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Abstract

This collection of essays investigates issues related to information acquisition in the
presence of permanent ambiguity, perception errors or computational constraints.
After a brief introduction, Chapter 1 introduces a decision maker who faces a sequence
of non-identical experiments with a finite numbers of possible outcomes. The law
generating the observations changes from period to period and the decision maker
does not know anything about how the laws evolve. She has probabilistic beliefs
over sets of possible laws and makes inferences on the true set of laws. 1 consider
updating mechanisms characterized by consequentialism and such that updating can
only depend on current beliefs and the current observation. To stay as close as
possible to the standard Bayesian framework, I assume that the relative frequencies
of observations converges to some limit frequency and that this limit frequency is
compatible with only one of the possible sets of laws. I then show that, when the
number of possible outcomes is larger than three, the individual may never learn what
the true set of laws is.

In Chapters 2 and 3 I consider a decision maker receiving signals. The signals
specify a subset of the set S of states of the world in which the true state in included.
However, the decision maker does not observe the signals correctly: each signal is
perceived as a possibly different subset of S according to a function v mapping true
signals into perceived ones. Chapter 2 introduces the concepts of underconfidence and
overconfidence for this setting and analyzes the consequences of different behavioral
sources of misperception on the set of fixed points of the mapping function v and on
the relation between each true signal A and the corresponding perceived signal v(A).
In Chapter 3 I add an ex-ante stage to the model. The decision maker is aware of her
ability to manage a limited number of different signals, smaller than the total number
of signals that she may receive. She therefore chooses an optimal function v mapping
received signals into perceived ones, subject to the constraint on the number of the
latter. The chapter studies the properties of this optimal mapping.
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Introduction

The chapters of this dissertations analyze the problem of beliefs updating from three
different points of view, exploring issues related to information acquisition in the pres-
ence of permanent ambiguity, perception errors or computational constraints. In these
contexts, the traditional Bayesian updating algorithm is either inapplicable (as in the
case of ambiguity) or it produces unusual results (as in the case of misperceptions).

The model presented in Chapter 1 describe a situation of permanent ambiguity.
A decision maker who faces a sequence of non-identical experiments with a finite
numbers of possible outcomes. The law generating the observations changes from
period to period and the decision maker does not know anything about how the
laws evolve. Moreover, she thinks that no information can be obtained on that.
She therefore thinks in terms of sets of probability distributions, or laws: from a
set of possible laws, one is selected in each period to generate the observation. The
decision maker has probabilistic beliefs over sets of laws. The absence of a probabilistic
belief over laws (in contrast to one over sets of laws) gives rise to ambiguity. The
impossibility of acquiring information on how the laws evolve makes this ambiguity
permanent.

As in any model of ambiguity, it is not obvious what a reasonable mechanism
for updating beliefs should look like. In this work, I consider updating mechanisms
characterized by consequentialism and by a strong restriction of the amount of infor-
mation that the decision maker can use: updating can only depend on current beliefs
and the current observation. The purpose of Chapter 1 is to verify whether, as in a
model with no ambiguity, this limited information is sufficient to asymptotically learn
the true set of laws. To stay as close as possible to the standard Bayesian framework,
I assume that the relative frequencies of observations converges to some limit fre-
quency and that this limit frequency is compatible with only one of the possible sets
of laws. The main result is that the individual may never learn what the true set of
laws is. Interestingly enough, the impossibility result emerges only when the number
of possible outcomes is larger than three. For a smaller number of outcomes, learning
is always possible.

In the last two chapter, the decision maker is an expected utility maximizer and
updates her beliefs through Bayes rule. Her behavior is, however, non-standard, be-
cause perception errors or the impossibility to handle too much information influence
the way in which updating takes place.

In Chapters 2 and 3 the decision maker, before choosing an act, receives a signal.
The signal specifies a subset of the set S of states of the world in which the true
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state in included. After observing the signal, the decision maker updates her prior
according to Bayes rule and then chooses an act that maximizes her utility. However,
she does not observe the signals correctly: each signal is perceived as a possibly
different subset of S, according to a function v mapping true signals into perceived
ones.

Chapter 2 analyzes the consequences of different behavioral sources of misper-
ception on the characteristics of the mapping function v. In particular, I study the
properties of set of fixed points of the mapping function v and the relation between
each true signal A and the corresponding perceived signal v(A). The chapter also
introduces the concepts of underconfidence and overconfidence for this setting as a
relation between received and perceived signals.

Chapter 3 continues the analysis of the model, adding an ex-ante stage. The
decision maker is aware of her ability to manage just a limited number of different
signals, smaller than the total number of signals that she may receive. Therefore, ex
ante, she chooses an optimal function v mapping received signals into perceived ones,
subject to the constraint on the number of the latter. Instead of perception errors, the
model can be seen as describing a constraint in the amount of information that the
decision maker can handle. The difference between received and perceived signals is
now endogenous. The chapter studies the properties of the optimal mapping function
.



Chapter 1

Recursive Mechanisms for
Updating Beliefs over Sets of Laws

1.1 Introduction

1.1.1 Preliminary Example

A Bayesian individual faces an urn of unknown composition. For the sake of simplicity,
assume that the urn contains eight balls of three possible colors, red, blue and green.
The individual performs an infinite sequence of experiments. In each period, she draws
a ball (with replacement) from the urn and observes its color. She then updates the
probabilities assigned to the different events (how likely she thinks it is to observe
different sets of sequences of colors).

In this setting, de Finetti’s theorem shows that beliefs over events can be reduced
to beliefs over the the composition of the urn [1]. We can therefore suppose that the
individual is uncertain between two compositions, as shown in Figure 1.1.1 Her prior
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Urn 1 Urn 2

Figure 1.1: Unambiguous Urns

beliefs exhibit probabilistic uncertainty about the true composition. They can be

!The meaning of the dotted line will become clear later on.
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represented with a probability distribution py over the two possible compositions. In
each period, after observing the color of the ball, the individual updates her current
beliefs in a Bayesian way. Once beliefs have been updated, she forgets both the
observation and her past beliefs.

This is a very standard model. For future reference, it is useful to emphasize
two important features of it. On the one hand, the relative frequencies of the colors
observed converge in the long run to the true composition of the urn. On the other
hand, the individual’s beliefs u; converge to a degenerate distribution that assigns
probability 1 to the true composition. Notice that this long-run identification is
reached even if the individual makes use of a very limited amount of information. In
particular, she is not aware of the values of the relative frequencies.

Consider now a less standard model. There is still a sequence of experiments
in which a ball is drawn (with replacement) from an urn and its color is observed.
However, the urn does not need to be the same in every period; the experiments are
therefore non-identical. We can represent this modified setting with Figure 1.2. In

Uni Un?2

Figure 1.2: Ambiguous Urns

this example, the individual knows that, out of the eight balls in the urn, five balls
are the same in every period, while the other three may change from period to period.
She has no clues on how the changing balls are chosen in each period; moreover, she
thinks that nothing can be known about that. What, at least in principle, can be
known is the composition of the five fixed balls. On this regard, the individual is
uncertain between two alternative compositions.

We can interpret this setting as a situation of permanent ambiguity. In fact, even if
the individual were able to resolve her uncertainty about the composition of the fixed
balls, she would still make no improvements in terms of understanding the mechanism
that generates the changing balls. This source of ambiguity cannot disappear or be
reduced in the long run. We can also think of this as a sort of ”"objective” ambiguity;,
intrinsic to the phenomenon itself and that cannot be entirely explained as a form of
uncertainty aversion.

Equivalently, we can interpret the individual’s beliefs as beliefs over sets of urns.
Each set includes all the urns that share the same composition of the five fixed balls.
So, for example, Urn 1 in Figure 1.2 correspond to the set of the urns with at least
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one red, two blue and two green balls. The convex hulls of the sets corresponding
to the urns in Figure 1.2 are shown in Figure 1.3.2 The darker triangle corresponds

Green

Red Blue

Figure 1.3: Sets of Urns

to Urn 1, the other to Urn 2. Notice that the sets are triangle; more precisely, they
are similar to the simplex and differ from each other by a translation. The area of
the triangles depends on the ratio between changing and fixed balls. As the example
shows, the sets can intersect. We can think of these sets as "sets of laws”, where
a law is a probability distribution that, in a given period, assigns probabilities to
the different colors that can be observed. A set of laws, therefore, can be used as a
description of a sequence of non-identical experiments.

In order to remain as close as possible to the standard Bayesian model, T will
assume that the individual has probabilistic uncertainty over possible sets of laws;
that is, over the two possible compositions of the fixed balls. In each period, the
individual draws a ball (with replacement) and observes its color. She then updates
her beliefs and, after that, forgets the observation and her past beliefs. Therefore, the
information that the individual can use for updating is the same as in the standard
model. The class of rules for updating the probabilistic beliefs over sets of laws
making use of this limited information will be denoted in this chapter as the class
of "recursive updating rules”. The term “recursive” underlines the fact that the
updating algorithm is the same in every period: it is a function of current beliefs and
of the current observation.?

To make things even more similar, I make an additional assumption on the se-
quence of observations. Since nothing is known about the mechanism that selects the
changing balls, there is no guarantee of convergence of the relative frequencies of the

2Tn the rest of the chapter, I will consider convex sets. So, in this discrete example, it makes
sense to look at the convex hulls.

3The standard Bayesian rule is an example of recursive updating rule. However, even in a non-
ambiguous setting, one can think of many more recursive rules.
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colors observed. By analogy with the Bayesian model, I assume that such a conver-
gence takes place. Moreover, I require that this limit frequency is compatible with
one and only one set of urns. That is, I assume that the limit frequency is a point
belonging to only one of the convex hulls of the two possible sets, and not to their
intersection. With this assumption I exclude the cases of "undecidability”; in fact, it
is clear that, if the individual were able to keep track of the relative frequencies, in
the long run she would identify the true set of urns.

Given these analogies with the Bayesian model, one may wonder whether similar
limit beliefs can be obtained. Since in the non-ambiguous case the beliefs of a Bayesian
individual converge to a degenerate distribution assigning probability one to the true
urn, can a similar result hold in a model of permanent ambiguity? That is, is it
possible for the individual, in the long run, to identify the true composition of the
fixed balls using some recursive updating rule? This is the question that I address
in the present chapter. The model I use will be, of course, more general than this
preliminary example. In particular, I will allow for an arbitrary finite number of
outcomes (or colors). Notice, however, that the generalizations would not undermine
the convergence result in the non-ambiguous case.

I will prove that, under mild regularity conditions, convergence to the true set
of laws is not generally possible. In particular, problems arise when the number of
outcomes (colors) is higher than three. The main result of this chapter is therefore
an impossibility theorem. For up to three outcomes, on the other hand, we do have
a result analogous to the usual Bayesian one.

1.1.2 Existing Literature and Plan of the chapter

The idea that a decision maker could interpret a sequence of experiments as being
non-identical was first considered by Epstein and Schneider [3], who define the notion
of indistinguishability as opposed to independence. Sequences of non-identical exper-
iments were then explicitly introduced in the economic literature by Epstein and Seo
[4]. Notice, however, that similar ideas had been developed in a statistical context;
see for example Fierens and Fine [6].

Epstein and Seo provide a behavioral characterization of a utility function that
will be used in the present chapter. I will not go over the axioms; here I just want to
spend a few words on the interpretation of the function. Let S be the set of outcomes
of each experiment; that is, the set of possible colors of a ball. The state space is then
given by 2 = 5. Let X be the product o-algebra on 2. An act f is a 2-measurable
function from € to [0, 1]. The decision maker’s preference relation can be represented
by a utility function of the form

vin - | (Ig;on / fdP) au(L),

where



e L is a closed and convex set of probability distributions over outcomes that can
characterize an experiment; it correspond to the (convex hull of) a set of urns
as described in the example above; in my terminology, it is a set of laws;

e P is a probability measure on (£2,X); it is a distribution over sequences of
outcomes (sequences of colors, in the example above), constructed taking one
law in £ for each period and considering the experiments as independent;

e /i is a probability distribution over sets of laws; it describes the decision maker’s
probabilistic uncertainty over sets (that is, in my example, over compositions
of the fixed balls in the urn).

With a change of notation, it is possible to show that this representation is a
special case of the multiple-prior utility function axiomatized by Gilboa and Schmei-
dler [9]. The interested reader can look at [4]. Notice, however, that the source of
ambiguity in this model is different from that implied in the traditional interpretation
of the Ellsberg paradox. Usually, the decision maker is seen as unable to express her
uncertainty on the value of the relevant parameter in terms of a probability distri-
bution. Here, on the other hand, the relevant parameter is the set of laws £, and
the decision maker does have probabilistic uncertainty over its value. The ambiguity
emerges from the relation between the parameter and the outcomes. The difference
becomes crucial when we think about belief updating. In this context, the standard
generalized Bayesian rule, as axiomatized in Pires [13], that consists in the Bayesian
updating of each prior, does not make sense. The reason is that there is not a natural
likelihood function to use. Updating becomes a more subtle problem. The present
chapter addresses some of the issues emerging when we try to model the process of
updating beliefs over sets of laws.

The problem of belief updating in the case of non-identical experiments was first
studied within a statistical framework. Fierens, Régo, and Fine [7] summarize the ex-
isting literature and provide a complete bibliography on the subject. Their approach
involves looking at the sequence of outcomes and choosing a particular set of subse-
quences to use as inputs for inference. The authors characterize a set of subsequence
selection rules that allows to identify the true set of laws with high probability. The
rules are quite complicated and depend on the bound imposed to the complexity of
the rule for the selection of laws. This approach is unlikely to be applicable to models
of decision making. A behavioral characterization of the subsequence selection rules
is probably impossible.

A different approach has been proposed by Epstein and Seo [4]. Given the repre-
sentability of preferences with a utility function of the form seen above, they look for
a behavioral characterization of the existence of a likelihood function.* Again, the
axiomatization can be found in their chapter. Using a notation slightly different from
[4], but closer to the one adopted later in the chapter, let A be the space of possible
sets of laws L. A likelihood is a function L : A — A(Q2). Given L, it is possible to

4The definition of likelihood function in [4] is different from the definition that will be used later
in the present chapter.



define its one-step-ahead conditional at period n as a function L,, : S"" ' x A — A(S).
Beliefs are updated according to a rule of the form

L, (sn|L)
dpn(L) = —=———dp,-1(L),
) = 0o
where L,,(-) = [ L,(:|£)dp,—1(L). Notice that L, depends on the entire history of

past observatlons, that is, on the sequence s"*.

The class of recurses updating rules, as defined in this chapter, are neither a subset
nor a superset of the class of likelihood functions in [4].

The rest of the chapter is organized as follows. Section 2 formalizes the model and
compares it to the one adopted by Epstein and Seo [4]. Recursive updating rules are
defined in Section 3, where they are classified according to their functional forms. In
particular, a nonstandard definition of likelihood function is introduced. The main
results of the chapter are presented in Section 4. Section 5 concludes. Proofs can be
found in Appendix A.

1.2 Non-identical Experiments and Beliefs

1.2.1 The Model

A decision maker faces an infinite sequence of experiments, each yielding an outcome
in the finite set S = {s1,..., 55} (with a little abuse of notation, I use S to denote
both the set of outcomes and its cardinality). The state space is therefore Q = 5.
Let ¥ be the product o-algebra on €). An act f is a X-measurable function from €2
to [0, 1].

Using the slightly abusive notation introduced by Epstein and Seo [4], I assume
that the decision maker’s preference relation can be represented by a utility function

of the form
U(f) / (mln / fdP) (L (1.1)

where L is a closed and convex set of probability distributions over outcomes that
can characterize an experiment (that is, a set of laws), P is a probability measure
on (2,%) and p is a probability distribution over sets of laws. So the decision maker
thinks of all the experiment as independent and governed by the same, but unknown,
set of laws; she has probabilistic beliefs over possible sets of laws, represented by
p. The utility of an act is determined minimizing the expected utility over all the
distributions P € £%°. Therefore, the decision maker exhibits uncertainty aversion.

This representation has been axiomatized by Epstein and Seo [4]. Tt is possible
to show that such a utility function is a special case of the Gilboa-Schmeidler [9]
multiple-prior utility (see [4] for a detailed analysis).?

