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Abstract

In a three period cake eating problem with non-exponential discounting, there is
a continuous equilibrium if the utility function satisfies convex absolute risk tolerance
and the discount weights are “hyperbolic”. We discuss if and when this sufficient
condition can be adapted to cope with alternative discount weights, positive interest

rates, uncertain income and longer horizons.

1. Introduction

A decision maker will consume in 7' periods (where 7" may equal co). Her utility in

period ¢ from consumption stream
x = (11, 29,...) € RY

is given by

U (x) = Z 8r—tu(xr)
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Consider a simple cake-eating problem, where the decision maker is endowed with a
certain amount of consumption and decide how much to consume in each period as a
function of current wealth. Thus a strategy for the period ¢ decision maker is a consump-
tion function

Ry — Ry,

with
0<e¢(w)<w

for all w € Ry. Thus if the period ¢ decision maker is born with wealth w, he will
consume ¢; (w) and save w — ¢; (w).

Given the non-exponential weights, decision makers at different dates have different
preferences over future consumption streams. Thus this situation is naturally modelled
as a game. A natural solution concept is Markov perfect equilibrium, where the decision
maker at each date chooses a consumption rule that depends only on her current wealth
and maximizes her utility, given the strategies of other players. In what follows, we will
refer to “equilibria” as shorthand for such Markov perfect equilibria.

This is the simplest example of a class of dynamic choice problems that were first
studied in the economics literature by Strotz (1956). The last decade has seen very
considerable progress in the theory, application and empirical testing of such models.
This work is reviewed in Harris and Laibson (2001b).

Unfortunately, in the cake eating problem and the dynamic choice problems more

generally, the set of such equilibria is badly behaved. There may exist many equilib-



2 In two special

rial and those equilibria may be discontinuous and non-monotonic.
cases, we know that the cake eating problem has an equilibrium with continuous and
monotonic consumption functions: if there is exponential discounting - i.e., § = &' for

some & € (0,1);® and if there is constant relative risk aversion utility function - i.e.for

ou'(z) 4

some ¢ > 0, — ) ¢ for all z.* There has been only limited progress in finding
equilibria without pathological behavior away from these two special cases.” The pos-
sibility of discontinuous consumption is obviously problematic: it is hard to take such
equilibria seriously and hard to test them empirically. While there is no evidence that
such discontinuities are of practical importance in applications of these models,’ it would
be nice to have some theoretical understanding of when equilibrium consumption is con-

tinuous away outside the neighborhood of the two special cases mentioned above.” This

"Krussell and Smith (2001).
2Kohlberg (1976) described an algorithm for finding a utility function that did not give rise to con-

tinuous, monotonic consumption rules. O’Donaghue and Rabin (1999) show that the consumption rule
is non-monotonic in a discrete choice cake eating problem. Harris and Laibson (2001a) study the non-
monotonic and discontinuous consumption rules that arise in a model with hyperbolic discounting, con-
stant relative risk aversion, stochastic income and liquidity constraints. Morris and Postlewaite (1997)
give a closed form example with a unique equilibrium that is non-monotonic and discontinuous in a

standard cake-eating problem with continuous consumption and no liquidity constraints.
3Standard maximization techniques imply the existence of an optimal consumption path, continuous

in initial wealth; given the intertemporal consistency of preferences, no future decision maker will have

an incentive to deviate from that path.
*The optimal consumption rule will be linear in wealth in every period.
®Harris and Laibson (2001a) provide an elegant proof of existence and characterization of (continu-

ous and discontinuous) pure strategy equilibria in a general class of intertemporal choice models with
“hyperbolic” discounting. They are able to establish the existence of continuous equilibria for discount
functions in the neighborhood of exponential discount functions. However, they do not have sufficient
conditions for continuous consumption rules away from the neighborhood of the two special cases noted
above.

SHarris and Laibson (2001b) report simulations for a dynamic choice model with hyperbolic dis-
counting, constant relative risk aversion, liquidity constraints and stochastic income and argue that
discontinuities are not important for empirically relevant parameters.

7 A number of alternative models of control problems in intertemporal choice have been proposed that
do not lead to discontinuous equilibrium behavior. Gul and Pesendorfer’s (2001) model of temptation
and self-control has dynamically consistent decision makers. O’Donaghue and Rabin (1999) focus on
“naive” decision makers who do not anticipate that future decision makers will deviate from their plans.
Harris and Laibson (2001c) consider a continuous time model where the only inconsistency between

decision makers at different dates is an extra utility that a current decision maker places on consumption



note reports sufficient joint conditions on the utility function and discount weights for
continuous consumption rules in the three period cake eating problem.
To explain these sufficient conditions, consider the two parameter class of discount
weights, with
So=1and 8 = a1

In the case where 0 < a < 6 < 1, we have the “hyperbolic” discounting of Phelps
and Pollak (1968) and Harris and Laibson (2001a). In this case, each decision maker
would like the next period decision maker to consume less and save more. At the other
extreme, we have the case where § = 0 and 0 < o < 1. This case was extensively studied
in the “intergenerational altruism” literature of the 1970s and 1980s (see, e.g., Kohlberg
(1976), Leininger (1986) and Bernheim and Ray (1987)).® In this case, each decision
maker would like the next period decision maker to consume more and save less. These
opposite cases give rise to different sufficient conditions.

