Clarendon Lectures, Lecture 3 General Theory of Directed Technical Change

Daron Acemoglu

October 24, 2007

Summary of Results so Far

- Importance of directed technical change.
- Relatively strong results on the equilibrium direction of technical change.
- Implications for the evolution of skill bias of technology.
- But results derived under two sets of special assumptions:
 - 1. Constant elasticity of substitution production functions.
 - 2. "Standard baggage" of endogenous growth (implicit linearity, Dixit-Stiglitz preferences, factor-augmenting technologies).
- How general are the insights?

This Lecture

- Main insights will hold very generally.
- Useful to distinguish between:
 - 1. relative bias: about shifts of relative demand curves
 - 2. absolute bias: about shifts of factor demands
- Results so far about relative bias.
- Main results:
 - 1. Theorems on relative bias can be generalized, but only to some degree.
 - 2. Much more general theorems on absolute bias.

Plan

- First introduce a class of environments where we can study bias of technology.
- Then generalize results on relative bias and show their limitations.
- Most important results: weak and strong theorems on absolute bias.
- Main takeaway message: under fairly reasonable conditions, factor demand curves will be upward sloping!

Basic Environment

- Static economy consisting of a unique final good (dynamics not central to the message here).
- N+1 factors of production, Z and $L=(L_1,...,L_N)$.
- Inelastic supplies: $\bar{Z} \in \mathbb{R}_+$ and $\bar{L} \in \mathbb{R}_+^N$.
- Main comparative statics: changing \bar{Z} .
- Representative household with preferences defined over the consumption of the final good.
- ullet A continuum of firms (final good producers) denoted by the set \mathcal{F} , each with an identical production function.
- Normalize the measure of \mathcal{F} , $|\mathcal{F}|$, to 1.
- The price of the final good is also normalized to 1.

Alternative Economies

- Consider four different environments:
 - 1. Economy D: Fully decentralized. Technologies chosen by firms themselves.
 - 2. Economy C: Centralized. Technology decided by a centralized agency (taking firms' profit maximization is given).
 - 3. Economy M: Monopoly. Technology decided by a profit-maximizing technology monopolist.
 - 4. Economy O: Oligopoly. Technology decided by a set of (potentially competing) oligopolist.

Economy D

- For benchmark (not the most realistic economy for technology choice).
- ullet Each firm $i \in \mathcal{F}$ has access to a production function

$$Y^i = G(Z^i, L^i, \theta^i),$$

- $Z^i \in \mathcal{Z} \subset \mathbb{R}_+, L^i \in \mathcal{L} \subset \mathbb{R}_+^N$
- ullet $\theta^i \in \Theta \subset \mathbb{R}^K$ is the measure of technology.
- \bullet G: production function (throughout assumed to be twice differentiable).
- The cost of technology $\theta \in \Theta$ in terms of final goods is $C(\theta)$.

• Each final good producer (firm) maximizes profits:

$$\max_{Z^i \in \mathcal{Z}, L^i \in \mathcal{L}, \theta_i \in \Theta} \pi(Z^i, L^i, \theta^i) = G(Z^i, L^i, \theta^i) - w_Z Z^i - \sum_{j=1}^N w_{Lj} L^i_j - C\left(\theta^i\right),$$

- w_Z is the price of factor Z and w_{Lj} is the price of factor L_j for j=1,...,N.
- All factor prices taken as given by firms.
- ullet The vector of prices for factors L denoted by w_L .
- Market clearing:

$$\int_{i\in\mathcal{F}}Z^idi\leq \bar{Z} \text{ and } \int_{i\in\mathcal{F}}L^i_jdi\leq \bar{L}_j \text{ for } j=1,...,N.$$

Definition 1 An equilibrium in Economy D is a set of decisions $\{Z^i, L^i, \theta^i\}_{i \in \mathcal{F}}$ and factor prices (w_Z, w_L) such that $\{Z^i, L^i, \theta^i\}_{i \in \mathcal{F}}$ maximize profits given prices (w_Z, w_L) and market clearing conditions hold.

- Any θ^i that is part of the set of equilibrium allocations, $\left\{Z^i, L^i, \theta^i\right\}_{i \in \mathcal{F}}$, is an equilibrium technology.
- Let us also define the net production function :

$$F(Z^{i}, L^{i}, \theta^{i}) \equiv G(Z^{i}, L^{i}, \theta^{i}) - C(\theta^{i}).$$

- **Assumption 1** Either $F(Z^i,L^i,\theta^i)$ is jointly strictly concave in (Z^i,L^i,θ^i) and increasing in (Z^i,L^i) , and \mathcal{Z} , \mathcal{L} and Θ are convex; or $F(Z^i,L^i,\theta^i)$ is increasing in (Z^i,L^i) and exhibits constant returns to scale in (Z^i,L^i,θ^i) , and we have $(\bar{Z},\bar{L})\in\mathcal{Z}\times\mathcal{L}$.
 - Main problem with Economy D: Assumption 1 overly restrictive.
 - It requires concavity (strict concavity or constant returns to scale) jointly in the factors of production and technology.

