consider first the case of a large trader who
is arbitrarily better informed than small traders. The following proposition summarizes our

result.
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Proposition 3.6. As Z — oo, there is a unique trigger equilibrium in ', with

ES
4
)

Proof: We first rewrite equation (3.31) as

Pr (ei >0 1, g <0 1G_I(Tt))

o ' o — o o

Pr (577 —g < BT - ngl(t))

Taking the limit as 7 — 0, the LHS tends to

&0 -z
Pr<6i>z , =€ < JI)

il o —

Pr (—61' < 0_—013*)

which is equal to 1. Thus, in the limit there is no solution to the above equation. Since
t < 1, we use the definition of Z* to set ¥ = oco. We can then substitute Z* into equation
(3.30) to derive # = 1. Symmetric arguments establish that z* = —co and § = 0. Thus

using the definition of y*, we get y* =1 — 7G~1(¢).

In words, this result says that, when the large trader is arbitrarily better informed
than the small traders, they follow him blindly, and therefore, he completely internalizes
the payoff externality in the currency market. This type of equilibrium corresponds to
the strong herding equilibrium in Dasgupta (1999), where all the followers ignore their

information completely.
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This result implies that, when actions are observable, a relatively well-informed large
trader can (but not always will) make small traders either extremely aggressive in selling
a currency, or not at all aggressive. His influence in this case is much larger (as should be
true, intuitively), in comparison to the case of a simultaneous move game, analyzed in the
previous section.

Notably, the size of the large trader never appears in the expressions that define the
unique trigger equilibrium. The distinctive feature of a large trader is that he does not
ignore the signalling effect of his actions. What emerges from our result is that, when he is
significantly better informed than the small traders, his absolute size is irrelevant.

The following proposition states our results corresponding to the case in which the large

trader is less precisely informed than the rest of the market.

Proposition 3.7. As Z — 0 there is a unique trigger equilibrium, with

A+ (1-N1—t)—y*

. - G
A+(1=-XN1Q-t) -7 SRl
1-XN1Q-t)—2z* SR

0 - A+(1-N(1-1

[5s
1

(1-=X)(1-1¢)

Proof: Rewrite equation (3.31) and taking limits as Z — 0, we get

Pr(e;> 20, 5 < &2 —G()

Pr(n< &2 -6

which, given independence of ¢; and 7 implies that

=1

7 =0 oF (1)
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Combining with equation (3.30) we get
0= A+ (1—-X)(1-1)

Thus

oA+ (1 -N1—-t)—cFL()

The remaining quantities are then uniquely defined.

In words, this proposition means that even a relatively uninformed large trader attempts
to influence the market. However, since he does not have any informational signalling ability,
his actions affect the equilibrium outcome of the game only inasmuch as his size is relevant.
Intuitively, as his signal is quite noisy, he cannot reduce the small traders’ uncertainty about
the fundamental. By moving first, however, he can eliminate uncertainty about his action.

If, in addition, we suppose that o — 0, then
o 1—-t+ X
Observe that as A — 0, the equilibrium triggers converge exactly to the case in which the

large trader does not exist.

3.4.3 A synthesis of our results

We are now in the position to offer a complete overview of our results, and reach some
conclusions about the role of a large trader in a currency crisis. As explained in the in-
troduction, there are three main elements in our theory: size, information precision and

signalling.
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Focusing on the limiting properties of our equilibria, the following table presents the

equilibrium value of the trigger for small traders in the different cases discussed above.

Limiting properties of equilibria

Equilibrium trigger for small traders by relative precision of information

Large trader is: | informed uninformed

(2—=0,0—=0) | (7 =00, 0—0)

Actions are:

Tr=1-t-Xt—123=2 ifA>t

unobservable ¥ =1—t+ M
z*=1—-1 ifA<t

T* = 00 TF=1—t+ Xt
observable

z* = —00 zt=(1-1)(1-X)

In each column of the table, the two thresholds z* and z* in the game where actions are
observable are higher and lower, respectively, than the corresponding threshold z* derived
in our game with unobservable action. In other words, regardless of the relative precision
of information, a large trader can have a much larger influence in the market if he is able
to signal to small traders.

As discussed above, the size of the large trader is irrelevant in the sequential move game
when the large trader is relatively well informed — this case corresponds to the bottom left
cell of the table. What matter here is not the size per se, but the signalling ability associated
with size. Conversely, size matters in all other cases.

Reading the entries on the main diagonal of the table, observe that the critical signal
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(z*) in the unobservable action, information larger trader case is equal to critical signal
contingent on the larger trader have attacked (z*) in the observable action, uninformed
large trader case. This equality provides an interesting link across the two games. When
actions are not observable, small traders do not expect a better informed trader to “add
noise” to the game. Their problem is to estimate the fundamental as well as possible, given
their own signal. When actions are observable, the potential noise added to the game by
a relatively uninformed large trader is eliminated by his moving first. So, also in this case,
the problem of the smaller traders is the same as above, i.e. to estimate the fundamental

as well as possible given their own information.

3.5 Concluding Remarks

Economists and policy makers have long debated whether speculation, especially speculation
by large traders, is destabilizing. In our model, a large trader in the market may exacerbate
a crisis, and render small traders more aggressive. The small traders’ trading strategies as
defined by the switching point z* become more aggressive as the size of the large trader
increases. However, the relative precision of the information available to the traders affects
this conclusion. If the large trader is less well informed than the small traders, this effect
may be quite small. Finally, the influence of the large trader is magnified greatly if the
large trader’s trading position is publicly revealed to the other traders, although this result
also must be qualified by the relative precision of information of the two types of traders.
Crucial to our conclusion is the assumption that the large trader stands to gain in the

event of the devaluation. This may not be an assumption that is widely accepted. If the
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large trader is an investor with a substantial holding of assets denominated in the currency
under attack (say, a U.S. pension fund with equity holdings in the target country), he may
prefer that an attack not occur, even though, if he thinks the attack is sufficiently likely he
will join the attack. In such a case, the presence of a large trader will have the opposite
effect, making attacks less likely. This points to the importance of understanding the initial
portfolio positions of the traders in such instances.

Our analysis also abstracted from a large trader’s incentive to take a position discreetly
in order to avoid adverse price movements. If this effect were important, a trader would
have an incentive to delay announcing his position until it is fully established. But even once
a trader has established his position, he may prefer to avoid public disclosures when he is
holding a highly leveraged portfolio in possibly illiquid instruments. One of the motivations
for the call for greater public disclosures by banks and hedge funds (see Financial Stability
Forum (2000)) is the idea that if leveraged institutions know that their trading positions
are to be revealed publicly, they would be wary of taking on large speculative positions.
The recent decisions by several well known fund managers (Mr. Soros being one of them) to
discontinue their ‘macro hedge fund’ activities raise deeper questions concerning the trade-
off between the sorts of mechanisms outlined in our model against the diseconomies of scale
that arise due to the illiquidity of certain markets. It is perhaps not a coincidence that the
closure of such macro hedge funds comes at a time when many governments have stopped

pursuing currency pegs and other asset price stabilization policies.

APPENDIX B

In this appendix, we show that the unique equilibrium in switching strategies can be
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obtained by the iterated deletion of strictly dominated strategies.

Consider the expected payoff to attacking the peg for a small trader conditional on
signal z when all other small traders follow the switching strategy around Z and when the
large trader plays his best response against this switching strategy (which is to switch at

y (%), obtained from (3.10)). Denote this expected payoff by u (z,%). It is given by

0(a) 90) A
u(x,ﬁ:)z%/f<0;$>d9+%/f(H;'x)G(y(xii_e)dG (3.33)
o o(2)

where 0 (%) indicates the value of § when small traders follow the Z-switching strategy. 6 (%)
is defined analogously. We allow Z to take the values —oo and oo also, by which we mean
that the small traders never and always attack, respectively. Note that u (-,-) is decreasing
in its first argument and increasing in its second.

For sufficiently low values of z, attacking the currency is a dominant action for a small
trader, irrespective of the actions of the other traders, small or large. Denote by z, the
threshold value of x below which it is a dominant action to attack the currency for the
small trader. All traders realize this, and rule out any strategy for the small traders which
refrain from attacking below z,. But then, refraining from attacking cannot be rational

for a small trader whenever one’s signal is below z; where z; solves

u(zy, o) =t (3.34)

This is so, since the switching strategy around z; is the best reply to the switching strategy
around z;, and even the most cautious small trader (in the sense that he assumes the
worst concerning the possibility of a successful attack) believes that the incidence of attack

is higher than that implied by the switching strategy around z; and the large trader’s
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best reply y(z,). Since the payoff to attacking is increasing in the incidence of attack
by the other traders, any strategy that refrains from attacking for signals lower than x,; is
dominated. Thus, after two rounds of deletion of dominated strategies, any strategy for a
small trader that refrains from attack for signals lower than z; is eliminated. Proceeding

in this way, one generates the increasing sequence:

Ty <L) < Ty < - <xp < -+ (3.35)

where any strategy that refrains from attacking for signal z < z;, does not survive k +
1 rounds of deletion of dominated strategies. The sequence is increasing since u (-,-) is
decreasing in its first argument, and increasing in its second. The smallest solution z to
the equation u (z,z) = ¢t is the least upper bound of this sequence, and hence its limit.
Any strategy that refrains from attacking for signal lower than 2 does not survive iterated
dominance.

