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Introduction

Several oligopolistic industries that play a crucial role in modern economies are "network

industries": industries where the benefit that an individual consumer derives from consum-

ing a good increases with the number of other people consuming the same good. Network

markets can be one-sided or two-sided. Examples of the first class of markets are soft-

ware markets: the utility an individual derives from a given software is increasing in the

total number of users because the more people own the software, the more people they

can interact with, exchanging files and know-how. The second class of markets includes

auction websites, credit card networks, directory services and all those markets where two

groups of individuals or firms need a common platform to interact and one or more firms

own platforms and sell access to them. In this case, the utility derived from accessing a

platform is increasing in the number of potential counterparts who join the same platform.

Also, network products can be divided into pure network goods, such as telecommunication

networks, and non-pure network goods. The first class of products includes all those goods

for which the network externality is the only source of utility a consumer derives from the

product, while the second class includes al those products that also provide an intrinsic

utility.

1
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A classic methodological issue related to network markets is that modeling the demand

function is particularly challenging because the problem faced by consumers choosing which

network to join, for given prices, constitutes a coordination game and typically coordination

games have multiple equilibria.

My dissertation explores three different approaches to this problem.

In chapter 1, I analyze one-sided markets for non-pure network goods where consumers

can choose between two alternative products that are both vertically and horizontally dif-

ferentiated. Modeling consumer choice as a global game with private values, I show that

either a large amount of horizontal differentiation or a high positive correlation of con-

sumers’ private values of the goods are necessary and sufficient for the demand function

to be well-defined. Using this result, I then address the issue of efficiency on these mar-

kets. I derive the equilibrium allocation of consumers to the networks for both the case of

sponsored and unsponsored networks as well as the allocation that would maximize social

welfare. The three allocations share two important features: in all of them both networks

are active, due to the presence of sufficiently strong horizontal differentiation, and the high

quality network attracts more than one half of the consumers. Nonetheless, two inefficien-

cies arise. First, since consumers fail to internalize network externalities, the equilibrium

allocation with unsponsored networks is too balanced. Second, if access to the networks is

priced by strategic firms, then the firm with a higher expected quality charges a price higher

than the competitor’s and this further reduces the asymmetry between market shares and

therefore social welfare.

In chapter 2, which is coauthored with Attila Ambrus, we analyze two-sided markets for
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pure network goods. We address the issue of multiple equilibria of the coordination game

played by consumers, assuming that the latter can coordinate their decisions to their advan-

tage, if their interests coincide and if coordination can be achieved without communication.

Using this methodology, we show that multiple asymmetric networks can coexist in equilib-

rium if consumers have heterogeneous reservation values. If the market is a monopoly, the

network provider might choose to operate multiple networks to price differentiate consumers

with different reservation values on both sides of the market. If the market is a duopoly, the

two competing network providers might price their products in such a way that one of them

attracts high reservation value consumers on one side of the market and low reservation

value consumers on the other side, and vice versa. In these asymmetric equilibria, access to

intrinsically identical networks can be sold at different prices because network externalities

determine endogenous product differentiation: the larger the set of consumers from one side

who join a network, the more attractive the network becomes for consumers on the other

side.

In chapter 3, which is coauthored with Itzhak Gilboa, we address the issue of belief

formation in coordination games. We take the view that players form their beliefs about

other players’ behavior by looking at history, that is, at the outcomes of similar coordination

games played in the past, possibly by other players. A simple model is analyzed, in which

a large population has to make a simultaneous decision regarding participation in a coup

attempt. A dynamic process faces different populations with such games for randomly

selected values of a parameter. We show that history serves as a coordination device, and

determines for which values of the parameter a revolution would succeed. We also show
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that, for intermediate values of the parameter in question, the limit behavior depends on

the way history unfolds, and cannot be determined from a priori considerations.



Chapter 1

Differentiated Networks:

Equilibrium and Efficiency

1.1 Introduction

Many economic decisions, such as the purchase of a good by a population of consumers

or the adoption of a standard of production by a set of firms, exhibit a specific form of

strategic complementarity known as network externality. The set of consumers buying a

specific product and the set of firms producing according to a given standard constitute

virtual networks: the externality arises when the payoff of each player who belongs to a

network is increasing in the total size of the network itself.

In most cases where two alternative network goods are available, they are strongly

differentiated. Therefore, characterizing the social optimum is a non-trivial problem: the

aggregate surplus from the network effect is maximized if all players join the same network,

while the surplus from the intrinsic utility from consumption of the good is maximized if

every player buys the product he likes the most.

5
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This trade-off is exemplified by the case of PC and Macintosh. If there was only one

standard, every computer owner could run all the existing software and easily exchange files

and know-how with anybody else. On the other hand, one of the main reasons why the

two standards do coexist is that the two types of computers have different strengths that

appeal to the needs of different consumers.1

Another example is the case of matrix programming languages. Matlab seems to be

best suited to analyze time-series data, while Gauss seems to perform better when analyzing

panel data.2 At the same time, all programmers would benefit from the existence of a unique

common language because they could exchange suggestions and pieces of code with a larger

group of people.

In this chapter, I investigate this trade-off between maximizing the aggregated network

effect and letting consumers use their favorite product, and show that the market outcome

is affected by two types of inefficiency.

I consider two cases, one where the networks are “sponsored” and one where the networks

are “unsponsored”. In the network literature, this distinction refers to the cost an individual

bears to join a network: a network is sponsored if the access to it is priced by a strategic

player. While this is the case for most telecommunication networks, there are many cases of

unsponsored networks as well. For example, by learning a new language, an individual can

join a “communication network” that clearly exhibits network externalities. In this case,

1This differentiation is both vertical and horizontal. On its website, Apple lists the top ten reasons to
switch to a Mac. Among them, “reason number 2” is that a Mac doesn’t crash (clearly a claim of higher
vertical quality) while “reason number 3” is the fact that Mac offers the best technology to store and play
digital music (which is a feature that different consumers might value differently, depending on the specific
use they make of their computers).

2See Rust (1993).
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there is no centralized entity that owns the language and strategically sets a price for the

access to the network. The “price” is simply the time spent studying the language.

In my model, I assume that two new, alternative network products are introduced and

that consumers simultaneously choose which one to join. If the networks are sponsored,

access to each network is priced by a strategic firm. If they are unsponsored, access is

available at marginal cost. The goods are both vertically and horizontally differentiated

but neither firms nor consumers can perfectly observe the vertical dimension of quality.

More precisely, they observe a noisy public signal about the vertical quality of each good,

and one of the two networks has a higher expected quality. Each consumer privately and

perfectly observes his private value for each good but he cannot distinguish the common

component (the objective quality of the good) from his idiosyncratic taste component.

When choosing which network to join, each individual takes into account three elements:

his private valuation for each good, the expected size of each network, and the cost he has

to bear to join it.

Consider, for example, the introduction of two new, non-interconnected telecommunica-

tion networks, such as two softwares for videoconference. The assumption of noisy informa-

tion about the vertical quality of each good captures the fact that the overall performance of

such products critically depends on how well they interact with the complementary hard-

ware and software, and this interaction cannot be perfectly tested before the product is

introduced. The assumption of horizontal differentiation captures the idiosyncratic taste

consumers might have for the more “recreational” features of these products, such as the

graphic interface. Finally, the assumption that each consumer perfectly observes her private
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value for each good before making a purchase captures the fact that software developers

typically make trial versions of their products available for free.

The main question addressed in this chapter is how the equilibrium allocation of con-

sumers across networks compares to the social optimum. I find that the optimal allocation

of consumers across networks is asymmetric, with both networks having positive market

shares and more than one half of the population joining the high-quality network. I then

look at the allocation implemented by the market, distinguishing between the two cases of

sponsored and unsponsored networks.

In the case of unsponsored networks, I identify a first source of inefficiency. Since

consumers fail to internalize network effects, the equilibrium allocation is too balanced

from a social point of view: the market share of the high-quality firm, though larger than

one half, is still smaller than would be socially optimal. Looking at the case of sponsored

networks, I find that strategic pricing makes the inefficiency even worse: the high-quality

firm has an intrinsic advantage that is reflected in an equilibrium price higher than the one

charged by the competitor, and this in turn reduces her market share even more.

The analysis in this chapter also brings a methodological contribution to the literature

on network markets. There is a problem with modelling the demand function for network

goods. The game played by consumers choosing which network to join, for given prices,

constitutes a coordination game and typically these games have multiple equilibria. There-

fore, in a basic model of Bertrand competition between identical networks, the demand for

each good is not a well-defined function of prices. I enrich the basic model by allowing

for both horizontal and vertical differentiation. Consumers’ choices are then a global game
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with correlated private values. This allows me to derive necessary and sufficient conditions

on the information structure of the game for the demand function to be well-defined.

A number of papers analyze price competition between networks. De Palma and Leruth

(1993) allow only for horizontal differentiation. Their emphasis is on the conditions for a

unique equilibrium of the coordination game played by consumers, rather than the efficiency

issues emphasized here. They prove that a large degree of differentiation is necessary and

sufficient for uniqueness of the equilibrium in that context. This condition is similar to the

condition I derive in the limit case of my model where all the players perfectly observe the

vertical dimension of quality and the latter is identical for the two goods. On the other hand,

Farrell and Katz (1998) assume only vertical differentiation, therefore their model allows for

multiple sets of self-fulfilling expectations in the coordination game played by consumers.

My discussion of the optimal allocation of consumers between networks is also related to

Farrell and Saloner (1986), who address the issue of whether complete standardization is

efficient if consumers have heterogeneous preferences. My work is also connected to the

literature on duopolistic price competition with differentiated goods. For a discussion of

this literature, see Tirole (1988).

In this chapter, I model consumers’ choice as a global game with correlated private

values. Global games, first analyzed by Carlsson and van Damme (1993), have been typically

applied to economic situations where players have common values, such as currency crises

and regime switches. Morris and Shin (2004) analyze a private-value global game where

two players choose between two alternative actions and each player privately observes his

own payoff type which is the sum of a common component and an idiosyncratic component.
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They derive a condition on the information structure that is necessary and sufficient for a

unique equilibrium in that context. The solution of the model is identical in the case of a

continuum of players choosing between two actions (Morris an Shin (2003)). In my model,

I apply the Morris-Shin condition for uniqueness, and relate it to the degree of horizontal

differentiation and the precision of the available information about the vertical dimension

of quality.

The chapter is organized as follows. In Section 1.2 I introduce the formal model. In

Section 1.3 I characterize the socially optimal allocation of consumers to networks. In

Section 1.4 I characterize the equilibrium allocation for both the case of unsponsored and

sponsored networks and compare it to the efficient one. Section 1.5 concludes. All the

proofs are relegated to Appendix A.

1.2 The Model

I assume that two indivisible network goods, a and b, become available to a population of

consumers represented by a continuum of mass 1. The two goods are produced at the same,

constant marginal cost c. If the networks are sponsored, each good is produced and sold by

a firm who strategically chooses her price to maximize her profits:

πj =
¡
pj − c

¢
nj

where pj is the price charged by firm j (with j = a, b) and nj is the number of units she

sells. If the networks are unsponsored, there are no strategic firms and each good can be

purchased at marginal cost.
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Preferences exhibit network externalities: the utility that any consumer i derives from

joining network j is increasing in nj . More precisely, I assume:

U j
i = xji + nj − pj

where xji represents the intrinsic value of good j for consumer i.

I further assume that the two goods are both vertically and horizontally differentiated.

The intrinsic value of a good for a consumer is the sum of a common value component eθj ,
representing the vertical dimension of quality of brand j, and an idiosyncratic component

eεji , representing individual taste:
exji ≡ eθj + eεji .

I assume that each eθj is a normal random variable:

eθj ∼ N

µ
yj ,

2

α

¶
.

The expected value of eθj , given by yj , can be interpreted as a noisy public signal about
eθj .

I model consumer heterogeneity assuming that each individual’s idiosyncratic taste com-

ponent is normally distributed around zero:

eεji ∼ N

µ
0,
2

β

¶
.

Finally, I assume that eθa, eθb and each eεji are independently distributed. All the above
distributional assumptions are common knowledge.
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Each consumer privately observes the vector

xi =
³
xai , x

b
i

´
∈ R2

which constitutes his type. I will denote a type profile for all consumers as

x = ×i∈[0,1]xi ∈
¡
R2
¢[0,1]

.

Notice that consumers have correlated private values: types are correlated, due to the

presence of a common component, but each consumer’s payoff does not depend directly

on other consumers’ types. I emphasize that a consumer can only observe his type but

he cannot observe θj and εji separately. More precisely, neither firms nor consumers can

perfectly observe the vertical quality of each good.

I can now formally define actions, strategies and payoff functions for the players. If the

networks are sponsored, then the two firms and the population of consumers play a game

of incomplete information in two stages. In the first stage, firms announce prices
¡
pa, pb

¢
simultaneously and noncooperatively. An action for firm j is a price pj ∈ R. The strategy

space for the firms coincides with their action space and a strategy profile for the firms is a

vector p =
¡
pa, pb

¢
∈ R2.

In the second stage of the game, consumers learn their types, observe prices and si-

multaneously choose a network. I assume complete market coverage and exclusivity: each

consumer buys exactly one unit of one good, thus joining either network a or network b.

Formally, an action for consumer i is ri ∈ {a, b} , and an action profile for all the consumers
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is r ∈ {a, b}[0,1] . A pure strategy for a consumer is

si : R2 ×R2 → {a, b}

and a strategy profile for all consumers is s ≡ ×i∈[0,1]si. The size of network j when con-

sumers play strategy profile s and firms play strategy profile p is nj (s (x,p)) .

In the first stage, each firm maximizes her expected profits solving

max
pj∈R

Ex
£
πj
¡
nj (s (x,p)) ,p

¢¤
= max

pj∈R
(pj − c)Ex

£
nj (s (x,p))

¤
.

In the second stage, each consumer maximizes his expected net surplus solving

max
j∈{a,b}

Ex−i
h
U j
i (xi, (s (x,p)) ,p) |xi

i
=

= max
j∈{a,b}

³
xji + Ex−i

£
nj (s (x,p)) |xi

¤
− pj

´
.

If networks are unsponsored, then both goods are priced at marginal cost and consumers

play a static game of incomplete information equivalent to the second stage of the above

game for the case pa = pb = c.
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For notational convenience, I also define the following differences:

y ≡ ya − yb

2

eθ ≡
eθa − eθb
2

∼ N

µ
y,
1

α

¶
eεi ≡ eεai − eεbi

2
∼ N

µ
0,
1

β

¶
exi ≡ exai − exbi

2
∼ N

µ
y,
α+ β

αβ

¶
.

The above variables can be easily interpreted. The random variable eθ is an index of vertical
differentiation. For positive realizations of eθ, good a has a higher objective quality than

good b, and the opposite is true for negative values. The parameter y is a public signal

about the difference in quality between the two goods. Without loss of generality, I will

assume that y > 0 throughout the chapter (i.e. I will assume that good a has a weakly

higher expected quality than good b). The parameter α represents the precision of the public

information about the difference in quality between the two goods. The random variable eεi
captures the idiosyncratic differences in taste among consumers and β, the precision of its

distribution, is an index of the amount of heterogeneity among consumers.3 More precisely,

the smaller is β, the larger is the amount of horizontal differentiation between the two goods.

The random variable exi is a measure consumer i0s preference for good a, the good with the

highest expected quality. For positive realizations of exi, he prefers a to b. For negative

realizations, his idiosyncratic preference for b is so strong that he prefers b to a. Notice that

I use the notation xi for the vector
¡
xai , x

b
i

¢
and the notation xi for the difference

xai−xbi
2 .

3Throughout the chapter, I will assume that the law of large number holds for a continuum of independent
variables, i.e. we will assume that the distribution of the idiosyncratic component in the population is the
same as the distribution of any individual εi.
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Finally, I define

p
³
pa, pb

´
≡ pa − pb

2
.

In what follows, I will use the simplified notation p to denote p
¡
pa, pb

¢
.

1.3 Efficient Allocation

In this section, I derive the ex-ante efficient allocation of consumers across networks. I

choose to address the issue of efficiency from an ex-ante point of view because I believe

that the right benchmark to compare to the allocation implemented by the market is the

allocation that maximizes welfare given all, and only, the public information available on

the market.4

First, I need to define the welfare criterion. Given my assumption of quasi-linear utility

functions, aggregate welfare equals consumer gross surplus minus total cost, since prices are

a transfer from consumers to firms. Also, since I assumed that the two firms have the same

marginal cost and that the total number of units sold in the market is constant, I can ignore

costs as I solve the welfare maximization problem. Finally, the only choice variable in the

welfare maximization problem is the allocation of consumers between the two networks.

4For the concept of ex-ante efficiency, see Holmström and Myerson (1983).
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Therefore, the welfare maximization problem is equivalent to the following problem5:

max
A,B

Ex [W (A,B)] = max
A,B

Ex
∙Z

i∈A
(xai + na) di+

Z
i∈B

³
xbi + nb

´
di

¸
(∗)

s.t. A ∪ B = [0, 1]

A ∩ B = ∅.

Next, I show that the optimal choice of the sets (A,B) can be characterized as a threshold

allocation. By this I mean that a benevolent social planner with access to all the public

information available on this market, and the power to assign each consumer to a network,

would maximize social welfare by choosing a threshold t and allocating to network a those

consumers with a preference for a larger than t and to network b those with a preference

for a smaller than that. Formally, I define a threshold allocation as follows:

Definition 1.1.

A Threshold Allocation is a couple (A (t) ,B (t)) such that ∃t ∈ R such that A (t)={i ∈

[0, 1] : xi > t} and B (t) = {i ∈ [0, 1] : xi ≤ t}.

Lemma 1.1.

The welfare maximizing allocation is a threshold allocation.

In what follows, I will denote by (A∗,B∗) the solution to problem (∗) and by t∗ the cor-

responding threshold. The intuition for the result presented in Lemma 1.1 is the following.