5Notice, however, that in my analysis I do not explicitly make use of this utility function. I am
only interested in limit beliefs, not in choices. In fact, all I need is a representation of preferences
where uncertainty over sets of laws is probabilistic.
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In the chapter I focus on the case in which the decision maker is uncertain between
a finite number of sets of laws {£;,7 = 1,..., h}. Moreover, I assume L; C int(A(S))
and

L;=ao{p;} + (1 —a)A(9),

where p; € A(S) and « € (0, 1]. It is easy to interpret such a set keeping in mind the
urn example:

e p; is the (unknown) composition of the fixed balls in the urn;
e « is the ratio between the numbers of fixed and changing balls in the urn;

o the term (1 — a)A(S) says that the changing balls can assume any possible
composition.

The assumption that the sets of laws belong to the interior of the simplex is made
just for convenience, to get rid of all the cases of zero-probability events.

The chapter considers issues related to the long run beliefs that can be obtained
when updating is based on iterative mechanisms. But what does updating exactly
mean in the context of the present model? I am assuming that the decision maker
does not know anything about how, among the set of possible laws, the specific law
describing the experiment in a given period ¢ is chosen. Moreover, she thinks that
nothing can be inferred about this selection mechanism from the observation of the
outcomes in earlier periods. Formally, this means that the sets £; in the utility
functions U(f) are the same in every period t.

Following Epstein and Seo [4], T assume that updated conditional preferences at
any period t are represented by the same functional form (an assumption that those
authors call Basic); moreover, Consequentialism is assumed: the conditional ranking
given the sample s does not depend on what the act would have yielded under events
that have not been realized.

Consequentialism. If f(s',.) = f'(s,.), then f ~ 4 f'.

With these two assumptions, preferences at time ¢ can be represented by a utility

function of the form
v = [ (r;}gon [ s .>dP) dpu(L).

Therefore, updating only affects the probability distribution p over the sets of laws.
For this reason, in the chapter I will often refer to the sets £; as "parameters”, while
the term ”beliefs” will be used to denote p.

Given the decision maker’s initial beliefs 1y, an updating rule is therefore a rule
specifying how i, is obtained after the agent observes the outcomes st = sy, ..., 5.5 My
analysis will focus on a specific class of updating rules, for which updating does not

6Note that I am using the same notation s; to denote both the ith element of the set S and the
observation in the ith period. The interpretation in each instance where s; is used will be clear form
the context.



depend on past observations and beliefs (see Section 1.3). I am interested in particular
in the limit beliefs as t — oo. When is it possible to converge to a probability
distribution assigning probability one to the true parameter? Does the answer depend
on the cardinality of the set S?7 These are some of the questions addressed in the
following sections.

1.2.2 Differences with Respect to the Epstein-Seo Model

The present model is clearly a special case of the one studied by Epstein and Seo
[4]. In fact, I am simply restricting the set of possible parameters, assuming that the
decision maker makes a clear distinction between the features that are common to all
the experiments and those that are specific to each experiment. In the urn example,
the agent knows how many balls are fixed in every period and how many change from
period to period. This implies that the different sets of laws among which the agent
is uncertain can be obtained translating a single set. Formally, two sets of laws can
differ only by the term p; in the expression above. This is not the case for Epstein
and Seo. In their model the decision maker is unsure not only about the colors of the
fixed balls, but also about their number.”

To understand why this restriction matters, remember that nothing is known
about how a specific law is selected in each period. In particular, it cannot be excluded
(and the decision maker in my model does not exclude) that in each period one law
in chosen randomly among the laws in the true set.

Consider now an example with S = 2 and suppose that the decision maker is
uncertain between two sets of probabilities as represented in Figure 1.4 below. This

A
]
L 5 5 § 5 ¥
| I 1 ] | 1
0 | | 1

B

Figure 1.4: Excluded Case

is a case which is excluded in my model (the two sets do not differ by a translation),
but which is perfectly possible in the model by Epstein and Seo. Assume that the
true parameter (set of laws) corresponds to the smaller set A. In this case, there
is no reasonable way to identify the parameter. In fact, any sequence of outcomes
obtained with a random selection rule over A can be equally obtained with a random
selection rule over the the set B\ A.® Restricting the parameters to translations of

"Epstein and Seo [4] provide an axiomatic characterization of such beliefs. I do not have axioms
characterizing the special case I adopt.

80ne way to address this problem is to restrict the set of possible selection rules, excluding,
in particular, random rules. This is the approach followed in the statistical literature (see [7]).
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a single set eliminates the possibility for the decision maker to be uncertain between
a set of laws and one of its subsets. In this case, whatever the true parameter,
there are always sequences of outcomes for which a correct identification is, at least
theoretically, possible. Consider Figure 1.5 below.

A
| |
[ 3 3 3 3 ]
| | L] L] L] ] 1
0 | | 1

B

Figure 1.5: Acceptable Case

If, for example, the sequence of outcomes generates frequencies that converge to
to a point in A\ B (B '\ A), than any individual with enough information can learn
that the true set of laws is A (B). Such limit frequencies cannot be generated by a
sequence of laws selected from the set B (A). Since in this chapter I am interested
in determining the ability of a decision maker with limited information to learn the
true set of laws, I need to restrict myself to cases in which, at least in principle, the
true set can be inferred from the observations.

1.3 Recursive Updating Rule

In the classic Bayesian model, the decision maker makes use of a limited amount of
information. The only input of the Bayesian algorithm is the current observation. In
my model, I want to preserve this constraint, therefore considering learning processes
characterized by an incremental and recursive nature. Unlike Epstein and Seo [4], I am
not interested in a behavioral characterization of such a class of updating rules. My
aim will be to see whether this limited information is still sufficient for the convergence
of beliefs to the true value of the parameter, that is, to the true set of laws.

As stated in the previous section, I am assuming that conditional preferences can
be represented by utility functions of the same functional form. To that assumption I
then add the requirement that the decision maker cannot remember anything about
the past. We then get what I call "recursive updating rules”. We can think of these
rules as the class of mechanisms for updating the value of u that make use of a very
limited amount of information. In particular, at each period t, only two pieces of
information can be used:

e the current observation s;, that is, the outcome of the current experiment;

e /i, 1, the agent’s beliefs at the beginning of period ¢.

However, this is technically complicated and it is difficult to imagine a behavioral characterization
of such a restriction.
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Notice that, when applied to the non-ambiguous setting, this class includes Bayes
rule, among many others.

It is useful to classify recursive updating rules into subgroups. I will consider
only deterministic mechanisms, in which beliefs are updated applying the same rule
in each period. Therefore, there exists a function f : (S,A({L£;})) — A({L;}) such
that, given the observation s; in period ¢,

fielse = f(se, pu1).-

In the literature on beliefs updating it is common to focus on mechanisms making
use of likelihood functions. In the present chapter I use a nonstandard definition: I
call likelihood function any function g : S — R, such that

5))s = Wit i=1,..h
(fe]st) > LS
The difference with respect to the common notion of likelihood function is that I do
not require > __cg(s); = 1 for all i = 1,...,h. So, strictly speaking, g cannot be
interpreted as the probability of the current observation given a specific value of the
parameter. When I talk about a likelihood function, I am therefore thinking of any
updating mechanism showing a multiplicative separation of s and u. Again, Bayes
rule is a special case of this class of rules.

It is useful to consider further subsets of mechanisms of the likelihood function
type. Let £; = a{p;} + (1 — a)A(S). We can think of two relevant special cases:

1. Likelihood functions associate to each parameter probabilities belonging to the
correspondent set of laws: g¢(s); € ap;(s) + (1 — «)[0,1]. We can think of
these as the only "meaningful” likelihoods, since, given any outcome and any
parameter, they assume one of the possible values of the conditional probability
of the outcome given the parameter.

2. Likelihood functions select conditional probabilities that have the same ”posi-
tion” within each set of laws: g(s); = ap;(s) + (1 — a)gs(s), where g5 € A(S) is
the same for all is. So, in the urn example, we can interpret different likelihood
functions as different hypotheses on the composition of the variable part of the
urn.

Clearly, the second subset of mechanisms is a special case of the first.

In the rest of the chapter, I will consider cases in which the decision maker is
uncertain between two possible sets of rules only, £, and L,; that is, h = 2. The
assumption simplifies the proofs, but does not reduce the power of the theorems. Any
result can be easily generalized to an arbitrary finite h. A more serious restriction is
the introduction of some mild regularity conditions.

Well-behavedness. Given h = 2, let’s simplify the notation redefining f as a func-
tion mapping (S, (0,1)) to [0, 1], where u € (0,1) is now the probability associ-
ated to L. I require that, for any s € S,
12



i) lim, o f(s, ) =0 and lim,,_; f(s,pu) =1;
i) f'(s,.) has limits (possibly infinite) for p — 1 and p — 0.

The first condition has a simple interpretation. As beliefs approach certainty, a single
observation cannot change them dramatically. This is a restriction on the weight that
can be assigned to observations relative to prior beliefs or, more precisely, a restriction
on the speed with which this weight can increase as beliefs approach certainty. The
second condition can be interpreted as an additional restriction on the weights given
to observations for different prior beliefs. I assume that, as beliefs approach certainty,
these weights don’t oscillate indefinitely. The relevance of observations for updating
beliefs converges to a singe value, not necessarily finite. Notice that I do not require
f(s,.) to be continuous on the entire interval (0,1). Observations may in general
be weighted very differently for arbitrarily close priors. What I need is that this
should not be the case in the limit; that is, I need f(s,.) to be definitely uniformly
continuous.

A function f satisfying these conditions will be called ”well-behaved”. Assuming
that f is well-behaved is a significant restriction. The assumption clearly reduces the
power of Theorem 1.4.1 below. In order to prove that the amount of information that
the decision maker can use in my model is not sufficient for a correct identification of
the true set of laws, one would like to get rid of these regularity conditions, however
mild they may appear. Whether the same result can be proved for generic functions
f is still an open question.

1.4 Updating Rules and Long Run Beliefs

Before studying the decision maker’s limit beliefs when updating is recursive, I want
to introduce an additional assumption. The assumption will make the similarity with
the standard Bayesian model even stronger. Since experiments are non-identical and
not even independent, there is no guarantee that the frequencies of the outcomes
in S will converge in the limit. In the following theorems, however, I will always
assume that convergence takes place, in analogy with the model without ambiguity.
Informally, we can interpret the experiments as independent ”in the limit”. Notice
that, since my main result will be an impossibility theorem, such a restriction does
not affect the strength of the result.

I want to study the possibility for the decision maker of learning which of the
two sets of laws is the true one. However, as we have seen in the Introduction,
there are cases that are objectively undecidable. Consider £, and Ly such that
L1 N Ly # (. Suppose that the relative frequencies of the outcomes converge to a
point in the intersection. Remember that the decision maker does not know anything
about how a law is selected in each period from the true set. Moreover, she thinks
that any selection mechanism is possible. In particular, a random mechanism cannot
be excluded. For such a decision maker, limit frequencies in £ N £y are compatible
with both sets of laws. This is true no matter how much information she has on the
history of past observations.
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On the other hand, if the decision maker were able to observe the frequencies of
the various outcomes, it would make sense for her beliefs to converge to p(Ly) =1
(u(L2) = 1) if the limit frequencies belong to the set £4 \ Lo (L2 \ £1). In fact, a
sequence of outcomes whose limit frequencies fall outside £; cannot be generated by a
sequence of laws belonging to £;. Clearly, since the decision maker in my model uses
a recursive updating rule, she does not have information on the empirical frequencies.
This, however, is not a problem in the standard Bayesian case: the true parameter
will be correctly identified in the long run. The question I want to address is whether
such a result is still possible in the present model, where permanent ambiguity is
introduced. More precisely, I am going to require something a little weaker: I ask for
a correct identification of the true set only when limit frequencies fall in int(L; \ £;).
As the following theorem shows, even this is generally impossible for well-behaved
updating rules.

Theorem 1.4.1. Suppose S > 4. Let r/(s) be the relative frequency of the outcome
s after the first t periods. Let f : (S,A({Li})) — A({L;}) be any well-behaved
recursive updating rule. Then, there exist Ly, Lo, and pg € A({L;}) such that, for
some p € int(Ly\ Lq), 1t — p but py = 0, .

Theorem 1.4.1 says that, if there are more than three possible outcomes, it may be
impossible for the decision maker to learn the true set of laws, even if the sequence of
observations is compatible with one of the two sets only. Therefore, the identification
of the true parameter, possible in the standard Bayesian model, does not extend to
the case of permanent ambiguity. This is true, at least, if we restrict ourselves to well-
behaved updating rules. The proof of the theorem makes clear that the problems in
identifying the true set arise only when the sets intersect (and not even in all of these
cases).

What is generally not possible when S > 4 becomes possible if S < 3. In this
case there always exists an updating rule with a likelihood function g such that the
parameter £; (Lq) is correctly identified if the limit frequency falls in int(L; \ Ls)

Theorem 1.4.2. Let S < 3 and let the decision maker be uncertain between the
parameters L1 = ap; + (1 — a)A(S) and Lo = aps + (1 — a)A(S). There exists a
likelihood function g : S — A(S) such that, if the limit frequency falls in int(Lq \ L2)
(int(L2\ L1)), then the decision maker’s beliefs converge to oz, (6r,).

It would probably be possible to prove that the likelihood function can be chosen
such that g(s); € ap;(s) + (1 — «)[0,1] (the first of the special cases considered in
Section 1.3). For the special case in which int(L£;) Nint(Ly) # 0, this result is easy to
prove, as shown in Appendix A (Remark 1). T have not tried to prove whether this
is true in general.

On the other hand, for S = 3, it turns out that it is not possible to have a
likelihood function satisfying the second special case in Section 1.3. In fact, as the
following lemma shows, we can find examples where there is no ¢ € A(S) such that
g(s); = api(s) + (1 — a)gs(s) for i =1,2.
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Lemma 1.4.1. For S = 3, there exist L1 = ap; + (1 — a)A(S) and Loy = aps + (1 —
a)A(S) such that no likelihood functions satisfy both Theorem 4.2 and the condition
g(s)z = O./pZ'(S) + (1 - O‘)Qs(‘s); fOT’i =1,2 and g5 € A(S)

Whether this becomes possible for S = 2 is still an open question.

1.5 Conclusions

In this chapter I have analyzed some issues arising from the problem of updating
beliefs when the observations come from a sequence of non-identical experiments. I
have considered the case in which the individual has severe limitations on the amount
of information she can carry from one period to the next. In particular, she forgets
all past observations and past beliefs; all she can remember are her beliefs at the
end of the previous period. I focused on this special case to preserve an analogy
with the classical Bayesian updating model. Moreover, while forgetfulness of all past
observations can be considered an extreme case, forgetfulness of past beliefs is a very
sensible assumption. In particular, the possibility of choosing an updating rule as
a function of initial beliefs g assigns to those beliefs a special status that is hardly
justifiable. In fact, what should be the intrinsic difference between initial beliefs and
those in following periods? Not to mention the fact that in real situations the notion
of 7initial period” is ambiguous at best.

To compensate for this limitations, I have restricted myself to a framework that,
intuitively, would be the most favorable in order to learn the set of laws that char-
acterize the sequence of experiments. Therefore I have considered the case of two
only possible sets of laws and, within each set, I have assumed that there is a clear
distinction, known by the individual, between what is common to all the laws and
what changes from law to law. I have also excluded the possibility of sequences of
observations compatible with both sets of laws. Finally, I have assumed that relative
frequencies converge to a limit distribution.

The main result (Theorem 1.4.1) is an impossibility statement: given the above
limits on available information, there are no ”well-behaved” updating rules assuring
that beliefs converge in the limit to a distribution that assigns probability one to the
true set of laws. ”Well-behavedness” is an assumption on the form of the updat-
ing function that imposes some regularity conditions in the limit, as the probability
assigned to one of the sets of laws approaches one.

