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Abstract

We study the bounds of mediated communication in sender-receiver games in which

the sender’s payoff is state-independent. We show that the feasible distributions of

beliefs under mediation are those that induce zero correlation, but not necessarily

independence, between the sender’s payoff and the receiver’s belief. Mediation attains

the upper bound on the sender’s value, i.e., the Bayesian persuasion value, if and

only if this value collapses to the lower bound, i.e., the cheap talk value. When the

sender’s value function is strictly quasiconvex and a full-dimensionality condition holds,

mediation lies strictly below and above these two bounds. More generally, mediation

is strictly valuable when the sender has countervailing incentives in the space of the

receiver’s belief. We apply our results to asymmetric-information settings such as

bilateral trade and lobbying and explicitly construct mediation policies such that the

informed and uninformed parties are better off than under unmediated communication.
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1 Introduction

Consider a receiver who faces a decision problem under uncertainty and a sender who is

privately informed about the state. The sender can communicate with the receiver before

they take an action, and their final payoff only depends on the receiver’s action, that is, the

sender has transparent motives in the sense of Chakraborty and Harbaugh (2010) and Lip-

nowski and Ravid (2020). These situations are pervasive in economics: a seller has superior

information about the quality of a good and always wants to maximize the probability of

selling it to buyers. One of two extreme assumptions is usually considered: 1) The sender

can commit ex-ante to any information policy, such as an experiment that conveys verifiable

information to the receiver, or 2) The sender cannot commit to any experiment, their pri-

vate information is not verifiable (i.e., it is soft), but they can freely send messages to the

receiver. The first case has been extensively analyzed in recent years and corresponds to the

Bayesian persuasion model of Kamenica and Gentzkow (2011). The second case corresponds

to a game of strategic information transmission or cheap talk as introduced in Crawford and

Sobel (1982). It is well known that with commitment, the sender can often achieve a strictly

higher payoff than the one obtained by conveying no information. Perhaps more surprisingly,

Chakraborty and Harbaugh (2010) and Lipnowski and Ravid (2020) showed that the sender

can also achieve a strictly higher payoff under cheap talk than without communication.

This paper revisits the intermediate case of mediated communication introduced in Myer-

son (1982). We expand the set of players by considering a third-party mediator who cannot

take the relevant decision in place of the receiver and is uninformed about the state; hence

they must resort to information willingly shared by the sender. However, the mediator can

commit to any communication mechanism that collects reports from the sender and sends

messages to the receiver. In the buyer-seller example above, the mediator can represent

an advertising agency or a financial intermediary with a prominent reputation that collects

reports from the seller and conveys credible information to the buyers.

We focus on the case where the mediator’s preference is aligned with the sender’s, so

they act to maximize the sender’s payoff. Clearly, the sender-optimal values across the

three protocols considered are weakly ordered because the space of feasible information

policies becomes smaller from persuasion to mediation and from mediation to cheap talk:

BP ≥ MD ≥ CT .1 We decompose the gap between Bayesian persuasion and cheap talk as

follows:

BP − CT︸ ︷︷ ︸
Value of Commitment

= BP −MD︸ ︷︷ ︸
Value of Elicitation

+ MD − CT︸ ︷︷ ︸ .
Value of Mediation

1Here, BP , MD, and CT respectively denote the sender-optimal values attained under Bayesian per-
suasion, mediation, and cheap talk.
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The gap BP − CT represents the value of commitment for the sender. The first com-

ponent of this gap is BP −MD which captures the value of elicitation. In both persuasion

and mediation, there is an entity with commitment power, the sender and the mediator, re-

spectively. However, the mediator is not directly informed about the state and has to elicit

this information in an incentive-compatible way. Differently, the gap MD−CT captures the

value of mediation because it corresponds to the additional value that an uninformed third

party with commitment can secure to the sender when the latter has no commitment power.

Our results provide sufficient and necessary conditions such that the values of elicitation and

mediation are strictly positive.

Outline of the results By the revelation principle, the mediator acts “as-if” selecting a

communication equilibrium outcome of the sender-receiver game. However, differently from

Myerson (1982) but similarly to the recent literature on Bayesian persuasion and cheap talk,

we adopt a belief-based approach to mediation. We show that the feasible distributions of

receiver’s beliefs are those that induce zero correlation, but not necessarily independence,

between the sender’s payoff and the receiver’s belief. This condition translates the truth-

telling constraint of the sender from the space of mechanisms to the space of beliefs. We can

then represent the optimal mediation problem as a linear program under moment constraints

in the belief space: the standard Bayes plausibility constraint and the zero-correlation con-

straint.

Exploiting this rewriting of the mediation problem, we show that the sender can attain

the optimal persuasion payoff under mediation if and only if this value can be attained under

cheap talk. Therefore, we show that when elicitation is valueless, so is commitment. Given

that the value of commitment is often strictly positive, this implies that an uninformed

mediator cannot usually guarantee the same value that the sender would achieve if they

could commit in the first place.

Next, we introduce a key concept for cheap talk: the full-dimensionality condition. This

condition holds when the cheap talk value at the prior can still be attained when the prior

probability of an arbitrary state is slightly decreased. For example, it is satisfied for almost

every prior when the receiver’s action set is finite and, at every binary prior such that the

babbling equilibrium is not sender optimal.

Under the full-dimensionality condition, we characterize the cases where elicitation and

mediation are strictly valuable, that is, BP > MD and MD > CT , respectively. We prove

these results by first providing distinct sufficient and necessary conditions for the values of

elicitation and mediation to be strictly positive without any additional assumption and then

show that under full dimensionality these conditions are the same. Elicitation is strictly
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valuable if and only if there exists a belief µ ∈ ∆(Ω) of the receiver such that the maximum

cheap talk value at µ is strictly higher than the maximum cheap talk value at the prior p.2

Mediation is strictly valuable if and only if there exist two beliefs µ+, µ− ∈ ∆(Ω) of the

receiver that are colinear with the prior p and such that the maximum cheap talk value at

p lies strictly between the maximum cheap talk value at µ+ and the minimum cheap talk

value at µ−. In particular, we construct an improving mediation plan by randomizing over

distributions of beliefs that include cheap talk equilibria at µ+ and µ− respectively. In this

case, the optimal mediation plan must be random.

All the aforementioned conditions admit geometric characterizations in terms of the qua-

siconcave and quasiconvex envelopes of the sender’s value function. We use these to show

that when the sender’s value function is strictly quasiconvex and the full-dimensionality con-

dition holds, then either BP > MD > CT or all three communication protocols attain the

same value equal to the global maximum of the sender’s payoff.

In general, we find that mediation has a strictly positive value when the sender has

countervailing incentives in the space of the receiver’s beliefs, that is, when the sender

would like to induce more optimistic beliefs for some realized messages and more pessimistic

beliefs for some others. More formally, this translates to the failure of a weak form of

single-crossing. For multidimensional environments with strictly quasiconvex utility for the

sender, countervailing incentives are captured by the non-monotonicity of the restriction of

the sender’s utility to the edges of the simplex.

We revisit the think tank example in Lipnowski and Ravid (2020) by assuming that the

think tank acts as a mediator between an interest group (the sender) and the lawmaker

(the receiver). Countervailing incentives arise because the interest group strictly prefers

the lawmaker to approve one of several new policies as opposed to retaining the status

quo. Similarly, we apply our results to study advertising agencies or financial intermediaries

that operate as mediators between sellers and buyers. Countervailing incentives can arise

because of reputation concerns of the seller or because of non-monotone preferences over

risky prospects (e.g., mean-variance) of the receiver. For these examples, both elicitation

and mediation are usually strictly valuable, thereby rationalizing the ubiquitous presence of

intermediaries in these markets.

Next, we analyze a class of sender-receiver games that we call acceptance games where

the receiver chooses whether to accept or not a risky prospect whose value depends only on

the posterior expectations of a finite number of functions of the state and the value of their

outside option is private information of the receiver. The sender’s payoff coincides with the

probability of acceptance and, under standard assumptions, it is quasiconvex and consistent

2Here, Ω denotes the finite state space and p ∈ ∆(Ω) denotes the common prior.
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with countervailing incentives, which allows us to conclude that mediation is strictly valuable.

In addition, when the distribution of the outside option is log-concave, the receiver is also

strictly better off under sender-preferred mediation than under any cheap-talk equilibrium.

Finally, we discuss some additional implications of our results. For long cheap talk

(see Aumann and Hart (2003)) and repeated games with asymmetric information (see Hart

(1985)), our results characterize the environments where the sender’s payoff under the best

correlated equilibrium is strictly higher than that under the best Nash equilibrium.

1.1 Illustrative Example

We illustrate the geometric comparison of Bayesian persuasion, mediation, and cheap talk

with a simple advertising model that compares the case where a seller directly communicates

with a buyer to the case where the seller hires an advertising agency to mediate communi-

cation.

A seller plans to commercialize a new product with quality ω ∈ Ω = {0, 1} that they

privately know. The buyer has prior belief p ∈ (0, 0.55) that the quality is good (ω = 1).

Consider first the case when the seller can only communicate by cheap talk messages. For

every message, the buyer updates their belief µ ∈ [0, 1] and decides whether to purchase the

good or take their outside option with quality ε ∈ [0, 1]. The buyer is privately informed

about the outside option, but the seller knows only that the distribution of ε is G. We assume

that G has an unimodal density g.3 Moreover, we assume that the buyer will eventually

observe the quality of the product regardless of their decision.

The market is competitive, and we normalize the price of the good and the outside

option to 1. Thus, given posterior µ, the buyer purchases the good if and only if ε ≤ µ, for

a total mass of G(µ). The seller’s utility depends on the total demand for the good and on

reputation concerns:

Ṽ (µ, ω) = (1− δ)G(µ) + δ(ω − µ),

where δ > 0. Specifically, when the realized quality exceeds the expectation, that is ω >

µ, there is a positive effect of a surprisingly good product on the seller’s future payoff.

Conversely, when ω < µ, there is a negative reputation effect due to an unexpectedly bad

product. Here, δ measures the impact of these reputation concerns on the seller’s payoff.

As the state ω is privately known and the seller’s payoff function is additively separable

in Ṽ (µ, ω), the seller acts to maximize V (µ) = (1 − δ)G(µ) − δµ. Under our assumptions

3This means that G is strictly convex up to some point ε̂ and concave beyond that point, that is, G
is S-shaped. Several recent papers in the persuasion literature focus on a similar class of indirect utility
functions called S-shaped functions (Kolotilin, 2018; Kolotilin et al., 2022; Arieli et al., 2023).
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on G, this indirect utility V is a rotated S-shaped function as illustrated in Figure 1.4 An

intermediate level of reputation concern induces countervailing incentives for the sender. For

example, in Figure 1, for posteriors µ just before 3/4, the sender would like the buyer to

be more optimistic about the product quality, whereas, for posteriors above 3/4, the seller

would like the buyer to be more pessimistic.

By Lipnowski and Ravid (2020), the seller-optimal cheap talk value at any prior is given

by the quasiconcave envelope of V at that prior, which is the dotted red line in Figure 1 (a).

For example, the seller-preferred cheap talk equilibrium at p randomizes between µ = 0.55

and µ = 0 with probability p/0.55, and yields expected payoff of 0.

Figure 1: Illustrative Example

(a) Comparison of Bayesian persuasion, me-
diation, and cheap talk

(b) Construction of strictly improving me-
diation plan

The colored lines in (a) represent the seller’s optimal payoff from Bayesian persuasion (blue
dashed), mediation (yellow solid), and cheap talk (red dashed). The discussion here focuses on

the case p ∈ (0, 0.55), where the three lines do not coincide.

Next, we show that the seller can obtain a strictly higher payoff by hiring an advertiser

(the mediator) who can credibly commit to revealing information about the quality of the

good to the buyer. The advertiser does not have the expertise to assess the exact quality

of the good and can only convey information the seller reports. The contract between the

seller and the advertiser is fixed and binds the seller to pay the advertiser a fixed fraction

of its revenue, so the advertiser maximizes the seller’s expected payoff.5 For example, the

advertiser can strictly increase the seller’s expected payoff by introducing randomness to the

message distribution conditional on the seller’s quality report. This randomness conditional

on the seller’s quality reports can be interpreted as the use of inessential visual effects or

vague language in the advertising campaign.

4Specifically, Figure 1 plots the indirect utility V induced by the Beta(2,2) distribution and a weight
δ = 209

409 .
5We assume the seller decides whether to hire a mediator before it learns the state ω, to avoid any

additional signaling effects.
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We construct a distribution of beliefs that is feasible for the advertiser and that yields a

strict improvement for the seller with respect to direct communication. First fix ξ ∈ (0, 1)

such that ξ · V (3/4) · (3/4 − p) + (1 − ξ) · V (1) · (1 − p) = 0.6 With this, fix the belief

µ∗ = ξ · 3/4 + (1 − ξ) · 1, highlighted by the yellow line in Figure 1 (b), and observe that

there exists α > 1 such that αp+ (1− α)µ∗ = 0. Now, consider the distribution of beliefs

τ ∗ = {(0; 1/α), (3/4; (α− 1)ξ/α), (1; (α− 1)(1− ξ)/α)} .

The three points in the support of this distribution are highlighted by the red dots in Figure

1 (b). This distribution does not correspond to a cheap talk equilibrium, as the seller would

always have the incentive to induce µ = 3/4 at every state. However, τ ∗ averages to p and

induces zero correlation between the buyers’ beliefs µ and the seller’s payoff V (µ). In Theo-

rem 1 below, we show that this is necessary and sufficient for τ ∗ to be implementable under

mediation. Finally, one can verify that the seller’s expected payoff under this distribution of

beliefs is
α−1
α

(ξ · V (3/4) + (1− ξ) · V (1)) > 0

yielding a strict improvement. This shows that, with a small enough commission rate, the

seller strictly benefits from hiring an advertiser to mediate communication.7

The buyer is strictly better off under the mediation plan we constructed than under

the sender-optimal cheap talk equilibrium. Note that the buyer’s indirect utility VR(µ) =

µG(µ) +
∫ 1

µ
ε dG(ε) is strictly convex, and the induced distributions of posteriors are sup-

ported on {0, 3/4, 1} under mediation and {0, 0.55} under cheap talk. Hence, the distribution

of beliefs under mediation is a mean-preserving spread of that under cheap talk, which leads

to a strictly higher buyer payoff.

1.2 Literature review

Our work uses the “belief-based approach,” a widely adopted methodology in Bayesian

persuasion (Kamenica and Gentzkow (2011)) and cheap talk (Lipnowski and Ravid (2020)),

to study mediated communication (Myerson (1982) and Forges (1986)).8 Recent works on

this topic study the comparison between mediation and other specific forms of communication

in the uniform-quadratic case of Crawford and Sobel (1982). Blume et al. (2007) focuses

on contrasting noisy cheap talk with cheap talk, while Goltsman et al. (2009) compares

6This coefficient exists because V (1) < 0 < V (3/4).
7In Section 5, we characterize when similar constructions that randomize among posteriors with values

strictly above/below the cheap talk value lead to a strictly higher payoff than cheap talk.
8Aumann and Maschler (1995) and Aumann and Hart (2003) first adopted the belief-based approach to

respectively study zero-sum repeated games with asymmetric information and long cheap talk.
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mediation, (long) cheap talk, and delegation. Differently, we characterize the comparison

between persuasion, mediation, and cheap talk under state-independent preferences for the

sender, but without additional parametric assumptions.

The most related paper in the mediation literature is Salamanca (2021), where mediated

communication for finite games is analyzed using a recommendation approach similar to the

original one in Myerson (1982). Our analysis differs from the one in Salamanca (2021) for

several reasons. First, the two models are not nested since we focus on the transparent-motive

case but we allow an arbitrary action space for the receiver. Second, our analysis is entirely

carried out with a belief-based approach as opposed to the recommendation approach they

use, which allows us to readily derive the same “virtual-utility” representation of the sender-

optimal value of mediation and to more directly compare mediated communication with

persuasion and cheap talk. Third, our results are different: While Salamanca (2021) focuses

on deriving strong duality for the recommendation-based mediation problem, we use a more

direct perturbation approach that allows us to completely characterize when elicitation and

mediation are valuable for finite games at almost all prior beliefs.9 Moreover, we provide

several sufficient conditions such that our characterization extends to infinite-action games.

Some work in the mediation literature allows for transfers between the informed party

and the intermediary. This considerably expands the set of implementable outcomes. For

example, Corrao (2023) considers an optimal mediation problem with transfers where the

mediator maximizes their revenue from payments from the informed party. He shows that,

with binary state, every distribution of the receiver’s beliefs is implementable. This is in

sharp contrast with the zero-correlation restriction imposed by the truthtelling constraint in

our setting.

Finally, our work is related to recent papers studying Bayesian persuasion with limited

commitment or additional constraints (Lin and Liu, 2024; Lipnowski et al., 2022; Koessler

and Skreta, 2023; Doval and Skreta, 2024). Like mediation, the communication protocols

studied in these works can be seen as intermediate cases between Bayesian persuasion and

(single-round) cheap talk. The transparent-motive assumption sometimes makes these inter-

mediate cases attain one of the two bounds given by persuasion and cheap talk. For example,

the credible information structures in Lin and Liu (2024) are the same ones that are feasible

under persuasion, when the sender has transparent motives. Under the same assumption,

Lipnowski and Ravid (2020) show that the sender’s optimal payoff in the long cheap talk

model of Aumann and Hart (2003) is the same as the one of single-round cheap talk. Instead,

we show that the optimal sender’s value under mediation can be strictly between the two

9Salamanca (2021) provides a binary-state example under transparent motives where the strict inequal-
ities BP > MD > CT hold, but does not characterize when these inequalities are strict.
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bounds and we characterize when this is the case in several settings.

2 The Model

Consider three players: a sender, a receiver, and a mediator. Let Ω be a finite state space with

|Ω| = n.10 The state ω ∈ Ω is drawn according to a full-support common prior p ∈ ∆(Ω),

and the realization of ω is the sender’s private information.11 The receiver does not know ω

and takes a payoff-relevant action a ∈ A, where A is a compact metric space. We assume the

sender has a state-independent utility function uS : A → R, that is, they have transparent

motives, and the receiver has utility uR : Ω×A → R. Both utility functions are continuous.

The sender and receiver communicate through the mediator, who commits to a commu-

nication mechanism σ : R → ∆(M) without knowing ω, where R is the reporting space for

the sender and M is the space of messages for the receiver. After observing ω, the sender

sends a report r ∈ R to the mediator. Given the report, the mediator draws a random

message m ∈ M according to σ and sends it to the receiver, who then takes an action a ∈ A.

We consider the communication game induced by σ and focus on its Bayes-Nash equilibria,

also known as the communication equilibria (see Myerson (1982) and Forges (1986)).12 We

assume that the mediator is perfectly aligned with the sender and selects a mechanism and

an equilibrium to maximize the sender’s expected utility.

Any mechanism σ and a communication equilibrium induce an outcome distribution

π ∈ ∆(Ω×A). Applying the Revelation Principle (Myerson, 1982; Forges, 1986), it is without

loss to consider outcome distributions induced by direct incentive-compatible mechanisms,

that is, a communication equilibrium where the mediator asks the sender for a state report

in R = Ω, provides an action recommendation in M = A to the receiver, and the sender

truthfully reports the state while the receiver follows the action recommendation.

Fact. Any outcome distribution π ∈ ∆(Ω× A) is induced by some communication equilib-

rium if and only if it satisfies:

(i) Consistency: margΩ π = p

(ii) Obedience: For π-almost all a ∈ A, Eπa [uR(ω, a)] = maxa′∈A Eπa [uR(ω, a
′)], where

πa ∈ ∆(Ω) is a version of the conditional probability given a ∈ A;

10Appendix J extends Theorem 1, Theorem 2, Point 1 of Theorem 3, and Theorem 4 to the case where
Ω is an arbitrary compact metric space.

11We identify ∆(Ω) with the standard (n− 1)–simplex in Rn and we endow it with the relative topology
induced by the Euclidean topology. For any set D ⊆ ∆(Ω), let intD denote its interior.

12Formally, the sender’s strategy is ρ : Ω → ∆(R) and the receiver’s strategy is α : M →
∆(A). (ρ, α) forms an equilibrium if and only if Ep[Eσ[uS(α(m))|ρ(ω)]] ≥ Ep[Eσ[uS(α(m))|ρ̃(ω)]] and
Ep[Eσ[uR(ω, α(m))|ρ(ω)]] ≥ Ep[Eσ[uR(ω, α̃(m))|ρ(ω)]] for any ρ̃, α̃.
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(iii) Honesty: For all ω, ω′ ∈ Ω, Eπω [uS(a)] ≥ Eπω′ [uS(a)], where πω ∈ ∆(A) is the condi-

tional probability given ω ∈ Ω.

We say that π ∈ ∆(Ω × A) is a communication equilibrium (CE) outcome if it satisfies

(i), (ii), and (iii).

3 Belief-based Approach to Mediated Communication

Instead of focusing on CE outcomes, we consider distributions over the receiver’s posteriors

τ ∈ ∆(∆(Ω)) and the sender’s indirect utility V : ∆(Ω) → R in terms of the receiver’s

posterior. Define the indirect value correspondence V : ∆(Ω) ⇒ R by

V(µ) := co

(
uS

(
argmax

a∈A
Eµ[uR(ω, a)]

))
.

For every posterior µ ∈ ∆(Ω), the set V(µ) collects all the possible (expected) sender’s

payoffs that can be attained by some (potentially mixed) receiver’s best response at posterior

µ. By Berge’s Theorem, V is upper hemi-continuous, compact, convex, and non-empty

valued, that is, it is a Kakutani correspondence.13 Define the functions V (µ) = maxV(µ)

and V (µ) = minV(µ), which are respectively upper and lower semi-continuous.14

Any CE outcome π induces a distribution over posterior beliefs τπ ∈ ∆(∆(Ω)) as follows:

τπ(D) =
∫
I[πa ∈ D] dπ for all Borel D ⊆ ∆(Ω). It also induces an indirect utility for the

sender V π : ∆(Ω) → R defined for τπ-almost all posterior beliefs by

V π(µ) :=

∫
uS(a) dπ(a | πa = µ),

where π(· | πa = µ) is the conditional probability over Ω× A given that πa = µ.

Definition 1. A distribution of posteriors τ ∈ ∆(∆(Ω)) and a measurable function V :

∆(Ω) → R are induced by some CE outcome π ∈ ∆(Ω×A) if τ = τπ and V (µ) = V π(µ) for

τ–almost all µ.