• Equilibrium characterization and welfare theorems:

Proposition 1 Suppose Assumption 1 holds. Then any equilibrium technology θ in Economy D is a solution to

$$\max_{\theta' \in \Theta} F(\bar{Z}, \bar{L}, \theta'), \tag{1}$$

and any solution to this problem is an equilibrium technology.

ullet Equilibrium factor prices given by the marginal products of G or F.

$$w_Z = \partial G(\bar{Z}, \bar{L}, \theta) / \partial Z = \partial F(\bar{Z}, \bar{L}, \theta) / \partial Z$$

and

$$w_{Lj} = \partial G(\bar{Z}, \bar{L}, \theta) / \partial L_j = \partial F(\bar{Z}, \bar{L}, \theta) / \partial L_j$$

for
$$j = 1, ..., N$$

Economy C

- Now assume that firms maximize profits, but technologies chosen by a "welfare-maximizing" centralized research firm.
- Useful as an introduction to the more realistic models with monopoly and oligopoly technology suppliers.
- The research firm chooses a single technology θ and makes it available to all firms (single technology for simplicity).
- Notice that this will typically not give the social (Pareto) optimum, since employment decisions controlled by different agents.

• The maximization problem of each final good producer is

$$\max_{Z^i \in \mathcal{Z}, L^i \in \mathcal{L}} \pi(Z^i, L^i, \theta) = G(Z^i, L^i, \theta) - w_Z Z^i - \sum_{j=1}^N w_{Lj} L_j^i.$$

- Notice: in contrast to Economy D, final good producers are only maximizing with respect to (Z^i, L^i) , not with respect to θ^i .
- The objective of the research firm is to maximize total net output:

$$\max_{\theta \in \Theta} \Pi(\theta) = \int_0^1 G(Z^i, L^i, \theta) di - C(\theta).$$

Definition 2 An equilibrium in Economy C is a set of firm decisions $\{Z^i, L^i\}_{i \in \mathcal{F}}$, technology choice θ and factor prices (w_Z, w_L) such that $\{Z^i, L^i\}_{i \in \mathcal{F}}$ maximize profits given (w_Z, w_L) and θ , market clearing conditions hold, and the technology choice for the research firm, θ , maximizes its objective function.

- Major difference: we only need a weaker version of Assumption 1
- Concavity only in (Z, L):
 - **Assumption 2** Either $G(Z^i,L^i,\theta^i)$ is jointly strictly concave and increasing in (Z^i,L^i) and $\mathcal Z$ and $\mathcal L$ are convex; or $G(Z^i,L^i,\theta^i)$ is increasing and exhibits constant returns to scale in (Z^i,L^i) , and we have $(\bar Z,\bar L)\in\mathcal Z\times\mathcal L$.

Proposition 2 Suppose Assumption 2 holds. Then any equilibrium technology θ in Economy C is a solution to

$$\max_{\theta' \in \Theta} F(\bar{Z}, \bar{L}, \theta') \equiv G(\bar{Z}, \bar{L}, \theta') - C(\theta')$$

and any solution to this problem is an equilibrium technology.

- Most important novel feature: while in Economy D the function $F(\bar{Z}, \bar{L}, \theta)$ is jointly concave in (Z, θ) , the same is **not** true in Economy C.
- As in Economy D, equilibrium factor prices are given by

$$w_Z = \partial G(\bar{Z}, \bar{L}, \theta) / \partial Z = \partial F(\bar{Z}, \bar{L}, \theta) / \partial Z$$

and

$$w_{Lj} = \partial G(\bar{Z}, \bar{L}, \theta) / \partial L_j = \partial F(\bar{Z}, \bar{L}, \theta) / \partial L_j$$

for
$$j = 1, ..., N$$
.

Economy M

- Now a profit-maximizing monopolist sells technologies to final good producers.
- To facilitate analysis, assume that

$$Y^{i} = \alpha^{-\alpha} (1 - \alpha)^{-1} \left[G(Z^{i}, L^{i}, \theta^{i}) \right]^{\alpha} q \left(\theta^{i} \right)^{1 - \alpha}.$$

- Here $G(Z^i, L^i, \theta^i)$ is a subcomponent of the production function.
- Productivity depends on the technology used, θ^i .
- The subcomponent G needs to be combined with an intermediate good embodying technology θ^i , denoted by $q\left(\theta^i\right)$.
- This intermediate good will be sold by the monopolist.
- \bullet The term $\alpha^{-\alpha}\left(1-\alpha\right)^{-1}$ is a convenient normalization.

- The monopolist can create technology θ at cost $C\left(\theta\right)$ from the technology menu.
- Once θ is created, the technology monopolist can produce the intermediate good embodying technology θ at constant per unit cost normalized to $1-\alpha$ unit of the final good.
- It can then set a (linear) price per unit of the intermediate good of type θ , denoted by χ .
- All factor markets are again competitive, and each firm takes the available technology, θ , and the price of the intermediate good embodying this technology, χ , as given.

• Final good producers' maximization problem:

$$\max_{\substack{Z^i \in \mathcal{Z}, L^i \in \mathcal{L}, \\ q(\theta) > 0}} \alpha^{-\alpha} (1 - \alpha)^{-1} \left[G(Z^i, L^i, \theta) \right]^{\alpha} q(\theta)^{1 - \alpha} - w_Z Z^i - \sum_{j=1}^N w_{Lj} L_j^i - \chi q(\theta),$$

ullet Inverse demand for intermediates of type θ as a function of its price, χ :

$$q^{i}\left(\theta,\chi,Z^{i},L^{i}\right) = \alpha^{-1}G(Z^{i},L^{i},\theta)\chi^{-1/\alpha}.$$

Isoelastic inverse demand.

• The monopolist's maximization problem:

$$\max_{\theta,\chi,\left[q^{i}\left(\theta,\chi,Z^{i},L^{i}\right)\right]_{i\in\mathcal{F}}}\Pi=\left(\chi-\left(1-\alpha\right)\right)\int_{i\in\mathcal{F}}q^{i}\left(\theta,\chi,Z^{i},L^{i}\right)di-C\left(\theta\right)$$

subject to the inverse demand curve.

