Clarendon Lectures, Lecture 3 General Theory of Directed Technical Change

Daron Acemoglu

October 24, 2007

Summary of Results so Far

- Importance of directed technical change.
- Relatively strong results on the equilibrium direction of technical change.
- Implications for the evolution of skill bias of technology.
- But results derived under two sets of special assumptions:
	- 1. Constant elasticity of substitution production functions.
	- 2. "Standard baggage" of endogenous growth (implicit linearity, Dixit-Stiglitz preferences, factor-augmenting technologies).
- How general are the insights?

This Lecture

- Main insights will hold very generally.
- Useful to distinguish between:
	- 1. relative bias: about shifts of relative demand curves
	- 2. absolute bias: about shifts of factor demands
- Results so far about relative bias.
- Main results:
	- 1. Theorems on relative bias can be generalized, but only to some degree.
	- 2. Much more general theorems on absolute bias.

Plan

- First introduce a class of environments where we can study bias of technology.
- Then generalize results on relative bias and show their limitations.
- Most important results: weak and strong theorems on absolute bias.
- Main takeaway message: under fairly reasonable conditions, factor demand curves will be upward sloping!

Basic Environment

- Static economy consisting of a unique final good (dynamics not central to the message here).
- $N + 1$ factors of production, Z and $L = (L_1, ..., L_N)$.
- \bullet Inelastic supplies: $\bar{Z}\in\mathbb{R}_+$ and $\bar{L}\in\mathbb{R}_+^N$.
- Main comparative statics: changing \bar{Z} .
- Representative household with preferences defined over the consumption of the final good.
- A continuum of firms (final good producers) denoted by the set \mathcal{F} , each with an identical production function.
- Normalize the measure of \mathcal{F} , $|\mathcal{F}|$, to 1.
- The price of the final good is also normalized to 1.

Alternative Economies

- Consider four different environments:
	- 1. Economy D: Fully decentralized. Technologies chosen by firms themselves.
	- 2. Economy C: Centralized. Technology decided by a centralized agency (taking firms' profit maximization is given).
	- 3. Economy M: Monopoly. Technology decided by a profit-maximizing technology monopolist.
	- 4. Economy O: Oligopoly. Technology decided by a set of (potentially competing) oligopolist.

Economy D

- For benchmark (not the most realistic economy for technology choice).
- Each firm $i \in \mathcal{F}$ has access to a production function

 $Y^i=G(Z^i,L^i,\theta^i),$

- $\bullet\;\, Z^i\in\mathcal{Z}\subset\!\mathbb{R}_+, L^i\in\mathcal{L}\subset\!\mathbb{R}_+^N$ $+$
- $\theta^i \in \Theta \subset \mathbb{R}^K$ is the measure of technology.
- G : production function (throughout assumed to be twice differentiable).
- The cost of technology $\theta \in \Theta$ in terms of final goods is $C(\theta)$.

• Each final good producer (firm) maximizes profits:

$$
\max_{Z^i \in \mathcal{Z}, L^i \in \mathcal{L}, \theta_i \in \Theta} \pi(Z^i, L^i, \theta^i) = G(Z^i, L^i, \theta^i) - w_Z Z^i - \sum_{j=1}^N w_{Lj} L^i_j - C(\theta^i),
$$

- w_Z is the price of factor Z and w_{Lj} is the price of factor L_j for $j = 1, ..., N$.
- All factor prices taken as given by firms.
- The vector of prices for factors L denoted by w_L .
- Market clearing:

$$
\int_{i\in\mathcal{F}}Z^idi\leq \bar{Z} \text{ and } \int_{i\in\mathcal{F}}L^i_jdi\leq \bar{L}_j \text{ for } j=1,...,N.
$$

Definition 1 An equilibrium in Economy D is a set of decisions \mathbf{C} different \mathbf{C} $Z^i, L^i, \theta^i\}_{i \in \mathcal{F}}$ and factor prices (w_Z, w_L) such that $\{Z^i, L^i, \theta^i\}$ ª i∈F maximize profits given prices (w_Z, w_L) and market clearing conditions hold.

- Any θ^i that is part of the set of equilibrium allocations, $\{Z^i, L^i, \theta^i\}$ ª $_{i\in\mathcal{F}}$, is an equilibrium technology.
- Let us also define the net production function :

$$
F(Z^i, L^i, \theta^i) \equiv G(Z^i, L^i, \theta^i) - C(\theta^i).
$$

Assumption 1 Either $F(Z^i,L^i,\theta^i)$ is jointly strictly concave in (Z^i,L^i,θ^i) and increasing in (Z^i,L^i) , and ${\mathcal Z}$, ${\mathcal L}$ and Θ are convex; or $F(Z^i,L^i,\theta^i)$ is increasing in (Z^i,L^i) and exhibits constant returns to scale in (Z^i,L^i,θ^i) , and we have $(\bar{Z}, \bar{L}) \in \mathcal{Z} \times \mathcal{L}$.

- Main problem with Economy D: Assumption 1 overly restrictive.
- It requires concavity (strict concavity or constant returns to scale) jointly in the factors of production and technology.

• Equilibrium characterization and welfare theorems:

Proposition 1 Suppose Assumption 1 holds. Then any equilibrium technology θ in Economy D is a solution to

$$
\max_{\theta' \in \Theta} F(\bar{Z}, \bar{L}, \theta'),\tag{1}
$$

and any solution to this problem is an equilibrium technology.

• Equilibrium factor prices given by the marginal products of G or F .

$$
w_Z = \partial G(\bar{Z}, \bar{L}, \theta) / \partial Z = \partial F(\bar{Z}, \bar{L}, \theta) / \partial Z
$$

and

$$
w_{Lj} = \partial G(\bar{Z}, \bar{L}, \theta) / \partial L_j = \partial F(\bar{Z}, \bar{L}, \theta) / \partial L_j
$$

for $j = 1, ..., N$

Economy C

- Now assume that firms maximize profits, but technologies chosen by a "welfare-maximizing" centralized research firm.
- Useful as an introduction to the more realistic models with monopoly and oligopoly technology suppliers.
- The research firm chooses a single technology θ and makes it available to all firms (single technology for simplicity).
- Notice that this will typically not give the social (Pareto) optimum, since employment decisions controlled by different agents.