Conversely, if x is the largest solution to u(z,z) = t, there is an exactly analogous
argument from “above”, which demonstrates that a strategy that attacks for signals larger
than z does not survive iterated dominance. But if there is a unique solution to u (z,z) = t,
then the smallest solution just is the largest solution. There is precisely one strategy
remaining after eliminating all iteratively dominated strategies. Needless to say, this also

implies that this strategy is the only equilibrium strategy. This completes the argument.

APPENDIX B

In this appendix, we give a proof of proposition 3.2. First, suppose that lim# < lim @
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(so that 1im@ > 1 — )). Since z* — 6, we must have

In other words, § = —oo. Thus, in the limit, equation (3.22) can written as (3.24). Now,
consider the case where lim@ = lim#. This is the case where ¢ is finite. From (3.19) and
(3.20) we have

I=N(A-F@)=x+01-X)(1-F(3))

implying that F (&) — F (6) = ﬁ, which in turn means that

§=F"1 (F (6) - %) (3.36)

Equation (3.22) in the limiting case then becomes (3.25). In both (3.24) and (3.25), the
left hand side is strictly increasing in 6, and there is a unique value of § that solves both

equations. Then, the proposition follows from (3.20).

ArPENDIX C

In this appendix, we give a proof of proposition 3.5. The bounds can be obtained by
manipulating the four equations, (3.19) through (3.22). Let us use the notation: & = F (6)

and £ = F (). From (3.19) and (3.20),

(r(557) -7 ()
(1-r(557) e (557))

(€-9)-

|
|

5
Il

A+ (1- )
= A+(1-X)
A—(1-N)
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This implies that § > 6 and & > . Re-arranging, this implies
E—t< —. (3.37)

By (3.21),

[4 0 _
1 — 1 — -
—/f(e x)d0+—/f(9 $>G(9 O—G_l(t)>d0:t (3.38)
g g g g T
—00 [/
Observe that for all § € (6,6),
1—t<G<0;9—G1(t))<1

and that

[ o(55) v

—0o0

so the left hand side of equation (3.38) is strictly less than & and is strictly more than

(1—t)€ and £ — ¢ [€ —£]. By (3.37), this latter expression is strictly more than

- At
S

Now equation (3.38) and the upper and lower bounds on the left hand side of (3.38) imply

min 1—21-x["

The proposition follows from re-arranging the characterizing these characterizing equations.
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Chapter 4

A Model of the Origin and Spread

of Bank Panics

A commonly held view of financial crises is that they begin locally, in some region, country,
or institution, and subsequently “spread” elsewhere.! This process of spread is often referred
to as contagion. What might justify contagion in a rational economy? There are two broad
classes of explanations.

The first class of explanations posits that the adverse information that precipitates a
crisis in one institution also implies adverse information about the other. This view em-
phasizes correlations in underlying value across institutions and Bayes learning by rational

agents. For example, a currency crisis in Thailand may be driven by adverse information

'T am grateful to Ben Polak, Dirk Bergemann, David Pearce, Timothy Guinnane, Debraj Ray, Jonathan
Levin, Ady Pauzner, V. V. Chari, Patrick Kehoe, and especially Stephen Morris for helpful discussions.
Financial support from the Cowles Foundation and Yale University is gratefully acknowledged. Some of the

computations for this project were carried out using Mathematica 3.0.
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about underlying asset values in South East Asia, which can then apply to other countries
in the region.?

A second type of explanation begins with the observation that financial institutions are
often linked to each other through direct portfolio or capital connections. For example,
entrepreneurs are linked to capitalists through credit relationships; banks are known to
hold interbank deposits. While such capital connections may seem to be desirable ex ante,
during a crisis the failure of one institution can have direct negative payoff effects upon
stakeholders of institutions with which it is linked.3

In this paper, we present a model of financial contagion which formalizes this latter
view. We focus on a particular (but particularly important) type of financial institution:
commercial banks. Throughout history, banks have cross-held deposits (for regulatory and
insurance reasons), and thus the failure of some banks had direct consequences on others
through capital linkages. The problem of contagious bank failure is particularly complex
because it involves an underlying coordination problem amongst depositors of each bank.
Even weak banks may not fail if very few depositors withdraw their money early, while strong

banks may fail if many depositors withdraw early. This problem of multiple equilibria makes

it difficult to examine even individual bank failures, which then compounds the difficulty

2For papers that emphasize this view, see, for example, Kodres and Pritsker 1998, or Chen 1999.

3Two leading papers that emphasize this view are Kiyotaki and Moore (2000) and Allen and Gale (2000).
An interesting recent paper which highlights the possibility of contagion through financial links between
stakeholders in different institutions, rather than the institutions themselves, is Goldstein and Pauzner

(2000b).
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4 Using and extending some recent

of isolating contagious effects in many bank settings.
developments in the theory of equilibrium selection in coordination games (see Morris and
Shin 2000) we present a model of an economy with multiple banks where the probability
of failure of individual banks, and of systemic crises, is uniquely determined. This then
permits us to identify contagion precisely and examine its properties.

While the lessons from the analysis in this paper may have relevance to understanding
many financial crises, our model is too stylized to be a precise description of any particular
one. The set of financial crises that are, perhaps, best represented by our model are the
banking panics of the National Banking System in the United States. For expositional

purposes it is useful to provide a brief and stylized description of these panics. We provide

one below.

4.0.1 National Banking Era Panics

The description presented here selectively synthesises and summarizes the descriptions pro-
vided by Sprague (1910), Wicker (2000), and Calomiris and Gorton (1991). The defining
characteristics of the National Banking System were laid out in the National Banking Act
of 1864. This act prohibited interstate branching of banks and established a system of re-
serve pyramiding, under which country banks could hold reserves in designated reserve city
banks, which in turn could hold reserves in New York. Thus, throughout this period, the
reserve cities including New York directly or indirectly held the deposits of many country

banks. As late as 1907, Sprague (1910, p. 223) points out that: “New York still maintained

4For the classic multiple equilibrium model of bank runs, see Diamond and Dybvig (1984).
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its commanding position as a debtor of national banks.”

There were five banking panics of varying intensity in the National Banking Era prior
to the Great Depression. They occurred in 1873, 1884, 1890, 1893, and 1907. With the
exception of the the crisis of 1893, all of these panics began as localized disturbances in
New York and subsequently spread to banks in the interior of the country. What were the
sources of these panics? Calomiris and Gorton (1991) argue persuasively that the panics
typically began with asset-side shocks. Wicker (2000, p. 1) confirms: “In New York, the
banking panics began with an unexpected financial shocks ...the immediate effect being a
loss of depositor confidence manifest by bank runs that were bank-specific and sometimes
extending to all savings banks.” This was typically followed by suspension of payments by
New York banks, followed by suspensions in banks at various parts of the country.

A particularly good example of such contagious panics was the panic of 1907.5 In 1907,
the panic began due to an unsuccessful attempt to corner the Copper market by a group of
speculators who were associated with several Trust Companies and National Banks in New
York. When news of this speculatory failure became public in October there were runs on
Knickerbocker Trust Company. This was followed by runs on the National Bank of North
America and on other institutions thought to be linked to the Copper speculators. While
some attempts were made to ease the crisis by private bankers led by J. P. Morgan, an
unfortunate delay in reaction by the large New York Clearing House led to a widespread

panic, followed by several suspensions and bank closures. Sprague (1910, p. 259) points

SSprague (1910) points out that the panic of 1907 was preceded by no systemic shocks that might conflate
our analysis (p. 216): “For our purposes, therefore, we are fortunate in being provided with a crisis which

was preceded by no legislation or monetary conditions unfavorable to sound banking.”
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out: “Everywhere the banks suddenly found themselves confronted with demands for money
by frightened depositors ...Country banks drew money from city banks and all banks
throughout the country demanded the return of funds deposited or on loan in New York.”
Finally, the panic that began with a localized asset shock in New York led to suspensions
(or effective suspensions) through much of the country. In the panic of 1907, therefore, we
find a clear example of how a financial panic may spread along the channels of direct capital
connections between institutions.