Definition 3 An equilibrium in Economy M is a set of firm decisions $\left\{Z^i,L^i,q^i\left(\theta,\chi,Z^i,L^i\right)\right\}_{i\in\mathcal{F}}$, technology choice θ , and factor prices (w_Z,w_L) such that $\left\{Z^i,L^i,q^i\left(\theta,\chi,Z^i,L^i\right)\right\}_{i\in\mathcal{F}}$ maximizes profits given (w_Z,w_L) and technology θ , market clearing conditions hold, and the technology choice and pricing decision of the monopolist, (θ,χ) , maximize monopoly profits subject to the inverse demand curve.

• As in Economy C, factor demands and technology are decided by **different agents**; the former by the final good producers, the latter by the technology monopolist.

- Note that the inverse demand function has constant elasticity.
- Profit-maximizing price will be a constant markup over marginal cost

$$\chi = 1$$

- Consequently, $q^i\left(\theta\right)=q^i\left(\theta,\chi=1,\bar{Z},\bar{L}\right)=\alpha^{-1}G(\bar{Z},\bar{L},\theta)$ for all $i\in\mathcal{F}$.
- Therefore, the monopolist's problem becomes

$$\max_{\theta \in \Theta} \Pi(\theta) = G(\bar{Z}, \bar{L}, \theta) - C(\theta).$$

Proposition 3 Suppose Assumption 2 holds. Then any equilibrium technology θ in Economy M is a solution to

$$\max_{\theta' \in \Theta} F(\bar{Z}, \bar{L}, \theta') \equiv G(\bar{Z}, \bar{L}, \theta') - C(\theta')$$

and any solution to this problem is an equilibrium technology.

• Relative to Economies D and C, the presence of the monopoly markup implies greater distortions in this economy.

- However, qualitatively equilibrium similar to that in Economy C.
- It is given by the maximization of

$$F(\bar{Z},\bar{L},\theta) \equiv G(\bar{Z},\bar{L},\theta) - C(\theta)$$

- Most important: as in Economy C, $F(\bar{Z}, \bar{L}, \theta)$ need **not be concave** in (Z, θ) , even in the neighborhood of the equilibrium.
- Factor prices again given by:

$$w_Z = \partial G(\bar{Z}, \bar{L}, \theta) / \partial Z = \partial F(\bar{Z}, \bar{L}, \theta) / \partial Z$$

and

$$w_{Lj} = \partial G(\bar{Z}, \bar{L}, \theta) / \partial L_j = \partial F(\bar{Z}, \bar{L}, \theta) / \partial L_j$$

for j = 1, ..., N.

Economy O

- Same as Economy M, except that multiple technologies supplied by competing oligopolists.
- ullet Let $heta^i$ be the vector $heta^i \equiv ig(heta^i_1,..., heta^i_Sig)$.
- Suppose that output is now given by

$$Y^{i} = \alpha^{-\alpha} (1 - \alpha)^{-1} \left[G(Z^{i}, L^{i}, \theta^{i}) \right]^{\alpha} \sum_{s=1}^{S} q_{s} \left(\theta_{s}^{i} \right)^{1 - \alpha},$$

- $\theta_s^i \in \Theta_s \subset \mathbb{R}^{K_s}$: technology supplied by technology producer s=1,...,S;
- $q_s\left(\theta_s^i\right)$: intermediate good produced and sold by technology producer s, embodying technology θ_s^i .

• Essentially the same result as in Economy M.

Proposition 4 Suppose Assumption 2 holds. Then any equilibrium technology in Economy O is a vector $(\theta_1^*, ..., \theta_S^*)$ such that θ_s^* is solution to

$$\max_{\theta_s \in \Theta_s} G(\bar{Z}, \bar{L}, \theta_1^*, ..., \theta_s, ..., \theta_S^*) - C_s(\theta_s)$$

for each s = 1, ..., S, and any such vector gives an equilibrium technology.

- Main difference: equilibrium technology no longer given by maximization, but by a fixed point problem.
- Nevertheless, general insights continue to apply.

Relative Bias

- Let us first study relative bias.
- ullet Two factors Z and L.
- Defined factor prices as:

$$w_{Z}\left(Z,L,\theta
ight)=rac{\partial G\left(Z,L, heta
ight)}{\partial Z} ext{ and } w_{L}\left(Z,L, heta
ight)=rac{\partial G\left(Z,L, heta
ight)}{\partial L},$$

Definitions

Definition 4 An increase in technology θ_j for j=1,...,K is **relatively biased** towards factor Z at $(\bar{Z},\bar{L},\theta) \in \mathcal{Z} \times \mathcal{L} \times \Theta$ if $\partial \left(w_Z/w_L\right)/\partial \theta_j \geq 0$.