• The maximization problem of each final good producer is

$$
\max_{Z^i \in \mathcal{Z}, L^i \in \mathcal{L}} \pi(Z^i, L^i, \theta) = G(Z^i, L^i, \theta) - w_Z Z^i - \sum_{j=1}^N w_{Lj} L^i_j.
$$

- Notice: in contrast to Economy D, final good producers are only maximizing with respect to (Z^i, L^i) $\frac{1}{\sqrt{2}}$, not with respect to θ^i .
- The objective of the research firm is to maximize total net output:

$$
\max_{\theta \in \Theta} \Pi(\theta) = \int_0^1 G(Z^i, L^i, \theta) di - C(\theta).
$$

Definition 2 An equilibrium in Economy C is a set of firm decisions \mathbf{C} definition $\left\{Z^{i},L^{i}\right\}_{i\in\mathcal{F}}$, technology choice θ and factor prices (w_{Z},w_{L}) such that $\left\{ Z^{i},L^{i}\right\} _{i\in\mathcal{F}}$ maximize profits given $\left(w_{Z},w_{L}\right)$ and θ , market clearing conditions hold, and the technology choice for the research firm, θ , maximizes its objective function.

- Major difference: we only need a weaker version of Assumption 1
- Concavity only in (Z, L) :

Assumption 2 Either $G(Z^i,L^i,\theta^i)$ is jointly strictly concave and increasing in (Z^i,L^i) and ${\mathcal{Z}}$ and ${\mathcal{L}}$ are convex; or $G(Z^i,L^i,\theta^i)$ is increasing and exhibits constant returns to scale in (Z^i,L^i) , and we have $(\bar{Z}, \bar{L}) \in \mathcal{Z} \times \mathcal{L}$.

Proposition 2 Suppose Assumption 2 holds. Then any equilibrium technology θ in Economy C is a solution to

$$
\max_{\theta' \in \Theta} F(\bar{Z}, \bar{L}, \theta') \equiv G(\bar{Z}, \bar{L}, \theta') - C(\theta')
$$

and any solution to this problem is an equilibrium technology.

- $\bullet\;$ Most important novel feature: while in Economy D the function $F(\bar Z,\bar L,\theta)$ is jointly concave in (Z, θ) , the same is **not** true in Economy C.
- As in Economy D, equilibrium factor prices are given by

$$
w_Z = \partial G(\bar{Z}, \bar{L}, \theta) / \partial Z = \partial F(\bar{Z}, \bar{L}, \theta) / \partial Z
$$

and

$$
w_{Lj} = \partial G(\bar{Z}, \bar{L}, \theta) / \partial L_j = \partial F(\bar{Z}, \bar{L}, \theta) / \partial L_j
$$

for $j = 1, ..., N$.

Economy M

- Now a profit-maximizing monopolist sells technologies to final good producers.
- To facilitate analysis, assume that

$$
Y^{i} = \alpha^{-\alpha} (1 - \alpha)^{-1} \left[G(Z^{i}, L^{i}, \theta^{i}) \right]^{\alpha} q \left(\theta^{i} \right)^{1 - \alpha}
$$

.

- Here $G(Z^i, L^i, \theta^i)$ is a subcomponent of the production function.
- Productivity depends on the technology used, $\theta^i.$
- $\bullet\,$ The subcomponent G needs to be combined with an intermediate good embodying technology θ^i , denoted by $q\left(\theta^i\right)$. $\frac{1}{2}$
- This intermediate good will be sold by the monopolist.
- \bullet The term $\alpha^{-\alpha}\left(1-\alpha\right)^{-1}$ is a convenient normalization.

- The monopolist can create technology θ at cost $C(\theta)$ from the technology menu.
- Once θ is created, the technology monopolist can produce the intermediate good embodying technology θ at constant per unit cost normalized to $1 - \alpha$ unit of the final good.
- It can then set a (linear) price per unit of the intermediate good of type θ , denoted by χ .
- All factor markets are again competitive, and each firm takes the available technology, θ , and the price of the intermediate good embodying this technology, χ , as given.

• Final good producers' maximization problem:

$$
\max_{\substack{Z^{i}\in\mathcal{Z},L^{i}\in\mathcal{L},\\q(\theta)\geq 0}}\alpha^{-\alpha}\left(1-\alpha\right)^{-1}\left[G(Z^{i},L^{i},\theta)\right]^{\alpha}q\left(\theta\right)^{1-\alpha}-w_{Z}Z^{i}-\sum_{j=1}^{N}w_{Lj}L_{j}^{i}-\chi q\left(\theta\right),
$$

• Inverse demand for intermediates of type θ as a function of its price, χ :

$$
q^i(\theta, \chi, Z^i, L^i) = \alpha^{-1} G(Z^i, L^i, \theta) \chi^{-1/\alpha}.
$$

• Isoelastic inverse demand.

• The monopolist's maximization problem:

$$
\max_{\theta, \chi, [q^i(\theta, \chi, Z^i, L^i)]_{i \in \mathcal{F}}} \Pi = (\chi - (1 - \alpha)) \int_{i \in \mathcal{F}} q^i (\theta, \chi, Z^i, L^i) di - C(\theta)
$$

subject to the inverse demand curve.

Definition 3 An equilibrium in Economy M is a set of firm decisions \mathbf{C} \mathbf{F} $\mathbf{$ $Z^i, L^i, q^i \left(\theta, \chi, Z^i, L^i \right) \}_{i \in \mathcal{F}}$, technology choice θ , and factor prices (w_Z, w_L) such that $\{Z^i, L^i, q^i(\theta, \chi, Z^i, L^i)\}_{i \in \mathcal{F}}$ maximizes profits given (w_Z, w_L) and technology θ , market clearing conditions hold, and the technology choice and pricing decision of the monopolist, (θ, χ) , maximize monopoly profits subject to the inverse demand curve.

