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Abstract

We study the impact of endogenous attention in a dynamic model of social

media sharing. Each period, a distinct user observes a random story on the

platform and decides whether or not to share it. Users want to share stories that

are true and interesting, but distinguishing true stories from false ones requires

attention. Before deciding whether to share a story, users choose their level

of attention based on how interesting the story is and the platform’s current

proportions of true and false stories. We characterize the limit behavior of

the share of true stories using stochastic approximation techniques. For some

parameter specifications, the system has a unique limit. For others, the limit

is random—starting from the same initial conditions, the platform may end up

with very different proportions of true and false stories and different user sharing

behavior. We present various comparative statics for the limit. Endogenous

attention leads to a counterbalancing force to changes in the credibility of false

stories but can intensify the effects of changes in false stories’ production rate.
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1 Introduction

This paper develops a dynamic model of the spread of misinformation on social media.

Vosoughi, Roy, and Aral (2018) shows that the spread of falsehoods on social media

is mostly due to humans rather than bots, and Pennycook et al. (2021) attributes

the sharing of false news to inattention. Motivated by these empirical findings, our

model assumes that users want to share true stories, but distinguishing false and true

content requires costly attention. Users’ attention depends on the prevalence and

credibility of false stories: They are not willing to spend much effort trying to spot

false stories if the share of false stories in their feed is negligible, but if the share

of false stories is significant and the false stories are superficially plausible, they are

willing to incur a significant cost to distinguish between true and false content. In

turn, users’ attention choices affect the prevalence of false stories as more attentive

users are better at filtering false content. Our goal is to understand the resulting joint

dynamics of users’ attention and platform composition.

In our model, every period, a distinct user randomly draws a story from the stories

on a social media platform and decides whether or not to share it. Users consider two

factors when evaluating a story: its veracity, or truthfulness, and its evocativeness,

or how interesting and stimulating it is.

Before drawing the story, the user chooses their attention level and pays the cost of

attention. Upon drawing the story, they receive a binary signal of the story’s veracity.

False stories are characterized by a credibility measure that captures how true they

appear—when false stories are highly credible, signals about their veracity are less

precise. The precision of the signal is increasing in the user’s chosen attention level.

We assume that the signal’s precision is supermodular in credibility and attention

so that users’ attention is increasing in credibility. If the user decides to share the

story, a fixed number of identical copies are added to the platform. Regardless of

the sharing decision, fixed numbers of true and false stories are exogenously added as

well, which corresponds to original content creation.

We assume that users do not share boring stories and consider two levels of evoca-

tiveness: mildly interesting (M) and very interesting (I). While a story’s veracity is

fixed throughout time, evocativeness is drawn i.i.d (conditional on veracity) for each

user. This captures the idea that different users will find different stories very inter-

esting. We also assume that false stories are more likely to be very interesting.
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Our main object of interest is the share of true stories in the system for each

period n P N, which we denote by yn. Users’ optimal behavior depends on the value

of yn. When yn is sufficiently high, the system is in the sharing region, where users

share all stories for which they receive the signal suggesting the story is true. When

yn is low, the system is in the no sharing region, where users do not share any stories

and do not pay attention. In between, there is an intermediate region, where users

share either only mildly interesting stories or only very interesting stories, depending

on the model parameters.

Using stochastic approximation techniques, we show that yn converges almost

surely and provide a complete characterization of its limit. (Explaining these results

requires reviewing some fairly technical previous work, so we outline them in the

technical summary below.) For some parameter values the limit is unique. For others

it is random, so that starting from the same initial conditions the platform may end

up with significantly different limit shares of true stories and different user behavior

in the limit. This effect is most pronounced when the platform is new and the total

number of stories is small, but it is still present in any finite-sized platform.

We then consider comparative statics of the limit points with respect to the model

parameters. For the quasi steady states, the share of true stories is decreasing in

false story credibility for low credibility levels, but an opposite effect may arise when

credibility is high. The intuition is that while false stories of high credibility are harder

to identify, users also pay more attention to them. When credibility is high, user

responses to an increase in credibility may more than compensate for the direct effect

of this increase, thereby leading to an increase in the limit share of true stories. The

comparative statics imply that producers of false stories may choose low credibility

levels even when credibility is free. They also imply that platforms that aim to

counter the spread of false news by fact-checking false stories might be better off not

fact-checking at all than fact-checking only a small share of stories, because increasing

the share of stories flagged as false leads users to put more trust in stories that were

not flagged.

We find that the limit share of true stories in the quasi steady states may be either

increasing or decreasing in a measure of the reach on the platform—the number of

friends who will see a shared story—and in the probability that false stories are

very interesting. Specifically, increasing the probability that false stories are very

interesting leads to a decrease in the share of true stories when users only share very
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interesting stories, an increase in the share of true stories when users only share mildly

interesting stories, and has a non-monotone effect on the share of true stories when

users share both types of stories. We also find that when the production rate of false

stories is sufficiently high, the system has a unique limit in which users do not share

any stories, while when this production rate is sufficiently low the system has a unique

limit in which users share all stories for which they receive the signal suggesting the

story is true. This implies that when moving from high to low false story production

rates, users’ reactions will further increase the limit share of true stories. Thus, while

user responses lead to a counterbalancing force to changes in the credibility of false

stories, they may intensify the effect of changes in false stories’ production rate.

When the system converges to a point where users are indifferent between two

sharing rules, the comparative statics can be different than for the limit points where

the users strictly prefer one rule.1 For example, the limit share of true stories may

be increasing in the cost of attention, because the cost of attention enters negatively

into users’ payoffs while the share of true stories enters positively. So when the cost

of attention increases, the share of true stories required for indifference increases as

well. In contrast, increasing the cost of attention lowers the share of true stories at

the other limit points.

Technical Summary

In the Polya urn model, an urn consists of balls of various colors. In each period one

ball is drawn randomly from the urn, and the ball is returned to the urn along with

one additional ball of the same color. A generalized Polya urn (GPU) allows for the

number of balls added in each period to be random, with probabilities that depend

on the state of the system; see, e.g., Schreiber (2001) and Mahmoud (2008).

In our model, if the users’ sharing rule was fixed, instead of depending on yn,

our system would be a GPU where stories are “balls” and colors are veracity levels.

Schreiber (2001) and Benaim, Schreiber, and Tarres (2004) use stochastic approxi-

mation arguments to show that under fairly general conditions the long-run behavior

of GPUs can be determined by studying the attractors of a deterministic differential

equation. Their results imply that the hypothetical systems where users pick one of

the four contingently-optimal sharing rules and use it for all values of yn have unique

1This is analogous to the difference in comparative statics between pure-strategy and mixed-
strategy Nash equilibrium in games.
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limit shares of true stories. These limits, which we call quasi steady states, are the

unique steady states of the associated differential equations. However, because the

optimal sharing and attention rules are not continuous, our system is not a GPU but

a concatenation of them. For this reason, we extend the literature on the stochastic

approximation of urn models to cover concatenations of a finite number of GPUs.

This lets us relate the long-run behavior of the system to the stable steady states of

the associated limit differential inclusion (LDI), which concatenates the differential

equations associated with GPUs.2

The first step in our analysis of the dynamics of the share of false stories is Theorem

1, which shows that a quasi steady state is a stable steady state for the LDI if and

only if it is within the region where its associated sharing rule is optimal. Depending

on the parameters, there may or may not be one additional stable steady state, the

threshold where the user is just indifferent between sharing and not sharing very

interesting stories.

Next, Theorem 3 in Appendix B uses results from Benaim, Hofbauer, and Sorin

(2005) to show the system almost surely converges to a steady state of the LDI.

Lemma 6 then gives a direct proof that all of the stable steady states of the limit

differential inclusion have positive probability. Lemma 7 complements this by using

a result of Pemantle (2007) to show the system has probability 0 of converging to

an unstable steady state. Together these results imply Theorem 2, which shows that

the system almost surely converges to a stable steady state of the limit differential

inclusion, and determines which of these steady states has positive probability of

being the limit as a function of the parameters and the initial state.

2 Related Literature

Empirical Evidence

In our model, inattention plays a central role in the sharing of false content. Penny-

cook et al. (2021) claims that inattention to veracity is one of the key mechanisms

leading users to share false stories. The paper reports evidence that most people say

it is important to share only accurate news, but nevertheless sometimes share false

news, and finds in a combination of survey experiments and a field experiment on

2A differential inclusion is an equation of the form dx
dt P F pxq for a set-valued function F .
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Twitter (now X) that shifting users’ attention to accuracy increases the accuracy of

the content they share. Pennycook et al. (2020b) finds similar results in the context

of information about COVID-19.3 Of course, inattention is not the sole driver of

the spread of false news; the conclusion discusses how our model can be adapted to

incorporate additional factors such as politically motivated reasoning and ideological

alignment (e.g., Van Bavel and Pereira (2018), Allcott and Gentzkow (2017)) and

digital illiteracy Guess, Nagler, and Tucker (2019).

In our model, users care about two content dimensions—veracity and evocative-

ness. Chen, Pennycook, and Rand (2023) conducts a factor analysis of the content

dimensions affecting sharing decisions in a series of experiments and finds that the

main factors are perceived accuracy, evocativeness, and familiarity, and that the ac-

curacy factor has the most impact on sharing.4 Consistent with this, we assume that

users will not share stories that they know are false even if they are very interesting.

Chen, Pennycook, and Rand (2023) also finds that users ratings on the evocativeness

dimension are negatively correlated with stories’ objective veracity. This supports

our assumption that false stories are more likely to be very interesting.

Theory of Online Misinformation

Bloch, Demange, and Kranton (2018), Papanastasiou (2020), Acemoglu, Ozdaglar,

and Siderius (2023), Merlino, Pin, and Tabasso (2023), and Mostagir and Siderius

(2022) analyze the spread of messages about a fixed binary state across a network.

In most of these papers, users only care about veracity. In Acemoglu, Ozdaglar,

and Siderius (2023), users’ desire to share the story depends on whether they think

most subsequent users will like it, but beliefs and sharing decisions do not depend on

the actions of previous users, and attention is exogenous. In Mostagir and Siderius

(2022), each user initially gets an informative message about the state, and then

repeatedly transmits their posteriors to their neighbors using either Bayesian updating

or DeGroot learning. Merlino, Pin, and Tabasso (2023) analyzes the mean field of

an infinite-population SIS model with two messages corresponding to the two states.

Agents become “infected” when they encounter a message and choose how much effort

3See Pennycook and Rand (2022) for further discussion and references on the inattention based
account and the effectiveness of accuracy nudges.

4The evocativeness factor captures characteristics such as the extent to which content is surpris-
ing, amusing, or provokes anxiety and other negative feelings. Earlier work by Berger and Milkman
(2012) also finds a positive correlation between these characteristics and sharing intentions.
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to spend to verify it, so this model has a form of endogenous attention, but unlike

in our model, its focus is on the proportion of users who think each state is true as

opposed to the shares of true and false stories. In Kranton and McAdams (2024), one

agent initially receives a story and decides whether to transmit it without inspection

or inspect it and only transmit it if it is true. Agents know how often a story has

been shared, and once it has been shared enough, all subsequent agents choose to

share it without inspection.

Dasaratha and He (2023), like our paper, uses stochastic approximation to deter-

mine the evolution of the shares of true and false stories rather than the spread of a

single story. Users only care about veracity and do not know the state of the plat-

form. The paper focuses on the weight the platform places on stories’ virality when

choosing what stories to display to users, and does not feature endogenous attention.5

In contrast, our paper focuses on the interaction between endogenous attention and

platform evolution and includes a taste for sharing more evocative stories.

3 Model

We consider an infinite horizon model of a social media platform. The platform

contains stories with two characteristics (v, e). A story’s veracity is v P tT, F u, with

the story being true if t “ T and false otherwise. A story’s evocativeness is e P tM, Iu,

with the story being mildly interesting if e “ M and very interesting if e “ I. While

a story’s veracity is fixed (the story is either always true or always false), a story

might be mildly interesting to one user and very interesting to another.6 When a

user draws a story, the probabilities of each evocativeness level are:

Prpe “ I|t “ T q “
1

2
;Prpe “ I|t “ F q “ δ.

We assume that δ ą 1
2
, so false stories are more likely to seem very interesting, as in

Chen, Pennycook, and Rand (2023), and that δ ă 1 as otherwise mildly interesting

stories are always true.

The false stories are of credibility θ P p0, 1q. The credibility of a false story de-

5In their model sharing increases the “popularity score” of a story and this popularity score
affects the probability that a story appears in a user’s feed. A similar interpretation can be applied
to our model.

6In reality there are also boring stories that are rarely or never shared, we omit these.
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termines how difficult it is to distinguish from a true story, in a manner that will be

described below. To keep the model simple we assume that all false stories have the

same credibility.

The platform begins operating at time t “ 0 with an exogenous stock of true

and false stories pT0, F0q. In each subsequent period n P N, 1 true story and κ false

stories are exogenously added to the platform, and Tn and Fn respectively denote

the numbers of true and false stories on the platform at the beginning of period n.7

The vector zn :“ pTn, Fnq summarizes the current state of the platform; we use the

notation |zn| :“ Tn `Fn for the total number of stories in period n, and let yn :“ Tn

|zn|

denote the share of true stories.