Definition 5 Denote the equilibrium technology at factor supplies $(\bar{Z},\bar{L})\in\mathcal{Z}\times\mathcal{L}$ by θ^* (\bar{Z},\bar{L}) , and assume that $\partial\theta_j^*/\partial Z$ exists at (\bar{Z},\bar{L}) for all for all j=1,...,K. Then there is **weak relative equilibrium bias** at $(\bar{Z},\bar{L},\theta^*$ $(\bar{Z},\bar{L}))$ if

$$\sum_{j=1}^{K} \frac{\partial \left(w_Z/w_L\right)}{\partial \theta_j} \frac{\partial \theta_j^*}{\partial Z} \ge 0.$$

Definition 6 Denote the equilibrium technology at factor supplies $(\bar{Z},\bar{L})\in\mathcal{Z}\times\mathcal{L}$ by θ^* (\bar{Z},\bar{L}) , and assume that $\partial\theta_j^*/\partial Z$ exists at (\bar{Z},\bar{L}) for all j=1,...,K. Then there is **strong relative equilibrium bias** at $(\bar{Z},\bar{L},\theta^*$ $(\bar{Z},\bar{L}))$ if

$$\frac{d\left(w_{Z}/w_{L}\right)}{dZ} = \frac{\partial\left(w_{Z}/w_{L}\right)}{\partial Z} + \sum_{j=1}^{K} \frac{\partial\left(w_{Z}/w_{L}\right)}{\partial\theta_{j}} \frac{\partial\theta_{j}^{*}}{\partial Z} > 0.$$

Generalized Relative Bias Theorem

Theorem 1 Consider Economy C, M or O with two factors, Z,L, and two factor-augmenting technologies, A_Z,A_L . Assume that $G\left(A_ZZ,A_LL\right)$ is twice differentiable, concave and homothetic, and the cost of producing technologies $C\left(A_Z,A_L\right)$, is twice differentiable, strictly convex and homothetic. Let $\sigma=-\left.\frac{\partial\ln(Z/L)}{\partial\ln(w_Z/w_L)}\right|_{\frac{A_Z}{A_L}}$ be the (local) elasticity of substitution between Z and L, and $\delta=\frac{\partial\ln(C_Z/C_L)}{\partial\ln(A_Z/A_L)}$. Then:

$$\frac{\partial \ln \left(A_Z/A_L \right)^*}{\partial \ln \left(Z/L \right)} = \frac{\sigma - 1}{1 + \sigma \delta}, \text{ and }$$

$$\frac{\partial \ln (w_Z/w_L)}{\partial \ln (A_Z/A_L)} \frac{\partial \ln (A_Z/A_L)^*}{\partial \ln (Z/L)} \ge 0,$$

so that there is always weak relative equilibrium bias. Moreover,

$$\frac{d\ln(w_Z/w_L)}{d\ln(Z/L)} = \frac{\sigma - 2 - \delta}{1 + \sigma\delta},$$

so that there is **strong relative equilibrium bias** if and only if $\sigma - 2 - \delta > 0$.

Idea of the Proof

- Essentially the same as the simple example in Lecture 1.
- Locally, the economy behaves as if the elasticity of substitution is constant.
- Important that the result is for Economy, C, M or O, since the maximization problem choosing all of Z, L, A_Z and A_L is **not concave**.
- In fact, this non-concavity is essential for strong bias as we will see shortly.

Can This Result Be Generalized Further?

- None of the assumptions of Theorem 1 can be relaxed (for sufficiency).
- In particular, with non-factor augmenting technologies, increase in relative supply of Z can induced technological changes biased against Z.
- This does not mean that this "contrarian" result will apply in general.
- But it does mean that we cannot guarantee induced biased to go in the "right direction".

Counterexample 1

Suppose

$$G(Z, L, \theta) = \left[Z^{\theta} + L^{\theta}\right]^{1/\theta}$$

and $C(\theta)$ convex and differentiable.

• The choice of θ again maximizes $F\left(Z,L,\theta\right)\equiv G\left(Z,L,\theta\right)-C\left(\theta\right)$:

$$\partial G(\bar{Z}, \bar{L}, \theta^*) / \partial \theta - \partial C(\theta^*) / \partial \theta = 0$$

and

$$\partial^{2}G\left(\bar{Z},\bar{L},\theta^{*}\right)/\partial\theta^{2}-\partial^{2}C\left(\theta^{*}\right)/\partial\theta^{2}<0$$

A counterexample would correspond to a situation where

$$\Delta \left(w_Z / w_L \right) \equiv \frac{\partial \left(w_Z / w_L \right)}{\partial \theta} \frac{\partial \theta^*}{\partial Z} = -\frac{\partial \left(w_Z / w_L \right)}{\partial \theta} \frac{\partial^2 F / \partial \theta \partial Z}{\partial^2 F / \partial \theta^2} < 0.$$

Counterexample 1 (continued)

• Here:

$$w_Z/w_L = (Z/L)^{\theta-1}$$

increasing in θ as long as Z > L, so that higher θ is relatively biased towards Z.

- Now choose $C\left(\cdot\right)$ such that θ^* is sufficiently small, e.g., $\bar{L}=1$, $\bar{Z}=2$, and $\theta^*=0.1$.
- In this case, it can be verified that $\partial^2 F\left(\bar{Z},\bar{L},\theta^*\right)/\partial\theta\partial Z<0$.
- From the second-order conditions $\partial^2 F/\partial \theta^2 < 0$.
- Therefore $(\partial^2 F/\partial\theta\partial Z) \times (\partial^2 F/\partial\theta^2) > 0$.
- Conclusion: an increase in Z/L reduces θ^* and induces technological change technology relatively biased against Z.

Counterexample 2

Suppose

$$G(Z, L, \theta) = Z\theta + L\theta^2,$$

and

$$C(\theta) = C_0 \theta^2 / 2$$

for all $\theta \in \Theta = \mathbb{R}$ and $L \in \mathcal{L} \subset (0, C_0/2)$.

• The equilibrium technology θ^* is given by

$$\theta^* \left(\bar{Z}, \bar{L} \right) = \frac{\bar{Z}}{C_0 - 2\bar{L}},$$

- ullet This is increasing in \bar{Z} for any $\bar{L}\in\mathcal{L}.$
- The relative price of factor Z is decreasing in θ :

$$w_Z(\theta)/w_L(\theta) = \theta^{-1}$$

• $\bar{Z}\uparrow\Rightarrow$ technological change relatively biased against Z.