• As in Economy C, factor demands and technology are decided by **different** agents; the former by the final good producers, the latter by the technology monopolist.

- Note that the inverse demand function has constant elasticity.
- Profit-maximizing price will be a constant markup over marginal cost

$$
\chi = 1
$$

- Consequently, $q^i\left(\theta\right)=q^i$ ¡ $\theta,\chi=1,\bar{Z},\bar{L}$ ¢ $=\alpha^{-1}G(\bar{Z},\bar{L},\theta)$ for all $i\in\mathcal{F}.$
- Therefore, the monopolist's problem becomes

$$
\max_{\theta \in \Theta} \Pi(\theta) = G(\bar{Z}, \bar{L}, \theta) - C(\theta).
$$

Proposition 3 Suppose Assumption 2 holds. Then any equilibrium technology θ in Economy M is a solution to

$$
\max_{\theta' \in \Theta} F(\bar{Z}, \bar{L}, \theta') \equiv G(\bar{Z}, \bar{L}, \theta') - C(\theta')
$$

and any solution to this problem is an equilibrium technology.

• Relative to Economies D and C, the presence of the monopoly markup implies greater distortions in this economy.

- However, qualitatively equilibrium similar to that in Economy C.
- It is given by the maximization of

$$
F(\bar{Z}, \bar{L}, \theta) \equiv G(\bar{Z}, \bar{L}, \theta) - C(\theta)
$$

- Most important: as in Economy C, $F(\bar{Z}, \bar{L}, \theta)$ need not be concave in (Z, θ) , even in the neighborhood of the equilibrium.
- Factor prices again given by:

$$
w_Z=\partial G(\bar{Z},\bar{L},\theta)/\partial Z=\partial F(\bar{Z},\bar{L},\theta)/\partial Z
$$

and

$$
w_{Lj} = \partial G(\bar{Z}, \bar{L}, \theta) / \partial L_j = \partial F(\bar{Z}, \bar{L}, \theta) / \partial L_j
$$

for $j = 1, ..., N$.

Economy O

- Same as Economy M, except that multiple technologies supplied by competing oligopolists.
- $\bullet\,$ Let θ^i be the vector $\theta^i\equiv\,$ ¡ θ_1^i $i_1, ..., \theta_S^i$ ¢ .
- Suppose that output is now given by

$$
Y^{i} = \alpha^{-\alpha} (1 - \alpha)^{-1} \left[G(Z^{i}, L^{i}, \theta^{i}) \right]^{\alpha} \sum_{s=1}^{S} q_{s} (\theta_{s}^{i})^{1-\alpha},
$$

- \bullet θ_s^i $s^i_s \in \Theta_s \subset \mathbb{R}^{K_s}$: technology supplied by technology producer $s=1,...,S;$
- q_s ¡ θ_s^i s ¢ : intermediate good produced and sold by technology producer s , embodying technology θ_s^i $\frac{i}{s}$.

• Essentially the same result as in Economy M.

Proposition 4 Suppose Assumption 2 holds. Then any equilibrium technology in Economy O is a vector (θ_1^*) $\hat{\theta}_1^*,...,\theta_S^*)$ such that θ_s^* $_s^*$ is solution to

$$
\max_{\theta_s \in \Theta_s} G(\bar{Z}, \bar{L}, \theta_1^*, ..., \theta_s, ..., \theta_S^*) - C_s (\theta_s)
$$

for each $s = 1, ..., S$, and any such vector gives an equilibrium technology.

- Main difference: equilibrium technology no longer given by maximization, but by a fixed point problem.
- Nevertheless, general insights continue to apply.

Relative Bias

- Let us first study relative bias.
- Two factors Z and L .
- Defined factor prices as:

$$
w_Z\left(Z,L,\theta\right)=\frac{\partial G\left(Z,L,\theta\right)}{\partial Z} \text{ and } w_L\left(Z,L,\theta\right)=\frac{\partial G\left(Z,L,\theta\right)}{\partial L},
$$

Definitions

Definition 4 An increase in technology θ_j for $j = 1, ..., K$ is **relatively biased Definition** + 7 in increase in teenhology σ_j for $j = 1, ..., K$ is **i** clarify
towards factor Z at $(\bar{Z}, \bar{L}, \theta) \in \mathcal{Z} \times \mathcal{L} \times \Theta$ if $\partial(w_Z/w_L) / \partial \theta_j \ge 0$. $\mathbf{v}^{\mathbf{d}}$

Definition 5 Denote the equilibrium technology at factor supplies **Definition 5** Denote the equal $(\bar{\vec{r}}, \bar{\vec{r}})$ $(\bar{Z}, \bar{L}) \in \mathcal{Z} \times \mathcal{L}$ by $\theta^* (\bar{Z}, \bar{L})$, and assume that $\partial \theta_j^* / \partial Z$ exists at (\bar{Z}, \bar{L}) ¢ for all for all $j = 1, ..., K$. Then there is weak relative equilibrium bias at $\frac{10}{\sqrt{2}}$ and $\frac{1}{2}$ $\bar{Z},\bar{L},\theta^{*}\left(\bar{Z},\bar{L}\right))$ if

$$
\sum_{j=1}^K \frac{\partial (w_Z/w_L)}{\partial \theta_j} \frac{\partial \theta_j^*}{\partial Z} \ge 0.
$$

Definition 6 Denote the equilibrium technology at factor supplies **;** \bar{Z},\bar{L} µ
∖ $\in \mathcal{Z} \times \mathcal{L}$ by θ^* ·'
∕ \bar{Z}, \bar{L} u
\ mbridin technology at ractor supplies
, and assume that $\partial \theta_j^*/\partial Z$ exists at (\bar{Z}, \bar{L}) ¢ for all $j = 1, ..., K$. Then there is strong relative equilibrium bias at $j = 1, ..., I$ $(\bar{Z}, \bar{L}, \theta^* (\bar{Z}, \bar{L}))$ if

$$
\frac{d(w_Z/w_L)}{dZ} = \frac{\partial(w_Z/w_L)}{\partial Z} + \sum_{j=1}^K \frac{\partial(w_Z/w_L)}{\partial \theta_j} \frac{\partial \theta_j^*}{\partial Z} > 0.
$$

