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Abstract

We study a coordination game where players simultaneously acquire information

prior to the play of the game. We allow general information acquisition technologies,

modeled by a cost functional mapping from information structures. Costly local

distinguishability is a property requiring that the cost of distinguishing nearby states

is hard relative to distinguishing distant states. This property is not important in

decision problems, but is crucial in determining equilibrium outcomes in games. If

it holds, there is a unique equilibrium; if it fails, there are multiple equilibria close to

those that would exist if there was complete information.

We study these issues in the context of a regime change game with a continuum of

players. We also provide a common belief foundation for equilibria of this game. This

allows us to distinguish cases where the players could (physically) acquire information

giving rise to multiple equilibria, but choose not to, and situations where players could

not physically have acquired information in a way consistent with multiple equilibria.

Our analysis corresponds to the former case, while the choosing precision of additive

noise corresponds to the latter case.

JEL: C72 D82

Keywords: coordination, endogenous information acquisition, costly local distin-

guishability, higher order beliefs

1 Introduction

Situations where players must coordinate their actions are ubiquitous. Under complete

information, the resulting coordination game will have multiple equilibria. In this paper we

ask: how does players�endogenous choice of information about payo¤s impact multiplicity?

�We are grateful for the comments of Muhamet Yildiz who discussed the paper at the "Global Games in
Ames" conference in April 2016.
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We study this in a setting where payo¤s depend on a parameter drawn from the real

line. In this setting, it is natural to assume that it is harder to distinguish nearby states

relative to distant states. Our results will depend on how much harder it is. We will show

that if it is relatively hard to distinguish nearby states ("costly local distinguishability"),

then there is a unique equilibrium when there is endogenous information acquisition. If it

is as easy to distinguish nearby states as distant states - or at least not too much harder -

then multiple equilibria will persist.

The intuition for these results is as follows. Given strategic complementarities in action

choices, players will always have an incentive to acquire the same information. If information

is costly, they will not acquire complete information. Now suppose that in equilibrium, all

players care about is whether the state is above or below some threshold value. Without

costly local distinguishability, it will be an equilibrium for all players to focus on whether

the true state is above or below that threshold. As a result, there will be many equilibria

corresponding to di¤erent thresholds. But under costly local distinguishability, players

will choose to have inaccurate signals in the neighborhood of the threshold state. Then

perfect coordination in information acquisition is not an equilibrium. There will then be

a contraction in best responses in information acquisition: for any given threshold which

other players focus most attention on, a player will have an incentive to choose a threshold

closer to a particular focal point, and so there is a contraction and a unique equilibrium.

Our results o¤er a novel perspective on recent work on endogenous information acqui-

sition in coordination games. Szkup and Trevino (2015) and Yang (2015) have considered

the case where players can (simultaneously) choose the precision of noisy signals about the

state, with the cost increasing with precision. In this case, a low cost of information will

imply that players will acquire signals with high precision. Carlsson and Damme (1993)

have shown that in such "global game" environments, a unique equilibrium must then be

played. However, these results rely heavily on the in�exibility of information acquisition:

there is a one dimensional class of possible information structures, parameterized by the

precision of private information. Players then have no ability to choose the qualitative

properties of information they acquire and, in particular, where to focus their attention.

Yang (2015) considered instead �exible information acquisition, where players can acquire

any information. Yang (2015) used entropy reduction as a cost function for information.

He showed that there are multiple equilibria. However, the entropy reduction cost function

has the distinctive feature that it is equally easy to distinguish nearby and distant states

(so costly local distinguishability fails). This paper incorporates cost functionals which

are both �exible - allowing any information structure to be feasible - but allowing the cost

of distinguishing states to be sensitive to the distance between states. Both uniqueness

and multiplicity are consistent with �exible information acquisition in our setting. We

characterize which case arises, depending on qualitative aspects of the cost of information.
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Our results have implications for modelling information acquisition more broadly. Sims

(2003) suggested that the ability to process information is a binding constraint, which implies

- via results in information theory - that there is a bound on feasible entropy reduction. If

information capacity can be bought, this suggests a cost functional that is an increasing

function of entropy reduction. But because of its purely information theoretic foundations,

this cost function is not sensitive to the labelling of states, and thus it is built in that it

is as easy to distinguish nearby states as distant states. Because entropy reduction has a

tractable functional form for the cost of information, it has been widely used in economic

settings where it does not re�ect information processing costs and where the insensitivity

to the distance between states does not make sense. While this may not be important in

single person decision making contexts, this paper contains a warning about use of entropy

as a cost of information in strategic settings.

Our main model will be a regime change game, studied by Morris and Shin (1998) and

extensively explored in the later literature. A continuum of players decide whether to invest

or not invest in a project. There is a �xed cost of investing. There is a �xed bene�t to

investing realized only if the proportion of players investing is above a critical level, which

is a decreasing function of the state. Before playing the game, each player can acquire

any information about the underlying state. To model an environment with a low cost

of information acquisition, we �rst �x a cost functional on information structures. We

then ask what happens under endogenous information acquisition if we multiply the cost

functional by a constant that we take to zero.

A player in this game chooses what information structure to acquire, and then what

action to take as a function of his signal. These choices will imply an e¤ective strategy

for the player: for each state of the world, there will be an induced probability distribution

over actions. In analyzing the game, one can restrict attention to e¤ective strategies,

abstract from the information structures that gave rise to the e¤ective strategies, and restrict

attention to cost functionals de�ned on e¤ective strategies. In the binary action context

studied here, an e¤ective strategy then maps states of the world to a probability of investing.

Our main result links three properties of cost functionals. Consider a simple threshold

decision problem, where a player picks an action (invest or not invest) and gets a payo¤of 0 if

she does not invest, a �xed positive payo¤ if she invests and the state is above a threshold and

a �xed negative payo¤ if she invests and the state below that threshold. An information cost

functional satis�es continuous choice if the optimal e¤ective strategy in such environments is

continuous. As we will discuss below, continuous choice captures the idea that it is relatively

costly to distinguish nearby states. An information cost functional satis�es translation

insensitivity if a small translation of an e¤ective strategy results in a small change in cost.

Translation insensitivity captures the idea that changing where attention is paid (holding the

amount of attention �xed) does not change the cost too much. A cost functional satis�es
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limit uniqueness if, as the cost goes to zero, there is a unique equilibrium played. If a

cost functional satis�es continuous choice and translation insensitivity, then it satis�es limit

uniqueness. In addition, every cost functional satisfying continuous choice and translation

insensitivity has the same limit equilibrium which is the Laplacian selection - a many player

version of risk dominance that is played in the corresponding exogenous information global

game.

We also give a primitive property on cost functionals that is su¢ cient for continuous

choice. A cost functional satis�es costly local distinguishability if it is su¢ ciently harder to

distinguish nearby states than distant states: speci�cally, it requires that for any discontin-

uous e¤ective strategy, the cost saving from acquiring a nearby continuous strategy is high

compared to the distance between the two strategies. A high cost saving from choosing a

continuous strategy corresponds to a high cost in distinguishing nearby states.

There is a partial converse to our main results. A cost functional is Lipschitz if the

di¤erence in costs between two e¤ective strategies is of the order of the distance between

the two e¤ective strategies. This condition implies that the cost impact of changing the

e¤ective strategy on only a small set of states is small, even if the changes are large. This

implies a failure of costly local distinguishability.

We also show that the limit uniqueness/multiplicity results extend beyond regime change

games and describe local versions of results that hold under local versions of the su¢ cient

conditions used in our main statements.

Our results can be understood using the properties of higher-order beliefs. For any

given exogenous information structure, we characterize how equilibria depend on the im-

plied higher-order beliefs.1 For any given event (a set of states of the world), we can identify

the event where a critical proportion of players assign at least a critical probability to the

given event. If an event is a �xed point of this operator, we say that it is an equilibrium

regime change event since there is an equilibrium in which the regime changes at states in

that event. Under a global game information structure - where players observe the state

plus some conditionally independent noise - all feasible choices imply a unique equilibrium

regime change event. Thus there is a unique equilibrium independent of how information

is chosen, endogenously or exogenously. We will study cost functionals where every infor-

mation structure has �nite cost, so it is always feasible to choose alternative information

structure pro�les giving rise to di¤erent equilibria. However, we show that under costly lo-

cal distinguishability (and translation insensitivity), endogenous information choice implies

that players will choose information structures giving rise to a unique equilibrium regime

change event (even though it was feasible to choose information structures that would give

rise to multiplicity).

We proceed as follows. Section 2 sets up the model. Section 3 presents a leading

1This exercise is analogous to that in Morris and Yildiz (2016); we will discuss the di¤erences in the body
of the paper.
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example to illustrate the local distinguishability and its impact on equilibrium outcomes.

Section 4 establishes the conditions for limit uniqueness and multiplicity under general

information cost functionals. Section 5 provides an intuition building on understanding of

higher order beliefs under endogenous information acquisition. Section 6 extends the results

to coordination games with general payo¤s under weaker conditions on the information cost

functional. Section 7 discusses the relation between our general information cost and the

entropy-based information cost that is widely used in similar settings, allowing players to

observe others� actions and evidence on costly local distinguishability. Long proofs are

relegated to the appendix.

2 The Model

We will de�ne our game as follows. A continuum of players choose an action, "not invest" or

"invest". We normalize the payo¤ from not investing to 0. A player�s payo¤ if she invests

is � (l; �), where l is the proportion of players investing and � is a payo¤ relevant state. We

assume for now that we have "regime change" payo¤s2 with

� (l; �) =

(
1� t, if l � � (�)

�t, otherwise

where t 2 (0; 1) and � : R! R is a continuous and strictly decreasing function. Thus t can
be interpreted as the cost of investment and � (�) is the critical proportion of other players

at which investing gives a return of 1. We assume that � (�) > 1 for small enough � and

� (�) < 0 for large enough �. Without loss of generality, we let � (0) = 1 and � (1) = 0.3 The

regime changes whenever at least proportion � (�) of players invest. Actions are strategic

complements: players are (weakly) more willing to take an action if they expect others to

take that action. Players do not know the payo¤ relevant state � but do share a common

prior on �, denoted by density p. A maintained assumption is that p is continuous and

strictly positive on [0; 1].