Consider an arbitrary allocation of consumers to the networks. If this is not a threshold

5 In the definition of problem (∗) I am giving a heuristic description of the welfare criterion ignoring
measurability issues. In the rest of the chapter, all the allocations where I will evaluate welfare will be
threshold allocations (see Definition 1.1). This fact, together with the assumption that the law of large
number holds for a continuum of independent variables, will guarantee that welfare is well-defined for those
allocations.
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allocation, then there are at least two groups of consumers such that the first is allocated

to network b, the second to network a, and those in the first group have a larger preference

for a than those in the second group. Suppose I move a positive measure of consumers of

the first group to network a and a set of consumers of the second group, with the same

measure, to network b. Market shares stay constant, the gross surplus of the consumers

I moved increases and that of any other consumer is unaffected. Therefore, total welfare

increases and this proves that the initial allocation was not welfare maximizing.

In what follows, I will denote the welfare associated to a given threshold allocation as

Ex [W (t)] ≡ Ex [W (A (t) ,B (t))] .

Given that the optimal allocation is associated to a threshold, the final step to solve the

welfare maximization problem is to identify this optimal threshold. First, notice that the

welfare function can be rewritten as the sum of three components:

Ex [W (t)] = Ex

"ÃZ
i∈A(t)

θadi+

Z
i∈B(t)

θbdi

!
+ (1.1)

+

ÃZ
i∈A(t)

εai di+

Z
i∈B(t)

εbidi

!
+

+

ÃZ
i∈A(t)

nadi+

Z
i∈B(t)

nbdi

!#
.

The first component measures the aggregate surplus consumers derive from the vertical

quality of the goods, the second measures the aggregate surplus derived from idiosyncratic

taste and finally the third component measures the aggregate surplus derived from network

effects. By evaluating expression 1.1 for a given realization of
³eθa,eθb´ and then taking the
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expectation, the welfare function can be finally be re-written as

Ex [W (t)] = Eθa,θb
n
θa − 2θΦ

³
(t− θ)

p
β
´
+ (1.2)

+

r
2

πβ
e−

(t−θ)2β
2 +

+2
h
Φ
³
(t− θ)

p
β
´i2
− 2Φ

³
(t− θ)

p
β
´
+ 1

¾

where Φ (·) denotes the cdf of a standard normal random variable.6

Before I characterize the optimal threshold, it is worth to analyze in larger detail the

three components of the welfare function.

For a given realization of
³eθa,eθb´, the first component,

θa − 2θΦ
³
(t− θ)

p
β
´
, (1.3)

measures the aggregate surplus derived from the vertical quality of the goods. Expression

1.3 can be easily interpreted. If t = −∞ it reduces to θa : all consumers are assigned to

network a and a measure 1 of individuals enjoy quality θa. For a finite t, if I denote by F (·)

the cdf of xi, then only 1 − F (t) consumers are assigned to a, while the remaining F (t)

consumers are assigned to b and enjoy quality θb. Substituting to F (t) its expression and

using the variable θ defined in section 1.2, I get 1.3. If the realized quality difference θ is

positive, it easy to see that 1.3 is maximized by t = −∞, i.e. by an allocation where all

consumers join the high quality network. (See Figure 1.17).

6The derivation of 1.2 is included in the proof of Proposition 1.1.

7The main purpose of Figure 1.3 and Figure 1.2 is to describe the qualitative features of the components
of consumer surplus associated with vertical and horizontal quality for a given positive θ. For this illustrative
purpose, I abstract from the absolute values each of these functions takes for specific values of the parameters
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SURPLUS FROM VERTICAL QUALITY

threshold (t)

surplus

Figure 1.1: Aggregate surplus derived from the vertical quality of the goods for the case

θ = 2.

(α, β) and specific realizations of θa, θb . Therefore, I do not report the scale of the vertical axis.
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The second welfare component for a given realization of
³eθa,eθb´,

r
2

πβ
e−

(t−θ)2β
2 , (1.4)

measures the portion of aggregate surplus due to consumers’ idiosyncratic taste for the

network to which they are allocated. Expression 1.4 is maximized at t = θ. (See Figure.

1.2 ). Intuitively, this idiosyncratic surplus component is maximized when each consumer

is assigned to the network for which he has an idiosyncratic preference. If θ were perfectly

observable, this could be achieved by choosing t = θ, so that every consumer with a positive

εi would join a and the others would join b.

Finally, for given
³eθa,eθb´ , the last welfare component,
2
h
Φ
³
(t− θ)

p
β
´i2
− 2Φ

³
(t− θ)

p
β
´
+ 1 (1.5)

measures the aggregated network effect. Expression 1.5 can be easily interpreted. The total

network effect is given by the sum of the squared market shares (all consumers in a network

receive a positive effect measured by the size of the network itself). Denoting again by F (·)

the cdf of xi, for a given threshold t market shares are na = 1 − F (t) and nb = F (t) .

Substituting to F (t) its expression I get 1.5.

This component of consumer surplus is maximized by t ∈ {−∞,+∞} since for any of

those values all consumers join the same network and therefore each of them enjoys the

largest possible network effect. (See Figure 1.3).
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Figure 1.2: Aggregate surplus derived from idiosyncratic taste for the case θ = 2.
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Figure 1.3: Aggregate surplus derived from the network effect for the case θ = 2.
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Given this decomposition, it appears that there is a trade-off between maximizing the

first and the third component of welfare by assigning all consumers to the same network

and maximizing the second component by splitting consumers equally. Proposition 1.1

characterizes the socially optimal allocation.

Proposition 1.1 (Ex-Ante Efficient Allocation).

Social welfare is maximized by an asymmetric threshold allocation such that

−1 < t∗ < 0 < y.

As one would intuitively expect, t∗ < y : the optimal allocation is such that the network

with the largest expected quality has the largest market share.

Nonetheless, the tension between vertical differentiation and network effect on the one

hand, and heterogeneity in consumers’ taste on the other hand, results in an interior opti-

mum. All the consumers with a positive xi, who therefore have a private preference for a

and who constitute more than one half of the population, and some of those with a small

preference for b, should join the large network a. The minority of consumers with a strong

preference for b should form another, much smaller network.

1.4 The Equilibrium Allocation

In this section, I characterize the allocations that prevail in equilibrium in the market, for the

case of unsponsored and sponsored networks, in order to compare them to the efficient one

that I characterized in Section 1.3. First, I will solve the coordination game consumers play

when they choose which network to join, for given prices. Then, I will consider separately
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the case where prices are simply equal to the marginal cost and the case where they are set

by strategic firms.

1.4.1 Consumer Coordination

The next result characterizes the equilibrium of the coordination game played by consumers

for given price difference p and given expected quality difference y. This coordination game

constitutes a global game with correlated private values, such as the one analyzed by Morris

and Shin (2004). I can apply their methodology to characterize the equilibrium and identify

the necessary and sufficient condition for its uniqueness.

Suppose consumers observe a quadruple
©
pa, pb, ya, yb

ª
. Consider a type bxi of consumer

i with the following property: if a consumer has type bxi, and he believes that every consumer
with a preference for a larger than his own will join a, and every consumer with a preference

for a smaller than his own will choose b, then he is indifferent between the two networks.

Formally, bxi (p, y) is a solution to:
(xai + Pr (xi0 > xi)|xi − pa) = (1.6)

=
³
xbi + Pr (xi0 ≤ xi)|xi − pb

´
.

Let t (p, y) be the intrinsic preference for a of a consumer of type bxi (p, y) . That is:
t (p, y) ≡ bxai (p, y)− bxbi (p, y)

2
.

By rearranging 1.6, it can be shown that t (p, y) is implicitly defined by the following
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equation:

t− Φ [(t− y) z] +
1

2
− p = 0 (1.7)

where

z = z(α, β) ≡
s

α2β

(α+ β) (α+ 2β)
. (1.8)

The following proposition holds:

Proposition 1.2 (Equilibrium of the Coordination Game).

If z 6
√
2π, the coordination game played by consumers after any price announcement¡

pa, pb
¢
has the following unique Nash-equilibrium:

s∗i (x,p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a if xi > t(p, y),

b if xi ≤ t(p, y),

∀i ∈ [0, 1] .

where t (p, y) satisfies

t (p, y)−Φ [(t (p, y)− y) z] +
1

2
− p = 0.

The threshold t (p, y) is strictly increasing in p and strictly decreasing in y.

The equilibrium described by Proposition 1.2 is a symmetric equilibrium in switching

strategies around the threshold t(p, y): consumers with a preference for a larger than t (p, y)

join a and the others join b. Therefore, the equilibrium allocation is a threshold allocation.

This will prove particularly useful as I compare the market allocation to the efficient one.

The two available pieces of public information, namely the public signal y about the

relative quality of the two goods and the difference p between the two prices, affect the
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equilibrium threshold in a very intuitive way. For a given quality signal, if a becomes more

expensive with respect to b, the threshold moves to the right, i.e. a loses some consumers

to b.

For given prices, instead, if a’s expected quality advantage y increases, the threshold

moves to the left, i.e. a gains some consumers.

To capture the intuition behind the uniqueness condition mentioned in the statement

of Proposition 1.2, first notice that the above equilibrium in switching strategies is unique

if there exists only one value of the threshold t that solves 1.7. In turn, 1.7 has a unique

solution t (p, y) if the second term is (almost) invariant with respect to t. That term repre-

sents the beliefs of a player who observes a private signal exactly equal to the threshold t.

More precisely, it represents his expectation of the proportion of consumers with a private

value xi smaller than his own, i.e. smaller than t. If this expectation is very sensitive to

changes in t, then the strategic uncertainty faced by a consumer is very sensitive to his

type. As shown by Morris and Shin (2004), uniqueness of equilibrium in global games with

correlated private values is guaranteed by a low degree of sensitivity of strategic uncertainty

to a player’s type. In particular, this low level of sensitivity can be achieved by one of two

conditions, both summarized by the inequality z 6
√
2π : either the private signals have

to be very correlated or consumers preferences have to be very heterogeneous. In the first

case, no matter what specific realization of exi he observed, any consumer i knows exi0 and
exi are highly correlated and therefore thinks that it is about as likely for any consumer i0 to
observe xi0 > xi or xi0 < xi. In the second case, the high variance of the heterogeneous idio-

syncratic component makes the private signals almost independent, therefore xi is not very
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informative on xi0 and so, once again, whatever the realization of exi he observed consumer
i thinks that it is about as likely for any consumer i0 to observe xi0 > xi or xi0 < xi.

Throughout the rest of the chapter I will assume that the condition for uniqueness,

z 6
√
2π, is satisfied, focusing my attention on those network markets where the demand

function is naturally well-defined. In other words, I will focus on markets where either there

is a sufficient amount of horizontal differentiation or the information on the vertical quality

of the goods is sufficiently noisy.

Before I consider the two cases of sponsored and unsponsored networks in more detail,

I present one more result about the issue of consumer coordination.

Proposition 1.3 (Impact of Public Information).

Let z 6
√
2π. For any couple (p, y) and for a given realization of θ, in equilibrium the

networks realized market shares are

na = 1− nb = Pr [xi > t(p, y)] = 1− Φ
h
(t (p, y)− θ)

p
β
i
. (1.9)

Each firm’s market share is strictly increasing in her expected quality.

This result has a natural interpretation. For a given θ, the market share of each network

is given by the proportion of consumers with a value of xi above or below the equilibrium

threshold. After θ has been drawn, the distribution of xi is uniquely determined, regardless

of what its expected value y was. Therefore, if a network’s market share is increasing in her

expected quality, it has to be the case that the effect comes from a change in the threshold

t (p, y) . The fact that t (p, y) is actually affected by y might appear counterintuitive because

this is a model with private values, where each consumer perfectly (and privately) observes
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the quality he would derive from the use of each good. Therefore, one might expect that

after observing his own xi consumer i would discard the noisy information contained in

its expected value y. Still, consumer i cares not only about his own xi but also about the

distribution of the private values of every other consumer in the market. This is true be-

cause of the presence of network effects: the signals observed by other consumers will affect

their choices and i needs to take such choices into account because of the strategic comple-

mentarity. This is where y becomes relevant. The prior distribution of each xi0 is centered

around y. When consumer i observes xi, and updates his belief about the distribution of

xi0 , whatever the value of xi he observed, the posterior expectation of xi0 is increasing in

y. Since in equilibrium consumers with a high xi0 choose a, the higher y, the higher a0s

expected market share from the point of view of consumer i, the higher his own convenience

in choosing a.

1.4.2 Unsponsored Networks

I now consider the case where the two networks are unsponsored, in order to highlight the

possible coordination failure arising on these markets when we abstract from the issue of

strategic pricing. Without sponsors, consumers can join any network by paying a price

equal to the marginal cost:

pa = pb = c, and p = 0.

The next proposition describes the equilibrium allocation and compares it to the efficient

one.
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Proposition 1.4 (Inefficiency with Unsponsored Networks).

With unsponsored networks, the equilibrium allocation is a threshold allocation with threshold

tu ≡ t(0, y) ∈ (−0.5, 0) .

Moreover,

tu > t∗ and Ex [W (tu)] < Ex [W (t∗)] .

The allocation implemented by the market if the networks are unsponsored shares some

qualitative features with the efficient allocation: both are threshold allocations and in both

cases, since the threshold is smaller than y, the network with higher expected quality has

a market share larger than one half. Moreover, in both cases network a will be composed

not only by those consumers with a positive value of xi, but also by some consumers with

a moderate private preference for b.

Nonetheless, the market does not implement the welfare maximizing allocation. In

particular, the market allocation is more balanced than the efficient one. The source of this

market failure is the presence of network effects that consumers fail to internalize. To get

an intuition for this result, it is useful to revise the decomposition of the welfare function

that I presented in Section 1.3. For any realized level of quality of the two goods, social

welfare is the sum of the gross surplus derived from the objective quality of the goods, gross

surplus derived from idiosyncratic taste and, finally, gross surplus derived from network

effects. The efficient threshold t∗ is therefore the result of the compromise among different

forces: from a social point of view, horizontal differentiation makes a symmetric allocation

more desirable while vertical differentiation and the presence of network externalities make
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asymmetry more desirable. Since individual consumers do not internalize the network

externality, society implements an allocation that is more symmetric than the efficient one.

1.4.3 Sponsored Networks

After identifying a source of inefficiency arising on network markets, I now ask the question

of whether strategic pricing mitigates or aggravates this inefficiency. More precisely, I will

now assume that the two networks are sponsored and that therefore access to each of them

is priced by a strategic, profit-maximizing firm. Then, I will derive the equilibrium of

the two-stage price competition game and compare the allocation of consumers induced in

equilibrium to both the ex-ante efficient one and the one implemented by the market in the

absence of strategic pricing.

Let

v ≡ v(α, β) =

s
αβ

α+ β

denote the inverse of the standard error of exi.
The next Lemma describes the demand functions for the two goods.

Lemma 1.2 (Expected Demand Functions).

Let z 6
√
2π. The expected demand function for each network is well defined for any price

couple
¡
pa, pb

¢
and it is given by

Ex [na] = 1− Ex
h
nb
i
= 1− Φ [(t (p, y)− y) v]

Moreover, for given prices each firm’s expected market share is strictly increasing in the

expected quality of her product.
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The assumption z 6
√
2π guarantees that there is a unique equilibrium of the coordina-

tion game played by consumers in the second stage, therefore the demand function is well

defined.

It can be interesting to compare the comparative statics result contained in Lemma

1.2 with that of Proposition 1.3. Proposition 1.3 looks at the market shares for a given

realization of θ, and the only reason why they might be a function of y is through a change

in t (p, y) . Lemma 1.2 instead, considers the expected market shares given the ex-ante

information that is available to the firms when they choose prices: in this case, there

are two mechanisms through which a network’s expected size is increasing in its expected

quality: one is the change in t (p, y) , the other is the shift in the distribution of xi (which

is centered around y).

I now have the tools to characterize the pure strategy subgame perfect equilibrium of

the price competition game. Substituting the expected demand functions into the profit

functions I can write the two firms’ optimization problem at time 1 as

max
pa∈R

Ex [πa] = (pa − c) [1− Φ [(t (p, y)− y)] v]

max
pb∈R

Ex [πb] =
³
pb − c

´
Φ [(t (p, y)− y) v] .

Let ps denote the value of p associated to the firms’ equilibrium strategies and ts denote

t (ps, y) . The following proposition holds:

Proposition 1.5 (Strategic Pricing Inefficiency).
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If a pure strategy SPNE of the price competition game exists, then

ps ∈ (0, y) and ts ∈ (tu, y) .

Moreover,

t∗ < tu < ts

and

Ex [W (ts)] < Ex [W (tu)] < Ex [W (t∗)] .

As in many models of price competition with differentiated products, it is hard to prove

the existence of an equilibrium in pure strategies for generic values of the parameters. A

general sufficient condition for existence was derived by Caplin and Nalebuff (1991). My

model satisfies that condition for some limit cases. I have solved the model for a grid of

values of the parameters (α, β) that satisfy the condition z 6
√
2π and in all those cases a

pure strategy equilibrium exists and is unique.

The main qualitative features of the equilibrium of the price competition game are

consistent with the standard results in duopolistic models of price competition with ver-

tical differentiation8: in equilibrium, the firm selling the best product charges the highest

price (ps > 0) but the difference in quality more than compensates the difference in prices

(y > ps), so that she also attracts a fraction of consumers larger than one half.9

8See, for example, Shaked and Sutton (1982).

9Note that in this model, the firm that has an advantage is not literally the firm “selling the best product”
but is the firm that is expected to sell the best product.
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What is relevant for efficiency, though, is by how much this market share exceeds one

half. I have already shown that in the absence of strategic pricing the market share of firm

a is too small, from a social point of view. According to Proposition 1.5, a’s market share

is even smaller if the two networks are sponsored and this equilibrium provides even less

welfare than the equilibrium with unsponsored networks. The reason why strategic pricing

reduces welfare is quite straightforward: with vertical differentiation, the firm selling the

best product has a natural advantage that is reflected in a higher equilibrium price. In turn,

the fact that a is more expensive than b, ceteris paribus, shifts some consumers from a to b.

I have therefore identified two separate sources of inefficiency on network markets: the

first is the presence of network externalities that consumers do not internalize, which de-

termines a market allocation that is too balanced from a social point of view. The second,

which arises only if networks are sponsored, is the presence of strategic pricing, that further

reduces the asymmetry between network sizes.