For our main analysis, we focus on pairs (τ, V ) that are induced by some CE outcome. For

any τ ∈ ∆(∆(Ω)), we say τ attains value s ∈ R if there exists V ∈ V such that
∫
V dτ = s.

13Observe that we can alternatively start our analysis from a primitive Kakutani correspondence V
capturing the set of the sender’s continuation values given each posterior. This setting is strictly more
general than the one presented in the main text as, for example, it would allow us to capture non-EU
preferences for the receiver (see Example 3).

14See Lemma 17.30 in Aliprantis and Border (2006).
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Our first result characterizes the set of implementable distributions over posteriors and

indirect utility functions using three conditions parallel to Consistency, Obedience, and Hon-

esty. In particular, as the sender’s preference is state-independent, their expected payoff

should be the same conditional on every state report.

Theorem 1. If a distribution of receiver’s beliefs τ ∈ ∆(∆(Ω)) and a measurable sender’s

indirect utility function V : ∆(Ω) → R are induced by some CE outcome, then they satisfy

(i) Consistency*: ∫
µ dτ(µ) = p; (BP)

(ii) Obedience*: For τ -almost all µ ∈ ∆(Ω), V (µ) ∈ V(µ);

(iii) Honesty*:

Covτ [V (µ), µ] = 0. (zeroCov)

Conversely, if (τ, V ) satisfy (i),(ii), and (iii), then there exists a CE outcome π ∈ ∆(Ω×A)

such that Eτ [V ] = Eπ[uS].
15

The set of implementable distributions over posteriors under mediation is

TMD(p) := {τ ∈ ∆(∆(Ω)) : ∃ V ∈ V such that (BP) and (zeroCov) hold}.

We now sketch the derivation of equation zeroCov. For simplicity, consider the singleton-

valued case: V(µ) = V (µ). Under transparent motives, the Honesty constraint implies

that Eτω [V (µ)] = Eτ [V (µ)] for all ω ∈ Ω, where τω is the conditional distribution of the

receiver’s beliefs given ω. Furthermore, Consistency* implies that for all ω ∈ Ω, τω is

absolutely continuous with respect to τ with Radon-Nikodym derivative dτω

dτ
(µ) = µ(ω)

p(ω)
. We

then obtain: ∫
V (µ)

µ(ω)

p(ω)
dτ(µ) =

∫
V (µ) dτ(µ) ⇐⇒ Covτ [V (µ), µ] = 0.

Therefore, whenever the indirect value correspondence has a single selection, we fully char-

acterize the set of implementable distributions over posteriors under mediation.

Corollary 1. If the indirect value correspondence is singleton-valued V = V , then τ is

implementable under mediation if and only if (τ, V ) satisfy Consistency* and Honesty*.

15Here, Covτ [V (µ), µ] is a (n − 1)–dimensional vector of one-dimensional covariances Covτ [V (µ), µ(ω)]
between the sender’s indirect utility and the receiver’s posterior at each of n−1 states ω. One state is clearly
redundant, hence the dimensionality is n− 1.
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An important case where the correspondence V is singleton-valued is when the receiver

has a single best response a∗(µ) ∈ A to every possible posterior, for example when this is

the conditional expectation of ω given the message received from the mediator.16

The zero covariance condition states that there cannot be any correlation between the

payoff of the sender and the belief of the receiver. For example, consider the binary-state

case Ω = {ω, ω} with a singleton-valued V = V . The realized posterior belief is represented

by the probability µ ∈ [0, 1] that the state is ω. Suppose that a candidate information

structure induces a finitely supported distribution with possible pairs of sender’s payoff and

receiver’s belief given by {(µi, V (µi))}ki=1 ⊆ R2. In statistical terms, the zeroCov condition

says that if we draw the regression line for the variable V (µ) with respect to the variable µ,

then this line must be flat. Importantly, the property of having a flat regression line does

not imply that there is no stochastic dependence between V (µ) and µ.

3.1 The Optimal Value of Mediation

Applying our Theorem 1, we can rewrite the mediator’s problem in the belief space. The

mediator chooses a distribution over receiver’s posterior τ ∈ ∆(∆(Ω)) and a measurable

selection V ∈ V to maximize the sender’s expected payoff:

sup
V ∈V,τ∈∆(∆(Ω))

∫
V (µ) dτ(µ)

subject to:

∫
µ dτ(µ) = p (BP)∫
V (µ)(µ− p) dτ(µ) = 0, (TT)

where (TT) is just a rewriting of (zeroCov). Let g ∈ Rn denote an arbitrary Lagrange

multipliers for (TT) and, for any selection V ∈ V, define the corresponding virtual indirect

value function of the sender as V g(µ) := (1+ ⟨g, µ−p⟩)V (µ). Each V g(µ) is the belief-based

version of the virtual utility in Myerson (1997) and Salamanca (2021) and, like those, takes

into account a fixed shadow price g of the constraint TT.17

We next use these objects to characterize the optimal value of mediation. For any mea-

surable function U : ∆(Ω) → R, let cav(U)(p) denote the concavification of U evaluated at

p, that is, the pointwise infimum over all concave functions that majorize U .

16Kolotilin et al. (2024) give simple sufficient conditions on uR such that the receiver has a single, yet
possibly nonlinear, best response to every belief.

17Recall that the virtual utilities in both Myerson (1997) and Salamanca (2021) are defined on outcomes
as opposed to beliefs.
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Proposition 1. The mediation problem admits solution (V ∗, τ ∗) and this solution can be im-

plemented using a communication mechanism with no more than 2n−1 messages. Moreover,

the sender’s optimal value under mediation is given by

VMD(p) = max
V ∈V

inf
g∈Rn

cav(V g)(p).

We show the existence of a solution by constructing an auxiliary program in the space of

joint distributions of the sender’s expected values and receiver’s posteriors that has also been

analyzed in Lipnowski et al. (2022). Since V is upper hemi-continuous and closed-valued,

its graph is closed, so the auxiliary program admits a solution. This implies our existence

result. Note that (BP) and (TT) are in the form of moment conditions à la Winkler (1988),

which implies that optimal mediation can be achieved with finitely many messages. Because

the truth-telling constraint can be incorporated into the objective function via Lagrange

multipliers, by Sion’s minimax theorem, the sender’s optimal value under mediation is the

lower envelope of a family of concavified virtual utilities.

3.2 Bayesian Persuasion and Cheap Talk

We now recall how to analyze Bayesian persuasion and cheap talk using the belief-based

approach. The classical interpretation of Bayesian persuasion is that the sender can commit

to an information structure for the receiver before the state is realized. An alternative,

yet mathematically equivalent interpretation, is that there is a mediator with commitment

power that is completely aligned with the sender but, unlike in standard mediation, does

not need to elicit the state from the sender. In this case, the mediator’s problem drops

(TT) and directly maximizes the expectation of the upper envelope V over all distributions

over posteriors τ that satisfy (BP). Let TBP (p) and VBP (p) respectively denote the set of

implementable distributions over posteriors and the optimal value under persuasion.

Under cheap talk, we completely bypass the mediator: after having observed the state,

the sender sends a cheap talk message to the receiver. As the sender does not have com-

mitment power, in equilibrium they must be indifferent among all the messages they send.

Thus, the sender’s problem under cheap talk replaces (TT) with the following stronger in-

centive compatibility constraint: the selected indirect value function V (µ) is constant over

supp(τ). Therefore, the set of implementable distributions under cheap talk is TCT (p) :=

{τ ∈ TBP (p) : ∃ V ∈ V such that V is constant on supp(τ)}. An alternative way to repre-

sent the constraint under cheap talk is a zero variance constraint Varτ [V ] = 0. Compared

with the zero covariance condition (zeroCov), this illustrates the statistical difference be-

tween mediation and cheap talk: Under mediation, there cannot be any correlation between
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µ and V (µ), whereas under cheap talk, these two must be stochastically independent.

Let VCT (p) denote sender’s value in their preferred cheap talk equilibrium. Because

the sets of implementable distributions are nested, we have VBP (p) ≥ VMD(p) ≥ VCT (p).

Let V CT : ∆(Ω) → R and V CT : ∆(Ω) → R denote the quasiconcave envelope and the

quasiconvex envelope of V, respectively. That is, V CT (V CT ) is the pointwise infimum

(supremum) over all quasiconcave (quasiconvex) functions that majorize V (are majorized by

V ). Theorem 2 in Lipnowski and Ravid (2020) shows that the value of the sender’s preferred

cheap talk equilibrium coincides with the quasiconcave envelope of V, that is V CT = VCT .

Moreover, define the cheap-talk correspondence by VCT (µ) = [V CT (µ), V CT (µ)] for every

µ ∈ ∆(Ω), the sender’s value under a cheap talk equilibrium lies in VCT .
18

Say that a distribution over posteriors τ is deterministic if | supp τω| = 1 for all ω ∈ Ω.

When this is not the case and τ is implementable under mediation, then it must be induced

by a random (direct) communication mechanism, that is σ : Ω → ∆(A) such that σω is

non-degenerate for some ω ∈ Ω.

Corollary 2. A deterministic distribution over posteriors τ is implementable under media-

tion if and only if it is implementable under cheap talk.

The full disclosure distribution τFD :=
∑

ω∈Ω p(ω)δω is deterministic, so it is imple-

mentable under mediation if and only if there exists V ∈ V such that V (δω) is constant.

Therefore, when full disclosure, or any other deterministic distribution τ , is sender optimal

under mediation at p, we have VMD(p) = VCT (p). Conversely, whenever VMD(p) > VCT (p),

Corollary 2 implies that every optimal distribution of beliefs under mediation must be in-

duced by a random communication mechanism.

4 Persuasion vs. Mediation

In this section, we compare the sender’s optimal value under persuasion and mediation.

Theorem 2. Elicitation has no value if and only if commitment has no value, that is,

VBP (p) = VMD(p) ⇐⇒ VBP (p) = VCT (p).

Theorem 2 implies there are only three possible relationships among the values: VBP (p) =

VMD(p) = VCT (p), VBP (p) > VMD(p) = VCT (p), or VBP (p) > VMD(p) > VCT (p). Com-

18See Lipnowski and Ravid (2020) Appendix C.2.1, which defines the quasiconcave and quasiconvex
envelopes with an extra semi-continuity assumption. Our definition is the same since our state space Ω is
finite. Alternatively, as shown in Aumann and Hart (2003) and Lipnowski and Ravid (2020), VCT is the
correspondence whose graph coincides with the di-convexification of the graph of V.
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bined with the geometric characterizations of the optimal persuasion value (Kamenica and

Gentzkow (2011)) and the optimal cheap talk value (Lipnowski and Ravid (2020)), Theorem

2 also provides a geometric comparison between the sender’s optimal value under commit-

ment and their optimal value under any truthful communication mechanism: these are the

same if and only if the concave and quasiconcave envelopes of the sender’s value function

coincide at the prior. Therefore, if the sender cannot achieve the optimal persuasion value us-

ing single-round cheap talk, then they cannot attain this via any communication mechanism

without sender commitment (e.g. multiple-round cheap talk, noisy cheap talk).

The if direction of Theorem 2 is obvious. To see the only if direction, recall that the

optimal persuasion value is attained from above by the minimal affine functional (i.e., a

hyperplane) that dominates V (µ) pointwise. Let Lp(µ) = ⟨fp, µ⟩ denote this affine functional,

where fp ∈ Rn is its representing vector, and fix a finitely supported distribution τ that is

optimal under persuasion and that is implementable under mediation.19 The duality result

in Dworczak and Kolotilin (2024) implies that V (µ) = ⟨fp, µ⟩ for all µ in the support

of τ . In other words, fp represents the regression hyperplane that passes through all the

points
{
(µ, V (µ))

}
µ∈supp(τ). The zeroCov condition of Theorem 1 implies that there exists

an intercept α ∈ R such that V (µ) = ⟨fp, µ⟩ = α for all µ ∈ supp(τ). Therefore, τ must be

implementable under cheap talk because it induces a constant optimal value for the sender,

hence VBP (p) = VCT (p).

When Ω is non-binary, comparing the concave envelope and the quasiconcave envelope is

not easy in general. Thus, we take a constructive approach and provide a sufficient condition

for persuasion to strictly outperform mediation. To state the formal condition, we need the

following definition.

Definition 2. The cheap talk hull is defined as

H∗ := {µ ∈ ∆(Ω) : ∃α > 1 such that V CT (p) ∈ VCT (αp+ (1− α)µ)} (1)

This is the set of beliefs such that the cheap talk value at p can be still attained when

the prior is slightly perturbed.20 Moreover, H∗ is non-empty as p ∈ H∗ and convex.

Theorem 2 leads to the following sufficient condition for persuasion to strictly outperform

mediation – it suffices to check whether there exists µ ∈ H∗ where the sender’s most preferred

cheap talk equilibrium with prior µ is strictly better than the optimal cheap talk equilibrium

with prior p.

19Given that we restrict to finitely many states, the finite-support assumption is innocuous.
20Observe that, by quasiconcavity and quasiconvexity respectively of V CT and V CT if µ ∈ H∗ with

respect to α > 1, then every α′ ∈ (1, α] would work as well.
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Proposition 2. If there exists µ ∈ H∗ such that V CT (µ) > V CT (p), then VBP (p) > VMD(p).

The proof is constructive. For any posterior µ ∈ H∗ with V CT (µ) > V CT (p), there exists

τ ∈ TCT (µ) that attains V CT (µ) and τ ′ ∈ TCT ((1− α)µ+ αp) that attains V CT (p) for some

α > 1. The mixture 1
α
τ ′ + α−1

α
τ is a distribution of beliefs centered at prior p that attains a

value strictly higher than V CT (p).
21

We next introduce the notion of full dimensionality which allows us to make tighter the

comparison between persuasion and mediation in this section and the one between cheap

talk and mediation in the next section.

Definition 3. The full-dimensionality condition holds at p if H∗ = ∆(Ω).

In other words, the full-dimensionality condition requires that V CT (p) can still be attained

under cheap talk even when the prior is slightly perturbed toward any arbitrary direction.

Corollary 3. Assume that the full-dimensionality condition holds at p. Then, VBP (p) >

VMD(p) if and only if there exists µ ∈ ∆(Ω) such that V CT (µ) > V CT (p).

When does the full-dimensionality condition hold? In the binary-state case, it holds if

the maximum cheap talk value is strictly higher than the maximum value achievable under

no disclosure. In general, the next lemma provides a characterization of full dimensionality

as well as an easy-to-verify sufficient condition.

Lemma 1. The full-dimensionality condition holds at p if and only if there exists α > 1

such that V CT (p) ∈
⋂

ω∈Ω VCT (αp+ (1− α)δω). In particular, it holds provided that V CT is

locally constant around p.

The first condition states that it is enough to check that all the Dirac beliefs are in the

cheap talk hull at p. The second condition is particularly useful when the action set A is

finite, because then V CT is locally constant around p for almost every prior p as shown in

Corollary 2 of Lipnowski and Ravid (2020). Combining this observation with our Corollary

3 yields that, when the action set is finite, for almost all priors, either cheap talk achieves

the global maximum value or elicitation is strictly valuable.

Example 1. In the context of the illustrative example of Section 1.1, if the mediator has

the expertise to assess the quality of the goods without relying on the seller’s reports, they

design (and commit to) a test/information structure about the quality of the goods that is

21A similar construction idea is applied in Corollary 2 of Lipnowski and Ravid (2020), which focuses on
the optimal cheap talk value and implements this construction when H∗ = ∆(Ω). See the discussion about
this full-dimensionality case below. In the proof of Proposition 2 we also provide an explicit lower bound on
the difference VBP (p)− VMD(p).
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revealed to the buyer. The seller has a strict incentive to take this option because it relaxes

the truth-telling constraint and allows the seller to induce any Bayesian persuasion outcome.

For instance, the mediator can commit to sending messages µ = 3/4 with probability 4p/3

and µ = 0 with probability 1−4p/3. This information structure induces the optimal Bayesian

persuasion outcome (one may verify this by concavification), and the optimal persuasion

payoff is greater than the payoff of the mediation plan we illustrated. Indeed, since the value

of commitment is strictly positive, our Theorem 2 implies that the value of elicitation is

strictly positive as well. Figure 1 (a) plots the CT value (red), the MD value (yellow), and

the BP value (blue) over all the priors. Both elicitation and mediation are strictly valuable

at every p ∈ (0, 0.55). △

4.1 The Think Tank Revisited

We now illustrate the ideas introduced in this section with a three-state example. Think

tanks often act as research mediators between an interest group and lawmakers. Here, we

revisit the think-tank example in Lipnowski and Ravid (2020) by assuming that the sender

is an interest group, say a lobbyist with private knowledge of the state, the receiver is a

lawmaker with the option to maintain the status quo or to choose a new policy, and the

mediator is a think tank which is completely aligned to the interest group.22

There are three possible states of the world Ω = {ω1, ω2, ω3} and the lawmaker can take

one of four actions A = {a0, a1, a2, a3}. Each action ai for i ∈ {1, 2, 3} represents a costly

and risky policy that pays if and only if the state is ωi. Differently, action a0 is safe and

represents the status quo. Formally, the lawmaker’s payoff uR(ωi, aj) is 1 if i = j ̸= 0, 0 if

j = 0, and −c otherwise for some c > 1. The lobbyist is informed about the state of the

world, but their preferences are misaligned with respect to the lawmaker. In particular, the

lobbyist’s payoff is uS(a) =
∑3

i=0 viI[a = ai] with v3 > v2 > v1 > v0 = 0, that is, the lobbyist

prefers higher indexed policies and maintaining the status quo yields zero payoff.

Given belief µ ∈ ∆(Ω), the lawmaker’s best response is to take action ai if and only if

µ(ωi) >
c

1+c
, and they are indifferent between ai and a0 when µ(ωi) =

c
1+c

. This is illustrated

in the left panel of Figure 2. The colored regions at the vertexes of the simplex represent

the beliefs such that the lobbyist’s payoff is equal to vi for some i ∈ {1, 2, 3}. The central

hexagon is the region of the lawmaker’s beliefs where their optimal response is to maintain

the status quo, yielding a zero payoff for the lobbyist. Observe that the boundary segments

between each colored region and the zero-payoff region represent the beliefs such that the

22In Lipnowski and Ravid (2020), the think tank does not have commitment power but does not need
to elicit information from an interest group. Therefore, in their cheap-talk example, the think tank is the
sender and tries to influence the lawmaker, i.e., the receiver.
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Figure 2: Lobbyist’s value function and its quasiconcave envelope

Left panel: lobbyist’s value correspondence over the lawmaker’s belief space. Right panel:
lobbyist’s optimal cheap talk value (i.e., quasiconcave envelope) over the lawmaker’s belief space.

This illustrates the case where c = 2.

lawmaker is indifferent between the status quo and one of the new policies.

Suppose first that the lobbyist communicates with the lawmaker without the think tank

mediation. This corresponds to the cheap-talk case and the lobbyist’s optimal value as a

function of the prior belief p is the quasiconcave envelope V CT (p):

VCT (p) =


v3 if p(ω3) ≥ c

1+c

v1 if p(ω1) ≥ 1
1+c

v2 otherwise.

The right panel of Figure 2 shows the level sets of the quasiconcave envelope over the simplex.

When the prior is in one of the three colored regions in the left panel, then the babbling

equilibrium is optimal for the lobbyist. Instead, the status-quo region can be split into two

subregions. For priors that lie between the v2 and v3 regions, there exists an equilibrium

distribution of the lawmaker’s beliefs supported on posteriors where a2 is uniquely optimal

and posteriors where the lawmaker is indifferent between the status quo and a3. Differently,

for priors to the right of the blue dashed line, (BP) implies that any optimal equilibrium

must induce a posterior where a1 is optimal, implying the highest value attainable is v1.

Given that the action set is finite, the full-dimensionality condition holds at almost all

priors p in the simplex. For example, suppose that the prior p lies between the v2 and v3

region as in Figure 3. Around this prior, the quasiconcave envelope V CT is constant and

equal to v2. This value is attained by the lobbyist-optimal distribution of the lawmaker’s

beliefs supported over {µ1, µ2, µ3, µ4} as shown in Figure 3. At posteriors µ2 and µ3 the

lawmaker takes action a2, whereas on µ1 and µ4 the lawmaker mixes between the status quo
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and action a3 so to induce exactly a payoff equal to v2 for the lobbyist.23

Figure 3: Construction of a cheap-talk equilibrium with a full-dimensional cheap talk hull.

Assume now that the lobbyist and the lawmaker communicate through the mediation of

the think tank. We can apply Corollary 3 to establish when the think tank mediation secures

to the lobbyist the Bayesian persuasion value. This happens if and only if the prior lies in the

red triangle in the left panel of Figure 2. In this case, no disclosure is optimal for all three

of the communication protocols considered. As soon as the prior p is outside this region,

that is when p(ω3) <
c

1+c
, we have V CT (µ) > V CT (p) for all µ in the v3 region, yielding that

VBP (p) > VMD(p). Thus, for a large set of prior beliefs, a lobbyist with commitment power

would be strictly better off than the case where they communicate through an uninformed

think tank with commitment, that is, the value of elicitation is strictly positive.

5 Mediation vs. Cheap Talk

This section provides separate sufficient and necessary conditions for the mediator to strictly

outperform direct communication. These conditions collapse under the full-dimensionality

condition introduced in the previous section, yielding a tight geometric characterization of

when mediation is strictly valuable. As we have seen in Corollary 2, the mediator must

randomize to strictly improve on cheap talk. Here, we show that they must randomize over

posteriors with a value strictly above and below the optimal cheap talk value.24

Definition 4. We say that cheap talk is (locally) improvable at p if there exist µ ∈ ∆(Ω)

(µ ∈ H∗) and λ ∈ (0, 1) such that

V CT (λµ+ (1− λ)p) > V CT (p) > V CT (µ).

23In our belief-based approach, this amounts to take a v2 as a selection from V(µ1) = V(µ4) = [0, v3].
24Recall that the cheap talk hull H∗ is defined in (1).
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In words, cheap talk is locally improvable at p if there are alternative priors µ ∈ H∗

and µ′ = λµ + (1 − λ)p such that there exists a cheap talk equilibrium at µ and one at µ′

that respectively yield a strictly lower and a strictly higher expected payoff to the sender.

Importantly, the prior µ′ corresponding to the high-value equilibrium has to be “closer” to

the original prior p, in the sense that µ′ lies in the open segment (p, µ).

We can now state the main result of this section.

Theorem 3. The following hold:

1. If cheap talk is locally improvable at p, then VMD(p) > VCT (p) and every optimal distri-

bution of beliefs under mediation is induced by a random communication mechanism.