Before selecting an action, players can simultaneously and privately acquire information

about �. Player i�s information structure is a pair (Xi; qi), where Xi � R is the set

of realizations of player i�s signal and qi (�j�) 2 �(Xi) is the probability measure on Xi

conditional on �. Players�signals are conditionally independent. Information acquisition

is costly. Let Q denote the space of all information structures and write C : Q! [0; c] for

the cost functional; thus we maintain for now the assumption that there is a uniform upper

bound on the cost of information. This implies that no e¤ective strategy is technologically

2 In Section 6, we will extend our analysis to more general payo¤s and relax a number of technical
assumptions in the main statements of our results.

3 In the literature of regime change games, it is often assumed that � (�) = 1� �. It is convenient for us
to work with more general � functions but the extra generality is not of intrinsic interest.
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precluded.4 A player incurs a cost ��C ((X; q)) if she chooses information structure (X; q) 2
Q. We will hold the cost functional C �xed in our analysis and vary � � 0, a parameter that
represents the di¢ culty of information acquisition; we will refer to the resulting game as the

�-game. If � = 0, the players can choose to observe � at no cost and the model reduces to

a complete information game. We will perturb this complete information game by letting

� be strictly positive but close to zero. Focussing on small but positive � sharpens the

statement and intuition of our results.

A player�s strategy corresponds to an information structure (X; q) together with an action

rule � : X ! [0; 1], with � (x) being the probability of investing upon signal realization x.

The information structure and the action rule jointly determine the player�s e¤ective strategy,

which is a function s : R! [0; 1], with

s (�) =

Z
q (xj�) � � (x) dx .

That is, s (�) is the player�s probability of investing conditional on the state being �.5 We

call s the e¤ective strategy since it describes action choices integrating out signal realizations.

Any e¤ective strategy s can be viewed as arising from a binary information structure where a

player�s signal is an action recommendation. Formally, we can identify an e¤ective strategy

with the information structure given by X = f0; 1g and

q (xj�) =
(

s (�) , if x = 1

1� s (�) , if x = 0

and the action rule given by

� (x) =

(
1, if x = 1

0, if x = 0
.

Players care only about the e¤ective strategies of opponents, and not the information choice

and strategy generating them. Moreover, if the cost functional is weakly increasing in the

information content, as ordered by the Blackwell (1953), then each player will weakly prefer

to acquire a two signal information structure corresponding to an e¤ective strategy s. This

observation corresponds to formal arguments in Woodford (2008) and Yang (2015). Thus

we will identify information structures with e¤ective strategies, unless otherwise stated.

We will write S for the set of e¤ective strategies and c : S ! [0; c] for the cost functional

restricted to e¤ective strategies.

We equip the space of e¤ective strategies with the L1-metric, so that the distance between

4This assumption is not necessary but helps simplify the derivation. We will relax it in Section 6.
5Here, the signal realization x could be continuous or discrete. To economize on notation, we use "

Z
"

to refer to both the integration over a continuum of signal realizations and the summation over discrete
realizations.
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e¤ective strategies s1 and s2 is given by

ks1; s2k =
Z
R
js1 (�)� s2 (�)j p (�) d�;

and write B� (s) for the set of e¤ective strategies within � of s under this metric.

Now a player�s ex ante payo¤ - if she chooses e¤ective strategy si and the pro�le of

others�e¤ective strategies is fsjgj2[0;1] - is

ui

�
si; fsjgj2[0;1]

�
=

Z
�

si (�)

�
1nR

sj(�)dj��(�)
o � t

�
p (�) d�.

De�nition 1 (Nash Equilibrium) fsjgj2[0;1] is a Nash equilibrium of the game if

si 2 argmax
s2S

ui

�
s; fsjgj2[0;1]

�
� � � c (s)

for each i.

We will later restrict attention to monotonic (non-decreasing) e¤ective strategies s :

R ! [0; 1]. This is with loss of generality but is consistent with many applications (e.g.,

the e¤ective strategy is always monotone in global game models) and allows us to highlight

key insights. We write SM for the set of monotonic e¤ective strategies.

De�nition 2 (Monotone Nash Equilibrium) fsjgj2[0;1] is a monotone Nash equilib-
rium if it is a Nash equilibrium and each si is monotone.

We will collect together in Section 6 a discussion of how maintained assumptions in the

body of the text can be relaxed.

3 The Leading Example

For our leading example, we assume that � (�) = 1� � and that the players�common prior
p is the uniform distribution over [�A; 1 +A] for some A > 0; we focus on monotone Nash

equilibria; and we consider the cost functional

c (s) = max

 
0; 1�

�
sup
�

s0 (�)

��
!
(1)

with 
 > 0. If s is discontinuous, then s0 (�) is understood to be in�nity and so the cost of

any discontinuous s is 1.6

6 If s (�) is not di¤erentiable at �, we can take it to equal the maximum of the left and right derivatives.
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This cost functional highlights the role of distinguishing nearby states, in particular

building in the property that it is more costly to distinguish the states that are closer to

each other. To see this, �x the values of s (�1) and s (�2) for two states �1 6= �2. The

di¤erence js (�2)� s (�1)j re�ects to what extent these two states are distinguished from
each other. The closer the two states, the steeper is the slope js(�2)�s(�1)j

j�2��1j and thus the

higher is the cost.

Under this cost functional, the cost of a discontinuous e¤ective strategy is set equal to

1. Choosing a continuous e¤ective strategy lowers the cost and with a cost saving of k�


if the maximum derivative of s is k (and not too small). Observe that higher 
 results in

lower marginal cost saving from reducing k, which makes the players more willing to choose

steeper or even discontinuous e¤ective strategies.

3.1 Characterizing the Equilibria

A monotone Nash equilibrium is characterized by a critical threshold �� above which the

regime changes. In this case, each player i chooses an e¤ective strategy si to maximize

U (sij��; �) =
1

2 �A+ 1

�Z
si (�) �

�
1f����g � t

�
� d�
�
� � � c (si) . (2)

If there was no cost of information (i.e., � = 0), a player�s optimal e¤ective strategy is the

step function 1f����g, which perfectly distinguishes the threshold event [�
�; 1 +A] from its

complement, [�A; ��). For small but positive �, since the information cost is determined

by the maximal slope of s, any optimal e¤ective strategy of player i will take the form

sb�;k (�) =
8>><>>:
0, if � � b� � 1

2k
1
2 + k

�
� � b�� , if b� � 1

2k � � � b� + 1
2k

1, if � � b� + 1
2k

(3)

for some b� close to �� and k 2 R+ [ f1g.7 Here k is the maximal slope and b� determines
the position of the e¤ective strategy. In this notation, sb�;1 is the step function 1f��b�g.
Note that the information cost c

�
sb�;k

�
is invariant to translation. That is, c

�
sb�;k

�
does

not depend on the position b�. So we can �rst solve for b�, taking k as given. Now
1

2 �A+ 1

Z
sb�;k (�) � �1f����g � t� � d�

7The analysis that follows will be based on the assumption that
hb� � 1

2k
;b� + 1

2k

i
� [�A; 1 +A]. A

su¢ cient condition for this will turn out to be that � is su¢ ciently small, in particular with � < t(1�t)
2(2A+1)

.
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does depend on b�. Simple calculation shows that the above expression is maximized - for

any given k- when the position b� is set equal to
b� (��) = �� + k�1 (t� 1=2) . (4)

By substituting (3) and (4) into (2), we can show that the optimal slope k� is

k� =

� h t(1�t)
2�
(2A+1)

i 1
1�


if 
 < 1

1 if 
 � 1
. (5)

Note that when 
 � 1, the optimal slope is k� = 1 and the optimal position b� (��) = ��.

Hence the optimal e¤ective strategy sb�(��);k� becomes the step function 1f����g, which is
discontinuous at the threshold ��. This is because the cost saving k�
 from replacing

the step function by a continuous e¤ective strategy with slope k < 1 is too small to

compensate the sacri�ced bene�t. As a result, the player chooses the step function that

sharply distinguishes states below �� from those above it. When 
 < 1, the cost saving

is large enough and the optimal e¤ective strategy becomes continuous. It is worth noting

that whether the optimal e¤ective strategy is continuous or discontinuous does not depend

on �, which controls the overall di¢ culty of information acquisition. The (dis)continuity is

purely determined by 
 and hence is a property of the information cost functional.

Since the optimal e¤ective strategy is unique and all players are facing the same decision

problem in equilibrium, this game has only symmetric equilibria. Assuming the continuum

law of large numbers, sb�(��);k� will also describe the proportion of players investing as a
function of the state. In order to be an equilibrium, the threshold of regime change must

coincide with ��. That is,

sb�(��);k� (�)
�
> 1� � if � > ��

< 1� � if � < ��
.

To search for the equilibria, we �rst consider the case of 
 � 1. For any threshold �� 2 [0; 1],
the optimal e¤ective strategy (by (4) and (5)) is

s��;1 = 1f����g, (6)

which is discontinuous at � = ��. The induced threshold does coincide with ��. As a

result, any threshold �� 2 [0; 1] is an equilibrium threshold and the corresponding strategy

in equilibrium is si = 1f����g for all players i 2 [0; 1]. If 
 < 1, for any threshold �� 2 [0; 1],
the optimal e¤ective strategy (by (4) and (5)) is continuous and the induced threshold e� (��)
satis�es

1

2
+ k�

he� (��)� b� (��)i = 1� e� (��) .
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Together with (4), the above equation leads to

e� (��) = k� � �� + t
1 + k�

. (7)

Since k� < 1, e� : [0; 1] ! [0; 1] de�ned by equation (7) is a contraction and thus has a

unique �xed point,

�� = t, (8)

which uniquely characterizes the threshold of regime change in equilibrium. The corre-

sponding e¤ective strategy in equilibrium is

sb�;k� (�) =
8>><>>:
0, if � � b� � 1

2k�

1
2 + k

�
�
� � b�� , if b� � 1

2k� � � � b� + 1
2k�

1, if � � b� + 1
2k�

(9)

with b� = t+
t� 1=2
k�

(10)

and

k� =

�
t (1� t)

2�
 (2A+ 1)

� 1
1�


. (11)

We summarize the above results in the following proposition.