1.5 Conclusions

I described the optimal allocation of consumers between two vertically and horizontally dif-

ferentiated networks. I found that social welfare is maximized by an asymmetric allocation

such that the network with the highest expected quality has the largest market share. I

then compared this allocation with the ones implemented by the market if the networks

are unsponsored or sponsored, respectively. Two sources of inefficiency emerged from the

analysis: the failure to internalize network externalities and the presence of sponsors that

strategically set prices for the products. Both these facts induce the market to implement
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an allocation of consumers that is too symmetric.

I analyzed efficiency from an ex-ante point of view. One possible alternative is to analyze

efficiency from an ex-post point of view, assuming that a benevolent social planner can

observe the realized distribution of private values in the population. It can be shown that

also in that case the efficient allocation is a threshold allocation such that both networks

are active and one of them has a larger market share than the other. The main difference

with the ex-ante case is that the ex-post optimal threshold depends on the realization of

θ. Also, in the ex-post efficient allocation the network with the largest market share is the

one with the highest realized quality, while in the ex-ante case it is the one with the highest

expected quality.

Comparing the equilibrium allocation to the ex-post efficient allocation, the main result

is that strategic pricing can increase welfare if the firm with the highest expected quality

has the lowest realized quality and decrease welfare in the opposite case. The intuition for

this result is the following. If the public signal is in favor of, say, firm a, in equilibrium

she will charge a price higher than the competitor and ex-post this will negatively affect

her market share (everything else equal). Therefore, if ex-post a is the best firm, strategic

pricing shifts some consumers towards the worst firm, while if a is the worst firm, then

strategic pricing shifts some consumers towards the best firm.

In my model, I assumed that consumer heterogeneity is unbounded while the utility

derived from the network effect is bounded. The result that the ex-ante efficient threshold

is an interior optimum holds under more general assumptions. For symmetric, bounded

network effects, if the distribution of xi is continuous and symmetric around the mean,
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then it is sufficient that the upper bound of the support of xi is weakly larger than the

individual surplus from being in a network of size one.

I also assumed complete market coverage. This assumption allowed us to abstract

from the possible deadweight loss associated to strategic pricing and to focus only on the

inefficiency arising from the difference in equilibrium prices.

Finally, I assumed that firms have access only to the public information available about

the vertical quality of the products. A natural extension of the model would be to allow

each firm to observe a private signal about the vertical quality of her product. This would

add the issue of how firms use prices to signal their quality.

I leave for future research an extension of this model to a dynamic environment, where

consumers choose sequentially and firms can adjust prices over time.



Chapter 2

Network Markets and Consumer

Coordination1

2.1 Introduction

A market has network externalities if consumers’ utility from purchasing a product depends

on which other consumers buy the same product. A highlighted special case of this is

two-sided markets with network externalities. In these markets consumers are divided into

two distinct subgroups. A consumer’s utility on one side increases in the total number

of consumers on the other side of the market who buy the same product (and possibly

decreases in the number of consumers on the same side of the market). This applies to

various situations in which two groups of agents need a common platform to interact and

one or more firms own platforms and sell access to them. The higher the number of agents

on one side who join a platform, the higher the utility of an agent on the other side of

the platform because she has a higher number of potential partners with whom to trade

1Attila Ambrus and Rosa Argenziano

36
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or interact. One example of this is the market for on-line matchmaking services where the

two sides are women and men. In other cases the two sides are buyers and sellers and

the platforms are auction websites, directory services, classified advertisers and credit card

networks (the sellers are merchants who accept the credit card and the buyers are credit

card holders).

This chapter investigates the decisions of firms regarding how many networks to operate

and how to price them, and the network choices of consumers in two-sided markets with

network externalities. We consider an extensive form game in which in the first stage firms

establish networks, in the second stage they announce registration fees for these networks,

and in the third stage consumers simultaneously choose networks or decide to stay out of

the market.

The first contribution of this chapter is methodological. Equilibrium analysis on network

markets is an involved task. The coordination problems that arise among consumers result

in a severe multiplicity of equilibria both in games in which there is a monopolist network

provider and in games in which there are multiple providers. Consumers can have various

self-fulfilling expectations regarding which networks other consumers join and whether they

join any network at all. To address the issue of multiplicity of equilibria we use the concept

of coalitional rationalizability, proposed by Ambrus (2002 and 2003) to select equilibria and

therefore derive qualitative predictions. Informally, this method corresponds to assuming

that consumers can coordinate their network choices as long as it is in their joint interest

and this coordination does not require explicit communication.

The second contribution of this chapter is that this methodology allows us to analyze
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pricing games in which consumers in the market are heterogeneous. This makes it possible

to ask a new set of questions. These include whether price discrimination among different

type of consumers is possible without product differentiation, whether there can be multiple

active networks operated by competing firms, attracting different types of consumers, and

whether it can be in the interest of a monopolistic network provider to operate multiple

networks, aimed at different sets of consumers.

Coordination failures and the resulting inefficiencies are relevant phenomena in network

markets, since typically there are many anonymous consumers who cannot communicate

with each other. Nevertheless, in some cases it is reasonable to expect consumers to be able

to coordinate on a particular network. The simplest example is if there are two networks

and one is cheaper on both sides of the market. Choosing this network is then a natural focal

point on which consumers can coordinate. The central assumption of the model presented

in this chapter is that consumers can coordinate their decisions to their advantage if their

interests coincide and if coordination can be achieved without communication, as in the

above case. In contrast, if there is no unique candidate network that consumers would agree

to join, we do not assume successful coordination even if it is in the common interest of

consumers. Our motivation for this is that if there are lot of small consumers on the market

then it is practically impossible for them to get together and make explicit agreements on

network choices.

Coalitional rationalizability allows us to incorporate the above assumption into the

analysis. This noncooperative solution concept assumes that players can coordinate to

restrict their play to a subset of the original strategy set if it is in the interest of every
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participant to do so. This defines a set of implicit agreements, which puts restrictions

on beliefs that players can have at different stages of the game. These agreements are

based on public information, the description of the game, and therefore do not require

explicit communication. Furthermore, they are self-fulfilling in the sense that if participants

expect each other to choose networks according to an agreement, then it is in their best

interest to act according to the agreement. In the games that we analyze there can be

groups of consumers who can coordinate their network choices this way after certain price

announcements.

We investigate the subgame perfect equilibria of the above market games that are com-

patible with the additional assumption of coalitional rationalizability. We call these equi-

libria coalition perfect.

We analyze participation rates of consumers, prices charged by the firms, network sizes

and firms’ profits in coalition perfect equilibria. The analysis is carried out for the cases of

both one and two firms operating on the market. In the former case we distinguish between

the case that the firm can operate only one network and the case in which it can decide to

operate multiple networks.

We show that if consumers are homogeneous on the same side of the market then a mo-

nopolist network provider only establishes one network in coalition perfect equilibrium. On

the other hand, if there is enough heterogeneity among consumers, a monopolist might want

to establish two networks, which in equilibrium are joined by different type of consumers.

The intuition is that, if there are high reservation value consumers on both sides of the

market, then the monopolist wants to extract surplus from both of these groups. However,
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if there are relatively few of these consumers and the monopolist operates only one network,

then he can charge a high price on at most one side. In order to charge a high price on

one side, there have to be enough consumers on the other side of the network, which is

only possible if the price charged on that side is low. On the other hand, if the monopolist

establishes two networks such that one of them is cheap on one side of the market and

the other network is cheap on the other side, then all consumers are willing to join some

network and consumers with high reservation values are willing to join the network which

is more expensive for them. The way price discrimination is achieved in these equilibria is

through endogenous product differentiation. Networks are physically the same, but if one

side of a network attracts a lot of consumers, then the other side of the network becomes

more valuable for consumers.

In the case of two network providers competing for consumers we show that homogeneity

of consumers on the same side of the market ensures that both firms’ profits are zero in

coalition perfect equilibrium, reestablishing the classic Bertrand result. This holds despite

the fact that equilibrium prices do not have to be equal to the marginal cost (consumers

on one side of the market can be subsidized). Homogeneity of the consumers also implies

that there cannot be multiple asymmetric networks in coalition perfect equilibrium. On the

other hand, we show that if consumers are heterogeneous, then there can be equilibria in

which there are two networks that attract different type of consumers and in which firms

earn positive profits. The intuition is that although firms can steal each other’s consumers

by undercutting their rival’s prices on both sides of the market, this move is not necessarily

profitable. In particular, undercutting might be unprofitable if it increases the number of
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consumers to be subsidized more than the number of consumers who pay a positive price.

In both the monopoly and the duopoly case the coalition perfect equilibria with two

asymmetric networks have the feature that one network is larger and cheaper on one side

of the market, while the other one is larger and cheaper on the other side. One example of

this configuration is when a town has both a freely and universally distributed newspaper

with classified ads and one that is not freely distributed. The first newspaper is cheaper

and larger on the buyers’ side. In order to compete with the freely distributed newspaper,

typically the other newspaper has to have more ads posted on it, and therefore can only

charge a smaller fee for posting ads. Therefore this newspaper is typically cheaper and

larger on the sellers’ side. Another example is on-line job search, where the two main

platforms are Careerbuilder.com and Monster.com. Monster has a database of 25 million

resumes versus Careerbuilder’s 9 million, therefore larger on the job seekers’ side. On the

other hand, Careerbuilder has 45.2% of the job postings of the on-line job search market

in the US, while Monster has only 37.5%.2 Therefore Careerbuilder is larger on this side.

And to post a job on Careerbuilder, a firm pays $269, while to post a job on Monster a firm

pays $335.3

22004 February figures. The information about the size of the two databases is taken form
www.careerbuilder.com and www.monster.com. The information about the number of job postings is ob-
tained from Corzen.

3The base cost of posting a resume is zero on both sites, but job seekers pay extra fees for preferential
treatment of their resumes (for example if they want them to come up at the top of search result lists
obtained by firms). We do not have information on how many job seekers pay these extra fees, therefore we
cannot make a correct price comparison on this side of the market.
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2.2 Related Literature

Recently a number of papers investigated the issue of optimal pricing and price competition

in markets with two-sided network externalities. For a more extensive literature review, see

for example Armstrong (2002).

Rochet and Tirole (2003) and Armstrong (2002) study monopolistic pricing and price

competition between two firms on markets where the firms are platforms that try to attract

two groups of agents. The models in these papers abstract away from coordination problems

among consumers. They assume differentiable demand functions for the networks, implicitly

assuming differentiated networks (that consumers have heterogeneous inherent preferences

between networks). Also, they focus on a particular symmetric equilibrium. Moreover,

Rochet and Tirole emphasize the case in which the networks’ primary pricing instrument

are transaction fees.

Jullien (2001) constructs a duopoly model that allows for more than two subgroups

of consumers and for both inter-groups and intra-group network externalities. The setup

of this paper differs from ours in that the intrinsic value of the good sold by each firm

is assumed to be high compared to the network effect and also that one of the firms is

highlighted in the sense that consumers always coordinate on the equilibrium which is the

most favorable for this firm.

Ellison, Fudenberg and Mobius (2002) study competition between two auction sites. In

their model, like in ours, multiple asymmetric platforms can coexist in equilibrium, despite

no product differentiation. In addition to this, they assume heterogeneous agents on both

sides of the market. On the other hand, in their model consumers choose platforms ex
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ante, while in ours they do it after learning about their types. Furthermore, the reason

that multiple active networks can coexist in equilibrium is completely different in their

model. They consider a finite number of buyers and sellers, therefore one of them switching

from one platform to another adversely affects the market price on the latter platform.4 In

our model there is a continuum of consumers on both sides of the market, therefore this

market-impact effect is absent.

The model in Damiano and Li (2003a and 2003b) is similar to ours in that consumers on

a two-sided market are heterogeneous and that registration fees serve the role to separate

different types of consumers. The main difference between our setup and theirs is that in

the latter there is no network externality. Consumers care about the average quality of

consumers on the other side of the network and not their number. On the other hand, in

our model consumers are symmetric with respect to the external effect they generate on

consumers on the other side.

The most similar model to ours is presented by Caillaud and Jullien (2001 and 2003).

They analyze markets where firms are intermediaries offering matchmaking services to two

groups of agents. The above papers assume that consumers on each side are homogeneous

and their utility is linear in the number of consumers on the other side of the network.5 The

assumption of homogeneity implies that these papers do not address most of the issues we

investigate in this chapter. Also, Caillaud and Jullien select among equilibria by imposing

monotonicity on the demand function of consumers and by assuming full market coverage

4See Ellison and Fudenberg (2003) for a detailed analysis of this point.

5For a comparison between our results in this context and the ones of Caillaud and Jullien (2003), see
Subsection 2.7.1.
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in equilibrium. As opposed to making an assumption on the aggregate demand function

our model imposes restrictions directly on the expectations of individual players.

In our model different types of consumers might select to join different networks. In this

aspect, our analysis is connected to the literature on price discrimination (for an overview see

Varian (1987)) multiproduct pricing (see Baumol et al. (1982)) and the theory of screening

(for an overview see Salanie (1997)).

2.3 The Model

We consider a standard model of price competition in two-sided markets with network exter-

nalities. It is a sequential move game in which first firms announce prices, then consumers

observe the announcements, and finally consumers choose which network to join, if any. We

examine the cases of one or two firms operating in the market. The added features of our

model are the following. First, in the monopoly case we allow the firm to choose the number

of networks to be established. Second, consumers are not assumed to be homogeneous in

that how much they value the network good. Third, we do not make any restriction on the

utility functions of consumers besides quasilinearity in money.

Formally, the set of players in the model is (F,C1, C2), where F denotes the firms, while

C1 and C2 the consumers of the corresponding sides. We assume there is a continuum

of consumers on both sides of the market, indexed by the interval [0, 1]. Let Ck
i denote

consumer i on side k. As far as firms are concerned, we restrict attention to the cases

F = {A} (only one firm, A is present) and F = {A,B} (two firms, A and B are present).

We consider a three-stage game with observable actions (after every stage all players
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observe all action choices made in that stage).

In the first stage the firms simultaneously choose how many networks to establish. We

will restrict attention to cases when the maximum number of networks a firm can operate

is either one (in which case decisions at this stage are trivial) or two. Let nk denote the

first stage action of firm k. Furthermore, let (τmk )m=1,...,nk denote the networks that firm k

establishes.

In the second stage the firms simultaneously set prices (registration fees) on the estab-

lished networks. Firms can charge different registration fees on different networks or on

different sides of the same network. Furthermore, they can charge negative prices on either

side of the networks (subsidizing consumers on that side). Let pjk,n denote the price that

firm k sets on side j of τnk . If every firm can only have one network, then we use the simpler

notation pjk.

In the third stage the consumers simultaneously choose which network to join, if any.

We assume that a consumer can join at most one network (exclusivity of networks).6

Firms maximize profits. Let πk denote the profit of firm k. We assume that firms are

symmetric and that the cost of operating a network is zero, independently of the number

of consumers joining the network.7 Then the payoff of the firm is the sum of the revenues

collected from the firm’s networks, where the revenue collected from a network is sum of

the revenue collected on side 1 and the revenue collected on side 2. Let N j
k,n denote the

number of consumers on side j who join network τnk .
8 If the maximum number of networks

6See Section 2.8 for a discussion on relaxing this assumption.

7See Section 2.8 for a discussion on how the results affected by assuming a positive marginal cost.

8More precisely, the Lebesgue measure of consumers on that side joining the network. We leave payoffs
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k can operate is 1 then we use the simpler notation N j
k . Then πk =

P
n=1,...,nk

P
j=1,2

pjk,nN
j
k,n.

Consumer i on side j maximizes the individual-specific utility function U j
i . Let U

j
i = 0

if she does not join any network. Let U j
i = gji (N

−j
k,n)− pj

cji
if she joins network τnk . Assume

gji (0) = 0 and that g
j
i is increasing for every consumer C

j
i .
9 A consumer’s utility if joining a

network is quasilinear in money and increases in the number of people joining the network

from the other side of the market.10 Implicit in the construction is that consumers do not

have any inherent preference for joining one network or another, they only care about the

number of people joining the networks and the price they have to pay.

Let uji = gji (1). We call u
j
i the reservation value of consumer i on side j.

If gji = gji0 ∀ i, i0 ∈ [0, 1] and j ∈ {1, 2}, then we say consumers are homogeneous. A

special case of the above specification, that received highlighted attention in the existing

literature, is when for every j = 1, 2 and i ∈ [0, 1] it holds that gji (N
−j
k,n) = ujN−j

k,n (consumers

on the same side have the same linear utility function).

2.4 Coalitional Rationalizability and Coalition Perfect Equi-

librium

The central assumption of our model is that at every stage of the game players can coordi-

nate their actions whenever it is in their joint interest and it does not require communica-

undefined for cases where the latter set is not measurable.

9We assume that network participation is a pure network good for analytical convenience. Most results
of the paper could be generalized to the case of gji (0) ≥ 0.

10The above specification makes the simplifying assumption that a consumer’s utility is independent of
how many consumers join the network on her side, implicitly assuming that interacting with consumers on
the other side is a nonrival activity. Section 2.8 discusses implications of partially relaxing this assumption.
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tion. The formal concept we use is coalitional rationalizability. It is a solution concept that

builds on the idea that whenever it is in the mutual interest of some group of players (a

coalition) to restrict their play to a certain subset of the strategy space (to implicitly agree

upon not playing some strategies) then these players indeed expect each other to make this

restriction. These restrictions are called supported. The set of coalitionally rationalizable

strategies are the outcomes that are consistent with common certainty of the assumption

that play is consistent with every supported restriction by every coalition. For the formal

construction see Ambrus (2002).

In the forthcoming analysis we restrict attention to pure strategy subgame perfect equi-

libria in which players play coalitionally rationalizable strategies in every subgame. We call

these outcomes coalition perfect equilibria.11

Definition 2.1. A strategy profile is a coalition perfect equilibrium if it is a subgame perfect

Nash equilibrium and in every subgame every player plays some coalitionally rationalizable

strategy.