One weakness of the paper is apparent: Theorem 1.4.1 works under a specific
assumption on the class of updating rules we are allowed to consider, namely well-
behavedness. It is maybe a weak assumption, but it is still annoying. It would be
interesting to verify whether the theorem holds when this assumption is dropped. Is
it true that there are no recursive updating rules, no matter how they behave when
beliefs approach certainty, that allow the individual to asymptotically identify the
true set of laws?

Finally, it may be interesting to find general conditions under which identification
is possible. Theorem 1.4.2 states that, when the number of different outcomes is at
most three, beliefs converge to a distribution assigning probability one to the true
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set of laws. Alternatively, we may ask what minimum amount of information needs
to be retained in order to have the same limit result with an arbitrary finite number
of outcomes. Does the individual need to remember all past observations? Is there
some sufficient statistics?

The model of ”objective ambiguity” introduced by Epstein and Seo [4] is surely
worth additional investigation. The present work, and the conclusive suggestions, are
just one of the possible ways to understand its deepest implications.
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Chapter 2

Updating and Misperception of
Signals

2.1 Introduction

Beliefs updating has generated an immense literature. Several rules (Bayes, General-
ized Bayes, Dempster-Shafer, etc.) have been studied and applied to preferences with
different utility representations. For recent developments see, for example, Pires [13],
Wang [15], Hanany and Klibanoff [11], Eichberger, Grant and Kelsey [2] and Shmaya
and Yariv [14]. In these works, the decision maker observes an event or, more gener-
ally, a signal. Given this information, she updates her prior beliefs. Looking at the
conditional preferences and and having observed the signal, an external observer can
determine the rule the decision maker uses to update her beliefs (or, more precisely,
he can model the change in preferences as if the decision maker was updating her
beliefs according to a certain rule). In all these models, the decision maker and the
external observer see the same signals. But what happens if the decision maker does
not observe the true signal?

Consider the following example. An urn contains balls with colors in the set S.
A ball is drawn and a signal is generated. The signal gives some information on the
color of the ball: it says that the color belongs to a certain subset of S. If the color
is s, the possible signals can be identified with subsets of S whose elements include
s. Assume that, given the true color s, any signal that includes s may be generated.
So, for example, the signal {s,s2} can be observed under both states s; and ss.
An external observer is aware of the true signal, but the decision maker is not: her
observational capabilities can be described with a function that assigns to each signal
some other set of colors. This means that, although the decision maker may not
observe the signal correctly, she still interprets signals as subsets of S. Assuming a
correspondence between signals and sets of states is clearly a serious restriction to
the applicability of the model. However, I think that even in this limited setting
interesting questions can be addressed.

Over this structure one can accommodate any kind of updating rules. Given
initial beliefs and the signal as observed by the decision maker, one can apply any of
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the updating rules that have been studied in the economic literature. In the present
work, however, I am only interested in the characteristics of the function mapping
each true signal to what the decision maker perceives. I will introduce assumptions of
the sort "given a certain relation between two true signals, the corespondent signals
perceived by the decision maker must satisfy some other relation.” These assumptions
formalize the classes of mistakes that the decision maker can or cannot make. I will
then look at what those assumptions imply in terms of the set of signals that are
correctly perceived and at how we can restrict the class of perceived signals that the
decision maker may associate to each true one.

Section 2.2 introduces two additional assumptions that will be always maintained
throughout the chapter. One is a standard non-degeneracy assumption for conditional
preferences. The other, that I will call Coherence, says that any true signal is mapped
into a subset of S that would be correctly recognized if observed. The idea is that
there exists a function v : ¥ — X such that, after receiving the signal A, the decision
maker behaves as if she had observed the signal v(A). But this interpretation makes
sense only if, when the decision maker receives the signal v(A), she correctly perceives
it. Therefore, for any signal A, I require that v(A) is a fixed point of the function v.

Some relations between real and perceived signals can be interpreted as an indi-
cation of the level of the decision maker’s confidence on what she observes. So we can
interpret a situation in which A C v(A) as a case of underconfidence: the decision
maker does not feel she can exclude all the states of the world that are impossible
given the signal. On the other hand, she can be seen as overconfident if v(A) C A:
after receiving the signal A, she is so confident about some of the states of the world
that she dismisses the others even though the signal does not justify this exclusion.
It is tempting to interpret underconfidence as a version of conservatism. However, in
the traditional definition of conservatism, as given by Phillips and Edwards [12], the
decision maker’s updated beliefs lie somewhere between prior beliefs and what would
be implied by Bayesian updating. This is not necessarily the case in the present
context, in which nothing is assumed about beliefs over conditionally non-null states.

In Sections 2.3 and 2.4 T will study two specific sets of behavioral assumptions
from which underconfidence and overconfidence can emerge. In the first model, the
decision maker never excludes any state that is possible under the signal, but may
not be able to distinguish between some states. So the signal she perceives is the one
containing all the states that are indistinguishable from some state in the true signal.
The second model adds a second source of misperception. Some sets of states are
more vivid than others. When the true signal contains a set of states that is more
vivid compared to some other state in the signal, this last state is excluded by the
decision maker. These assumptions have some interesting consequences with regards
to the set of fixed points of the function v and to how v(A) is computed for each true
signal A.

Section 2.5 presents some considerations on how the decision maker interprets
signals that differ in the amount of information they provide. In particular, I will
analyze the relation between v(A) and v(B) on one side and v(A U B) or v(AN B)
on the other.

Proofs can be found in Appendix B.
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2.2 Framework

Let S be a finite set of states of the world; X, the set of all subsets of S, is the set
of events. Let X be the set of outcomes and define acts as functions f : S — X
mapping states of the world into outcomes. L will denote a set of acts and 77 a
preference relation over L.

The decision maker receives a signal providing information on the state of the
world. T am going to distinguish between what an external observer (let’s call it the
"experimenter”) can see, and what can be perceived by the decision maker. The
experimenter observes the signal correctly. Moreover, he knows what the probability
of any signal is, conditional on each state; that is, he knows the "true” likelihood
function A. This is not necessarily the case for the decision maker.

Let’s denote with H the set of possible signals. Throughout the chapter I will
assume that, for any 7,7, € H, there exists s € S such that either A(n;]s) > 0 and
A(m2]s) = 0, or A(my]s) = 0 and A(72]s) > 0. That is, different signals correspond to
different subsets of X..

For example, imagine a situation in which a ball is drawn from an urn. The
possible colors of the ball constitute the set of states S. A signal is then generated.
The signal gives some information on the color of the ball: it says that the color
belongs to a certain subset of S. Given the state s, the set of possible signals can be
identified with a subset of S whose elements include s. Assume that, for any signal
and for any s included in it, the likelihood of observing the signal given s is positive.
So, for example, the signal {s1, s2} can be observed under both states s; and sy. Such
an example satisfies the assumptions of my model.

Notice that the decision maker may have a wrong belief on how signals are gen-
erated given states; or she may be unable to distinguish between different signals.
However, I will always assume that the decision maker associates signals with subsets
of S, so that different signals (according to what she can perceive) correspond to
different subsets. This will imply that conditional beliefs can be identified with a set
of conditionally non-null states. That is, there cannot be two different conditional
beliefs that share the same set of non-null states.

The framework can accommodate decision makers with various ways of misin-
terpreting the signals. In the chapter I will consider some behavioral assumptions
that may seem quite reasonable, and I will ask what class of updating mechanisms
describes a decision maker behaving in this way.

Let’s formalize the above discussion, redefining the properties in terms of prefer-
ences. Given the correspondence between signals and elements of X, in what follows I
will use the same notation for both signals and events. The meaning in each instance
will be clear from the context. Therefore, the symbol ~* denotes the preference re-
lation conditional on the signal corresponding to the set A. Notice that this is the
“true” signal, that is the one observed by the experimenter. I will also focus on the
special case in which H = 3, that is, for any subset of S there exists a correspond-
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ing signal.’ As I said, I want to assume that even for the decision maker there is
an analogous relation between signals and events. Formally, this corresponds to the
following assumption.

Al (Signals as events) For any A, B € H, if the set of ~“-non-null events is equal to
the set of >~P-non-null-events, then, for any f,g € L, f =4 g < f =P g.

When the decision maker observes the signal E, she interprets it as saying that
some events are impossible. So she divides ¥ into two groups of conditionally null
and non-null events. It is this reformulated information that enters the updating
mechanism, so that the new preferences =% are completely characterized by the
set of =~F-non-null events. The axiom excludes the existence of different conditional
preferences 7“4 and = sharing the same set of conditionally non-null events. Thanks
to Axiom 1, we can represent the updating rule with a function v : ¥ — ¥ mapping
each signal into the corresponding set of conditionally non-null states of the world.

The role of Axiom 1 is to limit the class of updating rule under consideration. I
cannot exclude that my approach could generalize to a more general set of rules. The
axiom, however, is reasonable enough not to obliterate the interest of the results in
this limited setting.

In the chapter I will always consider updating rules that satisfy an additional
axiom, that I call ”Coherence”.

A2 (Coherence) Given any signal E, let E’ be the set of —F-non-null states, that is,
for any F C E’, 3f,g,h € L such that f|h. =¥ g|t., where f|% denotes an
act that coincides with f on F' and with h on F°. Then, E’ is also the set of
~F _non-null states.

In other words, Axiom 2 states that the function v maps any signal into a fixed
point: VE € ¥, v(v(F)) = v(F). Notice that, up to this point, I have not made any
general assumption on the relation between E and v(FE). It may well be the case
that, for some signal E, v(E) C E, or E C v(E), or that E and v(F) intersect in a
more generic way. It may even be the case that E and v(E) are disjoint.

The reason for calling this property ”coherence” is obvious. Consider a signal
A and let B be the set of ~#-non-null states. We can say that, after receiving the
signal A, the decision maker behaves as if she has observed the signal B. If this is
the interpretation, it must be the case that the decision maker can correctly perceive
the signal B.

Finally, I add the standard requirement that conditional preference are non-
degenerate.

A3 (Non-degeneracy) For any E € ¥, 3f,ge L: f =% g.

Axioms 1-3 lead to the following simple result.

'Results similar to those obtained in the chapter may hold in the more general case in which
H C ¥.. However, axioms must be modified to adapt to the new setting.
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Proposition 2.2.1. Given Axiom 1, conditional preferences satisfy Axioms 2 and 3
if and only if there exists a unique collection V' of sets such that:

(i) For anyV €V and for any E € 3, E is =V -non-null if and only if ENYV # 0;
(ii) For any E€ X, I VE €V such thatVf,ge L, f=F g — f=V"g.

Property (i) defines V as the set of fixed points of the function v. Setting V¥ =
v(FE), Proposition 2.2.1 is just a different way to express coherence.

2.3 Indistinguishable Signals

Imagine a decision maker who cannot distinguish between two or more signals. What
may be a plausible reason? An interesting possibility is given by the following axiom.

A4 (Strong Indistinguishability) Given a signal A € ¥ and a state s € S,

(3f,9 € L with f(s') = g(s), Vs’ # s s.th. f =" g)
= (Els” €AsthVfgel, f=g e =07 g>'

The axiom says that, given a signal A, a state s is conditionally non-null if and
only if there exists a state s” € A such that the decision maker cannot distinguish
between the signals {s} and {s”}. Notice that I call two signals indistinguishable
when updated preferences are the same conditional on any of them.? Consider the
following example. An urn contains red, yellow, and black balls: S = {r,y,b}. The
decision maker can correctly observe the color yellow, that is v({y}) = {y}, but she
cannot distinguish red from black: v({r}) = v({b}) = {r,b}. Suppose a ball is drawn
and the decision maker receives a signal {r, y}, corresponding to the event ”the ball is
either yellow or red.” By Axiom 4, she must consider all three colors as possible. Not
only cannot the colors corresponding to the "true” signal be excluded, but the same
must hold for any color indistinguishable from one of them. So v({r,y}) = {r, vy, b}.

Notice that Axiom 4 implies that all the states contained in a signal are non-null.
Moreover, if there exists a signal E such that v(F) # E, the decision maker satisfies
what I call "global underconfidence”, as formalized in the following definition.

Definition 2.3.1 (Underconfidence). Given the event A € ¥, the decision maker is
weakly underconfident if, for any B C A, 3f,g,h € L such that f|%. =4 g|k.. If,
in addition, there exists a set C' with A N C = () satisfying the same property, the
decision maker is said to be underconfident. She is globally underconfident if she is
weakly underconfident for any signal in > and underconfident for some signals.

2In what follows, I will say that two states are indistinguishable when the corresponding singletons
are.
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The question now is what kind of updating rules correspond to such an assumption.
That is, I want to find the properties of the set of fixed points of v and to determine
how, given a signal, conditional non-null states can be computed. The answer is given
by the following proposition.

Proposition 2.3.1. Given Axiom 1, conditional preferences satisfy Axiom 4 if and
only if there exist a unique set V C X such that (i) and (ii) in Proposition 2.2.1 hold
and

(iii) for any signal E€ X, ECVE and AV eV : ECV CVF;
(iv) YU is an algebra.

Notice that Axiom 4 implies both Coherence and Non-degeneracy, as is clear from
the comparison of Propositions 2.2.1 and 2.3.1.

2.4 Dominated States

t may be interesting to look for updating rules which do not imply that the decision
maker is always underconfident. In fact, it is not unreasonable to allow for signals
after which she shows overconfidence, a behavior defined as follows.

Definition 2.4.1 (Overconfidence). Given the event A € X, we say that the decision
maker is overconfident if

h

(i) there exists no B with AN B = ) such that 3f,g,h € L with f|%. =4 g|h.;

(ii) there exists some C' C A such that, for any f,g,h € L, f|ke. ~* gk

Simply put, overconfidence consists in the set of conditionally non-null states being
a subset of the signal. What may be a reason for overconfidence? We can imagine
that some event is so more vividly perceived by the decision maker compared to
some other state, that, every time the signal does not exclude that event, the decision
maker disregard the other state. In the urn example, suppose that the decision maker
is so much impressed by the color red and so little but the color yellow that, when
red is possible, she does not pay attention to the possibility of the drawn ball being
yellow. So, for example, we have v({r,y}) = {r}. This intuitive argument has an
important implication: if, given the signal A, vividness considerations exclude state
s € A, then the same s must be excluded given any signal B such that A C B. In
fact, if s is excluded because it’s ”dominated” by some event E C A (that is, because
E is "more vivid” than s), it must be excluded also given B, since F C B. Moreover,
it is consistent with the intuition of relative vividness to assume that all states that
are excluded from a signal are dominated by some set of conditionally non-null states.
The restriction here is the requirement that the ”dominating” states be conditionally
non-null. This behavior is formally described in the following axiom.

A5 (Relative vividness) Given a signal A, let B be the set of conditionally non-null
states (as defined in Axiom 2). Then for any s € A\ B
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(i) forany f,g € L, f =¥ g if and only if f Pt g;
(ii) for any signal A’ such that A C A’, s is 4 -null.

Notice that Axiom 5 does not say that any >“-null state s must also be =B}
null. This property has to hold just for s € A. We can interpret (ii) as a sort
of confidence monotonicity: the decision maker is relatively more confident for less
informative signals. This must be interpreted in a very weak way, though. It is
not necessarily the case that overconfidence for A implies overconfidence for any A’
such that A C A’. However, if the decision maker is so ”confident” that she can
exclude some objectively possible state conditionally on a signal, she will still show
this ”confidence” conditionally on any less informative signal.

We can imagine a decision maker characterized by both "relative vividness” and
”indistinguishability”. Given a signal A, if she does not exclude some state s ¢ A,
the reason is that she cannot distinguish s from some s’ € A. On the other hand,
if she exclude some s” € A, it means that the set of conditionally non-null state is
more ”"vivid” than s”. To describe such a decision maker we need to add the following
axioms.

A6 (Indistinguishability) Given a signal A and given s ¢ A such that 3f,g,h € L
such that f|% =4 g|", there exists s’ € A such that, Vf,g € L, f =1} ¢ if and
only if f =1} ¢.

Axiom 6 says that if, given a signal A, some state s not included in A is condi-
tionally non-null, then there there must exists a state in A that the decision maker
cannot distinguish from s. Notice that this axiom is weaker than Axiom 4. Here we
allow for the possibility that states indistinguishable from a state in A may still be
conditionally null. A difficulty arises from the interaction of Axioms 5 and 6. It might
be the case that some state s’ ¢ A is non-null because indistinguishable from some
s € A, but s is null because of vividness considerations. To exclude this possibility, I
introduce an additional axiom.