To summarize, some of the stylized features of the National Banking System panics are

as follows:

e Panics originated due to asset-side shocks. They were inherently dynamic, starting in

New York and spreading to the interior of the country.

e While other factors may also play a role,® panics appeared to diffuse nationally through
the correspondent network, from debtor New York banks to creditor banks in the

interior.

In what follows, we develop a dynamic Bayesian game theoretic model in which many of

these stylized features emerge in equilibrium.

5Wicker (2000) identifies four channels of transmission from New York to the interior, including diffusion
via the correspondent network. However, not all of these factors are independent, and at least two of these

may formally reduce to consequences of existing correspondent relationships.
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4.0.2 Summary of Model and Results

We consider a 3-period economy with two non-overlapping regions, each with a represen-
tative competitive bank. Regional banks have access to a storage technology (cash) and a
region-specific risky technology that pays a higher expected return (than cash) if held to
maturity, but pays less than par value if liquidated early. The return on the risky asset is re-
vealed in period three, and is an increasing function of uniformly distributed region-specific
underlying fundamentals.

There are two continuums of risk-averse consumers, one in each region, each of whom
lives three periods. The consumers receive private liquidity shocks: with some probability
they may need to consume in period one. They begin life with their endowments deposited
in the representative bank of their region. The aggregate level of liquidity demand in
the economy is fixed, but the two regions may experience negatively correlated regionally
aggregate shocks. The two representative banks insure against such regional liquidity shocks
by holding interbank deposits. Consumer deposits, as well as interbank deposits take the
form of standard demand deposit contracts, but interbank deposits are assumed to have
seniority to (settle earlier than) individual demand deposits.

Within period one, regional liquidity shocks are realized first and become public knowl-
edge. Then, nature selects the depositors of one of the banks to receive private signals
about their bank’s fundamentals and make their choices. The depositors of the other bank
observe the net proportion of the depositors of the first bank who withdraw their money.

Shortly thereafter, the depositors of the other bank receive private information about their
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bank’s fundamentals, and decide whether to remain or withdraw.” The structure of the
model and the seniority of interbank deposits implies that when the depositors of either
bank are called upon to make their choices, there is an ex-interim asymmetry between the
two banks: one bank (in the region with high initial liquidity demand) is a net debtor to
the other bank.

Under weak assumptions on the distribution of fundamentals, we prove that there is
a unique threshold in asset returns below which each bank will fail (Propositions 4.1, 4.2,
and 4.3). These results imply that banks fail upon the release of adverse information about
them. The probability of failure is determined endogenously. In our central result, we show
that contagion exists: there are regions of fundamentals in which one bank may fail if and
only if the other bank fails (Proposition 4.4). Conditional on the failure of the debtor bank,
the creditor bank fails for a wider range of its own fundamentals than if the debtor bank
survived. However, the failure of the creditor bank does not affect the probability of failure
of the debtor bank. Contagion flows from debtors to creditors, and thus spreads along the
channels of interbank deposits, but only in a specific direction. Hence, contagion can be

localized and not all institutions become potential targets.

"There are two natural ways to interpret this non-simultaneity in the model One can think of this model
as a discrete approximation of a continuous time model with generically staggered release of information.
One can also think of this as a genuine discrete time setting in which (for reasons we do not model) the
depositors of one bank suddenly receive information and choose to act. The depositors of the other bank
(in another region) read about the events in the first bank in their morning newspaper the following day,
and then actively seek out information about their own bank immediately thereafter, and choose whether

to withdraw or remain. We prefer this latter interpretation.

155



Interbank deposits enable banks to hedge regional liquidity shocks, but expose them to
the risk of contagion. We illustrate the conditions under which banks would want to hold
significant levels of interbank deposits. In particular, our simulations suggest that when
banks runs are rare, financial institutions will insure fully against regional liquidity demand
shocks. However, when bank runs are frequent, only partial insurance will be optimal.

Finally, under the assumption of full liquidity insurance, we present comparative statics
results to demonstrate that contagion is increasing in the size of regional liquidity demand

shocks (Proposition 4.5). This is a testable implication of the model.

4.0.3 Related Literature

Our paper is connected with a diverse literature. We apply the equilibrium selection tech-
niques summarized in Morris and Shin (2000). Goldstein and Pauzner (2000a) were the
first to apply these techniques to the analysis of bank runs. Our model shares features with
theirs.® They investigate the probability of bank runs in a single-bank setting, while we are
interested in the problem of contagion with multiple banks. Rochet and Vives (2000) also
analyze bank runs using similar techniques, but do not concern themselves with the problem
of contagion. Goldstein and Pauzner (2000b), like us, examine contagion of self-fulfilling
crises, but their mechanism for contagion (through common lenders) is different from ours.
Kiyotaki and Moore (2000) explore the method by which contagion flows through credit
chains amongst lenders and entrepreneurs. Their model shares with ours the feature that

capital connections are the channels for contagion, but does not concern itself with coordi-

8Importantly, in both models, payoffs fail to satisfy global strategic complementarities.
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nation problems. Rochet and Tirole (1996) examine correlated bank failures via monitoring:
the failure of one bank is assumed to mean that other banks have not been monitored, and
thus triggers multiple collapses. Other papers with similar themes that have less clear con-
nections to ours are Allen and Gale (1998), Chari and Kehoe (1997), and Cole and Kehoe
(2000).

The paper that comes closest to us in theme is Allen and Gale (2000). Their purpose
is to model contagion as an equilibrium phenomenon in a many-bank setting. While our
model contains features of Allen and Gale’s framework, there are important differences
between our models. Allen and Gale work with perfect information and bank panics occur
due to aggregate (random) liquidity shocks on the part of the depositors. Such aggregate
liquidity shocks are necessary and sufficient for contagion. Our model features incomplete
information. Bank runs occur due to adverse information about asset returns. Regional
liquidity shocks are necessary but not sufficient for contagion. This is in keeping with the
data on historical bank panics in the US. Allen and Gale assume that bank panics are
zero probability phenomena, while our set-up allows us to derive the probability of bank
panics in equilibrium. The existence of contagion in Allen and Gale’s model is intricately
connected with an ad hoc incompleteness in the interbank deposit market. Without such
incompleteness, contagion vanishes, except for extremely large global liquidity shocks. This
may suggest that complete interbank deposits may essentially eliminate contagion, thus
reducing the need for a lender of last resort. We show that contagion occurs with positive
probability even with complete interbank deposits. Our results, therefore, also have bearing

on the findings of Rochet and Vives (2000), who consider the necessity of a lender of last
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resort within a banking system. Finally, in Allen and Gale (2000), contagion is a static
phenomenon, while we model it as a dynamic one. This allows us to explicate an endogenous
direction of flow for contagious effects.

The rest of the paper is organized as follows. In the next section we present the model.
In section 4.2 we prove the existence and uniqueness of threshold equilibria. Section 4.3
contains our central result. The optimal level of interbank deposit holdings is illustrated
numerically in Section 4.4. Section 4.5 provides closed forms and comparative statics.

Section 4.6 discusses and concludes.

4.1 The Model

4.1.1 Regional Liquidity Shocks

We consider an economy with two non-overlapping “regions,” A and B. There are three
time periods t = 0,1,2. The regions are populated by distinct continuums of weakly risk
averse agents with utility functions u(-) [¢/(-) > 0, v”(-) < 0] who each live for three peri-
ods. Each agent has an endowment of 1 unit. Agents face private (uninsurable) liquidity
shocks: they need either to consume in period 1 (impatient) or in period 2 (patient). In
the aggregate, there is no uncertainty about liquidity in the economy: there is exactly a
proportion w € (0,1) of agents who require early liquidity. However, individual regions
experience (regionally) aggregate liquidity shocks of size x > 0. In particular, there are two
states of the world: A = A or A = B, corresponding to the cases where region A and region
B have high early liquidity demands respectively. Observe that since aggregate liquidity

is constant, regional liquidity shocks are negatively correlated. The state ) is realized and
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A=Blw—z|w+z

Table 4.1: Regional Liquidity Shocks

publicly known immediately at the beginning of period 1. States A and B occur with equal

probability.

4.1.2 Banks, Demand Deposits, and Interbank Insurance

We consider two symmetric (representative, competitive) banks which lie in two regions
of the economy. Agents begin their lives with their endowments deposited in the bank of
their region. There are two classes of assets available to banks: a safe and liquid storage
technology with a low (unit) gross rate of return, and a risky, illiquid asset with high
expected return but with costs to premature liquidation. The storage technology is common
to both banks. One unit stored at time ¢ produces one unit at time ¢ + 1. In addition,

region ¢’s residents also have access to risky illiquid technology R;, with returns given by:

0<r<1 whent=1,

R(6;) when ¢ = 2, where 6; is distributed Uniform on [L, U]
where t is the time of liquidation, R(-) is any increasing function. 6; indexes some underlying
“fundamentals” related to the bank’s assets, which determine the level of the bank’s asset
returns. These fundamentals 6; are independent and identically distributed for i = A, B.