2. Conversely, if cheap talk is not improvable at p, then VMD(p) = VCT (p).

Moreover, if the full-dimensionality condition holds at p, then VMD(p) > VCT (p) if and only

if cheap talk is improvable at p.

We sketch the proof of Theorem 3 here. If cheap talk is locally improvable at p, then there

exist two beliefs µ− ∈ H∗, µ+ ∈ (p, µ−), and two cheap talk equilibria τ− ∈ TCT (µ−), τ+ ∈
TCT (µ+) that respectively attain a value strictly lower and strictly higher than V CT (p).

Because µ− ∈ H∗, there exists µ0 that lies on the half line with endpoint µ− through p, such

that V CT (p) can be attained by a cheap talk equilibrium τ0 centered at µ0. Next, consider

a new distribution of beliefs τ obtained by randomizing over the three cheap talk equilibria

τ+, τ−, and τ0. Because the barycenters of these three distributions are colinear, finding the

weights on each of them such that (BP) and (TT) are satisfied reduces to a 1-dimensional

problem. Moreover, since µ+ is “closer” to the prior p compared to µ−, (TT) requires the

mediator to assign a relatively higher weight to τ+ compared to τ−, so the sender’s expected

utility is strictly higher than V CT (p) with this randomization. See Figure 4 in subsection

5.1 for a graphical illustration of this construction. Note that this procedure also provides

a lower bound on the value of mediation, which depends on the barycenters and cheap talk

equilibria in the construction.25

The proof of the converse statement is more technical. If cheap talk is not improvable

at p, then there exists a hyperplane H that properly separates all posteriors with values

strictly higher than V CT (p) from those with values strictly lower than V CT (p). Moreover,

the prior p lies in the same closed half-space as the posteriors with a value strictly below

V CT (p). A normal vector g ∈ Rn of H is a Lagrange multiplier for the (TT) constraint such

that (V (µ) − V CT (p))⟨g, µ⟩ ≤ 0 for every µ ∈ ∆(Ω). Hence, for any (τ, V ) implementable

25See equation 5 in Appendix A.4 for an explicit expression of this lower bound.
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under mediation, we have

0 ≥
∫

(V (µ)− V CT (p))⟨g, µ⟩ dτ(µ) =
(∫

V (µ) dτ(µ)− V CT (p)

)
⟨g, p⟩,

by (zeroCov) and (BP). When p does not lie on H, we conclude that
∫
V dτ ≤ V CT (p).

Otherwise, for τ -almost-all posteriors µ, either V (µ) = V CT (p) or µ ∈ H ∩ ∆(Ω), which

is a strictly lower-dimensional set. We can find another separating hyperplane H ′ while

restricting attention to H ∩∆(Ω) and then repeat the same argument until p is not in the

separating hyperplane or until the intersection of all separating hyperplanes H ∩H ′ ∩∆(Ω)

is a singleton p. Either case leads to the desired conclusion that VMD(p) ≤ V CT (p).

For the last part of the theorem, full dimensionality implies that cheap talk is locally

improvable at p if and only if it is improvable at p. In general, full dimensionality holds

when the quasiconcave envelope V CT is locally flat at p (see Lemma 1), which is the case for

almost every prior p when the action set A is finite.

When the sender’s payoff correspondence is singleton-valued and no disclosure is not a

sender’s optimal cheap talk equilibrium, it is possible to simplify the characterization of

Theorem 3 as follows.

Corollary 4. Assume that V = V is singleton-valued, that the full-dimensionality condition

holds at p, and that no disclosure is suboptimal for cheap talk at p (i.e., V CT (p) > V (p)).

Then VMD(p) > VCT (p) if and only if there exists µ ∈ ∆(Ω) such that

V CT (µ) > V CT (p) > V CT (µ).

In this case, it is sufficient to find a single alternative prior µ that admits two cheap talk

equilibria respectively inducing a strictly higher and a strictly lower sender’s payoff than the

sender’s optimal cheap talk value at p.

Finally, it is natural to ask whether, under the sufficient condition of Theorem 3, me-

diation also strictly improves the expected utility of the receiver,
∫
VR(µ)dτ(µ), where

VR(µ) := maxa∈A Eµ[uR(ω, a)] is the receiver’s utility given posterior µ. This is indeed the

case provided that V = V is singleton-valued and that VR(µ) = ϕ(V (µ)) for some strictly

increasing and convex function ϕ : R → R. In Section 6.1, we analyze a large class of games

where this condition is satisfied. Beyond this condition, it is not always easy to adapt our

approach to conclude whether there exists a mediation plan that improves both the sender’s

and receiver’s expected payoff compared to their payoffs under some sender-preferred cheap

talk equilibrium. However, this is the case in the illustrative example in the introduction as
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well as in the illustration in Section 5.1.26

5.1 Valuable Mediation in the Think-Tank Example

Consider again the setting of Section 4.1 with a lobbyist (sender) trying to influence a

lawmaker (receiver) through a think tank (mediator). Here, we use the results of this section

to show when the mediation of the think tank is strictly valuable. Recall that in this case,

the full dimensionality condition holds at almost every prior.

Suppose first that the prior p lies between the v2 and v3 region as in Figure 3. Observe

that the lawmaker’s beliefs µ′ such that V CT (µ
′) > V CT (p) = v2 are those in the v3 region

(the red triangle). Therefore, it is not possible to find a belief µ and a point µ′ in the segment

(p, µ) as described in Definition 4. To see this, note that if V CT (µ
′) > v2 for some µ′ ∈ (p, µ),

then µ must be in the v3 region except the boundary red line where the lobbyist is indifferent

between a3 and a0, yielding that V CT (µ) = V CT (µ) = v3. This logic holds for all priors in

the central hexagon and at the left of the dashed blue line in Figure 3. That is, for any p

with p(ω1) <
1

1+c
, cheap talk is not improvable at p, so the think tank is worthless.

Figure 4: Construction of an improving distribution of beliefs under mediation

Differently, consider a prior p to the right of the same dashed blue line as in Figure 4, that

is such that p(ω1) >
1

1+c
. At all these priors, cheap talk is improvable, so by Theorem 3 me-

diation strictly improves on direct communication. Intuitively, mediation helps strictly when

the lawmaker has a pessimistic prior belief. Figure 4 graphically constructs an improving

distribution of beliefs that is feasible under mediation following the logic of Theorem 3. First,

recall from Figure 2 that V CT (p) = v1 > 0. Next, fix µ− and µ+ ∈ (p, µ−) lying in the same

segment as in Figure 4. Both these two beliefs are to the left of the blue dashed line, implying

that V CT (µ+) = V CT (µ−) = v2 > v1. Moreover, V CT (µ−) = V CT (µ+) = 0, the payoff of

the babbling equilibrium. This shows that cheap talk is improvable at p. Next, consider a

26See also the discussion at the end of Section 7.
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distribution τ+ of the lawmaker’s beliefs that is supported on
{
µ1
+, µ

2
+

}
and with barycenter

µ+. This is a feasible distribution of beliefs under cheap talk at prior µ+ since we can select

a mixed best response at µ2
+ that induces expected payoff v2 for the lobbyist. Importantly,

this distribution of beliefs and selection gives an expected payoff V CT (µ+) = v2 > v1 to the

lobbyist. Consider also two degenerate distributions of beliefs τ− = δµ− and τ0 = δµ0 , where

µ0 lies at the intersection of the previous segment and the boundary between the status-quo

region and the v1 region.27 Because the barycenters of τ+, τ−, and τ0 are colinear, we can

mix these distributions as in the illustrative example in the introduction such that (BP) and

(TT) are satisfied while strictly improving the expected payoff of the lobbyist.

Figure 5: Relationships among communication protocols

For p with p(ω1) ≥ c
1+c

, no disclosure is optimal under cheap talk and suboptimal under

mediation. Hence, the optimal mediation solution is strictly more informative than an

optimal cheap talk equilibrium under these priors. Moreover, as the cost c increases, the

region where the cheap talk is improvable expands, and it converges to the entire simplex as

c → ∞. Therefore, mediation by a think tank is more likely to be valuable for high-stakes

decisions. In general, the dotted blue line in Figure 4 separates the status-quo hexagon into

two regions: to its left elicitation is strictly valuable but mediation is not, to its right both

elicitation and mediation are strictly valuable. The relations among the three protocols are

summarized in Figure 5. All the three possible scenarios that we mentioned after Theorem

2 are present in the current example: For priors p in the red region we have VBP (p) =

VMD(p) = VCT (p), for p in the blue region VBP (p) > VMD(p) = VCT (p), and for p in the

green region VBP (p) > VMD(p) > VCT (p).
28

Finally, we show that for every p such that p(ω1) ∈
(

1
1+c

, c
1+c

)
, there is a distribution

27In principle, there are multiple ways to construct µ0 and τ0, and µ0 is not required to lie in the v1
region. By full dimensionality, any µ0 in a neighborhood of p attains v1 under cheap talk. Hence, for any
selection of µ−, we can choose a µ0 in the extended segment (µ−, p] through p where v1 is attained under
cheap talk with some distribution τ0. We choose the simplest one for illustration here.

28The dotted grey line in Figure 5 is a zero-measure region where full dimensionality does not hold.
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of beliefs τ ∈ TMD(p) under which both the lobbyist’s and lawmaker’s expected payoff are

strictly higher than their payoff under a lobbyist-preferred cheap talk equilibrium. Consider

a lobbyist-preferred cheap talk equilibrium τ ′ ∈ TCT (p) that is supported on µ3, µ4 and some

posteriors on the boundary of the v1 region as in Figure 3. At every posterior in the support of

τ ′, the lawmaker is indifferent between a0 and some other action, so the lawmaker’s expected

payoff is 0 under τ ′. We’ve illustrated that mixing among three cheap talk equilibria τ+, τ−

and τ0 with different but colinear barycenters yields a τ ∈ TMD(p) that strictly improves the

lobbyist’s payoff. Different from the illustration, we now take a τ0 that supports on µ3, µ4

and δω1 . The lawmaker takes action a1 with certainty at posterior δω1 , so their expected

payoff at δω1 is 1. Hence, the lawmaker’s expected utility under τ is strictly positive.

5.2 Binary-state case and quasi single-crossing

Here, we provide a geometric comparison between mediation and cheap talk when Ω is binary.

This is captured by a weaker version of the single-crossing condition.

Definition 5. A compact-valued correspondence U : [0, 1] ⇒ R is quasi single-crossing at

x0 ∈ [0, 1] from below (above) if U(x0) = 0 and

• for all x ≤ x0 (x ≥ x0), U(x) ≤ 0;

• for all x′ > x > x0 (x′ < x < x0), U(x) > 0 implies U(x′) ≥ 0,

where U(x) = maxU(x), U(x) = minU(x). U is quasi single-crossing at x0 if it is quasi

single-crossing at x0 either from below or from above.29

Figure 6: Comparison of quasi single-crossing and not quasi single-crossing functions

29When U is singleton-valued, we obtain the corresponding definition for functions. In Appendix C.1, we
relate this notion of quasi single-crossing function with the standard definition of single-crossing function as
well as with the notion of weak single-crossing function in Shannon (1995).
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Corollary 5. Assume that |Ω| = 2 and that the full-dimensionality condition holds at p.

Then VMD(p) = VCT (p) if and only if VCT − V CT (p) is quasi single-crossing at p.30

Corollary 5 follows from Theorem 3’ that we introduce below. In particular, recall that

when the state is binary, the full-dimensionality condition holds at p provided that the

babbling equilibrium is not sender optimal. In Appendix C.2, we document other corollaries

for the binary-state case, such as a geometric sufficient condition for mediation to be valueless.

The failure of the weak single-crossing property captures the idea of countervailing in-

centives, that is, the sender would like to induce more optimistic beliefs for some realized

posterior and more pessimistic beliefs for some others. Here, countervailing incentives allow

us to construct a strictly improving mediation plan as in the proof of Theorem 3.31

We can recast our geometric characterization in the general case with an arbitrary number

of states in terms of the weak single-crossing property. Let E be the set of line segments with

two endpoints on the boundary of ∆(Ω). Any ℓ ∈ E can be parameterized as ℓ = {tµ+ (1−
t)µ′ : t ∈ [0, 1]} for some boundary µ, µ′ ∈ ∆(Ω). For any ℓ ∈ E , fix a parametrization and

let ℓ(µ) ∈ [0, 1] denote the parametrized representation of µ ∈ ℓ. Finally, VCT |ℓ : [0, 1] ⇒ R
denotes the restriction of the cheap talk correspondence over ℓ ∈ E .

We can now restate our main theorem in terms of the weak single-crossing property.

Theorem 3’. Suppose the full-dimensionality condition holds at p. Then VMD(p) = VCT (p)

if and only if, for every ℓ ∈ E with p ∈ ℓ, VCT |ℓ − V CT (p) is quasi single-crossing at ℓ(p).

Under full dimensionality, it is enough to find a line segment ℓ containing p such that

VCT |ℓ − V CT (p) fails the weak single-crossing condition to imply that we can construct a

strictly improving mediation plan as in the proof of Theorem 3.

6 Moment Mediation: Quasiconvex Utility

In this section, we apply the results from Section 5 to moment-measurable mediation. For

1 ≤ k ≤ n − 1, a k-dimensional moment is a linear function T : ∆(Ω) → Rk such that

the set of relevant moments X := T (∆(Ω)) has dimension k. We assume that V = V is

singleton-valued and specifically that V (µ) = v(T (µ)) for some continuous v : Rk → R and

30Recall that VCT (µ)− V CT (p) :=
{
v − V CT (p) ∈ R : v ∈ VCT (µ)

}
for all µ ∈ ∆(Ω). When the state is

binary, we abuse the notation so that µ denotes the first entry of the receiver’s posterior.
31Corollary 5 does not apply when the full-dimensionality fails at p. In this case, no disclosure is optimal

under cheap talk, so VMD(p) = VCT (p) if and only if no disclosure is optimal under mediation. When V = V
is singleton-valued, applying the results in Dworczak and Kolotilin (2024), no disclosure is optimal under
mediation if there exists g ∈ R such that V g(µ) in Proposition 1 is superdifferentiable at p. This becomes an
if and only if when strong duality holds for the mediation program. Differently from Bayesian persuasion,
this is not true in general for mediation as we show via example in Appendix E.

24



k-dimensional moment T (µ). Here, we focus on the multidimensional case (k > 1) under the

assumption that v(x) is strictly quasiconvex. This is the main case considered in past works

on multidimensional cheap talk under transparent motives (see Chakraborty and Harbaugh

(2010) and Lipnowski and Ravid (2020)).32 The analysis of the one-dimensional case (k = 1)

for general v(x) is similar to that for the binary-state case in Appendix C.2 and is relegated

to Appendix F.

When v(x) is strictly quasiconvex and the full-dimensionality condition holds at p, only

two extreme cases can happen: either all the communication protocols attain the global max

of V or the optimal sender’s value across communication protocols, including no disclosure,

are all strictly separated. Hence, elicitation, mediation, and communication are all strictly

valuable in the latter case.

Theorem 4. Assume that V (µ) = v(T (µ)) for some k-dimensional moment T (k ≥ 2) and

continuous and strictly quasiconvex v(x). If the full-dimensionality condition holds at p, then

exactly one of these cases holds:

(1) maxV = VBP (p) = VMD(p) = VCT (p) > V (p);

(2) maxV > VBP (p) > VMD(p) > VCT (p) > V (p).

Corollary 6 in Lipnowski and Ravid (2020) shows that under strict quasiconvexity no

disclosure is suboptimal under cheap talk. In addition, we show that strict quasiconvexity

and full-dimensionality imply that cheap talk is improvable at p if and only if its optimal

value is strictly below the global max of V . Finally, the strict separation between Bayesian

persuasion and mediation in (2) comes from Theorem 2.

While Theorem 4 dramatically simplifies the comparison among communication protocols

in the present setting, it still relies on the full-dimensionality condition. We now provide an

easy-to-check condition that implies the existence of a non-trivial set of priors that satisfy

full dimensionality when v is strictly quasiconvex. Define XT :=
{
T (δω) ∈ Rk : ω ∈ Ω

}
.

Definition 6. We say that v(x) is minimally edge non-monotone given T if there exists

x ∈ argminx̃∈XT
v(x̃) such that for all x ∈ XT \ {x}, the one-dimensional function v̂x(λ) :=

v(λx+ (1− λ)x) is not weakly increasing in λ ∈ [0, 1].

The utility function v(x) is minimally edge non-monotone given T whenever the one-

dimensional restrictions of v ◦ T over the segments between the worst possible degenerate

belief and any alternative degenerate belief are all non-monotone. This property captures

32Quasiconvex sender’s utilities play an important role also in the informed information design model of
Koessler and Skreta (2023).
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the idea of countervailing incentives that we mentioned in the introduction. When v(x) is

both strictly quasiconvex and minimally edge non-monotone given T , it follows that the one-

dimensional function v̂x(λ) defined above is strictly single-dipped with a unique minimum

at some λx ∈ (0, 1).

Proposition 3. Assume that V (µ) = v(T (µ)) for some k-dimensional moment T (k ≥ 2)

and that v(x) is continuous, strictly quasiconvex, and minimally edge non-monotone given T .

Then there exists an (n− 1)–simplex ∆̃ ⊆ ∆(Ω) such that the full-dimensionality condition

holds for all p ∈ int ∆̃. For every such p, point (2) of Theorem 4 holds if and only if

minx∈XT
v(x) < maxx∈X v(x).

In the proof, we derive an explicit expression for the simplex ∆̃, that is,

∆̃ := co{δω, {µω ∈ ∆(Ω) : ω ∈ Ω \ {ω}}},

where ω is an element in argminω∈Ω v(T (δω)) and, for every ω ∈ Ω \ {ω}, µw is the unique

element of the one-dimensional segment (δω, δω] such that v(T (δω)) = v(T (µω)).
33 Full

dimensionality holds at every p ∈ int ∆̃ as strict quasiconvexity implies that at every such

prior, there exists an optimal cheap talk equilibrium supported on all extreme points of ∆̃.

6.1 Acceptance Games and Pareto Improving Mediation

In this section, we apply our results for moment mediation to a class of acceptance games

and provide sufficient conditions such that mediation is strictly (ex-ante) Pareto improving

for both the sender and the receiver with respect to unmediated communication.

The receiver has a binary choice: whether to accept or reject a certain prospect. Given

a posterior belief µ, the prospect’s value R(x) for the receiver depends on k-dimensional

moments x = T (µ) ∈ Rk, where R : X → R is a continuous value function. For example,

when Ω ∈ R, the prospect’s value may depend on both the mean and the variance of ω.

The receiver compares the ex-post value R(x) to an outside option with value ε ∈ R
which is their private information and is drawn from a strictly increasing and continuously

differentiable CDF G. We assume that R(X) ⊆ supp ε so the outside option is competitive.

The sender acts to maximize the ex-ante probability that the receiver accepts the prospect

given moments x, that is, v(x) := G(R(x)). Observe that the receiver’s ex-ante payoff given

x is vR(x) := H(R(x)) where H(r) :=
∫
max {ε, r} dG(ε) is a strictly increasing function. In

33For every ω ∈ Ω \ {ω}, µω is well-defined because of strict quasiconvexity and minimal edge non-
monotonicity.
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other words, the payoffs of both the sender and the receiver are strictly increasing transfor-

mation of the prospect’s value R(x).34

To avoid the trivial case where unmediated communication attains the global maximum

payoffs for both the sender and the receiver, we assume that minx∈XT
R(x) < maxx∈X R(x)

for the rest of the section (cf. Proposition 3). We say that mediation is strictly (ex-ante)

Pareto improving at p if there exists a distribution τ ∗ ∈ TMD(p) feasible under mediation

such that∫
v(T (µ)) dτ ∗(µ) >

∫
v(T (µ)) dτ(µ) and

∫
vR(T (µ)) dτ

∗(µ) >

∫
vR(T (µ)) dτ(µ),

for all distributions τ ∈ TCT (p) feasible under cheap talk. Recall that G is log-concave if

log(G) is a concave function. Log-concavity is a standard assumption that is satisfied by

several parametric families of distributions on the real line.

Proposition 4. If R is strictly quasiconvex and minimally edge non-monotone given T , and

G is log-concave, then there exists an (n − 1)–simplex ∆̃ ⊆ ∆(Ω) such that mediation is

strictly (ex-ante) Pareto improving at p for all p ∈ int ∆̃.

The assumptions on R and the fact that G is strictly increasing allow us to invoke

Proposition 3 to conclude that the sender is strictly better off under mediation than under

chap talk for all p ∈ int ∆̃. Next, observe that vR(x) = ϕ(v(x)) where ϕ(z) := H(G−1(z)),

and that log-concavity of G implies that ϕ is a convex function. With this, Jensen inequality

and the fact that the sender’s payoff must be constant over all the possible receiver’s belief

imply that the receiver is strictly better off under mediation than under chap talk for all

p ∈ int ∆̃.

We stress that the assumptions on R are not needed for the last step, that is, in these

acceptance games the receiver is strictly better off under mediation than under cheap talk

whenever the sender is strictly better off and G is log-concave.

We now illustrate Proposition 4 through a simple example of an acceptance game.

Example 2 (Uncertain projects and costly investments). An innovator (sender) is proposing

a bundle of two projects with potential payoffs ω ∈ Ω = {(1, 0) , (0, 1) , (0, 2)} for a firm

(receiver), where the i-th coordinate of ω represents project i’s payoff with i ∈ {1, 2}. In

each state only one project pays out, but project 2 is potentially more valuable in one

state. Given a proposal, the firm can accept or decline it. If the firm declines, it obtains

34Observe that this is not sufficient by itself to conclude that a strict improvement in the ex-ante payoff of
the sender must imply a strict improvement of the receiver’s ex-ante payoff due to the potential nonlinearity
of G and H.
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an outside option ε with a value uniformly distributed in [0, 1]. If the firm accepts, it

exerts efforts e1, e2 ∈ [0, 1] with a cost e21 + e22 to implement the projects, and project i

pays off with probability ei. Hence, given posterior belief µ ∈ ∆(Ω), the firm’s expected

utility from accepting is a function of the posterior mean x = Eµ(ω) ∈ R2, which is R(x) =

maxe1,e2∈[0,1] {e1x1 − e21 + e2x2 − e22} = 1
4
(x2

1 + x2
2). R is strictly convex and hence strictly

quasiconvex. The one-dimensional function f1(λ) = R(λ(0, 1)+(1−λ)(1, 0)) = 1
4
(2λ2−2λ+1)

and f2(λ) = R(λ(0, 2) + (1 − λ)(1, 0)) = 1
4
(5λ2 − 2λ + 1) are non-monotone in λ ∈ [0, 1].