A7 (Equi-vividness) Given a signal A, let the states s € S and s’ € A be such that
Vf,g € L, f =1} ¢ if and only if f =} ¢g. Then 3f,g,h € L such that
flh =4 g|h if and only if the same is true for s'.

Axiom 7 makes two requirements. On one hand, it says that if a state s € A is
conditionally non-null, then the same must be true for all the states that the decision
maker cannot distinguish from s.> On the other hand, if s is null (because some other
event is more vivid), all the indistinguishable states must be null, too. Informally, I
want that indistinguishable states share the same vividness properties.

What kind of updating rules are implied by these axioms? The following propo-
sition provides a result.

3This implies that, for states in A that are conditionally non-null, the converse of Axiom 6 holds.
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Proposition 2.4.1. Given Axioms 1 and 5, conditional preferences satisfy Axiom 2,
3, 6 and 7 if and only if there exists a unique set V C X such that (i) and (ii) in
Proposition 2.2.1 hold and

(iii) YU is a semialgebra; moreover, VA,B €V, A\ B €V UJ.
(iv) for any A € ¥, VA satisfies the conditions:

1. VANA£0;
2. VANAZVNA YV EV;
3. VACV, YV EVsth VNA=VANA.

Given V and a signal A, property (iv) provides the restrictions that must be satis-
fied by the set of ~“-non-null states. Notice that the proposition implies that, given
a signal A, if V contains supersets of A, then V4 is the smallest of these supersets,
where existence of a smallest superset is guaranteed by closure under intersection.
A weakness of Proposition 2.4.1 is the absence of a sufficient condition for Axiom 5.
Finding it is not a trivial task. In Proposition 2.3.1, there is a clear rule associating
each signal to the set of conditionally non-null states. This set can be determined
independently for each signal. Here, on the other hand, a single set ¥V may allow for
different preference relations: for many signals, there are multiple sets of condition-
ally non-null sets that are compatible with V. Of course, not all the sets satisfying
(iii) and (iv) above can be taken: the choice of V4 for some signal A constrains the
correspondent choice for other signals. However, this is not a restriction that can be
included in the proposition: it would be nothing more that a re-statement of Axiom
D.

The following corollary establishes a relation between the classes of indistinguish-
able signals and the respective sets of conditionally non-null states.

Corollary 2.4.1. Take V €V and let Ay, ..., Ay be all the signals such that
o VA=V,
o there is no signal B C A; such that VB =V,

Given Aziom 1, if conditional preferences satisfy Axiom 2, 3, 5-7, then V = Ule A;.

2.5 Response to Information Increases

We have seen that the general model can accommodate for updating rules with very
different properties. The same is true with respect to the problem of information ac-
quisition. For example, the model is compatible with a setting in which ”objectively”
less informative signals provide more information to the decision maker. Consider the
following example. There is an urn with red, yellow and green balls; so S = {r,y, g}.
The function v is as follows:

o({y}) ={y} v({ry}) ={ry} (v, 9}) =1y, 9}
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v({r}) = v({g}) = v({r,g}) = v({r,y,9}) = {r,y,9}.

We can imagine that the decision maker is normally sleepy, and expects an alarm
clock to ring when a signal arrives. However, the alarm clock works only if the signal
does not exclude the color y. When asked to make her choice, a decision maker
who did not hear the alarm believes that no signal arrived. The result is that, for
example, the more informative signal {r} does not provide any information to the
decision maker, while the less informative {r,y} gets identified.
Let’s now introduce a new axiom.

A8 (Information monotonicity) Given A, B € &, if for any f,g,h € L, f|%. ~4 g|%.,
then for any A’ C A, fh. ~4 g|b..

Axiom 8 states that if an event is null conditionally on a given signal, it must still
be null conditionally to more informative signals.

In this section I will consider only updating rules that exhibit global undercon-
fidence. Therefore, the following propositions do not provide a complete axiomatic
characterization of classes of updating rules. They say that, given a globally un-
derconfident decision maker, if we add some requirement on the way information is
acquired, the updating rule exhibits some additional features. The following propo-
sition shows the implications of Information monotonicity.

Proposition 2.5.1. Given the representation as in Proposition 2.2.1 and global un-
derconfidence, conditional preferences satisfy Axziom 8 if and only VA € X, there is
noV eV such that A CV C VA. Moreover, if Aziom 8 holds, then V is closed
under intersection.

Notice that ¥ may be closed under intersection even if v does not satisfy mono-
tonicity. It is also evident that Axiom 4 implies Information monotonicity.

More generally, the basic model allows for updating rules that exhibit non-constant
returns to information. This is the interpretation I give to the behavior of the function
v with respect to the union of signals. In general, given two signals A and B, there
are no constraints on the relation between v(A) and v(B) on one side and v(A U B)
on the other. Consider the following example. Let S = {r,y, g,b} and suppose

v({r}) ={r,g9} v({y}) ={v,9} v({ry})={ry, b},

while all the other signals are fixed points of v. The example clearly satisfied the
assumptions in Proposition 2.2.1. However, neither v({r,y}) C (v({r}) Uv({y})),
nor (v({r}) Uv({y})) C v({r,y}). I say that the updating rule exhibits increasing
returns to information if, for any signals A and B, (v(A) Uv(B)) C v(AU B). The
idea is that when ”objective” information increases (as when we move from the signal
AU B to either A or B), the amount of information that the decision maker retains
increases "more than proportionally”: both the signals A and B allow the decision
maker to exclude some event that is not excluded when she receives the signal AU B.
Analogously, I say that the updating rule exhibits decreasing returns to information
if, for all signals A and B, v(AU B) C (v(A) Uv(B)). In this case, when moving to
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a more informative signal, the decision maker may loose some information she was
able to retain before (which does not mean she cannot at the same time acquire new
information as well). Finally, if, for any signals A and B, v(AU B) = (v(A) Uv(B)),
I say that there are constant returns to information.

The following axiom reformulates the property of decreasing or constant returns
in terms of preferences.

A9 (Non-increasing returns to information) For any A, B,C € X, if Vf,g,h € L,
fltse ~ glte and flEe ~F glee, then fl¢. ~A9F glt..

The following proposition analyzes the relation between Axiom 8 and Axiom 9.

Proposition 2.5.2. Given the representation as in Proposition 2.2.1, conditional
preferences satisfy Aziom 8 if and only if the updating rule exhibits increasing or
constant returns to information. If, in addition, global underconfidence is assumed,
then:

(1) if conditional preferences satisfy Aziom 9, then V is closed under union,

(ii) o V is closed under complements and Aziom 8 holds, then the updating rule
exhibits constant returns to information.

Remark 1. Notice that the behavioral hypotheses introduced in this section imply
some structural properties on V., but they are not equivalent to them: Information
monotonicity implies closure under intersection, while Decreasing returns to informa-
tion lead to closure under union. The inverse implications do not hold. So in part
(ii) it can be easily shown that constant returns to information are not implied if
we substitute Axiom 9 for Axiom 8; that is, they are not a consequence of V being
an algebra. It would be nice to find a characterization of the structural properties
themselves. However, this does not seem to be possible, unless we directly assume
the properties (which can clearly be defined in behavioral terms).

Finally, no more general axiom seems to imply closure under complements. In
particular, constant returns to information do not imply that V is an algebra.

2.6 Conclusions

This chapter has introduced a new framework to look at phenomena of under- and
overconfidence. Although quite simple, it allows to link confidence considerations to
misperception issues. In particular, I have considered the cases of indistinguishable
states and of vividness comparisons. The abstract nature of the framework can be
a limit to its applicability, but it has the advantage of providing concepts and tools
that can be used in more structured environments.

The emergence of some sort of confidence monotonicity seems to be one of the
central questions that can be asked using my framework for under- and overconfi-
dence. Can we claim that the level of confidence depends on how much information
a signal provides? It would be interesting to be able to say that a decision maker
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is, in some sense, less confident for more informative signals than for less informative
ones. That is, I would like to have a decision maker who, when she receives a lot of
information, tends to discard some of it; on the other hand, when she receives little,
she may view the signal as more informative than it actually is. In Section 2.4, I
have assumed a weak form of such a monotonicity and I have provided a rationale for
such a hypothesis. However, the present chapter does not address the question in a
satisfying way. Nevertheless, I think it introduces the formal tools that will make it
possible to look for a more complete answer. What we need is to construct a model
in which confidence monotonicity emerges as a property of endogenously generated
under- and overconfidence.

A first step towards such a model is provided by next Chapter, in which I build
a model in which underconfidence and overconfidence are not assumed, but emerge
endogenously.
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Chapter 3

Optimal Underconfidence and
Overconfidence

3.1 Introduction

Imagine a finite set of states of the world and suppose that an individual is uncertain
about which of the states is the true one. Her beliefs can be represented with a proba-
bility distributions over the states. Suppose now that, before making her decision, she
receives a signal. This signal provides a particular kind of information: it limits the
set of states that can be realized, but it does not provide any additional information
on the probability of the the states that are not excluded. We can therefore represent
such signals as sets of states of the world. The individual, however, may misperceive
the signal she has received, interpreting it as a set (of states) possibly different from
the real one. She then updates her prior as if she has received this second signal.

What I have just described is the framework that I have introduced in Chapter
2. There, I imagine an external observer who can correctly observe the signal, but
who does not know what signal the individual has actually perceived. Observing her
behavior, he wants to determine the nature of the perceiving mistakes that she is
making. Within this framework, it is possible to define notions of underconfidence
and overconfidence in terms of relations between true and perceived signals. The
individual exhibits underconfidence if the perceived signal is a superset of the true
one; she is overconfident when the perceived signal is a subset of the one she has
received.

The present chapter introduces a model in which the previous concepts may found
an application. The main idea is the following. A decision maker has to choose how
to allocate a unit among the different states of the world. If a state is realized, she
will win the fraction that she has allocated to that state. For simplicity, assume that
she is an expected utility maximizer, with a prior on the probability of the different
states. Before making her choice, the decision maker receives a signal of the kind
described above. The decision maker’s beliefs include the likelihoods of the signals
conditional on each state of the world. After receiving the signal, she updates her
prior and chooses the allocation that maximizes expected utility.
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There is, however, a complication. The decision maker is constrained in the num-
ber of different signals she can perceive. The constraint can be interpreted as a
boundary on her computational capabilities. Each signal she may receive is inter-
preted as one of the signals she can actually perceive. The decision maker’s beliefs
are updated through Bayes rule given the actually perceived signal, not the one she
truly receives.

Up to this point the model adds little to the framework in Chapter 2. The funda-
mental difference is the existence of an ex-ante stage. Ex ante, that is before receiving
the signal, the decision maker knows that the number of possible true signals is higher
than that of the signals she can distinguish. Given this computational constraint, she
wants to choose the set of perceivable signals and the mapping from true signals to

perceived ones that maximize her ex-ante expected utility.

The different steps in the model can be represented as in figure 3.1.

Signal is received

Figure 3.1: Steps

True signal is mapped
into perceived one

Optimal actis chosen

Choice of perceivable signals
and mapping functions

In a model like this, underconfidence and overconfidence may emerge endoge-
nously. Different initial beliefs will determine different optimal sets of perceivable
signals and different maps from true signals to perceived ones. In some of the cases,
a signal A may be mapped into some signal A D A, denoting underconfidence; for
different beliefs, the same signal may be perceived as A” C A, a case of overconfidence.

The purpose of the present chapter is to analyze this model and determine the
properties of the optimal mapping from true to perceived signals. These are some of
the questions that may be asked about the model:

e [s it really the case that both underconfidence and overconfidence emerge in the
model?

e [s there some common feature characterizing the sets of perceivable signals that
can be optimal under some initial belief?

e Does the decision maker’s confidence on some signals have implications on her
confidence on other signals?

Section 3.2 will introduce my notation and formally describe the model. Some
general properties will be proved in Section 3.3. However, because of the mathemat-
ical complexity of the model, I will not reach in this chapter a satisfactory general
characterization of the mapping. Some properties will be presented as conjectures.
In order to get some intuition on these conjectures, it will be useful to study some
special cases. This will be done in Sections 3.4 and 3.5. I will first consider the
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easiest possible case, that with only two states of the world. However, the analysis of
this case will provide little insight on the properties of the mapping function. More
considerations will be possible in the slightly more complicated case of three states
of the world. The computational details of the analysis will be presented separately
in Appendix C. Section 3.6 will contain some conclusive considerations.

3.2 The Model

Let S = {s1,...,s,} be a finite set of states of the world. ¥, the set of all subsets of
S, is the set of events. A decision maker has a prior probability distribution p over
states. I limit the set of acts to all the possible allocation of one unit among the n
states. Formally, if the set X of consequences is the set of non-negative real number
smaller or equal to 1, an act is any function f : S — X such that » ¢ f(s) = 1. Let
F' be the set of these acts. The decision maker is an expected utility maximizer with
von Neumann-Morgenstern utility index u : X — R, where w is increasing in X and
strictly concave.

Before making her choice, the decision maker receives a signal providing infor-
mation on the true state of the world. More specifically, the signal limits the set of
states that can be realized, but it does not provide any additional information on
the probability of the the states that are not excluded. Therefore, each signal can be
associated to an element of X: the true state of the world is one of those contained in
the set. Moreover, I assume that any set in > describe a possible signal. With this
assumption, I can use the same notation to denote both events and signals.

Let’s now be more formal on the nature of the signals. The decision maker as-
sociates to the signals a likelihood function, which specifies the probability of each
signal conditional on each state of the world. I will denote with ps(A) the probability
of signal A conditional on the state s. The interpretation of signals as sets of states, as
described above, is equivalent to the following assumptions on the likelihood function:

1. VAe X, ps(A) >0 = s € A
2. VAEY, Vs, s € A, py(A) = py(A).

The first assumption says that signals must be truthful: if the signal A can be gener-
ated when the true state is s, then A must include s as one of the possible true states.
The second assumption assures that no additional information is obtained from the
signal other than the restriction of the set of possible states. It implies that, when
updating the prior u through Bayes rule, for any couple of states in A the ratio of
the posterior probabilities is the same as the ratio of the priors. In addition, I will
also assume that

3.VAEY, se A = py(A) >0,

so that, conditional on the state s, any signal that does not exclude s can be generated.
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Given these assumption, the notation can be simplified noting that

_p(A)>0 ifse A
ps<A)_{o its¢ A

To easily follow the rest of the construction of the model, keep in mind Figure 3.1
and its description in the Introduction. In the second stage of the decision process,
before the decision maker chooses an act, the received (true) signal is mapped into
a perceived signal. Let V C X be the set of perceivable signals. The true signal
is interpreted as one of the sets in V. Let v : ¥ — V be the mapping function.
Therefore, after receiving a signal A, the decision maker actually perceives the signal
v(A). She then updates her prior, using Bayes rule, as if she had received v(A). After
this, she chooses the act that maximizes expected utility.

The set V and the function v are not exogenously given. Before receiving the
signal, in the first stage of the decision process, the decision maker knows that there
is a limit in the number of different signals she can perceive. Let V denote such
upper limit. V and the decision maker’s beliefs (prior and likelihoods) are the only
exogenous parameters in the model. The decision maker knows that, in the second
stage, she will behave as described in the previous paragraph. Ex ante, she wants to
choose the set V, with at most V elements, and the function v that, given her prior
w and likelihoods p(-), maximize her expected utility.