Proposition 3 Let the information cost parameter � > 0 be small enough. When 
 < 1,

there exists a unique equilibrium in which each player takes the e¤ective strategy character-

ized by (9), (10) and (11) and there is regime change if and only if � � t . When 
 � 1,

for any �� 2 [0; 1], there exists an equilibrium where each player takes the e¤ective strategy

given by (6) and there is regime change if � � ��.

This proposition clearly relates equilibrium uniqueness and multiplicity to the local dis-

tinguishability of the information cost. The intuition is as follows. The players have a

motive to coordinate their actions, which also induces a motive to coordinate their infor-

mation acquisition. In the case of cheap local distinguishability (i.e., 
 � 1), it is easy to
distinguish any event [��; 1 +A] from its complement. This facilitates the players�coor-

dination in information acquisition in the sense that the players can coordinate to identify

any event [��; 1 +A] with threshold �� 2 [0; 1], resulting in multiple equilibria. In contrast,
when the information cost exhibits costly local distinguishability (i.e., 
 < 1), the players are

not willing to sharply distinguish any event [��; 1 +A] from its complement. This weakens

the players�ability and incentive to coordinate their information acquisition and leads to the

unique equilibrium. It is also worth noting that this unique equilibrium is exactly the same

as the Laplacian selection in the global games literature. In order to fully appreciate the
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economic insight behind the result, Section 5 further elaborates on the relation between the

uniqueness and local distinguishability of the information cost in terms of players�higher

order beliefs.

3.2 Two Interpretations of the Leading Example

This subsection provides two economic interpretations of the e¤ective strategy given by

(3), (4) and (5), in order to connect our model to the global game literature. The �rst

interpretation is straightforward. Fixing the slope k > 0, the e¤ective strategy sb�(��);k can
be simply viewed as a binary information structure with X = f0; 1g and

q (xj�) =
�
sb�(��);k (�) if x = 1

1� sb�(��);k (�) if x = 0
,

as well as an action rule � (x) = x.

Alternatively, suppose each player receives a signal z = �+k�1�", where " � Uniform[�1=2;1=2]

is independent from �, and k measures the precision of the signal. The signals are condi-

tionally independent across di¤erent players. This information structure is that assumed in

the global games literature (in the special case of uniform noise). Each player purchases her

own precision k at the price � �max (0; 1� k�
). For any given precision k > 0, facing the
decision problem (2), simple calculations show that each player follows a switching strategy

� (z) =

�
1 if z � bz (��)
0 if z < bz (��) ,

where bz (��) = �� + k�1 (t� 1=2). This leads to

Pr (� (z) = 1j state = �) =

8>><>>:
0, if � � b� (��)� 1

2k
1
2 + k

�
� � b� (��)� , if b� (��)� 1

2k � � � b� (��) + 1
2k

1, if � � b� (��) + 1
2k

,

which is exactly the e¤ective strategy sb�(��);k characterized by (3), (4) and (5). It is worth
noting that the information cost is � � max (0; 1� k�
) under both interpretations. This
explains why the players will choose the same level of k, no matter whether it stands for the

slope in the �rst interpretation or the precision in the second one. The resulting e¤ective

strategies and equilibrium outcomes are the same. In Subsection 5.2, however, we show

that the underlying mechanisms are very di¤erent.

11



4 Main Results

We will be focusing on the properties of monotone Nash equilibria. In particular, we identify

the properties of the information cost functionals that lead to a unique or multiple equilibria

when � is close to zero.

4.1 Threshold Decision Problems

A key ingredient of the analysis will be the choice in a simple class of "threshold decision

problems". Suppose a player must choose an e¤ective strategy s when the cost to investing

is t, there is a payo¤ 1 if she invests and the state is at least �� and the information cost of

e¤ective strategy is � � c (s). Thus the payo¤ of e¤ective strategy s is

U (sj��; �) =
�Z

s (�)
�
1f����g � t

�
p (�) d�

�
� � � c (s) .

This decision problem is parameterized by �� and �, and we will refer to it as the (��; �)-

decision problem. We write SM (�
�; �) for the set of optimal monotonic e¤ective strategies

in the (��; �)-decision problem, i.e.,

SM (�
�; �) = argmax

s2SM
U (sj��; �) .

We �rst show that it is optimal for players to choose strategies that are close to a step

function at �� when the cost of information is small.

Lemma 4 (Optimal E¤ective Strategies in the Threshold Decision Problems) The
essentially unique monotonic optimal e¤ective strategy if � = 0 is a step function at ��, i.e.,

SM (�
�; 0) =

�
1f����g

	
.

For any � > 0, there exists � > 0 such that SM (�
�; �) � B�

�
1f����g

�
for all �� 2 [0; 1] and

� � �.

Proof. When � = 0, it is straightforward to see that the player chooses s (�) = 1 if

1f����g � t > 0 and s (�) = 0 if 1f����g � t < 0. Hence, S (��; 0) =
�
1f����g

	
.

Now consider the case of � > 0. For any s��;� 2 SM (�
�; �) and s��;� 6= 1f����g, the

optimality of s��;� implies

1Z
�1

�
1f����g � t

�
�
�
1f����g � s��;� (�)

�
p (�) d� < � �

�
c
�
1f����g

�
� c (s��;�)

�
� � � c.

12



Note that

1Z
�1

�
1f����g � t

�
�
�
1f����g � s��;� (�)

�
p (�) d�

= t �
��Z

�1

s��;� (�) p (�) d� + (1� t) �
1Z
��

[1� s��;� (�)] p (�) d�

� min (t; 1� t) �

24 ��Z
�1

s��;� (�) p (�) d� +

1Z
��

[1� s��;� (�)] p (�) d�

35
= min (t; 1� t) �



1f����g; s��;�

 .
The above two inequalities imply



1f����g; s��;�

 < � � c
min (t; 1� t) . (12)

Hence for any � > 0,


1f����g; s��;�

 < � if � < � = ��min(t;1�t)

c .

The fact that the decision maker�s optimal e¤ective strategies approximate 1f����g as

�! 0 re�ects her motive to sharply identify event f� � ��g from its complement. In a de-

cision problem, whether this is achieved by a continuous or discontinuous s��;� 2 SM (��; �)
is not important, since the loss caused by deviating from 1f����g is of the order of mag-

nitude of


1f����g; s��;�

. In contrast, in the game considered here, as we will see, the

continuity of s��;� is critical in determining the equilibrium outcomes. In particular, we

will be interested in when the optimal e¤ective strategies are always absolutely continuous

whenever � > 0.8

De�nition 5 (Continuous Choice ) Cost functional c (�) satis�es continuous choice if
all optimal strategies are absolutely continuous, i.e., SM (�

�; �) consists only of absolutely

continuous functions, for all �� 2 [0; 1] and � 2 R++.

Before proceeding to its equilibrium implications, we introduce several concepts to reveal

the economic meaning of the continuous choice property.

A continuous approximation of an e¤ective strategy s that is not absolutely continuous

is a sequence of absolutely continuous e¤ective strategies fsng1n=1 with

lim
n!1

ks; snk = 0.

8We conjecture that continuity should be su¢ cient for the result, but currently use absolute continuity
in proving the result.
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The approximation is cheap if, �rst, c (sn) < c (s) for all n; and, second,

lim
n!1

c (s)� c (sn)
ks; snk =1 .

That is, choosing sn instead of s, the cost saving c (s) � c (sn) relative to the degree of

approximation can be arbitrarily large.

De�nition 6 (costly local distinguishability) Cost functional c (�) satis�es costly local
distinguishability if every e¤ective strategy that is not absolutely continuous has a cheap

continuous approximation.

The costly local distinguishability captures the idea that it is su¢ ciently harder to dis-

tinguish nearby states than distant states. This is because sharply distinguishing nearby

states, e.g., the states just above a threshold and those just below it, requires the e¤ective

strategy to jump at the threshold. Hence, a high cost saving from choosing a continuous

strategy corresponds to a high cost in distinguishing nearby states.

Lemma 7 (continuous choice) If c (�) satis�es costly local distinguishability, then c (�)
satis�es continuous choice.

Proof. Suppose s��;� 2 SM (��; �) is not absolutely continuous. Since c (�) satis�es costly
local distinguishability, we can �nd an absolutely continuous s such that

ks��;�; sk < � � [c (s��;�)� c (s)] .

Then, the gain from replacing s��;� by s is

[U (s; ��)� � � c (s)]� [U (s��;�; ��)� � � c (s��;�)]

=

Z
[s (�)� s��;�] �

�
1f����g � t

�
p (�) d� + � � [c (s��;�)� c (s)]

> �
Z
js (�)� s��;�j � 1 � p (�) d� + ks��;�; sk

= 0,

which contradicts the optimality of s��;�.

This lemma explains the logic of continuous choice based on a primitive property on cost

functionals. We next turn to the equilibrium implications of continuous choice.
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4.2 Characterizing the Equilibria

A pro�le of e¤ective strategies fsigi2[0;1] will induce an aggregate e¤ective strategy

bs (�) = Z
i2[0;1]

si (�) di (13)

which can be interpreted, assuming a continuum law of large numbers, as the proportion of

players that invest conditional on the state being �. If all individual e¤ective strategies are

monotone, then so is the aggregate e¤ective strategy.