Each period, a distinct user randomly draws a story among those currently on the

platform and decides whether or not to share it. Before making the sharing decision,

the user sees the story’s evocativeness level and a noisy signal of its veracity. The

precision of this signal depends on the user’s attention as will be explained below.

The parameter ρ describes the reach of shared stories on the platform—if the user

decides to share the story, ρ copies of the story are added to the platform.

In summary, each period the current user:

1. Draws a story, and observes its realized evocativeness.

2. Chooses an attention level a P r0, 1s.

3. Draws a signal whose distribution depends on a.

4. Decides whether to share the story.

5. Receives payoffs.

Finally, 1 new true story and κ new false stories are posted, and ρ copies of the

current story are added if it was shared.

After drawing a story and observing its evocativeness level e, the user chooses a

level of attention a, which will determine the precision of the signals they get regarding

the story’s veracity. The cost of attention level a is β ¨ a2,where β ą 0. The signal is

s P tT 1, F 1u, with probabilities given by

7The analysis would be the same in a continuous-time model where the time the next user arrives
is a random variable.
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PpT 1
|T q “ 1;PpT 1

|F q “ θp1 ´ aq. (1)

The idea behind Equation 1 is that a false story of credibility θ is clearly false

with probability 1 ´ θ, where a clearly false story is one that users will recognize as

false even when they do not pay attention. With probability θ, users will notice the

story is false only if they pay attention. A user’s attention level a is the probability

with which they pay attention. Thus, when a user’s attention level is a and the

credibility of false stories is θ, they will identify a false story as false with probability

PrpF 1|F q “ 1´ θ` θa “ 1´ θp1´ aq. If the story is true the user receives the signal

T 1 with certainty, regardless of their attention level. Thus, signal F 1 reveals the story

is false, while after signal T 1 the user is uncertain about the story’s veracity.

Users choose their attention level after seeing the story’s evocativeness, knowing

the current share of true stories yn.
8 They will never share stories for which they

received the signal F 1, so they either share stories with signal T 1 or do not share at

all. Whether not they share, users pay the cost βa2 of their chosen attention level. If

they do not share they get no additional payoff so their total payoff is ´βa2. If they

share a pv, eq story their additional payoff is

upv, eq “ 1 ´ µ1pv “ F q ` λ1pe “ Iq.

Here we have normalized the payoff to sharing a true and mildly interesting story

to 1. The parameter µ captures the loss from sharing a false story, and parameter

λ captures the additional gain from sharing a story that is very interesting. We

assume both of these are strictly positive, so as in the Chen, Pennycook, and Rand

(2023) experiments, users want to share stories that are true and interesting. For

each evocativeness level e, users either do not share at all and pay no attention, so

their expected payoff is 0, or they share stories if and only if they receive the signal

T 1. In this case their expected payoff to attention level a is

Upa, y, eq :“ Pa,ypT 1
|eqErupv, eq|T 1, es ´ βa2. (2)

8This approximates the situation where users have seen a number of recent stories and the mix
between true and false stories is not changing too quickly.
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Thus, if users share at all they will choose the attention level

apy, eq :“ argmax
aPr0,1s

Upa, y, eq,

and share only signal T 1 stories. We make two parametric assumptions:

Assumption 1. µ ą 1 ` λ.

Assumption 2. pµ ´ 1qθ ă 2β.

Assumption 1 implies users will not share very interesting stories they know are

false, and therefore will not share any story for which they received the signal F 1.9

It remains to analyze, for each evocativeness level, when they will share stories with

signal T 1, which we do in the beginning of the next section. Assumption 2 implies

that users attention levels conditional on sharing stories with signal T 1 are always

given by solutions to first order conditions.

In summary, the model parameters are pρ, κ, θ, µ, β, δ, λq. We assume throughout

that all parameters are strictly positive, satisfy Assumptions 1 and 2, and that θ ă 1

and δ P p1
2
, 1q.

4 Optimal Attention and the Sharing Decision

We are interested in characterizing the composition of stories on the platform over

time, i.e, analyzing the stochastic process tznu, and in particular the share of true

stories tynu. To begin the analysis, we compute how user-optimal attention depends

on the state.

Lemma 1. The functions Upa, y,Mq and Upa, y, Iq are strictly concave, and the

optimal attention levels (conditional on sharing T 1 stories) are:

$

’

’

’

’

&

’

’

’

’

%

0 ď apy,Mq “
pµ ´ 1qp1 ´ yqp1 ´ δqθ

β py ` 2p1 ´ yqp1 ´ δqq
ď 1,

0 ď apy, Iq “
pµ ´ 1 ´ λqp1 ´ yqδθ

β py ` 2p1 ´ yqδq
ď 1.

9This assumption is consistent with Chen, Pennycook, and Rand (2023), which finds that the
content factor with the strongest positive correlation with sharing intentions is perceived accuracy.
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The proof of this and all other results stated in the text are in Appendix A. It

straightforward to verify that apy, eq ă 1 for all y and apy, eq ą 0 if y ă 1, and that

the system can never reach a state where y “ 1. Intuitively, when y “ 1 there is

no need to pay attention, so ap1, Iq “ ap1, Iq “ 0. As y decreases the marginal gain

from paying attention increases, and since the U ’s are strictly concave, da{dy ă 0.

However, when y is close enough to 0 the payoff from the apy, eq is so low that users

prefer not to pay any attention at all. We allow users to randomize when indifferent

between a “ 0 and a “ apy, eq.

As shown in Online Appendix D.3, both optimal attention levels are decreasing in

β and increasing in θ and µ. Attention to very interesting stories apy, Iq is increasing

in δ, while apy,Mq is decreasing in δ, and apy, Iq is decreasing in λ while apy,Mq is

constant in λ. That is, users pay more attention when false stories are very credible

and when the cost to sharing false stories is high, and pay less attention when the

share of true stories is high and when the cost of attention is high. Users pay more

attention to the veracity of very interesting stories (and less attention to the veracity

of mildly interesting stories) when false stories are more likely to be very interesting,

and pay less attention to the veracity of very interesting stories as the payoff to sharing

them increases. These observations underlie the comparative statics in Section 6.

The next lemma shows that there are interior thresholds ŷM , ŷI for each evocative-

ness level such that if the share of true stories is below the corresponding threshold

then users choose a “ 0 and do not share the story, and if the share is above this

threshold users choose the attention level given in Lemma 1 and share if and only if

they received the signal T 1.

Lemma 2. Let V py, eq :“ Upapy, eq, y, eq. V py,Mq and V py, Iq are strictly increasing

in y, and there are (unique) ŷM , ŷI P p0, 1q s.t V pŷM ,Mq “ V pŷI , Iq “ 0.

5 Dynamics

Users’ sharing behavior depends on the share of true stories yn. When yn is below

both thresholds, the expected value from sharing is negative for both evocativeness

levels so users do not share at all. When yn is above both thresholds, users share

both types of stories, and otherwise they share only one type of story, as shown in

Table 1. Note that the system always has three regions: the extreme regions N to the

left and S to the right, and an intermediate region which is either I or M depending
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Table 1: Regions and Sharing Rules

N “ p0,mintŷM , ŷIuq Don’t share any story.
I “ pŷI , ŷMq Share only very interesting (with signal T 1).
M “ pŷM , ŷIq Share only mildly interesting (with signal T 1).
S “ pmaxtŷM , ŷIu, 1q Share both mildly and very interesting (with signal T 1).

on the ordering of ŷI and ŷM . Numerical computations show that both ŷM ă ŷI and

ŷM ą ŷI are possible so the intermediate region can be either of the two.

Let pTRpyq, pFRpyq be the probabilities that the agent shares a true or false story,

respectively, when the current share of true stories is y under the sharing rule of

region R P tN, I,M, Su. These are given by,

pTRpyq, pFRpyq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

y, p1 ´ yqθ p1 ´ δapy, Iq ´ p1 ´ δqapy,Mqq , R “ S

y
2
, p1 ´ yqδθ p1 ´ apy, Iqq , R “ I

y
2
, p1 ´ yqp1 ´ δqθ p1 ´ apy,Mqq , R “ M

0, 0, R “ N.

(3)

For example, pFI pyq “ p1´yqδθ p1 ´ apy, Iqq because in region I users share a false

story if and only if all of the following occur: They drew a false story, the story is

very interesting, and they observed the signal T 1.

The following Markov processes describe how the share of true stories would evolve

if users followed the sharing rule of region R P tN, I,M, Su regardless of the current

share of true stories:

zn`1;R “ zn;R `

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

ˆ

1 ` ρ
κ

˙

, with probability pTRpynq

ˆ

1
κ ` ρ

˙

, with probability pFRpynq

ˆ

1
κ

˙

, w.p 1 ´ pTRpynq ´ pFRpynq.

(4)

Appendix B.3 shows these processes are generalized Polya urns (GPUs), which

lets us apply results from Schreiber (2001) and Benaim, Schreiber, and Tarres (2004).

The law of motion for yn in region R is
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yn`1 ´ yn “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

p1 ´ ynqp1 ` ρq ´ κ

|zn| ` 1 ` κ ` ρ
, with probability pTRpynq

p1 ´ ynq ´ pκ ` ρq

|zn| ` 1 ` κ ` ρ
, with probability pFRpynq

p1 ´ ynq ´ κ

|zn| ` 1 ` κ
, w.p 1 ´ pTRpynq ´ pFRpynq.

(5)

We will use stochastic approximation to approximate the behavior of the discrete

stochastic system tynuně0 by a continuous and deterministic system. If our system

was a single GPU, we could apply results in Schreiber (2001) and Benaim, Schreiber,

and Tarres (2004) to relate its limit behavior to that of an appropriately chosen limit

differential equation. Instead, since our system is a concatenation of the GPUs tzn;Ru,

we relate its limit behavior to that of a differential inclusion, an equation of the form
dx
dt

P F pxq for a set-valued function F . We construct this inclusion, which we will

refer to as the limit differential inclusion or LDI, by pasting together the limit ODEs

associated with the GPUs tzn;Ru. In our model these ODEs are10

gRpyq “ 1 ` pTRpyqρ ´ yp1 ` κ ` ρppTRpyq ` pFRpyqq (6)

For an intuition for the limit ODEs, note that for the process zn;R, the expected

number of incoming true stories in the next period is 1`pTRpyqρ, and the total expected

number of incoming stories in the next period is 1 ` κ ` ρ
`

pTRpyq ` pFRpyq
˘

. So,

gRpyq “ ERr#incoming true stories in period n+1|yn “ ys

´ yERr#total incoming stories in period n+1|yn “ ys.

Thus, according to the limit ODE dy
dt

“ gRpyq, the share of true stories increases

if and only if ERr#incoming true stories in period n+1|yn“ys

ER#total incoming stories in period n+1|yn“ys
ą y, i.e., if and only if the ratio of

expected incoming true stories to total expected incoming stories is greater than the

current share of true stories.

Our LDI is given by
dy

dt
P F pyq, (7)

10See Appendix B.3 for the derivation of this equation.
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where within each region F takes the (singleton) value of the relevant limit ODE:

F pyq “ tgRpyqu for y P R,

and at the thresholds, F takes on all values in the interval between the limit ODEs.

If ŷ is the threshold between regions R and W then:

F pŷq “ rmintgRpŷq, gW pŷqu,maxtgRpŷq, gW pŷqus.

We say that a point y˚ P p0, 1q is a steady state for the LDI if 0 P F pyq. We say

that y˚ is a stable steady state for the LDI if it is a steady state and there exists ϵ ą 0

such that for all y P py˚ ´ ϵ, y˚ ` ϵq we have signpxq “ signpy˚ ´ yq for all x P F pyq.

In our model (but not in general) a steady state that is not stable must be repelling,

i.e., there exists ϵ ą 0 s.t for all y P py˚ ´ ϵ, y˚ ` ϵq we have signpxq “ ´ signpy˚ ´ yq

for all x P F pyq.

We will relate the steady states of the LDI to the behavior of the ODEs in each

region. First we note that each of these ODEs has a globally stable steady state, and

then we characterize their relative positions.

Lemma 3. For all R P tS, I,M,Nu, the ODE dy
dt

“ gRpyq defined over r0, 1s has a

globally stable steady state y˚
R P p0, 1q.

We denote the steady states of dy
dt

“ gRpyq by g˚
Rpyq, and refer to them as quasi

steady states. We refer to ŷI , ŷM as thresholds, and use the term limit points for

values to which yn converges with positive probability.To draw phase diagrams for

the LDI, it suffices to know the positions of ty˚
S, y

˚
I , y

˚
M , y

˚
N , ŷI , ŷMu. The positions of

the thresholds ŷI , ŷM determine the system’s regions, and within each region R the

flow is towards the corresponding steady state y˚
R. Thus, it is important to understand

the possible orderings of these variables.

Lemma 4. minty˚
S, y

˚
Mu ą maxty˚

I , y
˚
Nu

An intuition for Lemma 4 is that, since users are more careful about filtering M

content than I content, when users share an M story the expected inflow of true

stories is greater than when they share an I story. This explains why y˚
S, y

˚
M ą y˚

I .

Additionally, when users share M stories they are successfully filtering false content,

so that the expected inflow of true stories is greater than the inflow without any
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sharing, implying y˚
M ą y˚

N . When users share I stories the inflow of true stories may

be greater than or less than the inflow without any sharing, so neither the relationship

between y˚
S, y

˚
M nor the relationship between y˚

I , y
˚
N has a definite sign, but we show

that y˚
S ą y˚

N .