The optimization problem can be expressed formally as follows. In the second
stage, after receiving a signal A, the decision maker solves

s d S uF sl L p(A)a(s)
na {; (f(s))n(s] (A))} h p(slv(A)) S e (A
Since .
<l B W if s € v(A)
ulslo(4)) = {0 a if s ¢ v(A)

the problem can be simplified to

max ¢ > u(f(s)n(s)

Jek sev(A)

Let f(*m A) be the act that solves the problem. Since u is increasing and strictly
concave, f(, 4 (s) =0 for any s ¢ v(A) and f(, 4(s) > 0 for any s € v(A4). From an
ex-ante point of view, the expected utility that the decision maker gets after receiving
the signal A and given the map v is

EU(v, A) =Y u(ff,1(s))n(s|4)

sesS
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or, equivalently,

) pe—— TR I

ZS’EA H’(S/) sEA

In the first stage, the decision maker chooses a function v such that the cardinality
of v(X) is V, in order to maximize the ex ante expected utility. Let {vy} denote the
set of functions v satisfying the cardinality requirement. The problem to solve is then

max {Z (EU(U, A) Zps(A):U“<8)> }

o
ve{vr} Aex ses

or, equivalently, simply

max {Z (EU(U,A) ZP(AW(S)) }

clvo
vefvp} Aex sEA

Although quite intuitive, the model is computationally cumbersome even for small
numbers of states. However, some general properties can be proved, as shown in the
next section.

3.3 General Results and Conjectures

3.3.1 Properties of optimal sets V

Not all possible sets V can be optimal for some initial beliefs. The following propo-
sition states a property that can be easily proved.

Proposition 3.3.1. When V = 1, the function v such that v(E) = S for all E € X
18 always optimal.

Proof is straightforward: when updated beliefs are the same no matter the signal
received, the optimal thing to do is to consider the signals uninformative; that is, to
behave as if S has been received.! For generic values of V, other restriction likely
apply. At the present stage I do not have proofs for these properties. However, the
analysis of the case with three states of the world, described in Section 3.5 support
the following conjectures. The first one can be seen as a generalization of Proposition
3.3.1 for the case of generic V.

Conjecture 3.3.1. For any initial beliefs, there exists an optimal set )V of observable
signals such that | J{E: E € V} =S5. If u'(0) = oo, then a set V can be optimal only
if it satisfies this property.

'Such v is the only optimal mapping if the decision maker is sufficiently risk averse, so that she
allocates to each state of the world a positive share of the unit.
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Is it the case that any V satisfying this property can be optimal for some initial
beliefs? The analysis in Section 3.5 seems to exclude this possibility. On the other
hand, it may support an additional conjecture.

Conjecture 3.3.2. Let u/(0) = co. Any set V such that | {E: E € V} =S can be
optimal for some initial beliefs, unless S ¢ V and there exists a state s such that, for
anyVeV,secV.

In fact, with three states of the world, the only set that apparently cannot be
optimal is V = {{s1}, {51, s2}, {51, 83} }

3.3.2 Properties of optimal functions v

There are other properties of optimal functions v that can be proved, which do not
translate immediately into features of the set V. First, it is immediate to see that
there always exists an optimal function v mapping any signal into some fixed point
of v itself. This property was called Coherence in Chapter 2. Its interpretation
is straightforward: any signal in the set V of perceivable signals can be correctly
observed when received.

Proposition 3.3.2. Given any prior p, likelihoods p and wutility index u(.), there
exists an optimal mapping v such that, for any E € ¥, v(E) = v(v(E)).

Proof. Consider a mapping v such that there exists a signal A € ¥ such that v(A) #
v(v(A)). Consider now the map v" defined as

{8 wEes
v(A) if E=v(A)

Notice that EU(v',v(A)) > EU(v,v(A)), while EU(V', E) = EUs(v, E) for any E #
v(A). Denote with V, the set V corresponding to the function v. It is clear that
V, €V, so that v’ continues to satisfy the constraint on the cardinality of V. This
is enough to prove the result. O

Assuming that Conjecture 3.3.1 be true, it is easy to verify that there always
exists an optimal v such that, for any received signal F, the corresponding perceived
signal v(E) must include some of the states in £. The next proposition formulates
this property in more general terms.

Proposition 3.3.3. For any E € X, if there exists a set V € V such that VN E # (),
then there is an optimal mapping v for which v(E) N E # ().2

Proof. Consider a mapping v such that there exists a signal A such that v(A)NA = ().
Let V €V be such that V N A # (. Consider now the map v’ defined as

B4 A
v(E) = {QXJ;E) if g i A

2Notice that the hypothesis would be satisfied if Conjecture 3.3.1 were true.
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Notice that EU(v', A) > EU(v, A), while EU(V', E) = EU(v, E) for any E # A.
Moreover, V,» = V,. This proves the result. O

Following the approach in Chapter 2, we can define the concept of underconfidence
and overconfidence. The decision maker is underconfident given the signal £ when
v(E) D E; she is globally underconfident when, for any signal E, v(F) O E and the
inclusion is strict for some signal. Similarly, the decision maker exhibits overconfi-
dence given the signal F when v(F) C E; she is globally underconfident when, for
any signal F, v(E) C E and the inclusion is strict for some signal. An underconfi-
dent decision maker does not ”"trust” the information received: she behaves as if she
has observed a signal less informative than the one received; that is, one including a
superset of the states. Overconfidence is the opposite situation: the decision maker
interprets the signal as more informative than it really is, excluding some states of the
world that, according to the received signal, should be considered possible. Clearly,
we can also think of a function v such that, for some signal A, v(A) is neither a
superset nor a subset of A. In this case, the decision maker is neither under- nor
overconfident.

The present model is compatible with both underconfidence and overconfidence.
It will be shown in Section 3.4 that both behaviors can emerge endogenously from the
optimization problem. Which behavior is observed depends on the decision maker’s
initial beliefs (prior and likelihoods).

3.3.3 Further observations

It may be interesting to verify whether the optimal functions v have to satisfy some
conditions that could be interpreted as fixed patterns underlying the misperception
of signals. Unfortunately, it will be shown that the model does not generally support
such patterns. Some useful consideration can however be obtained from these negative
results.

It has been experimentally shown that people tend to be overconfident in the
information they possess when facing difficult tasks; their confidence level declines
for easier ones, possibly leading to underconfidence. See, for example, Lichtenstein
and Fischhoff 1977 [8], Griffin and Tversky 1992 [10], or Erev, Wallsten, and Budescu
1994 [5]. In the context of the present model, we can consider the choice of the
optimal act as a simple task when the signal received is very informative, and as a
more difficult one when the signal is less informative. It would be a nice feature of
the model if the confidence that the decision maker shows on a signal decreased as
the information it conveys increases. There is not a unique way to formalize this idea.
One possibility is to require that, given two signals A and A’, with A’ C A, and given
a state s € A" such that s ¢ v(A’), it cannot be the case that {s}U(A'Nv(A")) C v(A).
That is, if the decision maker, after receiving the signal A’, is so confident that she
exclude the state s € A’, then she must be at least as confident when receiving the

less informative signal A. We can call this property "Monotone overconfidence”.?

3This property is a weakening of the second point in the definition of Relative vividness, as
introduced in Chapter 2.
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Does the decision maker in the present model exhibit Monotone overconfidence?
In general, this turns out to be false, as shown by the following example.

Ezample 3.3.1. Suppose that S = {s1,59,53}. As explained in Section 3.5, initial
beliefs can be represented with a vector of six parameters: pu(s1), u(s2), p({s1}),
p({s2}), p({s3}), and p({ss}). Let u(x) = \/z and V = 2, and consider the following

values:
2

pon) = 2 plsr) =

s = e =5 plsa) =+ pUSH =1

Using the program in Appendix C to compute the optimal function v, we find that the
optimal set of observable signals is V = {{s;1},5}. Monotone overconfidence would
require v({s1, s2} = S. However, for these specific initial beliefs, this is not the case.

So, although functions v satisfying monotone overconfidence can be optimal for
some initial beliefs, this property does not hold in general. This discomforting result
can nonetheless teach us something. The pattern of under- and overconfidence com-
monly observed cannot be the result of the optimization of limited computational
capabilities. Other behavioral consideration must be involved in an explanation of
the phenomenon.

I now go over some of the properties introduced in the previous chapter. The
analysis will give us insight on the nature of the decision maker’s perception mistakes.
One interesting properties is the one called ”Indistinguishability”. To define it in the
context of the present model, let’s say that two states s; and s, are indistinguishable
when the corresponding singleton signals {s;} and {s2} are mapped into the same
perceived signal. Now suppose that for some signal A, there exists a state s €
v(A) N A¢. Indistinguishability requires the existence of a state ' € A such that s
and s’ are indistinguishable. The interpretation is that, if the decision maker, after
receiving the signal A, still considers some state not in A to be possible, this must be
due to the fact that she cannot distinguish that state from some other state included
in A. This is a reasonable property if we want to interpret the difference between
received and perceived signals as arising not from a computational constraint, as done
in this model, but from limited perception capabilities.

It is immediate to show that Indistinguishability is not satisfied by the model. A
counterexample can be found analyzing the case with two states of the world s; and s,
and V = 2, as done in Section 3.4. For some initial beliefs, the set V = {{s,}, {51, s2}}
may be optimal. In this case, v({s2}) = {s1, s2}, but v({s1}) = {s1}. So, although
s1 € v({s2}), s1 and s9 are not indistinguishable. We can conclude that the behavior
of a decision maker in this model cannot in general be interpreted as the result of
limited perception capabilities.

An entire section in Chapter 2 was devoted to studying how the decision maker
reacts to signals differing in the amount of information. Monotone confidence, as
defined above, is a property included in this category. In that chapter I suggested
two other properties. The first was Information monotonicity. Consider two received
signals A and A’ such that A’ C A; that is, A’ is more informative than A. The
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decision maker’s behavior satisfies Information monotonicity if v(A’) C v(A): no
information is lost when moving from a less informative signal to a more informative
one.

Information monotonicity is not guaranteed in the present model. We will se in
Section 3.5 that, given three states of the world s1, so, and s3, and given V = 2, there
are initial beliefs such that the set V = {{s1,s2} {s2,s3}} is optimal. In this case,
v({s1,s2}) = {s1, 52} and v({sa,s3}) = {s2,53}. Clearly, v({s2}) cannot be a subset
of both v({s1, s2}) and v({s2, s3}), so that Information monotonicity is not satisfied.

We can think of a weaker result, and requiring that a more informative received
signal cannot be mapped into a less informative one. Formally, given two signals A
and A’ with A’ C A, we may want that no optimal v can be such that v(A) C v(A4’).4
Even this property turns out to be false in general.

Ezample 3.3.2. Suppose that S = {s1,s2,83}. Let u(z) = /r and V = 2, and
consider the following values:

plo) =3 ls2) =

s = pismh =2 pdsh =3 p{SH =

It turns out that the optimal set of observable signals is V = {{s2},S} and, in
particular, v({s2,s3}) = {s2} and v({s3}) = S. This violates the weak monotonicity
property.

Another aspect studied in Chapter 2 was the problem of returns of information.
The decision maker exhibits increasing returns to information if, for any signals A
and B, (v(A)Uwv(B)) C v(AU B). The idea is that when ”objective” information
increases (as when we move from the signal AU B to either A or B), the amount
of information that the decision maker retains increases "more than proportionally”:
both the signals A and B allow to exclude some event that is not excluded when she
receives the signal AU B. Analogously, the decision maker exhibits decreasing returns
to information if, for all signals A and B, v(AUB) C (v(A)Uv(B)). In this case, when
moving to a more informative signal, she may loose some information that she was
able to retain before. Finally, if, for any signals A and B, v(AU B) = (v(A4) Uv(B)),
we have constant returns to information.

It is possible to show that no one of these properties can hold in general in the
model: for different initial beliefs, the decision maker can exhibit both increasing and
decreasing returns.

Ezample 3.3.3. Suppose again that S = {sy, 52, s3}. Let u(z) = /r and V = 3, and
consider the following values:

2 2

51) = — S9) = —

plsi) == uls2) = ¢

40r, should Conjecture 3.3.1 be false, that there always exists an optimal v for which v(A) C v(4’)
does not hold.
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pls) =2 sl =2 psh=2 sish =1

It turns out that the optimal set of observable signals is V = {{s1}, {s2}, S} and, in
particular, v({s1}) = {s1}, v({s2}) = {s2} and v({s1,s2}) = S. That is, we observe
increasing returns to information.

Ezample 3.3.4. Let S = {s1, 59,53}, u(r) = /(v and V = 3. Consider the following

initial beliefs: 5

p(s1) = pi(s2) = 5

pls) =1 sl =1 psh)=1 p((sh=1

Computations give V = {{s1, 52}, {s1, 53}, {2, s3}} as the optimal set of observable

signals, while v({s1,s2}) = {s1,s2}, v({s1}) = {s1,s3}, and v({s2}) = {s2,s3}.
Therefore, there are decreasing returns to information.

2
5
1

3.4 The Case of Two States

Assume that S = {s1, 82}, so that |X| = 3. Consider the case V = 2. At the ex-ante
stage, the decision maker has to choose the optimal set V of perceivable signals and
the corresponding optimal map v from true signals to perceived ones. I will assume
that her preferences can be described with a von Neumann-Morgenstern utility index

To simplify the notation, let u(s1) = p and pg, (S) = ps,(S) = 1 — a; it follows
that ps, ({s1}) = ps,({s2}) = a. The function f{, which gives the optimal share to
be allocated to state s; given the perceived signal A. becomes

2
{s1} {s2} S H
fl fl fl M2+(1_M)2
fi=1-ff, vAe 3|
With V' = 2, there are three possible sets V:

Vi={{s},5} Va={{s2}, 5} Vs={{s1},{s2}}

The first step to solve the for the optimal V is to determine the optimal function v
conditional on each V. In this special case, the task is easy. It is straightforward to
realize that

o for V=V, v({s1}) = {s1} and v({s2}) = v(S) = 5;
o for V=V, v({s2}) = {s2} and v({s1}) = v(5) = 5;

{s1} ifp=>

o for V ="V; v({s1}) = {s1}, v({s2}) = {52} and v(9) = {{82} if p <

|- N
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Notice that, for V = Vj, the decision maker is globally underconfident (she correctly
perceives the signals {s; } and S, but she interprets {s;} as S; similarly when V = V.5
On the other hand, she is globally overconfident for V = Vj5: she correctly perceives
{s1} and {sy}, but interprets S as either {s;} or {ss}.

At this point we can compute the ex-ante expected utility for each VV when the
corresponding optimal v is used. Let Uy, be the ex-ante expected utility for V.
Clearly

* 1—p)2 2 1—1)2 |
* Uy =t a(l =yl + (- o) [/l + (0 - 0y |

* 2 ) — 5
o Uy, = o) oy +a(l—p) + (1 — ) [M’/m+(1_“) /#2(+1(1u_)#)2_

o Uy, =ap+a(l—p)+ (1 —a)max{y,1—pu}

Some simple algebra allows to determine the optimal V as a function of the decision
maker’s initial beliefs:

o Uy, 22Uy, — uzé,
° When,uZ%, Uy, > Uy, <= a>hp),
owhenuﬁ%,U{SSsz}z <~ a>h(l—p),

where
h(p) = A (=) = P+ (1= )
w? —2pu+1
This result can be represented graphically as in Figure 3.2.

The special case with two states of the world shows that both underconfidence and
overconfidence can emerge endogenously, depending on the decision maker’s initial be-
liefs. However, the case is too simple to provide more insight into the properties of the
model. For example, all the possible sets V are such that the union of their elements
in the set S. Therefore, it is not possible to study the conjectured sub-optimality of
the sets for which such a property does not hold. Moreover, the small number of sets
Y does not allow to make observations on the conjectured monotonicity properties of
confidence. This is why it is interesting to study a slightly more complicated case,
that with three possible states.

3.5 The Case of Three States

Given the conjectural status of some of the properties discussed in Section 3.3, it is
useful to look for evidence in support of the conjecture through the analysis of special
cases. We have see that a model with two states of the world does not allow to address
these issues. More insight can be gained from studying a model with three states.

5Moreover, in these cases, the decision maker does not satisfy Indistinguishability, as defined in
Section 3.3.
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Figure 3.2: Under- and Overconfidence with Two States

Unfortunately, the analysis in this case is computationally much more complicated
than in the model with two states. First, to describe initial beliefs six parameters
are needed: 1i(s1), u(s2), p({s1}), p({s2}), p({ss}), and p({ss}).” Moreover, [Z| =7,
implying that different values of V' must be considered (two, three, four, five, and
six).