Now a pro�le of monotone e¤ective strategies fsigi2I will induce a unique threshold
�� 2 [0; 1] such that bs (�) > � (�) for � > �� and bs (�) < � (�) for � < ��. Thus an aggregate

e¤ective strategy gives rise to an event in the payo¤ state space

F�� = f� 2 R : � � ��g .

We will call this a regime change event since it characterizes the set of states where there is

regime change (i.e., the proportion investing exceeds � (�)). Now any player�s opponents�

strategies are summarized by a threshold ��. Hence, her optimal best response is equivalent

to maximizing U (sj��; �).

Lemma 8 A strategy pro�le fsigi2[0;1] of monotone strategies is an equilibrium of the �-

game if (1) they induce a threshold �� and (2) all strategies are optimal in the (��; �)-decision

problem, i.e., each si 2 S (��; �).

The proof is straightforward and hence omitted.

4.3 Limit Uniqueness

We say that there is limit uniqueness if, as � ! 0, all monotone equilibria of the game

converge to a unique equilibrium.

De�nition 9 (limit uniqueness) Cost functional c (�) satis�es limit uniqueness if there
exists s� such that, for any � > 0, there exists � > 0 such that ks; s�k � � whenever s is a

monotone equilibrium strategy in the �-game.

We now study how costs vary as we translate the e¤ective strategy. Let T� : S ! S be

a translation operator: that is, for any � 2 R and s 2 S,

(T�s) (�) = s (� +�) .

De�nition 10 (translation insensitivity) Cost functional c (�) satis�es translation in-
sensitivity if there exists K > 0 such that, for all s, jc (T�s)� c (s)j < K � j�j.

15



This property requires that the information cost responds at most linearly to translations

of the e¤ective strategies. Translation insensitivity captures the idea that the cost of

information acquisition re�ects the cost of paying attention to some neighborhood of the

state space, but does not depend on where attention is paid. This is not a stringent property

as it is satis�ed in most models of information acquisition in the literature.9

We will have a particular equilibrium played in the limit when there is limit uniqueness.

Since the threshold function � is continuous and strictly increasing, it has a well-de�ned

inverse. Setting ��� = ��1 (1� t), the limit equilibrium will be the step function at ���.

Morris and Shin (2001) de�ned the Laplacian selection to be the behavior that is a best

response to a uniform belief over the proportion of other players choosing one action. In

the regime change game, this is invest as long as � � ���. This corresponds to the behavior

that gets selected in global games.

Lemma 11 If c (�) satis�es continuous choice and translation insensitivity, then c (�) sat-
is�es limit uniqueness. In particular, in the limit all players follow strategy 1f�����g, i.e.,

letting
n
s�i; �

o
i2[0;1]

denote an an equilibrium of the �-game,

lim
�!0



s�i; �; 1f�����g

 = 0
for all j 2 [0; 1].

According to the lemma, when c (�) satis�es continuous choice and translation insensi-
tivity, and information costs are low, all equilibria are close to the switching strategy with

threshold ���.10 The property of continuous choice is essential to the limit uniqueness

result. Recall that a player�s ideal strategy is to sharply identify the event of regime change

whenever it occurs. This requires perfectly distinguishing the states above the thresh-

old of regime change from those below it, calling for an e¤ective strategy discontinuous at

the threshold. The property of continuous choice means that the players do not choose

such sharp strategies for any relevant decision problems (i.e., (��; �)-decision problem with

�� 2 [0; 1]). This property of the information cost restricts the players� ability, and in

9For example, when information acquisition is modeled by the costly state veri�cation (CSV) approach,
as introduced by Townsend (1979) and employed in many later applications, all the non-trivial e¤ective
strategies incur the same cost and hence the translation insensitivity is naturally satis�ed. Another popular
example is to model information acquisition as paying to reduce the magnitude of the additive noise. In
this case, translating an e¤ective strategy amounts to translating the mapping from signal realizations to
actions, which does not change the underlying information structures nor the information cost. Again,
the translation insensitivity is naturally satis�ed. It is worth noting that this second example nests the
(exogenous) additive information structures in the global game models as a special case. Moreover, in these
examples, translation insensitivity takes an even stronger form, translation invariance, i.e., the information
cost does not change with respect to the translation of the e¤ective strategies.
10The continuous choice property and the translation insensitivity can be greatly relaxed to their local

versions. In particular, they only need to hold in a small neighborbood of the step functions. See Section
7.1 for the formal de�nitions and results.
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turn, incentive to coordinate in acquiring information. As a result, the players can only

coordinate in identifying a unique threshold event F��� in equilibrium.

Now Lemmas 7 and 11 imply:

Proposition 12 If c (�) satis�es costly local distinguishability and translation insensitivity,
then c (�) satis�es limit uniqueness. In particular, in the limit all players follow strategy

1f�����g.

It is worth relating this result to our leading example. Consider approximating the

step function 1f����g by an e¤ective strategy s with maximal slope k > 1. In our leading

example

c
�
1f����g

�
� c (s) = k�


and 

1f����g; s

 � 

1f����g; s��;k

 = 1

4 � (2A+ 1) � k ,

where s��;k is given by (3). Hence, in the scenario of 
 < 1, we obtain

c
�
1f����g

�
� c (s)

1f����g; s

 � 4 � (2A+ 1) � k1�
 !1 as k !1.

This inequality suggests that the step functions can be cheaply approximated by absolutely

continuous functions when 
 < 1. One can generalize this example, letting

c (s) = max

 
0; 1�

�
sup
�

kkkp
��
!

where k : R! R+ is the derivative of the e¤ective strategy s and kkkp is the p-norm of k

kkkp =
�Z

[k (�)]
p
g (�) d�

� 1
p

:

In this case, one show that costly local distinguishability is satis�ed if

1



+
1

p
> 1.

This reduces to our leading example as p!1 and shows the robustness of the example to

focussing on the maximum derivative.

4.4 Limit Multiplicity

In order to appreciate the importance of the conditions for limit uniqueness, this subsection

contrasts these conditions to a su¢ cient condition for limit multiplicity.
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De�nition 13 (Lipschitz) Cost functional c (�) is Lipschitz, if there exists a K > 0 such

that jc (s1)� c (s2)j < K � ks1; s2k for all s1; s2 2 S.

The Lipschitz property requires that the information cost responds at most linearly to

any change of the e¤ective strategies. This property is su¢ cient for the result of limit

multiplicity.

Proposition 14 If cost functional c (�) is Lipschitz, then there exists � > 0 such that the

game has multiple equilibria for all � 2
�
0; �
�
. In particular, for every �� 2 [0; 1], s�i; � =

1f����g for each i 2 [0; 1] is an equilibrium.

Yang (2015) also showed this su¢ cient condition for multiplicity (in a closely related

setting), as well as showing that there was multiplicity when the cost functional corresponded

to entropy reduction. Entropy reduction is not a special case of Lipschitz, but the argument

takes a very similar form (see section ?? for more discussion of this point).
Proof. Let � = min

�
t
K ;

1�t
K

�
. It su¢ ces to show that 1f����g 2 S (��; �) for any �� 2 [0; 1]

and � 2
�
0; �
�
. This is true because for any s 6= 1f����g,�

U
�
1f����g; �

��� � � c
�
1f����g

��
� [U (s; ��)� � � c (s)]

=

1Z
�1

�
1f����g � t

�
�
�
1f����g � s (�)

�
p (�) d� � � �

�
c (s)� c

�
1f����g

��

> t �
��Z

�1

s (�) p (�) d� + (1� t) �
1Z
��

[1� s (�)] p (�) d� � �K �


1f����g; s



� min (t; 1� t) �

24 ��Z
�1

s (�) p (�) d� +

1Z
��

[1� s (�)] p (�) d�

35� �K �


1f����g; s



= [min (t; 1� t)� �K] �


1f����g; s

 > 0,

where the �rst inequality follows the Lipschitz property.

It is easy to see that the Lipschitz property implies the translation insensitivity.11 It is

also worth noting that by de�nition the Lipschitz property implies the failure of costly local

distinguishability. Thus the Lipschitz property preserves translation insensitivity but fails

costly local distinguishability, highlighting the importance of the latter condition.

11This is because

kT�s; sk =

Z
js (� +�)� s (�)j � p (�) d� � p �

Z
[s (� +�)� s (�)] d�

= p �
Z
s0 (�) d� ��+ o (�) � p � 1 ��+ o (�) < K �� ,

where K > p = sup�2R p (�).
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In our leading example, the Lipschitz property corresponds to the case of 
 � 1. To see
this, choose s1 and s2 and let k1 and k2 be their maximal slopes, respectively. Since the

optimal e¤ective strategies converge to step function 1f����g as �! 0, let k2 > k1 � 1 and
s1 and s2 belong to B�

�
1f����g

�
for some small � > 0. Then

ks1; s2k � [4 � (2A+ 1)]�1 �
�
k�11 � k�12

�
+O (�) .

The �rst term of the right hand side is what the distance would be if s1 = sb�;k1 and
s2 = sb�;k2 , which provides a lower bound. So

c (s2)� c (s1)
ks1; s2k

� 4 � (2A+ 1) � k
�

1 � k�
2
k�11 � k�12

+O (�) .

Since k�11 and k�12 belong to [0; 1] and the derivative of f (y) = y
 is bounded if and only if


 � 1, the information cost in our leading example has the Lipschitz property if and only if

 � 1. It is then not surprising that any step function constitutes an equilibrium.