We assume that Ey, [u(R(6;))] > u(1) i.e., the risky asset pays a higher expected return if
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held till period 2.

Banks are constrained to offer depositors demand deposit contracts.’ Demand deposit
contracts offer conversion of deposits into cash at par on demand in period 1 conditional on
sufficient cash being available. If, however, sufficient cash is not available, then the contract
specifies that the bank will divide up evenly what cash it can generate by liquidating its
portfolio amongst the depositors who demand early withdrawal. At this point of time, the
bank goes out of business. For those depositors who choose to remain in the bank till period
2, the bank promises to pay a stochastic amount, which is contingent upon the returns on
the bank’s assets, the proportion of early withdrawals, and payouts to any senior liabilities.

The two banks face aggregate demand shocks in period 1, in keeping with the regionally
aggregate liquidity shocks outlined above. However, since these aggregate regional liquidity
shocks are negatively correlated, banks insure against these by holding interbank deposits.!°
In particular, we assume that banks hold cash reserves equal to w, the average level of

liquidity demand in the economy, and insure against regional liquidity shocks by holding

9Hence we are not solving here for the optimal contractual form. Demand deposit contracts are a standard

feature of banking systems and we take them as given.

'"We are implicitly assuming that banks have access to only interbank deposits as a tool to insure, and
hence can insure only against shocks to their liabilities. While this assumption is not central to our analysis,
we assume it for algebraic simplicity as well as to eliminate correlation between the bank’s asset returns.
Such correlation would introduce a second channel of contagion, through learning. Our purpose in this paper

to explore the extent to which capital connections, by themselves can contribute to contagion.
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interbank deposits of size D € [0, z] with the other bank.!! Thus, in this symmetric scheme,
banks exchange deposits of size D, and distribute their net wealth of 1, putting w in cash,
and 1 —w in long term investment projects. We note that D is a choice variable for banks.
In equilibrium, the selected size of D shall depend on the parameters of the model.

These interbank deposits have the feature that in each period they “clear before” claims
to individual depositors are paid. In other words, as soon as A\ is realized at the beginning
of period 1, the bank in the high liquidity demand region receives a payment of z from
the bank in the other region, before individual depositors can claim money from the bank.
Similarly, in period 2, the banks use any proceeds of liquidated investments to first pay
their fellow bankers, and then pay their patient depositors out of the remaining proceeds.
It is helpful to consider an example.

For clarity, assume a truthtelling equilibrium (i.e. an equilibrium in which only impatient
agents withdraw money in period 1) and maximal interbank deposit levels, D = z. Suppose
state A is realized, so that region A has a higher immediate liquidity shock. Upon the
realization of A = A, immediately bank A receives from bank B its redeemed deposit of
x, so that bank A now has w + z in cash, which matches (in the truthtelling equilibrium)
the amount of withdrawals it faces. Similarly, bank B now has w — z in cash, which is
precisely the demand it faces in period 1. Bank A now owes bank B zR(604), and owes its

own customers (w —z)R(04). But it has exactly (1 —w) invested in the illiquid asset R(64),

" Given the cash holdings of the banks, and given the timing of the model to be explicated below, interbank
deposits of size larger than x will not be desirable to banks. Such deposits would leave banks unable to
pay their own early consumers in any equilibrium without prematurely liquidating some of their long term

assets. In practice, there were often regulatory restrictions on the size of D.
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so its proceeds in period 2 are (1 — w)R(04), which is exactly the sum of its liabilities.

Similarly, promises and earnings clear for bank B.

4.1.3 Information and Timing

In period 1 nature selects at random (and with equal probability) one of the sets of depositors
to receive information about their bank and to act. Information is received in the form of
private signals about the underlying fundamentals of their bank. Suppose region 7 is selected
first. Depositor j of region i receives signal 6;; = 6; + €;;, where ¢;; are independent and
identically distributed uniform on [—e¢,€]. Shortly thereafter, the depositors of the other
bank (in region —i) receive information about their own bank, and get to act themselves.
The information is symmetric. Depositor j of region —i receives signal 0; ; = 0_; +€; ,
where €; _; are independent and identically distributed uniform on [—¢,€]. Importantly,
before choosing, the depositors who move second learn what happened in the first bank.

Thus, the timing of this game can be described shown below in itemized form:

e Period 0

— Interbank deposits are initiated.

e Period 1

A is realized.

— Period 1 interbank claims settle.

Depositors in bank ¢ receive information and choose actions.

Depositors of bank ¢ who demand early withdrawal are paid.
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— Depositors in bank — receive information and choose actions.

— Depositors in bank —¢ who demand early withdrawal are paid.
e Period 2

— Period 2 interbank claims settle.

— Residual depositor claims on the two banks settle.

We can now write down the payoffs of this game.

4.1.4 Depositor Payoffs and Interbank Payments

We are now ready to write down the payoffs to depositors in this game. In period 1, de-
positors choose whether to demand conversion of their deposits into cash at par (withdraw)
or to retain their deposits with the bank (remain). Impatient depositors can only consume
in period 1. They will therefore always withdraw. However, the patient depositors face a
non-trivial decision problem. We explicate their payoffs below.!?

Recall that in period 1 one bank will be a debtor and one bank will be a creditor. Thus,
without loss of generality, we can label the payoff matrices for the patient depositors of the
two banks as those of the debtor bank and the creditor bank respectively.

Begin by considering the debtor bank, i.e. the bank that experienced a high liquidity
shock in period 1. There is a mass 1 — (w+ ) of patient agents in the debtor region. Let ng
represent the proportion of the patient depositors who choose to withdraw in period 1. If ng

proportion of patient depositors withdraw, then, since impatient agents (of measure w + x)

12The payoffs presented below are motivated by the those in Goldstein and Pauzner (2000) and Allen and

Gale (2000). They contain features from both papers.
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always withdraw in period 1, total demand for cash in period 1 is (w+ z) + ngq(1 — (w+z)).
The bank had w in cash and received D in cash from the creditor bank at the beginning of
period 1 (and hence became a debtor to the creditor bank). Thus, its total cash holdings
are w+ D. If demand for cash exceeds w+ D, the bank can obtain more cash by liquidating
its long assets. It has 1 — w invested in the long asset, from which it can generate (1 — w)r
in cash in period 1. Thus, observe that if [w + z] + (1 — [w + z|)ng > [w + D] + (1 — w)r,

ie., if
l1-wr+D-z

Tz (w+x) (4.1)

ng

then the debtor bank becomes insolvent and goes out of business in period 1, and in the
process divides up the proceeds of its liquidated asset portfolio equally amongst its claimants
in period 1. However, if the bank remains solvent in period 1, then it must first settle its
debt of DR(0;) to the creditor bank (because interbank deposits have seniority, within each

period, to regular demand deposits). In order to pay the proportion ng early demands

by patient agents in period 1, the debtor bank had to liquidate (1_w_z)2d+(z_D) of the

illiquid asset in period 1. Its original investment in the long asset was 1 —w. The remaining

proceeds are (1—w— (1_(w+w))r"d+(w_D) JR(6;). Aslongas (1—w— (1_(w+z))nd+(w_D))R(0i) >

T

DR(6,), (i.e., ng < (l_w)H(D_w)_TD) the debtor bank pays DR(6;) to the creditor bank in

l-w—x

period 2, and divides up the remainder equally amongst its residual depositors who chose to

remain in the bank. This means that each patient depositor who chooses to remain receives

_ (A—(wta)ng+(@=D) 5

T—w—z)(=ny) R(6;) However, if ng > (lfw)qt(wD_;w)*TD, residual depositors receive

1—w

nothing, and the creditor bank receives (due to seniority) (1 —w — (1_(w+z))r"d+(m_D) YR(6;)-

Thus, the period 2 payments on the interbank deposits from the debtor to the creditor bank
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can be written as:

f

DR(OZ) if ng < (1—w)r+(D—z)—rD

l—w—2x

9(0img) = { (1—w— (=wtsdnat@=D)yppy i (Wi (Dw)=rD o (=w)r+(D=a)

r l-w—z 1—(w+zx)

. 1—w)r+(D—

Correspondingly, the payoffs to the patient depositors are given by:

u[1] if ny < U=rH o)

uw(0i,n) = 3 o) (4.2)
(w+D)+(1—w)r . (1—w)r+(D—x)

| Urara-ropms) 12 Tt

’