Generalized Relative Bias Theorem

Theorem 1 Consider Economy C, M or O with two factors, Z, L , and two factor-augmenting technologies, A_Z, A_L . Assume that $G(A_ZZ, A_LL)$ is twice differentiable, concave and homothetic, and the cost of producing technologies $C\left(A_{Z}, A_{L} \right)$, is twice differentiable, strictly convex and homothetic. Let $\sigma = -\frac{\partial \ln(Z/L)}{\partial \ln(w_Z/w_L)}$ $\partial \ln (w_Z / w_L)$ $\begin{array}{c} \hline \end{array}$ $\vert A_Z \vert$ $\overline{A}_{\scriptstyle\,}$ be the (local) elasticity of substitution between Z and L, and $\delta = \frac{\partial \ln(C_Z/C_L)}{\partial \ln(A_Z/A_L)}$ $\frac{\partial \ln(C_Z/C_L)}{\partial \ln(A_Z/A_L)}$. Then:

$$
\frac{\partial \ln (A_Z/A_L)^*}{\partial \ln (Z/L)} = \frac{\sigma - 1}{1 + \sigma \delta}, \text{ and}
$$

$$
\frac{\partial \ln (w_Z/w_L)}{\partial \ln (A_Z/A_L)} \frac{\partial \ln (A_Z/A_L)^*}{\partial \ln (Z/L)} \ge 0,
$$

so that there is always weak relative equilibrium bias. Moreover,

$$
\frac{d \ln (w_Z/w_L)}{d \ln (Z/L)} = \frac{\sigma - 2 - \delta}{1 + \sigma \delta},
$$

so that there is strong relative equilibrium bias if and only if $\sigma - 2 - \delta > 0$.

Idea of the Proof

- Essentially the same as the simple example in Lecture 1.
- Locally, the economy behaves as if the elasticity of substitution is constant.
- Important that the result is for Economy, C, M or O, since the maximization problem choosing all of Z, L, A_Z and A_L is **not concave**.
- In fact, this non-concavity is essential for strong bias as we will see shortly.

Can This Result Be Generalized Further?

- None of the assumptions of Theorem 1 can be relaxed (for sufficiency).
- In particular, with non-factor augmenting technologies, increase in relative supply of Z can induced technological changes biased against Z .
- This does not mean that this "contrarian" result will apply in general.
- But it does mean that we cannot guarantee induced biased to go in the "right direction".

Counterexample 1

• Suppose

$$
G\left(Z,L,\theta\right)=\left[Z^{\theta}+L^{\theta}\right]^{1/\theta}
$$

and $C(\theta)$ convex and differentiable.

• The choice of θ again maximizes $F(Z, L, \theta) \equiv G(Z, L, \theta) - C(\theta)$:

$$
\partial G\left(\bar{Z}, \bar{L}, \theta^*\right) / \partial \theta - \partial C\left(\theta^*\right) / \partial \theta = 0
$$

and

$$
\frac{\partial^2 G\left(\bar{Z}, \bar{L}, \theta^*\right)}{\partial \theta^2} - \frac{\partial^2 C\left(\theta^*\right)}{\partial \theta^2} < 0
$$

• A counterexample would correspond to a situation where

$$
\Delta \left(w_Z / w_L \right) \equiv \frac{\partial \left(w_Z / w_L \right)}{\partial \theta} \frac{\partial \theta^*}{\partial Z} = - \frac{\partial \left(w_Z / w_L \right)}{\partial \theta} \frac{\partial^2 F / \partial \theta \partial Z}{\partial^2 F / \partial \theta^2} < 0.
$$

Counterexample 1 (continued)

• Here:

$$
w_Z/w_L = \left(Z/L\right)^{\theta-1}
$$

increasing in θ as long as $Z > L$, so that higher θ is relatively biased towards Z.

- $\bullet\;$ Now choose $C\left(\cdot\right)$ such that θ^{*} is sufficiently small, e.g., $\bar{L}=1,\;\bar{Z}=2,$ and $\theta^* = 0.1$.
- $\bullet\,$ In this case, it can be verified that $\partial^2 F$ ¡ $\bar{Z}, \bar{L}, \theta^*$ ¢ $\partial\theta \partial Z < 0.$
- From the second-order conditions $\partial^2 F/\partial \theta^2 < 0.1$
- Therefore (∂^2) $F/\partial\theta\partial Z$) × ¡ $\partial^2 F/\partial \theta^2$ ¢ > 0 .
- Conclusion: an increase in Z/L reduces θ^* and induces technological change technology relatively biased against Z .

Counterexample 2

• Suppose

$$
G(Z, L, \theta) = Z\theta + L\theta^2,
$$

and

$$
C(\theta) = C_0 \theta^2 / 2
$$

for all $\theta \in \Theta = \mathbb{R}$ and $L \in \mathcal{L} \subset (0,C_0/2).$

• The equilibrium technology θ^* is given by

$$
\theta ^{\ast }\left(\bar{Z},\bar{L}\right) =\frac{\bar{Z}}{C_{0}-2\bar{L}},
$$

- This is increasing in \bar{Z} for any $\bar{L} \in \mathcal{L}$.
- The relative price of factor Z is decreasing in θ :

$$
w_Z\left(\theta\right)/w_L\left(\theta\right) = \theta^{-1}
$$

• $\bar{Z} \uparrow \Rightarrow$ technological change relatively biased against Z .

Why the Counterexamples?

- In both cases, the increase in \bar{Z} increases w_Z (at given factor proportions).
- But it increases w_L even more so that w_Z/w_L declines at given factor proportions.
- Perhaps looking at **absolute bias** more natural.

Absolute Bias: Definitions

• Straightforward definitions of absolute bias (in light of the definitions for relative bias above).