5 Information Acquisition and Higher Order Beliefs about

Regime Change

The regime changes only if a su¢ ciently large proportion of players invest. A player is

willing to invest only if she assigns high probability to regime change. Hence, the regime

changes only if enough players assign high probability to regime change, enough players

assign high probability to enough players assigning high probability to regime change, and

so on. Therefore, an equilibrium regime change event is characterized by players�higher

order beliefs about that event. In this section, we �rst provide a tight characterization

of the equilibrium regime change event in terms of higher order beliefs given any pro�le of

players�information choices. This exercise is an analogue to Morris and Yildiz (2016).12

Using the common belief characterization, we then analyze whether it is feasible and

incentive compatible for the players to acquire information to form speci�c higher order

beliefs in our leading example. This analysis reveals that although di¤erent information

acquisition technologies, namely, the binary and additive information structures, result in

observationally the same equilibrium outcomes, the underlying mechanisms could be very

di¤erent.
12This exercise is less general as it relies on the one dimensional state space and continuum player as-

sumption to get a common belief characterization, although it gives a common belief characterization for a
di¤erent (regime change) game.
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5.1 Common Belief Foundations of Regime Change

We introduce a notion of common belief that is relevant to the regime change game studied

in this paper. Throughout this subsection, we �x an arbitrary pro�le of players�informa-

tion choices f(Xi; qi)gi2[0;1]. Let eqi (�jxi) 2 �(R) denote player i�s posterior belief upon
observing xi 2 Xi. For any event E � R and � 2 R, de�ne

B�;� (E) =

8><>:� 2 R :
Z

i2[0;1]

qi (fxi 2 Xi : eqi (Ejxi) � �g j�) di � � (�)

9>=>; . (14)

This is the set of ��s that at least proportion � (�) of players �-believe event E. Here a

player �-believes event E if she assigns probability at least � to the true state being in E.

More precisely, say that event E is (�; �)-believed in state � if � 2 B�;� (E). Say event

E is (�; �)-evident if E � B�;� (E). That is, a proportion of at least � players �-believe

event E whenever E occurs.

The belief operator B�;� (�) can be iterated. The set of ��s that the proportion of players
who �-believe that E is (�; �)-believed is at least � (�) corresponds to B�;�

�
B�;� (E)

�
,

written as
�
B�;�

�2
(E). Then the sequence of operators

�
B�;�

�n
(�) ; n 2 N can be de�ned

accordingly. De�ne

C�;� (E) = \1n=1
�
B�;�

�n
(E) .

At any state � 2 C�;� (E), at least proportion � (�) of players �-believe event E, at least

proportion � (�) of players �-believe that at least proportion � (�) of players �-believe event

E, and so on. Say that event E is commonly (�; �)-believed at state � if � 2 C�;� (E).
In the remainder of this subsection, we �x the pro�le of information choices f(Xi; qi)gi2[0;1]

and characterize the set of equilibria using the language for higher-order beliefs described

above. A strategy pro�le can be summarized by its regime change event, i.e., the set of

states where the regime changes under those strategies. We characterize which regime

change events are consistent with equilibrium.

Suppose that F was the regime change event. Player i will invest only if she observes a

signal at which she assigns probability at least t to event F , i.e., if

eqi (F jxi) � t.

Thus the probability that i will invest conditional on � is

qi (fxi 2 Xi : eqi (F jxi) � tg j�) .

By a continuum law of large numbers assumption, the proportion of players investing at �
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would be Z
i2[0;1]

qi (fxi 2 Xi : eqi (F jxi) � tg j�) di .

So the regime will change if this expression is greater than � (�). Thus it is an equilibrium

condition that

F =

8><>:� 2 R :
Z

i2[0;1]

qi (fxi 2 Xi : eqi (F jxi) � tg j�) di � � (�)

9>=>; .
This condition is equivalent to the requirement that

F = Bt;� (F ) . (15)

Hence the event of regime change must be a �xed point of the belief operator Bt;� (�). That
is, the event of regime change is (t; �)-evident; and once the regime change is (t; �)-believed,

the regime changes. It is clear that (15) is necessary for F to be an event of regime change.

Since any event F that satis�es (15) can be an event of regime change, it is also su¢ cient.

We summarize these results in the following Proposition.

Proposition 15 Given any pro�le of the players�information choices, a subset F � R can
be an event of regime change if and only if F = Bt;� (F ).

To fully characterize the outcomes of the game, consider the complement event RnF ,
which is the event of no regime change. A symmetric argument shows that

RnF = B1�t;1�� (RnF ) (16)

and

RnF = C1�t;1�� (RnF ) .

According to Lemma 22 in the appendix, (16) is equivalent to (15). Hence, once the pro�le

of players� information choices is �xed, (15) fully characterizes the outcome of the game.

Moreover, since

Ct;� (F ) = \1n=1
�
Bt;�

�n
(F ) = F ,

the proposition states that regime changes if and only if it is commonly (t; �)-believed.

In games with endogenous information acquisition, whether an event is commonly (t; �)-

believed depends on the players�information choices.13 Hence, an event characterizes the

regime change in equilibrium if and only if the players can form common (t; �)-belief on this

13Note that the belief operator Bt;� (�) is a function of the pro�le of the players�information choices.
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event through their information acquisition. Propositions ?? and 14 relate the properties of
the equilibria to the nature of the information acquisition technology: the players can only

form common (t; �)-belief on a unique threshold event F��� if the information technology

features costly local distinguishability; otherwise, they can form common (t; �)-belief on

almost all threshold events F�� with �
� 2 [0; 1].

5.2 Information Acquisition and Higher Order Beliefs about Regime
Change

The threshold events with threshold �� 2 [0; 1] are potential candidates that could be the
events of regime change. This subsection uses our leading example to illustrate how the

players coordinate to form common (t; �)-beliefs on any of such threshold events. In partic-

ular, we will study both whether it is feasible to do so, in the sense that it is technologically

possible under the players�information acquisition technology; and whether it is incentive

compatible, in the sense that there is a Nash equilibrium of the information acquisition

game giving rise to that outcome. The information cost and the threshold function in this

subsection follow that of Section 3.

Proposition 16 Any threshold event F�� with threshold �� 2 [0; 1] can be an event of regime
change, if each player chooses the binary information structure

q (xj�) =
�
sb�;k (�) if x = 1

1� sb�;k (�) if x = 0
,

where sb�;k is de�ned by (3) with
b� = �1 + 1

k

�
�� � 1

2k

and

k 2
"

t � (1� ��)2 + (1� t) � (��)2

2 �min [t � (�� +A) ; (1� t) � (1 +A� ��)] ;1
#
.

Proposition 16 states that by acquiring information properly, it is feasible for the players

to achieve common (t; �)-beliefs on any threshold event F�� , and thus make it the event of

regime change. The players can choose a binary information structure that focuses around

the threshold �� to distinguish F�� from its complement sharply (i.e., k large enough). This

seems to be a very natural result for binary information structures, but does not hold for

the additive information structures that are typically employed in the global game models,

as shown later in this subsection.

It is worth comparing the results of Propositions 3 and 16. When 
 � 1, any threshold
event F�� with �

� 2 [0; 1] can be an event of regime change in equilibrium. That is, it
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is feasible and also incentive compatible for the players to coordinate to form common

(t; �)-beliefs on any of such threshold events. In contrast, when 
 < 1, although by

Proposition 16 it is feasible for the players to coordinate to form common (t; �)-beliefs

on all the aforementioned threshold events, Proposition 3 implies that it is not incentive

compatible for them to do so except for Ft. The key to understand this is the costly

local distinguishability of the information cost. Simple calculation shows that, given any

payo¤ gain function 1f����g � t with �� 2 [0; 1], the players�optimal binary information
structure sb�(��);k� leads them to commonly (t; �)-believe event Fe�(��), where e� (��) is de�ned
by equation (7). When 
 � 1, as shown in Subsection 4.4 the information cost is Lipschitz
and thus fails the costly local distinguishability. The players are willing to sharply identify

any threshold event using a discontinuous binary information structure. This results in a

maximal slope k� =1 and thus e� (��) = ��, making any �� 2 [0; 1] the threshold of a regime
change event in equilibrium. When 
 < 1, as shown in Subsection 4.1 the information cost

exhibits costly local distinguishability. The players �nd it suboptimal to sharply distinguish

any threshold event and their optimal e¤ective strategy is continuous (k� <1), which makese� (��) strictly closer to t than �� for all �� 6= t. This suggests that the players are not willing

to coordinate to form common (t; �)-beliefs on any threshold event other than Ft.

It is also worth examining the higher order beliefs in a global game model. The setting

follows Subsection 3.2. Each player i receives a signal zi = �+k�1 �"i, where "i � U[�1=2;1=2]

is independent from � and across the players, and k�1 measures the magnitude of noise.

We �rst �x an k <1 and examine the corresponding belief operator Bt;� (�). Player i
t-believes a threshold event F�� if and only if

zi + k
�1=2� ��

k�1
� t,

i.e.,

zi � �� + (t� 1=2) � k�1.

Hence, F�� is (t; �)-believed if and only if

� + k�1=2� �� � (t� 1=2) � k�1
k�1

� 1� �,

i.e.,

� � k � �� + t
1 + k

= e� (��) .
Therefore,

Bt;� (F��) = Fe�(��) .
Since k <1, it is clear that Ft is the only �xed point of Bt;� (�). That is, no matter how
precise are the signals, it is only feasible for the players to form common (t; �)-beliefs on
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Ft. The common (t; �)-beliefs on other threshold events are technologically precluded by

the additive information structure.

In order to compare to the case of information acquisition with binary information struc-

tures, we next let the players acquire information about � by increasing k as in subsection

3.2. The players choose a precision k� < 1 if and only if 
 < 1, which leads to exactly

the same e¤ective strategies as with binary information structures. Hence if 
 < 1, it is

only feasible for the players to form common (t; �)-beliefs on Ft through acquiring additive

signals. Since the players have no other choice, it is also incentive compatible to form com-

mon (t; �)-belief on Ft, which results in the same event of regime change in equilibrium as

with binary information structures. It is worth highlighting the very di¤erent mechanisms

behind the same equilibrium outcome of the two technologies. The additive information

structure setting directly shrinks the players�"choice" of common (t; �)-beliefs to a single-

ton, which can only be formed on Ft. In contrast, the binary information structure setting

makes common (t; �)-beliefs on a whole spectrum of threshold events feasible but the players

are willing to form common (t; �)-belief on only one of these events.