Intuitively, coalition perfect equilibrium requires that supported restrictions can be made

not only at the beginning of the game, but after any publicly observed history, and that

players at any stage of the game foresee restrictions that are made at later stages. In

the games we consider coalitional rationalizability puts restrictions in certain subgames on

consumers’ beliefs concerning other consumers’ choices. To provide some intuition on this,

11 It is possible to show that in our context the requirement that players play coalitionally rationalizable
strategies in every subgame is outcome equivalent to the concept of extensive form coalitional rationalizability
(see Ambrus (2003)).
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we proceed with an informal definition of supported restriction in consumer subgames, and

three examples of such restrictions.

Consider a third stage (consumer) subgame. Assume that players are certain that play is

in some subset S0 of the set of strategies. Then a coalition of consumers supports restricting

play to a subset S00 of S0 if for any player in the coalition the following condition holds.

No matter what beliefs she has concerning the choices of consumers outside the coalition,

her expected payoff is always strictly higher if the restriction is made (if every player in the

coalition plays inside S00) than if the restriction is not made and she plays some strategy

outside S00.

For the first example suppose F = {A,B} and that for every j = 1, 2 and i ∈ [0, 1]

it holds that gji (N
−j) = uN−j for some u > 0. Consider the consumer subgame that

follows price announcements pjk = 0 ∀ j = 1, 2 and k = A,B. Then the restriction to join

either A’s network or B’s network (or agreeing upon not to stay out of the market) is a

supported restriction for the coalition of all consumers, because if the restriction is made,

then any possible conjecture that is compatible with it is such that a best response to it

yields expected payoff of at least u/2 (the conjecture should allocate an expected size of at

least 1/2 to one of the two networks), while staying out of the market yields zero payoff.

Because prices charged by the two networks are the same, no more strategies are eliminated

by coalitional rationalizability in this subgame. Both joining A’s network and joining B’s

network are coalitionally rationalizable for every consumer and therefore this subgame has

three coalitionally rationalizable Nash equilibria. Either every consumer joins A or every

consumer joins B, or one half of the consumers on both sides joins each network.
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Next, consider the subgame in the same game that follows price announcements pjA = 0

and pjB = u/4 ∀ j = 1, 2. In this subgame A is a supported restriction for the coalition of

all players, since it yields payoff u to all consumers, while joining B’s network can yield a

payoff of at most 3u/4 and staying out yields 0. Coalitional rationalizability pins down a

unique strategy profile in this subgame.

If consumers are heterogeneous then the set of coalitionally rationalizable outcomes in a

subgame might only be reached after multiple rounds of agreements. Suppose F = {A,B},

consumers have linear utility functions and u1i = 1 i ∈ [0, 1/2], u1i = 1/2 i ∈ (1/2, 1]

and u2i = 1 i ∈ [0, 1]. In words, consumers on side 2 are homogeneous, while half of the

consumers on side 1 have relatively low reservation values. Consider the subgame following

price announcements p1A = .4, p2A = .8 and p1B = .8, p2B = .4. Initially, there is no supported

restriction for the coalition of all consumers. Consumers would prefer to coordinate their

network choices, but coordinating on A is better for side 1 consumers, while coordinating

on B is better for side 2 consumers. However, note that joining B is not rationalizable

for any consumer C1i for i ∈ (1/2, 1] and therefore not joining B is a supported restriction

for these consumers. Once it is established that players C1i for i ∈ (1/2, 1] only consider

strategies ∅ or A, it is a supported restriction for the coalition of all consumers to join A.

Therefore coalitional rationalizability pins down a unique outcome in this subgame as well.

The sequential structure of the game implies that there are no supported restrictions

in the game that involve both firms and consumers. By the time consumers move, firms

already made their choices and those choices were observed by the consumers. And since

consumers cannot commit themselves to make choices that are not in their interest, there
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are no credible implicit agreements between firms and consumers. Showing this formally is

straightforward and therefore omitted from here. It is less straightforward to establish that

there are no supported restrictions between two firms, and we could not establish a result

like that for the general specification. However, we did not find any example in which there

is a supported restriction by firms. Firms in our model are competitors and they only move

once, therefore their possibilities to make credible and mutually advantageous restrictions

are very limited.

We note that the solution concept we use is not equivalent to coalition-proof Nash

equilibrium (Bernheim, Peleg and Whinston (1987)) or Pareto efficiency in the consumer

subgames. In consumer subgames in which there is a unique Pareto efficient outcome

coalition perfect equilibrium implies that the efficient outcome is played. But in subgames

with multiple Pareto efficient outcomes it is consistent with coalition perfect equilibrium

that a Pareto inefficient outcome is played. Also if consumers are heterogeneous, then not

every Pareto efficient outcome is consistent with coalition perfect equilibrium. In general,

none of the results presented in this chapter for heterogeneous consumers would hold if

instead of coalitional rationalizability we assumed Pareto efficiency in consumer subgames.12

As far as coalition-proof Nash equilibrium is concerned, it can be shown that in our model

it is a stronger concept than coalitionally rationalizable Nash equilibrium, implying that it

assumes a more effective form of coordination than what we impose.13 It can be established

12One intuition for this is that if in every equilibrium of a consumer subgame there are some consumers
who do not join any network, then the requirement of Pareto efficiency is very weak (consumers who stay
out get utility zero, no matter how many other consumers stay out or how many consumers join one network
versus the other).

13 In particular, it assumes successful coordination even when there are multiple outcomes in a subgame
that cannot be ruled out by the logic of coalitional agreements. In our view in these cases coordination can
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that both the range of network choices and equilibrium prices can be larger in coalition

perfect equilibrium than in coalition-proof Nash equilibrium.14 The above implies that

those results of this chapter that establish properties of all coalition perfect equilibria are

valid for (the strictly smaller set of) perfect coalition-proof equilibria too.

We do not investigate the issue of existence of pure strategy coalition perfect equilibrium

here. It is possible to show that under some technical conditions every game with one firm

has a pure strategy coalition perfect equilibrium, while every game with two firms has a

coalition perfect equilibrium in which consumers play pure strategies and only firms use

mixed strategies.15 We restrict attention to pure strategies to keep the analysis tractable.

In all examples we provide in this chapter there exists a pure strategy coalition perfect

equilibrium.

2.5 Monopolist with One Network

In this subsection we assume F = {A} and that firm A can only establish one network.

In a market without network externalities, subgame perfection, which is implicitly as-

sumed when the demand function of consumers is derived, guarantees that a monopolist can

achieve the maximum profit compatible with Nash equilibrium.16 In markets with network

only be achieved through explicit agreements, which is not possible in the settings we consider.

14See the earlier version of our paper for an example.

15The conditions are that utility functions are differentiable and there is a uniform bound on their deriv-
atives.

16To give a simple example, if all consumer have the same reservation value u > 0 for some indivisible
good and the firm charges a price strictly below u, then subgame perfection implies that all consumers buy
the good. Then in any subgame perfect Nash equilibrium the firm gets a profit of u times the number of
consumers.
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externalities the above result does not hold. Typically there are many different equilibria of

the pricing game with one network provider. The consumers face a coordination problem

when deciding on whether to join a network or not, which results in a wide range of subgame

perfect equilibrium prices, consumer participation measures and profit levels.

In sharp contrast, Theorem 2.1 below establishes that in every coalition perfect equi-

librium the monopolist gets the maximum profit compatible with Nash equilibrium. The

intuition is the following. In any Nash equilibrium consumers who join the network get

nonnegative utility. Then coalitional rationalizability guarantees that all these consumers

join the network if the price is smaller than the previous equilibrium price. But then the

firm is guaranteed to get a profit that is arbitrarily close to the above equilibrium profit by

charging slightly smaller prices (note that if the equilibrium price on one side is negative,

then all consumers on that side join the network in equilibrium, so a price decrease cannot

result in having to subsidize more consumers).

The proofs of all theorems that are stated in this chapter are in Appendix B.

Theorem 2.1. πA is uniquely determined in coalition perfect equilibrium and it is equal to

the maximum possible profit of A in Nash equilibrium.

If consumers are homogeneous and the reservation values of consumers are u1 on side 1

and u2 on side 2, then Theorem 2.1 implies that in any coalition perfect equilibrium that

pkA = uk and Nk
A = 1 ∀ k = 1, 2. The assumption that consumers can implicitly coordinate

their choices in this case ultimately hurts them because the firm can extract all the potential

consumer surplus on the market.

A corollary of the previous observation is that if consumers are homogeneous, then it
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is never in the interest of the firm to establish more than one network. By providing one

network the firm can extract the maximum possible gross consumer surplus on this market.

If there are two active networks then gross consumer surplus is smaller than in the above

case, and since no consumer can get negative utility in any Nash equilibrium, the profit of

the firm is strictly smaller than in the one network case.

2.6 Monopolist Who Can Operate Multiple Networks

This section investigates a monopolist network provider’s decision on how many networks

to operate and how to price them. Since the analysis of the model with more than two

networks and heterogeneous consumers is involved, we restrict attention to the case when

the monopolist can operate at most two networks.

First we show in a simple setting that it can indeed be better for the monopolist to op-

erate two networks, despite the fact that it would be socially optimal to have all consumers

on the same network. The example also demonstrates that in network markets the mo-

nopolist can effectively price discriminate among consumers through registration fees, even

without product differentiation. We compare social welfare in the case the monopolist can

operate only one network versus if it is allowed to operate multiple networks. For general

distribution of types we provide a necessary condition for two networks being established

in equilibrium.

We note that the results of this section carry over to the case when consumers can

join multiple networks at the same time.17 Furthermore, the latter framework is formally

17See Subsection 2.8.2 for a discussion.
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equivalent to one in which the monopolist operates only one network but can sell restricted

access to the network (can control which transactions can occur on the network). Therefore

in that setting if there is enough heterogeneity among consumers then the monopolist might

want to sell both limited access at a lower price, and full access at a higher price, on both

sides of the network.

2.6.1 Two Types of Consumers on Each Side

Here we restrict attention to a context in which the two sides of the market are symmetric,

there are only two types of consumers on each side, and consumers have linear utility

functions.

Assume that gji (N) = uji · N ∀ j = 1, 2 and i ∈ [0, 1]. Also assume that for every

u1i = u2i = h for i ∈ [0, a] and u1i = u2i = l for i ∈ (a, 1], where l < h and a ∈ [0, 1].

In each side a fraction a of the consumers have a reservation value h, which is higher

than l, the reservation value of the rest of the consumers. We refer to consumers with

reservation value h as high types, and consumers with reservation value l as low types18.

It is possible to show that for all parameter values a, l and h there exists a coalition

perfect equilibrium, no matter what is the maximum number of networks that A can estab-

lish.19

As a first step we characterize the set of coalition perfect equilibria when the firm can

only establish one network. The coalition perfect equilibrium is almost always unique, but

18Note that high and low type only refers to the reservation value of consumers and not to their quality
in terms of how desirable a consumer’s presence is on the network for consumers on the other side. In our
model all consumers are ex ante identical in terms of this external effect.

19 In a previous version of this model we establish a more general result.
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depends on the values of parameters a, h and l. If l is relatively low and a is high, then the

monopolist targets only the high type consumers and charges a high price on both sides. If

l is relatively high and a is small, then the monopolist targets all consumers and charges

a low price on both sides. In cases in between the monopolist might target all consumers

on one side and only the high types on the other side, by charging a low and a high price.

These results are both intuitive and in accordance with classic results from the literature

on multi product pricing with heterogeneous consumers.

Define the following cutoff points:

t1 ≡ 2a− 1 (2.1)

t2 ≡
a

2− a
(2.2)

Notice that if a ≥ 1
2 then 0 ≤ t1 ≤ t2 ≤ 1

2 , while if a ≤
1
2 then t1 ≤ 0 ≤ t2 ≤ 1

2 . Also,

notice that both t1 and t2 are strictly increasing in a.

Theorem 2.2. For every coalition perfect equilibrium the following hold:

1. If l
h < max {0, t1} , then only the high types on both sides join the network and p1A =

p2A = ah

2. If l
h ∈ (max {0, t1} , t2) then there is j ∈ {1, 2} such that on side j all consumers join

the network and pjA = al and on the other side only high types join the network and

p−jA = h.

3. If l
h ∈ (t2, 1) then all consumers on both sides join the network and p1A = p2A = l.
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Finally, if l
h = t1 there are coalition perfect equilibria of both type 1 and type 2

above. Similarly if l
h = t2 then there are coalition perfect equilibria of both type 2 and

type 3 above.

Note that if a < 1/2, then there is no coalition perfect equilibrium in which the monop-

olist charges a high price on both sides of the market, targeting only high types. Charging

a high price on one side of the market has to be accompanied by charging a low price on

the other side. The reason is that there have to be enough consumers on the other side

on the network for high types on the first side to be willing to pay the high price. The

monopolist therefore cannot extract a high level of consumer surplus from both sides of the

market simultaneously.

Assume now that the maximum number of networks A can establish is 2. The next

theorem shows that for a range of parameter values in every coalition perfect equilibrium

the monopolist chooses to operate two networks and high and low type consumers on the

same side of the market choose different networks.

Define the following cutoff points:

z1 ≡ 4a− 1 (2.3)

z2 ≡
a (1− 2a)
1− a

(2.4)

Notice that if a ∈
h
0, 1−

√
2
2

i
then t1 ≤ z1 ≤ t2 ≤ z2. and both z1 and z2 are strictly

increasing in a.

Theorem 2.3. If a ∈
³
0, 1−

√
2
2

´
and l

h ∈ (max {0, z1} , z2) then the following hold for

every coalition perfect equilibrium:
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(1) nA = 2

(2) There is n ∈ {1, 2} such that all high types on side 1 and all low types on side 2

join τnk , while all low types on side 1 and all high types on side 2 join τ−nk . The prices are

p1A,n = p2A,−n = h (1− 2a) + al and p2A,n = p1A,−n = al.

Note that this range of parameter values cuts into the region in which a monopolist

with one network would target all consumers on both sides and into the region in which it

targets only high type consumers on one side and all consumers on the other.

By establishing two networks and pricing them differently the monopolist implements

a form of second degree price discrimination. In particular, if the proportion of high types

is sufficiently low, then the monopolist can separate the low types and the high types on

each side even if reservation values are unobservable, by charging a high price on side 1

and a low price on side 2 in one network, and doing the opposite on the other network20.

An appropriate choice of prices results in low type consumers choosing networks that are

relatively cheap for them, while high type consumers choosing the ones that are relatively

expensive for them. In equilibrium the two networks, despite being physically equivalent,

end up being of different quality. In our framework the quality of a network for a consumer

is determined by how many consumers join the network on the other side of the market.

If the majority of consumers on each side of the market are low types, then when all low

type consumers on side 1 join one network, that network becomes higher quality for side

2 consumers. Similarly when all low type consumers on side 2 join one network, that

20Note that coalitional rationalizability implies that in order to have two active networks in equilibrium
they either have to have exactly the same prices, or one network has to be relatively cheaper on one side, while
the other one on the other side. Therefore there cannot be coalition perfect equilibria with two networks
with one being large and expensive on both sides, while the other small and cheap on both sides.
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network becomes higher quality for side 1 consumers. Since in the above equilibria the low

type consumers join different networks, one network ends up being high quality for side 1

consumers, while the other one for side 2 consumers. High type consumers have a higher

willingness to pay for quality and therefore are willing to join the networks that are more

expensive for them.

The result that in equilibrium the monopolist separates consumers on the same side by

offering them two products that have different prices and qualities is standard in the adverse

selection literature21. What is special to this model is that the two networks are ex-ante

identical and product differentiation is endogenous. The quality of a network is determined

in equilibrium by the network choices of the consumers, which are driven by the prices of

the networks.

The reason the monopolist might be better off by the price discrimination is that it can

extract a large consumer surplus from high type consumers simultaneously on both sides

of the market, something that it cannot achieve by operating only one network (see Figure

2.1 for an illustration).

Notice that in the above equilibrium the firm sacrifices some gross consumer surplus (it

is socially efficient if all participating consumers are on the same network) in order to be

able to extract a high share of the surplus from consumers with high reservation values on

both sides of the market.

21See Mussa-Rosen (1978) and Maskin-Riley (1984).
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Figure 2.1: Optimal Price Structure for a Monopolist with Two Networks
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Despite this, the aggregate social welfare in the situation in which the monopolist is

not allowed to operate multiple networks can be both higher or lower than in the situation

in which it can only operate one. If l
h ∈ (t2, z2) then a monopolist operating only one

network charges prices (l, l) and all consumers join the network. This generates a higher

aggregate surplus than if the monopolist can operate two networks, because the same set

of consumers participate in the market both cases, but more surplus is generated if they

all join same network. As far as consumer surplus is concerned, high types are better off

if the monopolist can only run one network and low types are indifferent (they get zero

utility in both cases). On the other hand if l
h ∈ (z1, t2), then being restricted to operate one

network the monopolist sets a price of h on one side and la on the other. Only high types

join the network on the first side and all consumers on the other side. In this case high

type consumers are better off if the monopolist can operate two networks and low types

are again indifferent. Furthermore, it is straightforward to establish that aggregate social

surplus is higher in the case of two networks. In case of two networks aggregate surplus is

2(ah (1− 2a) + al) + 2a2 (h− l), while in case of one network it is ah+ al+ a2 (h− l). The

difference of the two surpluses is ah + al − 3a2h − a2l, which is positive given that l
h < 1

and l
h ≥ z1 = 4a− 1 implies a < 1

4 .

Equilibrium prices and quantities have to satisfy the “incentive compatibility con-

straints” that a high type consumer should prefer the more expensive network, while a

low type consumer should prefer the cheaper network. Furthermore, since staying out of

the market is an option to every consumer, consumers have to get nonnegative utility in

equilibrium - a “participation constraint”. One feature of the above result, which is consis-
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tent with the literature on adverse selection, is that the incentive compatibility constraints

for the high types and the participation constraints for the low types are binding in equi-

librium.

2.6.2 General Specification

The question of when it is in the interest for the monopolist to operate multiple networks is

difficult to answer in general.22 One result in the restricted setting of the previous subsection

is that the reservation values of high and low type consumers have to be sufficiently different

for the monopolist wanting to establish two networks. Below we show that this can be

extended to a more general setting. In particular we provide a lower bound on the ratio

of the highest and lowest reservation value which is consistent with two networks being

operated by the monopolist, provided that consumers’ utility functions are convex (including

the linear specification).