_ (A—(wta))ng+(z—D) _D

l1-w - . 1—w)r+(D—x)—rD
u[ (1-w—z)(1—ng) R(ez)] if ng < ( )I—SU—JJ)

ur(0i,na) = 4 (4.3)

u[O] if ng > (1—w)r+(D—z)—rD

L l-w—x

Now consider the payoffs to the depositors of the creditor bank. Observe that the creditor
bank’s payoffs are complicated by the fact that they depend on the condition of the debtor
bank. If the debtor bank were to become insolvent in period 1 (i.e. condition (4.1) holds),
then the creditor bank receives no money from the debtor bank in period 2, and has to
divide up a smaller pool of proceeds amongst its residual claimants. However, regardless
of the condition of the debtor bank, the creditor bank may itself be run out of business.
Let n. denote the proportion of the patient depositors of the creditor bank who choose to

withdraw in period 1. Observe that if

(1-w)r+(zx—D)
- 1—(w—x)

Ne

(4.4)

the creditor bank shall become insolvent. It is thus possible that the creditor bank shall
become insolvent while the debtor bank remains solvent. In the simplest possible interpre-
tation of bankruptcy laws, we then assume that the proceeds from the debtor bank will be

divided equally amongst all the depositors of the creditor bank.
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Conditional on the failure of the debtor bank, i.e., if condition (4.1) holds, the payoffs

are:

UW(GZ, nc)

U/R(Hia nc)

,
. 1—w)r+(z—D
< ull] ifne < S52E5 (4.5)
\ u[(w(_u;)_ﬁ)lt((i;_iuz))gnc] if ne 2 %
R
VUl e RO)] i 5 < e < (e D) (46)
[ (0] it ne > (22

Conditional on the survival of the debtor bank the payoffs are:

uw (0’“ nc)

’U,R(ei, ’I’Lc)

(

\

(1—w)r+(z—D)

u[1] if ne < =

Ul A 4 g(0-i,ma)] i e > (5 ED)

o[ PR G e i, < 2207
(I ) i 22y < < Ut
ulg(0—i, na)] if n, > (5D

4.1.5 Notation

We label the entire game I'. We label the realization of I" in which the depositors of the

debtor bank are chosen to act first as I'y, and the complementary game I'.. Finally, within

[';, for ¢ = c,d, we denote the stage static coordination games by I'; 1 and I'; 2 respectively.

The structure of the game is common knowledge amongst participants. In what follows,

we first outline our assumptions, and then look for Bayesian Nash equilbria of this game.
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4.1.6 Parameter Restrictions

I is characterized by the triple of parameters: (r,w,z). In what follows, we lay down
conditions on these parameters that prevent the problem from becoming degenerate.
Recall that the proportion of impatient agents in the high liquidity demand state is
w + x. Clearly this proportion is bounded above by 1. In particular, we assume that there
is always at least some positive proportion of patient agents. Otherwise the game I'" would

be vacuous. Hence, we assume that w + z < 1, or, in other words

r<l—w (4.7)

Similarly, in the low liquidity demand state, we insist that there are at least some impatient
agents, and hence:

r<w (4.8)

Finally, observe that in order to keep the stage coordination games non-trivial, we must

insist that both the debtor bank and the creditor bank can become insolvent for some ranges

(1—w)r+(D—x)

of withdrawals by patient agents. In other words, we insist that S < 1 for all
D. In particular, since the LHS is maximized at D = z, we require that §1_:Uw_); <1, i.e,
z<(1-r)(1l-w) (4.9)

Since we wish all the features implied by the above restrictions to hold in our model, we
consider parameters in the region implied by their intersection, i.e., (r € (0,1),w > 0,z > 0)
are chosen such that

z < minfw, (1 —r)(1 — w)] (4.10)
We are now ready to find equilibria of this model.
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4.2 Equilibrium

In each of the static coordination games I'; ; and I'; o for ¢ = ¢, d, with common knowledge
of ;, there are (at least) two equilibria. In one of these equilibria, all patient agents remain
in the bank (tell the truth) because they expect other patient agents to do so. In the other,
they all withdraw money from the bank, because they expect other patient agents to do
so. With common knowledge of 6;, patient agents have nothing to condition their beliefs
upon, and hence any feasible belief about the actions and beliefs of others is permissible.
However, with private signals, the situation changes.

In the game with incomplete information, agents are able to condition their beliefs on
their private signals, which are known to be correlated with the private signals of others.
Since R(6;) is increasing in 6;, and private signals are positively correlated with funda-
mentals, high signals convey “good news” to patient agents, and, ceteris paribus, make
remaining in the bank more attractive. A natural class of strategies that emerges are those
in which agents beliefs, and therefore their actions, are increasing in their information: for
good information, agents are more optimistic and more easily persuaded to remain in the
bank; the opposite is true for bad information. Since this is a binary action game, such

strategies take a particularly simple form: Agents choose to remain in the bank if their

*

; j» and choose to withdraw otherwise. We

private information ; ; is above some threshold 6
shall call such strategies monotone strategies, and equilibria in such strategies monotone
equilibria. Monotone equilibria are characterized by threshold levels, and hence we shall

sometimes refer to these as equilibrium thresholds. In what follows, we restrict attention

to such monotone equilibria, as the natural class of equilibria to arise in applications, and
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demonstrate their existence and uniqueness. However, first, we need to make two weak
assumptions, which we shall refer to as the lower and upper dominance assumptions. We

explicate these below.

Assumption 4.1 (Lower Dominance). For each depositor of each bank, in each stage
static coordination game T ; for i € {c,d}, j € {1,2}, if 0; ; = L, it is strictly dominant to

withdraw.

In other words, if depositors knew that the bank’s returns were going to be at its lowest
possible level, it is strictly dominant to withdraw. This is an extremely weak assumption,
and emerges essentially endogenously from the payoffs of the game. Observe that since
at @ = L the dominance is strict, there is some (possibly vanishing measure) region in the
neighborhood of L over which dominance holds. Call this region [L, 8], the lower dominance

regioN.

Assumption 4.2 (Upper Dominance). For each depositor of each bank, in each stage
static coordination game I';; for i € {c,d}, j € {1,2}, if 0;; = U, it is strictly dominant

to remain.

In other words, if depositors knew that the bank’s returns were going to be at its highest
possible level, it is strictly dominant to remain. This is an extremely weak assumption,
and we do not model it explicitly in our payoffs. It can be supported by a number of
assumptions. For example, we could assume that for very high 6, the risky asset in each
region pays a premium over cash even in period 1. The strict dominance inherent in this

assumption, implies, as before, that there exists some region [f, U], in the interior of which
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the dominance result holds. We call this the upper dominance region. Note that this region
can be vanishingly small.
Given these two assumptions, we are able to uniquely characterize the equilibrium out-

come of each of these static coordination games.

Proposition 4.1 (Static Existence). For each stage static coordination game T;; for
i € {c,d}, j € {1,2} there exists a threshold level in the fundamentals 6*(T'; ;) such that
agents who receive signals above 6*(L'; ;) will remain in the bank, while those that receive

signals below it will withdraw.

Proof: We demonstrate this proof for only one of the static coordination games: the
coordination game of the debtor bank’s patient depositors. The proofs for the other games
are simpler than but otherwise identical to the proof for this one.

For the purposes of this proof, denote by @, the underlying fundamentals of the bank
concerned, and by 6; the signal received by agent ¢. Upon receiving signal 6;, the agent
has to decide whether to remain or withdraw. The quantity she is interested in is the
expected payoff difference between withdrawing and remaining. Suppose all other agents
were following threshold strategies with threshold *. Conditional upon receiving signal 6;,
the agent knows that fundamentals lie between 6; — € and 8; + ¢, and has uniform beliefs

over this interval. For any 6, therefore, the agent believes that a proportion

(
1 if0<0*—c¢
n(0,0%) = § L4070 ifgr —e<h<O +e (4.11)
K if 6> 6" +¢

of agents will withdraw from the bank. For a particular (6,0*), the payoff premium to
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remaining is given by:

f

U[O] - u[w—l—x?f(—l'iﬂi;;lr]z)(re,e*)] if W <n<l
m(0,n) = wuf0] - u[l] i (1—w)tEUD_—zz)—rD <n< %
1— 7(1—(w+x))nd+(me)7D ) 1 Des)—rD
| ul (T e R(6;)] —u[l] if 0 <n < IZrHDon)or

Thus, the quantity of interest to the agent is

0;+e€
T1(6;) = /9 (0, n(6,0%))d0

i—€

0* is a monotone equilibrium if the following hold:
1. TI(6*) =0
2. II(6;) > 0 if 6; > 0*
3. TI(#;) < 0if ; < O*

Observe that the existence of the upper and lower dominance regions implies that II(6*) is
negative for sufficiently low 8* and positive for sufficiently high 8*. Thus, it must cross the
0* axis somewhere. This establishes (1) above.