6 Extensions

This section extends our main results in two directions: generalizing payo¤s of the game

and relaxing key assumptions and, in particular, replacing global properties of information

cost functionals with local properties.

Recall that player i�s payo¤ from investing is given by � (l; �) where l 2 [0; 1] is the

proportion of players that invest and � is the state of the world. Instead of specifying a

functional form of � (l; �), we will impose the following properties on this general payo¤s.

Assumption A2 (Monotonicity and Boundedness): a) � (l; �) is non-decreasing
in l and �; b) j� (l; �)j is uniformly bounded.
Assumption A3 (State Single Crossing): For any l 2 [0; 1], there exists a �l 2 R

such that � (l; �) > 0 if � > �l and � (l; �) < 0 if � < �l.

Assumption A4 (Strict Laplacian State Monotonicity and Continuity): Let
 (�) =

R 1
0
� (l; �) dl. Then, a) there exists a unique ��� 2 R, such that  (���) = 0; b)  

is continuous, and  �1 exists on an open neighborhood of  (���).

These assumptions are standard in the global game literature.14 In particular, Assump-

tions A2 and A3 imply that any s 2 SM induces a threshold �s 2 R such that � (s (�) ; �) > 0
if � > �s and � (s (�) ; �) < 0 if � < �s. Assumption A2 further implies that �s 2 [�1; �0]
for all s 2 SM , where �1 and �0 are de�ned by choosing l = 1 and l = 0 in Assumption A3.
Consequently, we obtain the limit dominance condition often assumed in the global game

literature. That is, � (l; �) > 0 for all l 2 [0; 1] and � > �0, and � (l; �) < 0 for all l 2 [0; 1]
14See the general assumptions surveyed in Subsection 2.2 of Morris and Shin (2001).
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and � < �1.15 Let

U (es; s) = Z � (s (�) ; �) � es (�) p (�) d�
denote a player�s expected payo¤ from playing e¤ective strategy es 2 S if all other players

choose strategy s 2 S.16 Then the player�s decision problem is

maxes2S U (es; s)� � � c (es) . (17)

Slightly abusing earlier notations, call this problem the (s; �)-decision problem and let

S (s; �) denote the set of solutions. We will again focus on the monotone equilibria. Note

that the state contingent payo¤ � (s (�) ; �) is non-decreasing in � if s is non-decreasing.

Hence, it is reasonable to make the following assumption that parallels Assumption A1 in

Subsection 4.1.

Assumption A1�: The optimal e¤ective strategies in the (s; �)-decision problem are

non-decreasing for all s 2 SM , i.e., S (s; �) � SM for all s 2 SM and � � 0.
We next relax the assumptions on the information cost functionals.

First, we de�ne the local translation insensitivity instead of the global translation insen-

sitivity.

De�nition 17 (local translation insensitivity) Cost functional c (�) is said to be lo-
cally translation insensitive at s 2 S, if there exists a � > 0 and K > 0 such that

jc (T�es)� c (es)j < K � j�j holds for all es 2 B� (s) and � 2 R providing that T�es 2 B� (s).
Second, we de�ne a local version of the continuous choice property.

De�nition 18 (locally continuous choice) Cost functional c (�) satis�es locally contin-
uous choice at s 2 S, if there exists a � > 0 such that S (es; �) consists only of absolutely
continuous functions for all es 2 B� (s) and � 2 R++.
These local properties are weaker than their counterparts in Section 4. Together with

the assumptions on the general payo¤s, they generalize our main results as follows.

Proposition 19 If c (�) satis�es locally continuous choice and is locally translation insen-
sitive at 1f���sg for all �s 2 [�1; �0], then c (�) satis�es limit uniqueness. In particular, in

the limit all players follow strategy 1f�����g, i.e., letting
n
s�i; �

o
i2[0;1]

denote an equilibrium

of the �-game,

lim
�!0



s�i; �; 1f�����g

 = 0
for all j 2 [0; 1].
15Note that we have �1 = 0 and �0 = 1 in the regime change game.
16Equivalently, s (�) can be interpreted as the aggregate e¤ective strategy, which is the proportion of the

players that invest when the state is �.
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This proposition generalizes the results of Lemma 14 and shares the same intuition. In

particular, as shown in the proof, the maintained assumption that the information cost is

uniformly bounded for all e¤ective strategies can be further relaxed. Indeed, the proof

goes through when the information cost is bounded on a subset
�
1f���sg : �s 2 [�1; �0]

	
instead of all e¤ective strategies. As shown by Lemma 23 in the appendix, this condi-

tion guarantees that the optimal strategies in S (s; �) uniformly converge to 1f���sg for all

s 2 SM . Hence, even in the applications where the information cost is unbounded on�
1f���sg : �s 2 [�1; �0]

	
, our results are still valid providing the uniform convergence of the

optimal e¤ective strategies, a property satis�ed in most models of information acquisition.

Analogously, the locally continuous choice property re�ects a relatively high cost of

distinguishing nearby states and can be microfounded by a local version of costly local

distinguishability. The presentation is similar to its counterpart in Section 4 and is omitted

here.

Finally, we relax the Lipschitz property and show that it implies limit multiplicity.

De�nition 20 (locally Lipschitz) Cost functional c (�) is locally Lipschitz at s 2 S, if

there exists a � > 0 and K > 0 such that jc (s2)� c (s1)j < K �ks1; s2k for all s1; s2 2 B� (s).

Again, it is easy to see that the local Lipschitz property implies the local translation

insensitivity. It is also worth noting that by de�nition the Lipschitz property implies

the failure of local continuous choice. Thus the local Lipschitz property preserves local

translation insensitivity but fails local continuous choice, highlighting the importance of the

latter condition, as shown by the following proposition.

Proposition 21 If the information cost c (�) is locally Lipschitz at 1f���sg for some �s 2
[�1; �0] , then there exists a � > 0 such that the game has multiple equilibria for all � 2

�
0; �
�
.

In particular, for every �0s 2 (�1; �0) in a neighborhood of �s, s�i; � = 1f���0sg for each i 2 [0; 1]
is an equilibrium.

This proposition is a generalization of Proposition 14 and the two propositions share the

same intuition.

7 Discussion

7.1 Entropy Reduction and Learning about Others�Actions

We did not discuss entropy reduction cost in the body of the paper although, as discussed

in the introduction, it has been shown to give rise to limit multiplicity by Yang (2015).

Essentially the arguments in subsection 4.4 could be used to establish limit multiplicity. In

this sense, entropy reduction is a particular cost function that delivers the economic results

in our setting.
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However, the entropy reduction cost function does not in fact satisfy the Lipschitz condi-

tion. To see why, note that a well known property of entropy reduction is that the marginal

cost of pushing s (�) to 0 or 1 tends to in�nity, so that in any threshold decision problem,

it would be optimal to choose a discontinuous e¤ective strategy but not a step function.

But the Lipschitz condition rules out the possibility that the marginal cost going to in�nity.

While this distinction is not important for our analysis, it is important in other contexts.

A maintained assumption in our analysis is that players acquire information about the

state only. Denti (2016) has recently considered the problem when players can acquire

information about others�information. Because players do not acquire perfect information

under entropy reduction, there is some residual uncertainty about others� signals under

endogenous information acquisition, and this gives rise to smoother best responses and a

di¤erent answer for us - limit uniqueness - in this case. Note that under a Lipschitz

condition, he too would get limit multiplicity.

7.2 Evidence on Informational Costs

The property that nearby states are harder to distinguish than distant states seems natural

in any setting where states have a natural metric and correspond to physical outcomes.

Jazayeri and Movshon (2007) examine decision makers�ability to discriminate the direction

of dots on the screen when they face a threshold decision problem. There is evidence that

subjects are better at discriminating states on either side of the threshold, consistent with

optimal allocation scarce resources to discriminate. However, the ability to discriminate

between states on either side of the threshold disappears as we approach the threshold,

giving continuous choice in our sense in this setting.17 The allocation of resources in this

case is at the unconscious neuro level. Subjects in Caplin and Dean (2014) are asked to

discriminate between the number of balls on the screen, where allocation of resources is

presumably a conscious choice (e.g., how much time to devote to the task). Ongoing work

in Dean, Morris, and Trevino (2016) con�rms that, given a threshold decision problem, an

inability to distinguish nearby states arises as expected.
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8 Appendix

Proof of Proposition 11.
Proof. Lemma 4 implies

lim
�!0

sup
s��;�2 S(��;�) and ��2[0;1]



s��;�; 1f����g

 = 0. (18)

In equilibrium, the aggregate e¤ective strategy is given by

bs�� (�) = Z
i2[0;1]

s�i; � (�) di .

Assuming the continuum law of large numbers, the proportion of players that take action

1 conditional on � is bs�� (�). Since all
n
s�i; �

o
i2[0;1]

are absolutely continuous, bs�� is also
absolutely continuous. Hence, there exists a unique ��� such that

bs�� (���) = � (���) . (19)

Note that ��� is the threshold of regime change in this equilibrium. Since

s�i; �; 1f�����g

 � 


s�i; �; 1f�����g


+ 


1f�����g; 1f�����g



and (18) implies

lim
�!0




s�i; �; 1f�����g


 = 0 ,
it su¢ ces to show that ��� ! ��� as �! 0.