To overcome this difficulties, I have used Matlab to solve the problem numerically.
The main steps of the program are the following:

e fixing specific parameters values, the optimal act is computed for any possible
signal observed (this step can be easily solved analytically);

e for any set V of observable signals and for any signal received, the program finds
the corresponding signal in V maximizing (ex-post) expected utility;

e it is then possible to compute, for each V, the corresponding ex-ante expected
utility; the program selects the set V for which utility is maximized.

In this way, the program finds the optimal V for a specific value of the decision
maker’s initial beliefs. A more general problem is to determine whether a given V
can be optimal for some values of the parameters. To do this, I have constructed a

6The remaining values can be derived as follows:
p(ss) =1— ( 1) = p(s2),

p({s1,52}) = 1-p({s:1})— p({éz})-‘rp({és}) P({és})
p({s1,53}) = 1- P({Sl})ﬂ?({sz}) p({ss})— P({Ss})
p({s2,53}) = 1+p({s1})— P({52}) p({sa})— P({Ss})
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function that, after computing the optimal V), assigns the value 0 to the one under
consideration, and 1 to all the others. Minimizing this function over the possible
values of the parameters, it is possible to see whether that particular set VV can ever
be optimal: this is case when the minimum of the function is 0. A detailed description
of the program can be found in Appendix C.

Using this algorithm, I find the following results:

e only sets V such that (J{E: E € V} =S can be optimal for some initial beliefs;

e all the sets V satisfying this property are optimal for some values of the param-
eters, except {{s1}, {s1,s2}, {s1,53}}

Appendix C gives example of initial beliefs that make each set V optimal. The results
support the conjectures in Section 3.3.

However, there is a caveat. The algorithm use for the maximization problem looks
for local maxima only. Although I used a grid of initial values for the six parameters,
the possibility of having missed some optimal solutions cannot be excluded.

3.6 Conclusions

This chapter has introduces a model in which a decision maker is aware that she
cannot extract all the information from the observation of events. She knows that the
number of possible signals is larger than the number of different pieces of information
she can handle. At an ex-ante stage, she therefore wants to optimally map ”true”
signals into ”perceived” one, so that to maximize her ex-ante expected utility.

The analysis of optimal mapping performed in this chapter is clearly partial. Few
results have been established, while the main properties are just presented as conjec-
tures. Although intuitively simple, the model is mathematically quite complex. Of
course, better results can be obtained with a deeper analysis. In particular, Conjec-
tures 3.3.1 and 3.3.2 are clearly provable (or disprovable).

What emerges, however, is the presence of very limited structure. An optimal
mapping does not necessarily exhibit any kind of ”confidence monotonicity” or even
”information monotonicity” (see Subsection 3.3.3). However, this does not exclude
the possibility of the emergence of more structure once the set of possible initial
beliefs is reduced. I am thinking in particular to restriction on the values of the
likelihood functions p, which may be reasonable in particular contexts. Studying
whether there exist relations between restrictions on p and structural properties of
the optimal mapping may be an interesting area of future research.
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Appendix A

Proofs for Chapter 1

A.1 Proof of Theorem 1.4.1

The following simple lemma has a crucial role in the proof.

Lemma A.1.1. Consider x,y € (0,1)" with z(n) # y(n) and {a;}=]', where a; > 0
and S~ a; < 1. There ewist scalars {k;}7—, such that

n—1 n—1 n—1

i l=ap = gl = =
[Tatai = 2 TLuro > = kot D hoi Z0.
i=1 i=1

=1

Proof. Simple algebra shows that the relation is satisfied for any (ko, ..., k,—1) such

that
ki  Inx;—Inz, —Iny; +Iny,

R , =1,....n—1.
ko Inz, —Iny, ! et

]

What the lemma says is that, given a likelihood function (which is represented by
the vectors x and y), there exists a unique hyperplane separating the limit frequencies
for which beliefs converge to (1,0) and those for which beliefs converge to (0, 1).
Therefore, any likelihood function can be associated with a hyperplane.

Consider the case u € A({L1, L2}). Assume that there exist two limit frequencies
rl,r? € intA(S) such that

Ty — 1= — Op,,

rt—>r2:>ut—>5£2.

If this is not true, then there is nothing to prove.

Consider any recursive updating rule satisfying the conditions of the theorem.
Suppose that ¢ = (1,0) or 4 = (0,1) can be reached in finite time with positive
probability; in what follows I consider the first case, but the argument clearly applies
to the other, too. There are two cases: either there exists s € S such that f(s, (1,0)) #
(1,0), or no such outcome exists. The second case can be easily dismissed. In fact,
given any limit frequencies, the probability of observing the sequence of outcomes
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leading to u = (1,0) is positive; but since there must exist limit frequencies with
different limit beliefs, we are led to a contradiction. In order to get rid of the first case,
consider a limit frequency for which we expect convergence to p = (1,0). Clearly,
as p approaches (1,0), the probability of reaching (1,0) in finite time must go to
zero. Otherwise, there would not be a t such that for all €,§ > 0, prob(uy ¢ (1,1 —
€)) < 0,Vt' > t. Therefore, if the only thing we are interested in is convergence,
we can disregard the possibility of reaching p = (1,0) in finite time: if an updating
mechanism exists for which p converges to (1,0), then convergence has to be possible
for some mechanism in which (1,0) is not reached in finite time. So, if we prove
that no mechanism of this last type exists, we can conclude that the appropriate
convergence cannot be obtained with any recursive mechanism.

Once we exclude the previous cases, j;41 can be obtained from p; multiplying each
component y; by a positive scalar. Formally, there exists a function v : (S, A(S)) —
R? , such that

Moreover, we can always use the normalization ), v(s,pu); = 1 (so that each f is
associated to a unique v).

The following lemma shows the consequences for the function v of assuming that
f is well-behaved. It turns out that v has a limit when beliefs approach certainty.
Although it would be nice to get rid of this hypothesis, it’s still unclear whether the
theorem holds in the more general case.

i=1

Lemma A.1.2. If f is well-behaved, then v(.,pu) converges to a limit function for
w— (1,0) and for p — (0,1).

Proof. Convergence of v(., ) means convergence of v(s,u) for any s € S. Let’s
consider a generic s. To simplify notation, I will drop the argument s in the proof
of this lemma. Therefore, f(u) and v(u) must be interpreted as f(s, ) and v(s, p)
respectively. In addition, I will redefine p € [0, 1] as the probability associated to L;.

Define z(u) := % Then we can write

or, equivalently,
1=—p
L f(w)

1—f(p)

Let’s consider the case in which u — 1; to address the other case, just take the limit
of z(1)~! as u — 1. Computing the limit, we get

2(p) =

) T G



L — f ()=

= lim = lim f'(p)~ "
pel () et
Since f is well-behaved, this limit exists (not necessarily finite). O

By Lemma A.1.2, as u — (1,0) or u — (0,1), v(., ) converges to a limit function.
Both limits are, according to the definition in Section 3, likelihood functions. As we
already know, such functions can be associated to hyperplanes separating the half-
spaces of limit frequencies for which p, converges to (1,0) or (0,1) if updating is
characterized by the likelihood function itself. We now need to prove the following
results:

e Consider a limit frequency such that beliefs converge to (1,0). I claim that
the same convergence result must hold if updating is performed using the limit
likelihood function for p — (1,0).

e Consider any limit frequency belonging to the half-space where beliefs converge
to (1,0) according to the limit likelihood function for y — (1,0). Clearly, there
exists € > 0 such that for any € < e, the limit frequency lays on the same
”side” with respect to the hyperplanes associated to the functions v(., u) for
pw = (1 —¢€,€¢). I then claim that, for py sufficiently close to (1,0), beliefs
converge to (1,0) with positive probability.

To prove the first point, suppose that the convergence result does not hold for
the limit likelihood function. Then, since beliefs converge to (1,0), there must be a
t such that, for any ¢’ > t, beliefs are updated using likelihood functions that, each
by themselves, would lead to convergence to (0,1).! T want to show that this is not
possible. The following lemma provides this result.

Lemma A.1.3. Consider a sequence of likelihood functions {g;}?°, and suppose up-
dating is performed at each period t using the likelihood function g;. Let p € A(S) be
a limit frequency such that, for any t, beliefs p,, converge to (0,1) ((1,0)) for n — oo
when updating is performed using the likelihood function g, in every period. Then,
when we use, at each period t, the likelihood function g, beliefs converge to (0,1)
((1,0)).

Proof. Let i(s;) : @ — {1,...,5} be the random variable whose value is the index
of the observation at time ¢; that is, i(s;) says which element of S is observed in
period t. Since the experiments are not identical nor independent, i(s;) depends on
the history (si,...,si-1). Let (@4, ;)i : S — R2_ be the likelihood function in
period t. The decision maker does not remember past observations; therefore, the
likelihood function can only depend on p; ;. Studying beliefs convergence means to

look at the limit of
n y t—1 y
i(st),t i(sp,),h
H (L) (Sl7"'78t—1)7H (A) Ho 3
t=1 Li(se),t heo \Ti(sn).h

'T am implicitly excluding the case in which the limit frequency belongs to the hyperplane cor-
responding to the limit likelihood function. This can be safely done since the theorem deals with
limit frequencies in open sets.
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where I define y;(s,),0/%i(so)0 = 1. By the assumption in Theorem 1.4.1, the random
variables i(s;) are independent in the limit, that is

(02 o) - ({1 ) o

j=1
By hypothesis we know that beliefs converge for any fixed likelihood function, that is

5 NA S N\
I1 (&> —0 e [] (&> <1
j=1 \Ti j=1 \Ti

Even in the case of non-constant likelihood functions, nothing changes for the random
variables i(s;): they only depend on past observations, not on the decision maker’s

beliefs. Therefore
i—1 " Pj
H ( Z(Sh)7h) IU/O )
h=0 'rz'(sh),h

() oo (22 ) - 1T (2

h=0 Ti(sp,),h
Notice that not only is the the second product on the right hand side smaller than 1 for
any t, but also its limit for ¢ — oo is strictly smaller than 1. In fact, it corresponds to
the limit likelihood function, for which we assume convergence of the decision maker’s
beliefs. So the right hand side goes to 0 as n — oo, that is, beliefs converge to the
same limit implied by the limit likelihood function. O

To address the second point, let’s first introduce a slightly different notation. I will

_ s
denote with <y7—((”;> the ratios that summarize the likelihood function associated
3/ j=1

to beliefs u. Since likelihood functions converge as u — (1,0), each ratio converges
, S
0 <M> , so that,
j=1

Z4,(1,0)

Ve > 0,30 > 0 s.th. |u— (1,0)] < 5:>ma){ Yiw _ Yo _

JES | Tj(p)  Tj(1,0)

This means that, for any a € (0,1), we can pick po sufficiently close to 1 to make
the probability of |u; — (1,0)| < a arbitrarily close to the probability that would be
obtained from the limit likelihood function. Moreover, we can always find pg to make
|1 — (1,0)| arbitrarily small. Therefore, for any finite n, we can choose pg such that,
with probability 1, every uy, for t = 1,...,n, is associated with a likelihood function
that would lead to convergence to (1,0). Let’s call n,, the maximum n such that,
when starting from beliefs pg, with probability 1 (., x;) would lead to convergence
to (1,0) for any ¢ < n. Define beliefs p* = (1 —€*, €*) such that, for any p = (1 —¢€,¢)
with € < €*, the associated likelihood functions would lead to convergence to (1,0)
and there is no € > ¢* with the same property.

By Lemma A.1.3 we know that if, in any period, updating is performed using a
likelihood function that would lead to convergence to (1,0), then beliefs converge to
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(1,0). Therefore, for any puo, i and p € (0,1), there exists a smallest N, 5, such
that, with probability p, p; > i for any ¢ > N, 5,

Now fix i = p*. If we can prove that, for some o > p* and some p, n,, > Ny 4o ps
then the proof of the second point is completed. But n,, can be taken arbitrarily large
if we choose p sufficiently close to (1,0), while lim,, 1,0y Ny,u+p is clearly bounded.

From the two points above, it follows that, in order to have convergence to the
true parameter whenever the limit frequency falls in int(L; \ L) or int(Lqe \ L1), a
necessary condition is the existence of a hyperplane separating the two sets. However,
if S > 3, this may not be the case, as is clear from the example described by Figure
A.1, where S = 4.

Figure A.1: Three-dimensional Sets

Whatever hyperplane we choose, there will be frequencies in int(L£; \ L) for which
beliefs converge to ., and/or frequencies in int(Ly \ £1) for which beliefs converge
to dz,. This completes the proof.

A.2 Proof of Theorem 1.4.2

Lemma A.2.1. Let A, B C R? be two closed and convex sets such that B = A+ k =
{x+keR?:z € A} for some k € R®. There exist disjoint convex sets A" and B’
with A\ B C A" and B\ AC B'.

Proof. Suppose there exist x € AN B, y1,y2 € A\ B, z1,20 € B\ A, 3,7 € (0,1)
such that x = By; + (1 — B)y2 = vz1 + (1 — 7)22. By construction, y; + k,ys + k € B
and z; —k, 2z —k € A. Since A and B are convex, co({y1, y2,21 — k, 22 — k}) C A and
co({z1, 22,91 + k,y2 + k}) C B. Notice that these two sets are convex quadrangles,
they have nonempty intersection (they both contain x) and one is the translation of
the other. It is easy to verify that these conditions imply that, for some i € ({1,2}),
either y; € B or z; € A. But this is a contradiction. Therefore no x € AN B can be a

2Since the set S is finite, u¢(.) o< v(., p¢_1)p¢—1 converges in probability if and only if it converges
almost surely.
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convex combination of points in both A\ B and B\ A. Define P4 (Pg) as the set of
x € AN B that are convex combinations of points in A\ B (B \ A) and consider the
sets A’ = (A\ B)UP4 and B’ = (B\ A)U Pg. By the previous argument, A'NB’ = (J;
moreover, they are convex, since clearly A’ = co(A\ B) and B’ = co(B \ A). O

By Lemma A.2.1, there always exists a straight line strictly separating int(L;\ L2)
and int(L2\ L1). Then, the existence of a likelihood function for which the hyperplane
separates the limit frequencies leading to convergence to d,, and those leading to
convergence to d,, immediately follows form the next lemma.

Lemma A.2.2. Consider the simplex A(S), with S = 3 There exists a straight line
ko + Zle kia; = 0 strictly separating int(Lq1\ Lo) and int(Ly\ L1) such that there are
x = (r1,29,1 —2(1) — 2(2)) and y = (y1,y2, 1 — y(1) — y(2)) belonging to A(S) that
satisfy the result in Lemma A.1, with ko + Z?:l kixz; > 0 and ko + 2?:1 kiy; < 0.3

Proof. The particular shape of the sets under consideration (see Figure 1.3) implies
that we can focus on straight line parallel to one of the sides of the simplex: if
int(Ly \ La) and int(Ls \ L) are strictly separated by a straight line, then they are
also strictly separated by a straight line parallel to one of the sides. Moreover, we
can always relabel the elements of S such that the line is horizontal. So we can adopt
the normalization ky = 1, k; = 0 and kg € (—o0, —1). We are therefore considering
straight lines as in Figure A.2.

1

-1k

Figure A.2: Horizontal Separating Line

We already know that the implication in Lemma A.1 holds if we choose z and

y such that k’ = _ln(l le) ;zylﬁg(yl 2v) where the denominator is nonzero by

construction Notlce that %(:)r some K, that can be assumed positive without loss of

generality,
2
ko + Z kV%l =
i=1

31 think it would be possible to prove that such a likelihood function exists for any straight line
strictly separating int(L; \ L2) and int(Ly \ £1). I also believe that the result still holds for a
generic finite set S and for generic convex subsets of A(S). These generalizations, however, are not
necessary for the proof of the theorem.
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= K[ln(l—z xi)—ln(l—z yi)]—i—z K[ln mi—ln(l—z mj)—lnyi—l—ln(l—z yj)|z: =
= K{[In(1 — Zmz) —1In(1 — Zyz)](l - sz) + Z(lnxi —Iny;)z;} > 0.

where the inequality is immediate, provided = # y. Similarly, ko + Zf;ll kiy; < 0.
We still need to prove that we can find x and y that satisfy the equalities above and
belong to A(S). Simple algebra provides the functional relation between = and y. In
fact,

o= Yo =12 (A1)

() (1 - ) ()
(1=>"u) 0 (1=> ) 0

where by construction »_ y; # > x;.