Numerical calculations described in Online Appendix D.3 show that both y˚
S ă y˚

M

and y˚
S ą y˚

M are possible and similarly that y˚
N can be either greater or less than y˚

I .

Moreover, the relationship between any threshold and any quasi steady state is also

undetermined, i.e., both maxty˚
N , y

˚
I , y

˚
M , y

˚
Su ă mintŷI , ŷMu and minty˚

N , y
˚
I , y

˚
M , y

˚
Su ą

maxtŷI , ŷMu are possible. This means that Lemma 4 is the only restriction on the

ordering of the quasi steady states and thresholds (for simplicity, we rule out the

knife edge case of equality between any of these variables). Because regions M and I

don’t occur at same time, for given parameters only one of y˚
I and y˚

M matters. This

means there are 40 possible strict configurations for the five variables that pin down

the phase diagram: the two thresholds, and the quasi steady states for the system’s

three regions, i.e., y˚
S, y

˚
N and one of y˚

I , y
˚
M .

To see why there are 40 configurations, consider the case ŷI ă ŷM . In this case,

the five variables are tŷI , ŷM , y
˚
N , y

˚
I , y

˚
Su. We can now count the number of orderings

of these variables that satisfy our restrictions. First, we can choose the relative

positions of the two thresholds, giving
`

5
2

˘

“ 10 options. By assumption ŷI ă ŷM ,

and by Lemma 4 shows that k y˚
S ą maxty˚

N , y
˚
I u, so the only degree of freedom is the

order between y˚
N , y

˚
I , for a total of 20 configurations in which ŷI ă ŷM . Similarly,

there are 20 configurations with ŷI ą ŷM .

(a)
REGION N REGION I REGION S

y˚
Sy˚

Ny˚
I ŷMŷI 10

(b)
REGION N REGION I REGION S

y˚
Sy˚

Iy˚
N ŷMŷI 10

(c)
REGION N REGION M REGION S

y˚
My˚

Sy˚
N ŷIŷM 10

(d)
REGION N REGION M REGION S

y˚
Sy˚

My˚
N ŷIŷM 10

Figure 1: Examples of phase diagrams.

Figure 1 presents four examples of phase diagrams. The stable steady states of

the LDI are in green, repelling steady states are in red, quasi steady states that are
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not steady states are in purple, and thresholds are marked by dashed lines. Phase

diagrams for all possible configurations are presented in Figures 2, 3, 4 and 5 in Online

Appendix D.4.

All quasi steady states that are within their regions are stable steady states for

the LDI. As demonstrated in Figure 1, there can be anywhere from 0 to 3 such steady

states; we denote this set as Q “ ty˚
R|y˚

R P regionRu. Since every limit ODE has a

unique steady state, the only other candidate steady states are the thresholds.

For a threshold ŷ to be a stable steady state, the flow above it needs to point

down and the flow below it needs to point up. This requires a “flip” of quasi steady

states: Let W be the region to the left of ŷ, and Z the region to the right, a flip is

y˚
Z ă ŷ ă y˚

W . Flips around ŷI occur when ŷI ă ŷM and y˚
I ă ŷI ă y˚

N (as in phase

diagram (a) in Figure 1), or ŷI ą ŷM and y˚
S ă ŷI ă y˚

M . Online Appendix D.3 shows

that both cases are possible, and Lemma 4 implies that flips cannot occur around

ŷM . This implies the following characterization of the set S of steady states.

Theorem 1. Either (a) S “ Q Y tŷIu, or (b) S “ Q. Case (a) obtains if and only

if ŷI ă ŷM and y˚
I ă ŷI ă y˚

N or ŷI ą ŷM and y˚
S ă ŷI ă y˚

M .

Since behavior in the no sharing region (N) is deterministic—exactly 1 true story

and κ false stories are added every period—if the system starts in region N and

y˚
N P N then yn Ñ y˚

N “ 1
1`κ

deterministically. Otherwise, yn converges to any stable

steady state with positive probability.

Theorem 2. yn converges almost surely to a point in S. If y˚
N P N and y0 P N

then yn converges to y˚
N . Otherwise, for all y

˚ P S there is positive probability that yn

converges to y˚.

The proof of Theorem 2 has three parts. First, Theorem 3 in Appendix B shows

that yn almost surely converges to a steady state of the LDI. Second, Lemma 6 shows

that every steady state has positive probability of being the limit point. Finally,

Lemma 7 shows that the system almost surely does not converge to a repelling state.

Detailed Proof Summary

Theorem 3 in Appendix B relates the limit behavior of concatenations of GPUs to the

asymptotic behavior of the differential inclusions that concatenate the corresponding
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ODEs. Applied to our system, the theorem implies that the limit set of yn, Lpynq “
Ş

mą0 tyn : n ą mu, is almost surely a steady state of the LDI.11

To prove Lemma 6, that there is positive probability of convergence to every stable

steady state, we first show that yn has positive probability of converging to any y˚
R

conditional on starting from states zm with |zm| sufficiently large and ym sufficiently

close to y˚
R. This claim is true for a counterfactual process that follows the sharing

rule of region R everywhere, because that process converges almost surely to y˚
R.

This implies that the claim is also true for yn, because: i) when yn is in region R

it follows the same law of motion as the counterfactual process, and ii) as we show,

starting from a state zm with |zm| sufficiently large and ym sufficiently close to y˚
R

the counterfactual process (and therefore also yn) has positive probability of never

leaving region R. We complete the proof for the quasi steady states by showing that

the system has positive probability of arriving at a state zm from which convergence

occurs with positive probability. The proof for the case where the stable steady state

is ŷI is similar but uses a different counterfactual process.

Finally, the proof of Lemma 7, that yn almost surely does not converge to a

repelling steady state, uses Theorem 4 in Appendix B, which shows that a sufficient

condition for nonconvergence to a repelling steady state is that there is a positive

uniform lower bound on the noise in the stochastic process. Intuitively, noise jiggles

yn away from the steady state, and because the steady state is repelling, the drift of

the process will tend to move it further away.

Discussion

Our simplified representation of platform dynamics allows for rich limit behavior.

Our finding that the limit share of true stories is random, though not mathematically

surprising within the context of generalized urns, has notable implications for the

evolution of platform composition. It implies that starting from the same initial

platform composition and parameters, the system can end up at very different limits

in terms of both the share of true stories and users’ limit actions. For instance, in some

cases the system has positive probability of converging to any of three limits: One in

which the share of true stories is low and users do not share at all (since the probability

11Here overline denotes the closure. The proof of Theorem 3 extends a result in Schreiber (2001)
on continuous-time interpolations and perturbed solutions, and then applies a result in BHS that
characterizes limits of perturbed solutions.(See appendix B for definitions of these terms.)
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of sharing a false story is high), one in which the share of true stories is intermediate

and users share only stories with one evocativeness level (very interesting/mildly

interesting), and one in which the share of true stories is high and users share both

very interesting and mildly interesting stories. This path-dependence suggests that

the long-run outcome can be influenced by shocks that add stories to the platform,

and that such shocks will be more likely to change limit behavior if they occur early,

when the overall number of stories is small.12

6 Comparative statics

The previous section characterized the set of limit points for every parameter spec-

ification; now we study how the the limit points change with the parameters. Since

all candidate limit points are roots of continuously differentiable functions, we can

apply the implicit function theorem to obtain comparative statics of these points with

respect to all parameters.13 It is straightforward to verify that y˚
N “ 1

1`κ
, so this can-

didate limit point is decreasing in κ and constant in all other parameters. Theorems

5-8 in Online Appendix D.2 present comparative statics for each of the others. We

now discuss the main takeaways from these theorems.

All candidate limit points are increasing µ. That is, increasing the penalty for

sharing false stories increases the limit share of true stories. Additionally, any limit

point that is a quasi steady state is decreasing in κ and, with the exception of y˚
N ,

is decreasing in β. This is also intuitive: Increasing the cost of attention or the

exogenous inflow of false stories decreases the share of true stories on the platform.

It is less intuitive that a limit point can be increasing in β or constant in κ, but

both of these arise when the limit point is ŷI . Recall that ŷI is the point where users

are exactly indifferent between sharing and not sharing very interesting stories. This

point is increasing in β because users’ payoffs are decreasing in the cost of attention

and increasing in the share of true stories. Hence, when β goes up, the share of true

stories required for indifference needs to go up as well to compensate for the utility

loss. ŷI does not depend on κ, since the exogenous inflow of false stories is is not an

argument in users’ utility functions. However, as we show below, when κ is sufficiently

12The long-run outcome is not changed by these additions when there is a unique stable steady
state.

13Each quasi steady is the root of its respective limit ODE, and the thresholds are the roots of
their respective value functions.
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large ŷI will not be a limit point.

Table 2: Comparative Statics for κ

y˚
M , y

˚
S, y

˚
I Decreasing.

ŷI Constant.

Table 3: Comparative Statics for β

y˚
M , y

˚
S, y

˚
I Decreasing.

ŷI Increasing.

The quasi steady states y˚
N and y˚

I are constant in λ; all other candidate limit

points are decreasing in λ. Recall that λ is the additional payoff gain to sharing a

very interesting story compared to a mildly interesting story. Thus, as λ increases,

users pay less attention to the veracity of very interesting stories, which leads to

a decrease in the share of true stories in any limit point where users share very

interesting stories. It is also easy to show that when λ is sufficiently large users will

share very interesting stories in the limit. The interpretation is straightforward: As

users care more about the evocativeness/sensationalism of stories, the limit share of

false stories increases. Comparative statics with respect to the remaining parameters

are more nuanced. We discuss each of them in turn:

The role of θ

Table 4: Comparative Statics for θ

y˚
M Decreasing for θ ă θM and increasing for θ ą θM , where θM P p0, 1s.
y˚
S Decreasing for θ ă θS and increasing for θ ą θS, where θS P p0, 1s.
y˚
I Decreasing for θ ă θI and increasing for θ ą θI , where θI P p0, 1s.
ŷI Increasing.

Recall that θ, the “credibility” of false stories, determines how hard it is to distin-

guish between a true story and a false one. When θ increases it is harder to identify

false stories but users are aware of this and also pay more attention (both apy, Iq and

apy,Mq are increasing in θ). This leads to two opposing forces on the limit share of

true stories, and our model predicts that either one can prevail: The candidate limit

points y˚
S, y

˚
M and y˚

I are decreasing in θ up to a point and then increasing in θ, so
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for sufficiently large values of θ the increase in attention more than compensates for

the increase in credibility.14 The candidate limit point ŷI behaves differently, as it is

always increasing in θ: Users’ payoffs from sharing are decreasing in θ so ŷI needs to

increase to maintain indifference.

Another interpretation of θ is that the social media platform implements a fact-

checking scheme that never mislabels true stories as false, with θ the probability

that a false story is not flagged as false. Under this interpretation, the comparative

statics of the quasi steady states with respect to θ imply that if flagging rates are low,

marginally improving them may have unintended consequences. Again, the intuition

relates to a counterbalancing force driven by attention choices. When more stories

are flagged, users pay less attention. This means they are more likely to share stories

that have not been flagged, which can lead to an overall increase in the limit share

of false stories. The comparative statics for the quasi steady states ty˚
S, y

˚
I , y

˚
Mu are

a manifestation of the “implied truth effect” empirically demonstrated in Pennycook

et al. (2020a), where false content that is not flagged as false is considered validated

and seen as more accurate than in the case where no content is flagged. Our results

show that this effect can generate a non-monotonic relationship between flagging rates

and the share of true stories.15 Finally, the comparative statics with respect to ŷI

imply that the limit share of true stories may be everywhere decreasing in the flagging

rate, through the constraint that users are indifferent, a mechanism distinct from the

implied truth effect.

The role of δ

Table 5: Comparative Statics for δ

y˚
M Increasing.
y˚
S Decreasing for δ close to 1

2
, and increasing for δ close to 1.

y˚
I Decreasing.
ŷI Increasing.

Increasing δ means false stories are more likely to be very interesting, so the

14The comparative statics in Table 4 allow for the case that a quasi steady state y˚
R is everywhere

decreasing in θ (this is the case if θR “ 1). However, Online Appendix D.3 shows that all quasi
steady states except y˚

N can be non-monotone in θ when they are limit points.
15We find that no flagging can lead to more accurate beliefs than poor flagging. In Acemoglu,

Ozdaglar, and Siderius (2023), a regulator who cares about the accuracy of users’ beliefs may censor
less misinformation than is technologically feasible, but will always prefer some censorship to none.
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comparative statics for y˚
I , y

˚
M are intuitive—the limit share of true stories decreases

(increases) in δ when users share only very interesting (mildly interesting) stories.

The quasi steady state y˚
S, where users share both types of stories, decreases in δ

when δ is close to 1
2
, and increases in δ when δ is close to 1. Appendix D presents

numerical examples where y˚
S is both decreasing and increasing in δ when it is a limit

point. Intuitively, the non-monotonicity arises because when δ is close to 1
2
users

are sharing more very interesting stories than mildly interesting stories, since both

types of stories are almost equally likely to be false and very interesting stories have

additional value. In this case, the comparative statics with respect to δ are similar to

those comparative statics for y˚
I , where users are only sharing very interesting stories.