Let F = {A} and let the maximum number of networks A can establish be 2. Assume

that gji is weakly convex for every j = 1, 2 and i ∈ [0, 1].

Theorem 2.4. If uji/u
j
i0 < 3+2

√
2 for every j = 1, 2 and i, i0 ∈ [0, 1] then in every coalition

perfect equilibrium either nA = 1, or ∃ n ∈ {1, 2} such that Nk
A,n = 0 for some k ∈ {1, 2}.

The central point of the proof is that the above assumptions guarantee that establishing

one network and charging prices equal to the lowest reservation values is always more prof-

22One complication is that as opposed to the case of two types of consumers on each side, in general
the profit of a monopolist might not be uniquely determined in coalition perfect equilibrium. The previous
version of this work provides an example in which there are coalition perfect equilibia in which only one
network is established, but there are also coalition perfect equilibria in which two networks are established,
yielding different profit levels. This is possible because coalitional rationalizability does not uniqely determine
choices in every consumer subgame.
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itable than establishing two active networks. Recall that establishing two active networks

implies sacrificing some consumer surplus, which limits the price that the monopolist can

charge on the networks. Therefore it can only be profitable if there are some consumers on

both sides of the market with sufficiently high reservation values relative to the rest of the

consumers.

2.7 Duopoly

In this section we consider two firms operating in the market, each allowed to establish

only one network. Just like in the case of one firm operating in the market, typically there

are many different types of subgame perfect Nash equilibria, including one in which no

consumers participate in the market. There are also equilibria in which firms get positive

profits.23

We investigate whether the assumption of coalitional rationalizability reestablishes the

result that firms’ profits are zero in Bertrand competition for markets with network ex-

ternalities. Furthermore we ask whether there exist coalition perfect equilibria in which

asymmetric networks coexist in the market, with different types of consumers choosing dif-

ferent networks. First we address these questions in the special case that all consumers on

the same side have the same reservation values, where we can characterize the set of coali-

tion perfect equilibria. Then we investigate the case of heterogeneous consumers, where

23The presence of so called “divide and conquer” strategies (introduced by Innes and Sexton (1993), and
then analyzed in the context of network markets by Jullien (2001) and Caillaud and Jullien (2001)) restricts
the set of SPNE. If a firm charges a sufficiently low (negative) price compared to its rival on one side of
the market, it can make its network a dominant choice for consumers on that side. Then it can charge a
high price on the other side of the market and still make sure that consumers join its network on that side.
Despite this there is typically a severe multiplicity of equilibria.
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we provide an example to show that there might be coalition proof equilibria with novel

features, and obtain a partial characterization result.

2.7.1 Homogeneous Consumers

In this subsection we assume that consumers on the same side have the same reservation

value, u1 on side 1 and u2 on side 2. It can be shown that in all these games there exists

coalition perfect equilibria.

Theorem 2.5 establishes that in this case coalition perfect equilibria of the duopoly

game have similar properties to subgame perfect equilibria of duopoly pricing games with

no network externalities. Namely in every coalition perfect equilibrium both firms’ profits

are zero, and if both of them are active then they charge the same prices and have the same

size. The difference is that in this two-sided market environment prices do not have to be

zero, despite the assumption that the marginal cost is zero. It is compatible with coalition

perfect equilibrium that consumers on one side of the market pay a positive price for joining

a network, while consumers on the other side are subsidized to join. In fact Theorem

2.6 below shows that if the two sides are asymmetric (u1 6= u2), then in every coalition

perfect equilibrium the side with the smaller reservation value gets strictly subsidized, and

consumers on the other side pay a strictly positive price.

Theorem 2.5. There can be two types of coalition perfect equilibria:

1. ∃ k ∈ {A,B} such that N j
k = 1 ∀ j = 1, 2 and i ∈ [0, 1], p1k = −p2k and pjk ≤ uj ∀

j = 1, 2

2. N1
A = N2

A = N1
B = N2

B = 1/2, p
1
A = p1B = −p2A = −p2B and pjA ≤ uj ∀ j = 1, 2
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Either all consumers join the same network, or the two networks charge the same prices

and split the consumers equally. In all equilibria no consumer stays out of the market and

all consumers on the same side of the market pay the same price. This market price on one

side of the market is just the negative of the price on the other side. Therefore either both

prices are zero, or consumers on one side pay a positive price while consumers on the other

side receive an equivalent subsidy. In all equilibria both firms’ profits are zero.

The intuition behind the zero profit result is that coalitional rationalizability implies

that slightly undercutting the competitor’s price on both sides of the market results in

stealing the whole market. Then if in some profile at least one firm’s profit is positive, then

at least one firm could profitably deviate by slightly undercutting the other firm’s prices.

Furthermore, even in profiles in which firms get zero profit but active firms do not charge

the same prices at least one firm could profitably deviate by undercutting.

The result of full consumer participation comes from the fact that in all the above

equilibria either the market price (the price charged by the active firm(s)) is negative on

one side, or the market price is zero on both sides. The first case implies that consumers

on the side with the negative market price do not stay out of the market, and then the zero

profit result can be used to show that there has to be full consumer participation on the

other side as well. The intuition behind the result that every consumer joins some network

is that if prices are zero then it is a supported restriction for the coalition of all consumers

to agree upon joining some network. This is because even the most pessimistic expectation

compatible with the agreement (namely that other consumers are equally dispersed between

the two networks) yields a positive expected payoff, while staying out of the market gives a
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zero payoff.

Theorem 2.6. Assume uj < u−j for j ∈ {1, 2}. Then in every coalition perfect equilibrium

N1
k +N2

k > 0 for some k ∈ {A,B} implies that pjk ∈ [−u−j , uj − u−j ]

Theorem 2.6 states that if consumers on one side have a higher reservation value than

consumers on the other side, then in a coalition perfect equilibrium the price charged on the

side which has the smaller reservation value has to be in an interval that is strictly below

zero. The minimal amount of subsidy that consumers on this side get is the difference

between the reservation values. This result is not a consequence of coalitional rationaliz-

ability, but comes from the restrictions that “divide and conquer” strategies put on any

subgame perfect Nash equilibrium24. If the market price is positive on the side with the

low reservation value, then it is relatively cheap to steal consumers on that side, and then

a higher price can be charged on the side with the high reservation value.

The following claim concerning the context of linear utility functions is straightforward

to establish using Theorems 2.5 and 2.6.

Claim 2.1. Let gji (N
−j) = N−juj ∀ j = 1, 2 and i ∈ [0, 1]. Then the following hold:

• If u1 = u2 ≡ u, then two types of coalition perfect equilibria exist:

1. (monopoly equilibria with zero profits) ∃ k ∈ {A,B} such that all consumers join

network τk, p1k = −p2f and pjk ≤ u ∀ j = 1, 2

2. (symmetric equilibria with zero profits) N1
A = N2

A = N1
B = N2

B = 1/2, p1A = p1B =

−p2A = −p2B and pjA ≤ u/2 ∀ j = 1, 2

24 this is why Caillaud and Jullien (2001) obtain a similar result for equilibria in which both firms are
active
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• If uj < u−j for some j ∈ {1, 2} and u−j ≤ 2uj, then two types of coalition perfect

equilibria exist:

1. (monopoly equilibria with zero profits) ∃ k ∈ {A,B} such that all consumers join

network τk, p1k = −p2k and pjk ∈ [−u−j , uj − u−j ]

2. (symmetric equilibria with zero profits) N1
A = N2

A = N1
B = N2

B = 1/2, p1A = p1B =

−p2A = −p2B and pjk ∈ [−u
−j

2 , uj − u−j ]

• If uj < u−j for some j ∈ {1, 2} and u−j > 2uj, then only one type of coalition perfect

equilibrium exists:

(monopoly equilibria with zero profits) ∃ k ∈ {A,B} such that all consumers join network

τk, p = −p2k and pjk ∈ [−u−j , uj − u−j ].

The above linear specification gives an opportunity for a direct comparison with the pre-

dictions of Caillaud and Jullien (2001) in the case of asymmetric sides, since that is exactly

the context of their investigation. By assuming monotonicity of the demand function, they

obtain the same set of equilibria with two active firms. On the other hand, their refinement

selects a larger set of equilibria with one active firm, including equilibria in which the active

firm gets positive profits. Furthermore, full participation is an extra assumption in their

model, while it is a result in our chapter.

2.7.2 The General Case

The next example shows that, as opposed to the case of homogeneous consumers, price

competition does not necessarily drive profits to zero if consumers are heterogeneous. The

example also points out that consumers with different reservation values might join dif-
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ferent networks and pay different prices in equilibrium, even in the absence of product

differentiation.

Claim 2.2. Assume gji (N
−j) = N−j · uji ∀ j = 1, 2 and i ∈ [0, 1]. Assume that on both

sides of the market, a mass of consumers with measure 0.4 have reservation value 2.55 (‘I’

types), a mass of consumers with measure 0.15 have reservation value 0.51 (‘II’ types), a

mass of consumers with measure 0.1 have reservation value 0.46 (‘III’ types), while a mass

of consumers with measure 0.35 have reservation value 0.15 (‘IV’ types).

Then there exists a coalition perfect equilibrium in which one firm charges a price of 0.31

on side 1 and −0.2 on side 2, while the other firm charges −0.2 on side 1 and 0.31 on side

2. All type ‘I’ consumers on side 1 and type ‘II’-‘IV’ consumers on side 2 join the first

firm, while all type ‘I’ consumers on side 2 and type ‘II’-‘IV’ consumers on side 1 join the

second firm.

Notice that in this profile both firms get a profit of 0.31× 0.4− 0.2× 0.6 = 0.04, which

is strictly positive. Furthermore, in the described equilibrium the firms charge different

prices, and consumers on the same side of the market with different reservation values end

up paying different prices for the market good, despite the fact that reservation prices are

private information of the consumers.

Every consumer on both sides of the market joins some network. Type ‘I’ consumers

on both sides of the market pay a registration fee of 0.31 for joining a network, and in

equilibrium they face a measure of 0.6 consumers from the other side of the market. All

other consumers on both sides of the market are subsidized, they pay a registration fee of

−0.2. In the equilibrium they face only a measure of 0.4 consumers from the other side of
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the market.

This equilibrium structure is similar to the equilibria in the previous section, in which

the monopolist achieved price discrimination by operating two networks. In particular, one

network is cheaper on one side of the market, while the other one is cheaper on the other

side. A larger fraction of consumers, those having relatively low reservation values, join

the cheap network sides, which makes it worthwhile for the remaining, high reservation

value, consumers to join the expensive network sides. These similarities are consequences

of assuming that after every price announcement consumers play some coalitionally ratio-

nalizable Nash equilibrium. In the monopoly case it is never in the interest of the firm to

establish two networks that are priced equally, since that would just split consumers into

two networks, generating less consumer surplus and therefore less profit. In the duopoly

case there cannot be a coalition perfect equilibrium with positive profits and equally priced

networks, because of the usual Bertrand competition undercutting argument. Therefore in

both cases, for different reasons, the two networks have to be priced differently.

The intuition why competition does not drive profits down to zero in the above example

is that with heterogeneous consumers deviation strategies based on undercutting, which are

always effective due to the assumption of coalitional rationalizability, are not necessarily

profitable. For example if B announces slightly smaller prices than the equilibrium prices

of firm A then coalitional rationalizability implies that all type ‘I’-‘III’ from side 1, and

all consumers from side 2 join its network. But the highest profit B can achieve this

way is strictly smaller than the equilibrium profit of B. The reason is that the proposed

undercutting increases the number of consumers joining the network by a larger amount on
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the side where the price is negative.

The same intuition applies to “divide and conquer” type strategies. A firm can lower its

price so that it makes it a dominant choice for some type of consumers to join its network

and then it can charge a high price on the other side of the market and still make sure that

some consumers join its network on that side as well. But if consumers are heterogeneous,

then the proportion of consumers who are willing to pay the increased price on the latter side

might be too low to compensate for the costs associated with lowering the price (increasing

the subsidy) on the first side.

Theorem 2.7 establishes that the basic features of the above example hold for any coali-

tion perfect equilibrium in which some firm’s profit is positive, for any game with two

firms.

Theorem 2.7. Suppose that in a coalition perfect equilibrium πk > 0 for some k ∈ {A,B}.

Then (1) N j
k > 0 ∀ j ∈ {1, 2} and k ∈ {A,B}; (2) ∃ j ∈ {1, 2} such that pjA > pjB,

p−jA ≤ p−jB , N
j
A ≤ N j

B and N−j
A > N−j

B .

In all these equilibria both firms have to be active and firm A’s network has to be

(weakly) more expensive and smaller on one side of the market and (weakly) cheaper and

larger on the other than firm B’s network. Furthermore, the two networks have to be

asymmetric in the sense that on at least one side the networks charge different prices and

on at least one side a different fraction of consumers choose A’s network than B’s.

We conclude the section by establishing that just like in the case of a monopolist network

provider, enough heterogeneity among the consumers is needed for the existence equilibria

with two asymmetric networks (and therefore for the existence of equilibria with nonzero
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profits). The next theorem is an extension of Theorem 2.5 to the case of nearly homogeneous

consumers, provided that consumers’ utility functions are weakly convex.

Theorem 2.8. Assume that gji is weakly convex for every j = 1, 2 and i ∈ [0, 1]. If

uji/u
j
i0 ≤ 4/3 for every j = 1, 2 and i, i0 ∈ [0, 1] then πA = πB = 0. Furthermore, there can

be two types of coalition perfect equilibria:

1. ∃ k ∈ {A,B} such that N j
k = 0 ∀ j = 1, 2 and i ∈ [0, 1]

2. N j
A = N j

B and pjA = pjB ∀ j ∈ {1, 2}

2.8 Discussion

In this section, we discuss how the results presented in this chapter would be affected by

changing different assumptions we made in the model.

2.8.1 Positive Marginal Cost

If firms face a positive constant marginal cost, all the qualitative results still hold, with one

exception. If the marginal cost is higher than a certain threshold, then even if every con-

sumer’s reservation value is still higher than the marginal cost, coalitional rationalizability

does not exclude the possibility that in price competition between two firms consumers do

not join any network in equilibrium. The reason is that if marginal costs are high, then the

average price charged on consumers is high and ex-ante coordination to join some network

becomes harder.
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2.8.2 Multi-Homing

In some two-sided markets network choices are naturally mutually exclusive, at least over a

given period of time. For example people looking for a date can only be in one entertainment

facility at a time. In other contexts consumers can join multiple platforms, which is called

multi-homing in the literature. The qualitative conclusions of the chapter remain valid if

we allow for multi-homing. In particular if there are multiple active networks in coalition

perfect equilibrium that are not equally priced then it has to be that one network is cheaper

and larger on one side of the market and the other network is cheaper and larger on the

other side. If consumers are homogeneous, then it still holds that in every coalition perfect

equilibrium both firms get zero profit. On the other hand firms can have positive profits

in price competition if consumers are heterogeneous, the intuition being the same as in

Section 2.7. Finally, multi-homing does not change the result that a monopolist might find

it more profitable to operate two networks rather than one. In fact, if multi-homing is

allowed, then the high reservation value consumers join multiple networks, increasing the

monopolist’s revenue. This makes operating two networks more attractive and therefore

there is a larger set of games in which the monopolist runs two networks in coalition perfect

equilibrium.

2.8.3 Conflict of Interest among Consumers on the Same Side

The assumption that a consumer’s utility is not affected by the number of consumers from

the same side of the market who join the same platform as she does can be restrictive in a

variety of contexts. If the networks are matchmaking services or auction sites, then people

on the same side of the market might compete for the same transactions. In other contexts
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transactions are non-rival goods, validating our assumption of no conflict of interest on the

same side.

If consumers are homogeneous, it is possible to partially relax the assumption of no

conflict of interest on the same side. In particular, it is enough to assume no conflict of

interest on the same side only if every consumer from the other side is present at the same

network, for the main qualitative conclusions of the chapter to remain valid.25 In all other

cases consumers’ utilities might depend negatively on the number of consumers from the

same side joining the same network. One scenario that validates this assumption is if there

exist ideal matches in the market, in which case two consumers from the same side are

competitors only if their ideal partners from the other side of the market are not present at

their network (which cannot happen if all consumers from the other side are present).

2.8.4 More than Two Firms

With more than two firms operating on the market the analysis of the price competition

game becomes complicated and it therefore omitted. However, we note that there can exist

coalition perfect equilibria with multiple asymmetric networks in the case of more than two

firms too. In fact, in general there is a wider range of coalition perfect equilibria. The

intuition behind this is that coordination among consumers is more difficult if there are

more than two firms. Formally, coalitional rationalizability puts less restriction on what

can happen in consumer subgames. We plan to investigate the effect of the number of firms

in the market on the range of equilibria in a future project.

25See the previous version of our work for a formal investigation of this.
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2.9 Conclusions and Possible Extensions

This chapter analyzes pricing decisions of firms and platform choices of consumers on two-

sided markets with network externalities, assuming that groups of consumers can coordinate

their choices if coordination is focal. A key feature of the analysis is that consumers are

allowed to be heterogeneous with respect to their willingness to pay for the network good. To

keep the analysis tractable, several simplifying assumptions are made in other dimensions

though. Section 2.8 discusses the consequences of relaxing some of these, but there are

several other extensions that would make the model more realistic in important settings.

Besides registration fees, in several contexts firms might be able to charge usage fees, fees

for successful matches, or more complicated pricing instruments like contingent offers. In

other two-sided markets, for example the market for health insurance, adverse selection is a

central problem. Our model assumes that serving every consumer induces the same marginal

cost to the firm and therefore abstracts away from this issue. Finally, there are contexts in

which consumers are not ex ante symmetric with respect to the network externality they

generate (their “attractiveness” to consumers on the other side). Some of these directions

are addressed in the existing literature, others are left for future research.



Chapter 3

History as a Coordination Device1

3.1 Introduction

Consider a population of identical individuals who have to make a simultaneous decision

regarding participation in a coup attempt. The probability of success increases with the

proportion of individuals who decide to participate. The nature of the problem could be

explained in the context of a two-player stag-hunt game. Assume that each player has to

decide whether to join the rebellion (R) or to opt out (O).