Consider = € int(A(S)) and assume we are able to find y satisfying equations
(A.1) and such that y; > 0. Then, taking the equation for i = 1, it must be the
case that 1 — y; — yo > 0; this in turn implies, from the equation with ¢ = 2, that
y2 > 0, that is, y € int(A(S)). Also notice that z # y implies 1 # y;. So we simply
have to show that for any straight line, that is for any ky € (—o00, —1), there exists
x € int(A(S)) such that there is y satisfying the equations above, with y; > 0 and
Y1 # T1.

Let’s take xy = —,%2 + ¢, for € > 0. From the system of equations above we get

(1+ ko(1— )y ™ — koary; ™ — (1 = ko) 2 = 0.

Since we want xo < 1, clearly 1 + ko(1 —€) < 0, while 1 — kee > 0. To simplify
notation, denote the first term as a and the second as b. It is also immediate to see
that any solution must have the form y; = hx;, for some h > 0. Therefore all we
need is to find positive solutions to the equation

ah™" — koh %271 —p = 0.

First of all, notice that h = 1 is always a solution, and it is the only solution if € = 0.
For e > 0, we want to prove that there exists another solution. The task is nontrivial
since ko can be any real number in (—oo, —1). I will prove the result for ko rational.
Given the smooth nature of the equation, the result generalizes to the entire interval
by a continuity argument. Denote —ky = %, where o, € N, and o > . With an
obvious change of variables, we obtain the equation

a Yap_p_
az™ + 52 b=0.

I am going to use Sturm’s theorem (see, for example, [16]) to show that such an
equation always has two and only two positive solutions. First we have to construct
a particular sequence of polynomials called Sturm chain. The first element is the
polynomial az® + %z‘“ﬁ — b itself; the second is its derivative. Every other element
is computed as the reminder of the polynomial division between the two polynomials
immediately above, with its sign changed. Notice that the degree of the polynomials
in the chain is strictly decreasing. The chain ends when the last polynomial has
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degree 1. To find the number of distinct positive real roots of our equation, we have
to determine the signs of each polynomial in the chain corresponding to z = 0 and
2z — +o00 and to see how many times signs flip in these two cases. Sturm’s theorem
states that the number of solutions is equal to the difference between the numbers of
sign flips for z = 0 and z — +o0.

In order to find the number of solutions, it is not really necessary to compute
the Sturm chain. All we need are the corresponding sequences of the exponents
appearing in the polynomials and the signs of the coefficients. I am now going to
show how these sequences can be computed. For the moment, I will build generic
sequences, disregarding the specific values of o and (8 for which some exponent turns
out to be 0. I will show later how to handle these cases. So in what follows, any
exponent that is not explicitly 0 is assumed to be positive. On the other hand, I will
indicate as special cases the values of a and 3 that change the functional form of the
exponents with respect to the general case. How the chain evolves after these special
cases will be examined later.

The first three elements of the sequences are easy to compute.

Element General case Special cases
Exponents Coefficients’ signs | Exponents \ Coefficients’ signs
1 a, @ — 57 1 -+ -
2 a—1,a—pF—-1 -+
_ 3=1
3 a—p,0 -+ AN —

From this point on, signs and exponents can be computed following simple rules,
whose proof is straightforward and omitted. If the element number is even, the sign of
the first term is the opposite to that of the second term of the one to the last element;
the sign of the second term is the product of the signs of the terms of the last element
times the sign of the first term of the one to the last element. For elements whose
number is odd, the rules for determining the signs of the two terms are switched. The
rule for the exponents follows a cyclical scheme, shown in the table below.

Element General case Special cases
2 g1, 92
Gr=g2+1
1
3 92 + ) 0 o, 0
4 92, g3 g2 = g3
(depending on the relation between g; and gs) g
g2=gs+1
1
5 gs + ) 0 gs, 0
6 93, 94 g3 = 94
(depending on the relation between go and g3) g3
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The cyclicality of the exponents is apparent; the specific form of the second ex-
ponent in the even elements is not important for the result. Knowing these rules, we
can easily find the actual sequences.*

Bl General case Special cases
’ Exponents Signs Exponents \ Signs
4 (i—-1)8—(i—2)a—1 -+ a=rif
forae[ﬁﬁ,%ﬁ) a—pF-—1 ‘ -
— i 1
5 (i—1)8—(i—2)a, 0 + - o=l
(—1)F—(—-2a—-1,0] +-
(i - 1)6 - (Z - 2)a - 17 o = (j+2)i—(5+1) ﬁ
6 | [(i=2)j+(G—Da—[(i-1j+df-1] -+ GH2i—(5+2)
(j+1)3 2)i—(j+1) . .
for a € <(;+{ i (li%)ﬁ’ ]1:2)1 (;H])ﬂ (i—1)p—-(>G(—-2)a-1 +
_ (G+2)i=(G+1) 1
7 i — 2)q 1 )i 4418, 0 “= (J'J+2) (3]+2J)ﬁ T (7+2)i—(3+25)
[(Z_ )]+(Z_ )]Oé—[(l— )]‘f‘l}ﬁ, + - [(i—2)]—|—(2—1)]0¢—|— T
—[(—-1)j+iB-1,0

Notice the cyclicality of the sequence of the signs: the signs at elements 6 and
7 are the same as at elements 2 and 3. The same cyclicality (with cycles of length
4 starting from element 4) is therefore inherited by the sequence of the signs of the
polynomials for z = 0 and z —= oo and, in turn, by the sequence of the difference
between the numbers of sign flips.

Element |1 2 3 4 5 6 7
oj- 0 + 0 - 0 +

toc0 |- - - - + - -
Difference |O 0 1 1 1 0 1

We now have to consider all the cases in which the sequence ends. It is easy to
see that this can happen only when:

e we are in one of the special cases considered above; we will see that in these
cases the sequence ends after at most two additional steps;

e the second term of an even element has exponent 0; the sequence ends after two
additional steps;

e an even element has degree 0.

4The signs for the special cases of elements 4 and 6 are more difficult to compute. However, we
will see that there is a shortcut to get the results.
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For each of these cases, we need to check whether the difference between the numbers
of sign flips turns out to be 2. Let’s look at the table with the rule for computing
the exponents and let’s start with the cases of the type go = g3 (g2 > 0) in an even
element of the sequence. In this case, in the next step, the power of the polynomial
is 0 and the sequence ends. Obviously, the signs for z = 0 and z — +o00 must be the
same. So we have a situation like

Element ‘ Even 0Odd
0 0 S9
400 51 S9

To determine the values of s; and ss, notice that at any odd element the sign for
z = 0 is the opposite than that for z — +o00, and the difference between signs flips
is 1. Moreover, we know that at least one positive solution exists, that is z = 1. The
only way the final difference between sign flips can be at least one is that s; be the
same as the corresponding sign for the element immediately above and s, = s;. But
in this case the number of sign flips turns out to be 2.

Let’s consider now the cases of the sort go = g3 + 1, which are special for odd
elements. It is easy verifiable that we can only have the following sub-cases:

e if go > 2, the next element has coefficients (1,0) and the same signs as the
element immediately above, so that the difference between sign flips is still 1;
the sequence ends after another step, where, again by the fact that a solution
exists, the sign must be the opposite of the first sign of the last step; this implies
the existence of two solutions;

e if go = 2, the sequence ends at the next step; the existence of two solutions
follows by the same argument.

When the second term of an even element has exponent 0, the following holds:

e the sign for z = 0 becomes +; notice that this implies that the difference between
sign flips is 1;
e the next element has exponents (1,0) and the signs are still computed according

to the general rule; this does not change the difference;

e the usual argument determines the sign at the final step, proving the existence
of two solutions.

It remains to analyze the cases in which an even element has degree 0. Again, the
usual argument gives the sign and implies the existence of two solutions.
m

This completes the proof of Theorem 1.4.2 for the case S = 3. It can be easily
adapted to the case S = 2.
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Remark 2. 1t is easy to verify that the solution h # 1 is such that h — 1 for e — 0.
This implies that, if ko—l—Z?ZI kip; > 0 for any p € int(Ly\ L) and /{:04—2?:1 kiq; <0
for any ¢ € int(Ly \ L), and if int(Ly) Nint(Ly) # 0, then = and y can be chosen
such that x € £, and y € L5. The same does not follow when the sets are disjoint.

Remark 3. It is highly plausible that Theorem 1.4.2 holds for general convex subsets
of the simplex. To prove it, however, we need to consider all possible straight lines,
not just the horizontal ones; that is, we cannot assume k; = 0 and ko € (—o0, —1).
Sturm’s theorem can still be applied, but the proof will certainly be more cumbersome.

Moreover, any attempt to prove that the likelihood function can always be chosen
such that x € £, and y € L, clearly requires the use of generic straight lines. The
idea is that, for any two subsets, there should exists a straight line such that one of
the corresponding likelihood function satisfies the requirement.

A.3 Proof of Lemma 1.4.1

To see why Lemma 1.4.1 must be true, imagine two overlapping sets £; and L5 such
that int(L£1\ L) and int(L2\ L) can be strictly separated only by a horizontal straight
line. Fix z € £;. Obviously, there must exist a € (1,00) such that x5 = 1 — axy. If
we take y € A(S) satisfying equations (A.1), it is easy to see that y» = 1 —ay;.> This
means that any couple of points (z,y) satisfying the equations must lay on the same
straight line going through the point (0,1). This is enough to prove the lemma. In
fact, as can be seen in Figure A.3, we can easily construct £, and L, for which such
x and y cannot be in the same "position” within £, and L, respectively.

Y

Figure A.3: A Counterexample

5Just take the equation for j = 1 in the special case of a horizontal line.
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Appendix B

Proofs for Chapter 2

B.1 Proof of Proposition 2.3.1

Let’s prove that the representation implies the axiom. First, VE € X, E C v(F),
as required by Axiom 4. Now, consider s ¢ E that is also =F-null, and suppose
that there exists s € F such that s and s’ are indistinguishable. I will denote
indistinguishability with the notation ~{s}=>1} Since £ C V¥ we have s’ € V.
Similarly, s € V{} and s € V't Since =it =1 Vst = V15 50 that s € VI¥'}
Since V is closed under intersections, (V' NV¥) € V. We know that s’ € (VIInVF),
but (VI N VE) € V¥, because s ¢ VF. This contradicts point (iii).

We need now to show that, if there exists s ¢ E that is also =F-non-null, there
must exist an indistinguishable s’ € E. Before doing this, let’s prove a preliminary
result. Given two states s; and so, either V11 = V{2} or the two are disjoint.
Suppose VIsth 0V {2} £ () and consider the following two cases:

e 51 ¢ Vit Since V is an algebra, VIsuh\ (Vish nvis2h) € Y. Moreover,
s; € Visth\ (Visthqnyiszl) ¢ visih This contradicts point (iii). The argument
is the same is we invert s; and ss.

e 5, € Vb and s, € VIs1h Since s, € (VIsth 0 V{s2}) point (iii) implies that
Visih C yis2}, Similarly, we must have Vis2t C Visi) and so Visih = s},

Now, let s ¢ E be 2~F-non-null and suppose that, for any s’ € E, =-{s}=>1"} The
representation requires that V15! £ V15t We have already shown that this implies
that Vi n vV} = (. So, for any s’ € E, s is =}null. Therefore E is = {}-null;
that is, E NV} = (. Clearly, S € V and, since V is an algebra, S\ V1 € V. Being
E C S\ V1 point (iii) implies that VZ C S\ V{s}, Since s € V{*}, we have that s
is ~F-null, which contradicts the hypothesis.

It remains to be proved that the axiom implies the representation. Points (i) and
(ii) are the same as in Proposition 2.2.1. So I am going to show that Axiom 4 implies
both Axioms 2 and 3. Axiom 3 obviously holds: given a signal E any s € E is -
non-null. Suppose Axiom 2 is not satisfied. Then, for some signal F, v(v(F)) # v(E).
By Axiom 4, v(F) C v(v(E)). Given s € v(v(FE)) \ v(E), there exists s’ € v(E) such
that -1t =-1{t But there also exists s” € E such that ={#7=>1"} (this may even
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be s itself). Therefore s is indistinguishable from some state in F, and Axiom 4
implies that s € v(E), which contradicts the hypothesis.

For point (iii), we already know that E C v(E). Suppose now that there exists a
signal F' which is a fixed point of v and such that £ C F' C v(FE). Since v(F) = F, by
Axiom 4 there is no s € v(E) \ F such that s is indistinguishable from some state in
F. Given that E' C F, again by Axiom 4 s cannot be contained in v(E), contradicting
the hypothesis.

The last thing to prove is that the fixed points of v constitute an algebra. Let
E and F be two fixed points of v. Then there is no s ¢ E that is indistinguishable
from a state in F, and similarly there is no s’ ¢ F' that is indistinguishable from
some state in F. Therefore, no state in (£ N F)° can be indistinguishable from some
state in ENF. Sov(ENF)= ENF and the set of fixed points of v is closed under
intersections. Closure under complements is obvious.

B.2 Proof of Proposition 2.4.1

Let’s first prove that the representation implies the axioms. Axioms 2 and 3 are
obviously implied. To prove Axiom 6, let s € V4 \ A and suppose that there is no
s’ € A such that -{'t=>1} that is, such that V1t = V{s}, Properties (iv)1 and
(iv)3 and the closure of V under intersection imply that V1 is the smallest element
of V that contains s. In fact, by (iv)1, V{*} must contain s; it cannot be a superset of
some other element of V containing s, because of (iv)3. And there cannot be multiple
sets satisfying these properties, because their intersection would still belong to V,
leading to a contradiction. It is therefore obvious that, if V1 = V{} then both s
and s" are in V{}. But I need the inverse result: I want to show that, if Vst £ 1/ {'},
then s’ ¢ V{}. Suppose that this is not true, that is, s’ € V1 and consider the
following two cases:

e we cannot have V1 ¢ VI because V1#'} is the smallest element of V con-
taining s’;

o if VII\ VY £ (), (iii) implies that VIsH\ VI € V. Since VI v} ¢ Vst
it cannot include the state s. Therefore s € V't By (iii), Vi n vt ¢ p.
Clearly, s € VIt n vV} and VIt n v}t ¢ Vit But such a set cannot exist.

So we have proved that, for any s’ € A, s’ ¢ Vi, But VA\ V{} € Y, violating (iv)3.

Axiom 7 is easily proved. Consider two indistinguishable states s and s’ such that
s € VA but s’ ¢ VA, it has already been proved that s,s' € Vit So Vistnv4 ¢
Vst By (iii), V¥t N V4 € V. This contradicts the fact that V1 is the smallest
element of V containing s, as shown above.

Now I want to show that the axioms imply the representation. Properties (i) and
(ii) immediately follow from Proposition 2.2.1. Let’s now prove that any signal A is
=4_non-null (property (iv)1). Suppose not, so that ANV = (. By Axiom 6, for any
state in V' there exists an indistinguishable state in A. But Axiom 7 requires that
the last state is conditionally non-null, which contradicts the initial hypothesis.

To prove that the set of fixed points of v is a semialgebra, we need to show that
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e VA, BEV, ANBEV;

e VA €V, there exists a partition of S\ A whose elements belong to V.

Let’s first prove closure under intersections. Consider A, B € V such that AN
B # (. Since by assumption v(A) = A, Axiom 7 implies that no state in A¢ is
indistinguishable from some state in A. The same is true for B. Therefore, by Axiom
6, v(ANB) C AN B. Suppose now that there exists s € AN B such that s ¢ v(ANB).
By Axiom 5, s must be =“-null, that is s ¢ v(A), but this is impossible. So ANB € V.