Therefore, R is also minimally edge non-monotone. As the distribution of the outside option

is log-concave, Proposition 4 implies that there exists an (n − 1)–simplex ∆̃ ⊆ ∆(Ω) such

that mediation is strictly Pareto improving for p ∈ int ∆̃. △

We close this section by showing that the strict quasiconvexity assumption in Proposition

4 can be relaxed in some cases.35

Example 3 (Financial Intermediation under Mean-Variance Preferences). A financial issuer

tries to convince an investor to invest in an asset with unknown return ω ∈ Ω ⊆ R. The

investor is risk-averse and cares about both the expected payoff and the variance. That

is, the investor’s payoff from investing is Eµ(ω) − γ Varµ(ω) for some γ > 0. Defining the

two moments x1 = Eµ(ω), x2 = Eµ(ω
2), we may rewrite the investor’s payoff given µ as

R(x) = γx2
1 + x1 − γx2. These preferences capture that investors must satisfy some risk

requirements for their investment. In particular, γ can be interpreted as the shadow price on

the constraint on the maximum variance in a portfolio selection problem. Importantly, these

preferences are not necessarily monotone with respect to first-order stochastic dominance.

Suppose there are n states 0 = ω0 < ω1 < . . . < ωn−1 = 1 with n ≥ 3. Assume that

the investor is risk averse enough: γ > 1/ωi for all ωi > 0; and that the investor’s outside

option follows a uniform distribution on [0, 1]. Let αi = 1− 1
γωi

and µi = αiδωi
+ (1− αi)δ0.

We next show that for all p in the interior of ∆̃ = co{δ0, {µi : i = 1, . . . , n − 1}}, the

full-dimensionality condition holds and that mediation is strictly better than cheap talk.

Note that the issuer’s payoff function v(x) = R(x) is convex but not strictly quasiconvex

in x, so we cannot directly apply Theorem 4 and Proposition 3. However, the same idea as

in the proof could also help us to verify the claim. Fix any ωi ̸= 0, we show the seller’s payoff

V (µ) is non-monotone on the edge of ∆(Ω) that connects δ0 and δωi
. For every α ∈ [0, 1],

we have V (αδωi
+ (1 − α)δ0) = αωi − γα(1 − α)ω2

i . This is a quadratic function that is

non-monotone on [0, 1] and intersects 0 at α = 0 or 1− 1
γωi

.

By construction, for all p ∈ int ∆̃, there exists τ ∈ TCT (p) that attains value 0. Note that

V is convex by the convexity of v and linearity of T , so the set of posteriors that attains

35In Appendix D we consider an expanded version of the following example as well as an additional
example without strict quasiconvexity.
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value higher than 0 is contained in ∆(Ω) \ ∆̃. Lemma 6 then implies 0 is the optimal cheap

talk value for priors in ∆̃. Finally, note that v(x) ≤ 0 gives x2 ≥ x2
1 + x1/γ, so the lower

contour set {v ≤ 0} is strictly convex. In Appendix D.1, we use an analogous argument to

that of Theorem 4 to show that VBP (p) > VMD(p) > VCT (p) > V (p) for every p ∈ int ∆̃.

The issuer strictly benefits from mediation when the investor’s prior is sufficiently pes-

simistic. Moreover, when the investor becomes more risk-averse (γ increases), then αi also

increases for all i = 1, . . . , n − 1. So the region where the issuer strictly benefits from me-

diation expands as the investor becomes more risk-averse. Finally, because the distribution

of the outside option is log-concave, the investor also strictly benefits from mediation when

the prior is in int ∆̃, that is mediation is strictly Pareto improving there. △

7 Discussion and Extensions

This section discusses some of the points left out from the main analysis and future research.

Correlated equilibria in long cheap talk and repeated games Under transparent

motives, our results shed light on Nash and correlated equilibria payoffs in static and repeated

games with asymmetric information.36 We restrict to the finite-action case, an assumption

that is consistent with most of the literature on this topic.

The sender-receiver games we studied in this paper are called basic decision problems in

Forges (2020). First, consider the cheap-talk extended version of this game with (potentially

infinite) rounds of pre-play communication, which is known as the long cheap talk (Aumann

and Hart, 2003). Lipnowski and Ravid (2020) show the highest sender’s expected payoff that

is induced by a Nash equilibrium of this long cheap talk game coincides with the one-shot

highest cheap talk value VCT (p). For correlated equilibria, Forges (1985) shows that the

highest sender’s expected payoff coincides with the payoff induced by the sender’s preferred

communication equilibrium, that is VMD(p).
37 Our results then imply that, for almost all

priors p, correlated equilibria strictly increase the expected payoff of the sender if and only

if cheap talk is improvable at p (Theorem 3).

Next, we consider the infinitely repeated version of this sender-receiver game where both

players take actions but only the receiver’s action is payoff relevant. This is the transparent-

motive case of the repeated games of pure information transmission as defined in Forges

(2020). The overall payoff of the players is given by the undiscounted time average of the

one-period payoffs. Forges (1985) shows that the set of correlated equilibrium payoffs of this

36See the recent survey by Forges (2020).
37In this case, a single round of pre-play communication is sufficient.
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game corresponds to the one induced by the communication equilibria of the stage game.

Moreover, the results in Hart (1985) and Habu et al. (2021) imply that every sender’s Nash-

equilibrium payoff of this game corresponds to a sender’s payoff of a one-stage cheap talk

equilibrium. Theorem 3 implies that if cheap talk is improvable at p, then the sender’s

largest correlated-equilibrium payoff in the repeated game is strictly higher than their best

Nash-equilibrium payoff. See Appendix H for more details.

Sender’s interim efficiency Theorem 2 established that under transparent motives and

with a single receiver (or multiple receivers and public information), mediation attains the

ex-ante efficient value (i.e., Bayesian persuasion) if and only if the same value can be attained

under cheap talk. This result can be generalized by replacing this notion of ex-ante efficiency

with a notion of interim efficiency inspired by the analysis in Doval and Smolin (2024).

We say that τ ∈ TBP (p) is fully interim efficient if there exist V ∈ V and λ ∈ ∆(Ω) with

λ(ω) > 0 for all ω ∈ Ω, such that

(τ, V ) ∈ argmax
τ̃∈TBP (p),Ṽ ∈V

∑
ω∈Ω

(∫
∆(Ω)

Ṽ (µ) dτ̃ω(µ)

)
λ(ω), (2)

and we say τ is fully interim efficient with selection V if (τ, V ) satisfies (2). When V =

V is singleton-valued, fully interim efficient distributions τ induce interim sender’s values

w = (Eτω [V ]))ω∈Ω ∈ RΩ that are on the Pareto frontier of the Bayes welfare set introduced

in Doval and Smolin (2024).38 This set represents all the sender’s interim expected payoffs

that can be induced by some Blackwell experiments without requiring that the truth-telling

constraint holds. Therefore, the points on its Pareto frontier represent vectors of interim

sender’s payoffs that cannot be Pareto improved by an alternative experiment. Here, we

restrict to the fully efficient outcome where every state has a strictly positive Pareto weight,

that is λ(ω) > 0 for all ω ∈ Ω.

In Lemma 4 in the appendix we show that if τ ∈ TMD(p) is fully interim efficient, then

τ ∈ TCT (p). This allows us to extend Theorem 2: A mediator can induce an efficient vector

of the sender’s interim payoffs if and only if the same vector can be induced via unmediated

communication. Observe that Theorem 2 immediately follows from this more general result

by just setting λ = p.

This result can also be interpreted as a mediation’s trilemma. Consider the three follow-

ing properties: (1) Information is public; (2) The sender’s payoff is state-independent; (3)

Mediation is fully interim efficient and strictly better than cheap talk. The previous result

implies that these three properties are incompatible. Moreover, this is a proper trilemma in

38This immediately follows from their Theorem 2.
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the sense that if we relax any one of (1) or (2), then mediation can be interim efficient and

strictly better than cheap talk. We show this with two examples in Appendix G.1.

Receiver’s utility and informativeness In some cases, our results can be used to show

that communication mechanisms improving the sender’s expected payoff also improve the

receiver’s expected payoff, that is mediation yields a strict ex-ante Pareto improvement (see

Section 6.1). In general, our techniques can be extended beyond these cases. However,

focusing on the receiver’s expected utility would present a key new challenge, namely that

the objective function in the mediation problem would be different from the utility function

in the truth-telling constraint. A related point is the comparison of informativeness across

the sender’s optimal communication and cheap talk equilibria respectively. In general, this

comparison seems ambiguous as suggested by our examples. In the illustration in the in-

troduction, when the prior p is in a neighborhood of 0.6, the sender’s optimal cheap-talk

equilibrium would be no disclosure while the sender’s optimal communication equilibrium

would involve some nontrivial form of disclosure (see Figure 1). Conversely, in Appendix

G.2, we modify this example and show that in this case there exists a neighborhood of priors

p such that full disclosure is sender optimal under cheap talk but not under mediation. We

leave both these interesting questions for future research.

A Proofs

A.1 Preliminaries

The proofs of the next two ancillary lemmas are standard and relegated to Appendix B.

Lemma 2 (Lemma 3 of Lipnowski and Ravid (2020), and a symmetric version).

(1) If F : [0, 1] ⇒ R is a Kakutani correspondence with minF (0) ≤ 0 ≤ maxF (1), and

x̄ = inf{x ∈ [0, 1] : maxF (x) ≥ 0}, then 0 ∈ F (x̄).

(2) If F : [0, 1] ⇒ R is a Kakutani correspondence with maxF (0) ≥ 0 ≥ minF (1), and

x̄ = inf{x ∈ [0, 1] : minF (x) ≤ 0}, then 0 ∈ F (x̄).

Proof of (1) is in Lipnowski and Ravid (2020) and we give a proof of (2) in Appendix B.

Lemma 3. An outcome distribution π ∈ ∆(Ω × A) satisfies Obedience if and only if for

every measurable ã : A → ∆(A),
∫
uR(ω, a) dπ(ω, a) ≥

∫
uR(ω, ã) dπ(ω, a), where uR(ω, ã) =∫

A
uR(ω, a) dã(a).
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A.2 The Mediation Problem

Given two measurable spaces (X,Σ), (X ′,Σ′), a measure τ on (X,Σ), and a measurable

function f : X → X ′, we let (f)#τ denote the pushforward measure of τ under f .

Proof of Theorem 1. We first show the only if direction. Suppose that τ ∈ ∆(∆(Ω)) and

V : ∆(Ω) → R are induced by some communication equilibrium outcome π ∈ ∆(Ω × A).

Note that τ is the pushforward measure of margA π ∈ ∆(A) under the measurable function

ϕ : A → ∆(Ω) with ϕ(a) = πa. For every ω ∈ Ω,∫
∆(Ω)

µ(ω) dτ(µ) =

∫
A

ϕ(a)(ω) dmargA π(a) =

∫
A

πa(ω) dmargA π(a)

=

∫
Ω×A

I[ω̃ = ω] dπ(ω̃, a) = p(ω),

where I denotes the indicator function and where the first equality follows because τ =

(ϕ)#margA π, the second equality follows by definition, the third equality follows by the law

of iterated expectations, and the last equality follows by Consistency of π. Hence, τ satisfies

Consistency*.

Since V is induced by π, V (µ) is the conditional expectation of uS with respect to

margA π, conditional on ϕ(a) = µ. Note that by Obedience, π is supported on a ∈ A∗(µ) only,

where A∗(µ) = argmaxa∈A Eµ[uR(ω, a)] is nonempty-compact-valued and weakly measurable

by the measurable maximum theorem (Aliprantis and Border, 2006, Theorem 18.19). There-

fore, V (µ) ∈ [mina∈A∗(µ) uS(a),maxa∈A∗(µ) uS(a)] and V is measurable, so Obedience* is satis-

fied. By Honesty of π and the fact that uS does not depend on ω, we have Eπω [uS] = Eπω′ [uS]

for any ω, ω′ ∈ Ω. By Consistency, we have dπω

dmargA π
(a) = πa(ω)

p(ω)
for all ω ∈ Ω. Therefore,∫

A

uS(a) dπ
ω(a) =

∫
A

uS(a)
πa(ω)
p(ω)

dmargA π(a)

=

∫
A

E
[
uS(a)

πa(ω)
p(ω)

| ϕ(a) = µ
]
dmargA π(a) =

∫
A

E[uS
µ(ω)
p(ω)

|ϕ−1(µ)] dmargA π(a)

=

∫
A

V (ϕ(a))ϕ(a)(ω)
p(ω)

dmargA π(a) =

∫
∆(Ω)

V (µ)µ(ω)
p(ω)

dτ(µ),

where the second equality is by iterated expectation, the third one is simply rewriting, the

fourth one is by V = V π, and the last equality is by the fact that τ = (ϕ)# margA π. There-

fore, there exists a constant c ∈ R such that
∫
∆(Ω)

V (µ)µ(ω)
p(ω)

dτ(µ) =
∫
∆(Ω)

V (µ)µ(ω
′)

p(ω′)
dτ(µ) = c
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for every ω, ω′ ∈ Ω. It follows that for all ω ∈ Ω,
∫
∆(Ω)

V (µ)µ(ω) dτ(µ) = c · p(ω), so∫
∆(Ω)

V (µ) dτ(µ) =
∑
ω′∈Ω

∫
∆(Ω)

V (µ)µ(ω′) dτ(µ) = c ·
∑
ω′∈Ω

p(ω′) = c.

As we have shown that τ satisfies (BP), it follows that for any ω ∈ Ω,∫
∆(Ω)

V (µ)µ(ω) dτ(µ) =

(∫
∆(Ω)

V (µ) dτ(µ)

)
p(ω)

=

(∫
∆(Ω)

V (µ) dτ(µ)

)(∫
∆(Ω)

µ(ω) dτ(µ)

)
,

which implies that Covτ (V (µ), µ(ω)) = 0 for every ω ∈ Ω, so Honesty* holds.

Next, we show by construction that for any τ ∈ ∆(∆(Ω)) and V ∈ V that satisfy

Consistency* and Honesty*, there exists a communication equilibrium outcome π with

Eτ [V ] = Eπ[uS]. Since V ∈ V, by Lemma 2 of Lipnowski and Ravid (2020), there exists a

measurable λ : ∆(Ω) → ∆(A) such that for all µ ∈ ∆(Ω), λ(µ) ∈ argmaxα∈∆(A) Eµ[uR(α, ω)]

is a mixed best response for the receiver with posterior µ, and V (µ) =
∫
A
uS(a) dλ(µ)(a).

Define π ∈ ∆(Ω × A) by π({ω} × D) =
∫
∆(Ω)

µ(ω)λ(µ)(D) dτ(µ) for any ω ∈ Ω and

any Borel D ⊆ A. We show that π is a desired communication equilibrium outcome. First,

note that for any ω ∈ Ω, π(ω,A) =
∫
∆(Ω)

µ(ω)λ(µ)(A) dτ(µ) =
∫
∆(Ω)

µ(ω) dτ(µ) = p(ω) by

Consistency*, so π satisfies Consistency.

Note that by construction we have πω(D) =
∫
∆(Ω)

µ(ω)
p(ω)

λ(µ)(D) dτ(µ) for any BorelD ⊆ A.

That is, πω is an average of λ(µ) ∈ ∆(A). So for any function u : Ω× A → R, we have

Eπ[u] =
∑
ω∈Ω

p(ω)Eπω [u] =
∑
ω∈Ω

p(ω)

∫
∆(Ω)

µ(ω)
p(ω)

(∫
A

u(ω, a) dλ(µ)(a)

)
dτ(µ)

=

∫
∆(Ω)

Eµ

(∫
A

u(ω, a) dλ(µ)(a)

)
dτ(µ),

where the first equality follows from iterated expectation, the second one is by linearity, and

the third one is simply rewriting.

To see Obedience, take any measurable ã : A → ∆(A), by definition of λ, we have

Eµ

(∫
A
uR(ω, a) dλ(µ)(a)

)
≥ Eµ

(∫
A
uR(ω, ã) dλ(µ)(a)

)
for any µ ∈ ∆(Ω). Taking expecta-

tion with respect to τ , we have
∫
uR(ω, a) dπ(ω, a) ≥

∫
uR(ω, ã) dπ(ω, a), and π satisfies

Obedience by Lemma 3.
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Finally, by definition of λ, we have

Eπω [uS] =

∫
∆(Ω)

µ(ω)
p(ω)

(∫
A

uS(a) dλ(µ)(a)

)
dτ(µ) =

∫
∆(Ω)

µ(ω)
p(ω)

V (µ) dτ(µ) = Eπ[uS].

Hence, π satisfies Honesty as τ satisfies Honesty*.

Next, define I := [minµ∈∆(Ω) V (µ),maxµ∈∆(Ω) V (µ)], where the minimum and maximum

are attained because of the semi-continuity of V , V . We now introduce an auxiliary program

sup
η∈∆(∆(Ω)×I)

∫
∆(Ω)×I

s dη(µ, s) (η-MD)

subject to:

∫
∆(Ω)×I

µ dη(µ, s) = p (η-BP)

η(Gr(V)) = 1 (η-OB)∫
∆(Ω)×I

s(µ− p) dη(µ, s) = 0, (η-TT)

where Gr(V) ⊆ ∆(Ω) × I denotes the graph of V. The three constraints (η-BP), (η-OB),

and (η-TT) correspond to Consistency*, Obedience* and Honesty*, respectively. Note that

for any η feasible in this program, τ = marg∆(Ω) η and V (µ) = Eη[s|µ] are feasible under

mediation. Moreover, for any (τ, V ) feasible under mediation, η(µ, s) = τ(µ)I[s = V (µ)] is

also feasible under the auxiliary program. So mediation has the same value as this auxiliary

program, and the existence of a solution for one program implies the existence of a solution

for the other one and vice versa.

Proof of Proposition 1. We first show the auxiliary program has an optimal solution η∗.

Note that the integrand of the first and third constraints are continuous. Hence, for any

sequence of feasible ηn that converges weakly to η, we have p =
∫
µ dηn →

∫
µ dη and 0 =∫

s(µ− p) dηn →
∫
s(µ− p) dη. Note that Gr(V) is closed since V is upper hemi-continuous

and closed-valued, so 1 = lim supn ηn(Gr(V)) ≤ η(Gr(V)) by the Portmanteau Theorem.

Hence, η(Gr(V)) = 1, and η is also feasible under the auxiliary program. Therefore, the

feasibility set of the auxiliary program is compact in the weak topology. As the objective

function is continuous, there exists η∗ ∈ ∆(∆(Ω) × I) that solves the auxiliary program.

Then, τ ∗ = marg∆(Ω) η
∗ and V ∗(µ) = Eη∗ [s|µ] are the desired solution that solves the

mediation problem.

Fix the optimal V ∗ we constructed, and consider the mediation problem with a fixed

selection V ∗. We endow ∆(∆(Ω)) with the weak∗ topology induced by bounded and mea-

surable functions over ∆(Ω). Then, the objective
∫
V ∗ dτ is affine and continuous in τ since
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V ∗ is bounded and measurable. Since the maps µ 7→ µ(ω) and µ 7→ V ∗(µ)(µ(ω) − p(ω))

are measurable for all ω ∈ Ω, the set TMD(p | V ∗) := {τ ∈ TBP (p) : (V
∗, τ) satisfies (TT)}

is closed. Theorem 1 of Maccheroni and Marinacci (2001) then implies that TMD(p | V ∗)

is compact. This set is also convex, Bauer’s maximum principle implies that there exists

a solution τ ′ which is an extreme point of TMD(p | V ∗). Theorem 2.1 of Winkler (1988)

then implies the size of the support of τ ′ is bounded by the number of linearly independent

moment constraints plus one, that is, | supp(τ ′)| ≤ 2(n− 1) + 1 = 2n− 1.

Finally, fix any measurable selection V ∈ V and consider the mediation problem with

fixed selection V . We can rewrite the value of the problem using a Lagrange multiplier

g ∈ Rn on the truth-telling constraint

sup
τ∈TBP (p)

inf
g∈Rn

∫
∆(Ω)

V (µ)(1 + ⟨g, µ− p⟩) dτ(µ). (3)

Next, define the function M(τ, g) :=
∫
∆(Ω)

(1 + ⟨g, µ − p⟩)V (µ) dτ(µ). Again, we endow

∆(∆(Ω)) with the weak∗ topology induced by bounded and measurable functions over ∆(Ω).

The function M(τ, g) is continuous by definition because V (µ) is measurable and bounded.

In the same topology, the set TBP (p) is closed because the map µ 7→ µ(ω) is measurable for

all ω ∈ Ω. With this, Theorem 1 in Maccheroni and Marinacci (2001) implies that TBP (p)

is compact. Finally, given that M(τ, g) is affine and continuous, and that both TBP (p) and

Rn are convex, we can apply Sion’s minimax theorem to exchange the sup and inf in (3).

Therefore, the value can be rewritten as infg∈Rn supτ∈TBP (p)

∫
V (µ)(1 + ⟨g, µ − p⟩) dτ(µ) =

infg∈Rn cav(V g)(p), where V g(µ) = V (µ)(1 + ⟨g, µ − p⟩), and the last equality follows from

Kamenica and Gentzkow (2011). Maximizing over all measurable selections, we have the

desired representation of the optimal mediation value.

A.3 Persuasion vs. Mediation

The following lemma leads to a general version of Theorem 2: mediation is fully interim

efficient39 if and only if cheap talk is fully interim efficient.

Lemma 4. If τ ∈ TMD(p) is fully interim efficient with selection V ∈ V such that
∫
V (µ)(µ−

p) dτ = 0 , then τ ∈ TCT (p).

Proof. For every ω ∈ Ω, the conditional distribution τω ∈ ∆(∆(Ω)) satisfies the Radon-

Nikodym derivative dτω

dτ
(µ) = µ(ω)

p(ω)
, so

39See the definition in Section 7, equation 2.
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∑
ω∈Ω

(∫
∆(Ω)

V (µ) dτω(µ)

)
λ(ω) =

∑
ω∈Ω

(∫
∆(Ω)

V (µ)µ(ω)
p(ω)

dτ(µ)

)
λ(ω) =

∫
∆(Ω)

V (µ)⟨λ
p
, µ⟩ dτ(µ)

Since τ, V solves the optimization problem as in (2), V = V almost surely with respect to τ .