O R

O 7, 7 6, 0

R 0, 6 9, 9

In this two-person example, the rebellion will succeed if and only if both players choose

R. In this case, both players will be better off than in the status quo (9 > 7). That is, the

equilibrium (R,R) Pareto dominates the equilibrium (O,O). Yet, strategy O guarantees a

1Rosa Argenziano and Itzhak Gilboa
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higher minimal payoff than does R. Indeed, the equilibrium (O,O) risk dominates (R,R)

(Harsanyi and Selten (1988)), and may be a reasonable prediction of the outcome of the

game even though (R,R) is a Pareto dominant equilibrium.

In this chapter we analyze a large population version of this revolution game. In this

game, a continuum of players have to make a simultaneous decision regarding their partic-

ipation in a coup attempt. The probability that the revolution succeeds depends on the

proportion of players who decided to join the attempt. As in the game above, everyone will

be better off if the revolution succeeds, but in case of failure the attempting rebels will be

punished. We will also assume that, should the revolution succeed, every individual has an

incentive to be among the rebels rather than to remain obedient.

Consider the decision of a single player in this game. Imagine that rumors have been

spreading that the revolution would start tonight. She can ignore the rumors and go to

sleep, or take to the streets. For simplicity, assume that this is a one-shot, binary decision.

The potential rebel sits at home and attempts to assess the probability that the revolution

would succeed. How would she do that?

We maintain that the assessment of this probability would and should be based on the

results of past coup attempts in similar games. These games may have been played by the

same population or by others. They may have been more or less similar. Both the nature

of the game and the identity of the population playing it should be taken into account in

the evaluation of the similarity of past games to the present one. But ignoring these past

games would hardly seem a rational way of generating beliefs.2

2The belief formation process may be embedded in a meta-game, which will also have a flavor of a
coordination game. We assume, however, that people have a fundamental tendency to expect the future to
be similar to the past. To quote Hume (1748), "From similar causes we expect similar effects."
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In this chapter we are interested in a dynamic process, according to which large popula-

tions are called upon to play a simple “revolution” game, where the games differ from each

other by one parameter at most. This parameter designates the status quo, and the lower it

is, the more do the people have to gain from a successful revolution. We assume that play-

ers generate beliefs regarding the success of a revolution based on the similarity-weighted

relative frequency of successes in the past: they calculate relative frequencies, but each past

case is assigned a weight that is proportional to its similarity to the game at hand.

Our dynamic process may explain a “Domino” effect. Consider, for example, the rev-

olutions in the Soviet block in the late ’80s and early ’90s. A successful revolution in one

country renders the success of a revolution in another country more likely, and vice versa.

This process will also exhibit path-dependence. Assume, first, that the first attempted rev-

olution occurs in a country in which a revolution is almost inevitable, because the present

conditions leave people with nothing to lose. A successful attempt in this country would

make it more likely that a revolution would succeed in a similar country, even if the condi-

tions in the latter are not as dire. Continuing in this way, one may generate a sequence of

successful revolutions.

If, on the other hand, the first revolutionary attempt occurs in a country in which most

people have little to gain from a revolution, this attempt might fail. If it is then followed by a

revolution attempt in a similar country, where conditions are worse yet similar, a revolution

in the latter may also fail, and, continuing in this way one may generate a sequence of failed

revolutions.

We conclude that history serves as a coordination device. It informs the belief forma-
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tion process of all individuals, and, being commonly known, it coordinates among them.

However, beliefs that are history-dependent may lead to different behavior, depending on

the way history unfolds.

The rest of this chapter is organized as follows. We first discuss related literature.

Section 3.3 describes the stage game. We devote Section 3.4 to modeling the way play-

ers generate beliefs given history. Finally, Section 3.5 describes the dynamic process and

provides the main result.

3.2 Related Literature

The game theoretic literature has witnessed many attempts to select equilibria based on

the parameters of the game. The equilibrium selection literature includes many notions

that are defined by the game itself (see van Damme (1983)), such as the risk-dominance

criterion mentioned above. Other types of considerations attempted to embed the game in

a dynamic process (Young (1993), Kandori, Mailath, and Rob (1993), Burdzi, Frankel and

Pauzner (2001)) or in incomplete information set-up (Carlsson and van Damme (1994)).

It is noteworthy that risk dominance has emerged as the preferred selection criterion

based on quite different types of considerations. On the other hand, the literature on

network externalities tends to favor Pareto dominant equilibria over risk dominant ones

(see Katz and Shapiro (1986)). This suggests a more agnostic view, according to which

the parameters of the game cannot, in general, predict equilibrium selection. It appears

that game theoretic considerations could be used to impose certain restrictions on the

possible outcomes, but the actual selection of an equilibrium is often left to history, chance,
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institutional details, or other unmodeled factors.

The conceptualization of a revolution as a coordination game dates back to Schelling

(1960) at the latest. There exist alternative conceptualizations in the political science

literature, such as Muller and Opp (1986), who emphasize the public good aspect of a

revolution. Yet, the coordination game model of a revolution has been the subject of many

studies. Lohmann (1994) studied the weekly demonstrations in Leipzig and the evolution of

beliefs along the process. More recently, Edmond (2003) studied the effect of mass media on

revolutions, whereas Angeletos, Hellwig, and Pavan (2004) focus on a learning process by

which individuals form beliefs. As in Lohmann (1994) and Angeletos, Hellwig, and Pavan

(2004), we study the evolution of beliefs in a game that is played repeatedly. However, as

opposed to these papers, our game is played by a new population at every stage. Thus,

our focus is on the generation of prior beliefs (over other players’ actions), based on similar

games, rather than on the update of already existing prior beliefs by Bayes’s law.

3.3 The Stage Game

We describe a symmetric two-stage extensive form game Gx depending on a parameter

x ∈ [0, 1]. There is a continuum of players [0, 1]. In stage 1 all players move simultaneously.

The set of moves for each player i is Si = {0, 1}, where 1 stands for participation, and 0 —

for opting out.

In stage 2, after each player determined her move in {0, 1}, nature chooses a move in

{F, S}, which stand for Failure and for Success of the revolution, respectively. Nature’s

move depends on the set of players choosing 1 in stage 1, A ⊂ [0, 1]. Specifically, if A
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is Lebesgue-measurable, we assume that nature chooses S with probability λ(A), where λ

stands for Lebesgue’s measure. If A is non-measurable, the probability of nature choosing

S can be defined arbitrarily (say, by the inner measure of A). At equilibrium, the set A will

be measurable.

After each player determined her choice of participation (0 or 1) and nature determined

the success of the revolution (by the probability λ(A)), the game is over. The payoff of each

player depends only on her own choice of participation, and on nature’s move (i.e., on the

success of the revolution). The payoff function u = ui for every i ∈ [0, 1] is given by the

following matrix:

S(uccess) F (ailure)

1(Y ES) 1 0

0(NO) x+1
2 x

(3.1)

where x ∈ [0, 1] is the parameter of the game.

The interpretation of this matrix is as follows. The worst thing that can happen to an

individual in this game is to participate in a failed coup. The result is likely to involve

imprisonment, exile, decapitation, and the like. We normalize this worst outcome to 0. The

best thing that can happen to an individual is that she participates in a revolution that

succeeds. In this case she is a part of a (presumably) better and more just society. We

normalize this payoff to 1.

An individual who decides to participate in the revolution therefore decides to bet on its

success with the extreme payoff of 0 and 1. Between these extreme payoffs lie the payoffs for

an individual who decides to opt out, foregoing the chance of being part of the revolution.

The payoff of such an individual still depends on the outcome of the revolutionary attempt.
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Should this attempt fail, such an individual would get x, which is a measure of the well-

being of the people in the status quo. We implicitly assume that such an individual, who

did not participate in a failed coup d’etat, will be unaffected by the attempted coup. If,

however, the revolution succeeds, even the individuals who were passive will benefit from

the new regime. However, not being part of the revolutionary forces, they would not reap

the benefits of revolution in its entirety. We choose to set their payoff to the arithmetic

average between the full benefit, 1, and the status quo, x.

Observe that if x = 1, there is nothing to be gained from a revolution. In this case the

well-being of the people in the status quo is just as good as it could possibly be in the case

of a successful revolution, and joining a revolution is a dominated strategy. This is what

we would expect the situation to be in a democracy.

If, on the other hand, x = 0, the well-being of the people in the status quo is comparable

to the well-being of an individual who participated in a failed revolution. This describes a

situation in which the people has nothing to lose, as in a situation of starvation. In this

case, indeed, joining the revolution is a dominant strategy.

In between, when 0 < x < 1, lie the cases that are strategically more interesting: in

these cases, each individual will be better off if the revolution succeed, but she prefers to be

passive if the revolution is doomed to fail. In these situations there is no dominant strategy,

and each individual player has to determine her choice depending on her beliefs about the

other players’s choices.

Assume, then, that an individual i attempts to estimate the expected utility of a player

playing 1 (participating in the revolution) versus 0 (opting out). Realizing the nature of the
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game, the individual knows that the probability of a revolution succeeding is independent

of her own choice. Suppose that individual i’s belief over the measure of other individuals

who choose 1 is given by a measure µi over (the Lebesgue σ-algebra on) [0, 1]. That is,

for every Lebesgue-measurable set B ⊂ [0, 1], individual i assigns probability µi(B) to the

event that the measure of individuals who eventually choose 1 (with or without herself) lies

in B. Individual i’s subjective probability that the revolution would succeed is, therefore,

bpi = Z
[0,1]

pdµi(p)

That is, individual i is assumed to calculate the overall probability of a successful revolu-

tion by Bayes’s formula, taking into account the assumption that the probability of success

equals the measure of the set of individuals who participate in the coup.

Let U(k) denote the expected payoff for an individual i who chooses strategy k ∈ {0, 1},

given beliefs bpi. That is, U(1) = bpi and U(0) = x+1
2 bpi + x [1− bpi].

It is useful to calculate the critical belief p∗ (x), that is the minimal value of bpi that is
necessary for an individual to participate in the revolutionary attempt. If we set p∗ (x) =

2x
1+x , it is easily observed that U(1) ≥ U(0) iff bpi ≥ p∗ (x).
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Figure 3.1: Threshold p∗(x)
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At equilibrium, bpi is independent of i, and it coincides with the actual probability of
a successful revolution. Thus, for every x ∈ [0, 1] the game has three symmetric Nash

equilibria (where σi ∈ ∆({0, 1}) denotes player i’s mixed strategy):3

1. σ∗i = {1, 0} ∀i ∈ [0, 1]

2. σ∗i = {0, 1}∀i ∈ [0, 1]

3. σ∗i = (
2x
1+x , 1−

2x
1+x) ∀i ∈ [0, 1]

These equilibria are easy to describe. Revolution will succeed in equilibrium if bpi ≥
p∗ (x), that is, if the subjective belief of each agent about the proportion of individuals who

would participate in the coup, bpi, exceeds the critical belief p∗ (x). The revolution would
fail otherwise. Simply put, if everyone believes that the revolution is likely to succeed, it

will, and if everyone believes that the revolution is unlikely to succeed, it won’t. This begs

the question, however, of how do individuals form their beliefs.

3.4 Where Do Expectations Come from?

Our approach to the belief formation question is history- and context-dependent. Specifi-

cally, we assume that games of the type Gx above are being played over and over again, by

different populations [0, 1], in different countries, at different times, and for different values

of x. Yet, the history of similar games played in the past, which is assumed to be common

knowledge, determines the beliefs bpi of the individuals in question.
3As usual, the mixed equilibrium is rather arbitrary and dynamically unstable. Yet, at this point we do

not rule out mixed or asymmetric equilibria.
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More concretely, we assume that time is discrete and that the game Gx is played in

every period by a new generation of players. We further assume that at the beginning of

each period t nature selects a value for xt in an i.i.d. manner, according to a known discrete

distribution. For simplicity, we assume that the possible values for x are only {0, 12 , 1}.

Thus the process is determined by a probability vector (p0, p 1
2
, p1) where Pr(xt = α) = pα

for α ∈ {0, 12 , 1}.

In each period, all the players of the current generation have a common memory of all

the games that have been played in the past. Before playing, they observe the current state

of the world and form an expectation on the probability of a success that is based on the

similarity between the current state of the world and the state of the world in previous

games that ended, respectively, with a success or a failure.

In particular, denoting by St the set of (indices of) past games that ended with a success

and with Ft the set of (indices of) past games that ended in a failure, we assume that for

every i and and every t ≥ 0:

bpit = bpt =
X
k∈St

s+ (xk, xt)X
k∈St

s+ (xk, xt) +
X
k∈Ft

s− (xk, xt)
(3.2)

where s+ (xk, xt) is a function that measures the degree of support that a success in a game

where the state of the world was xk brings to the possibility that there is a success in the

game being currently played and s− (xk, xt) measures the degree of support that a failure

in a game where the state of the world was xk leads to the possibility that there is a failure

in the game being currently played. (We normalize the "degree of support" in such a way

that a past success only lends support to a prediction of a future success, and a past failure
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— to a future failure.)

The formula (3.2) is not well-defined for the first period, t = 1. Also, it allows bpt to be
0 or 1, if history consists of failures alone, or of successes alone, respectively. We find such

extreme beliefs unwarranted. Hence we use Equation (3.2) only when history contains both

successes and failures. Formally, we assume that t ≥ 3, and that history contains at least

one success and at least one failure, so that bpt ∈ (0, 1).
Possible functional forms for s+ (xk, xt) and for s− (xk, xt) are

s+ (xk, xt) = 1 + (xk − xt) (3.3)

s− (xk, xt) = 1− (xk − xt) (3.4)

Observe that the denominator of bpt(xt) doesn’t vanish for any xt ∈ [0, 1] becauseX
k∈St

s+ (xk, xt) and
X
k∈Ft

s− (xk, xt) are both nonnegative and cannot be simultaneously equal

to zero because the first one can be zero only for xt = 1 while the second one can be zero

only for xt = 0.

The interpretation of these formulae is as follows. If xt = xk, the current game t is

practically identical to the game that was played in period k in the past. In this case, the

degree of support is normalized to 1: whatever happened in period k (success or failure)

lends empirical support to the belief that it is going to occur again in period t.

Assume, now, that xt > xk. In this case the game played in period k is similar, but

not identical to, the game played in period t. The similarity is smaller than in the case

xt = xk, because now (period t) people have a lower incentive to rebel than in the past

(period k), since the status quo is more agreeable. Suppose that in period k the revolution
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succeeded. An individual is expected to reason as follows, "Well, in period k, when people

were hungry and had little to lose, they rebelled. But it is still possible that today, when

things are better, they won’t. Hence, the success of the revolution in period k does lend some

support to the assumption that people would rebel today, but this support is lower than

it would be if the situations were identical." This is captured by the function s+ (xk, xt) =

1 + (xk − xt) = 1 − (xt − xk). The bigger is the difference xt − xk > 0, the lower is the

support that one gets for a successful revolution in period t from a successful revolution in

period k. In the extreme case in which xt = 1 and xk = 0, a revolution in period k (when

people had nothing to lose) lends no support to the prediction of a successful revolution in

period t (when people have nothing to gain).

Next suppose that the revolution in period k failed (retaining the assumption xt > xk).

In this case there is no support for a prediction of a success, but there is support for a

prediction of a failure. Past failures make future failures more likely. But to what degree?

Here the function s− (xk, xt) = 1− (xk − xt) = 1+ (xt− xk) is larger than 1, that is, larger

than in the case in which the game of period k were identical to the game in period t. This

assumption is supposed to reflect the following reasoning, "The revolution in period t is

unlikely to succeed. Even in period k, when people were hungrier, the revolution failed.

Why would it succeed now, when the status quo is better?"

Finally, if xt < xk the logic is reversed: a success in period k lends support greater than

1 to a success in period t, because in period t, a-priori, there is a stronger motivation to

rebel, and a failure in period k lends support lower than 1 for a failure in period t for the

same reason.
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Observe that if the same game is repeatedly played over and over again, that is, if

xk = xt for every k, then the expected probability of a success is simply the observed

relative frequency of success in the past. Hence, our belief formation process can be viewed

as generalizing empirical frequencies (as in fictitious games, Robinson (1951)) to the case

in which the game that is played is not identical to past games, but only similar to them.

The following notation may prove useful. Let NS
t be the cardinality of St, and NF

t —

the cardinality of Ft. Equation (3.2) can be written as

bpt = bpt(xt) =
NS −NSxt +

X
k∈St

xk

NS +NF + (NF −NS)xt +
X
k∈St

xk −
X
k∈Ft

xk

It seems natural that the expected probability of a successful revolution, bpt, be a
monotonically decreasing function of the well-being at the status quo, xt. Indeed,

dbpt
dxt

=

+NS

⎛⎝X
k∈Ft

xk − 2NF

⎞⎠−NF
X
k∈St

xk

⎡⎣NS +NF + (NF −NS)xt +
X
k∈St

xk −
X
k∈Ft

xk

⎤⎦2
< 0 (3.5)

(The last inequality holds because the numerator is the sum of two negative terms).

3.5 The Dynamic Process

We now wish to study the dynamic process in which at every stage t ≥ 1 xt is drawn

from {0, 12 , 1} according to probabilities (p0, p 12 , p1), beliefs are formed in accordance with

equation (3.2), and an equilibrium in Gxt is chosen by the beliefs bpt(xt).
Under our assumptions, for almost every history we can predict the outcome of the
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game by looking at a graph representing the two curves p∗(xt) (increasing in xt) and bpt(xt)
(decreasing in xt). Note that the two curves intersect exactly once in [0, 1] because their

difference bpt(xt)−p∗(xt) is continuous, strictly decreasing, takes a nonnegative value at zero
and a non-positive value at one. Let αt denote the value such that p∗(αt) = bpt(αt).