Definition 7 An increase in technology θ_j for $j = 1, ..., K$ is **absolutely biased** towards factor Z at $(\bar{Z}, \bar{L}) \in \mathcal{Z} \times \mathcal{L}$ if $\partial w_Z / \partial \theta_j \geq 0$. ∪
∖

Definition 8 Denote the equilibrium technology at factor supplies **;** \bar{Z}, \bar{L} µ
∖ $\in \mathcal{Z} \times \mathcal{L}$ by θ^* · '
∕ \bar{Z}, \bar{L} u
\ and assume that $\partial \theta_j^*/\partial Z$ exists at (\bar{Z}, \bar{L}) ¢ for all $j = 1, ..., K$. Then there is weak absolute equilibrium bias at $j = 1, ..., 1$ $(\bar{Z}, \bar{L}, \theta^*(\bar{Z}, \bar{L}))$ if

$$
\sum_{j=1}^K \frac{\partial w_Z}{\partial \theta_j} \frac{\partial \theta_j^*}{\partial Z} \ge 0.
$$

Absolute Bias: Local Theorem

Theorem 2 Consider Economy D, C or M. Suppose that Θ is a convex subset of \mathbb{R}^K and $F\left(Z,L,\theta\right)$ is twice continuously differentiable in $(Z,\theta).$ Let the equilibrium technology at factor supplies (\bar{Z}, \bar{L}) be θ^* (\bar{Z}, \bar{L}) and assume that functional θ in θ θ^* (\bar{Z}, \bar{L}) is in the interior of Θ and that $\partial \theta_j^*/\partial Z$ exists at (\bar{Z}, \bar{L}) for all different complex at factor supplies (z, L) be ℓ (z, L) and $j = 1, ..., K$. Then, there is weak absolute equilibrium bias at all $\frac{1}{2}$ $(\bar{Z},\bar{L})\in\mathcal{Z}\times\mathcal{L}$, i.e.,

$$
\sum_{j=1}^K \frac{\partial w_Z}{\partial \theta_j} \frac{\partial \theta_j^*}{\partial Z} \geq 0 \text{ for all } \left(\bar Z, \bar L\right) \in \mathcal{Z} \times \mathcal{L},
$$

with strict inequality if $\partial \theta_j^* / \partial Z \neq 0$ for some $j = 1, ..., K$.

Sketch of the Proof

- The result follows from the Implicit Function Theorem.
- Consider the special case where $\theta \in \Theta \subset \mathbb{R}$.
- \bullet Since θ^* is in the interior of Θ , we have $\partial F/\partial \theta = 0$ and $\partial^2 F/\partial \theta^2 \leq 0$.
- The Implicit Function Theorem then implies:

$$
\frac{\partial \theta^*}{\partial Z} = -\frac{\partial^2 F/\partial \theta \partial Z}{\partial^2 F/\partial \theta^2} = -\frac{\partial w_Z/\partial \theta}{\partial^2 F/\partial \theta^2},\tag{2}
$$

• Therefore:

$$
\frac{\partial w_Z}{\partial \theta} \frac{\partial \theta^*}{\partial Z} = -\frac{(\partial w_Z / \partial \theta)^2}{\partial^2 F / \partial \theta^2} \ge 0,
$$
\n(3)

establishing the weak inequality.

- Moreover, if $\partial \theta^* / \partial Z \neq 0$, then $\partial w_Z / \partial \theta \neq 0$, so the strict inequality applies.
- The general result somewhat more involved, but a similar intuition.

Intuition

- Again the market size effect
- Locally, an increase in Z makes technologies that the value of marginal product of Z more profitable.
- The result applies in all four economies.
- Once again, similarity to LeChatelier Principle.
- Major differences to come soon.

Local Bias Does Not Imply Global Bias

- Theorem 2 is for small changes.
- A natural question is whether it also holds for "large" (non-infinitesimal) changes.
- Interestingly, the answer is No.
- The reason is intuitive: technological change biased towards an particular factor at some factor proportion may be biased against that factor at some other (not too far) factor proportion.
- The next example illustrates this.

No Global Bias without Further Assumptions

- Suppose that $F\left(Z,\theta\right)=Z+\epsilon$ ¡ $Z - Z^2/8$ \mathbf{v} $\theta - C\left(\theta \right)$ and $Z \in \mathcal{Z} = [0, 6]$ and $\Theta = [0, 2]$ so that F is everywhere increasing in Z.
- Suppose also that $C(\theta)$ is a strictly convex and differentiable function with $C' (0) = 0$ and $C' (2) = \infty$.
- Note that $F\left(Z,\theta\right)$ satisfies all the conditions of Theorem 2 at all points $Z \in \mathcal{Z} = [0, 6]$ (since F is strictly concave in θ everywhere on $\mathcal{Z} \times \Theta = [0, 6] \times [0, 2]$.

No Global Bias without Further Assumptions (continued)

- $\bullet\,$ Now consider $\bar{Z}=1$ and $\bar{Z}^\prime=5$ as two potential supply levels of factor $Z.$
- It can be easily verified that θ^* (1) satisfies $C'(\theta^*(1)) = 7/8$ while $\theta^*(5)$ is given by $C'(\theta^*(5)) = 15/8$
- The strict convexity of $C(\theta)$ implies that θ^* (5) $> \theta^*$ (1).
- Moreover, $w_Z(Z, \theta) = 1 + (1 Z/4) \theta$, therefore $w_Z(5, \theta^*(5)) = 1 - \theta^*(5)/4 < 1 - \theta^*(1)/4 = w_Z(5, \theta^*(1)).$
- Intuition: reversal in the meaning of bias.

A Global Theorem

- For a global result, we need to rule out "reversals in the meaning of bias"
- Somewhat stronger assumptions are necessary.
- Fortunately, reasonable assumptions suffice for this purpose.
- What we need to ensure is that "complements" do not become "substitutes".
- Natural assumption: supermodularity.