In the three period cake eating problem, all remaining wealth will be consumed in
the third period. In the second period, there is a standard optimization problem with
no dynamic inconsistency. The possibility of discontinuities arises only in the first pe-
riod. Discontinuities will arise precisely if the first period valuation of wealth entering
the second period is not concave. In the intergenerational altruism case, the marginal
value of wealth entering the second period is simply the marginal utility of equilibrium
consumption times the marginal propensity to consume. If the second period marginal
propensity to consume is decreasing in wealth, we are guaranteed a concave first pe-
riod valuation of second period wealth. Concave absolute risk tolerance is a sufficient
condition for decreasing marginal propensity to consume. In the hyperbolic case, the
argument is reversed: an increased marginal propensity to consume in the second period
is required to ensure that the first period problem has a continuous solution, and convex
absolute risk tolerance generates that property. The concavity or convexity of absolute

risk tolerance is a fourth derivative property of the utility function.”

at the current moment; this model is not the continuous time limit of the discrete time model with more
and more opportunities to change the rate of consumption. Each of these three elegant approaches have

independent rationales and have the pleasing side-effect that they dispense with the discontinuities.
®In this literature, decision makers at different dates are interpreted as different generations and so

the assumption that § = 0 corresponds to the assumption that a decision maker cares about his child’s

consumption, but not his grandchild’s consumption.
See section 11.3.1 of Gollier (2001) for a discussion of the plausibility of convex or concave absolute
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The good news, then, is that it is possible to find sufficient conditions for continuous
consumption behavior away from the two special cases, and those sufficient conditions
depend in an intuitive way on the nature of the dynamic inconsistency. The bad news
is that it is hard to extend this result. Alternative strategies for extending the results
beyond the three period case are reviewed, but no results are available to date. Allowing
a positive interest rate in the three period case reverses the results: if the equilibrium
consumption is increasing through time then concave absolute risk tolerance gives a
decreasing marginal propensity to consume, and thus continuity in the intergenerational
altruism case; convex absolute risk tolerance gives an increasing marginal propensity
to consume, and thus continuity in the hyperbolic case. Finally, we know from the
work of Carroll and Kimball (1996) that adding uncertainty makes the consumption
function more convex. Thus unfortunately, in the empirically most relevant case with
hyperbolic discounting, increasing expected consumption through time and uncertainty,
the uncertainty leads to a decreasing marginal propensity to consume out of wealth,

which works against the existence of continuous consumption rules.'”

2. Three Period Model

Let 6o =1, 61 = a and & = aé, for some a, § € (0,1].

In period 3, the individual will consume all his wealth. Thus we will have period 3
equilibrium consumption rule

c3 (w) = w.

In period 2, there will not be a consistency problem. Write ¢o : R — R for the

optimal second period consumption rule, i.e.,
co (w) = argmax u(z)+ au(w—zx).
z€[0,w]

By standard arguments, co (-) will be a continuous function with marginal propensity to
consume (i.e., first derivative of consumption with respect to wealth) strictly between 0

and 1. It is characterized by the first order condition

u (cg (W) = au (w — ¢ (w)). (2.1)

risk tolerance, and the relation to other higher derivative properties of the utility function.

1%Tn the simulations of Harris and Laibson (2001b), with hyperbolic discounting, constant relative risk

aversion, liquidity constraints and uncertain income, increased uncertainty helps remove discontinuities.



We are interested in how the marginal propensity to consume varies with wealth (i.e.,
the behavior of the second derivative of consumption with respect to wealth). This
depends on fourth derivative properties of the utility function. An individual’s absolute
risk tolerance is the inverse of his absolute risk aversion

u' ()

T (z) = _u”—(x)'

Observe that
u/// (x) u/ (x)

[ ())?

Linear absolute risk tolerance is equivalent to the assumption that w«(-) has hyperbolic

T ()= -1+

absolute risk aversion (HARA). HARA utility functions imply linear consumption func-
tions in cake eating problems.'’ Thus it is the nature of the non-linearity in absolute

risk tolerance that determines the shape of the consumption function.

Lemma 1. If absolute risk tolerance is concave (i.e., T" (-) < 0), then the marginal
propensity to consume is decreasing in wealth (dj (-) < 0); if absolute risk tolerance is

convex (i.e., T" (-) > 0), then the marginal propensity to consume is increasing in wealth

(5 () = 0).