If the current value xt is to the left of the intersection point, that is, xt < αt, all players’

expectation bpt(xt) will be above the critical belief p∗(xt), and they will therefore all play
1, resulting in a successful revolution. If, however, the current xt is to the right of the

intersection point, that is, xt > αt, then all players will play 0 and there will be a failure

with probability 1. If bpt(xt) = p∗(xt), namely, xt = αt, then all individuals are indifferent

between playing 0 and playing 1. For simplicity we assume that they break ties in favor of

the status quo and choose 0. Observe that this is the only case in which we assume that

the equilibrium is symmetric. For other values of xt symmetry is a result of optimization.4

Next, we observe that a state of the process is fully summarized by a matrix of relative

frequencies

Ft =

x = 0 x = 1
2 x = 1

1 ft,10 ft,1 1
2

ft,11

0 ft,00 ft,0 1
2

ft,01

where ft,ij is the relative frequency, up to time t, of periods in which the game was Gj and

all players played i. We are interested in the limit of Ft as t→∞.

Given our assumption that t ≥ 3, and that history contains at least one success and at

least one failure, bpt ∈ (0, 1), which in turn implies that ft,00 = ft,11 = 0 for all t. Observe

4Other assumptions are possible, allowing players to select different strategies, and/or to play mixed
strategies. Note that in the latter case one has to assume that the law of large numbers holds (see Judd
(1985)). The main point of this paper does not depend on these assumptions.
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that the relative frequencies of the columns are governed only by the selection of x, and are

independent of the players’ behavior. Hence the only candidates for limit frequencies can

be the following matrices:

L1 =

x = 0 x = 1
2 x = 1

1 p0 p 1
2

0

0 0 0 p1

L2 =

x = 0 x = 1
2 x = 1

1 p0 0 0

0 0 p 1
2

p1

L3 =

x = 0 x = 1
2 x = 1

1 p0 wp 1
2

0

0 0 (1− w) p 1
2

p1

for w ∈ (0, 1).

We can finally present our main result.

Theorem 3.1. For every (p0, p 1
2
, p1), Ft converges to L1 or to L2 with probability 1. For an

open and convex set of vectors (p0, p 1
2
, p1), containing (13 ,

1
3 ,
1
3), there is a positive probability

that Ft converges to L1, and also a positive probability that Ft converges to L2.

The proof is relegated to Appendix C.

The theorem states that games G 1
2
, which are partly similar to games G0 but also to

games G1, will eventually be played either like G0 or like G1 with probability 1. That is,

history will determine the outcome of the non-trivial games: either they all result, in the

limit, in successful revolutions (if they end up being played like G0), or they all result in

failed ones (if they end up being played like G1). The main point of the theorem is its
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second part, which states that the limit distribution of Ft cannot be computed a-priori.

That is, the fundamentals of the game and of the dynamic process do not suffice for a

unique determination of the limit behavior in the non-trivial games. The random process

generating the sequence xt will determine the results of the games G 1
2
. Specifically, if the

process starts with a large proportion of xt = 0, then for xt = 1
2 most similar games will be

found to have resulted in a successful revolution, and therefore the game at stage t will also

end in success. This will establish an equilibrium at which revolutions succeed in games

G 1
2
. Conversely, if the process starts with many draws of xt = 1, every new game G 1

2
will

be considered similar to games in which revolutions failed, and will therefore also result in

a failed revolution.
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Appendix A

This Appendix collects the proofs of all the results presented in Chapter 1.

Proof of Lemma 1.1 The welfare function can be rewritten as

Ex
∙Z

i∈A
(xai + na) di+

Z
i∈B

³
xbi + nb

´
di

¸
=

= Ex
∙Z

i∈A
nadi+

Z
i∈A

xai di+

Z
i∈B

nbdi+

Z
i∈B

xbidi

¸
=

= Ex
∙
[na]2 +

h
nb
i2
+

Z
i∈A

xai di+

Z
i∈B

xbidi

¸
.

We will prove by contradiction that any allocation (A0,B0) that is not a threshold al-

location cannot maximize the welfare function. By construction, there exists no X ∈ R

such that B0 = {i ∈ [0, 1] : xi ≤ X} and A0={i ∈ [0, 1] : xi > X}. Therefore, there exists

at least a couple (S, T ) such that S ⊂ A, T ⊂ B,
R
i∈S di =

R
i∈T di and xi < xi0 for every

(i, i0) such that i ∈ S and i0 ∈ T . Consider now a different allocation (A00,B00) such that

A00 = (A0/S) ∪ T and B00 = (B0/T ) ∪ S. We will show that this allocation yields a larger

welfare than (A0,B0) . Market shares are the same under both allocations, therefore the

utility of every consumer in A0/S and in B0/T is the same. The utility of each individual i
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∈ S is equal to na+ xai under allocation (A0,B0) and to nb + xbi under allocation (A00,B00) .

Analogously, the utility of each consumer i ∈ T is nb + xbi under allocation (A0,B0) and

na+εai under allocation (A00,B00) . Therefore, the total change in welfare when moving from

allocation (A0,B0) to allocation (A00,B00) is

Ex
∙Z

i∈S

³
nb + xbi − na − xai

´
di+

Z
i∈T

³
na + xai − nb − xbi

´
di

¸
=

= Ex
∙³

nb − na
´µZ

i∈S
di−

Z
i∈T

di

¶
−
Z
i∈S

2xidi+

Z
i∈T

2xidi

¸
=

= 0− Ex
∙Z

i∈S
2xidi+

Z
i∈T

2xidi

¸
> 0

where the last inequality holds because xi < xi0 for every (i, i0) such that i ∈ S and i0 ∈ T .

¥

Proof of Proposition 1.1 The proof of Proposition 1.1 is divided into 4 claims. In Claim

A.1 we derive expression 1.2 for the welfare function. In Claim A.2 we prove that

the welfare function has a global maximum and the maximum is attained at a point

t ∈ (−1, 1) . In Claim A.3 we prove that the optimum cannot be in the interval

t ∈ [0, y] . For the case y ≥ 1, this completes the proof. Claim A.4 considers the case

where y < 1 and shows that it cannot be the case that t∗ ∈ (y, 1) . This concludes the

proof.

Claim A.1. Expression 1.2 represents the ex-ante welfare function associated to a generic

threshold allocation.
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For a given realization of
³eθa,eθb´ , take a generic threshold allocation (A (t) ,B (t)) . Let

I (·) denote the indicator function. The level of welfare associated to (A (t) ,B (t)) is

Ex
h
W (t)

¯̄̄
θa, θb

i
=

=

Z t−θ

−∞
θbf (εi) dεi +

Z +∞

t−θ
θaf (εi) dεi +

+

Z t−θ

−∞
(1− na) f (εi) dεi +

Z +∞

t−θ
naf (εi) dεi +

+

Z +∞

−∞

Z +∞

−∞
εai I

µ
εai − εbi
2

> t− θ

¶
f (εai ) f

³
εbi

´
dεai dε

b
i +

+

Z +∞

−∞

Z +∞

−∞
εbiI

µ
εai − εbi
2

6 t− θ

¶
f (εai ) f

³
εbi

´
dεai dε

b
i =

= θb
Z t−θ

−∞
f (εi) dεi + θa

Z +∞

t−θ
f (εi) dεi +

+(1− na)

Z t−θ

−∞
f (εi) dεi + na

Z +∞

t−θ
f (εi) dεi +

+

Z +∞

−∞

Z +∞

−∞
εai I

µ
εai − εbi
2

> t− θ

¶
f (εai ) f

³
εbi

´
dεai dε

b
i +

+

Z +∞

−∞

Z +∞

−∞
εbiI

µ
εai − εbi
2

6 t− θ

¶
f (εai ) f

³
εbi

´
dεai dε

b
i =

= θbΦ
³
(t− θ)

p
β
´
+ θa

h
1−Φ

³
(t− θ)

p
β
´i
+

(1− na)Φ
³
(t− θ)

p
β
´
+ na

h
1− Φ

³
(t− θ)

p
β
´i
+

+

Z +∞

−∞

"Z +∞

εbi+2(t−θ)
εai f (ε

a
i ) dε

a
i

#
f
³
εbi

´
dεbi +

+

Z +∞

−∞

"Z +∞

εai−2(t−θ)
εbif

³
εbi

´
dεbi

#
f (εai ) dε

a
i =
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= θbΦ
³
(t− θ)

p
β
´
+ θa

h
1− Φ

³
(t− θ)

p
β
´i
+

+
h
Φ
³
(t− θ)

p
β
´i2

+
h
1− Φ

³
(t− θ)

p
β
´i2

+

+

Z +∞

−∞

"r
2

β
φ

Ã³
εbi + 2 (t− θ)

´rβ

2

!#
f
³
εbi

´
dεbi +

+

Z +∞

−∞

"r
2

β
φ

Ã
(εai − 2 (t− θ))

r
β

2

!#
f (εai ) dε

a
i =

= Φ
³
(t− θ)

p
β
´ h

θb − θa
i
+ θa+

+2
h
Φ
³
(t− θ)

p
β
´i2
− 2Φ

³
(t− θ)

p
β
´
+ 1+

+

r
2

πβ
e−

(t−θ)2β
2 .

Therefore, the expected welfare as a function of a generic threshold t is:

Ex [W (t)] = Eθa,θb
n
θa − 2θΦ

³
(t− θ)

p
β
´
+

+

r
2

πβ
e−

(t−θ)2β
2 +

+2
h
Φ
³
(t− θ)

p
β
´i2
− 2Φ

³
(t− θ)

p
β
´
+ 1

¾
.

Claim A.2. The welfare function has a global maximum and the maximum is attained at

a point t ∈ (−1, 1) .

Given Claim A.1, the optimal threshold t∗ solves the following problem:
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max
t
Ex [W (t)] = max

t
Eθa,θb

nh
θa − 2θΦ

³
(t− θ)

p
β
´i
+

+

∙r
2

πβ
e−

(t−θ)2β
2

¸
+

+
∙
2
h
Φ
³
(t− θ)

p
β
´i2
− 2Φ

³
(t− θ)

p
β
´
+ 1

¸¾
.

The welfare function is continuous and differentiable in t, and by Leibnitz’ rule, its first

derivative can be written as:

∂

∂t
Ex [W (t)] =

= Eθa,θb
h³
2Φ
³
(t− θ)

p
β
´
− 1− θ − t+ θ

´³
2
p
βφ
³
(t− θ)

p
β
´´i

=

= Eθa,θb
h³
2Φ
³
(t− θ)

p
β
´
− 1− t

´³
2
p
βφ
³
(t− θ)

p
β
´´i

.

Notice that

2
p
βφ
³
(t− θ)

p
β
´
> 0 ∀θ.

This implies that, since for every t ≤ −1

2Φ
³
(t− θ)

p
β
´
− 1− t > 0 ∀θ

then it is true that for every t ≤ −1

Eθa,θb
h³
2Φ
³
(t− θ)

p
β
´
− 1− t

´³
2
p
βφ
³
(t− θ)

p
β
´´i

> 0.

So the derivative is always positive for any t ≤ −1.
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Analogously, since for every t ≥ 1 it is true that

2Φ
³
(t− θ)

p
β
´
− 1− t < 0 ∀θ,

then for every t ≥ 1 it is also true that

Eθa,θb
h³
2Φ
³
(t− θ)

p
β
´
− 1− t

´³
2
p
βφ
³
(t− θ)

p
β
´´i

< 0,

i.e. the derivative is always negative for any t ≥ 1.

If we restrict the domain of the welfare function to any set [t1, t2] such that (−1, 1) ⊂

[t1, t2] , the function has a global maximum t∗ ∈ [t1, t2] by Weierstrass theorem. If then we

extend the domain to R, it is true that t∗ is still the global maximum because Ex [W (t)] <

Ex [W (−1)] ∀t < t1 and Ex [W (t)] < Ex [W (1)] ∀t > t2. By a similar argument, it has to

be the case that t∗ ∈ (−1, 1) ⊂ [t1, t2] because

Ex [W (t)] < Ex [W (−1)] ∀t such that t1 < t ≤ −1 and Ex [W (t)] < Ex [W (1)] ∀t such

that 1 ≤ t < t2.

Claim A.3. The optimum cannot be in the interval t ∈ [0, y] .

By the definition of a derivative,

∂

∂t
Ex [W (t)] = lim

δ→0

Ex [W (t+ δ)]− Ex [W (t)]

δ
=

= lim
δ→0+

Ex [W (t+ δ)]− Ex [W (t)]

δ
.

Let F (·) denote the cdf of the random variable xi.
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Notice that

Ex [W (t+ δ)]− Ex [W (t)] = F (t) [F (t+ δ)− F (t)]− [1− F (t+ δ)] [F (t+ δ)− F (t)]+

+ [F (t+ δ)− F (t)] [F (t+ δ)− 1 + F (t)] +

Z t+δ

t
−2xif (xi) dxi.

Let

H (δ) ≡ F (t) [F (t+ δ)− F (t)]− [1− F (t+ δ)] [F (t+ δ)− F (t)]+

+ [F (t+ δ)− F (t)] [F (t+ δ)− 1 + F (t)]− 2t [F (t+ δ)− F (t)] .

Since

−
Z t+δ

t
2xif (xi) dxi < −2t

Z t+δ

t
if (xi) dxi = −2t [F (t+ δ)− F (t)] ∀δ > 0,

then

Ex [W (t+ δ)]− Ex [W (t)] < H (δ) ∀δ > 0,

which implies

Ex [W (t+ δ)]− Ex [W (t)]

δ
<

H (δ)

δ
∀δ > 0.

Taking the limit:

∂

∂t
Ex [W (t)] = lim

δ→0+
Ex [W (t+ δ)]− Ex [W (t)]

δ
≤ lim

δ→0+
H (δ)

δ
=

= lim
δ→0+

{F (t) [F (t+ δ)− F (t)]− [1− F (t+ δ)] [F (t+ δ)− F (t)]}
δ

+

+ lim
δ→0+

{[F (t+ δ)− F (t)] [F (t+ δ)− 1 + F (t)]− 2t [F (t+ δ)− F (t)]}
δ

=
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= lim
δ→0+

2 {[F (t+ δ)− F (t)] [F (t)− 1 + F (t+ δ)]− t [F (t+ δ)− F (t)]}
δ

. (A.1)

By l’Hôpital’s rule, A.1 is equal to:

2 lim
δ→0+

{f (t+ δ) [F (t)− 1 + F (t+ δ)] + [F (t+ δ)− F (t)] f (t+ δ)− tf (t+ δ)} =

= 2f (t) {2F (t)− 1− t} < 0

The last inequality holds because y > 0 and t ∈ [0, y] .

Claim A.4. It cannot be the case that t∗ ∈ (y, 1) .

We will prove Claim A.4 by proving that for any t > y there exists a t0 < y such that

Ex [W (t0)] > Ex [W (t)] .

Let t ∈ (y, 1) and take t0 < y such that

¯̄
y − t0

¯̄
= |y − t| ≡ ∆.

It holds that

Ex
£
W
¡
t0
¢¤
− Ex [W (t)] =

= Eθa,θb
h
θa − 2θΦ

³¡
t0 − θ

¢p
β
´i
− Eθa,θb

h
θa − 2θΦ

³
(t− θ)

p
β
´i
+

+Eθa,θb
∙r

2

πβ
e−

(t0−θ)2β
2

¸
− Eθa,θb

∙r
2

πβ
e−

(t−θ)2β
2

¸
+

+Eθa,θb
∙∙
2
h
Φ
³¡
t0 − θ

¢p
β
´i2
− 2Φ

³¡
t0 − θ

¢p
β
´
+ 1

¸¸
+

−Eθa,θb
∙∙
2
h
Φ
³
(t− θ)

p
β
´i2
− 2Φ

³
(t− θ)

p
β
´
+ 1

¸¸
=

= Eθ
h
−2θΦ

³¡
t0 − θ

¢p
β
´i
− Eθ

h
−2θΦ

³
(t− θ)

p
β
´i

.
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The last equality holds because both

Eθa,θb
h
θa − 2θΦ

³
(t− θ)

p
β
´i

and

Eθa,θb
∙r

2

πβ
e−

(t−θ)2β
2

¸

are symmetric with respect to y.

To establish the sign of

= Eθ
h
−2θΦ

³¡
t0 − θ

¢p
β
´i
− Eθ

h
−2θΦ

³
(t− θ)

p
β
´i

rewrite the expression as

Z +∞

−∞
2θ
h
Φ
³
(y +∆− θ)

p
β
´
− Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ

where g (θ) denotes the pdf of the random variable θ.

Notice that

Z +∞

−∞
2θ
h
Φ
³
(y +∆− θ)

p
β
´
− Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ =

=

Z 0

−∞
2θ
h
Φ
³
(y +∆− θ)

p
β
´
− Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ+

+

Z 2y

0
2θ
h
Φ
³
(y +∆− θ)

p
β
´
−Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ+

+

Z +∞

2y
2θ
h
Φ
³
(y +∆− θ)

p
β
´
− Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ.
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It holds that

Z 2y

0
2θ
h
Φ
³
(y +∆− θ)

p
β
´
− Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ > 0

since the integrand is nonnegative ∀θ ∈ [0, 2y] and strictly positive ∀θ ∈ (0, 2y] .

Moreover,

Z 0

−∞
2θ
h
Φ
³
(y +∆− θ)

p
β
´
− Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ ≤ 0

because the integrand is nonpositive ∀θ ∈ (−∞, 0] and

Z 2y

0
2θ
h
Φ
³
(y +∆− θ)

p
β
´
− Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ ≥ 0

because the integrand is nonnegative ∀θ ∈ [2y,+∞).

Next, we show that

Z 0

−∞
2θ
h
Φ
³
(y +∆− θ)

p
β
´
− Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ+

+

Z 2y

0
2θ
h
Φ
³
(y +∆− θ)

p
β
´
− Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ > 0.

Take any θ ∈ [2y,+∞) and denote θ − 2y = d > 0.

For any such θ, there exists θ0 ∈ (−∞, 0] such that θ0 = −d. By symmetry of the

distribution of θ, g
¡
θ0
¢
= g (θ) .

Moreover,

2θ0
h
Φ
³¡
y +∆− θ0

¢p
β
´
−Φ

³¡
y −∆− θ0

¢p
β
´i
+
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+2θ
h
Φ
³
(y +∆− θ)

p
β
´
− Φ

³
(y −∆− θ)

p
β
´i
=

= −2d
h
Φ
³
(y + d+∆)

p
β
´
− Φ

³
(y + d−∆)

p
β
´i
+

+(4y + 2d)
h
Φ
³
(−y − d+∆)

p
β
´
− Φ

³
(−y − d−∆)

p
β
´i
=

= 4y
h
Φ
³
(−y − d+∆)

p
β
´
− Φ

³
(−y − d−∆)

p
β
´i

> 0.