We �rst show that

1Z
�1

h
1f�����g � t

i
� p (�) dbs�� (�) is arbitrarily close to zero when �

is small enough. Consider player i�s expected payo¤ from slightly shifting her equilibrium

strategy s�i; � to T�s
�
i; �, which is given by

W (�) =

1Z
�1

h
1f�����g � t

i
� s�i; � (� +�) � p (�) d� � � � c

�
T�s

�
i; �

�
.
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The player should not bene�t from this deviation, which implies W 0 (0) = 0, i.e.,

1Z
�1

h
1f�����g � t

i
�
ds�i; � (�)

d�
� p (�) d� � � �

dc
�
T�s

�
i; �

�
d�

������
�=0

=

1Z
�1

h
1f�����g � t

i
� p (�) ds�i; � (�)� � �

dc
�
T�s

�
i; �

�
d�

������
�=0

= 0.

Here W 0 (0) exists because s�i; � is absolutely continuous. In addition, the translation

insensitivity implies �K <
dc(T�s�i; �)

d�

����
�=0

< K. Hence, for any small " > 0, by choosing

� 2 (0; ") we obtain

�K" <
1Z

�1

h
1f�����g � t

i
� p (�) ds�i; � (�) < K" .

The above inequality holds for all i 2 [0; 1], and thus implies

�K" <
1Z

�1

h
1f�����g � t

i
� p (�) dbs�� (�) < K" ,

i.e., ������
1Z

�1

h
1f�����g � t

i
� p (�) dbs�� (�)

������ < K" . (20)

Since the density function p (�) is continuous on [0; 1], it is also uniformly continuous

on [0; 1]. Hence, for any " > 0, we can �nd an � > 0 such that
��p (�)� p ��0��� < " for

all �; �0 2 [0; 1] and
��� � �0�� < �. By (18), for all i, the e¤ective strategy s�i; � converges

to 1f�����g in L
1 � norm, so does the aggregate e¤ective strategy bs�� . Together with

the monotonicity of bs��, this implies the existence of a �1 > 0 such that for all � 2
(0; �1),

���bs�� (�)� 1f�����g��� < " for all � 2 (�1; ��� � �) [ (��� + �;1). Choosing � 2
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(0;min ( �1; ")), by (20), we obtain�������
���+�Z
�����

h
1f�����g � t

i
� p (�) dbs�� (�)

�������
<

�������
�����Z
�1

h
1f�����g � t

i
� p (�) dbs�� (�) + 1Z

���+�

h
1f�����g � t

i
� p (�) dbs�� (�)

�������+K"
�

�����Z
�1

���1f�����g � t��� � p (�) dbs�� (�) +
1Z

���+�

���1f�����g � t��� � p (�) dbs�� (�) +K"
� 2p"+K" , (21)

where p = sup�2R p (�) < 1. By the de�nition of �, jp (�)� p (���)j < " for all � 2
[��� � �; ��� + �]. Hence,�������p (���) �

���+�Z
�����

h
1f�����g � t

i
dbs�� (�)�

���+�Z
�����

h
1f�����g � t

i
� p (�) dbs�� (�)

������� < ". (22)

Further note that�������1� � (���)� t�
���+�Z
�����

h
1f�����g � t

i
dbs�� (�)

�������
= j1� � (���)� t� bs�� (��� + �) + bs�� (���) + t � [bs�� (��� + �)� bs�� (��� � �)]j
= j(1� t) � [1� bs�� (��� + �)]� t � bs�� (��� � �)j
� (1� t) � j1� bs�� (��� + �)j+ t � jbs�� (��� � �)j
� " , (23)

where the second equality follows (19), the last inequality follows the facts that bs�� (��� � �) �
" and 1� bs�� (��� + �) � " when � 2 (0; �1).
Inequalities (21), (22) and (23) together imply that

j1� � (���)� tj < "+
2p+K + 1

p (���)
"

� "+
2p+K + 1

p
" ,

where p = inf�2[0;1] p (�) > 0 since p is assumed to be continuous and strictly positive on

[0; 1]. Hence, � (���) is arbitrarily close to 1 � t as � ! 0. Therefore, the continuity of
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��1 (�) implies lim �!0 �
�
� = ��1 (1� t) = ���.

Lemma 22 For any event E � R, � 2 R and � : R ! R, E = B�;� (E) if and only if

RnE = B1��;1�� (RnE).

Proof. By the symmetry of the statement, it su¢ ces to show that E = B�;� (E) implies

RnE = B1��;1�� (RnE). Since E = B�;� (E), any state � belongs to RnE if and only if

� belongs to RnB�;� (E), i.e., the proportion of players that do not �-believe E is at least

1�� (�). If a player does not �-believe E, she must (1� �)-believe RnE. Hence, � belongs
to RnE if and only if the proportion of players that (1� �)-believe RnE is at least 1�� (�),
i.e., RnE = B1��;1�� (RnE).
Proof of Proposition 16.

Proof. Let s (�) be the proportion of players whose signal realization is 1, conditional on
the true state being �. Then b� = �1 + 1

k

�
�� � 1

2k
(24)

implies that s (�) � 1� � if and only if F�� is true. Together with (24),

k � t � (1� ��)2 + (1� t) � (��)2

2 �min [t � (�� +A) ; (1� t) � (1 +A� ��)]

implies that each player t-believes F�� if and only if her signal realization is 1. Hence,

F�� = Bt;� (F��). Proposition 15 then leads to the desired result.

Lemma 23 If c
�
1f���sg

�
as a function of �s is bounded for �s 2 [�1; �0], then for any

� > 0, there exists a �1 > 0 such that S (s; �) � B�
�
1f���sg

�
for all s 2 SM and � 2 (0; �1).

Proof. For any � > 0, de�ne

z (�) = inf
l2[0;1]

min (� (l; �l + �) ;�� (l; �l � �)) .

Note that given � > 0, min (� (l; �l + �) ;�� (l; �l � �)) is a function of l on a compact set
[0; 1]. By Assumption A3, this function is always strictly positive. Hence, its in�mum on

[0; 1] exists and is strictly positive. That is, z (�) > 0 for all � > 0. In addition, for any

s 2 SM and � =2 [�s � �; �s + �], we have

j� (s (�) ; �)j � j� (s (�s) ; �)j � z (�) , (25)

where the �rst inequality follows Assumptions A2 and A3, and the second inequality follows

the de�nition of z (�).
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If S (s; �) =
�
1f���sg

	
, we are done. Now for any es 2 S (s; �) such that es 6= 1f���sg, the

optimality of es implies
1Z

�1

� (s (�) ; �) �
�
1f���sg � es (�)� p (�) d� < � �

�
c
�
1f���sg

�
� c (es)�

� � � c
�
1f���sg

�
. (26)

Note that

1Z
�1

� (s (�) ; �) �
�
1f���sg � es (�)� p (�) d�

�
Z

�=2[�s��;�s+�]

� (s (�) ; �) �
�
1f���sg � es (�)� p (�) d�

�
1Z

�1

z (�) �
��1f���sg � es (�)�� p (�) d� � �s+�Z

�s��

z (�) �
��1f���sg � es (�)�� p (�) d�

� z (�) �


1f���sg; es

� 2 � z (�) � p � �, (27)

where p = sup�2R p (�) <1, the �rst inequality holds since � (s (�) ; �) and
�
1f���sg � es (�)�

always have the same sign and thus

�s+�Z
�s��

� (s (�) ; �) �
�
1f���sg � es (�)� p (�) d� > 0 ,

and the second inequality follows (25). Inequalities (26) and (27) imply



1f���sg; es

 < � � c
�
1f���sg

�
z (�)

+ 2 � p � � . (28)

Hence, for any � > 0, choose � < �
4�p and �1 <

z(�)��
2�c(1f���sg)

, we obtain


1f���sg; es

 < �

for all � 2 (0; �1). (Note that c
�
1f���sg

�
> 0, otherwise we return to the case S (s; �) =�

1f���sg
	
.)

Let c1 = sup�s2[�1;�0] c
�
1f���sg

�
. For any � > 0, choose � < �

4�p and �1 <
z(�)��
2�c1 . Then

inequality (28) implies


1f���sg; es

 < � for all s 2 SM and � 2 (0; �1).

Proof of Proposition 19.
Proof. The idea of the proof is similar to that of Proposition 11.
We have assumed that the information cost functional is uniformly bounded for all

e¤ective strategies. Here we will prove our results under a weaker condition that c
�
1f���sg

�
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as a function of �s is bounded for �s 2 [�1; �0].
The local translation insensitivity implies that c

�
1f���sg

�
is a continuous function of �s

for �s 2 [�1; �0], which further implies sup�s2[�1;�0] c
�
1f���sg

�
< 1. Then by Lemma 23,

we have

lim
�!0

supess;�2S(s;�) and s2SM


ess;�; 1f���sg

 = 0. (29)

Let
n
s�i;�

o
i2[0;1]

denote a monotone equilibrium of the �-game. Then the aggregate

e¤ective strategy is given by

bs�� (�) = Z
i2[0;1]

s�i;� (�) di ,

which by Assumptions A2 and A3 induces a threshold ��� such that � (bs�� (�) ; �) > 0 if � > ���

and � (bs�� (�) ; �) < 0 if � < ���. By (29),

lim
�!0




s�i;�; 1f�����g


 = 0.
Since 

s�i;�; 1f�����g

 � 


s�i;�; 1f�����g


+ 


1f�����g; 1f�����g


 ,
it su¢ ces to show that ��� becomes arbitrarily close to �

�� as �! 0.

We �rst show that the local translation insensitivity and local continuous choice prop-

erty can be extended to a neighborhood of
�
1f���sg : �s 2 [�1; �0]

	
. For any �s 2 [�1; �0],

since c (�) is locally translation insensitive at 1f���sg, there exists � (�s) > 0 and K (�s) > 0
such that jc (T�es)� c (es)j < K (�s) � j�j holds for all es 2 B�(�s)

�
1f���sg

�
and � 2 /R,

providing that c (es) < 1 and T�es 2 B�(�s)
�
1f���sg

�
. It is straightforward to see that�

1f���sg : �s 2 [�1; �0]
	
is a sequentially compact subset of the metric space S and thus it is

also compact. Since
�
B�(�s)

�
1f���sg

�
: �s 2 [�1; �0]

	
is an open cover of

�
1f���sg : �s 2 [�1; �0]

	
,

it has a �nite subcover, denoted byn
B�(�1s)

�
1f���1sg

�
; B�(�2s)

�
1f���2sg

�
; � � �; B�(�ns )

�
1f���ns g

�o
.