To prove (2) and (3) observe that changing 6;, holding 6* constant only changes the
bounds of integration in II(-). In particular, note that since m(6,n) < 0 for 6 < 0* — ¢
and 7(0,n) > 0 for > 0* + ¢, , there exists § € (0* — ¢,0* + ¢) such that 7(f) = 0.
Since II(6*) = 0, the positive and negative parts of the integral exactly offset each other.
Increasing 6; above 8* increases the positive part of the integral and reduces the negative
part, and thus makes II(-) strictly positive. By the same token, reducing 6; below 6* makes

II(-) strictly negative. Thus, we have established (2) and (3). [ ]
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Having thus shown existence of monotone equilibria, we now demonstrate that they are

unique:

Proposition 4.2 (Static Uniqueness). For each stage static coordination game T'; ; for
i € {c,d}, j € {1,2} there is only one threshold level in the fundamentals 6*(T'; ;) such that
agents who receive signals above 0*(T'; ;) will remain in the bank, while those that receive

signals below it will withdraw.

Proof: Again, we prove this only for the coordination game of the patient depositors,
and extend by symmetry to all other games. Write n? = %. Note that if
n(6,0%) < n?, then 6 > 6* + ¢(1 — 2n). Thus, we can express II(-), as a sum of integrals
over A, with limits of integration given by functions of 8*, following the piecewise definition of

(0, n) above. Since the limits of integration are always linear with slope 1 in 6*, integrating

over constant terms gives us final products that are independent of 8*. Thus, we can rewrite

I1(-) as
9" +e 1 — @ — Q=(@ta)ng+(@=-D)
u L R(6;)]d6
/a*+e(1—2r) [ (1—w—z)(1 - ny) (@)
0*+e(1—2n%) w+ D+ (1 o ’LU)T‘
_/9*_6 u[w+a:+(1—w—m)n(ﬁ,ﬁ*)]d0+K

where K proxies for the terms that do not involve §*. Taking the other parameters as given,

we write:
. 1—w— (1—(w+a:))rnd+(m—D) _D
and

w+ D+ (1—w)r
w+z+ (1 —w—1z)n(6,0%)

9(6,0") = u[ ]
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and differentiate with respect to 6*:

d d 0 +e d 0*+e(1—2n?)
I1(6,0") = — 0,0")df — — 0,0%)do
de* ( ? ) de* /0'* +€(1727~) f( ? ) de* 0 e g( ? )

Since the limits of integration, in each case are linear in 0*, their derivatives are simply
unity, and thus differentiating under the integral:

d 0 +e 0*+e d

£(6,07)d0 = f(0" +¢,0%) — f(0" +€(1 —2r),0%) + / —f(0,6%)do

% 0*+e(1—2r) 0*+e(1—2r) do*

We can rewrite this to be:

d 0*+e 0*+e d 0*+e d
& 7(0,6" d9:/ 2 1(0,6" d9+/ 2 1(0.0%)d0
do* Jo- 1 e(1-2r) 6.6) 0= te(1—2r) 40 6.6) o= te(1—2r) dO* (6.67)
Similarly,
d 0*+e(1—2n%) 0* +e(1—2n9) 0*+e(1—2n) d
— * = —q(0,0%)do —q(0,0")do
o Jp . 900,090 = | 9% +/9*€ EAGLE

Now, we make the following set of observations:

1. f(8,0*) decreases in n(0,6%).

2. g(0,6*) decreases in n(6, 6*).

3. n(#,0*) increases in 0*.

4. n(0,6*) decreases in 6.

5. |dn(gée*)| = |dnfi€0’f*) |, since 8 and 0* enter n(6,6*) symmetrically.

6. R(#) increases in 6, but is unaffected by 6*.
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Now, (1) and (3) imply that f(6,0*) decreases in 6*. (1) and (4) imply that f (6, 6*) increases

in 6. (1), (3), (4), (5), and (6) imply that |LEE)| > | IO g

d 0*+e¢
2 £(0,6%)d6 > 0
e /0*+e(1—2r) ( )

Similarly, (2) and (3) imply that g(,0*) decreases in 6*. (2) and (4) imply that g(0,6*)

increases in 6. (2), (3), and (5) imply that |99207)| — |9B87)| g

d 0*+e(1—-2n%)

In the net, we have just shown that II(-) is strictly increasing in 8*. Thus, there is only one

value of 6* that solves I1(6,6*) = 0. [ |

This theorem implies unique monotone equilibria in the component stage games of T
Does this mean that there is a unique monotone equilibrium in the general game I'? In
order to investigate this, we introduce some additional notation. There are four possible
static coordination games. The creditor bank may go first. Denote the threshold of this
game by 6. But the creditor bank may also go second. In particular, it may do so after
observing that the debtor bank has failed or survived. Denote the threshold of the creditor
bank’s depositors conditional upon the survival of the debtor bank by 9:’ g- Conditional
upon the failure of the debtor bank, call this threshold ¢ . Correspondingly denote by
92,1, 0;, g, and 02, 5 the respective thresholds for the depositors of the debtor bank.

In general, several of these thresholds are interlinked by intricate functional relationships.
Thus, uniqueness in the component static games does not necessarily imply uniqueness in the

general dynamic game. However, note that a solvent debtor bank is assumed to always pay

174



its debt to the residual claimants of the creditor bank, regardless of whether the creditor
bank remains solvent or not.'3 Thus, the thresholds of the debtor bank’s depositors are
independent of the outcome in the creditor bank, and, therefore, of the thresholds of the
creditor bank’s depositors. Thus, 9(’;,1, 02, g» and 02’ p are all uniquely defined in the general
dynamic game (in particular, they are equal to each other). Thus, 67 (0} 5,6} r) is uniquely
defined, as is 0 s 271). 07 p is uniquely defined, independent of 6} |, 07 ¢, and 6} 5. Thus,

we have just argued that the following global uniqueness result holds:

Proposition 4.3 (Dynamic Uniqueness). There is a unique monotone equilibrium in

I'. In T, it is characterized by the triple (0;"1,92,5,92715.). In Ty, it is characterized by the

triple (9(’;,1, P ’C*,S).

Observe that one straightforward interpretation of propositions 4.1, 4.2, and 4.3 taken
together is that banks are run and fail upon the release of adverse news about them, and
therefore for lower levels of asset returns (when noise goes to zero, signals and asset returns
are perfectly correlated in the limit). This matches the commonly made observation that
bank failures are positively correlated with the release of bank-specific or region-specific
adverse information.

Having established uniqueness of monotone equilibria, it is now of interest to us to

explore some of their properties.

13This assumption is not one of convenience (though it is convenient) but is simply a stylized interpretation
of common bankruptcy law. The failure of the creditor bank leaves a set of residual claimants to its assets.

These assets naturally include expected payments from the debtor bank.
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4.3 Contagion

Contagion emerges as a natural property of the unique equilibrium thresholds of this game.
In order to examine the phenomenon of contagion, it is necessary to provide a precise
theoretical definition of what we mean by the term. In the context of bank runs, the most
natural concept of contagion that emerges is as follows: Consider any two banks within a
banking system, 7 and j. Both banks ¢ and j have some probability of failure/insolvency
independent of what happens in the other banks. Thus, even if bank 7 does not fail, bank j
may fail for some realized level of adverse information about it. However, if bank ¢ fails, this
may create an adverse effect on bank j, and bank j may fail for a larger range of realized
adverse information. Thus, we say that the failure of bank ¢ has a contagious effect on bank
7, if, conditional on the failure of bank 7, bank j fails with higher probability than it would

have had bank 7 not failed. Formally, we can define this as follows:

Definition 4.1 (Contagion). Consider a pair of banks, each with asset returns indezed
by 0, of k =1,2. Let 0;;7}7 and 92’5 denote the failure threshold of bank k conditional on the
failure and success of bank —k respectively. We say that the failure of bank —k contagiously
affects bank k if there exists some positive measure region of fundamentals [0,’;, 50, | within

which bank k fails if and only if bank —k also fails.
Having thus defined contagion, we are ready to state a central result of this paper.