Why the Counterexamples?

- In both cases, the increase in \bar{Z} increases w_Z (at given factor proportions).
- ullet But it increases w_L even more so that w_Z/w_L declines at given factor proportions.
- Perhaps looking at absolute bias more natural.

Absolute Bias: Definitions

• Straightforward definitions of absolute bias (in light of the definitions for relative bias above).

Definition 7 An increase in technology θ_j for j=1,...,K is absolutely biased towards factor Z at $(\bar{Z},\bar{L}) \in \mathcal{Z} \times \mathcal{L}$ if $\partial w_Z/\partial \theta_j \geq 0$.

Definition 8 Denote the equilibrium technology at factor supplies $(\bar{Z},\bar{L})\in\mathcal{Z}\times\mathcal{L}$ by $\theta^*\left(\bar{Z},\bar{L}\right)$ and assume that $\partial\theta_j^*/\partial Z$ exists at (\bar{Z},\bar{L}) for all j=1,...,K. Then there is **weak absolute equilibrium bias** at $(\bar{Z},\bar{L},\theta^*\left(\bar{Z},\bar{L}\right))$ if

$$\sum_{j=1}^{K} \frac{\partial w_Z}{\partial \theta_j} \frac{\partial \theta_j^*}{\partial Z} \ge 0.$$

Absolute Bias: Local Theorem

Theorem 2 Consider Economy D, C or M. Suppose that Θ is a convex subset of \mathbb{R}^K and $F(Z,L,\theta)$ is twice continuously differentiable in (Z,θ) . Let the equilibrium technology at factor supplies (\bar{Z},\bar{L}) be $\theta^*(\bar{Z},\bar{L})$ and assume that $\theta^*(\bar{Z},\bar{L})$ is in the interior of Θ and that $\partial \theta_j^*/\partial Z$ exists at (\bar{Z},\bar{L}) for all j=1,...,K. Then, there is **weak absolute equilibrium bias** at all $(\bar{Z},\bar{L})\in\mathcal{Z}\times\mathcal{L}$, i.e.,

$$\sum_{j=1}^K \frac{\partial w_Z}{\partial \theta_j} \frac{\partial \theta_j^*}{\partial Z} \ge 0 \text{ for all } (\bar{Z}, \bar{L}) \in \mathcal{Z} \times \mathcal{L},$$

with strict inequality if $\partial \theta_j^*/\partial Z \neq 0$ for some j=1,...,K.

Sketch of the Proof

- The result follows from the Implicit Function Theorem.
- Consider the special case where $\theta \in \Theta \subset \mathbb{R}$.
- Since θ^* is in the interior of Θ , we have $\partial F/\partial \theta = 0$ and $\partial^2 F/\partial \theta^2 \leq 0$.
- The Implicit Function Theorem then implies:

$$\frac{\partial \theta^*}{\partial Z} = -\frac{\partial^2 F/\partial \theta \partial Z}{\partial^2 F/\partial \theta^2} = -\frac{\partial w_Z/\partial \theta}{\partial^2 F/\partial \theta^2},\tag{2}$$

• Therefore:

$$\frac{\partial w_Z}{\partial \theta} \frac{\partial \theta^*}{\partial Z} = -\frac{\left(\partial w_Z/\partial \theta\right)^2}{\partial^2 F/\partial \theta^2} \ge 0,\tag{3}$$

establishing the weak inequality.

- Moreover, if $\partial \theta^*/\partial Z \neq 0$, then $\partial w_Z/\partial \theta \neq 0$, so the strict inequality applies.
- The general result somewhat more involved, but a similar intuition.

Intuition

- Again the market size effect.
- ullet Locally, an increase in Z makes technologies that the value of marginal product of Z more profitable.
- The result applies in all four economies.
- Once again, similarity to LeChatelier Principle.
- Major differences to come soon.

Local Bias Does Not Imply Global Bias

- Theorem 2 is for small changes.
- A natural question is whether it also holds for "large" (non-infinitesimal) changes.
- Interestingly, the answer is No.
- The reason is intuitive: technological change biased towards an particular factor at some factor proportion may be biased against that factor at some other (not too far) factor proportion.
- The next example illustrates this.

No Global Bias without Further Assumptions

- Suppose that $F\left(Z,\theta\right)=Z+\left(Z-Z^2/8\right)\theta-C\left(\theta\right)$ and $Z\in\mathcal{Z}=\left[0,6\right]$ and $\Theta=\left[0,2\right]$ so that F is everywhere increasing in Z.
- Suppose also that $C\left(\theta\right)$ is a strictly convex and differentiable function with $C'\left(0\right)=0$ and $C'\left(2\right)=\infty$.
- Note that $F(Z,\theta)$ satisfies all the conditions of Theorem 2 at all points $Z \in \mathcal{Z} = [0,6]$ (since F is strictly concave in θ everywhere on $\mathcal{Z} \times \Theta = [0,6] \times [0,2]$).

No Global Bias without Further Assumptions (continued)

- Now consider $\bar{Z}=1$ and $\bar{Z}'=5$ as two potential supply levels of factor Z.
- It can be easily verified that θ^* (1) satisfies C' (θ^* (1)) = 7/8 while θ^* (5) is given by C' (θ^* (5)) = 15/8
- The strict convexity of $C(\theta)$ implies that $\theta^*(5) > \theta^*(1)$.
- Moreover, $w_Z(Z, \theta) = 1 + (1 Z/4) \theta$, therefore $w_Z(5, \theta^*(5)) = 1 \theta^*(5) / 4 < 1 \theta^*(1) / 4 = w_Z(5, \theta^*(1))$.
- Intuition: reversal in the meaning of bias.