Otherwise, suppose there exists a measurable set D ⊆ ∆(Ω) such that τ(D) > 0 and V (µ) >

V (µ) for all µ ∈ D. Since λ is strictly positive,
∫
V (µ)⟨λ

p
, µ⟩ dτ(µ) >

∫
V (µ)⟨λ

p
, µ⟩ dτ(µ),

yielding a contradiction.

By Corollary 1 of Dworczak and Kolotilin (2024), there exists f ∈ Rn such that V (µ)⟨λ
p
, µ⟩ ≤

⟨f, µ⟩ for all µ ∈ ∆(Ω) and V (µ)⟨λ
p
, µ⟩ = ⟨f, µ⟩ for all µ ∈ supp(τ). Since τ satisfies truth-

telling with selection V = V , (iii) of Theorem 1 implies Covτ (V , ⟨f, ·⟩) = 0. Let Z(µ) :=

⟨λ
p
, µ⟩ and define τ̃ ∈ ∆(∆(Ω)) by the Radon-Nikodym derivative dτ̃

dτ
(µ) = Z(µ). Then,

Covτ (V , ⟨f, ·⟩) = Covτ (V , V Z) = Eτ [V
2Z]−Eτ [V ]Eτ [V Z] = Eτ [V

2Z]−Eτ [V Z]2 = Varτ̃ [V ],

where the second last equality is by (TT) and the last equality is by the definition of τ̃ .

Therefore, V is constant over supp(τ̃) = supp(τ) since Z(µ) > 0 for all µ ∈ ∆(Ω).

Proof of Theorem 2. The if direction is immediate. The only if direction, follows from

Lemma 4 by observing that if τ ∈ TMD(p) attains the optimal Bayesian persuasion value,

then τ is fully interim efficient for λ = p.

Before proving the rest of the results in this section, we need an additional definition.

Definition 7. For every s ≥ V (p) attainable under cheap talk, the cheap talk hull of s is

H(s) := {µ ∈ ∆(Ω) : ∃α > 1 such that s ∈ VCT (αp+ (1− α)µ)} (4)

Observe that H∗ := H(VCT (p)) by Definition 2.

Proof of Proposition 2. We show the following lemma, which implies the desired result.

Lemma 5. For every s ≥ V (p) attainable under cheap talk, if there exists µ ∈ H(s) such

that V CT (µ) > s, then there exists τ ∈ TBP (p) such that
∫
V (µ) dτ(µ) > s.

To see this, take any s ≥ V (p) attainable under cheap talk such that there exists µ̂ ∈ H(s)

with V CT (µ̂) > s. Hence, there exists τ̂ ∈ TCT (µ̂) that attains a higher value than s. As

µ̂ ∈ H(s), there exists α > 1 and τ ′ ∈ TCT (αp + (1 − α)µ̂ such that τ ′ attains s. Hence,

τ̃ = 1
α
τ ′+ α−1

α
τ̂ is feasible under Bayesian persuasion, as 1

α
(αp+(1−α)µ̂)+ α−1

α
µ̂ = p. Note

that
∫
V dτ̃ > s since

∫
V dτ̂ > s and α−1

α
> 0.

By Lemma 5, if there exists µ ∈ H∗ such that V CT (µ) > V CT (p), then VBP (p) > VCT (p).

By Theorem 2, this implies VBP (p) > VMD(p).
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Proof of Corollary 3. The if direction holds by Proposition 2, because there exists µ ∈
∆(Ω) = H∗ such that V CT (µ) ≥ V (µ) > V CT (p). For the only if direction, suppose V (µ) ≤
VCT (p) for any µ ∈ ∆(Ω). As cheap talk attains the global maximum, we have VBP (p) =

VMD(p) = VCT (p).

A.4 Mediation and Cheap Talk

Recall that VCT : ∆(Ω) ⇒ R be the correspondence of sender’s payoff under some cheap

talk equilibrium with prior µ ∈ ∆(Ω)By Corollary 3 and Section C.2.1 of Lipnowski and

Ravid (2020), VCT is non-empty, convex, and compact-valued.

We say a distribution τ ∈ TCT (p) attains value s (under cheap talk) if s ∈ ∩µ∈supp(τ)V(µ),

and a value s ∈ R is attainable under cheap talk if there exists τ ∈ TCT (p) that attains it.

By Theorem 1 in Lipnowski and Ravid (2020), s ≥ V (p) is attainable under cheap talk if

and only if p ∈ co
{
V ≥ s

}
.40

We start with a useful lemma that extends Theorem 1 in Lipnowski and Ravid (2020).41

Lemma 6. For every s ∈ R, V CT (p) > s if and only if p ∈ co{V > s}, and V CT (p) < s if

and only if p ∈ co{V < s}.

This lemma implies that there exists a cheap talk equilibrium that attains a strictly

higher (lower) value than s if and only if the prior lies in the convex hull of posteriors with

highest (lowest) value strictly above (below) s.

Proof. For any s ≥ V (p), the first equivalence follows from Theorem 1 of Lipnowski and

Ravid (2020). For the only if direction, suppose V CT (p) > s, then there exists τ ∈ TCT (p)

that attains a value s′ > s. Theorem 1 of Lipnowski and Ravid (2020) implies that p ∈
co{V ≥ s′} ⊆ co{V > s}. For the if direction, suppose p ∈ co{V > s}, then there exists

finitely many points {µi}ki=1 ⊆ {V > s} such that p =
∑

αiµi for some {αi}ki=1 ⊆ [0, 1],∑k
i=1 αi = 1. Let ŝ := mini V (µi), we have p ∈ co{V ≥ ŝ}. Theorem 1 of Lipnowski and

Ravid (2020) then implies that V CT (p) ≥ ŝ > s.

For any s < V (p), the first equivalence is true as both V CT (p) ≥ V (p) > s and p ∈
co{V > s} are true. The second equivalence follows from a symmetric argument.42

Proof of Theorem 3. Let s = V CT (p) in this proof.
40Here, we use the notation

{
V ≥ s

}
=

{
µ ∈ ∆(Ω) : V (µ) ≥ s

}
.

41Theorem 1 of Lipnowski and Ravid (2020) establishes the weak inequality versions of the first equivalence
in Lemma 6. We extend this result to strict inequalities.

42See footnote 15 of Lipnowski and Ravid (2020).
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First Statement: This statement can be shown through an explicit construction. To

show this, we consider the auxiliary program (η-MD) as in the proof of Proposition 1. The

variable in (η-MD) is a probability measure η ∈ ∆(∆(Ω) × I), and we use (µ, r) to denote

arbitrary elements in ∆(Ω)× I.

Suppose cheap talk is locally improvable at p. By assumption, there exists µ̃ ∈ H∗ and

λ ∈ (0, 1) such that V CT (λµ̃+ (1− λ)p) > s > V CT (µ̃). Let µ̂ := λµ̃+ (1− λ)p. By Lemma

6, there exist τ+ ∈ TCT (µ̂) that attains value s + V + for some V + > 0 and τ− ∈ TCT (µ̃)

that attains value s− V − for some V − > 0. For any r ∈ I, define ϕr : ∆(Ω) → ∆(Ω)× I by

φr(µ) = (µ, r). Let η+ := (φs+V +
)#τ

+ and η− := (φs−V −
)#τ

−.

Let ξ :=
1
λ
V −

V ++
1
λ
V −

. Then,

E(ξη++(1−ξ)η−) [(r − s)(µ− p)] =ξV +(µ̂− p)− (1− ξ)V −(µ̃− p)

=
(
λξV + − (1− ξ)V −) (µ̃− p) = 0.

Let µ∗ := ξµ̂ + (1 − ξ)µ̃. Since H∗ is convex, µ∗ ∈ H∗. So there exists α > 1 and τ ′ ∈
TCT (αp+ (1− α)µ∗) such that τ ′ attains s. Let η′ = (φs)#τ

′.

Next, consider η̃ := 1
α
η′ + α−1

α
ξη+ + α−1

α
(1 − ξ)η−. By construction, η̃ satisfies (η-BP)

and (η-OB). It also satisfies (η-TT) since

Eη̃ [r(µ− p)] = sEη̃ [µ− p] + α−1
α

E(ξη++(1−ξ)η−) [(r − s)(µ− p)] = 0,

where the last equality is by (η-BP) and our construction of ξ. With this, we have

Eη̃[r] = s+ α−1
α

ξV + − α−1
α

(1− ξ)V − = s+ ( 1
λ
− 1)α−1

α
V +V −

V ++
1
λ
V −

> s. (5)

Finally, take τ̃ = marg∆(Ω) η̃ and Ṽ (µ) = Eη̃[r|µ]. (Ṽ , τ̃) is implementable under mediation

and attains exactly the same value as η̃, which is higher than s.

Second Statement: By definition, cheap talk is improvable at p if and only if there exists

µ ∈ {V CT < s} such that

{V CT > s} ∩ [p, µ) ̸= ∅,

where [p, µ) denote the line segment connecting p and µ, including the end point p while

excluding µ.43 Let D+ := {V > s} and D− := {V < s}. By Lemma 6, {V CT > s} = coD+

and {V CT < s} = coD−. Suppose s is not improvable at p, then for any µ ∈ coD−,

43Recall that p /∈ {V CT > s} since s = V CT (p).
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coD+ ∩ [p, µ) = ∅. Therefore,

coD+

⋂ ⋃
µ∈coD−

[p, µ)

 = ∅.44 (6)

For any affine set M ⊆ Rn, we say that M is orthogonal to s if for every (τ, V ) ∈
TMD(p) × V satisfying (TT), τ ({V = s} ∪M) = 1. The second statement of Theorem 3

then follows from the following lemma.

Lemma 7. Suppose (6) holds and that there exists an affine set M ⊆ Rn such that p ∈ M

and such that M is orthogonal to s. Then either VMD(p) ≤ s or there is an affine set

M ′ ⊆ Rn such that dimM ′ = dimM − 1, p ∈ M ′, and such that M ′ is orthogonal to s.

With this lemma, we may start from an initial affine set M0 to be the affine hull of

∆(Ω). Note that p ∈ M0 and M0 is orthogonal to s. The claim implies either VMD(p) ≤ s,

which is the desired property, or that there exists an n − 2-dimensional affine set M1 such

that p ∈ M1 and such that M1 is orthogonal to s. Repeat this algorithm, and it terminates

either when the desired property VMD(p) ≤ s holds, or when we reach a 0-dimensional affine

set Mn−1 = {p}. In the latter case, by orthogonality, V (µ) ≤ s τ -almost surely for any

τ ∈ TMD(p) and V ∈ V that (τ, V ) satisfies (TT), so
∫
V dτ ≤ s. By assumption, s is

attainable under cheap talk, so we have VMD(p) = s.

Now we prove the lemma. Suppose D+ = ∅, then the claim is trivially true since

VMD(p) ≤ s holds. Suppose D+ ̸= ∅. We next show that (6) implies that there exists

a g ∈ Rn such that ⟨g, µ⟩ ≤ 0 for all µ ∈ S+ := co(D+ ∩ M) and ⟨g, µ⟩ ≥ 0 for all

µ ∈ S− :=
⋃

µ∈co(D−∩M)[p, µ).

To see this, first observe that S− is convex. If co(D− ∩ M) = ∅, then S− = {p}.
If co(D− ∩ M) ̸= ∅, take any µ1 = α1µ̂1 + (1 − α1)p, µ2 = α2µ̂2 + (1 − α2)p for some

µ̂1, µ̂2 ∈ co(D− ∩M) and α1, α2 ∈ (0, 1). For any λ ∈ (0, 1), λµ1 + (1− λ)µ2 = (λα1 + (1−
λ)α2)

(
λα1

λα1+(1−λ)α2
µ̂1 +

(1−λ)α2

λα1+(1−λ)α2
µ̂2

)
+(λ(1−α1)+(1−λ)(1−α2))p, where

λα1

λα1+(1−λ)α2
µ̂1+

(1−λ)α2

λα1+(1−λ)α2
µ̂2 ∈ co(D− ∩M).45

Since S+ and S− are disjoint nonempty convex sets, Theorem 11.3 of Rockafellar (1970)

then implies there exists a hyperplane in Rn−1 separating S+ and S− properly. That is, there

exists ĝ ∈ Rn such that ⟨ĝ, µ⟩ ≥ c ≥ ⟨ĝ, µ′⟩ for all µ ∈ S−, µ
′ ∈ S+ for some c ∈ R, and

hyperplane {µ ∈ Rn : ⟨µ, ĝ⟩ = c} does not contain both sets. Take g = ĝ − c ∈ Rn,46 we

have the desired hyperplane H := {µ ∈ Rn : ⟨µ, g⟩ = 0} that separates S+ and S− properly.

44We use the convention that ∪µ∈S [p, µ) = {p} if S = ∅.
45When λα1

λα1+(1−λ)α2
µ̂1 +

(1−λ)α2

λα1+(1−λ)α2
µ̂2 = p, it follows that λµ1 + (1− λ)µ2 = p ∈ S−.

46Here, c = (c, . . . , c) ∈ Rn.
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Note that co(D− ∩ M) ⊆ clS−, so D− ∩ M is contained in the same closed half-space

determined by H as S−. This implies that (V (µ) − s)⟨g, µ⟩ ≤ 0 for all µ ∈ ∆(Ω) ∩ M

and V ∈ V. For any τ ∈ TMD(p) and V ∈ V such that (τ, V ) satisfies (TT), since M is

orthogonal to s, (V (µ)− s)⟨g, µ⟩ ≤ 0 τ -almost surely, and thereby

0 ≥
∫
∆(Ω)

(V (µ)− s)⟨g, µ⟩ dτ(µ) =
(∫

∆(Ω)

V (µ) dτ(µ)− s

)
⟨g, p⟩, (7)

where the last equality is by (zeroCov) and (BP).

By construction p ∈ S−, so ⟨g, p⟩ ≥ 0. If ⟨g, p⟩ > 0, (7) implies that
∫
V dτ ≤ s for any

τ ∈ TMD(p) and V ∈ V such that (τ, V ) satisfies (TT), so VMD(p) ≤ s. If ⟨g, p⟩ = 0, we show

thatH∩M is an affine set of dimension dimM−1 which is orthogonal to s. Note thatH does

not contain M as it separates S+ and S− properly, and H ∩M is non-empty because it con-

tains p. Therefore, H∩M is an affine set of dimension dimM−1. Since ⟨g, p⟩ = 0, (7) implies

that for every τ ∈ TMD(p) and V ∈ V such that (τ, V ) satisfies (TT), (V (µ)− s)⟨g, µ⟩ = 0

τ -almost surely. This means that for every implementable (V, τ) under mediation, with

probability one, either V (µ) = s or ⟨g, µ⟩ = 0; that is, τ ({V = s} ∪H) = 1. Since the inter-

section of two probability-one events also has probability one, τ ({V = s} ∪ (H ∩M)) = 1,

so H ∩M is orthogonal to s, which establishes the lemma.

Proof of Corollary 4. Since the full-dimensionality condition holds at p, Theorem 3 im-

plies that VMD(p) > VCT (p) if and only if cheap talk is improvable at p.

Suppose cheap talk is improvable at p, then there exists µ ∈ ∆(Ω) such that V CT (λµ +

(1 − λ)p) > V CT (p) > V CT (µ) for some λ ∈ (0, 1). By assumption, V (p) < V CT (p), so

λµ + (1 − λ)p ∈ co{V < V CT (p)} = {V CT < V CT (p)} by Lemma 6. Therefore, V CT (λµ +

(1− λ)p) > V CT (p) > V CT (λµ+ (1− λ)p).

Suppose there exists µ ∈ ∆(Ω) such that V CT (µ) > V CT (p) > V CT (µ), then µ ∈ {V CT >

V CT (p)} = co{V > V CT (p)} by Lemma 6. Since V is continuous, {V > V CT (p)} is open

and so is its convex hull. Moreover, we have µ ̸= p because V CT (µ) > V CT (p). Thus, there

is λ ∈ (0, 1) such that V CT (λµ+ (1− λ)p) > V CT (p), so cheap talk is improvable at p.

Proof of Theorem 3’. We show cheap talk is improvable at p if and only if there exists

ℓ ∈ E with p ∈ ℓ such that VCT |ℓ − V CT (p) is not quasi single-crossing at ℓ(p), the result

then follows from Theorem 3.

Suppose cheap talk is improvable at p, by definition, there exists µ̂ ∈ ∆(Ω) and µ̃ ∈ (p, µ̂)

such that V CT (µ̃) > V CT (p) > V CT (µ̂). Now consider the line segment ℓ ∈ E crossing p, µ̂,

we show VCT |ℓ − V CT (p) is not quasi single-crossing at ℓ(p). Without loss, we may assume

ℓ(µ̂) > ℓ(µ̃) > ℓ(p). By definition, V CT (µ̃) > V CT (p) implies that VCT |ℓ − V CT (p) is not
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quasi single-crossing at ℓ(p) from above, and V CT (µ̃) > V CT (p) > V CT (µ̂) implies that it is

also not quasi single-crossing at ℓ(p) from below.

Conversely, suppose there exists ℓ ∈ E with p ∈ ℓ such that VCT |ℓ − V CT (p) is not quasi

single-crossing at ℓ(p). Then there must exist µ̃ ∈ ℓ such that V CT (µ̃) > V CT (p). Without

loss, we consider ℓ(µ̃) > ℓ(p). Then by definition, VCT |ℓ−V CT (p) is not quasi single-crossing

at ℓ(p) from above. By construction ofVCT , V CT (µ) ≤ V CT (p) for all µ ∈ ℓ with ℓ(µ) ≤ ℓ(p).

Since VCT |ℓ−V CT (p) is also not quasi single-crossing at ℓ(p) from below, by definition, there

must be µ̂, µ̂′ ∈ ℓ with ℓ(µ̂′) > ℓ(µ̂) > ℓ(p) such that V CT (µ̂) > V CT (p) > V CT (µ̂
′), which

implies cheap talk is improvable at p.

A.5 Moment Mediation: Quasiconvex Utility

Proof of Theorem 4. By Corollary 6 of Lipnowski and Ravid (2020), when T is multi-

dimensional and v strictly quasiconvex, no disclosure is suboptimal under cheap talk. Sup-

pose the full-dimensionality condition holds at p, by Corollary 3, VBP (p) = VMD(p) if and

only if {V > VCT (p)} = ∅, which means cheap talk attains the global maximum value.

This leads to the dichotomy in the theorem statement: If maxV = VCT (p), then (1) holds

trivially. It suffices to show maxV > VCT (p) implies (2).

Note that if VBP (p) = maxV , it must be the case that V (µ) = maxV for all µ in

the support of any optimal τ ∈ TBP (p), which implies VBP (p) = VCT (p), contradiction.

Hence, what remains to show is that VMD(p) > VCT (p). By Corollary 4 and Lemma 6,

VMD(p) = VCT (p) if and only if coD+ ∩ coD− = ∅, where D+ = {V > VCT (p)} and

D− = {V < VCT (p)}. We next show that under strict quasiconvexity and maxV > VCT (p),

the intersection is always non-empty, hence VMD(p) > VCT (p).

Let D̄+ = {x ∈ X : v(x) > VCT (p)} and D̄− = {x ∈ X : v(x) < VCT (p)}, both are open

by continuity of v. We first show that co D̄+ ∩ co D̄− ̸= ∅. Since maxV > VCT (p), we have

D̄+ ̸= ∅. Take any open ball in D̄+, there exist two points x1, x2 in this open ball such that

x1, x2, and T (p) are not colinear. Note that by strict quasiconvexity, we have T (p) ∈ D̄−.

Moreover, there exists a unique λi ∈ (0, 1) such that v(λixi + (1 − λi)T (p)) = VCT (p)

for i = 1, 2 since v is continuous and strictly quasiconvex. Here, existence follows by the

intermediate value theorem, whereas strict quasiconvexity implies uniqueness. By strict

quasiconvexity, 1
2
(λ1x1 + λ2x2) + (1− 1

2
(λ1 + λ2))T (p) ∈ D̄−. Since D̄− is open, there exists

ε > 0 such that 1
2
((λ1 + ε)x1 + (λ2 + ε)x2) + (1 − 1

2
(λ1 + λ2 + 2ε))T (p) ∈ D̄−. Note that

x′
i = (λi+ ε)xi+(1−λi− ε)T (p) ∈ D̄+, and we have 1

2
x′
1+

1
2
x′
2 ∈ D̄−, so co D̄+∩ co D̄− ̸= ∅.

Finally, take any µi ∈ ∆(Ω) such that T (µi) = x′
i for i = 1, 2, we have µi ∈ D+. Since

T (1
2
µ1 +

1
2
µ2) =

1
2
x′
1 +

1
2
x′
2,

1
2
µ1 +

1
2
µ2 ∈ D−, the claim holds.
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Proof of Proposition 3. Since v is minimally edge non-monotone, there exists a state

w ∈ argminω∈Ω V (δω) such that for any ω ∈ Ω \ {ω}, fω(λ) := V (λδω + (1 − λ)δω) is not

weakly increasing in λ ∈ [0, 1].

We show that fω is strictly quasiconvex on [0, 1]. Note that for any λ ̸= λ′ ∈ [0, 1]

fω(αλ+ (1− α)λ′) = v(αT (µ) + (1− α)T (µ′))

≤ max{v(T (µ)), v(T (µ′))} = max{fω(λ), fω(λ′)},

where µ = λδω + (1 − λ)δω, µ′ = λ′δω + (1 − λ′)δω. The first equality is by definition

and linearity of T , the inequality is by (strict) quasiconvexity of v, and the last equality

is by definition. Moreover, the inequality is strict if and only if T (µ) ̸= T (µ′). Suppose

T (µ) = T (µ′), then by linearity of T , T (δω) = T (δω), which means fω is a constant on [0, 1].

This contradicts with the assumption that fω is non-monotone, hence T (µ) ̸= T (µ′) and fω

is strictly quasiconvex.

As fω is strictly quasiconvex and non-monotone, there must be a unique λω ∈ (0, 1] such

that fω(λω) = fω(0). Suppose fω(λ) > fω(0) for all λ > 0, then there exists λ2 > λ1 > 0

such that fω(λ1) > fω(λ2) > fω(0) (otherwise fω is weakly increasing). But λ1 ∈ (0, λ2), so

fω(λ1) > fω(λ2) > fω(0) violates the strict quasiconvexity, contradiction. So there must be

a λ̂ω ∈ (0, 1] such that fω(λ̂ω) ≤ fω(0). By continuity of v, there exists λω ∈ [λ̂ω, 1] such

that fω(λω) = fω(0). The uniqueness is by strict quasiconvexity.