As δ moves closer to 1, the stories that users share are more likely to be mildly

interesting and comparative statics with respect to δ eventually become similar to

those for y˚
M . Finally, ŷI is increasing in δ because for a fixed yn, increasing δ leads

to a decrease in the value from sharing very interesting stories.16

The role of ρ

Table 6: Comparative Statics for ρ

y˚
M Increasing.
y˚
S Increasing.
y˚
I Increasing if 1

2
ą δθ p1 ´ apy, Iqq, decreasing if the inequality is reversed.

ŷI Constant.

Candidate limit points are increasing in the reach parameter ρ when users are

successfully filtering false content, i.e., when the share of true stories shared (out of

all true stories) is greater than the share of false stories shared (out of all false stories).

The only case where this may not happen is if the system is in region I. In this case,

users are sharing 1
2
of all true stories and δθp1 ´ apy, Iqq of all false stories. We find

that both δθp1 ´ apy, Iqq ą 1
2
and δθp1 ´ apy, Iqq ă 1

2
are possible, and that both can

occur when y˚
I P I, so that y˚

I can be either increasing or decreasing in ρ when it is a

limit point. Thus, in the model, increasing the reach of shared stories may contribute

16This can lead to a counter-intuitive situation where asymptotically users only share very in-
teresting stories, but when very interesting stories become more likely to be false the limit share of
true stories increases. This happens when ŷI is a limit point and it is between regions N and I (as
in phase diagram (a) in Figure 1) so users are mixing between sharing very interesting stories and
not sharing.
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to the spread of false news only when users put high value on sharing very interesting

stories, and there are enough false stories in the system so that users are better off

not sharing mildly interesting stories.

The composition of S
Making general statements about how the composition of S varies with parameters

is challenging given the large number of possible configurations. One clear example is

the effect of κ, the production rate of false stories. We find that the thresholds are con-

stant in κ and all quasi steady states y˚
R are decreasing in κ. Additionally, fixing values

for the other parameters, for any quasi steady state y˚
R we have limκÑ0 y

˚
Rpκq “ 1 and

limκÑ0 y
˚
Rpκq “ 0, because when the number of false stories produced is sufficiently

large the sharing decisions become inconsequential. Thus, for sufficiently large values

of κ all quasi steady states fall in the no sharing region and the unique limit point

is y˚
N , and for sufficiently small values of κ all quasi steady states fall in the sharing

region and the unique limit point is y˚
S. In other words, there are values 0 ă κ1 ă κ2

such that when κ ď κ1, SF “ ty˚
Su and when κ ě κ2, SF “ ty˚

Nu. Thus, increasing the

production rate of false stories from κ ď κ1 to κ ě κ2 will change users limit behavior

from sharing both very interesting and mildly interesting stories to not sharing at all.

Since we saw above that when users are sharing stories of both evocativeness levels

they are successfully filtering false content, the exogenous decrease in the share of

incoming stories that are true is amplified by user behavior.17

7 Conclusion

This paper analyzes a model of the sharing of stories on a social media platform

when users’ attention levels are endogenous and depend on the mix of true and false

stories. The share of true stories converges almost surely, but the realized limit point

is stochastic, and different possible limits have very different user sharing behavior.

This randomness of the limit implies that the type of stories users happened to be

exposed to in the early days of the platform and their subsequent sharing decisions

can have long-term implications.

The limit share of true stories may be either increasing or decreasing in each of

17Relatedly, some changes in κ will lead to discontinuous jumps in the distribution of limnÑ8 yn.
This happens when a quasi steady state crosses a threshold so that it (or the threshold) is no longer
a limit point.
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the following parameters: the cost of attention, the credibility of false stories, the

probability that false stories are very interesting, and the reach of shared stories.

Although endogenous attention creates a counterbalancing force to changes in the

credibility/flagging of false stories, it can intensify the effect of producing more false

stories. This suggests that interventions that target producers of false news might be

more efficient than attempts to stop the spread of false news already on the platform.

Our model captures many important features in a tractable framework, and parts

with most of the literature by tracking the evolution of the entire platform rather than

the spread of a single story. Its key simplifying feature is that it has a one-dimensional

state space. We maintain this feature while considering two-dimensional story char-

acteristics by assuming that only a story’s veracity is fixed while its evocativeness is

drawn every period. It would be straightforward to analyze variations that preserve

this structure. For instance, Allcott and Gentzkow (2017) shows that education, age,

and total media consumption are strongly associated with discernment between true

and false content. This user heterogeneity can be incorporated into our model by

having the user’s type drawn randomly every period. Allcott and Gentzkow (2017)

also finds that in the run-up to the 2016 election, both Democrats and Republicans

were more likely to believe ideologically aligned articles than nonaligned ones. Such

partisan considerations can be incorporated by having both the user’s and story’s par-

tisanship drawn every period, and including the relation between them in the users’

payoffs.

Other important features of social media behavior could in principle be handled

with similar techniques but a larger state space. Models where some stories are

always more interesting or where users care about additional (fixed) story character-

istics could be analyzed as a concatenation of urn models with more colors of balls.

Extending our stochastic approximation arguments to these settings is straightfor-

ward, but analyzing the associated deterministic continuous-time dynamics is more

complex as they would be described by differential inclusions in two or more dimen-

sions. Yet other features do not fall within the urn-based formulation described here.

For example, our model does not track the number of times an individual story has

been shared, so it does not capture the “illusory truth” effect described in Pennycook,

Cannon, and Rand (2018), where users perceive stories they have seen many times

as more likely to be true.
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Appendix A: Proofs

Proof of Lemma 1.

When v “ T , s “ T 1 with probability 1 and e “ I with probability 1
2
. When

v “ F , e “ I with probability δ. Thus,

Pa,ypT 1, T |Iq “
Pa,ypT 1, T, Iq

Pa,ypIq
“

y
2

y
2

` p1 ´ yqδ
“

y

y ` 2p1 ´ yqδ
.

Similarly, Pa,ypT 1, T |Mq “
y

y ` 2p1 ´ yqp1 ´ δq
, Pa,ypT 1, F |Iq “

2p1 ´ yqδθp1 ´ aq

y ` 2p1 ´ yqδ
,
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and Pa,ypT 1, F |Mq “
2p1 ´ yqp1 ´ δqθp1 ´ aq

y ` 2p1 ´ yqp1 ´ δq
. By (2), the expected payoff when at-

tention is a, evocativeness is M and the user will share the story if and only if they

receive the signal T 1 is,

Upa, y,Mq “ Pa,ypT 1, T |MqupT,Mq ` Pa,ypT 1, F |MqupF,Mq ´ βa2.

Since upT,Mq “ 1, and upF,Mq “ 1 ´ µ, we have

Upa, y,Mq “
y ´ 2pµ ´ 1qp1 ´ yqp1 ´ δqθ

y ` 2p1 ´ yqp1 ´ δq
`

2pµ ´ 1qp1 ´ yqp1 ´ δqθ

y ` 2p1 ´ yqp1 ´ δq
a ´ βa2.

Similarly, since upT, Iq “ 1 ` λ and upF, Iq “ 1 ` λ ´ µ

Upa, y, Iq “
p1 ` λqy ´ 2pµ ´ 1 ´ λqp1 ´ yqδθ

y ` 2p1 ´ yqδ
`

2pµ ´ 1 ´ λqp1 ´ yqδθ

y ` 2p1 ´ yqδ
a ´ βa2.

The functions Upa, y, Iq, Upa, y,Mq are strictly concave in a. Taking first order

conditions we find that they are maximized at apy, Iq, apy,Mq respectively as defined

in Lemma 1. Finally, using Assumptions 1 and 2 it straightforward to verify that

apy, Iq, apy,Mq P r0, 1s.

The proof of Lemma 2 is standard and relegated to the Online Appendix D.

Proof of Lemma 3. First, note that by the definition of gRpyq in (6), for all

R P tS, I,M,Nu we have gRp0q “ 1 and gRp1q “ ´κ. This follows from gRp0q “

1`pTRp0qρ and pTRp0q “ 0 for all R, and gRp1q “ ´κ´pFRp1qρ and pFRp1q “ 0 for all R.

For R “ N the ODE takes the simple form gNpyq “ 1 ´ p1 ` κqy and the conclusion

follows immediately with y˚
N “ 1

1`k
. For the other regions, it suffices to prove that

g3
Rpyq ą 0 for all y P r0, 1s. Indeed, for gRpyq to have more than one root in r0, 1s

it must have a local minimum that is greater than the first root, followed by a local

maximum (between the second root and y “ 1). So, there need to be 0 ă w ă z ă 1

such that g2
Rpwq ě 0 while g2

Rpzq ď 0 which cannot be the case if g3
Rpyq ą 0 for all

y P r0, 1s. The derivatives are
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g3
S pyq “

12θ2ρ

β

ˆ

δ3pµ ´ 1 ´ λq

py ` 2p1 ´ yqδq4
`

p1 ´ δq3pµ ´ 1q

py ` 2p1 ´ yqp1 ´ δqq4

˙

,

g3
I pyq “

12ρδ3θ2pµ ´ 1 ´ λq

βpy ` 2p1 ´ yqδq4
,

g3
Mpyq “

12ρp1 ´ δq3θ2pµ ´ 1q

βpy ` 2p1 ´ yqp1 ´ δqq4
.

By Assumption 1, all are strictly positive for y P r0, 1s. Stability follows from the

existence of a unique root together with gRp0q “ 1 ą 0, gRp1q “ ´κ ă 0 for all R.

The proof of Lemma 4 is in Online Appendix D. By Lemma 3, to prove y˚
R ą y˚

W

for R,W P tS, I,M,Nu, it suffices to prove that gRpyq ą gW pyq for all y P p0, 1q. The

proof shows that this follows from plugging in the formulas for the ODEs and the

optimal attention levels.

Proof of Theorem 1. That Q Ă S follows immediately from the definitions of

these sets and of F . Since each limit ODE has unique steady state, the only other

possible members of S are the thresholds between the regions, so S Ă Q
Ť

tŷI , ŷMu.

A threshold ŷ is a stable steady state if for all y P pŷ ´ ϵ, ŷ ` ϵq we have signpxq “

signpŷ ´ yq for all x P F pyq. This holds only if there is a “flip” of quasi steady

states: Let W be the region to the left of ŷ, and Z the region to the right, a flip is:

y˚
Z ă ŷ ă y˚

W . Flips around ŷI occur if and only if one the following holds: ŷI ă ŷM

and y˚
I ă ŷI ă y˚

N ; or ŷI ą ŷM and y˚
S ă ŷI ă y˚

M . In Appendix D we show that both

are possible. We now show that flips cannot occur around ŷM so ŷM R S. There are

two possible cases:

1. ŷI ă ŷM , so the region to the right of ŷM is S and the region to left is I.

2. ŷI ą ŷM , so the region to the right of ŷM is M and the region to the left is N .

In Case 1 a flip cannot occur because by Lemma 4, y˚
S ą y˚

I . In Case 2 a flip cannot

occur because by Lemma 4, y˚
M ą y˚

N .

Proof of Theorem 2. When y˚
N P N and y0 P N , the system follows the law of

motion zn`1 “ zn `

˜

1

k

¸

, so it never leaves the region N and converges determinis-
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tically to y˚
N “ 1

1`κ
. We henceforth assume that y˚

N R N or y0 R N . By Theorem 3 in

Appendix B, the limit set of yn is almost surely internally chain transitive for the LDI

(7). Since the LDI is a one-dimensional autonomous inclusion, its internally chain

transitive sets are simply its steady states, so yn converges almost surely to a steady

state of the LDI. By Lemma 6 below, there is positive probability of convergence to

any stable steady state, and by Lemma 7 there is zero probability of convergence to

an repelling steady state, which completes the proof.

Lemma 6 and Lemma 7 below are used to prove Theorem 2, and Lemma 5 is used

to prove Lemma 6.

Lemma 5. If y˚
N R N then for any ϵ ą 0 and y R N such that y P p 1

1`κ`ρ
, 1`ρ
1`κ`ρ

q

the system has a positive probability of arriving at some ym P Bϵpyq starting from any

initial state zn.

Proof. Since the number of stories added each period is bounded, there exists some

nϵ P N such that |yn`1 ´ yn| ă ϵ whenever |zn| ą nϵ. Since |zn| Ñ 8 we can assume

w.l.o.g. that the initial state zn satisfies |zn| ą nϵ. For such zn, we consider two

possible cases: yn ă y and yn ą y.

If yn ă y then y ă
1`ρ

1`κ`ρ
implies that if the user shares a true story in period n

then yn ă yn`1 ă
1`ρ

1`ρ`κ
.18 Thus, there exists some T ą 0 such that if users share a

true story every period for T periods then yn`T P Bϵpyq.

If yn ą y then, by a similar argument, y ą 1
1`κ`ρ

implies that there exists some

T 1 ą 0 such that if users share false stories for T 1 periods then yn`T 1 P Bϵpyq.

We can assume w.l.o.g. that yn R N , because if yn P N , the assumption y˚
N R N

and the fact that behavior in region N is deterministic imply that surely ym R N

for some m ą n. Since yn R N there is positive probability of sharing a false story

and positive probability of sharing a true story. Also, since region N is always the

leftmost region and y R N then starting from yn ą y and drawing T 1 false stories or

starting from yn ă y and drawing T true stories will not lead the system to enter

region N . Thus there is positive probability of drawing T (T 1) true (false) stories

consecutively so there is positive probability of ym P Bϵpyq for some m ą n.