A Global Theorem

- For a global result, we need to rule out "reversals in the meaning of bias"
- Somewhat stronger assumptions are necessary.
- Fortunately, reasonable assumptions suffice for this purpose.
- What we need to ensure is that "complements" do not become "substitutes".
- Natural assumption: supermodularity.

Globality

Definition 9 Let θ^* be the equilibrium technology choice in an economy with factor supplies (\bar{Z}, \bar{L}) . Then there is **global absolute equilibrium bias** if for any $\bar{Z}', \bar{Z} \in \mathcal{Z}, \bar{Z}' \geq \bar{Z}$ implies that

$$w_Z\left(\tilde{Z},\bar{L},\theta^*\left(\bar{Z}',\bar{L}\right)\right) \geq w_Z\left(\tilde{Z},\bar{L},\theta^*\left(\bar{Z},\bar{L}\right)\right) \text{ for all } \tilde{Z} \in \mathcal{Z} \text{ and } \bar{L} \in \mathcal{L}.$$

- Two notions of globality.
 - 1. the increase from \bar{Z} to \bar{Z}' is not limited to small changes;
 - 2. the change in technology induced by this increase is required to raise the price of factor Z for all $\tilde{Z} \in \mathcal{Z}$.
- The same economic forces will take care of both types of globality.

Supermodularity and Increasing Differences

Definition 10 Let $x=(x_1,...,x_n)$ be a vector in $X\subset\mathbb{R}^n$, and suppose that the real-valued function f(x) is twice continuously differentiable in x. Then f(x) is supermodular on X if and only if $\partial^2 f(x)/\partial x_i \partial x_{i'} \geq 0$ for all $x\in X$ and for all $i\neq i'$.

Definition 11 Let X and T be partially ordered sets. Then a function f(x,t) defined on a subset S of $X \times T$ has **increasing differences (strict increasing differences)** in (x,t), if for all t'' > t, f(x,t'') - f(x,t) is nondecreasing (increasing) in x.

Absolute Bias: The Global Theorem

Theorem 3 Suppose that Θ is a lattice, let $\bar{\mathcal{Z}}$ be the convex hull of \mathcal{Z} , let $\theta^*\left(\bar{Z},\bar{L}\right)$ be the equilibrium technology at factor proportions (\bar{Z},\bar{L}) , and suppose that $F\left(Z,L,\theta\right)$ is continuously differentiable in Z, supermodular in θ on Θ for all $Z\in\bar{\mathcal{Z}}$ and $L\in\mathcal{L}$, and exhibits strictly increasing differences in (Z,θ) on $\bar{Z}\times\Theta$ for all $L\in\mathcal{L}$, then there is **global absolute equilibrium bias**, i.e., for any $\bar{Z}',\bar{Z}\in\mathcal{Z},\bar{Z}'\geq\bar{Z}$ implies

$$heta^*\left(ar{Z}',ar{L}
ight) \geq heta^*\left(ar{Z},ar{L}
ight) ext{ for all } ar{L}{\in}\mathcal{L}$$
 ,

and

$$w_Z\left(ilde{Z},ar{L}, heta^*\left(ar{Z}',ar{L}
ight)
ight)\geq w_Z\left(ilde{Z},ar{L}, heta^*\left(ar{Z},ar{L}
ight)
ight) ext{ for all } ilde{Z}\in\mathcal{Z} ext{ and } ar{L}\in\mathcal{L}$$
,

with strict inequality if $\theta^*\left(\bar{Z}',\bar{L}\right) \neq \theta^*\left(\bar{Z},\bar{L}\right)$.

Proof Idea

- The proof basically follows from Topkis's Monotone Comparative Statics Theorem.
- An increase in Z is complementary to technologies that are biased towards Z.
- Therefore, the increase in Z will cause globally (weak) absolute bias.

Global Absolute Bias with Multiple Factors

- The same result generalizes to the case where the supply of a subset of complementary factors increases.
- In this case, technology becomes biased towards all of these factors.
- Let now Z denote a vector of inputs.

Theorem 4 Consider Economy D, C or M. Suppose that \mathcal{Z} and Θ are lattices, let $\bar{\mathcal{Z}}$ be the convex hull of \mathcal{Z} , let $\theta\left(\bar{Z},\bar{L}\right)$ be the equilibrium technology at factor proportions (\bar{Z},\bar{L}) , and suppose that $F\left(Z,L,\theta\right)$ is continuously differentiable in Z, supermodular in θ on Θ for all $Z\in\bar{\mathcal{Z}}$ and $L\in\mathcal{L}$, and exhibits strictly increasing differences in (Z,θ) on $\bar{\mathcal{Z}}\times\Theta$ for all $L\in\mathcal{L}$, then there is **global absolute equilibrium bias**, i.e., for any $\bar{Z}',\bar{Z}\in\mathcal{Z},\bar{Z}'\geq\bar{Z}$ implies

$$heta\left(ar{Z}',ar{L}
ight) \geq heta\left(ar{Z},ar{L}
ight) \; ext{ for all } ar{L} \in \mathcal{L}$$

and

$$w_{Zj}\left(\tilde{Z},\bar{L},\theta\left(\bar{Z}',\bar{L}\right)\right) \geq w_{Zj}\left(\tilde{Z},\bar{L},\theta\left(\bar{Z},\bar{L}\right)\right)$$
 for all $(\tilde{Z},\bar{L}) \in \mathcal{Z} \times \mathcal{L}$ and for all j .