The argument above holds for any ω ∈ Ω \ {ω}. Let µω := λωδω + (1 − λω)δω, we have

V (µω) = V (δω) for any ω ∈ Ω \ {ω}. Set ∆̃ := co{δω, {µω : ω ∈ Ω \ {ω}}}. This is an

(n− 1)–simplex as {δω, {µω : ω ∈ Ω\{ω}}} is affinely independent with n points. Moreover,

for any p ∈ int ∆̃, there is τ ∈ TCT (p) that supports on {δω, {µω : ω ∈ Ω \ {ω}}} that attains

V (δω). Since v(·) is strictly quasiconvex, the composition V = v ◦ T is quasiconvex, hence

V (µ) ≤ V (δω) for any µ ∈ ∆̃. This shows that {V > V (δω)} is contained in the convex set

∆(Ω) \ ∆̃, by Lemma 6, VCT (p) ≤ V (δω) for any p ∈ ∆̃. Therefore, the full-dimensionality

condition holds for all priors p ∈ int ∆̃. Moreover, if V (δω) < maxµ∈∆(Ω) V (µ), then for any

p ∈ int ∆̃, VCT (p) < maxV . As the full-dimensionality condition holds, Theorem 4 shows

that maxV > VBP (p) > VMD(p) > VCT (p) > V (p).

Proof of Proposition 4. Fix an acceptance game such that R is strictly quasiconvex, min-

imally edge non-monotone given T , and satisfies minx∈XT
R(x) < maxx∈X R(x). In addition,

assume that G is strictly increasing and log-concave. It follows that v(x) = G(R(x)) is

strictly quasiconvex and minimally edge non-monotone given T . By Proposition 3, there

exists an (n − 1)–simplex ∆̃ ⊆ ∆(Ω) such that, for all p ∈ int ∆̃ there exists τ ∗ ∈ TMD(p)

with
∫
v(T (µ)) dτ ∗(µ) >

∫
v(T (µ)) dτ(µ) for all τ ∈ TCT (p). Fix p and τ ∗ as above. Next,
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we show that ϕ(z) := H(G−1(z)) is convex. First, observe that

ϕ(z) = H(G−1(z)) =

∫ 1

0

max
{
G−1(t), G−1(z)

}
dt = G−1(z)z +

∫ 1

z

G−1(t)dt,

hence that

ϕ′(z) = z(G−1)′(z) =
z

g(G−1(z))
=

G(G−1(z))

g(G−1(z))
=

G

g
◦G−1(z),

where g is the density of G. By log-concavity of G, G
g
is increasing. It follows that ϕ′ is the

composition of two increasing functions, hence it is an increasing function. This shows that

ϕ is convex. Finally, for all τ ∈ TCT (p), we have∫
vR(T (µ)) dτ

∗(µ) =

∫
ϕ(v(T (µ))) dτ ∗(µ) ≥ ϕ

(∫
v(T (µ)) dτ ∗(µ)

)
> ϕ

(∫
v(T (µ)) dτ(µ)

)
=

∫
ϕ(v(T (µ))) dτ(µ) =

∫
vR(T (µ)) dτ(µ),

where the first inequality follows by Jansen inequality, the second inequality follows by the

fact that ϕ(z) is convex and strictly increasing, and the second equality from the fact that

V (µ) = v(T (µ)) must be constant over the support of τ since τ ∈ TCT (p).
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Supplement to “The Bounds of Mediated

Communication”

B Omitted Proofs of Technical Lemmas

Proof of Lemma 2. (1) is shown in Lipnowski and Ravid (2020), and (2) can be shown

using a similar argument. Since x̄ is the infimum, there exists a weakly decreasing sequence

{x−
n }∞n=1 ⊆ [x̄, 1] that converges to x̄ and minF (x−

n ) ≤ 0 for all n = 1, 2, . . .. Take a strictly

increasing sequence {x+
n }∞n=1 ⊆ [0, x̄] that converges to x̄ (and constant 0 sequence if x̄ = 0).

By definition of x̄, we have maxF (x+
n ) ≥ 0 ≥ minF (x−

n ) for all n = 1, 2, . . ..

Taking subsequence if necessary, {minF (x−
n )}∞n=1 converges to y ≤ 0. By upper hemi-

continuity of F , y ∈ F (x̄), hence minF (x̄) ≤ 0. A similar argument shows that 0 ≤
maxF (x̄). As F is convex-valued, 0 ∈ F (x̄).

Proof of Lemma 3. The only if direction follows from the law of iterated expectations and

the definition of Obedience. For every measureable ã : A → ∆(A), we have∫
uR(ω, a) dπ(ω, a) =

∫
A

E[uR(ω, a) | πa] dmargA π(a)

≥
∫
A

E[uR(ω, ã) | πa] dmargA π(a) =

∫
uR(ω, ã) dπ(ω, a).

For the if direction, suppose Obedience is not satisfied, then there exists a measurable S ⊆ A

with margA π(S) > 0 such that E[uR(ω, a) | πa] < maxa′∈A E[uR(ω, a
′) | πa] for all a ∈ S.

By the measurable maximum theorem (Aliprantis and Border, 2006, Theorem 18.19), there

exists a measurable â : A → A with â(a) ∈ argmaxa′∈A E[uR(ω, a
′) | πa]. We then have∫

uR(ω, a) dπ(ω, a) <
∫
uR(ω, â) dπ(ω, a), contradiction.

C Single-crossing and the Binary-state Case

C.1 Quasi Single-crossing Functions

In this appendix, we define the notion of quasi single-crossing function and relate it to the

standard notion of single-crossing function as well as Shannon (1995)’s notion of weakly

single-crossing function.

In Section 5.2, we defined the notion of quasi single-crossing correspondence. When a

correspondence is singleton valued, we obtain the corresponding definition for functions. A
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function U : [0, 1] → R is quasi single-crossing at x0 from below (above) if for all x ≤ (≥)x0,

U(x) ≤ U(x0) = 0 and for all x′ > x > x0 (x′ < x < x0), U(x) > 0 implies U(x′) ≥ 0, and

U is quasi single-crossing at x0 if it is quasi single-crossing at x0 either from below or from

above.

Next, following Athey (1998), we provide a local version of the standard notion of single-

crossing single-crossing functions in Milgrom and Shannon (1994). We say that U is single-

crossing at x0 ∈ [0, 1] if U is single-crossing and U(x0) = 0 . Finally, we recall the notion of

weakly single-crossing function in Shannon (1995). We say that U is weakly single crossing

from below (above) if for any x′ > x (x′ < x), U(x) > 0 implies U(x′) ≥ 0, and U is weakly

single-crossing at x0 if it is weakly single-crossing at x0 either from below or from above.

Lemma 8. Fix a function U : [0, 1] → R and x0 ∈ [0, 1]. The following facts hold:

1. If U is single-crossing at x0, then U is quasi single-crossing at x0;

2. If U is quasi single-crossing at x0, then U is weakly single-crossing.

Proof. Suppose U is single-crossing at x0 from below, by definition, U(x) ≥ (>)0 implies

U(x′) ≥ (>)0 for any x′ > x. Since U(x0) = 0, U(x) ≤ 0 for any x ≤ x0. Therefore, U is

also quasi single-crossing at x0 from below. This establishes statement 1.

Suppose U is quasi single-crossing at x0 from below, then for any x′ > x, if x > x0, then

U(x) > 0 implies U(x′) ≥ 0 by definition; if x ≤ x0, then U(x) ≤ 0, which means U(x) > 0

implies U(x′) ≥ 0 is true automatically. Therefore, U is also weakly single-crossing from

below. This establishes statement 2.

C.2 Binary-state Case

When the state space Ω is binary, our main results can be dramatically simplified. As Ω is

binary and ∆(Ω) is 1-dimensional, with a slight abuse of notation, we use µ to denote the

first entry of the receiver’s posterior belief.

Proposition 5. The following are equivalent:

(i) VBP (p) = VMD(p);

(ii) VBP (p) = VCT (p);

(iii) p ∈ co(argmaxV ) or V is superdifferentiable at p.
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Proof of Proposition 5. The equivalence between (i) and (ii) is immediate from Theorem

2 (see the proof in Appendix A.3). We now show the equivalence between (ii) and (iii). The

if direction is immediate. For the only if direction, suppose that VBP (p) = VCT (p). Take any

optimal τ ∗ ∈ TCT (p) with finite support and a selection V ∈ V such that V (µ) = VBP (p)

τ ∗–almost surely. Moreover, V = V τ ∗–almost surely, otherwise persuasion would attain a

strictly higher value. By Corollary 1 of Dworczak and Kolotilin (2024), there exists f ∈ R2

such that V (µ) ≤ ⟨f, µ⟩ for all µ ∈ ∆(Ω) and V (µ) = ⟨f, µ⟩ for all µ ∈ supp(τ ∗). When τ ∗

is non-degenerate, f = (VBP (p),VBP (p)), hence VBP (p) ≥ V (µ) on ∆(Ω). This means that

VBP (p) = VCT (p) is the maximum value of V . Then p ∈ co(supp(τ ∗)) ⊆ co(argmaxV ). If

τ ∗ is degenerate, then V (p) = ⟨f, p⟩ and V (µ) ≤ ⟨f, µ⟩ for all µ ∈ ∆(Ω), which means V is

superdifferentiable at p.

Corollary 5 is an immediate consequence of Theorem 3’. When the sender’s payoff is

uniquely defined given the receiver’s posterior and we strengthen the weak single-crossing

condition of Corollary 5 to the standard single-crossing condition, the equivalence between

mediation and chap talk is much stronger as we show next.

Corollary 6. Assume that V = V is singleton-valued. If V (µ)− V CT (p) is single-crossing

at µ = p, then TMD(p) = TCT (p) and all cheap talk equilibria attain the same value for the

sender.47 In this case, no disclosure is optimal for mediation.

Proof of Corollary 6. Since V (µ) − VCT (p) is single-crossing at p, VCT (p) = V (p) and

[V (µ)−V CT (p)](µ−p) is non-negative/non-positive for any µ ∈ ∆(Ω). Therefore, the shifted

truth-telling constraint for the mediation problem
∫
∆(Ω)

[V (µ) − VCT (p)](µ − p) dτ(µ) = 0

implies that V (µ) = VCT (p) for any µ ∈ supp(τ), hence TMD(p) = TCT (p). As no disclosure

is optimal under cheap talk, no disclosure is also optimal under mediation.

The assumptions of Corollary 6 hold whenever V = V is monotone. Therefore, counter-

vailing incentives (i.e., V non-monotone) are necessary for mediation to strictly outperform

cheap talk with binary states.

Corollaries 5 and 6 imply that cheap talk and mediation attain the same sender-optimal

value for several canonical shapes of the sender’s payoff.

Corollary 7. Assume that V = V is singleton-valued. If V is concave or quasiconvex,

then VMD(p) = VCT (p) for all p ∈ (0, 1). There exists a non-monotone quasiconcave V and

p ∈ (0, 1) such that VMD(p) > VCT (p).

47A function U : R → R is single-crossing at x̂ if U is single-crossing and U(x̂) = 0.
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Proof of Corollary 7. The claim is straightforward when V is concave. If V is quasi-

convex, then either 0 or 1 attains its maximum value. Without loss of generality, assume

V (0) ≤ V (1), and let p̃ := sup{µ ∈ [0, 1] : V (µ) = V (0)}. By continuity of V , V (p̃) = V (0).

For every µ ∈ [0, p̃], we have V (µ) ≤ V (0) by quasiconvexity, while V (µ) > V (0) for every

µ ∈ (p̃, 1] by the definition of p̃.

For every prior p ∈ (0, p̃], we have VCT (p) = V (0). The argument above shows that

{µ ∈ [0, 1] : V (µ) < V (0)} ⊆ [0, p̃] and {µ ∈ [0, 1] : V (µ) > V (0)} ⊆ (p̃, 1], so cheap talk is

not improvable at p. By Theorem 3, VMD(p) = VCT (p) for every p ∈ (0, p̃).

For every prior p ∈ (p̃, 1), we have V (p) > V (0). Quasiconvexity of V implies that

V (µ) ≥ V (p) for every µ > p. Otherwise, if there exists µ̂ > p with V (µ̂) < V (p), then

V (p) > max{V (0), V (µ̂)}, contradicting quasiconvexity. A similar argument shows that

V (µ) ≤ V (p) for every µ < p, hence, VCT (p) = V (p). As {V > V (p)} ⊆ (p, 1] and

{V < V (p)} ⊆ [0, p), cheap talk is not improvable at p, so VMD(p) = VCT (p) by Theorem 3.

Finally, consider V (µ) = 0 for µ ∈ [0, 1/2) and V (µ) = −(µ−1/2)(µ−3/4) for µ ∈ [1/2, 1].

This V is non-monotone and quasiconcave. At any p ∈ (0, 1/2), cheap talk is improvable

and the full-dimensionality condition holds at p. By Theorem 3, VMD(p) > VCT (p).

In Sections 4 and 5, we provided generalizations of these results to settings with an arbi-

trary number of states. When the belief space is multidimensional, we restrict consideration

to one-dimensional line segments to use one-dimensional notions such as the weak single-

crossing or single-crossing properties to characterize when mediation is strictly valuable.

These properties are also relevant when the sender’s payoff depends on a one-dimensional

statistic of the receiver’s posterior (see Appendix F.2 below).

D Moment-measurable Illustrations

D.1 Financial Intermediation under Mean-Variance Preferences

In this example, the issuer’s payoff function is v(x) = R(x) = γx2
1 + x1 − γx2 for some

γ > 0. This is convex but not strictly quasiconvex in x, so we cannot conclude as in

Section 6 that no disclosure is always suboptimal under cheap talk. However, we can show

this explicitly for every p ∈ ∆̃ as constructed in Example 3. Let t :=
∑n−1

j=1
p(ωj)

αj
and

µ̂i := αitδωi
+ (1 − αit)δ0 for all i = 1, . . . , n − 1. Observe that p =

∑n−1
i=1

p(ωi)
αit

µ̂i, and since

p ∈ ∆̃, t ≤ 1, as otherwise none of µ̂i lies in the line segment [δ0, µi], which implies that

p ∈ ∆(Ω) \ ∆̃, a contradiction. Hence, µ̂i ∈ [δ0, µi] for every i. By the convexity of v,

V = v ◦ T is also convex, so V (p) ≤
∑ p(ωi)

αit
V (µ̂i). We have shown in the main text that

for every i = 1, . . . , n − 1, V is strictly convex along the edge of the simplex connecting
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δ0 and δωi
. Recall that V (µi) = V (δ0) = 0 for every i, which implies that V (µ̂i) < 0 by

strict convexity of V along the segment [δ0, µi], so V (p) < 0. This shows that there exists a

distribution of posteriors feasible under cheap talk that secures a payoff to the sender that

is strictly higher than that under no disclosure.

We now show that for any p ∈ int ∆̃, VBP (p) > VMD(p) > VCT (p) > V (p). Since

VCT (p) = 0 < V (δωn−1), cheap talk does not attain the global maximum value, which implies

VBP (p) > VMD(p) by Proposition 2. By Corollary 4 and Lemma 6, VMD(p) = VCT (p) if and

only if coD+ ∩ coD− = ∅, where D+ = {µ ∈ ∆(Ω) : V (µ) > 0} and D− = {µ ∈ ∆(Ω) :

V (µ) < 0}.
As in the proof of Theorem 4, we consider the upper and lower contour sets of v at value

VCT (p) = 0, that is, D̄+ = {x ∈ X : x2
1 + x1/γ > x2} and D̄− = {x ∈ X : x2

1 + x1/γ < x2},
both are open by continuity of v. Since maxV > VCT (p), we have D̄+ ̸= ∅. Take any open

ball in D̄+, there exist two points x, x′ in this open ball such that x, x′ and T (p) are not

colinear. Since V (p) < 0, we have T (p) ∈ D̄−. Moreover, there exists a unique λ ∈ (0, 1)

such that v(λx + (1 − λ)T (p)) = 0. Here, existence follows from the continuity of v, and

uniqueness comes from the fact that any line segment with two endpoints in D̄+ and D̄−

can cross the set {x ∈ X : x2
1 + x1/γ = x2} at most once. Similarly, there exists a unique

λ′ ∈ (0, 1) such that v(λ′x′ + (1− λ′)T (p)) = 0.

Note that {x ∈ X : x2
1 + x1/γ ≤ x2} is strictly convex, so 1

2
(λx + λ′x′) + (1 − 1

2
(λ +

λ′))T (p) ∈ D̄−. Since D̄− is open, there exists ε > 0 such that 1
2
((λ + ε)x + (λ′ + ε)x′) +

(1 − 1
2
(λ + λ′ + 2ε))T (p) ∈ D̄−. Note that x̂ = (λ + ε)x + (1 − λ − ε)T (p) ∈ D̄+ and

x̂′ = (λ′ + ε)x′ + (1− λ′ − ε)T (p) ∈ D̄+, and we have 1
2
x̂+ 1

2
x̂′ ∈ D̄−, so co D̄+ ∩ co D̄− ̸= ∅.

Finally, take any µ, µ′ ∈ ∆(Ω) such that T (µ) = x̂ and T (µ′) = x̂′, we have µ, µ′ ∈ D+

and 1
2
µ+ 1

2
µ′ ∈ D−, so coD+ ∩ coD− ̸= ∅ and VMD(p) > VCT (p).

D.2 Salesman with Reputation Concerns

We extend our illustration in the introduction to multidimensional states and revisit the

salesman example in Chakraborty and Harbaugh (2010) and Lipnowski and Ravid (2020).

A seller is trying to convince a buyer to purchase a good with multiple features ω ∈ Ω ⊆ Rk
+

and assume that 0 ∈ Ω. The buyer is uncertain about ω, and their payoff from purchasing this

good only depends on the posterior mean on the quality of these features T (µ) = Eµ(ω) ∈ Rk.

In particular, we assume that Ω is a finite set such that T is full-rank. In the main text,

this assumption is implied by the fact that Ω = {0, 1}k with k > 1. In general, recall that

X = T (∆(Ω)) and that in this case XT = {T (δω) ∈ X : ω ∈ Ω} = Ω.

The buyer’s payoff with posterior mean x is R(x) for some function R : Rk → R that
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is continuously differentiable, strictly convex, and strictly increasing with R(0) = 0.48 The

buyer has an outside option with value ε ∈ R with distribution G that has a continuous

density, is strictly increasing and strictly convex, and such that R(X) ⊆ supp ε. Therefore,

the buyer purchases the good if and only if R(x) ≥ ε.

The expected revenue for the seller when x is the realized vector of conditional expecta-

tions is G(R(x)). The seller has also reputation concerns, that is, the overall seller’s expected

payoff with posterior mean x is v(x) = G(R(x))−⟨ρ, x⟩, where ρ ∈ Rk
++ measures the seller’s

reputation concern. Our key assumption on the seller’s payoff is

G(R(x)) > ⟨ρ, x⟩ > ⟨G′(0)∇R(0), x⟩ ∀x ∈ Ω \ {0} , (8)

where ∇R(0) is the gradient of R at 0. This implies that the seller’s payoff when the buyer

is sure that the state is 0 is strictly lower than any other degenerate buyer’s belief, that is,

G(R(x))− ⟨ρ, x⟩ > 0 for all x ∈ Ω \ {0}. In general, this assumption captures the fact that

the reputation concerns of the seller are mild.

By assumption, the composition G ◦ R is strictly convex, hence the seller’s payoff v is

strictly convex. We show that the seller’s payoff v(x) is minimally edge non-monotone given

T . Fix any x ∈ Ω\{0}. It suffices to check that ϕ(α) := v(αx) is non-monotone in α ∈ [0, 1].

The derivative of ϕ is ϕ′(α) = G′(R(αx))⟨∇R(αx), x⟩ − ⟨ρ, x⟩. By assumption 8, we have

ϕ′(0) = ⟨G′(0)∇R(0), x⟩ − ⟨ρ, x⟩ < 0

and

ϕ(1) = G(R(x))− ⟨ρ, x⟩ > 0 = G(R(0))− ⟨ρ,0⟩ = ϕ(0).

Because ϕ′ is continuous, it follows that ϕ is non-monotone.

By Proposition 3, there exists an (n−1)–simplex ∆̃ ⊆ ∆(Ω) where the full-dimensionality

condition holds in its interior. This simplex can be explicitly constructed. For all x ∈ Ω\{0},
let αx ∈ (0, 1) denote the unique solution of v(αx) = 0 and define µx = αxδx. With this,

∆̃ := co{δ0, {µx : x ∈ Ω \ {0}}}

is the desired simplex. Proposition 3 also implies that the seller strictly benefits from hiring

a mediator when the prior is in int ∆̃. Moreover, since the seller’s payoff at state 0 is strictly

lower than other states, the dichotomy in Theorem 4 implies that the seller attains an even

higher payoff under Bayesian persuasion than mediation at priors in int ∆̃.

48Strictly increasing in the sense that R(x) < R(x′) for all x < x′ componentwise.
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E Non-existence of Dual Solution

In this section, we present a binary-state example where the dual problem of optimal medi-

ation does not have a solution.

Assume that V = V is singleton-valued. The dual problem of mediation is to find two

Lagrange multipliers f, g ∈ Rn that solve the following minimization problem:

inf
f,g∈Rn

⟨f, p⟩

subject to:

⟨f, µ⟩ ≥ (1 + ⟨g, µ− p⟩)V (µ) ∀µ ∈ ∆(Ω).

(D)

We now exhibit a binary-state example where the minimum in (D) is not attained. Sup-

pose the sender has preference V (µ) = 4µ(µ− 1/2)+1/4. When the common prior p = 1/2,

the corresponding dual problem of mediation does not have a solution. To see this, note that

the dual problem can be written as

inf
f0,f1,g∈R

1
2
f1 + f0

subject to: f1µ+ f0 ≥ (1 + g(µ− 1
2
))(1

4
+ 4µ(µ− 1

2
)).

Let V g(µ) := (1+ g(µ− 1
2
))(1

4
+4µ(µ− 1

2
)). Note that when g < 0, the lowest line above V g

is a tangent line of V g at µ∗ = 1
2
− 1

2g
that passes through (0, V g(0)). That is, f1 = g

4
− 1

g

and f0 =
1
4
(1− g

2
) = V g(0). Then the value f1/2+f0 =

1
4
− 1

2g
↓ 1

4
as g → −∞. Also observe

that g ≥ 0 is never an optimal solution of the dual, since (V g(0) + V g(1))/2 = 5
4
+ g

2
> 5

4
.

Therefore, the infimum value of this dual problem cannot attained by any f1, f0, g ∈ R.