Proposition 4.4 (Contagion). In I'y, the failure of the debtor contagiously affects the
creditor, i.e., there exists a region of fundamentals [9:,S>OZ,F] in which the creditor bank
fails if and only if the debtor bank fails. But in T, 02,1; = 02,5. Thus, the failure of the

creditor does not contagiously affect the debtor.
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Proof: To prove this result, we begin by writing down the threshold equation for the
coordination game amongst depositors at the creditor bank conditional on the failure of the

and ng = U=2rte=D Tet 1) = 1 — 2n¢, and

debtor bank. First, we write n{ = T otz

z—D
1—w+x?
Iy = 1 — 2n§. Finally, for brevity, we let m = 1 — w + z, and suppress the arguments of

n(6,6*). Then, the threshold equation for patient depositors of the creditor bank conditional

upon the failure of the debtor bank can be written as L¢(6*) = Ry(6*) where,

0*t+elz 1 _ 4y — T=Dtnm 0" +e — D) — 1— 0:
L) = [ ul— R+ [ pf{&= D) —mn+ (L= w)RE),
0* +ely (1 - n)m 0*+elo (]‘ - n)m
4t 4y — D+ (1 —w)r
0*) = — dd+ K
R0 = [ Tt oo + K,
where K; = 00::'51 u[1]df. We know by our previous results that there is a unique 0;‘7 F

that solves this equation. Now, we write down the corresponding threshold equation for

the depositors of the creditor bank conditional upon the survival of the debtor bank as

Ls(6*) = Rs(0*), where

L,(6°) = /:% (1_w_%)R(0)+g]d0+/j*+e (v - D) —mn+ (1- )R +g

U uf

do
* tely (1 — n)’m, *tely (1 — n)m ]

0* +elq - D 1—
Ry(6%) :/ W=D EA =0 gde + K,
0% ¢ w—x+mn

where K is as before. Observe that since g > 0, Ls(6*) > Ly(6*) for all #*. Since u(-) is
a concave function, u(z + y) — u(y) < u(x) — u(0), for all z,y > 0. Thus, R,(6*) < R(0%)

for all #*. In particular, this means that

Ls(0;,r) > Rs(6: F)

Le., 07 p # 0, 5. Now, observe that by analogy to the proof of proposition 4.2 we know that

L4(6*) is increasing in 6*, while R4(6*) is invariant with #*. Thus, in order to make the
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indifference equations hold, we need to reduce 6* below 0’; r, and thus, we have just shown

that 6} g < 07 p. |

In other words, contagious effects flow in a specific direction, from debtors to creditors.
The failure of debtors, naturally adversely affects the failure of creditors, and thus, ceteris
paribus, makes it likelier that the creditor shall fail. On the other hand, the failure of a
creditor makes the debtor no better or worse off, since we have assumed that the debtor
has to always pay the residual claimants of the failed creditor the amount originally owed.'*
Focussing purely on capital linkages as a channel for contagion, this result cleanly char-
acterizes why individual bank runs may not necessarily become widespread bank panics.
Conditional upon the failure of a bank, this theorem also characterizes which other banks,
ceteris paribus, are likelier to face runs. Thus, this result, while in no way a complete
description of contagion, gives one rationale for why panics may be “local” in some specific

but unobvious sense.

4.4 Should banks hold interbank deposits?

In our discussion to date, we have not commented on the size of interbank deposit holdings.
We have shown above that when banks cross-hold deposits to hedge against regional liquidity
shocks, the failure of one bank may contagiously affect the other. Thus, in deciding the

amount of interbank deposit holdings, banks trade off the benefit of insuring liquidity shocks

4 Any other assumption would imply that the debtor actually benefits from the failure of the creditor,

thus naturally ruling out contagion, leaving our results unchanged.
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against the cost of exposing themselves to the risk of contagion. We have demonstrated
that for a given set of parameters of our stylized banking system (w, z, r, U, L), for each
choice of D € [0,z], there is a unique monotone equilibrium with an associated level of
social welfare. This makes it possible to determine the optimal interbank deposit amount
by mazimizing ex ante social welfare. While the model is too complex to derive an analytical
formula for such optimal interbank deposit levels, it is possible to characterize the solution

numerically.
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Figure 4.1: Welfare Comparisons: w = 0.3, z = 3, r = 0.7

Figures 4.1 and 4.2 illustrate the optimal holding of interbank deposits in a risk neutral
economy.'® In figure 4.1, we set the constant aggregate liquidity demand (w) to be 30%,

and the level of regional variation at %. We fix the lower bound of fundamentals (8) to

15The features of the examples shown in figures 4.1 and 4.2 are representative of a large number of

simulations that we have completed but do not present here for brevity.
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Figure 4.2: Welfare Comparisons: w = 0.5, z = 7, r = 0.7

be L = 0, and vary the upper bound (U) to change the equilibrium probability of bank
runs. The left panel in each image corresponds to the case in which bank runs are relatively
frequent (U = 10), and the right panel to the case in which runs are rare (U = 30). The
early liquidation return r is set to 0.7, and R() = v#@. Figure 4.2 portrays a similar
economy in which average liquidity demand is greater (w = 0.5), but the proportional level
of regional variation is smaller (z = 7). In all cases, the analysis if carried out “close” to
the full information limit. The bound on idiosyncratic noise (e) is set to -

The z-axis in each image shows %, the proportionate size of interbank deposit holdings.
The central locus in each figure represents the ex ante social welfare at to the corresponding
level of D. From the figures it is apparent that when bank runs are frequent, social welfare is
maximized for intermediate values of D, whereas when runs are rare, welfare is maximized

for mazimal values of D.
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Intuition for this property can be derived upon inspection of the other two locii in each
of the images. These locii represent the ex ante welfare of banks under the hypothetical
assumption that they know whether they are going to be interim debtors or creditors (i.e.,
receive high or low idiosyncratic regional shocks in period 1). Since the two regions receive
idiosyncratic liquidity shocks with equal probability in the model, the central welfare locus
is simply the arithmetic average of these two locii. It follows from the model that interbank
deposit holdings are always beneficial for debtors. They are not affected by contagion.
Thus interbank holdings insure them against regional liquidity shocks without exposing
them to any additional risk. This is evidenced in the figures: the locii representing debtor
welfare are always strictly increasing in %. For the bank that is the interim creditor, there
is a tangible risk of contagion. However, contagion is a conditional event. A necessary
condition for contagion is that the debtor bank must actually experience a run. Thus, the
attractiveness of interbank deposits to creditor banks depends crucially on their assessment
of the probability of runs on the debtor bank. When this probability is high, a higher level
of interbank deposit holdings exposes the creditor to greater contagion risk, thus lowering
its ex ante welfare. This can be seen in the left panels of the figures. When the probability
that the debtor bank will fail is low, it becomes much more attractive for the creditor bank
to hold interbank deposits, which enable it to eliminate idle reserves and increase expected
payments to its depositors. Under these circumstances, holding higher interbank deposits
increases the welfare of the interim debtor bank. This can be seen in the right panels of the
figures.

Ex ante social welfare is given by the average of debtor and creditor welfares. When
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bank runs are rare, and both debtor and creditor welfare increasing in %, social welfare

is maximized at D = z. Thus, banks should hold a maximal level of interbank deposits.
However, when bank runs are more likely, creditor welfare decreases in % while debtor
welfare increases. Thus, the social welfare locus is hump-shaped, and there is a strictly

interior level of optimal interbank deposit holdings.

4.5 Closed Forms, Comparative Statics

Historically, bank runs have been rare. The simulations presented above suggest that when
bank runs are rare, banks will find it optimal to insure against idiosyncratic liquidity shocks
by holding a maximal level of interbank deposits. For the remainder of the paper, we shall,
therefore, assume that banks fully insure against regional liquidity shocks by setting D = .

This assumption enables us to demonstrate further properties of contagion. Under the
assumption of complete interbank deposit holdings, we can solve the linear realization of
the model (with risk neutral consumers and R(6) = 6) in closed form.

Below, we present the closed forms for the equilibrium thresholds for this simplified
model. This requires a small intermediate step. The thresholds of depositors of the creditor
bank are functions of the interbank payments from the debtor bank. These interbank
payments, in turn, are functions of the proportion of premature withdrawals from the
creditor bank (which may or may not be observable to the depositors of the creditor bank,
depending on whether T'; or Ty is realized) and the underlying fundamentals of the debtor
bank (which are never observable to the depositors of the creditor bank). The depositors

of the creditor bank, therefore, have to compute the expected interbank payments from the
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debtor bank. In preparation for writing down the closed forms for equilibrium thresholds,

we explicate below the functional form of the expected interbank payments for the game.

4.5.1 Expected Interbank Payments

There are two situations in which payments from the debtor bank must be anticipated by
depositors in the creditor bank. In game I', the depositors of the creditor bank must, upon
acting first, decide what probability with which the debtor bank will remain solvent, and,
if solvent, the expected payment that they shall make. Observe that the depositors of the
creditor bank can calculate ¢, which is uniquely defined in terms of the parameters. Given
07, they can assign probabilities to ranges of n4(64,6}), and thus compute § = E(g|0}).