18Because if a true story story is shared in period n then zn`1 “ zn `

ˆ

1 ` ρ
κ

˙

.
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Lemma 6. If ψ is a stable steady state, there is positive probability that yn Ñ ψ.

Proof of Lemma 6. Let ψ be stable steady state and ϵ ą 0.

Step 1: Defining five auxiliary processes.

The first four auxiliary processes are tzn;Ru for R P tS, I,M,Nu as defined in

(4). Let yn;R be the share of true stories in period n for the process tzn;Ru. The

differential inclusion associated with tzn;Ru is dy
dt

P tgRpyqu. By Lemma 3, this

inclusion has a unique steady state y˚
R, so by Theorem 3, yn;R converges almost

surely to y˚
R. In particular, for any ϵ ą 0 there exists mR P N such that start-

ing from any y in the open ball Bϵpy
˚
Rq, if the total number of stories is greater

than mR, then yn;R has positive probability of remaining in Bϵpy
˚
Rq for ever, i.e.,

P pym;R P Bϵpy
˚
Rq@m ą n | yn;R P Bϵpy

˚
Rq, |zn;R| ą mRq ą 0.

The fifth auxiliary process is used to prove convergence to ŷI when it is a stable

steady state so we define it only for that case. Let L be the region to the left of ŷI

and R the region to the right of ŷI . Since ŷI is a stable steady state, y˚
R ă ŷI ă y˚

L.

Let O be the third region of the system (O is located either to the right of R or to the

left of L). Define an alternative stochastic process tzn;Hu with share of true stories

yn;H , where the law of motion in regions R,L is unchanged but in region O is that

yn;H moves deterministically towards the nearest other region.19Let dy
dt

P FHpyq be

the limit differential inclusion for this alternative process, as defined in Definition 5

in Appendix B. By construction, ŷI is the unique steady state for this inclusion, so

Theorem 3 implies that yn;H converges to ŷI almost surely. In particular, there exists

mH P N such that P pym;H P BϵpŷIq@m ą n | yn;H P BϵpŷIq, |zn;H | ą mHq ą 0.

Step 2: Positive probability of converging to ψ conditional on arriving at an open ball

around it when |zn| is sufficiently large.

Assume w.l.o.g. that ϵ is small enough that Bϵpy
˚
Rq Ă R if ψ “ y˚

R for some region

R and that BϵpŷIq Ă r0, 1szO if ψ “ ŷI (the previous step shows O is the only region

not adjacent to ŷI). When ψ “ y˚
R we have P pym P Bϵpy

˚
Rq@m ą n | yn P Bϵpy

˚
Rq, |zn| ą mRq ą

0, since conditional on yn remaining in Bϵpy
˚
Rq we have yn “ yn;R. The fact that

yn “ yn;R conditional on yn remaining in region R also implies Ppyn Ñ y˚
R|yn P

Bϵpy
˚
Rq @n ą mq “ 1. So, if the system arrives at a state zn such that yn P Bϵpy

˚
Rq and

|zn| ą mR, then yn converges to y˚
R with positive probability. If ψ “ ŷI , an analogous

19So if O is to the right of R then yn;H is decreasing and in region O and if O is to the left of L
then it is increasing in region O.
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argument (replacing yn;R with yn;H), implies that if the system arrives at state zn such

that yn P BϵpŷIq and |zn| ą mH then yn converges to ŷI with positive probability.

Step 3: Positive probability of arriving at such a ball.

We now prove that there is positive probability of arriving at zn such that yn P

Bϵpψq and |zn| ą m where m is as defined above. By (6), for any region R,

y˚
R “

1 ` pTRpy˚
Rqρ

1 ` κ ` ρ ppTRpy˚
Rq ` pFRpy˚

Rqq
.

This implies that 1
1`κ`ρ

ă y˚
R ă

1`ρ
1`κ`ρ

: the first inequality is immediate and the

second is equivalent to ρ
`

κp1 ´ pTRpy˚
Rqq ` pFRpy˚

Rqp1 ` ρq
˘

ą 0, which always holds.

Since any stable steady state is either is a quasi steady state or a threshold bounded

above and below by quasi steady states, the above implies that

1

1 ` κ ` ρ
ă ψ ă

1 ` ρ

1 ` κ ` ρ
@ψ P S. (8)

By hypothesis either y˚
N R N or y0 R N (or both). If y0 R N and ψ R N the claim

follows immediately from (8) and Lemma 5 below, together with |zn| Ñ 8 surely. If

y0 R N and ψ P N then it must be the case that ψ “ y˚
N and y˚

N is a stable steady

state. In this case, Lemma 5 implies there is positive probability of arriving at suppNq

(which is mintŷI , ŷMu). Additionally y˚
N P N implies there is positive probability of

arriving from suppNq into Bϵpy
˚
Nq. Finally, if y0 P N and y˚

N R N , because the system

converges deterministically towards y˚
N when the system is in region N , the system

surely arrives at yn R N with |zn| ą m after finite time and Lemma 5 implies there is

positive probability of arriving from this yn to Bϵpψq.

Lemma 7. The system almost surely does not converge to a repelling steady state.

Proof of Lemma 7.

Since by Lemma 3 all quasi steady states are stable for their associated ODEs,

the only possible repelling steady states for the LDI are the thresholds ŷI , ŷM . Let

ŷ be a repelling steady state. Let A denote the event “yn P N infinitely often” and

let AC denote its complement. We will prove that Ppyn Ñ ŷq “ 0 by proving that if

PpAq ą 0 then Ppyn Ñ ŷ|Aq “ 0, and if PpACq ą 0 then Ppyn Ñ ŷ|ACq “ 0.

Assume PpAq ą 0 and consider a realization where yn P N infinitely often. If

ŷ is not adjacent to region N then yn P N i.o. rules out convergence to ŷ. If ŷ is
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adjacent to region N , then by the instability of ŷ it must be the case that y˚
N P N .

But then, if yn P N for some n then yn converges (deterministically) to y˚
N ‰ ŷ. Thus,

if PpAq “ Ppyn P N i.oq ą 0, then Ppyn Ñ ŷ|Aq “ 0.

We now apply Theorem 4 in Appendix B to prove that if PpACq ą 0 then Ppyn Ñ

ŷ “ 0|ACq “ 0. Assume PpACq ą 0 and consider a realization where yn P N at

most finitely often, so there exists m P N such that yn R N for all n ą m. To apply

Theorem 4 we need to verify that Erξ`
n |Fns are uniformly bounded below by a positive

number, where ξn`1 :“ pyn`1 ´ yn ´ Eryn`1 ´ yn|znsq|zn|, ξ`
n :“ maxt0, ξnu and Fn is

the σ-algebra generated by pz1, ..., znq.

Consider the law of motion for yn in Equation 5. Denoting ∆T “
p1´ynqp1`ρq´κ

|zn|`1`κ`ρ
,∆F “

p1´ynq´pκ`ρq

|zn|`1`κ`ρ
,∆O “

p1´ynq´κ
|zn|`1`κ

, we have ∆T ą ∆O ą ∆F , so that when yn is in region R,

Erξ`
n`1|Fns ě pTRpynq

¨

˝∆T ´
ÿ

iPtT,F,0u

piRpynq∆i

˛

‚|zn| ě pTRpynqp1´pTRpynqqp∆T´∆Oq|zn|.

Now,

p∆T ´ ∆Oq ě
p1 ´ ynqp1 ` ρq

|zn| ` 1 ` κ ` ρ
´

κ

|zn| ` 1 ` κ ` ρ
´

p1 ´ ynq

|zn| ` 1 ` κ ` ρ
`

κ

|zn| ` 1 ` κ ` ρ

“
p1 ´ ynqρ

|zn| ` 1 ` κ ` ρ
, so

p∆T ´ ∆Oq|zn| ě
p1 ´ ynqρ

2 ` κ ` ρ
.

Since yn R N from some point onward, by (3), pTRpynq P tyn,
yn
2

u for both of the

adjacent regions R. Thus, for small ϵ ą 0, there exists c ą 0 such that for any

yn P pŷ ´ ϵ, ŷ ` ϵq: pTRpynqp1 ´ pTRpynqq ě c. So, for any yn P pŷ ´ ϵ, ŷ ` eq we have

Erξ`
n`1|Fns ě

cp1´ŷ´ϵqρ
2`κ`ρ

ą 0.

Appendix B: Urn Models

This appendix extends results from Schreiber (2001) and Benaim, Schreiber, and Tar-

res (2004). about Generalized Polya urns (GPUs). A key feature of these urn models

is that the number of balls added each period is bounded, so that as the overall
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number of balls grows the change in the system’s composition between any two con-

secutive periods becomes arbitrarily small. Within each of the regions tN, I,M, Su,

our system behaves like a GPU. To analyze the entire system, we define Piecewise

Generalized Polya Urns (PGPUs), and then combine results on GPUs with results

from BHS that extend the theory of stochastic approximation to cases where the

continuous system is given by a solution to a differential inclusion rather than a dif-

ferential equation. Theorem 3 relates the limit behavior of a PGPU to the limit

behavior of the associated differential inclusion; we use it in the proof of Theorem 2.

Section B.3 explains why the processes tzn;Ru defined in (4) are GPUs and derives the

corresponding limit ODEs. Section B.4 then proves a result about repelling steady

states for limit inclusions that is used in the proof of Theorem 2.

B.1 Definitions and Notation

Given a vector w P R2 define |w| “ |w1|`|w2|. Let tznu “ tpz1n, z
2
nqu be a homogeneous

Markov chain with state space Z2
` (Z` are all the non-negative integers). Let Π :

Z2
` ˆ Z2

` Ñ r0, 1s denote its transition kernel, Πpz, z1q “ Ppzn`1 “ z1|zn “ zq. We

interpret the process as an urn model, with zin the number of balls of color i at time

step n. We now define two types of stochastic processes.

Definition 1. A Markov process tznu as above is a generalized Polya urn (GPU) if:

i. Balls cannot be removed and there is a maximal number of balls that can be

added, that is: For all n: z1n`1 ě z1n, z
2
n`1 ě z2n and there is a positive integer m

such that |zn`1 ´ zn| ď m.

ii. For each w P Z2
` with |w| ď m there exist Lipschitz-continuous maps pw : r0, 1s Ñ

r0, 1s and a real number a ą 0 such that

ˇ

ˇ

ˇ

ˇ

pw
ˆ

z1

|z|

˙

´ Πpz, z ` wq

ˇ

ˇ

ˇ

ˇ

ď
a

|z|

for all nonzero z P Z2
`.

Let yn “
z1n

|zn|
be the share of balls of color 1 (i.e., of true stories.)
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Definition 2. Let txnu be a stochastic process in r0, 1s adapted to a filtration tFnu.

We say that txnu is a (one dimensional) stochastic approximation if for all n P N:

xn`1 ´ xn “ γn pgpxnq ` ξn`1 ` Rnq , (9)

where γn are non-negative with γn Ñ 0,
ř

n γn “ 8, g is a Lipschitz function on R,
Erξn`1|Fns “ 0 and the remainder terms Rn P Fn go to zero and satisfy

ř8

n“1
|Rn|

n
ă 8

almost surely.

The function g is the limit ODE. Schreiber (2001) and Benaim, Schreiber, and

Tarres (2004) derive the limit ODE of a GPU and prove that with this limit ODE the

sequence tynu of the share of balls of color 1 is a stochastic approximation process.

Since we will later consider a system that includes several GPUs we introduce the

notation tzn;ku to refer to a general GPU.

Definition 3. For a GPU tzn;ku with corresponding maps pwk , the corresponding limit

ODE is dy
dt

“ gkpyq where gk : r0, 1s Ñ r0, 1s is given by

gkpyq “
ÿ

wPZ2

pwk pyq
`

w1
´ y|w|

˘

. (10)

B.2 Stochastic Approximation of PGPU’s

This section extends the literature on GPUs to concatenations of GPUs.

Definition 4. A Markov process tznu with transition kernel Π is a piecewise gener-

alized Polya urn (PGPU) if there exists a finite number of GPUs ttzn;kuuKk“1 (each

with kernel Πk), a finite integer K, and an interval partition tIkuKk“1 of r0, 1s, such

that for all z1, if z1

|z|
P intpIkq then Πpz, z1q “ Πkpz, z1q.20

The next definition presents the analog of a limit ODE for a PGPU, which is no

longer a differential equation but a differential inclusion, i.e., a set valued function.

20Note that we allow for an arbitrary law of motion Πpz, z1q for z such that z1

|z|
“ maxpIkq “

minpIk`1q, i.e, when the share of balls of color 1 is the boundary of an interval. The systems we
consider will arrive at such states with probability zero.
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Definition 5. For a PGPU tznu the limit differential inclusion is dy
dt

P F pyq, where

F pyq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

tgkpyqu, y P intpIkq

tg1p0qu, y “ 0

tgKp1qu y “ 1

rmintgkpyq, gk`1pyqu,maxtgkpyq, gk`1pyqus, y “ maxpIkq, 1 ď k ă K

Henceforth, we fix a PGPU tznu comprised of GPUs ttzn;kuuKk“1, with share of

balls of color 1 denoted yn “
z1n

|zn|
and let

dy

dt
P F pyq (11)

be the associated differential inclusion. In order to apply results from BHS, we need

to verify that the paper’s standing assumptions on the inclusion hold. These are:

BHS Standing Assumptions. 1. F has a closed graph.