Then

B�(�1s)

�
1f���1sg

�
[B�(�2s)

�
1f���2sg

�
[ � � � [B�(�ns )

�
1f���ns g

�
is a �nite open cover of

�
1f���sg : �s 2 [�1; �0]

	
. Hence, there exists a � > 0 such that

�
1f���sg : �s 2 [�1; �0]

	
� [�s2[�1;�0]B�

�
1f���sg

�
� B�(�1s)

�
1f���1sg

�
[B�(�2s)

�
1f���2sg

�
[ � � � [B�(�ns )

�
1f���ns g

�
.
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Let K = max
�
K
�
�1s
�
;K
�
�2s
�
; � � �;K (�ns )

	
. Therefore, jc (T�es)� c (es)j < K � j�j holds

for all es 2 [�s2[�1;�0]B�
�
1f���sg

�
and � 2 R, providing that c (es) < 1 and T�es 2

[�s2[�1;�0]B�
�
1f���sg

�
. The same argument shows that c (�) satis�es the locally continuous

choice in an open neighborhood of
�
1f���sg : �s 2 [�1; �0]

	
. That is, for all s in such neigh-

borhood, S (s; �) consists of only absolutely continuous e¤ective strategies. Slightly abusing

the notation but without loss of generality, we denote the neighborhood in which both locally

continuous choice property and local translation insensitivity hold by [�s2[�1;�0]B�
�
1f���sg

�
.

We next show that

1Z
�1

� (bs�� (�) ; �) � p (�) dbs�� (�) is arbitrarily close to zero when � is
small enough. By (29), there exists a �1 > 0 such that S (s; �) � [�s2[�1;�0]B�

�
1f���sg

�
for all s 2 SM and � 2 (0; �1). Hence, by choosing � < �1, we have s�i;� 2 S (bs��; �) �
[�s2[�1;�0]B�

�
1f���sg

�
for all i 2 [0; 1]. This also implies that the aggregate e¤ective

strategy bs�� 2 [�s2[�1;�0]B� �1f���sg� and thus s�i;� is absolutely continuous for all i 2 [0; 1].
Now consider player i�s expected payo¤ from slightly shifting her equilibrium strategy s�i;�
to T�s�i;� 2 [�s2[�1;�0]B�

�
1f���sg

�
, which is given by

W (�) =

1Z
�1

� (bs�� (�) ; �) � s�i;� (� +�) � p (�) d� � � � c �T�s�i;�� .
The player should not bene�t from this deviation, which implies W 0 (0) = 0, i.e.,

1Z
�1

� (bs�� (�) ; �) � ds�i;� (�)d�
� p (�) d� � � �

dc
�
T�s

�
i;�

�
d�

������
�=0

=

1Z
�1

� (bs�� (�) ; �) � p (�) ds�i;� (�)� � � dc
�
T�s

�
i;�

�
d�

������
�=0

= 0.

Here W 0 (0) exists because s�i;� is absolutely continuous. Since the local translation insen-

sitivity has been extended to [�s2[�1;�0]B�
�
1f���sg

�
, we have �K <

dc(T�s�i;�)
d�

����
�=0

< K.

Hence, for any small " > 0, by choosing � 2 (0;min (�1; ")) we obtain

�K" <
1Z

�1

� (bs�� (�) ; �) � p (�) ds�i;� (�) < K" .

The above inequality holds for all i 2 [0; 1], and thus implies

�K" <
1Z

�1

� (bs�� (�) ; �) � p (�) dbs�� (�) < K" ,
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i.e., ������
1Z

�1

� (bs�� (�) ; �) � p (�) dbs�� (�)
������ < K" . (30)

Since the density function p (�) is continuous on [�1; �0], it is also uniformly continuous

on [�1; �0]. For the same reason,  (�) is also uniformly continuous on [�1; �0]. Hence,

for any " > 0, we can �nd an � > 0 such that
��p (�)� p ��0��� < " and

�� (�)�  ��0��� < "

for all �; �0 2 [�1; �0] and
��� � �0�� < 2�. Without loss of generality, we can choose � < ".

By (29), for all i, the e¤ective strategy s�i;� converges to 1f�����g in L
1 � norm, so does

the aggregate e¤ective strategy bs�� . Together with the monotonicity of bs��, this implies
the existence of a �2 > 0 such that for all � 2 (0; �2),

���bs�� (�)� 1f�����g��� < " for all

� 2 (�1; ��� � �) [ (��� + �;1). Choosing � 2 (0;min (�1; �2; ")), by (30), we obtain�������
���+�Z
�����

� (bs�� (�) ; �) � p (�) dbs�� (�)
�������

<

�����Z
�1

j� (bs�� (�) ; �)j � p (�) dbs�� (�) + 1Z
���+�

j� (bs�� (�) ; �)j � p (�) dbs�� (�) +K"
� 2Lp"+K" , (31)

where L > 0 is the uniform bound for j� (l; �)j and p = sup�2R p (�) <1. By the de�nition
of �, jp (�)� p (���)j < " for all � 2 [��� � �; ��� + �]. Hence,�������p (���) �

���+�Z
�����

� (bs�� (�) ; �) dbs�� (�)�
���+�Z
�����

� (bs�� (�) ; �) � p (�) dbs�� (�)
������� < L". (32)

Inequalities (31) and (32) imply�������
���+�Z
�����

� (bs�� (�) ; �) dbs�� (�)
������� <

2Lp+K + L

p
" , (33)

where p = inf�2[�1;�0] p (�) > 0 since p is assumed to be continuous and strictly positive on

[�1; �0].
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Next note that��������
bs��(���+�)Z

bs��(�����)
� (s; ��� + �) ds�

bs��(���+�)Z
bs��(�����)

� (s; ��� � �) ds

�������� � j (��� + �)�  (��� � �)j+ 4L"

< "+ 4L", (34)

where the �rst inequality follows the fact that
���bs�� (�)� 1f�����g��� < " for all � 2 (�1; ��� � �)[

(��� + �;1), and the second inequality follows the uniform continuity of  (�) on [�1; �0].

Further note that Assumption A2 implies

bs��(���+�)Z
bs��(�����)

� (s; ��� � �) ds �
���+�Z
�����

� (bs�� (�) ; �) dbs�� (�) �
bs��(���+�)Z

bs��(�����)
� (s; ��� + �) ds,

which together with (33) and (34) implies

�
�
2Lp+K + L

p
+ 4L+ 1

�
" <

bs��(���+�)Z
bs��(�����)

� (s; ��� � �) ds

�
bs��(���+�)Z

bs��(�����)
� (s; ��� + �) ds <

�
2Lp+K + L

p
+ 4L+ 1

�
" .(35)

By Assumption A2, the monotonicity of � (s; �) in � implies��������
bs��(���+�)Z

bs��(�����)
� (s; ���) ds

�������� <
�
2Lp+K + L

p
+ 4L+ 1

�
" .

Again, using the fact that
���bs�� (�)� 1f�����g��� < " for all � 2 (�1; ��� � �) [ (��� + �;1), the

above inequality implies������
1Z
0

� (s; ���) ds

������ <
�
2Lp+K + L

p
+ 6L+ 1

�
" .

Therefore, we have

lim
�!0

 (���) = 0,
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which implies

lim
�!0

��� = ���

according to Assumption A4.

The proof of Proposition 21.
Proof. Choose � > 0 and K > 0 such that jc (s2)� c (s1)j < K � ks1; s2k for all s1; s2 2
B�
�
1f���sg

�
. Note that we can always let �s 2 (�1; �0). This is without loss of generality

because by de�nition, for any 1f���0sg 2 B�
�
1f���sg

�
with �0s 2 (�1; �0) , the information

cost is also locally Lipschitz at 1f���0sg.

Let s 2 SM denote the e¤ective strategy that induces the cuto¤ �s. Assumption A2

then implies that �s is also the cuto¤ for �
�
1f���sg; �

�
. This is because �

�
1f���sg; �

�
�

� (s (�) ; �) > 0 for � > �s and �
�
1f���sg; �

�
� � (s (�) ; �) < 0 for � < �s. In addition,

�s 2 (�1; �0) implies
inf (f� (1; �) : � > �sg) > 0

and

sup (f� (0; �) : � < �sg) < 0 .

Let

b = min finf (f� (1; �) : � > �sg) ;� sup (f� (0; �) : � < �sg)g .

We next show that s�i;� = 1f���sg for all i 2 [0; 1] is an equilibrium. Since �s is the cuto¤
for �

�
1f���sg; �

�
, Lemma 23 implies the existence of a �1 > 0 such that S

�
1f���sg; �

�
2

B�
�
1f���sg

�
for all � 2 (0; �1). Let � = min

�
�1;

b
K

�
. It thus su¢ ces to show that 1f���sg

dominates all es 2 B� �1f���sg� when � 2 �0; ��. This is true because
1Z

�1

�
�
1f���sg; �

�
�
�
1f���sg � es (�)� p (�) d� � � � �c �1f���sg�� c (es)�

� b �


1f���sg; es

� � � �c �1f���sg�� c (es)�

> (b� �K) �


1f���sg; s

 > 0,

where the �rst inequality follows the de�nition of b and the second inequality follows the

local Lipschitz property.

Finally, note that by de�nition, for any 1f���0sg 2 B�
�
1f���sg

�
with �0s 2 (�1; �0) , the

information cost is also locally Lipschitz at 1f���0sg. Hence s�i;� = 1f���0sg for all i 2 [0; 1]
is another equilibrium.
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