Essentially this result is reported as Proposition 58 in Gollier (2001). The following
proof adapts arguments in Carroll and Kimball (1996) to show this result.
PROOF. Write f () and @ (-) for the inverses of ' (-) and c¢(+), respectively, so that

z=1u'(f(2)) and z = c(w (z)).

Let s (x) = @ (x) —x; thus s (z) is the quantity saved when quantity x is consumed. Since
w(r) =2+ s(x), W (x) =" (x). But @' (z) > ()0 if and only if ¢/ (w (x)) < (>)0.
Observe that by the first order condition (2.1),

@) =1 (“2)

LUHARA utility functions include quadratic utility functions, constant absolute risk aversion utility

functions and constant relative risk aversion utility functions. However, only the latter case satisfies the
Inada condition that is maintained in this note. The Inada condition is important as it removes corner

solutions that would otherwise arise.
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If T is convex, then (since z > s(z)), the sign of 7" (x) — T" (s (x)) is positive. The sign

of
(u" (x))”
aw (x)u’ (s(x))

is negative. So s” (-) is negative, w” (-) is negative and ¢’ (-) is positive. B

Now we move backwards to period 1. The value to the first period decision maker of
savings w is

V(w) = afu(c2 (w)) + u(w —c2 (w))].

Now

Vi(w) = a [u’ (ca (w)) &y (w) + du' (w — e (w)) (1 — (w))]
— a [u (e ) 0+ S0 () (1 ¢ ()| by (2

= u (co(w)) [(5 + (a —8) d (w)] )



Write ¢; : R — R for the optimal first period consumption rule, i.e.,

¢ (w) = argmax u(z)+V (w—2x)
z€[0,w]
If V' is concave, then ¢; will be continuous and increasing with a derivative between 0
and 1. If V is not concave, then ¢; will have discontinuous downward jumps at some

values of w. Now observe that
V! (w) = u (e (w)) &y (w) [6 + (o = 8) & (w)] + 1/ (e2 (w)) (@ = 8) & (w) .
This expression will be negative as long as (o — 6) ¢’ (w) < 0. Thus we have:

Proposition 2. First period optimal consumption c¢q(-) is an increasing continuous
function of wealth in each of the following three cases: (1) a > & and concave absolute

risk tolerance; (2) o = 6; and (3) a < 8 and convex absolute risk tolerance.

Recall that a > 6 incorporates the “intergenerational altruism” case and a < ¢ is

the hyperbolic discounting case.

3. Extensions

3.1. Infinite Horizon

Can Proposition 2 be extended beyond the three period case? One strategy that might
work for finite " > 3 is to work by backward induction, checking that the continuation
valuation functions at each date inherit the appropriate fourth derivative properties.
This strategy appears difficult but perhaps not impossible.

Another strategy is to exploit the stationarity of the infinite horizon problem. Sup-
pose that in the infinite horizon, a stationary differentiable consumption rule ¢ (-) is

followed at all dates. A necessary condition for a differentiable equilibrium is that
w (c(w)) = (w—c(w)) [§+ (o —8) d (w—c(w))].

This was shown for the very special case where § = 0 by Kohlberg (1976). It was
shown for the case of hyperbolic discounting (0 < a < ) by Harris and Laibson (2001a).



Kohlberg (1976) noted that this equation can be thought of as a (complicated) differential

equation: writing f (-) for the inverse of «’ (-), we have

c(w) :f(u/ (w—c(w)) [(5—|—(a—6) d (w—c(w))}).

If one could find fourth derivative properties on u that were sufficient for the differential
equation to have a solution and verify second order conditions, one would have a proof

of existence of a continuous stationary solution.

3.2. Positive Interest Rates, Stochastic Income and Liquidity Constraints

More realistic models should incorporate positive interest rates, stochastic income and
liquidity constraints. Fach is discussed in turn.

Suppose we added a positive rate of return R to the three period cake eating problem.
If Ra < 1, the analysis will be qualitatively unchanged. If Ra > 1, then period 3 con-
sumption will exceed period 2 consumption. So Lemma 1 is reversed: concave absolute
risk tolerance implies increasing marginal propensity to consume and convex absolute
risk tolerance implies decreasing marginal propensity to consume. Proposition 2 is also
reversed: sufficient conditions for continuous consumption are (1) a > 6 and convex
absolute risk tolerance; (2) a = 6; and (3) a < 6 and concave absolute risk tolerance.

Carroll and Kimball (1996) have shown that adding uncertainty tends to concavify
the consumption function. Thus in the intergenerational altruism case and whenever
a > 6, the sufficient conditions for continuous consumption will continue to hold when
uncertainty is added. However, in the hyperbolic discounting case, when a < 6, adding
uncertainty goes in the wrong direction and we no longer have a sufficient condition.!?

Finally, we note that liquidity constraints will certainly change these results. Harris
and Laibson (2001b) document the discontinuous consumption functions that arise with

uncertainty and liquidity constraints, even in the constant relative risk aversion case.
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