2. F pyq is non empty, compact, and convex for all y P r0, 1s.

3. There exists c ą 0 such that for all y P r0, 1s, supxPF pyq |x| ď cp1 ` |y|q.

Lemma 8. The inclusion (11) satisfies the standing assumptions in BHS.

Proof. Assumptions 1 and 2 follow immediately from Definition 5. Assumption 3

follows from the fact that the gkpyq are continuous functions defined over compact

sets. Since K is finite there exists some c ą 0 such that |gkpyq| ď c for all y P r0, 1s

and all k P t1, ..., Ku, and so for any y P r0, 1s: supxPF pyq|x| ď c ď cp1 ` |y|q.

To relate the limiting behaviors of yn to the solutions to the differential inclusion

11, define the piecewise affine interpolation of yn by

Yptq “ yn `
t ´ τn
γn`1

pyn`1 ´ ynq, t P rτn, τn`1s, (12)

where τ0 “ 0, τn`1 “ τn ` 1
|zn|

, and γn`1 “ 1
|zn|

.

Definition 6. A continuous function Y : r0,8q Ñ R is a perturbed solution to 11

(or a “perturbed solution to F”) if it is absolutely continuous, and there is a locally

integrable function t ÞÑ Uptq such that
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• limtÑ8 sup0ďhďT |
şt`h

t
Upsqds| “ 0 for all T ą 0

• dYptq
dt

´ Uptq P F pYptqq for almost every t ą 0.

We now show that the continuous time version of yn is a bounded perturbed

solution to (11), and then complete the characterization of the limit of yn by applying

a result in BHS that characterizes the limit sets of perturbed solutions. The next

lemma extends results in Schreiber (2001) from GPUs to PGPUs. 21

Theorem 2.2 (Schreiber (2001)). Let tzn;ku be a GPU. Let ϕk be the flow of the

limit ODE, andYk
ptq the piecewise affine interpolation. On the event tlim infnÑ8

|zn;k|

n
ą

0u, Yk
ptq is almost surely an asymptotic pseudotrajectory for ϕk. In other words for

any T ą 0 limtÑ8 sup0ďhďT |Yk
pt ` hq ´ ϕkpYk

ptq, hq| “ 0.

Lemma 9. Let tznu be a PGPU and (11) its limit differential inclusion, and let Y

be the associated interpolated process given by (12). Then Y is a bounded perturbed

solution to F .

Proof. Since Y is piecewise affine, it is continuous and differentiable almost every-

where and hence absolutely continuous. Define t ÞÑ Uptq by

Uptq “
yn`1 ´ yn
γn`1

´ F̃ pYptqq t P rτn, τn`1s,

where the function F̃ : r0, 1s Ñ R is such that for every y P r0, 1s: F̃ pyq P F pyq. Note

that dY(t)
dt

“
yn`1´yn
γn`1

for t P rτn, τn`1s , so dY(t)
dt

´ Uptq “ F̃ pYptqq P F pYptqq. It

remains to show limtÑ8 sup0ďhďT |
şt`h

t
Upsqds| “ 0 for all T ą 0.

Fix T ą 0 and 0 ď h ď T . Consider
şt`h

t
Upsqds. On the event Ypsq P Ik for all

s P rt, t ` hs we have

ż t`h

t

Upsqds “

ż t`h

t

ˆ

dYpsq

ds
´ F̃ pxq

˙

ds “

ż t`h

t

ˆ

dYk
psq

ds
´
dϕkpYpsq, sq

ds

˙

ds

“ Yk
pt ` hq ´ Yk

ptq ´
`

ϕk
pYptq, hq ´ ϕk

pYptq, 0q
˘

“ Yk
pt ` hq ´ ϕk

pYptq, hq.

Since by Definition 4 a PGPU has a finite number of partition intervals Ik, in

the interval rt, t ` hs the interpolation Y(t) transitions between intervals Ik a finite

21Schreiber (2001) states the theorem for piecewise constant interpolations, but it also applies to
piecewise affine interpolations.
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a number of times. Thus
şt`h

t
Upsqds “

řM
j“1

“

Ykjptjq ´ ϕkjpYptj´1q, hjq
‰

, where

M ą 0 is some integer; t “ t0 ă t1 ă ... ă tM “ t`h; hj “ tj ´ tj´1, and kj P 1, ..., K

for all 1 ď j ď M .22 So from Schreiber (2001)’s Theorem 2.2, for all T ą 0

lim
tÑ8

sup
0ďhďT

|
ż t`h

t

Upsqds| ď

M
ÿ

j“1

ˆ

lim
tÑ8

sup
0ďhďT

|Ykjptjq ´ ϕkjpYptj´1q, hq|
˙

“ 0.

We are now ready to state and prove Theorem 3. The proof combines the previous

results with a direct application of the following theorem:

Theorem 3.6 (BHS). If x is a bounded perturbed solution to F , the limit set of x,

Lpxq “
Ş

tě0 txpsq : s ą tu is internally chain transitive.23

Theorem 3. Let tznu be a PGPU, tynu the share of balls of color 1 and F the associ-

ated limit differential inclusion. Then the limit set of tynu, Lpynq “
Ş

mą0 tyn : n ą mu,

is almost surely internally chain transitive for F .

Proof. By Lemma 9, the interpolation Y is a perturbed solution to F . Note that

it is also bounded since Yptq P r0, 1s for all t ě 0. Thus, Theorem 3.6 in BHS

implies that the limit set of Y is internally chain transitive for F . Note that the

asymptotic behaviors of Yptq and yn are the same by the definition of interpolation,

i.e., Lpynq “ LpYq, which completes the proof.

B.3 The GPUs tzn;Ru

This section shows that the processes tzn;Ru as defined in (4) are GPUs and derive

the formula for their limit ODEs.

Lemma 10. For each R P tN, I,M, Su, tzn;Ru is a GPU with limit ODE given by

(6).

Proof. Let R be one of the four possible regions. To show that tzn;Ru is a GPU we

need to verify the conditions of Definition 1. Condition i) follows directly from (4),

22Note that pM, ptjqMj“0, phjqMj“1, pkjqMj“1q is a random vector.
23BHS extend the definition of internal chain transitivity to differential inclusions.
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with the upper bound m “ 1 ` κ ` ρ. For condition ii), let w1 “

˜

1 ` ρ

κ

¸

, w2 “

˜

1

κ ` ρ

¸

, w3 “

˜

1

κ

¸

, and let pTRpyq, pFRpyq, 1´pTRpyq´pFRpyq respectively be the maps

pw corresponding to these vectors. By (3) all three maps are Lipschitz-continuous.

Let ΠR denote the transition kernel for tzn;Ru. By the law of motion (4), for any

w P tw1, w2, w3u and for any z P Z2
`: ΠRpz, z`wq “ pw

´

z1

|z|

¯

. Since ΠRpz, z`wq “ 0

for any w R tw1, w2, w3u, condition ii) is satisfied.

Next, (3), (4), and (10) imply that the ODE associated with tzn;Ru is

gRpyq “ pTRpyqp1 ` ρ ´ yp1 ` ρ ` κqq ` pFRpyqp1 ´ yp1 ` ρ ` κqq

` p1 ´ pTRpyq ´ pFRpyqqp1 ´ yp1 ` κqq.

Rearranging gives gRpyq “ 1 ` pTRpyqρ´ y
`

1 ` κq ` ρ
`

pTRpyq ` pFRpyq
˘˘

, as in (6).

B.4 Repelling Steady States

This subsection shows that if ψ is a repelling steady state for the LDI, then under a

condition on the noise in the stochastic system, Ppyn Ñ ψq “ 0. Consider a PGPU

tznu, comprised of GPUs tzn;kuKk“1 with associated intervals Ik, where gk is the RHS

of the limit ODE for GPU tzn;ku. Let yn;k “
z1n;k

|zn;k|
. Recall that yn “

z1n
|zn|

and that the

LDI for this PGPU is given by (11). We now add the following assumption, which is

satisfied by the PGPUs in our model:

Assumption 3. Each limit ODE dy
dt

“ gkpyq has a globally stable steady state y˚
k .

Assumption 3 implies that the only possible repelling steady states for the LDI

are the thresholds between the intervals Ik. Define these these as ŷk “ maxtIku for

k “ 1, . . . , K. Finally, let Fn be the σ-algebra generated by pz1, ..., znq, let ξn`1 “

pyn`1 ´ yn ´ Eryn`1 ´ yn|znsq|zn| and denote ξ`
n “ maxt0, ξnu, ξ´

n “ ´mint0, ξnu.

Theorem 4. Let ŷk be the threshold between intervals Ik, Ik`1 and assume that ŷk is

a repelling steady state for the LDI. If there exist ϵ, r ą 0 such that for all n P N:
Erξ`

n |Fns ą r if yn P pŷk ´ ϵ, ŷk ` ϵq, then Ppyn Ñ ŷkq “ 0.

The proof applies the following result:
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Theorem 2.9 (Pemantle (2007)). Suppose txnu is a stochastic approximation

process as defined in Definition 2 except that g need not be continuous. Assume

that for some p P p0, 1q and ϵ ą 0: signpgpxqq “ ´ signpp ´ xq for all x P pp ´ ϵ, p `

ϵq. Suppose further that the martingale terms ξn in the stochastic approximation

equation (9) are such that Erξ`
n`1|Fns,Erξ´

n`1|Fns are bounded above and below by

positive numbers when xn P pp ´ ϵ, p ` ϵq. Then Ppxn Ñ pq “ 0.

Proof of Theorem 4.

Define the function g : r0, 1s Ñ R. By

gpyq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

gkpyq, y P intpIkq

g1p0q, y “ 0

gKp1q y “ 1

gkpyq y “ maxpIkq, 1 ď k ă K

Recall that ξn`1 “ pyn`1 ´ yn ´ Eryn`1 ´ yn|znsq|zn|, and let

Rn “ |zn|Eryn`1 ´ yn|zns ´ gpynq.

Then ξn, Rn are adapted to Fn, Erξn`1|Fns “ 0 and

yn`1 ´ yn “
1

|zn|
pfpynq ` ξn`1 ` Rnq (13)

By Lemma 1 in Benaim, Schreiber, and Tarres (2004), and the fact that yn follows

the same law of motion as yn;k when yn P intpIkq, there exists a real number K ą 0

such that |Rn| ď K
|zn|

. Thus,
ř8

n“1
|Rn|

n
ă 8, so tynu is a stochastic approximation.

By the same Lemma, |ξn| ď 4m where m is the maximal number of balls added

in each period. This implies that Erξ`
n |Fns,Erξ´

n |Fns are bounded from above by

4m. To apply Theorem 2.9, it remains to prove that Erξ`
n |Fns,Erξ´

n |Fns are bounded

from below by a positive number when yn P pŷ ´ ϵ, ŷ ` ϵq. From ξn “ ξ`
n ´ ξ´

n and

Erξn|Fns “ 0, it follows that Erξ`
n |Fns “ Erξ´

n |Fns so it suffices to find a positive

lower bound for Erξ`
n |Fns when yn P pŷ ´ ϵ, ŷ ` ϵq and, by assumption, r ą 0 is such

a lower bound.
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Appendix D: Online Appendix

D.1 Omitted Proofs

Proof of Lemma 2. Plugging the optimal attention levels from (1) back into

Upa, y,Mq, Upa, y, Iq respectively we get,

V py,Mq “
y ´ 2pµ ´ 1qp1 ´ yqp1 ´ δqθ

y ` 2p1 ´ yqp1 ´ δq
`

1

β

ˆ

pµ ´ 1qp1 ´ yqp1 ´ δqθ

y ` 2p1 ´ yqp1 ´ δq

˙2

,

V py, Iq “
p1 ` λqy ´ 2pµ ´ 1 ´ λqp1 ´ yqδθ

y ` 2p1 ´ yqδ
`

1

β

ˆ

pµ ´ 1 ´ λqp1 ´ yqδθ

y ` 2p1 ´ yqδ

˙2

.

(14)

To prove that these value functions are strictly increasing in y, it suffices to show

that Upa, y,Mq, Upa, y, Iq are strictly increasing in y for all a, as then for y2 ą y1 we

have V py1q “ Upapy1q, y1q ă Upapy1q, y2q ď Upapy2q, y2q “ V py2q. And

BUpa, y,Mq

By
“

2p1 ´ δqp1 ` p1 ´ aqθpµ ´ 1qq

py ` 2p1 ´ yqp1 ´ δqq
2 ą 0

BUpa, y, Iq

By
“

2δppa ´ 1qθpλ ´ µ ` 1q ` λ ` 1q

p2δ ´ 2δy ` yq2
“

2δ p1 ` λ ` p1 ´ aqθpµ ´ 1 ´ λqq

py ` 2p1 ´ yqδq2
ą 0,

where the inequalities follows from Assumption 1. To see that both ŷI , ŷM are interior,

note that V p1,Mq “ 1 ą 0, V p1, Iq “ 1 ` λ ą 0, and, by Assumptions 1 and 2,

V p0,Mq “ pµ ´ 1qθ

ˆ

pµ ´ 1qθ

4β
´ 1

˙

ă 0,

V p0, Iq “ pµ ´ 1 ´ λqθ

ˆ

pµ ´ 1 ´ λqθ

4β
´ 1

˙

ă 0.