Strong Bias

- Much more interesting and surprising are the results on strong bias.
- The main result will show that strong bias is quite ubiquitous.

Definition of Strong Bias

Definition 12 Denote the equilibrium technology at factor supplies $(\bar{Z},\bar{L})\in\mathcal{Z}\times\mathcal{L}$ by $\theta^*\left(\bar{Z},\bar{L}\right)$ and suppose that $\partial\theta_j^*/\partial Z$ exists at (\bar{Z},\bar{L}) for all j=1,...,K. Then there is **strong absolute equilibrium bias** at $(\bar{Z},\bar{L})\in\mathcal{Z}\times\mathcal{L}$ if

$$\frac{dw_Z}{dZ} = \frac{\partial w_Z}{\partial Z} + \sum_{j=1}^K \frac{\partial w_Z}{\partial \theta_j} \frac{\partial \theta_j^*}{\partial Z} > 0.$$

Main Theorem

Theorem 5 Consider Economy D, C or M. Suppose that Θ is a convex subset of \mathbb{R}^K , F is twice continuously differentiable in (Z,θ) , let $\theta^*\left(\bar{Z},\bar{L}\right)$ be the equilibrium technology at factor supplies (\bar{Z},\bar{L}) and assume that θ^* is in the interior of Θ and that $\partial \theta_j^*\left(\bar{Z},\bar{L}\right)/\partial Z$ exists at (\bar{Z},\bar{L}) for all j=1,...,K. Then there is **strong absolute equilibrium bias** at (\bar{Z},\bar{L}) if and only if $F\left(Z,L,\theta\right)$'s Hessian in (Z,θ) , $\nabla^2 F_{(Z,\theta)(Z,\theta)}$, is not negative semi-definite at $(\bar{Z},\bar{L},\theta^*\left(\bar{Z},\bar{L}\right))$.

Sketch of the Proof

- Let us again focus on the case where $\Theta \subset \mathbb{R}$.
- By hypothesis, $\partial F/\partial \theta = 0$, $\partial^2 F/\partial \theta^2 \leq 0$.
- Then the condition for strong absolute equilibrium bias can be written as:

$$\frac{dw_Z}{dZ} = \frac{\partial w_Z}{\partial Z} + \frac{\partial w_Z}{\partial \theta} \frac{\partial \theta^*}{\partial Z},$$

$$= \frac{\partial^2 F}{\partial Z^2} - \frac{\left(\partial^2 F/\partial \theta \partial Z\right)^2}{\partial^2 F/\partial \theta^2} > 0.$$

• From Assumption 1 or 2, F is concave in Z, so $\partial^2 F/\partial Z^2 \leq 0$, and from the fact that θ^* is a solution to the equilibrium maximization problem

$$\partial^2 F/\partial \theta^2 < 0.$$

Sketch of the Proof (continued)

• Then the fact that F's Hessian, $\nabla^2 F_{(Z,\theta)(Z,\theta)}$, is not negative semi-definite at $(\bar{Z},\bar{L},\theta^*(\bar{Z},\bar{L}))$ implies that

$$\frac{\partial^2 F}{\partial Z^2} \times \frac{\partial^2 F}{\partial \theta^2} < \left(\frac{\partial^2 F}{\partial Z \partial Z \theta}\right)^2,$$

- Since at the optimal technology choice $\partial^2 F/\partial\theta^2 < 0$, this immediately yields $dw_Z/dZ > 0$, establishing strong absolute bias at $(\bar{Z}, \bar{L}, \theta (\bar{Z}, \bar{L}))$.
- Conversely, if $\nabla^2 F_{(Z,\theta)(Z,\theta)}$ is negative semi-definite at $(\bar{Z},\bar{L},\theta^*(\bar{Z},\bar{L}))$, then the previous relationship does not hold and this together with $\partial^2 F/\partial\theta^2 < 0$ implies that $dw_Z/dZ \leq 0$.

Intuition

- When $F(Z, L, \theta)$ is not jointly concave in Z and θ , the equilibrium corresponds to a saddle point of F in the Z, θ space.
- This implies that there exists direction in which output and hence monopoly profits for technology suppliers can be increased.
- Nevertheless, the saddle point is an equilibrium, since Z and θ are chosen by different agents.
- ullet When Z changes by a small amount, then heta can be changed in the direction of ascent.
- ullet This not only increases output but also the marginal product of factor Z that has become more abundant.
- The result is an upward-sloping demand curve for Z.

Simple Example

- Let us suppose $\Theta=\mathbb{R}$ and $F\left(Z,L,\theta\right)=4Z^{1/2}+Z\theta-\theta^2/2+B\left(L\right)$ with the cost of creating new technologies incorporated into this function.
- Clearly F is not jointly concave in Z and θ (for Z>1) but is strictly concave in Z and θ individually.
- Consider a change from $\bar{Z}=1$ to $\bar{Z}=4$.
- The first-order necessary and sufficient condition for technology choice gives $\theta\left(\bar{Z},\bar{L}\right)=\theta\left(\bar{Z}\right)=\bar{Z}.$
- Therefore, $\theta\left(\bar{Z}=1\right)=1$ while $\theta\left(\bar{Z}=4\right)=4$.
- ullet Moreover, for any $ar{L}\in\mathcal{L}$, $w_{Z}\left(ar{Z},ar{L}, heta
 ight)=2Z^{-1/2}+ heta$
- Therefore, $w_Z\left(\bar{Z}=1,\bar{L},\theta\left(1\right)\right)=3< w_Z\left(\bar{Z}=4,\bar{L},\theta\left(4\right)\right)=5$, establishing strong (absolute) equilibrium bias between $\bar{Z}=1$ to $\bar{Z}=4$.