In the game I'y when the debtor bank survives, the depositors of the creditor bank can
observe ng. When 0 < ng < 1, there is a one-to-one relationship between ny and 64, and
thus for strictly interior ng, depositors at the creditor bank can compute g(ng, ;) exactly.

However, when ng = 0, the depositors of the creditor bank know simply that 65 > 6 + €,

0;+U

or, in the limit as noise vanishes, §; > 6}. Thus, their expected value of 0 is . Hence,

for this game, we can write § as follows:

sR(YEY) ifng=0
9(04l03,na) = (4.12)
g(Hd,nd) ifl>mng>0

We are now ready to write down the equilibrium thresholds.

4.5.2 Limiting Thresholds

The equilibrium thresholds are particularly tractable in the limit as € — 0. The limit

threshold points of interest are as follows:
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e For the coordination game amongst depositors at the debtor bank:
r(l—w)+(r(l —w)+w+z)n [m]

Oa=r A—w—2)( + {0 =r) [l =)

(4.13)

e For the coordination game amongst depositors at the creditor bank conditional upon

the survival of the debtor bank (in the game I'y):

(=) + (11— w) ) In [1 - L]

* o __
06,5 =T

(4.14)

where §(-) is defined as in (4.12).

e For the coordination game amongst depositors at the creditor bank conditional upon

the failure of the debtor bank (in the game T'y):

T(l—w)-i-(r(l—w)—l-w—x)ln[m]

rl—w)+(1—-r(1l—w)—w+z)ln [1 — li;’j_wr]

Now, it is of interest to us to explore some of the comparative statics of our model by
using these closed form expressions for the thresholds. In particular, we examine below how
the magnitude of the contagious effect changes as the volatility of the financial system, or,
equivalently,the depth of inter-institutional financial linkages increases.'® It turns out that
the degree of the contagious effect increases in the strength of financial linkages between

banks. In order to prove this, we need to first prove the following two preliminary results.

Lemma 4.1. r(1 —w)+ (1 —r(l —w) —w+ z)In [1 - 1:U—“’ﬂcr] is decreasing in r and

positive over the permissible range of x.

6Note that in a fully rational set-up, regional liquidity shocks are always anticipated ex ante. Since these
shocks are negatively correlated, larger shocks imply larger interbank insurance levels, under the maintained

assumption of complete interbank deposit insurance.
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Proof: Let

E(ryw,z)=r(l-w)+(1—-r(l-w) —w+z)ln [1— %r]

Write a = (1 —w)(1 —r) and b = (1 — w). Observe that a = b(1 — r). Now,

br
E(r,a,b,z) = (a+z)In |:1 — b—|—:z;]

which simplifies to

E(a,b,z) = (a+z)In [aJ””]

b+

We differentiate with respect to = to obtain

b—a

E' =
a.ba] = 7

I [a—l—x]

b+x

Is this expression always negative over the permissible range of z7 To investigate, we

differentiate again with respect to z, and obtain

b—a
EII —
(@b.0) = 2 |

1 1
at+z b4z

|0

Thus, if F' < 0 for the maximal permissible z, we shall be done. But note that z <

minfw, (1 — w)(1 —r)] = min[1 — b, a]. We check that for z =1 — b, E' is negative.
E'(a,b,1 —b) = (b—a) +In(1 — (b —a))
Let y = b — a. This is then equivalent to
y > 1—exp(-y)

which is always true for y > 0. Thus, we have just shown that 7(1 —w)+ (1 —r(1 —w) —w+

z)In [1 — 1&;167"] is decreasing in x. To show that it is always positive, we simply need
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to check that it is positive at the highest global value of z, which is % Note that x = %

implies that w = % to keep everything well defined. Thus, our target expression reduces to

11 r r T
E(r,=,2) = 1——1[1——]
(rgrg) =5 +(1-)m[1-
which is clearly positive for all r € (0,1). [ |
Lemma 4.2. 0 increases in .
Proof: Observe that
o , (1= w)+ (r(1 = ) + wo) In | s |
¢ lr+(1—r)In(1—7) (1-w-—1x)

Observe that the left term in the product is always positive and is not affected by x. Thus,
to analyze the dependence of 6 on =z, it is sufficient to examine the right term in the
product. We differentiate this with respect to z, to obtain

z—(1-r)1-w)]—-[147r(1—-w)]l[r(l - w)+w+ z]
(1-w—1x)?

Since the denominator is always positive, if we could show that the numerator is positive,
then we shall be done. Observe that by differentiating the numerator with respect to z, we

get

14+ 7r(1 —w)

1—
rl-—w)+w+z

Since z < (1 — r)(1 — w), the numerator is decreasing in z. Thus, if the numerator is
positive for the maximal z, then it is positive for all z, and we are done. We check that the

numerator is 0 for z = (1 — r)(1 — w), and so we are done. [ |

Given these results, we can now state:
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Proposition 4.5. The size of contagion increases with the size of the regional liquidity

. . . .
shocks, i.e., ct(r,w,z) = 0} p — 0, 5 is increasing in z.

Proof: In the limit, the survivor of the debtor bank implies that ngy = 0, so that

a(-) = x(aﬁ*‘;_U). Now, we can use the expressions for the equilibrium thresholds shown

above and write:

[~z(% ) )r In [1 ~ 1w r]

2 1-w+z
ct(r,w,z) = ;
rl—w)+(1-r(l-w)—w+z)In [1 - 1—;in]
The numerator of ct(z) can be rewritten as [(%;—U)]r(—m In [1 - 1E;’izr] )- 62;[] is increas-

1—w
l-w+x

ing in 67, which in turn is increasing in z by Lemma 4.2. —zln [1 — T] is increasing
in z. By Lemma 4.1 we know that the denominator decreases in z. Thus, ct(z) increases

in z. [ |

This proposition has a natural interpretation. Contagion flows from debtors to creditors
through the channels of interbank deposits. The larger the interbank deposits, the larger
the “pipe” through which the contagious effect can flow. In a setting of complete interbank
deposits (or, indeed, in any setting in which interbank deposits are increasing in the size
of the negatively correlated regional liquidity shocks), the larger the anticipated regional
liquidity shocks, the larger the dollar value of interbank deposits, and thus the larger the
effect of contagion when it occurs. In another, somewhat looser, interpretation, note that
the size of the regional liquidity shocks can be seen to be a measure of the level of intra-
economy financial volatility. On this interpretation, the proposition above says that as
financial volatility in the system increases, the damage caused by the failure of a financial

institution also increases. This too is intuitive.
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4.6 Discussion

We conclude with a few thoughts on the robustness of these results, and on potential

extensions.

4.6.1 More regions? Aggregate liquidity shocks?

Our model extends naturally to more than two regions, and none of the results change in this
extension. With more than two regions, holding aggregate liquidity constant, there would
be some level of negative correlation across regional liquidity demands. This would create,
as before, the incentive to insure against regional liquidity demand shocks using interbank
deposits. The only significant change would be one of algebraic complexity in computing
the level of interbank deposits, since imperfect negative correlation across regional liquidity
shocks would lead to multi-party cross holdings of interbank deposits. The existence of
interbank deposits, however complex, along with the seniority of institutional claims, shall
create ex interim asymmetries amongst banks (some shall be debtors, others creditors)
exactly as in the simpler two-region model discussed above. Thus, the contagious effect
shall re-emerge in equilibrium exactly as before.

Adding aggregate liquidity shocks to our model creates a second source of bank failure
in our model without changing the internal structure of interbank deposits and contagion.
With large aggregate liquidity shocks, banks may fail simply because there is just not
enough money in the system to meet all claims in period 1 even without expectations-based
runs. While we do not deny that fully aggregate liquidity shocks may, indeed, emerge in

an economy, we argue that the strategic nature of the game remains the same even in their
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presence. Therefore, we limit our attention to constant aggregate liquidity economies and
show that contagion occurs even in such economies. Naturally, adding more sources for

contagion will increase its occurence.

4.6.2 Learning?

Perhaps the most significant drawback of our model is that we abstract from social learning.
We assume that fundamentals in the two regions are independent, and thus eliminate any
conclusions that agents in one region can draw about their own bank from the observed
failure or survival of a bank in a different region. While this assumption seems fitting when
discussing banks in New York and Oregon, for banks in neighboring regions, it seems less
natural. Incorporating correlations amongst assets across the regions of our economy would
introduce Bayes learning into our model and would complicate our arguments significantly.
However, in recent work we have laid out techniques to analyze dynamic coordination games
with social learning (Dasgupta 2001). Incorporating learning into a model similar to ours is
a promising direction for future research. We conjecture that incorporating learning into our
model would increase the occurence of contagion, without modifying the main qualitative

features outlined above.
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