F Mean-measurable Mediation

F.1 Implementation

In this subsection, we consider a special case of the setting of Section 6 where the moment

function leads to the receiver’s posterior mean. We focus on Euclidean state spaces Ω ⊆ Rk

for some k ≥ 1 and moment function T (µ) = Eµ(ω). Let X := T (∆(Ω)) ⊆ Rk be the set

of all possible posterior means. Assume the sender’s payoff only depends on the receiver’s

posterior mean, i.e., V (µ) = v(T (µ)) for some continuous v : Rk → R.
Differently from Section 6, here we do not focus on distributions over posteriors τ ∈

∆(∆(Ω)), but rather on the induced distributions of posterior means q ∈ ∆(X). We say
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q ∈ ∆(X) is implementable under mediation if there exists τ ∈ TMD(p) that induces q.

In this setting, we can adapt Theorem 1 as follows. For any q ∈ ∆(X) and v : X → R,
define the corresponding distorted distribution qv ∈ ∆(X) by

dqv

dq
(x) =

v(x)∫
v(z) dq(z)

.

Proposition 6. Let V (µ) = v(T (µ)). The following are equivalent:

(i) q ∈ ∆(X) is implementable under mediation;

(ii) There exists a dilation49 D : X → ∆(X) such that Dq = Dqv = p;

(iii) There exists π ∈ ∆(Ω × X) such that margΩ π = p, margX π = q, Eπ[ω|x] = x for

π-almost all x, and Covπ (v, g) = 0 for all g ∈ RΩ.

Note that when there is no truth-telling constraint, by Strassen’s Theorem,50 condition

(ii) reduces to the Bayes-plausibility condition in the linear persuasion literature, which is

q ⪯cvx p. With the truth-telling constraint, Strassen’s Theorem implies both q and qv are

mean-preserving contractions of p.

Proof. We first show that (i) and (ii) are equivalent. Suppose q ∈ ∆(X) is implementable

under mediation, then there exists τ ∈ TMD(p) that induces q, that is, q = (T )#τ . We

construct a dilation D : X → ∆(X) by Dx = Eτ [µ|T (µ) = x]. By construction we have

x =
∫
y dDx(y) for all x and

∫
Dx dq(x) =

∫
µ dτ(µ) = p. Note that

∫
Dxv(x) dq(x) =∫

V (µ)µ dτ = p
∫
V dτ = p

∫
v dq, where the first and third equalities are obtained by

iterated expectation and V (µ) = v(T (µ)), and the second by truth-telling. Hence, the

dilation constructed satisfies Dq = Dqv = p.

Conversely, suppose there exists a dilation D such that Dq = Dqv = p. Then let

τ ∈ ∆(∆(Ω)) be the pushforward measure of q under dilation D, that is, τ(R) = q(D−1(R))

for all measurable R ⊆ ∆(Ω). By change of variable, we obtain
∫
µ dτ =

∫
Dx dq = p and∫

V (µ)µ dτ =

∫
v(x)Dx dq(x)

= p ·
∫

v(x) dq(x) = p

∫
V (µ) dτ(µ)

49A map D : X → ∆(X) is called a dilation if x =
∫
y dDx(y) for all x, and the map x 7→ Dx(f) is

measurable for all f ∈ C(X). The product Dq is defined as by Dq(S) =
∫
Dx(S) dq(x) for all measurable

S ⊆ X.
50Let X be a compact convex metrizable space and p, q are Borel probability measures on X. Strassen’s

Theorem states that q ⪯cvx p if and only if there exists a dilation D such that p = Dq, see Strassen (1965);
Aliprantis and Border (2006). This result has been widely applied in the linear persuasion literature, see
Gentzkow and Kamenica (2016); Kolotilin (2018); Dworczak and Martini (2019).
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where the first and third equalities follow by a change of variable, and the second one follows

by Dqv = p. Overall, this implies that τ ∈ TMD(p).

The equivalence between (ii) and (iii) is straightforward. Note that given a dilation D

that satisfies (ii), we may construct π ∈ ∆(Ω×X) by π(·|x) = Dx with margX π = q. The

definition of dilation and Dq = p ensures Eπ[ω|x] = x and margΩ π = p. For any g ∈ RΩ,∫
Ω×X

v(x)g(ω) dπ =
∫
X
v(x)

(∫
Ω
g(ω) dDx(ω)

)
dq(x) = (

∫
g dp)(

∫
v(x) dq), where the first

equality is by iterated expectation and the second is by Dqv = p. For the converse, a similar

argument shows that we can construct a dilation D that satisfies (ii) by Dx = π(·|x) given
any π that satisfies (iii).

F.2 One-dimensional Mean

In this subsection, we consider another special case of the setting of the previous subsection:

the one where the mean function is one-dimensional. Formally, assume that Ω ⊂ R and that

T (µ) = Eµ[ω]. That is, the state is one-dimensional, and the sender’s value function depends

on the receiver’s conditional expectation only: V (µ) = v(Eµ[ω]). This is the most studied

case in the Bayesian persuasion literature.

Let v̄ (v) denote the quasiconcave (quasiconvex) envelope of v and let v(x) = [v(x), v̄(x)]

for every x ∈ X. In general, the quasiconcave envelope of v evaluated at the prior mean can

be strictly larger than the actual optimal cheap talk value, that is, we can have v̄(T (p)) >

VCT (p). However, v(x) is still helpful in studying the value comparison between cheap talk

and mediation.

The binary state case is a special case of a one-dimensional mean, and we show that many

intuitions from Corollary 5 extend. Unlike the binary case, the full-dimensionality condition

may not hold even if no disclosure is suboptimal under cheap talk. In the next proposition,

we provide a sufficient condition on the prior p such that a weak single-crossing condition in

v(x) characterizes the comparison between mediation and cheap talk.

Proposition 7. Suppose V (µ) = v(T (µ)) for some continuous v on R.

(1) If v(T (p)) = v̄(T (p)), then no disclosure is optimal under cheap talk. In this case,

VMD(p) = VCT (p) if and only if no disclosure is optimal for mediation.

(2) If v(T (p)) < v̄(T (p)) and p ∈ int co{V = v̄(T (p))}, then VMD(p) = VCT (p) if and only

if v(x)− v̄(T (p)) is quasi single-crossing at T (p).

The first statement says that v is equal to its quasiconcave envelope at T (p), then the only

way that mediation is not strictly valuable is when no disclosure is optimal. When there is a

wedge at T (p) between v and its quasiconcave envelope and the full-dimensionality condition

9



holds, then, similarly to the binary-state case, mediation is worthless if and only if the

sender’s shifted utility function is quasi single-crossing at T (p). Here, full dimensionality is

implied by the condition p ∈ int co{V = v̄(T (p))}, which also implies that VCT (p) = v̄(T (p)).

Before proving Proposition 7, we introduce the relaxed mediation problem and state and

prove a useful lemma. First, by Proposition 6, if q ∈ ∆(X) is implementable under mediation

then ∫
X

v(x)(x− T (p)) dq(x) =

∫
X

v(x)x dq(x)−
(∫

X

v(x) dq(x)

)(∫
X

x dq(x)

)
= Covπq(v, ω) = 0

where πq ∈ ∆(Ω ×X) satisfies the conditions in (iii) of Proposition 6. Second, we use this

observation to define the relaxed mediation problem as:

sup
q∈∆(X)

∫
X

v(x) dq(x) (9)

subject to:

∫
X

x dq(x) = T (p) (10)∫
X

v(x)(x− T (p)) dq(x) = 0. (11)

The first constraint relaxes (BP) by only requiring consistency with the prior mean as op-

posed to the entire prior distributions. The second constraint relaxes (zeroCov) as explained

above.

Similarly, we can relax the cheap talk problem analyzed in the main text by replacing the

zero-variance condition Varτ (V ) = 0 with a weaker zero-variance condition involving only

the distribution of conditional expectations: Varq(v) = 0. Therefore, the relaxed cheap talk

problem is defined as in (9) by replacing the second constraint with the latter zero-variance

condition.

Lemma 9. The following statements are true:

(1) VCT (p) ≤ v̄(T (p)).

(2) If p ∈ int co{µ : v(T (µ)) = v̄(T (p))}, then VCT (p) = v̄(T (p)) and the full-dimensionality

condition holds at p.

Proof. (1): Note that v̄(T (p)) is the value of the relaxed cheap talk problem. For any

τ ∈ TCT (p), qτ = (T )#τ ∈ ∆(X) is feasible in the relaxed cheap talk problem. As∫
∆(Ω)

V (µ) dτ(µ) =
∫
X
v(x) dqτ , we have VCT (p) ≤ v̄(T (p)).
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(2): Suppose p ∈ int co{µ : v(T (µ)) = v̄(T (p))}, then there exists an open neighborhood

N of p such that v̄(T (p)) can be attained under cheap talk under any prior p′ ∈ N . By (i),

VCT (p) = v̄(T (p)). By Lemma 1, the full-dimensionality condition holds at p.

Proof of Proposition 7. (1) is clear by (1) of Lemma 9.

For (2), as p ∈ int co{V = v̄(T (p))}, (2) of Lemma 9 implies VCT (p) = v̄(T (p)) and the

full-dimensionality condition holds at p. So v(T (p)) < v̄(T (p)) implies that no disclosure is

suboptimal under cheap talk. By Corollary 4 and Lemma 6, VMD(p) = VCT (p) if and only

if coD+ ∩ coD− = ∅, where D+ = {V > v̄(T (p))} and D− = {V < v̄(T (p))}.
Using a similar argument as in the proof of Corollary 4, we can show that v(x)− v̄(T (p))

is quasi single-crossing at T (p) if and only if co D̄+ ∩ co D̄− = ∅, where D̄+ = {v > v̄(T (p))}
and D̄− = {v < v̄(T (p))} are sets in X. It suffices to show co D̄+ ∩ co D̄− = ∅ if and only if

coD+ ∩ coD− = ∅.
By continuity of v, co D̄+ and co D̄− are open convex subsets of X ⊆ R, which are either

empty or open intervals. If any of co D̄+ and co D̄− is empty, then the claim holds trivially,

so we focus on the case when both convex hulls are non-empty.

Suppose co D̄+ ∩ co D̄− = ∅, then there exists x̂ ∈ X that separates co D̄+ and co D̄−.

Without loss, assume sup co D̄− ≤ x̂ ≤ inf co D̄+, and by openness D̄− ⊆ {x < x̂}, D̄+ ⊆
{x > x̂}. Then for any µ ∈ D−, V (µ) = v(T (µ)) < v̄(T (p)), hence we have T (µ) < x̂.

Similarly, any µ ∈ D+ is contained in the positive half-space determined by {µ ∈ ∆(Ω) :

T (µ) = x̂}. Therefore, coD+ and coD− are strictly separated by the hyperplane {µ ∈
∆(Ω) : T (µ) = x̂} and has no intersection.

Suppose co D̄+ ∩ co D̄− ̸= ∅. Then either co D̄+ ∩ D̄− ̸= ∅ or D̄+ ∩ co D̄− ̸= ∅.51 Without

loss, suppose the former is true. Then there exists x̂ ∈ D̄− and {xi}ki=1 ⊆ D̄+ such that

x̂ =
∑

αixi for some αi ∈ (0, 1),
∑

i αi = 1. Since X = T (∆(Ω)), there exists µi ∈ ∆(Ω)

such that T (µi) = xi for all i = 1, . . . , k, hence µi ∈ D+. Note that
∑

i αiµi ∈ ∆(Ω) and

T (
∑

i αiµi) = x̂, which means
∑

i αiµi ∈ D−. Therefore, coD+ ∩ coD− ̸= ∅.

Next, we derive a sufficient condition on v(x) such that there exists a non-trivial set of

priors p ∈ ∆(Ω) where the full-dimensionality assumption in Proposition 7 is satisfied.

51If there exists {xi}ki=1 ⊆ D̄+ and {yj}mj=1 ⊆ D̄− with
∑

αixi =
∑

βjyj for some αi, βj ∈ (0, 1) and∑
i αi =

∑
j βj = 1. Without loss, assume the points are ordered by indices. Suppose yj /∈ co{xi}ki=1 =

[x1, xk] for all j = 1, . . . ,m. Then there must be some yj1 < x1 and yj2 > xk, which means [x1, xk] is
contained in co{yj}mj=1. It follows that co D̄− ∩ D̄+ ̸= ∅.
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Proposition 8. If there exists x̂ ∈ X such that v̄(x̂) > v(x̂) and v(x) − v̄(x̂) is not quasi

single-crossing at x̂, then the set

∆(x̂) := {µ ∈ ∆(Ω) : T (µ) = x̂} ∩ int co{µ ∈ ∆(Ω) : v(T (µ)) = v̄(x̂)}

is nonempty and, for all p ∈ ∆(x̂), we have VMD(p) > VCT (p).

Proof. We first show ∆(x̂) ̸= ∅. Note that X is a closed interval in R. Let x = minX =

T (δω), x̄ = maxX = T (δω̄) for some ω, ω̄ ∈ Ω. Since v̄(x̂) > v(x̂), there exists x1 < x̂ < x2 in

X such that v(x1) = v(x2) = v̄(x̂). Moreover, since v(x) − v̄(x̂) is not quasi single-crossing

at x̂, there exists x′ ̸= x̂ ∈ X such that v(x′) > v̄(x̂). By continuity, there exists x in

int co{x̂, x′} with v(x) = v̄(x̂). So it is without loss to assume at least one of x1, x2 is in the

interior of X.

If x1 > x, then the hyperplane H1 := {µ̃ ∈ Rn : T (µ̃) = x1} either intersects the interior

of ∆(Ω) or contains the line segment co{δω, δω̄}. To see this, observe that H1 contains a

point in the relative interior of co{δω, δω̄} by linearity of T and x1 > x. With this, there

are two cases. If H1 contains co{δω, δω̄} then the claim at the beginning of this paragraph

trivially follows. If instead H1 does not contain the line segment co{δω, δω̄}, Theorem 3.44 of

Soltan (2019) implies that H1 cuts co{δω, δω̄}, that is, the line segment co{δω, δω̄} intersects

both open halfspaces of Rn determined by H1, proving the claim also in this case.

Next, observe that it is not possible for H1 to contain co{δω, δω̄} as it implies X = {x1} is

a singleton, yielding a contradiction. So H1 intersects the interior of ∆(Ω) and H1∩∆(Ω) =

{µ ∈ ∆(Ω) : T (µ) = x1} has dimension n − 2 by Corollary 3.45 of Soltan (2019). Hence,

there exist n− 2 affinely independent points µ1, . . . , µn−2 in {µ ∈ ∆(Ω) : T (µ) = x1}, paired
with any point µ0 ∈ {µ ∈ ∆(Ω) : T (µ) = x2}, we have an (n − 1)–simplex that has non-

empty intersection with {µ ∈ ∆(Ω) : T (µ) = x̂}. As x1 < x̂ < x2, a similar argument shows

that {µ ∈ ∆(Ω) : T (µ) = x̂} intersects the interior of this (n− 1)–simplex, hence ∆(x̂) ̸= ∅.
Similarly, if x2 < x̄, we also have ∆(x̂) ̸= ∅. Proposition 7 then implies that for any prior

p ∈ ∆(x̂), VMD(p) > VCT (p).

Similar to Corollary 6, we can derive simple sufficient conditions such that no disclosure

is the only implementable outcome under both cheap talk and mediation.

Corollary 8. If v(x) − v̄(T (p)) is single-crossing at T (p), then TMD(p) = TCT (p) and all

cheap talk equilibria are optimal. Hence, no disclosure is optimal for mediation.

In particular, for any monotone v, v(x) − v̄(T (p)) is single-crossing at T (p). So non-

monotonicity on v is necessary for mediation to outperform cheap talk strictly.
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Proof. Since v(x) − v̄(T (p)) is single-crossing at T (p), v(T (p)) = v̄(T (p)) and [v(x) −
v̄(T (p))](x−T (p)) is non-negative/non-positive for any x ∈ X. Therefore, the shifted truth-

telling constraint
∫
[v(x) − v̄(T (p))](x − T (p)) dq(x) = 0 for the relaxed mediation problem

in (9) implies that v(x) = v̄(T (p)) for any x ∈ supp(q) and any feasible q ∈ ∆(X) under the

relaxed mediation problem. Note that for any implementable τ ∈ TMD(p) in the mediation

problem, qτ = (T )#τ is feasible in the relaxed mediation problem in (9), which means

V (µ) = v̄(T (p)) for any µ ∈ supp(τ), hence τ ∈ TCT (p). As no disclosure is optimal under

cheap talk and TMD(p) = TCT (p), no disclosure is also optimal under mediation.

G Additional Examples

G.1 Mediation’s Trilemma

Recall the mediation trilemma that the following three properties cannot hold at the same

time: (1) Information is public; (2) The payoff of the sender is state-independent; (3) Me-

diation is fully interim efficient and strictly better than cheap talk. In this subsection, we

provide examples where (3) holds when we relax one of (1) and (2).

An example without transparent motives where (1) and (3) holds: Consider a

binary state space Ω = {0, 1} and the prior on ω = 1 is p = 1/2. The sender’s indirect utility

is state-dependent and singleton-valued V (µ, ω) = G(µ)− ω
µ
, where

G(µ) =



4µ if µ ∈ [0, 1/4)

−2µ+ 3/2 if µ ∈ [1/4, 1/2)

2µ− 1/2 if µ ∈ [1/2, 3/4)

−4µ+ 4 if µ ∈ [3/4, 1]

We show that τ̃ = 1
2
δ1/4 +

1
2
δ3/4 is feasible under mediation and is fully interim efficient

for p, and cheap talk is strictly worse than mediation.52

By definition (2), τ̃ is fully interim efficient with respect to p if it solves

max
τ∈TBP (p)

p

∫ 1

0

V (µ, 1) dτ 1(µ) + (1− p)

∫ 1

0

V (µ, 0) dτ 0(µ).

Bayes-plausibility implies that the objective function becomes
∫ 1

0
G(µ) dτ −1, hence τ̃ is the

52The mediation problem and the definition of fully interim efficiency can be extended to the state-
dependent case. Details available upon request.
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unique solution of this maximization problem because it is supported on the global maximum

of G.

Note that
∫ 1

0
1
µ
dτ̃ 0(µ) = 1

2
41−1/4
1−1/2

+1
2
4
3
1−3/4
1−1/2

= 10/3 > 2 =
∫ 1

0
1
µ
dτ̃ 1(µ) and

∫ 1

0
G(µ) dτ̃ 0(µ) =∫ 1

0
G(µ) dτ̃ 1(µ) = 1. The truth-telling constraints for mediation

∫
V (µ, 0) dτ̃ 0(µ) ≥

∫
V (µ, 0) dτ̃ 1(µ)

and
∫
V (µ, 1) dτ̃ 1(µ) ≥

∫
V (µ, 1) dτ̃ 0(µ) are satisfied. So τ̃ is implementable under me-

diation. However, cheap talk with state-dependent utility requires V (µ, ω) = V (µ′, ω)

for all ω ∈ {0, 1} and µ, µ′ ∈ supp(τ̃ω). So τ̃ is not feasible under cheap talk because

V (1/4, 1) = −3 ̸= −1/3 = V (3/4, 1). As τ̃ is the unique solution of the maximization prob-

lem (2) and τ̃ is not feasible under cheap talk, cheap talk attains a strictly lower value than

mediation.

An example without public communication where (2) and (3) holds: There is

a binary state space Ω = {0, 1} and two receivers. The pair of posteriors on ω = 1 is

µ = (µ1, µ2) ∈ [0, 1]2, and the prior is p = (1/2, 1/2). The sender has a state-independent

indirect utility V (µ) = G(µ1) − ρµ2, where G : [0, 1] → [0, 1] is a strictly increasing and

strictly convex CDF, and ρ > 1 is a constant. A communication mechanism induces a joint

distribution of the receivers’ posterior beliefs τ ∈ ∆([0, 1]2).

Because V is separable for µ1 and µ2, for Bayesian persuasion we can focus on the

marginal distributions of posteriors τi ∈ ∆([0, 1]) with i ∈ {1, 2}. Given that G is strictly

convex, the uniquely optimal distribution of posteriors for 1 is the one induced by full

disclosure: τ ∗1 = 1/2δ0+1/2δ1. Because V is linear in µ2, any information policy for receiver

2 is optimal because (BP) implies that
∫ 1

0
µ2 dτ2(µ2) = 1/2 for all feasible τ2.

It can be shown using analogous steps to those in the proof of Theorem 1 that the imple-

mentation for mediation with additively separable sender’s preference can be characterized

by the following aggregate truth-telling constraint over marginals53∫ 1

0

G(µ1)(µ1 − 1
2
) dτ1(µ1)− ρ

∫ 1

0

µ2(µ2 − 1
2
) dτ2(µ2) = 0. (12)

We next show that the mediator can attain the optimal persuasion value for the sender while

satisfying (12). Consider a candidate pair of marginal distributions of beliefs (τ ∗1 , τ2) where

τ ∗1 corresponds to full disclosure. Equation 12 then becomes

1

4
= ρ

∫ 1

0

µ2(µ2 − 1
2
) dτ2(µ2).

53Details of the proof of the characterization of the feasible distributions of receivers’ beliefs are available
upon request.
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Now observe that for all feasible τ2, we have
∫ 1

0
µ2(µ2 − 1

2
) dτ2(µ2) ∈ [0, 1/4], where the

minimum and maximum elements of the interval are respectively attained by no disclosure

and full disclosure for receiver 2. In addition, by convexity of the set of Bayes plausible τ2,

there exists a feasible τ2 such that
∫ 1

0
µ2(µ2 − 1

2
) dτ2(µ2) = c, for every c ∈ [0, 1/4]. Take a

Bayes plausible τ ∗2 such that
∫ 1

0
µ2(µ2− 1

2
) dτ ∗2 (µ2) = 1/(4ρ) and observe that (τ ∗1 , τ

∗
2 ) satisfies

(12) by construction. In particular, (τ ∗1 , τ
∗
2 ) is optimal for Bayesian persuasion, hence the

mediator can attain the optimal persuasion value.

A joint distribution τ is implementable under cheap talk (with purely private messages)

only if V (µ1, µ2) = V (µ′
1, µ

′
2) for any µ, µ′ ∈ supp(τ). This implies that full disclosure for

receiver 1 is not implementable under cheap talk. To see this, fix two points (1, µ′
2) and (0, µ2)

in the support of a candidate cheap talk distribution that induces full disclosure for receiver

1, and assume that these posteriors are respectively induced by the pairs of private messages

(m′
1,m

′
2) and (m1,m2). The sender has a profitable deviation at (m1,m2) by privately

sending (m′
1,m2) to the receivers. Indeed, V (1, µ2) > V (0, µ2), that is the deviation yields

a strictly higher than the one obtained by sending (m1,m2). This shows that no cheap talk

equilibrium can sustain full disclosure for receiver 1, hence that the optimal persuasion and

mediation value cannot be attained under cheap talk.