Globality

Definition 9 Let θ^* be the equilibrium technology choice in an economy with \blacksquare
factor supplies (\bar{Z}, \bar{L}) . Then there is **global absolute equilibrium bias** if for $\frac{1}{\sqrt{2}}$ any $\bar{Z}',\bar{Z}\in\mathcal{Z},\ \bar{Z}'\geq\bar{Z}$ implies that

$$
w_Z\left(\tilde{Z},\bar{L},\theta^*\left(\bar{Z}',\bar{L}\right)\right)\geq w_Z\left(\tilde{Z},\bar{L},\theta^*\left(\bar{Z},\bar{L}\right)\right)\text{ for all }\tilde{Z}\in\mathcal{Z}\text{ and }\bar{L}{\in}\mathcal{L}.
$$

- Two notions of globality.
	- 1. the increase from \bar{Z} to \bar{Z}' is not limited to small changes;
	- 2. the change in technology induced by this increase is required to raise the price of factor Z for all $\tilde{Z}\in\mathcal{Z}.$
- The same economic forces will take care of both types of globality.

Supermodularity and Increasing Differences

Definition 10 Let $x = (x_1, ..., x_n)$ be a vector in $X \subset \mathbb{R}^n$, and suppose that the real-valued function $f(x)$ is twice continuously differentiable in x. Then $f\left(x\right)$ is supermodular on X if and only if $\partial^{2}f\left(x\right)/\partial x_{i}\partial x_{i'}\geq0$ for all $x\in X$ and for all $i \neq i'$.

Definition 11 Let X and T be partially ordered sets. Then a function $f(x,t)$ defined on a subset S of $X \times T$ has increasing differences (strict increasing **differences)** in (x, t) , if for all $t'' > t$, $f(x, t'') - f(x, t)$ is nondecreasing (increasing) in x .

Absolute Bias: The Global Theorem

Theorem 3 Suppose that Θ is a lattice, let $\bar{\mathcal{Z}}$ be the convex hull of \mathcal{Z} , let **P** ($\overline{Z}, \overline{L}$) be the equilibrium technology at factor proportions $(\overline{Z}, \overline{L})$, and **EXECUTE 3** Suppose that \bigcirc is a lattice, let \bigcirc be the convex number $(\overline{z}, \overline{z})$ suppose that $F(Z, L, \theta)$ is continuously differentiable in Z , supermodular in θ on Θ for all $Z \in \bar{\mathcal{Z}}$ and $L \in \mathcal{L}$, and exhibits strictly increasing differences in (Z, θ) on $\bar{Z} \times \Theta$ for all $L \in \mathcal{L}$, then there is **global absolute equilibrium bias**, i.e., for any $\bar{Z}',\bar{Z}\in\mathcal{Z},\, \bar{Z}'\geq\bar{Z}$ implies

$$
\theta^*\left(\bar Z',\bar L\right)\geq \theta^*\left(\bar Z,\bar L\right)\;\text{for all}\;\bar L{\in}\mathcal L,
$$

and

$$
w_Z\left(\tilde{Z},\bar{L},\theta^*\left(\bar{Z}',\bar{L}\right)\right)\geq w_Z\left(\tilde{Z},\bar{L},\theta^*\left(\bar{Z},\bar{L}\right)\right)\text{ for all }\tilde{Z}\in\mathcal{Z}\text{ and }\bar{L}{\in}\mathcal{L},
$$

with strict inequality if θ^* ¡ \bar{Z}', \bar{L} ¢ $\neq \theta^*$ ¡ \bar{Z}, \bar{L} ¢ .

Proof Idea

- The proof basically follows from Topkis's Monotone Comparative Statics Theorem.
- An increase in Z is complementary to technologies that are biased towards Z.
- Therefore, the increase in Z will cause globally (weak) absolute bias.

Global Absolute Bias with Multiple Factors

- The same result generalizes to the case where the supply of a subset of complementary factors increases.
- In this case, technology becomes biased towards all of these factors.
- Let now Z denote a vector of inputs.

Theorem 4 Consider Economy D, C or M. Suppose that $\mathcal Z$ and Θ are lattices, let $\bar{\mathcal{Z}}$ be the convex hull of $\mathcal{Z},$ let $\theta\left(\bar{Z},\bar{L}\right)$ be the equilibrium technology at ϵ or iver
 $\epsilon = \frac{1}{2}$ factor proportions (\bar{Z}, \bar{L}) , and suppose that $F(Z, L, \theta)$ is continuously ¢ differentiable in Z , supermodular in θ on Θ for all $Z \in \bar{Z}$ and $L \in \mathcal{L}$, and exhibits strictly increasing differences in (Z, θ) on $\overline{Z}\times\Theta$ for all $L\in\mathcal{L}$, then there is **global absolute equilibrium bias**, i.e., for any $\bar{Z}', \bar{Z} \in \mathcal{Z}, \, \bar{Z}' \geq \bar{Z}$ implies ¡ ¢ ¡ ¢

$$
\theta\left(\bar{Z}',\bar{L}\right)\geq\theta\left(\bar{Z},\bar{L}\right)\text{ for all }\bar{L}\in\!\mathcal{L}
$$

and

$$
w_{Zj}\left(\tilde{Z},\bar{L}, \theta\left(\bar{Z}', \bar{L}\right)\right) \geq w_{Zj}\left(\tilde{Z},\bar{L}, \theta\left(\bar{Z}, \bar{L}\right)\right) \text{ for all } (\tilde{Z},\bar{L}) \in \mathcal{Z} \times \mathcal{L} \text{ and for all } j.
$$

Strong Bias

- Much more interesting and surprising are the results on strong bias.
- The main result will show that strong bias is quite ubiquitous.