Proof of Lemma 4. By (6), we have for any R,W P tS, I,M,Nu:

gRpyq ´ gW pyq “ ρ
“

p1 ´ yq
`

pTRpyq ´ pTW pyq
˘

´ y
`

pFRpyq ´ pFW pyq
˘‰

.

1



So gRpyq ą gW pyq if and only if p1 ´ yq
`

pTRpyq ´ pTW pyq
˘

ą y
`

pFRpyq ´ pFW pyq
˘

.

Hence, gSpyq ą gIpyq for all y P p0, 1q because, by (3),

p1 ´ yq
`

pTS pyq ´ pTI pyq
˘

“ p1 ´ yq
y

2

y
`

pFS pyq ´ pFI pyq
˘

“ yp1 ´ yqθp1 ´ δq p1 ´ apy,Mqq ,

and, for y P p0, 1q,

p1 ´ yq
y

2
ą yp1 ´ yqθp1 ´ δq p1 ´ apy,Mqq ðñ

1

2
ą θp1 ´ δqp1 ´ apy,Mqq

which always holds since p1 ´ δq ă 1
2
, θ ă 1 and apy,Mq ď 1. To see that gMpyq ą

gIpyq for all y P p0, 1q note that
`

pTMpyq ´ pTI pyq
˘

“ 0 and y
`

pFMpyq ´ pFI pyq
˘

“

yp1 ´ yqθ pp1 ´ δq p1 ´ apy,Mqq ´ δ p1 ´ apy, Iqqq , so gMpyq ą gIpyq if and only if

p1 ´ δq p1 ´ apy,Mqq ă δ p1 ´ apy, Iqq .

Fix y P p0, 1q and let ℓpδq “ p1 ´ δq p1 ´ apy,Mqq ; rpδq “ δ p1 ´ apy, Iqq. We will

prove ℓpδq ă rpδq for all δ P r1
2
, 1q by showing that ℓp1

2
q ă rp1

2
q and ℓpδq is decreasing

in δ while rpδq is increasing in δ. First,

rp1{2q “
1

4

ˆ

2 ´
θp1 ´ yqpµ ´ 1 ´ λq

β

˙

ą
1

4

ˆ

2 ´
θp1 ´ yqpµ ´ 1q

β

˙

“ ℓp1{2q.

Now,
Bℓpδq

Bδ
“

2p1 ´ δqθpµ ´ 1qp1 ´ yqp1 ´ δp1 ´ yqq

βpy ` 2p1 ´ yqp1 ´ δqq2
´ 1

Assumption 2 and λ ă 1 imply that θpµ´ 1q ă 2β. Therefore, it suffices to prove

4p1 ´ δqp1 ´ yqp1 ´ δp1 ´ yqq ă py ` 2p1 ´ yqp1 ´ δqq
2, which simplifies to y2 ą 0.

Hence, BLpδq

Bδ
ă 0. Finally, by Assumption 1,

Brpδq

Bδ
“

2δθp1 ´ yqpµ ´ 1 ´ λqpδ ` yp1 ´ δqq

βpy ` 2p1 ´ yqδq2
ą 0,

which completes the proof that minty˚
S, y

˚
Mu ą y˚

I .

To see that minty˚
S, y

˚
Mu ą y˚

N , note that gSpyq ą gNpyq if and only if

p1 ´ yqy ą yp1 ´ yqθ p1 ´ δapy, Iq ´ p1 ´ δqapy,Mqq ,

2



which always holds. Finally, gMpyq ą gNpyq if and only if

p1 ´ yq
y

2
ą yp1 ´ yqp1 ´ δqθ p1 ´ apy,Mqq ,

which follows from δ ą 1
2
, θ ă 1.

D.2 Comparative Statics

Theorems 5,6,7 summarize comparative statics for the quasi steady states y˚
S, y

˚
I , y

˚
M

respectively. Theorem 8 summarizes comparative statics for the thresholds ŷI , ŷM .

Theorem 5. The quasi steady state y˚
S is increasing in ρ and µ and decreasing in κ, β

and λ. There exists θS P p0, 1s (whose value depends on the other parameters) such

that y˚
S is decreasing in θ for θ ă θS and increasing in θ for θ ą θS. y

˚
S is decreasing

in δ for δ sufficiently close to 1
2
and increasing in δ for δ sufficiently close to 1.

Proof of Theorem 5. Let y˚
0 P p0, 1q be the unique y P r0, 1s that solves

Gpy˚
0 , r0q “ 0. (15)

Lemma 3 implies that Gpy, r0q ą 0 for y ă y˚
0 and Gpy, r0q ă 0 for y ą y˚

0 so it must

be the case that Gypy˚
0 , r0q ď 0. Moreover, it cannot be the case that Gypy˚

0 , r0q “ 0

because that would imply that y˚
0 is a local maximum for Gyp¨, r0q while the proof of

Lemma 3 shows that the second derivative of this function (the third derivative w.r.t

y of Gpy, r0q) is strictly positive over r0, 1s, so Gypy˚
0 , r0q ă 0.

Since Gpy˚
0 , r0q “ 0 and Gypy˚

0 , r0q ‰ 0, by the implicit function theorem equation

15 defines a function y˚
Sprq : R7 Ñ R in some neighborhood of r0, such that y˚

Sprq is

the unique steady state of the ODE dy
dt

“ gSpyq in r0, 1s, and

∇y˚
Spr0q “ ´

1

Gypy˚
0 , r0q

∇rGpy˚
0 , r0q (16)

Furthermore, since Gypy˚
0 , r0q ă 0, for all x P pρ, κ, θ, µ, β, δ, λq: signp

dy˚pr0q

dx
q “

signpGxpy˚
0 , r0qq. Plugging pTS , p

F
S from (3) into (6) and rearranging yields
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Gpy, rq “ 1 ` pρp1 ´ θq ´ 1 ´ κqy ´ ρp1 ´ θqy2

`
ρypθp1 ´ yqq2

β

ˆ

pµ ´ 1 ´ λqδ2

y ` 2p1 ´ yqδ
`

pµ ´ 1qp1 ´ δq2

y ` 2p1 ´ yqp1 ´ δq

˙

We now solve for the sign of each of the partial derivatives of G.

ρ: Gρpy, rq “ p1 ´ θqyp1 ´ yq `
ypθp1´yqq2

β

´

pµ´1´λqδ2

y`2p1´yqδ
`

pµ´1qp1´δq2

y`2p1´yqp1´δq

¯

ą 0

θ: Gθpy, rq “ ρyp1 ´ yq

´

2θp1´yq

β

´

pµ´1´λqδ2

y`2p1´yqδ
`

pµ´1qp1´δq2

y`2p1´yqp1´δq

¯

´ 1
¯

.

So Gθpy, rq ą 0 if and only if,

θ ą
β

2p1 ´ yq

˜

1
pµ´1´λqδ2

y`2p1´yqδ
`

pµ´1qp1´δq2

py`2p1´yqp1´δqq

¸

Note that the RHS is always positive, so that for sufficiently small θ, y˚
S is decreasing

in θ. However, it is possible that the RHS is below 1 so that for large values of θ the

relationship reverses. See Appendix D for an example.

κ: Gκpy, rq “ ´y ă 0.

µ: Gµpy, rq “
ρypθp1´yqq2

β

´

δ2

y`2p1´yqδ
`

p1´δq2

py`2p1´yqp1´δqq

¯

ą 0.

β: Gβpy, rq “ ´
ρypθp1´yqq2

β2

´

pµ´1´λqδ2

y`2p1´yqδ
`

pµ´1qp1´δq2

y`2p1´yqp1´δq

¯

ă 0.

δ: Gδpy, rq “
2ρypθp1´yqq2

β

”

pµ´1´λqδpy`p1´yqδq

py`2p1´yqδq
2 `

pµ´1qp1´δqpp1´yqδ´1q

py`2p1´yqp1´δqq
2

ı

.

So, fixing all parameters except δ we have signGδpy, rq “ signpspy, δqq, where

spy, δq is the expression in square brackets. Note that spy, 1{2q “ ´
p1`yqλ

4
ă 0 and

spy, 1q “
µ´1´λ
p2´yq2

ą 0 so y˚
S is decreasing in δ for small values of δ and increasing in δ

for large values of δ (recall that we assume δ ě 1
2
).

λ: Gλpy, rq “ ´
ρypθp1´yqδq2

βpy`2p1´yqδq
ă 0.

Theorem 6. The quasi steady state y˚
I is increasing in µ and and decreasing in κ, β, λ

and δ. y˚
I is increasing in ρ if 1

2
ą δθ p1 ´ apy, Iqq and decreasing in ρ when the sign

is reversed, and both cases can arise in region I. There exists θI P p0, 1s (whose

value depends on the other parameters) such that y˚
I is decreasing in θ for θ ă θI and

increasing in θ for θ ą θI .

Proof of Theorem 6. By a similar argument as in the proof of Theorem 5, for all
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x P pρ, κ, θ, µ, β, δ, λq: signp
dy˚

I pr0q

dx
q “ signpGxpy˚

0 , r0qq where now Gpy, rq is given by

Gpy, rq “ 1`

ˆ

ρ

ˆ

1

2
´ δθ

˙

´ 1 ´ κ

˙

y´ρ

ˆ

1

2
´ δθ

˙

y2`ρypδθp1´yqq
2 µ ´ 1 ´ λ

βpy ` 2p1 ´ yqδq
.

We now solve for the sign of each of the partial derivatives of G.

ρ: Gρpy, rq “ yp1 ´ yq

”

1
2

´ δθ
´

1 ´
p1´yqδθpµ´1´λq

βpy`2p1´yqδq

¯ı

.

Let spy, rq denote the expression in square brackets. Then signpGρpy, rqq “

signpspy, rqq so y˚
I is increasing in ρ if spy, rq ą 0 and decreasing in ρ if spy, rq ă 0.

In Appendix D we show that both are possible and can occur when y˚
I P I.

θ: Gθpy, rq “ δρyp1 ´ yq

´

2δθp1´yqpµ´1´λq

βpy`2δp1´yqq
´ 1

¯

.

So, Gθpy, rq ą 0 if and only if

θ ą
βpy ` 2δp1 ´ yqq

2δp1 ´ yqpµ ´ 1 ´ λq
.

Note that the RHS is always positive, so that for sufficiently small θ, y˚
I is decreasing

in θ. However, it is possible that the RHS is below 1 so that for large values of θ the

relationship reverses. See Appendix D for an example.

κ: Gκpy, rq “ ´y ă 0.

µ: Gµpy, rq “
ρypδθp1´yqq2

βpy`2p1´yqδq
ą 0.

β: Gβpy, rq “ ´ρypδθp1 ´ yqq2
pµ´1´λq

β2py`2p1´yqδq
ă 0

δ: Gδpy, rq “ ρθyp1 ´ yq

”

2δθp1´yqpy`δp1´yqqpµ´1´λq

βpy`2δp1´yqq
2 ´ 1

ı

ă 0.

For the inequality, let fpyq denote the expression in square brackets. It suffices to

prove fpyq ă 0 for all y. This follows from fp0q “
θpµ´1´λq

2β
´ 1 ă 0 (by Assumption

2), and f 1pyq “ ´
2δθypµ´1´λq

βpy`2δp1´yqq
3 ă 0.

λ: Gλpy, rq “ ´
ρypδθp1´yqq2

βpy`2p1´yqδq
ă 0.

Theorem 7. The quasi steady state y˚
M is increasing in µ, λ, ρ, and δ and decreasing

in κ and β. There exists θM P p0, 1s (whose value depends on the other parameters)

such that y˚
M is decreasing in θ for θ ă θM and increasing in θ for θ ą θM .

Proof of Theorem 7. By a similar argument as in the proof of Theorem 5 we

have for all x P pρ, κ, θ, µ, β, δ, λq: signp
dy˚

M pr0q

dx
q “ signpGxpy˚

0 , r0qq where now Gpy, rq
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is given by

Gpy, rq “ 1 `

ˆ

ρ

ˆ

1

2
´ p1 ´ δqθ

˙

´ 1 ´ κ

˙

y ´ ρ

ˆ

1

2
´ p1 ´ δqθ

˙

y2

` ρy pp1 ´ δqθp1 ´ yqq
2 µ ´ 1

βpy ` 2p1 ´ yqp1 ´ δqq
.

We now solve for the sign of each of the partial derivatives of G.

ρ: Gρpy, rq “ y p1 ´ yq

”

1
2

´ p1 ´ δq θ
´

1 ´
pµ´1qp1´yqp1´δqθ
βpy`2p1´yqp1´δqq

¯ı

ą 0.

For the inequality, let spy, rq denote the expression in square brackets. Then

signpGρpy, rqq “ signpspy, rqq and, spy, rq “ 1
2

´ p1 ´ δq θ p1 ´ apy,Mqq ą 0, because

1 ´ δ ă 1
2
.

θ Gθpy, rq “ ρy p1 ´ δq p1 ´ yq

´

2p1´δqθp1´yqpµ´1q

βpy`2p1´yqp1´δqq
´ 1

¯

.

So, Gθpy, rq ą 0 if and only if

θ ą
β py ` 2p1 ´ yqp1 ´ δqq

2p1 ´ δqp1 ´ yqpµ ´ 1q
.