How Likely Is This?

- The key requirement is that technologies and factor demands are not decided by the same agent.
- Once we are in such an equilibrium situation, there is no guarantee that the equilibrium point corresponds to a global maximum.
- Thus the requirements are not very restrictive.
- ullet However, naturally, F cannot be globally concave in all of its arguments.
- Thus some degree of increasing returns is necessary.

How Likely Is This? (continued)

• Therefore an immediate corollary:

Corollary 1 Suppose that Θ is a convex subset of \mathbb{R}^K , F is twice continuously differentiable in (Z,θ) , let the equilibrium technology at factor supplies (\bar{Z},\bar{L}) be θ^* (\bar{Z},\bar{L}) , and assume that $\partial \theta_j^*/\partial Z$ exists at (\bar{Z},\bar{L}) for all j=1,...,K. Then there cannot be strong absolute equilibrium bias in Economy D.

- Intuitively, in Economy D, F must be negative semi-definite in Z and θ , since the same firms choose both Z and θ .
- ullet However, interestingly, one can construct examples where there is strong bias in Economy D if Θ is a finite set.

How Likely Is This? (continued)

- However, outside of Economy D, strong equilibrium bias easily possible.
- Let $C^2[B]$ denote the set of twice continuously differentiable functions over B.
- Let $\mathcal{C}^2_+[B] \subset \mathcal{C}^2[B]$ be the set of such functions that are strictly convex.
- Let $C_{-}^{2}[B] \subset C^{2}[B]$ be the set of such functions that are strictly concave in each of their arguments (though not necessarily jointly so).

Theorem 6 Suppose that $\Theta \subset \mathbb{R}$ and $\mathcal{Z} \subset \mathbb{R}_+$ are compact, and denote the equilibrium technology by θ^* , and for fixed $\bar{L} \in \mathcal{L}$, let $G\left(\bar{Z}, \bar{L}, \theta\right) \in \mathcal{C}^2_-\left[\mathcal{Z} \times \Theta\right]$. For each $C\left(\cdot\right) \in \mathcal{C}^2_+\left[\Theta\right]$, let $\mathcal{D}_C \subset \mathcal{C}^2_-\left[\Theta\right]$ be such that for all $G\left(\bar{Z}, \bar{L}, \theta\right) \in \mathcal{D}_C$ there is strong absolute equilibrium bias. Then we have:

- 1. For each $C(\cdot) \in \mathcal{C}^2_+[\Theta]$, \mathcal{D}_C is a nonempty open subset of $\mathcal{C}^2_-[\Theta]$.
- 2. Suppose that θ^* is an equilibrium technology for both $C_1(\cdot), C_2(\cdot) \in \mathcal{C}^2_+[\Theta]$ and that $\partial^2 C_1(\theta^*)/\partial \theta^2 < \partial^2 C_2(\theta^*)/\partial \theta^2$, then $\mathcal{D}_{C_2} \subset \mathcal{D}_{C_1}$ (and $\mathcal{D}_{C_2} \neq \mathcal{D}_{C_1}$).

Global Strong Bias

- In contrast to the weak bias absolute theorem, not much more is necessary for a global version of the strong absolute bias theorem.
- Technical intuition: Fundamental Theorem of Calculus.

Global Strong Bias Theorem

Theorem 7 Suppose that Θ is a convex subset of \mathbb{R}^K and that F is twice continuously differentiable in (Z,θ) . Let $\bar{Z},\bar{Z}'\in\mathcal{Z}$, with $\bar{Z}'>\bar{Z}$, $\bar{L}\in\mathcal{L}$, and let $\theta^*\left(\tilde{Z},\bar{L}\right)$ be the equilibrium technology at factor supplies $\left(\tilde{Z},\bar{L}\right)$ and assume that $\theta^*\left(\tilde{Z},\bar{L}\right)$ is in the interior of Θ and that $\partial\theta_j^*/\partial Z$ exists at $\left(\tilde{Z},\bar{L}\right)$ for all j=1,...,K and all $\tilde{Z}\in\left[\bar{Z},\bar{Z}'\right]$. Then there is **strong absolute equilibrium bias** at $\left(\left\{\bar{Z},\bar{Z}'\right\},\bar{L}\right)$ if $F\left(Z,L,\theta\right)$'s Hessian, $\nabla^2 F_{(Z,\theta)(Z,\theta)}$, fails to be negative semi-definite at $\left(\tilde{Z},\bar{L},\theta^*\left(\tilde{Z},\bar{L}\right)\right)$ for all $\tilde{Z}\in\left[\bar{Z},\bar{Z}'\right]$.

Conclusions

- Study of direction and bias of technology important both for practical and theoretical reasons.
- Surprisingly tractable framework and many strong results are possible.
- Most interestingly:
 - 1. In contrast to previous non-micro-founded models, a strong force towards induced bias in favor of factors becoming more abundant (weak bias theorems).
 - 2. Under fairly reasonable conditions, demand curves can slope upward (strong bias theorems).

Conclusions (continued)

- Many applications of endogenous bias:
 - 1. Endogenous skill bias (both recently and industry).
 - 2. Why is long-run technological change labor augmenting?
 - 3. Technological sources of unemployment persistence in Europe.
 - 4. Demographics and evolution on innovations in the pharmaceutical industry.
 - 5. A theory of cross-country income differences.
 - 6. Possible perspectives on "lost decades".
 - 7. The effect of international trade on the nature of innovation and on cross-country income differences.