Definition of Strong Bias

Definition 12 Denote the equilibrium technology at factor supplies **Definition 12** Denote the eq $(\bar{Z}, \bar{L}) \in \mathcal{Z} \times \mathcal{L}$ by $\theta^* (\bar{Z}, \bar{L})$ and suppose that $\partial \theta_j^* / \partial Z$ exists at (\bar{Z}, \bar{L}) ¢ for all $j = 1, ..., K$. Then there is strong absolute equilibrium bias at $\frac{1}{2}$ $\frac{1}{2}$ $(\bar{Z},\bar{L})\in\mathcal{Z}\times\mathcal{L}$ if

$$
\frac{dw_Z}{dZ} = \frac{\partial w_Z}{\partial Z} + \sum_{j=1}^K \frac{\partial w_Z}{\partial \theta_j} \frac{\partial \theta_j^*}{\partial Z} > 0.
$$

Main Theorem

Theorem 5 Consider Economy D, C or M. Suppose that Θ is a convex subset of \mathbb{R}^K , F is twice continuously differentiable in (Z,θ) , let θ^* د
، \bar{Z}, \bar{L} ∕'
∖ be the equilibrium technology at factor supplies (\bar{Z}, \bar{L}) and assume that θ^* is in the ∣
∖ interior of Θ and that $\partial \theta_j^*\left(\bar{Z}, \bar{L}\right)/\partial Z$ exists at $\left(\bar{Z}, \bar{L}\right)$ for all $j=1,...,K$. actor supplies (z, ψ) and as Then there is **strong absolute equilibrium bias** at (\bar{Z}, \bar{L}) if and only if ¢ $F\left(Z,L,\theta\right)$'s Hessian in (Z,θ) , $\nabla^2 F_{(Z,\theta)(Z,\theta)}$, is not negative semi-definite at $\begin{array}{c} \Gamma \ (Z, L, 0) \\ \Gamma = \ \frac{1}{2} \end{array}$ $(\overline{Z}, \overline{L}, \theta^* (\overline{Z}, \overline{L})).$

Sketch of the Proof

- Let us again focus on the case where $\Theta \subset \mathbb{R}$.
- By hypothesis, $\partial F/\partial \theta = 0$, $\partial^2 F/\partial \theta^2 \leq 0$.
- Then the condition for strong absolute equilibrium bias can be written as:

$$
\frac{dw_Z}{dZ} = \frac{\partial w_Z}{\partial Z} + \frac{\partial w_Z}{\partial \theta} \frac{\partial \theta^*}{\partial Z},
$$

$$
= \frac{\partial^2 F}{\partial Z^2} - \frac{(\partial^2 F/\partial \theta \partial Z)^2}{\partial^2 F/\partial \theta^2} > 0.
$$

• From Assumption 1 or 2, F is concave in Z , so $\partial^2 F/\partial Z^2 \leq 0$, and from the fact that θ^* is a solution to the equilibrium maximization problem

 $\partial^2 F/\partial \theta^2 < 0.$

Sketch of the Proof (continued)

 $\bullet\,$ Then the fact that F 's Hessian, $\nabla^2 F_{(Z,\theta)(Z,\theta)}$, is not negative semi-definite at $(\bar{Z}, \bar{L}, \theta^* (\bar{Z}, \bar{L}))$ implies that ب
∕

$$
\frac{\partial^2 F}{\partial Z^2} \times \frac{\partial^2 F}{\partial \theta^2} < \left(\frac{\partial^2 F}{\partial Z \partial Z \theta}\right)^2,
$$

- \bullet Since at the optimal technology choice $\partial^2 F/\partial \theta^2 < 0$, this immediately since at the optimal technology enoice σ I $/$ σ ν \sim σ , this immediately yields $dw_Z/dZ > 0$, establishing strong absolute bias at $(\bar{Z}, \bar{L}, \theta \ (\bar{Z}, \bar{L}))$. יי
∕
- $\bullet\,$ Conversely, if $\nabla^2 F_{(Z,\theta)(Z,\theta)}$ is negative semi-definite at $(\bar Z,\bar L,\theta^*)$ ¡ (\bar{Z}, \bar{L})), then the previous relationship does not hold and this together with $\partial^2 F/\partial \theta^2 < 0$ implies that $dw_Z/dZ \leq 0.$

Intuition

- When $F(Z, L, \theta)$ is not jointly concave in Z and θ , the equilibrium corresponds to a saddle point of F in the Z, θ space.
- This implies that there exists direction in which output and hence monopoly profits for technology suppliers can be increased.
- Nevertheless, the saddle point is an equilibrium, since Z and θ are chosen by different agents.
- When Z changes by a small amount, then θ can be changed in the direction of ascent.
- This not only increases output but also the marginal product of factor Z that has become more abundant.
- The result is an upward-sloping demand curve for Z .

Simple Example

- Let us suppose $\Theta = \mathbb{R}$ and $F(Z, L, \theta) = 4Z^{1/2} + Z\theta \theta^2/2 + B(L)$ with the cost of creating new technologies incorporated into this function.
- Clearly F is not jointly concave in Z and θ (for $Z > 1$) but is strictly concave in Z and θ individually.
- Consider a change from $\overline{Z}=1$ to $\overline{Z}=4$.
- The first-order necessary and sufficient condition for technology choice gives $\theta\left(\bar{Z}, \bar{L}\right) = \theta\left(\bar{Z}\right) = \bar{Z}$. \overline{z} $\overline{$
- Therefore, θ $(\bar{Z}=1)=1$ while θ $(\bar{Z} = 4) = 4.$
- Moreover, for any $\bar{L} \in \mathcal{L}$, w_Z ¡ $\bar{Z}, \bar{L}, \bar{\theta}$ ¢ $=2Z^{-1/2}+\theta$
- Therefore, w_Z $(\bar{Z} = 1, \bar{L}, \theta(1)) = 3 < w_Z$ $(\bar{Z} = 4, \bar{L}, \theta(4)) = 5,$ establishing strong (absolute) equilibrium bias between $\bar{Z}=1$ to $\bar{Z}=4$.

How Likely Is This?

- The key requirement is that technologies and factor demands are not decided by the same agent.
- Once we are in such an equilibrium situation, there is no guarantee that the equilibrium point corresponds to a global maximum.
- Thus the requirements are not very restrictive.
- However, naturally, F cannot be globally concave in all of its arguments.
- Thus some degree of increasing returns is necessary.