Note that the RHS is always positive, so that for sufficiently small θ, y˚
M is decreasing

in θ. However, it is possible that the RHS is below 1 so that for large values of θ the

relationship reverses. See Appendix D for an example.

κ: Gκpy, rq “ ´y ă 0.

µ: Gµpy, rq “
ρypp1´δqθp1´yqq

2

βpy`2p1´yqp1´δqq
ą 0.

β: Gβpy, rq “ ´
ρypp1´δqθp1´yqq

2
pµ´1q

β2py`2p1´yqp1´δqq
ă 0.

δ: Gδpy, rq “ ´θρyp1 ´ yq

”

2p1´δqp1´yqpµ´1qθp1´δp1´yqq

βpy`2p1´yqp1´δqq
2 ´ 1

ı

ą 0.

For the inequality, let fpyq denote the expression in square brackets. It suffices to

prove fpyq ă 0 for all y. This follows from fp0q “
pµ´1qθ

2β
´ 1 ă 0 (by Assumption 2),

and f 1pyq “ ´
2p1´δqpµ´1qθy

βpy`2p1´yqp1´δqq
3 ă 0.

λ: Gλpy, rq “ 0.

Theorem 8. The thresholds ŷI and ŷM are constant in κ and ρ and increasing in

θ, µ, and β; ŷM is decreasing in δ and constant in λ and ŷI is increasing in δ and

decreasing in λ.

Proof of Theorem 8.
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For X P tM, Iu, let r0 “ pρ0, κ0, θ0, µ0, β0, δ0, λ0q be a vector of parameters and

consider V py,Xq as a function, V Xpy, rq : R8 Ñ R (for this proof we use a superscript

to distinguish between the two value functions, and subscripts for partial derivatives).

Recall that ŷI is the unique solution ŷX0 P p0, 1q to

V X
pŷ0, r0q “ 0. (17)

Additionally, recall that by Lemma 2, for X P tM, Iu we have V X
y py, rq ą 0 for

all y P r0, 1s . Since V XpŷX0 , r0q “ 0 and V X
y pŷX0 , r0q ‰ 0, by the implicit function

theorem, (17) defines a function ŷXprq : R7 Ñ R in some neighborhood of r0 and

∇ŷXpr0q “ ´
1

V X
y pŷX0 , r0q

∇rV
X

pŷX0 , r0q

Furthermore, since V X
y pŷX0 , r0q ą 0, for all m P pρ, κ, θ, µ, β, δ, λq, signp

dŷXpr0q

dm
q “

signp´V X
m pŷX0 , r0qq. We now use the functional forms of V py,Mq and V py, Iq in (14)

to solve for the sign of each of the partial derivatives of V X . First, it is immediate that

for X P tM, Iu we have V X
κ py, rq “ V X

ρ py, rq “ 0. The remaining partial derivatives

are presented below. The inequalities hold because by Assumption 2,

pµ ´ 1 ´ λqp1 ´ yqδθ

βpy ` 2p1 ´ yqδq
ă

pµ ´ 1qp1 ´ yqp1 ´ δqθ

βpy ` 2p1 ´ yqp1 ´ δqq
ă

2βp1 ´ yqp1 ´ δq

βpy ` 2p1 ´ yqp1 ´ δqq
ă 1.

V M
θ py, rq “

2pµ ´ 1qp1 ´ yqp1 ´ δq

y ` 2p1 ´ yqp1 ´ δq

ˆ

pµ ´ 1qp1 ´ yqp1 ´ δqθ

βpy ` 2p1 ´ yqp1 ´ δqq
´ 1

˙

ă 0,

V I
θ py, rq “

2pµ ´ 1 ´ λqp1 ´ yqδ

y ` 2p1 ´ yqδ

ˆ

pµ ´ 1 ´ λqp1 ´ yqδθ

βpy ` 2p1 ´ yqδq
´ 1

˙

ă 0,

V M
µ py, rq “

2p1 ´ yqp1 ´ δqθ

y ` 2p1 ´ yqp1 ´ δq

ˆ

pµ ´ 1qp1 ´ yqp1 ´ δqθ

βpy ` 2p1 ´ yqp1 ´ δqq
´ 1

˙

ă 0,

V I
µ py, rq “

2p1 ´ yqδθ

y ` 2p1 ´ yqδ

ˆ

pµ ´ 1 ´ λqp1 ´ yqδθ

βpy ` 2p1 ´ yqδq
´ 1

˙

ă 0,

V M
β py, rq “ ´

1

β2

ˆ

pµ ´ 1qp1 ´ yqp1 ´ δqθ

y ` 2p1 ´ yqp1 ´ δq

˙2

ă 0,

V I
β py, rq “ ´

1

β2

ˆ

pµ ´ 1 ´ λqp1 ´ yqδθ

y ` 2p1 ´ yqδ

˙2

ă 0,
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V M
δ py, rq “

2p1 ´ yqy

py ` 2p1 ´ yqp1 ´ δqq
2

ˆ

1 ` θpµ ´ 1q

ˆ

1 ´
pµ ´ 1qp1 ´ yqp1 ´ δqθ

β py ` 2p1 ´ yqp1 ´ δqq

˙˙

ą 0,

V I
δ py, rq “

2p1 ´ yqy

py ` 2p1 ´ yqδq2

ˆ

θpµ ´ 1 ´ λq

ˆ

pµ ´ 1 ´ λqp1 ´ yqδθ

β py ` 2p1 ´ yqδq
´ 1

˙

´ 1 ´ λ

˙

ă 0,

V M
λ py, rq “ 0,

V I
λ py, rq “

y

y ` 2p1 ´ yqδ
`

2p1 ´ yqδθ

y ` 2p1 ´ yqδ

ˆ

1 ´
pµ ´ 1 ´ λqp1 ´ yqδθ

β py ` 2p1 ´ yqδq

˙

ą 0.

D.3 Additional Details

Differentiation of the functions apy, Iq and apy,Mq shows that

Bapy,Mq

By
“ ´

pµ ´ 1qp1 ´ δqθ

β py ` 2p1 ´ yqp1 ´ δqq
2 ă 0,

Bapy, Iq

By
“ ´

pµ ´ λ ´ 1qδθ

β py ` 2p1 ´ yqδq2
ă 0,

Bapy,Mq

Bθ
“

pµ ´ 1qp1 ´ yqp1 ´ δq

β py ` 2p1 ´ yqp1 ´ δqq
ą 0,

Bapy, Iq

Bθ
“

pµ ´ 1 ´ λqp1 ´ yqδ

β py ` 2p1 ´ yqδq
ą 0,

Bapy,Mq

Bδ
“ ´

pµ ´ 1qp1 ´ yqyθ

β py ` 2p1 ´ yqp1 ´ δqq
2 ă 0,

Bapy, Iq

Bδ
“

pµ ´ 1 ´ λqp1 ´ yqyθ

β py ` 2p1 ´ yqδq2
ą 0,

Bapy,Mq

Bβ
“ ´

pµ ´ 1qp1 ´ yqp1 ´ δqθ

β2 py ` 2p1 ´ yqp1 ´ δqq
ă 0,

Bapy, Iq

Bβ
“ ´

pµ ´ 1 ´ λqp1 ´ yqδθ

β2 py ` 2p1 ´ yqδq
ă 0,

Bapy,Mq

Bλ
“ 0,

Bapy, Iq

Bλ
“ ´

p1 ´ yqδθ

β py ` 2p1 ´ yqδq
ă 0,
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Bapy,Mq

Bµ
“

p1 ´ yqp1 ´ δqθ

β py ` 2p1 ´ yqp1 ´ δqq
ą 0,

Bapy, Iq

Bµ
“

p1 ´ yqδθ

β py ` 2p1 ´ yqδq
ą 0,

where we use Assumption 1 to sign the partial derivatives.

Below we present numerical examples for claims made in main text. All examples

satisfy our standing parametric assumptions, i.e., all parameters are strictly positive,

satisfy Assumptions 1 and 2, and θ ă 1, δ P p1
2
, 1q.

Numerical Examples for Section 5

For a numerical example that the relationships between y˚
S and y˚

M and between

y˚
I and y˚

N can go both ways fix β “ κ “ ρ “ 1, µ “ 1.75, λ “ 0.25, and θ “

0.75. Calculations show that y˚
M ă y˚

S for δ Æ 0.745 and y˚
M ą y˚

S for δ Ç 0.745.

Additionally, y˚
N ă y˚

I for δ Æ 0.751 and y˚
N ą y˚

I for δ Ç 0.751. Thus, Lemma 4 is

“all we can know” regarding the ordering of the quasi steady states. Likewise, the

relationship between the thresholds ŷI , ŷM is also undetermined. Calculations with

the same parameter values as above show that ŷI ă ŷM for δ Æ 0.647 and ŷI ą ŷM

for δ Ç 0.647.

We now show that both of the configurations that give rise to Case (a) of Theorem

1 are possible. For an example where ŷI ă ŷM and y˚
I ă ŷI ă y˚

N , set ρ “ 20, θ “

0.9, κ “ 12, µ “ 1.55, β “ 1, δ “ 0.65, λ “ 0.45. For an example where ŷI ą ŷM and

y˚
S ă ŷI ă y˚

M , set ρ “ 1, θ “ 0.9, κ “ 2.55, µ “ 1.65, β “ 1, δ “ 0.8, λ “ 0.25. It can

be verified that in both of these examples ŷI is the unique stable steady state of the

LDI.

Numerical Examples for Section 6

Non-monotonicity in θ:

We now show that each quasi steady state y˚
M , y

˚
S, y

˚
I can be first decreasing and

then increasing in θ when it is a steady state for the LDI (and thus a limit point for

the system). For y˚
S, set ρ “ 0.3, κ “ 1.5, µ “ 1.57, β “ 0.3, δ “ 0.55, λ “ 0.05. With

these parameters, y˚
S is in region S for all θ P p0, 1q and is decreasing in θ for θ Æ 0.95

and then increasing.
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For y˚
M , set ρ “ 1, κ “ 8, µ “ 1.57, β “ 0.3, δ “ 0.9, λ “ 0.05. With these

parameters, ŷM ă ŷI for all θ P p0, 1q, so the intermediate region is M . Additionally,

y˚
M is in regionM for all θ Ç 0.16 (otherwise, y˚

M is in region S), and y˚
M is decreasing

in θ for θ Æ 0.87 and then increasing in θ. So y˚
M is both decreasing and increasing

in θ in region M . Also, for θ Ç 0.17, y˚
S, y

˚
N are also in region M so y˚

M is the unique

limit point of the system.

Finally, for y˚
I , set ρ “ 0.45, κ “ 3.34, µ “ 1.54, β “ 0.3, δ “ 0.53, λ “ 0.1.

With these parameters, ŷI ă ŷM for all θ P p0, 1q, so the intermediate region is I.

Additionally, y˚
I is in region I for all θ Ç 0.85 (in region S for smaller θ), and y˚

I is

decreasing in θ for θ Æ 0.88 and then increasing in θ. So y˚
I is non-monotone in θ in

region I.

Non monotonicity in δ:

For an example that y˚
S can decrease and then increase in δ when it is a steady

state for the LDI, again set β “ κ “ ρ “ 1, µ “ 1.75, λ “ 0.25, and θ “ 0.75. With

these parameters, y˚
S ą maxtŷI , ŷMu for all δ P p1

2
, 1q so that y˚

S is a steady state

for the LDI for any value of δ. Additionally, y˚
S is decreasing in δ for δ Æ 0.73 and

increasing in δ for δ Ç 0.73.

Dependence of y˚
I on ρ:

We now show that y˚
I can be either increasing or decreasing in ρ, and both cases can

occur when y˚
I is a limit point. Set θ “ 0.9, κ “ 3, µ “ 1.55, β “ 1, δ “ 0.8, λ “ 0.45.

With these parameters ŷI ă ŷM , so the intermediate region is I (for any value of ρ).

Starting with ρ “ 0, we have y˚
I in region S, and y˚

I is decreasing in ρ such that it

enters region I when ρ « 15.6, and enters region N when ρ « 42.2 (so it is a limit

point when ρ is between those values). With the same parameter values but setting

δ “ 0.55, the intermediate region is again I, and y˚
I P I for ρ “ 0. However, now y˚

I is

increasing in ρ such that it enters region S when ρ « 36.2. In this example, making

false stories more likely to be very interesting reverses the effect of increasing reach.

D.4 Phase diagrams

Figures 2, 3, 4 and 5 present phase diagrams for all possible configurations of the

thresholds and quasi steady states. Stable steady states are in green, repelling steady

states are in red, and quasi steady states that are not steady states are in purple. The

numbers on the bottom left of each phase diagram are the indices of the positions of
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Figure 2: Phase diagrams for the case ŷI ă ŷM ; y˚
I ą y˚

N .

the two thresholds among the five variables that pin down the phase diagram. For

example, in the phase diagram on the top left of each figure, the thresholds are in the

first and second positions.
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Figure 3: Phase diagrams for the case ŷI ă ŷM ; y˚
I ă y˚

N .

Figure 4: Phase diagrams for the case ŷI ą ŷM ; y˚
S ą y˚

M .
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Figure 5: Phase diagrams for the case ŷI ą ŷM ; y˚
S ă y˚

M .
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