Before moving to the second part, it is useful to prove the other property of V,
that is, closure with respect to set difference. Take A, B € V and suppose there exists
s such that s € v(A\ B) and s ¢ A\ B. By Axiom 6, there exists s € A\ B
with =#t=>1} Since by assumption v(4) = A, Axiom 7 implies that s € A. By
assumption, s ¢ AN B. On the other hand, since AN B € V, using Axioms 6 and 7
we can immediately show that no state in A\ B is indistinguishable from some state
in AN B, and therefore v(A\ B) N (AN B) = (). We have reached a contradiction, so
we can conclude that v(A\ B) C A\ B.

To prove the other direction, let’s first show that, for any A, B € ¥, v(AU B) C
v(A) Uv(B).! Take s ¢ v(A) Uwv(B) and consider two exhaustive cases.

1. s€ Aor s € B. Then by Axiom 5 s ¢ v(AU B).

2. s ¢ AU B. We can consider two sub-cases. If there is no z € AU B such that
—{st=>12} then Axiom 6 implies that s ¢ v(AUB). On the other hand, if such
a z exists, by Axiom 7 it must be the case that z ¢ AU B. Notice that Axiom
7 also implies that s € v(AU B) if and only if z € v(AU B). But z falls in case
1 above.

Take now A, B € V. By the previous result, we have v(A) Cv(A\ B)Uv(ANB).
By assumption, v(A) = A; moreover, v(AN B) = AN B, because V is closed under
intersection. So, A\ B Cv(A\ B).

To complete the proof of property (iii), let A € V. We need to show that, for any
s € A° there exists an element of V' that contains s and is disjoint from A. Closure
under intersection then provides the result. It is easy to see that the following two
properties are sufficient for the proof:

o s Vit
e VA BeV, A\BeV.

But the first result is a special case of (iv)1, which we have already proved, while the
second is exactly what has been shown above.

Suppose now that property (iv)2 is not satisfied. So there exists V' € V such that
ANVACANV. Take s € AN (V \ V4) and consider the following two cases:

e suppose VA C V; then Axiom 5(i) requires that v(VA U {s}) = V4; but VAU
{s} C V, so Axiom 5(ii) implies that s ¢ v(V) = V, which contradicts the
assumption;

IFor an interpretation of this property see Section 2.5.

o4



o if there exists s € V4 \ V, then by Axiom 6 there is a state s” € AN VA
such that s’ and s” are indistinguishable; since s” € V and v(V) =V, Axiom 7
implies s’ € V', which is false.

Proving property (iv)3 is easy. Take s € V4\ A. By Axioms 6 and 7, there exists
a state s € AN V4 indistinguishable from s. But ANVA=ANV CV =v(V), so
that Axiom 7 implies s € V.

Remark 4. Unlike in Proposition 2.3.1, Axiom 2 cannot be deduced from the oth-
ers.On one hand, it is possible to exclude the existence of some E € Y such that
ds € v(v(F)) \ v(F). In fact, Axiom 6 would imply that there exists s’ € v(E) such
that ={t=>{s} The state s’ is =F-non-null. Therefore, by Axiom 7, s must be
=F_non-null, too, leading to a contradiction. On the other hand, the axioms are not
sufficient to exclude the existence of some E € ¥ such that 3s € v(E) \ v(v(E)).

B.3 Proof of Corollary 2.4.1

We need to show that, for any V' € V and for any s € V, there exists A € ¥ such
that s € A, A CV, v(A) =V, and, for any B with v(B) =V, B ¢ A. The proof
can be divided in three parts:

1. for any A with v(A) =V, ANV # (;

2. let A be a signal such that s € A and v(A) = V; then there exists A’ € ANV
such that v(A") = V;

3. take any s € V and let A be any subset of V such that s € A and v(A) =V
suppose there is a B C A such that s ¢ B and v(B) = V; then there exists
A" C Asuch that s€ A, v(A") =V, and B ¢ A

It is straightforward to see how these three results establish the result. Part 1 is
property (iv)1 in Proposition 2.4.1. Before moving to part 2, we need a preliminary
result. I will prove that, for any signal A, v(ANVA) = VA If V4 C A, then there
is nothing to prove: v(V4) = V4 by Axiom 2. Suppose now that VA \ A # (. For
any s € VA \ A, Axiom 6 requires the existence of s’ € A such that st =-{s}
On the other hand, since v(V4) = VA Axiom 7 implies that no state in (V1) is
indistinguishable from some state in V4. Therefore, the s’ above must belong to
ANVA. Consider now the signal ANVA. I claim that ANVA C v(ANVA). Suppose
not; that is, suppose there exists z € AN V4 such that z ¢ v(ANV4). By Axiom
5(ii), z must also be ~4-null. But this is false. So we have proved that any state in
VA\ A is indistinguishable from some state in ANV# and that any state in ANV4 is
=AWV _pon-null. Axiom 7 then implies that V4 C v(ANV4). By Axiom 6, any state
in v(ANVA)\ (ANVA4) must be indistinguishable from some state in ANV4. But we
have already proved that no state in (V4)¢ can satisfy this requirement. Therefore,
v(ANVA) = VA So part 2 is satisfied taking A’ = ANV.

Part 3 is easily proved. Given that B C v(B), Axioms 6 and 7 imply that v(B)
(that is to say V') is the set of all the states that are indistinguishable from some
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state in B. In particular, since s € v(B), there must be a state s’ € B such that
=t =>1{s} Now take the signal A’ = (B \ {s'}) U {s}. The set of indistinguishable
states must obviously be the same as for B, that is, the set V. If we can prove that
A" C v(A’), then Axioms 6 and 7 imply that v(A’) = V. But this is immediately
implied by Axiom 5: any state in A"\ v(A) should also be =V-null, and this is clearly
impossible.

B.4 Proof of Proposition 2.5.1

Information monotonicity an be restated as an assumption on the monotonicity of the
function v: if A C B, then v(A) C v(B). It is straightforward to see that Information
monotonicity implies (iii). If not, then we could have A € ¥ and V' € V such that
A CV C v(A); since v(V) = V, we have a contradiction. The other direction is
equally trivial. Without Information monotonicity, there exist A, B € ¥ such that
A C B and v(B) C v(A). By global underconfidence we then have A C v(B) C v(A).
Since v(B) € V, we get a contradiction.

Consider now Vi, V5 € V. By Information monotonicity v(V; NVs) C v(V;) = V3
and v(V; NVy) C o(Va) = Vi, that is v(Vi N V4,) C (V3 N V;). Underconfidence then
implies v(V; NV,) = (V1 N V3), meaning that (V; N13) € V.

B.5 Proof of Proposition 2.5.2

The first part is obvious. To prove (i), consider Vi, Vo € V. Axiom 9 requires that
v(V1UV;y) C (V3 UV,). Underconfidence then implies v(V; U Va) = (V3 UV;), meaning
that (V, U Va) € V.

For (ii) we just need to prove that, for all signals A and B, v({A, B}) C (v(A4) U
v(B)). By Proposition 2.5.1, we know that ¥V U () is an algebra. By Axiom 8, for
any A and B, v(A) and v(B) are the smallest elements of V such that A C v(A) and
B C v(B). Therefore, (AU B) C (v(A) Uwv(B)) and, since (v(A) Uv(B)) € V, it
follows from from Axiom 8 that v({A, B}) C (v(A) Uv(B)).
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Appendix C

Matlab Code and Numerical
Examples for Chapter 3

C.1 Matlab Code

This section describes the Matlab code I used to study the model in the case of
three states of the world. T also assumed u(x) = y/x. First, I want to compute the
optimal function v for specific values of the decision maker’s initial beliefs, given a
constraint on the number of observable signals. In the code, I use k to devote V and
the following intuitive notation for the initial beliefs: mu_1 = u(s;), mu-2 = pu(sy),
p-1 = p({s1}), p-2 = p({s2}), p-3 = p({ss}), and p_S = p(S). The prior on s3 and
the other likelihoods p({s1, $2}), p({s1,s3}), and p({s2, s3}) are obtained from y as

mu_3=1-mu_1-mu_2;

p_12=(1-p_1-p_2+p_3-p_S)/2;
p_13=(1-p_1+p_2-p_3-p_S)/2;
p_23=(1+p_1-p_2-p_3-p_S)/2;

The first thing to do is to compute the optimal act, given the observed signal. To
do that, I assign a number to each signal: {s1} =1, {s2} =2, {s3} =3, {s1,52} =4,
{s1,83} =5, {s2,83} =6, and S = 7; I then creates a 7 x 3 matrix opt_f s associating
to each of the seven signals the corresponding optimal allocation of the unit among
the three states. For a generic signal A, the optimal act is such that

e
fls) = { Zorearts)? if s€A
0 ifsg A

The next step is to create a list of all the possible vector of observable signals. I

therefore create a - X k matrix V containing all the combinations of numbers

RI(7T—F)!
from 1 to 7 (where r(lum)bers correspond to signals as explained above). Then, given
any vector of observable signals and any signal received, I compute the associated ob-
served signal maximizing expected utility. In the code, C' is the matrix of conditional
priors given the signal received. The matrix P gives, for any V, the observed signal

corresponding to each of the seven signals that the decision maker may receive.
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C=[1 00; 010; 001; mu_1/(mu_1+mu_2) mu_2/(mu_1+mu_2) O;
mu_1/(mu_1+mu_3) 0 mu_3/(mu_1+mu_3); 0 mu_2/(mu_2+mu_3) mu_3/(mu_2+mu_3); mu_1 mu_2 mu_3];
P=zeros(factorial(7)/(factorial (k) *factorial(7-k)),7);
for t=1:factorial(7)/(factorial(k)*factorial(7-k))
for u=1:7
utility=-1;
for gq=1:k
utility_provv=C(u,1)*sqrt(opt_fs(V(t,q),1)) + C(u,2)*sqrt(opt_£fs(V(t,q),2))
+ C(u,3)*sqrt(opt_£fs(V(t,q),3));
if utility_provv > utility
utility=utility_provv;
perc=V(t,q);
else
end
end
P(t,u)=perc;
end
end

Given this result, it is possible to compute the ex-ante expected utility for each pos-
sible set V and find the set that, given the decision maker’s initial beliefs, maximizes
it. This is called bestV in the code below.

p=[p_1 p_2 p_3 p_12 p_13 p_23 p_S];
exante=-1;
for i=1:factorial(7)/(factorial (k)*factorial(7-k))
exante_provv= p(1)*(mu_1*sqrt(opt_fs(P(i,1),1))) + p(2)*(mu_2*sqrt(opt_£fs(P(i,2),2)))
+ p(3)*(mu_3+*sqrt(opt_£fs(P(i,3),3)))+ p(4)*(mu_1*sqrt(opt_fs(P(i,4),1))
+ mu_2*sqrt (opt_£fs(P(i,4),2))) + p(5)*(mu_l*sqrt(opt_£fs(P(i,5),1))
+ mu_3*sqrt (opt_£fs(P(i,5),3))) + p(6)*(mu_2*sqrt(opt_fs(P(i,6),2))
+ mu_3*sqrt(opt_£fs(P(i,6),3))) + p(7)*(mu_1*sqrt(opt_£fs(P(i,7),1))
+ mu_2*sqrt (opt_fs(P(i,7),2)) + mu_3*sqrt(opt_fs(P(i,7),3)));
if exante_provv>=exante
best_V=i;
exante=exante_provv;
else
end
end

A more general problem is to try to determine whether a given set V can ever
be optimal for some initial beliefs. 1 use the following approach. All the above
computations are included into a function file

function [best_V2] = bestV2(k,y,vector)
mu_1=y(1); mu_2=y(2);
p_1=y(3); p_2=y(4); p_3=y(5); p_S=y(6);

where y is the vector of initial beliefs, while the variable vector denotes a specific set
Y whose optimality I want to check. At the end of the above calculations, I make the
function assume value 0 if the optimal V is the one I am considering, and the value
1 otherwise.
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if best_V==vector
best_V2=0;
else
best_V2=1;
end

The function is then minimized over the possible initial beliefs, checking the optimality

of every possible set V.
A=[-1 000 00; O
00000 -1;
b=[0 00000111 1];
optimal=ones(factorial(7)/(factorial (k)*factorial(7-k)),1);
param_values=zeros(factorial(7)/(factorial (k) *factorial(7-k)),6);
for vector=1:factorial(7)/(factorial(k)*factorial(7-k))
f=0(y)bestV2(k,y,vector) ;
[y,fvall=fmincon(f, [2/5,2/5,1/5,1/5,1/5,1/5] ,A,b,[1,0],01,[],[],options);
if fval < optimal(vector)
optimal (vector)=fval;
for i=1:6
param_values (vector,i)=y(i);
end
else
end
end

-10000; 00-1000; 0O00-100; 0000 -10;
110000;0011-11;001-111;00-1111];

Since the fmincon algorithm only looks for local minima, I created a cycle to consider
a grid of values of the parameters vector y.

C.2 Optimal Sets V for the Case of Three States

For the case of three states of the world, the table below gives examples of initial beliefs
that make the different sets V optimal. Only sets for which | J{E: E € V} = S are
included. No cases of optimality have been found for the remaining sets. Among the
sets in the table, only {{s1}, {s1, 2}, {s1, $3}} is apparently never optimal.
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Initial beliefs

v Y pls) nls) psi)) p({s2)) p{ssh) p(S)
{{s1}, {52, 83}} Vs s /o 4 e Yo
o | s}, 5} Ys o s /s '/a '/a /s
{{51752}7{31,33}} 1/5 1/4 1/20 1/10 1/10 1/30
{{51,52}75} 3/8 2/8 1/30 1/10 1/10 2/3
{{s1}, {52}, {s3}} Vs s */s */3 s s
{1} {52}, {51,833} 1/10 1/5 1/4 1/2 1/3 1/5
{1} {s2}, S} s s /s /s /s o
s} {s1, 82}, {51, 83} } - - - - - -
3 | {{s1} {s1, 82}, {s2,83}} s %/s /2 '/ /5 o
{{51}7{51,52}75} 1/20 1/20 1/10 1/10 1/10 1/10
{{s1}, {52, 83}, S} Yoo s /s /s /s /s
{{s1, 80}, {51, 83}, {52,831} 1/3 1/3 1/6 1/6 1/6 1/6
{{s1, 82}, {51, 53}, 5} Yo s s /s /s /s
{{s1} {s2}, {s3}, {51,523} 1/3 1/3 1/3 1/3 1/2 1/10
{{s1}, {52}, {s3}, S} Ys o s /o /o /o /s
{{s1} {s2}, {s1, 82}, {51, 83} } 1/10 1/10 1/6 1/4 1/10 1/10
{1} {52}, {51, 52}, 5} WAURRYAT) s /s /s /s
g | Uik {sa) {sn 8}, {0,881} s %/s /o /2 Yo /a0
s} {s2} {s1, 83}, 5} 1/5 2/5 1/2 1/2 1/6 l/3
{{s1}h {s1, 82}, {51, 53}, {52, 831} Yo Y '/s /10 Yoo o
{{s1} {s1, 82}, {51, 83}, S} 1/5 1/3 1/6 1/6 1/6 1/3
{{s1}, {51, 52}, {52, 83}, S} 1/2 1/4 1/3 1/10 1/10 1/3
{{51752}-,{31,33}7{32733}75} 1/3 1/3 1/10 1/10 1/10 1/3
stk {s2}: {ss}: {51, 52}, {51, 83} Vs s /s o o s
s} {s2}, {s3} {s1, 52}, 5} 1/5 1/5 1/5 1/3 1/3 1/3
5 {{s1}, {s2}, {51, 52}, {51, 83}, {52, 83} } 1/5 1/5 1/5 1/2 1/6 1/6
{sih {s2} {s1, 82}, {51, 83}, S} /s /s /s /o /s /s
{{s1}, {s2}, {51, 83}, {52, 83}, S} 2/5 1/5 1/5 1/3 1/6 1/3
{{s1}: {s1, 82}, {51, 83}, {52, 83}, S} YYs /s /s /e /s /s
s} {s2}, {83}, {s1, 52}, {51, 83}, {52, 83} } 1/3 1/3 1/3 1/3 1/3 1/10
6 | {{s1}, {s2}, {sa}, {51, 82}, {51, 83}, 5} /s /s /4 '/ /o /4
s} {s2}, {s1, 52}, {51, 83}, {52, 53}, S} 1/3 1/3 1/4 1/4 1/10 1/3
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