How Likely Is This? (continued)

• Therefore an immediate corollary:

Corollary 1 Suppose that Θ is a convex subset of \mathbb{R}^K , F is twice continuously **Coronary 1** Suppose that \circ is a convex subset of \mathbb{R}^n , T is twice continuous
differentiable in (Z, θ) , let the equilibrium technology at factor supplies (\bar{Z}, \bar{L}) ر.
、 be θ^* (\bar{Z}, \bar{L}) , and assume that $\partial \theta_j^*/\partial Z$ exists at (\bar{Z}, \bar{L}) for all $j = 1, ..., K$. $\zeta = \overline{z}$. $\zeta = \overline{z}$ Then there cannot be strong absolute equilibrium bias in Economy D.

- Intuitively, in Economy D, F must be negative semi-definite in Z and θ , since the same firms choose both Z and θ .
- However, interestingly, one can construct examples where there is strong bias in Economy D if Θ is a finite set.

How Likely Is This? (continued)

- However, outside of Economy D, strong equilibrium bias easily possible.
- Let \mathcal{C}^2 $[B]$ denote the set of twice continuously differentiable functions over B .
- Let $\mathcal{C}^2_+[B]\subset \mathcal{C}^2\left[B\right]$ be the set of such functions that are strictly convex.
- $\bullet\,$ Let $\mathcal{C}_{-}^2\left[B\right]\subset\mathcal{C}^2\left[B\right]$ be the set of such functions that are strictly concave in each of their arguments (though not necessarily jointly so).

<code>Theorem 6</code> Suppose that $\Theta \subset \mathbb{R}$ and $\mathcal{Z} \subset \mathbb{R}_+$ are compact, and denote the equilibrium technology by θ^* , and for fixed $\bar L\in\mathcal L$, let $G\left(\bar Z,\bar L,\theta\right)\in\mathcal C_-^2\left[\mathcal Z\!\times\!\Theta\right]$. pact, and
 $\zeta = \bar{z}$ For each $C\left(\cdot\right)\in\mathcal{C}_{+}^{2}\left[\Theta\right]$, let $\mathcal{D}_{C}\subset\mathcal{C}_{-}^{2}\left[\Theta\right]$ be such that for all $G\left(\bar{Z}, \bar{L}, \theta\right) \in \mathcal{D}_C$ there is strong absolute equilibrium bias. Then we have: $\sqrt{2}$ \pm $\sqrt{2}$

- 1. For each $C(\cdot) \in C^2_+ [\Theta]$, \mathcal{D}_C is a nonempty open subset of $C^2_- [\Theta]$.
- 2. Suppose that θ^* is an equilibrium technology for both $C_1\left(\cdot\right),C_2\left(\cdot\right)\in\mathcal{C}_{+}^2\left[\Theta\right]$ and that $\partial^{2}C_1\left(\theta^{*}\right)/\partial\theta^{2}<\partial^{2}C_2\left(\theta^{*}\right)/\partial\theta^{2}$, then $\mathcal{D}_{C_2} \subset \mathcal{D}_{C_1}$ (and $\mathcal{D}_{C_2} \neq \mathcal{D}_{C_1}$).

Global Strong Bias

- In contrast to the weak bias absolute theorem, not much more is necessary for a global version of the strong absolute bias theorem.
- Technical intuition: Fundamental Theorem of Calculus.

Global Strong Bias Theorem

Theorem 7 Suppose that Θ is a convex subset of \mathbb{R}^K and that F is twice continuously differentiable in (Z, θ) . Let $\bar Z, \bar Z' \in \mathcal{Z}$, with $\bar Z' > \bar Z, \ \bar L{\in}\mathcal{L}$, and Continuously differentiable in (Z, σ) . Let $Z, Z \in \mathcal{Z}$, with $Z \geq Z$, $L \in \mathcal{L}$, and let θ^* $\left(\tilde{Z}, \bar{L}\right)$ be the equilibrium technology at factor supplies $\left(\tilde{Z}, \bar{L}\right)$ and ubusiy differentiable in (Z,θ) . Let $Z, Z \in \mathbb{Z}$, with $Z \geq Z$, $L \in \mathbb{Z}$ assume that $\theta^*\left(\tilde{Z},\bar{L}\right)$ is in the interior of Θ and that $\partial\theta_j^*/\partial Z$ exists at λ λ $(\tilde{Z},\bar{L}\bigl)$ for all $j=1,...,K$ and all $\tilde{Z}\in\mathcal{Z}$ $\frac{1}{\sqrt{2}}$ $\bar{Z}, \bar{Z'}$ l
E . Then there is strong absolute $\mathcal{L}(\sqrt{Z})$ equilibrium bias at $(\{\bar{Z},\bar{Z}'\})$ ª $,\bar{L}$ ¢ if $F\left(Z,L,\theta\right)$'s Hessian, $\nabla^2 F_{(Z,\theta)(Z,\theta)}$, fails **Equinorium bias** at $(\{Z, Z, f, L\})$ if $I^*(Z, L, U)$ is riessian, v
to be negative semi-definite at $\left(\tilde{Z}, \bar{L}, \theta^* \left(\tilde{Z}, \bar{L} \right) \right)$ for all $\tilde{Z} \in$ $\left(\begin{array}{c} 2, L, 0 \end{array} \right)$ $\frac{1}{\sqrt{2}}$ $\bar{Z},\bar{Z'}$ ∡
⊤ .

Conclusions

- Study of direction and bias of technology important both for practical and theoretical reasons.
- Surprisingly tractable framework and many strong results are possible.
- Most interestingly:
	- 1. In contrast to previous non-micro-founded models, a strong force towards induced bias in favor of factors becoming more abundant (weak bias theorems).
	- 2. Under fairly reasonable conditions, demand curves can slope upward (strong bias theorems).

Conclusions (continued)

- Many applications of endogenous bias:
	- 1. Endogenous skill bias (both recently and industry).
	- 2. Why is long-run technological change labor augmenting?
	- 3. Technological sources of unemployment persistence in Europe.
	- 4. Demographics and evolution on innovations in the pharmaceutical industry.
	- 5. A theory of cross-country income differences.
	- 6. Possible perspectives on "lost decades".
	- 7. The effect of international trade on the nature of innovation and on cross-country income differences.