G.2 Informativeness of Optimal Mediation

The comparison between the informativeness of the sender’s optimal mediation plan and the

sender’s preferred cheap talk equilibria is ambiguous. In the illustration in the introduc-

tion, the sender’s optimal cheap talk equilibrium is no disclosure when the prior p is in a

neighborhood of 0.6, while the optimal mediation plan discloses some information about the

state. We now present an example where there exists an open ball of priors such that full

disclosure is optimal under cheap talk but not under mediation.

Consider a binary state space Ω = {0, 1} and let µ ∈ [0, 1] denote the posterior belief

on ω = 1. The sender’s indirect utility function is V (µ) = sin(3πµ − π). For any prior

p ∈ (0, 1/3), full disclosure is optimal under cheap talk and cheap talk has value 0. Note

that no disclosure is suboptimal under cheap talk and V is not quasi single-crossing at p,

Proposition 5 implies that full disclosure is suboptimal under mediation.
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H Correlated equilibria in long cheap talk and repeated

games

In this appendix, we discuss more in detail the implications of our results for the comparison

of correlated and Nash equilibria in long cheap talk and repeated games with asymmetric

information where the sender’s payoff is state independent.

Fix a finite set of states Ω, a finite action set A, and utility functions uR(ω, a) and uS(a)

for the receiver and the sender respectively. Following the notation in Forges (2020), let

DP0(p) denote the basic decision problem described by the previous primitive objects.

The long cheap talk game is an extension of the basic decision problem DP0(p) by allow-

ing the sender and receiver to exchange messages simultaneously for several rounds before

the receiver takes an action. Formally, let two finite sets MS and MR be the sender and

receiver’s message spaces, respectively. Following Lipnowski and Ravid (2020)’s notation,

we let H<∞ :=
⊔∞

t=0(MS ×MR)
t and H∞ := (MS ×MR)

N. The sender observes the realized

state ω ∈ Ω at t = 0. Then at each time t = 1, 2, . . ., the sender sends message mt ∈ MS and

the receiver sends m̃t ∈ MR simultaneously. Finally, after seeing the sequence of messages

h∞ ∈ H∞, the receiver chooses an action a ∈ A. A strategy for the sender is a measur-

able function σ : Ω ×H<∞ → ∆MS and a strategy for the receiver is a pair of measurable

functions σ̃ : H<∞ → ∆MR and ρ : H∞ → ∆A. We denote the long cheap talk game as

CT∞(p).

Under transparent motives, Proposition 4 of Lipnowski and Ravid (2020) shows that ev-

ery sender payoff attainable in a Nash equilibrium of CT∞(p) is also attainable in a perfect

Bayesian equilibrium of the one-shot cheap-talk game. Therefore, the highest sender’s ex-

pected payoff that is induced by a Nash equilibrium of CT∞(p) coincides with the one-shot

highest cheap talk value VCT (p). A correlated equilibrium of CT∞(p) is a Nash equilibrium

of an extension of CT∞(p) where the players privately receive correlated signals before the

beginning of the game. Forges (1985) shows that the set of correlated equilibrium payoffs

of the long cheap talk game C(CT∞(p)) is the same as the set of all communication equi-

librium payoffs of the basic decision problem M(DP0(p)). Therefore, the highest sender’s

expected payoff induced by a correlated equilibrium of CT∞(p) coincides with the sender’s

payoff induced by the sender’s preferred communication equilibrium VMD(p).

A different class of games we consider is a simplified version of the infinitely repeated

sender-receiver game introduced in Hart (1985). There are two action sets AS, AR for the

sender and receiver, respectively. The sender observes the realized state ω ∈ Ω at t = 0.

Then at each time t = 1, 2, . . ., the sender chooses action at ∈ AS and the receiver chooses

ãt ∈ AR simultaneously. The action of the receiver is the only one that is payoff-relevant,
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and the sender’s payoff does not depend on the state. That is, the sender’s payoff at time t is

uS(ãt) and the receiver’s payoff at time t is uR(ω, ãt). The actions are observed every period,

and players have perfect recall. The players’ overall payoffs are defined as the liminf of the

expected time average of the one-period payoffs. That is, US := lim infT→∞ E[ 1
T

∑T
t=1 uS(ãt)]

and UR := lim infT→∞ E[ 1
T

∑T
t=1 uR(ω, ãt)]. This is the transparent-motive case of the re-

peated games of pure information transmission as defined in Forges (2020), and we denote

it as Γ∞(p).

The correlated equilibria of Γ∞(p) are defined similarly, and Forges (1985) shows that

the set of correlated equilibrium payoffs of this game C(Γ∞(p)) coincides with the set of

communication equilibrium payoffs of the basic decision problem M(DP0(p)). Therefore,

the highest sender’s expected payoff induced by a correlated equilibrium of Γ∞(p) is the same

as the sender’s payoff in a sender’s preferred communication equilibrium VMD(p). Moreover,

Lemma 2 and 4 of Habu et al. (2021) imply that every sender’s Nash-equilibrium payoff of

Γ∞(p) corresponds to a sender’s payoff of a one-stage cheap talk equilibrium.

I Other Extensions

The full-dimensionality condition Our main characterizations on the strict value of

elicitation and mediation rely on the full-dimensionality condition at the prior (see Definition

3 and Lemma 1). This condition holds for almost every prior in finite games and, at every

binary prior such that no disclosure is suboptimal under cheap talk.54 However, it is more

restrictive when we consider games with infinitely many actions and more than two states.

Closing the gap between our sufficient and necessary condition for VMD(p) > VCT (p) in

Theorem 3 when the full-dimensionality condition does not hold remains an open problem.

A promising route might be the following. Suppose that the full-dimensionality condition

fails at p. Then, the largest dimension of the support of a cheap-talk optimal distribution

τ ∗ of beliefs at p is k < n− 1. We can redefine the state space Ω̃ to be equal to the extreme

points of the convex hull of supp(τ ∗). This would also require redefining the receiver’s prior

belief and the sender’s indirect payoff correspondence. The full-dimensionality condition

holds in this redefined cheap talk environment and our characterizations can be applied.

The drawback of this approach is that the new environment depends on the exact cheap talk

solution τ ∗ considered. We leave a more detailed analysis of this issue for future research.

54Recall also the sufficient condition we derived in Proposition 3 for the multidimensional moment-
measurable case.
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Beyond transparent motives The main analysis focused on the case of the state-

independent sender’s payoff function. Without this assumption, it is still possible to express

the Honesty constraint purely in terms of the unconditional distribution of beliefs. Suppose

that the sender’s indirect payoff at state ω and the receiver’s posterior µ is uniquely given by

V (µ, ω). It is easy to show (see for example Doval and Skreta (2024)) that the truth-telling

constraint can be written as∫
V (µ, ω)

(
µ(ω)

p(ω)
− µ(ω′)

p(ω′)

)
dτ(µ) ≥ 0 ∀ω, ω′ ∈ Ω. (13)

These are n(n − 1) moment constraints. Therefore, the optimal mediation problem is still

linear in τ , and the same techniques of Proposition 1 can be applied to derive the sender’s

optimal value under mediation and show that there exists an optimal mediation plan with

no more than n2 signals. It would be more challenging to extend our remaining results. In

Appendix G.1, we show via example that Theorem 2 may fail with state-dependent sender’s

payoff. We leave the formal analysis of the general state-dependent case for future research.55

Multiple receivers and private communication Our analysis can be immediately ex-

tended to the case with multiple receivers interacting in a game conditional on some public

information, that is, the mediator sends the same message to all the receivers. In this case,

the indirect payoff correspondence V(µ) collects all possible expected sender’s expected pay-

off across all the correlated equilibria of the game the receivers play conditional on public

belief µ. This correspondence is still upper hemi-continuous and therefore all our results

extend to this case.

Instead, if the mediator can privately communicate with every single receiver, then the

analysis would be considerably more challenging.56 However, some of our results can be

relatively easily extended in the intermediate case where communication is private but the

receivers do not interact in the game but rather solve an isolated decision problem, and the

payoff of the sender is additively separable with respect to the profile of receiver’s actions.

This case would be trivial under standard Bayesian persuasion: the sender can just solve

multiple different single-receiver Bayesian persuasion problems. This is not the case for a

55When V (µ, ω) = Ṽ (µ)b(ω) + a(ω) for some continuous function Ṽ (µ), strictly positive vector b ∈ Rn
++,

and arbitrary vector a ∈ Rn all our results apply as written. This immediately follows from the fact that b(ω)
and a(ω) drop from (TT) and from the sender’s unconditional expected payoff due to (zeroCov). Observe
that the sender here can also be said to have “transparent motives” because the sender’s preferences at
different states are positive affine transformations of each other.

56Even without the truth-telling constraint, the analysis of the standard information design problem is
complicated by the fact that potentially all the higher-order beliefs of the receivers matter. See, for example,
Mathevet et al. (2020) for a belief-based analysis of the information-design problem with multiple receivers
interacting in a game.

18



mediator who must elicit information from the sender, even if they maximize the sender’s

payoff. The reason is that the truth-telling constraint will not be separable with respect to

the receiver’s posterior beliefs.

In particular, in Appendix G.1, we show by example that already in the intermediate

setting described above, the mediation trilemma fails: with private communication, a medi-

ator can achieve the first-best Bayesian persuasion value whilst strictly improving on cheap

talk, and this is true even under transparent motives.

J Infinite State Space

In this appendix, we show our main theorems extend to the case when Ω is a compact metric

space. The other parts of the model are the same as Section 2. By Revelation Principle, we

focus on the CE outcomes π ∈ ∆(Ω×A) that satisfy Consistency, Obedience, and Honesty.

Here, Honesty means for p-almost all ω ∈ Ω, Eπω [uS(a)] = maxω′∈Ω Eπω′ [uS(a)].

We define the indirect value correspondence V : ∆(Ω) ⇒ R as in Section 3, which

is upper hemi-continuous, compact, convex, and non-empty valued, and the upper (lower)

envelopes are denoted as V (V ). As Definition 1, we say a distribution τ ∈ ∆(∆(Ω)) and

a measurable function V : ∆(Ω) → R are induced by some CE outcome π ∈ ∆(Ω × A)

if τ = (ϕπ)# margA π and V (µ) = Eπ[uS|ϕπ(a) = µ], where ϕπ : A → ∆(Ω) is defined by

ϕπ(a) = πa.

Theorem 1 in the main text can be extended as follows:

Theorem 1*. If a distribution τ ∈ ∆(∆(Ω)) and a measurable function V : ∆(Ω) → R are

induced by some CE outcome, then it satisfies

(i) Consistency*: ∫
∆(Ω)

µ dτ(µ) = p;

(ii) Obedience*: For τ -almost all µ ∈ ∆(Ω), V (µ) ∈ V(µ);

(iii) Honesty*: ∫
∆(Ω)

V (µ)(µ− p) dτ(µ) = 0.

Conversely, if (τ, V ) satisfies (i), (ii), and (iii), then there exists a CE outcome π ∈ ∆(Ω×A)

such that Eτ [V ] = Eπ[uS].
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Proof. Suppose τ ∈ ∆(∆(Ω)) and V : ∆(Ω) → R are induced by some communication

equilibrium outcome π ∈ ∆(Ω× A). For every h ∈ C(Ω),∫
∆(Ω)

⟨h, µ⟩ dτ(µ) =
∫
A

⟨h, ϕπ(a)⟩ dmargA π(a) =

∫
A

⟨h, πa⟩ dmargA π(a)

=

∫
Ω×A

h(ω) dπ(ω, a) = ⟨h, p⟩.

where I denotes the indicator function. The first equality is by τ = (ϕπ)#margA π, the

second equality is by definition, the third one is by the law of iterated expectations, and the

last one is by Consistency of π. Hence, τ satisfies Consistency*.

Since V is induced by π, V (µ) is the conditional expectation of uS with respect to

margA π, conditional on ϕ(a) = µ. Note that by Obedience, π is supported on a ∈ A∗(µ)

only, where A∗(µ) = argmaxa∈A Eµ[uR(ω, a)] is nonempty-compact-valued and weakly mea-

surable by the measurable maximum theorem (Aliprantis and Border, 2006, Theorem 18.19).

Therefore, V (µ) ∈ [mina∈A∗(µ) uS(a),maxa∈A∗(µ) uS(a)] and V is measurable, so Obedience*

is satisfied.

By Honesty of π and the fact that uS does not depend on ω, we have Eπω [uS] = Eπ[uS]

for any ω ∈ Ω. For any h ∈ C(Ω),∫
Ω×A

uS(a)h(ω) dπ(ω, a) =

∫
Ω

h(ω)Eπω [uS] dp(ω) = ⟨h, p⟩Eπ[uS] = ⟨h, p⟩
∫
∆(Ω)

V (µ) dτ(µ),

where the first equality is by iterated expectation and Consistency, the second one follows

from Honesty, and the last one is by the fact that (τ, V ) is induced by π. We also have∫
Ω×A

uS(a)h(ω) dπ(ω, a) =

∫
A

uS(a)⟨h, πa⟩ dmargA π(a)

=

∫
A

E[uS(a)⟨h, πa⟩ | π(a) = µ] dmargA π(a) =

∫
A

V (ϕ(a))⟨h, ϕπ(a)⟩ dmargA π(a)

=

∫
∆(Ω)

V (µ)⟨h, µ⟩ dτ(µ),

where the first two equalities are by iterated expectation, the third one follows from the fact

that V is induced by π, and the last equality is by τ = (ϕπ)# margA π. Therefore,∫
∆(Ω)

V (µ)⟨h, µ− p⟩ dτ(µ) = 0

for every h ∈ C(Ω), so Honesty* holds.

Next, we show by construction that for any τ ∈ ∆(∆(Ω)) and V ∈ V that satisfy
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Consistency* and Honesty*, there exists a communication equilibrium outcome π with

Eτ [V ] = Eπ[uS]. Since V ∈ V, by Lemma 2 of Lipnowski and Ravid (2020), there exists a

measurable λ : ∆(Ω) → ∆(A) such that for all µ ∈ ∆(Ω), λ(µ) ∈ argmaxα∈∆(A) Eµ[uR(α, ω)]

is a mixed best response for the receiver with posterior µ, and V (µ) =
∫
A
uS(a) dλ(µ)(a).

Given two measurable spaces (S,S) and (T, T ), a probability kernel from S to T is a

mapping ν : S × T → R+ such that ν(·, B) is S-measurable for fixed B ∈ T and ν(s, ·) a

probability measure on T for fixed s. By Online Appendix 3 of Kamenica and Gentzkow

(2011), there exists a probability kernel σ from Ω to ∆(Ω) that induces τ by Consistency*.

That is, p ⊗ σ ∈ ∆(Ω,∆(Ω)) has a regular conditional probability such that (p ⊗ σ)µ = µ

almost surely and τ = marg∆(Ω)(p ⊗ σ). Define a probability kernel κ from ∆(Ω) to A

such that κ(µ, ·) = λ(µ). As λ is measurable, κ is a well-defined probability kernel. The

composition σ ⊗ κ is a kernel from Ω to A that satisfies σ ⊗ κ(ω,D) =
∫
∆(Ω)

∫
A
I[a ∈

D] dκ(µ, a) dσ(w, µ) for every ω ∈ Ω and Borel D ⊆ A. Let π = p⊗ σ ⊗ κ ∈ ∆(Ω× A), we

show this is the desired CE outcome. First, note that π satisfies Consistency by construction,

as π(W,A) =
∫
W

∫
∆(Ω)

λ(µ)(A) dσ(ω, µ) dp(ω) =
∫
W
σ(ω,∆(Ω)) dp(ω) = p(W ) for any Borel

W ⊆ Ω.

For any function u : Ω× A → R,

Eπ[u] =

∫
Ω

∫
∆(Ω)

∫
A

u(ω, a) dκ(µ, a) dσ(ω, µ) dp(ω)

=

∫
∆(Ω)

∫
Ω

∫
A

u(ω, a) dλ(µ)(a) d(p⊗ σ)µ(ω) dτ(µ)

=

∫
∆(Ω)

Eµ

(∫
A

u(ω, a) dλ(µ)(a)

)
dτ(µ), (14)

where the first equality follows from construction of π, the second and the third are implied

by the fact that τ is induced by σ.

To see Obedience, take any measurable ã : A → ∆(A), by definition of λ, we have

Eµ

(∫
A
u(ω, a) dλ(µ)(a)

)
≥ Eµ

(∫
A
u(ω, ã) dλ(µ)(a)

)
for any µ ∈ ∆(Ω). Taking expectation

with respect to τ , we have
∫
uR(ω, a) dπ(ω, a) ≥

∫
uR(ω, ã) dπ(ω, a), and π satisfies Obedi-

ence by Lemma 3.

By construction, σ ⊗ κ is a regular conditional probability of π given ω. Hence,

Eπω [uS] =

∫
∆(Ω)

(∫
A

uS(a) dλ(µ)(a)

)
dσ(ω, µ) =

∫
∆(Ω)

V (µ) dσ(ω, µ).
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By (14), for every Borel W ⊆ Ω,∫
Ω×A

uS(a)I[ω ∈ W ] dπ(ω, a) =

∫
∆(Ω)

V (µ)µ(W ) dτ(µ) = p(W )

∫
∆(Ω)

V (µ) dτ(µ) = p(W )Eπ[uS],

where the second equality follows from Honesty*. This then implies that∫
W

(Eπω [uS]− Eπ[uS]) dp(ω) = 0

for every Borel W ⊆ Ω. Hence, Eπω [uS] = Eπ[uS] p-almost surely, π satisfies Honesty.

As in the proof of Proposition 1, we may consider the auxiliary program (η-MD). Fix

any sequence of feasible ηn that converges weakly to η, for every h ∈ C(Ω), 0 =
∫
⟨h, µ −

p⟩ dηn(µ, s) →
∫
⟨h, µ − p⟩ dη(µ, s) and 0 =

∫
s⟨h, µ − p⟩ dηn(µ, s) →

∫
s⟨h, µ − p⟩ dη(µ, s).

So the feasibility set of the auxiliary program is compact, and hence the attainment part in

Proposition 1 extends.

To extend Theorem 2 to the general case, we assume that the upper envelope V is

Lipschitz on ∆(Ω).57 Kolotilin et al. (2024) show that this is a sufficient condition for the

dual attainment of Bayesian persuasion.

Theorem 2*. Suppose V is Lipschitz on ∆(Ω). Then VBP (p) = VMD(p) if and only if

VBP (p) = VCT (p).

Proof. It suffices to show the only if direction. Take τ ∈ ∆(∆(Ω)) and V ∈ V that solves

the mediation problem. Since VBP (p) = VMD(p), V = V almost surely with respect to τ .

By Corollary 1 and 2 of Kolotilin et al. (2024), there exists a Lipschitz f : Ω → R such that

V (µ) ≤ ⟨f, µ⟩ for all µ ∈ ∆(Ω) and V (µ) = ⟨f, µ⟩ for all µ ∈ supp(τ). By the truth-telling

constraint,
∫
V (µ)⟨f, µ−p⟩ dτ(µ) = 0. It follows that

∫
V (µ)2 dτ(µ) =

∫
V (µ)⟨f, µ⟩ dτ(µ) =

⟨f, p⟩
∫
V (µ) dτ(µ) = (

∫
V (µ) dτ(µ))2. Therefore, V is τ -almost surely constant, implying

that τ is also feasible under cheap talk.

Next, we show the first statement of Theorem 3 can be extended. We first introduce an

expanded cheap talk hull

H̃ = {µ ∈ ∆(Ω) : ∃α > 1 such that (αp+ (1− α)µ, V CT (p)) ∈ Gr(VCT )}.

Theorem 3*. If there exists µ ∈ H̃ and λ ∈ (0, 1) such that V CT (λµ+(1−λ)p) > V CT (p) >

V CT (µ), then VMD(p) > VCT (p).

57We endow ∆(Ω) with the Kantorovich-Rubinstein norm that metrizes the weak* topology.
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Proof. Take µ ∈ H̃ and λ ∈ (0, 1) that satisfies the assumption. Note that H̃ is convex and

p ∈ H̃, any point in co{p, µ} is also in H̃. The same construction as in the proof of Theorem

3 leads to the desired result.

To extend Theorem 4, we first extend our definition of moments. Let T be a continuous

linear map from ∆(Ω) to a locally convex space. We say T is multidimensional if X =

T (∆(Ω)) has a dimension strictly larger than 1. We assume that V = V is singleton-valued

and that V (µ) = v(T (µ)) for some continuous strictly quasiconvex v : X → R.

Theorem 4*. If H̃(p) = ∆(Ω) and T is multidimensional, then exactly one of these cases

holds:

(1) maxV = VBP (p) = VMD(p) = VCT (p) > V (p);

(2) maxV > VBP (p) > VMD(p) > VCT (p) > V (p).

Proof. As T is multidimensional and v is strictly quasiconvex, Corollary 6 of Lipnowski

and Ravid (2020) implies no disclosure is suboptimal under cheap talk. By Theorem 2*

and the fact that H̃(p) = ∆(Ω), VBP (p) = VMD(p) if and only if {V > VCT (p)} = ∅. If

maxV = VCT (p), then (1) trivially holds. It suffices to show that maxV > VCT (p) implies

(2).

To see maxV > VBP (p), note that otherwise there exists a Bayes-plausible τ ∗ such that

V (µ) = maxV for all µ ∈ supp(τ ∗), which then implies τ ∗ is also feasible under cheap talk,

contradiction.

To show VMD(p) > VCT (p), we follow the same construction as in the proof of Theorem

4. In particular, there exists µ1, µ2 ∈ D+ such that µ̂ := 1
2
µ1+

1
2
µ2 ∈ D−, where D+ = {V >

V CT (p)} and D− = {V < V CT (p)}. By continuity, D+ is open, and so is coD+. Therefore,

there exists λ ∈ (0, 1) such that λµ̂ + (1 − λ)p ∈ coD+. We may partially extend Lemma

6 to show that for every µ ∈ ∆(Ω), µ ∈ coD+ implies V CT (µ) > V CT (p) and µ ∈ coD−

implies V CT (µ) < V CT (p). Therefore, V CT (λµ̂ + (1 − λ)p) > V CT (p) > V CT (µ̂). Theorem

3* implies VMD(p) > VCT (p).
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