Since ∀θ ∈ [2y,+∞) there exists θ0 ∈ (−∞, 0] such that

2θ
h
Φ
³
(y +∆− θ)

p
β
´
− Φ

³
(y −∆− θ)

p
β
´i

g (θ)+

+2θ0
h
Φ
³¡
y +∆− θ0

¢p
β
´
− Φ

³¡
y −∆− θ0

¢p
β
´i

g
¡
θ0
¢
> 0,

then Z 0

−∞
2θ
h
Φ
³
(y +∆− θ)

p
β
´
− Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ+

+

Z 2y

0
2θ
h
Φ
³
(y +∆− θ)

p
β
´
−Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ ≥ 0

and combining this inequality with

+

Z 2y

0
2θ
h
Φ
³
(y +∆− θ)

p
β
´
−Φ

³
(y −∆− θ)

p
β
´i

g (θ) dθ > 0

we get

Eθ
h
−2θΦ

³¡
t0 − θ

¢p
β
´i
− Eθ

h
−2θΦ

³
(t− θ)

p
β
´i

> 0.

This implies that if 0 < y ≤ 1 it cannot be the case that the welfare function attains its

global maximum for t ∈ (y, 1] .
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We conclude that both if y ∈ (0, 1] and if y > 1 it has to be the case that the global

maximizer of the welfare function, t∗, satisfies

−1 < t∗ < 0 < y.

¥

Proof of Proposition 1.2 The characterization of the equilibrium and derivation of the

uniqueness condition follow directly from the Appendix of Morris and Shin (2004).

The evaluate the sign of ∂t(p,y)∂p ,and ∂t(p,y)
∂y , notice that since t (p, y) has to satisfy expres-

sion 1.7, then:

∂t (p, y)

∂p
= −

∂[t−Φ[(t−y)z]+1
2
−p]

∂p

∂[t−Φ[(t−y)z]+1
2
−p]

∂t

= − −1
1− φ [(t− y) z] z

∂t (p, y)

∂y
= −

∂[t−Φ[(t−y)z]+1
2
−p]

∂y

∂[t−Φ[(t−y)z]+1
2
−p]

∂t

= − φ [(t− y) z] z

1− φ [(t− y) z] z
.

When the uniqueness condition is satisfied, the denominators of the two expressions above

are strictly positive, therefore

∂t (p, y)

∂p
> 0

∂t (p, y)

∂y
< 0.

¥

Proof of Proposition 1.3 If consumers play the equilibrium strategy profile, then all the

consumers who observe xi > t (p, y) and who therefore have an idiosyncratic taste
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component εi > t(p, y)− θ, buy a and everyone else buys b.

For the second part of the claim, note that

∂na (·)
∂ya

=
∂na

∂y

1

2
=

µ
1

2

¶½
−φ

h
(t (p, y)− θ)

p
β
ip

β

µ
∂t

∂y

¶¾
=

=

µ
1

2

¶½
−φ

h
(t(p, y)− θ)

p
β
ip

β

µ
− φ [(t− y) z] z

1− φ [(t− y) z] z

¶¾
> 0

and

∂nb (·)
∂yb

=
∂nb

∂y

µ
−1
2

¶
=

µ
−1
2

¶½
φ
h
(t(p, y)− θ)

p
β
ip

β

µ
∂t

∂y

¶¾
=

=

µ
−1
2

¶½
φ
h
(t(p, y)− θ)

p
β
ip

β

µ
− φ [(t− y) z] z

1− φ [(t− y) z] z

¶¾
> 0.

¥

Proof of Proposition 1.4 For the first statement, notice that the equilibrium threshold

for the case of unsponsored networks, tu ≡ t (0, y) , satisfies

tu − Φ [(tu − y) z] +
1

2
= 0. (A.2)

Under the uniqueness condition, the lhs of A.2 is monotonically increasing in t and tu is

well-defined. Since Φ [·] ∈ [0, 1] , for any t ≥ 0 it holds that the lhs of A.2 is strictly negative

if t ≤ −12 . Therefore, it has to be the case that tu > 1
2 . Moreover, for y = 0 the solution

to A.2 is tu = 0, and since t(p, y) is strictly decreasing in y, it has to be the case that tu ∈¡
−12 , 0

¢
.

For the second and the third statement, we know from Proposition 1.1 that t∗ ∈ (−1, 0) .

Next, we will prove that the welfare function is strictly decreasing in the interval t ∈ [tu, 0] ,
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which in turn implies that t∗ ∈ (−1, tu) and that tu cannot be a point where the function

attains its global maximum.

Let t = tu. From the proof of Proposition 1.1, we know:

∂

∂t
Ex [W (t)] = lim

δ→0

Ex [W (t+ δ)]− Ex [W (t)]

δ
=

= lim
δ→0+

Ex [W (t+ δ)]− Ex [W (t)]

δ
=

= 2f (tu) {2F (tu)− 1− tu} (A.3)

We will show that

2f (tu) {2F (tu)− 1− tu} < 0

and that therefore

∂

∂t
Ex [W (t)] < 0.

First, notice that A.3 has the same sign as 2F (tu)− 1− tu, since f (tu) > 0.

From the definition of tu

tu = Φ [(tu − y) z]− 1
2
.

By assumption, F (tu) = Φ [(tu − y) v] where

v ≡ v (α, β) =

s
αβ

α+ β
.
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Therefore, we need to check the sign of

2Φ [(tu − y) v]− 1− Φ [(tu − y) z] +
1

2
=

= Φ [(tu − y) v]− Φ [(tu − y) z] +Φ [(tu − y) v]− 1
2
.

Since v > z and tu−y < 0, Φ [(tu − y) v]−Φ [(tu − y) z] < 0 and Φ [(tu − y) v] < 1
2 , therefore

A.3 is strictly negative, and so is the derivative of the welfare function evaluated at tu.

Finally, let t ∈ (tu, 0] . We will prove that in this interval ∂
∂tEx [W (t)] < 0 as well. As

shown above, it holds that

∂

∂t
Ex [W (t)] < 0 = lim

δ→0+
Ex [W (t+ δ)]− Ex [W (t)]

δ
≤ lim

δ→0+
H (δ)

δ
=

= 2f (t) {2F (t)− 1− t}

and that the last expression has the same sign as 2F (t)− 1− t. The function 2F (t)− 1− t

is the difference of the two strictly increasing functions r (t) = 2F (t) and s (t) = 1+ t. This

difference is positive for t < −1, negative for t = tu and negative in t = 0 (since F (·) is the

cdf of xi which is distributed normally around y > 0 ).

Since the slope of s(t) is constant and the slope of r(t) is increasing in the interval

t ∈ (−1, 0] , it cannot be the case that their difference is nonnegative in any point t ∈ (tu, 0) .

Therefore, it holds that 2F (t)− 1− t < 0 in the interval t ∈ (tu, 0] , which in turn implies

that the welfare function is strictly decreasing in the interval t ∈ [tu, 0] .
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We can conclude that t∗ ∈ (−1, tu) and that tu cannot be a point where the function

attains its global maximum. ¥

Proof of Lemma 1.2 To calculate the expected market shares, it is sufficient to take the

expectation over θ of the market shares expressed in Proposition 1.3. For the second

part of the claim, note that

∂Ex [na]
∂ya

=
∂Ex [na]

∂y

1

2
=

µ
1

2

¶½
−φ [(t (p, y)− y) v] v

µ
∂t

∂y
− 1
¶¾

=

=

µ
1

2

¶½
−φ [(t (p, y)− y) v] v

µ
− φ [(t− y) z] z

1− φ [(t− y) z] z
− 1
¶¾

> 0

and

∂Ex
£
nb
¤

∂yb
=

∂Ex
£
nb
¤

∂y

µ
−1
2

¶
=

µ
−1
2

¶½
φ [(t (p, y)− y) v] v

µ
∂t

∂y
− 1
¶¾

=

=

µ
−1
2

¶½
φ [(t (p, y)− y) v] v

µ
− φ [(t− y) z] z

1− φ [(t− y) z] z
− 1
¶¾

> 0.

¥

Proof of Proposition 1.5 First, we prove that if a pure strategy SPNE exists, then it

has to be the case that ps ∈ (0, y) .

The first order conditions of the firms optimization problem are

∂Ex [πa]
∂pa

= 1− Φ [(t (p, y)− y) v]− (pa − c)φ [(t (p, y)− y) v]
∂t

∂p

v

2
= 0

∂Ex [πb]
∂pb

= Φ [(t (p, y)− y) v]−
³
pb − c

´
φ [(t (p, y)− y) v]

∂t

∂p

v

2
= 0.
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Both must be satisfied in equilibrium. Therefore, it has to be the case that
¡
pa, pb

¢
and

ps = pa−pb
2 satisfy:

1− 2Φ [(t (p, y)− y) v] =
³
pa − pb

´
φ [(t (p, y)− y) v]

∂t

∂p

v

2
. (A.4)

First, note that A.4 can’t be satisfied if ps < 0 because that would imply that the lhs

is positive and the rhs is negative. Also, it cannot be the case that ps = 0 in equilibrium

because in that case the lhs would be positive and the rhs would be equal to zero. Moreover,

it cannot be that ps = y in equilibrium because in that case the lhs would be equal to zero

and the right hand side would be positive. Finally, it cannot be that ps > y in equilibrium

because in that case the lhs would be negative and the rhs would be positive. Therefore,

if a pure strategy SPNE exists it has to be such that ps ∈ (0, y) . Notice that both the lhs

and the rhs of A.4 are continuous functions of p, therefore G (ps) ≡ lhs− rhs is continuous

as well. Moreover, G(p) is positive at p = 0 and is negative at p = y, therefore it must have

at least one zero in the interval p ∈ (0, y) .

Next, we prove that ts ∈ (tu, y) .

From Proposition 1.2, t (p, y) is strictly increasing in p and since ps > 0 then it has to

be the case that tu ≡ t (0, y) < t (ps, y) ≡ ts.

From the definition of t (p, y) , it follows that t (y, y) = y. Since t (p, y) is strictly increas-

ing in p and ps < y, then it has to be the case that ts < y.

Finally, we need to show that Ex [W (tu)] < Ex [W (ts)] . This result holds because, as

we have shown in the proof of Proposition 4, Ex [W (t)] is strictly decreasing in the interval

t ∈ [tu, y) and ts ∈ (tu, y) . ¥



Appendix B

This Appendix collects the proofs of all the results presented in Chapter 2

Some extra notation for this Appendix.

Let C = C1 ∪C2.

For every D ⊂ C such that {i : Ci ∈ D} is measurable with respect to the Lebesgue

measure, let N(D) =
R

Ci∈D
di.

Let SA denote the set of strategies of player A, SB the set of strategies of player B and

Sj
i the set of strategies of C

j
i for j = 1, 2 and i ∈ [0, 1]. Note that strategies in Sj

i specify

actions for Cj
i after any history of length 2. Let S

c = ×
i∈[0,1]

S1i ×
i∈[0,1]

S2i

For any game, let Γc be the set of all subgames that start in the third stage. We refer

to elements of Γcas consumer subgames.

Moreover, let cji denote the action choice of consumer i on side j.

Finally, for every s ∈ S, k ∈ F, j ∈ {1, 2}, n = 1, ..., nk and i ∈ [0, 1] let nk(s), πk(s),

pjk,n(s), N
j
k,n(s) and cji (s) denote the realized nk, πk, p

j
k,n, N

j
k,n and cji if s is played

Lemma B.1. Let Gc = (C,Sc, uc) ∈ Γc(G). Then ∃ s ∈ Sc such that s is a coalitionally

rationalizable Nash equilibrium of Gc.

109
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Proof of Lemma B.1

For any A ⊂ Sc such that A = ×
j=1,2

×
i∈[0,1]

Aj
i 6= ∅ let z(A) be the collection of supported

restrictions in Sc given A. Let A0, A1, ... be such that A0 = Sc and Ak = ∩
B∈z(Ak−1)

B

∀ k ≥ 1. Note that A∗ = lim
k→∞

Ak is the set of coalitionally rationalizable strategies in

Gc. Let k ≥ 0 and assume Ak 6= ∅. For every i ∈ [0, 1] and j = 1, 2 let uji (k) =

sup
ω−i,j∈Ω−i,j(Ak),ai,j∈Ak

i,j

uci,j(ai,j , ω−i,j). Let (a
m
i,j , ω

m
−i,j)m=1,2,... be such that a

m
i,j ∈ Ak

i,j and

ωm−i,j ∈ Ω−i,j(Ak) ∀ m ≥ 1, and uci,j(a
m
i,j , ω

m
−i,j) → uji (k) as m → ∞. Since Ak

i,j is finite,

(ami,j) has a subsequence (a
mn
i,j ) such that lim

mn→∞
amn
i,j = a ∈ Ak

i,j . Then by the definition

of supported restriction a ∈ Bi,j for every B ⊂ Ak such that B is a supported restriction

in Gc given Ak. Since i and j were arbitrary, this implies Ak+1 6= ∅. Then by induction

A0 = Sc 6= ∅ implies A∗ 6= ∅.

Note that (Sc)ji = (S
c)j

0

i0 ≡ S
c ∀ i, i0 ∈ [0, 1] and j, j0 ∈ {1, 2}. Order pure strategies in

S
c
any way, such that S

c
= {a1, ..., an}. Define x(s) : S

c → R2n such that xk(s) = N(C1i ∈

C1 : c1i (s) = ak) ∀ i ∈ 1, ..., n and xk(s) = N(C2i ∈ C2 : c2i (s) = ak−n) ∀ i ∈ n+ 1, ..., 2n.

Let Θ = {θ ∈ R2n : ∃ s ∈ A∗ s.t. x(s) = θ}. It is easy to establish that Θ is a

nonempty, compact and convex subset of R2n. For every θ ∈ Θ, i ∈ [0, 1] and j = 1, 2

let BRj
i (θ) = {a ∈ S

c
: ∃ s ∈ S s.t. x(s) = θ and a ∈ BRj

i (s−j,i)}. Now define the

correspondence F : Θ → R2n such that F (θ) = {y : ∃ s ∈ Sc s.t. sji ∈ BRj
i (θ), and

y = x(s)}. It is straightforward to establish that BRj
i (s−j,i) ⊂ (A∗)ji ∀ i ∈ [0, 1] and

j = 1, 2. This implies that F (θ) ⊂ Θ ∀ θ ∈ Θ, therefore F is a correspondence from Θ to

itself. Note that F is nonempty valued, since S
c
is finite, so the best response correspondence

is nonempty valued. Furthermore, if s, t ∈ S
c
are such that sji , t

j
i ∈ BRj

i (θ) for some θ ∈ Θ,
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then zji ∈ BRj
i (θ) for every z ∈ S

c
for which it holds that ∀ i ∈ [0, 1] and j = 1, 2 either

zji = sji or z
j
i = tji . This implies that F is convex valued. Finally, since for every i ∈ [0, 1]

and j = 1, 2 gji is continuous, it holds that for every i ∈ [0, 1] and j = 1, 2 BRj
i (θ) is upper

hemicontinuous, which implies that F is upper hemicontinuous.

The above imply that all the conditions for Kakutani’s fixed point theorem hold for

F , therefore it has a fixed point θ∗. That implies ∃ s∗ ∈ A∗ such that x(s∗) = θ∗ and

(s∗)ji ∈ BRj
i (θ

∗) ∀ θ ∈ Θ, i ∈ [0, 1] and j = 1, 2. This implies (s∗)ji ∈ BRj
i (s

∗
−j,i) ∀

θ ∈ Θ, i ∈ [0, 1] and j = 1, 2, which establishes that s∗ is a coalitionally rationalizable Nash

equilibrium. ¥.

Proof of Theorem 2.1

Let πA(s) = π. If π = 0 the claim is trivial, since in every Nash equilibrium and

therefore in every coalition perfect Nash equilibrium the firm has to get nonnegative profit

(since announcing prices above 0 guarantees that).

Suppose now that π > 0. That implies that at least on one side of the market the

monopolist charges a strictly positive profit and has a strictly positive market share.

Let cCj(s) = {Cj
i : c

j
i (s) = A} for j = 1, 2. Then for Cj

i ∈ cCj(s) and N j ∈ [0, 1] it holds

that gji (N
−j)− pjA(s) > 0 (note that g

j
i (N

−j
A (s)) is constant in N j). Then for every ε > 0

and Cj
i ∈ cCj(s) it holds that gji (N

−j
A (s)) − pjA(s) + ε > 0, which implies that after a price

announcement of
¡
p1A(s)− ε, p2A(s)− ε

¢
joining the network is a supported restriction for

cC1(s) and cC2(s).
If pjA(s) > 0 for j = 1, 2, then it has to be the case thatN

j
A(s) ≥ 0 andMax

n
N j
A(s), N

−j
A (s) > 0

o
.

Then the firm can guarantee a profit arbitrarily close to π by charging prices
¡
p1A(s)− ε, p2A(s)− ε

¢
.
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If pjA(s) > 0 and p−jA (s) = 0 then it has to be the case that N
j
A(s) > 0 and N−j

A (s) ≥ 0. In

this case, by charging
¡
p1A(s)− ε, p2A(s)− ε

¢
the monopolist gets market shares N j

A ≥ N j
A(s)

and N−j
A = 1 and profits arbitrarily close to π. Finally, if pjA(s) > 0 and p−jA (s) = 0 it has

to be the case that N j
A(s) and N−j

A (s) = 1. Then, by charging
¡
p1A(s)− ε, p2A(s)− ε

¢
the

monopolist gets market shares N j
A ≥ N j

A(s) and N
−j
A = 1 and again profits arbitrarily close

to π.

That means that if consumers play only coalitionally rationalizable strategies, then the

firm can guarantee a profit arbitrarily close to π by charging prices
¡
p1A(s)− ε, p2A(s)− ε

¢
where ε > 0 is small enough. This implies that it cannot be that π(s0) < π. ¥

Proof of Theorem 2.2

Let s ∈ S be a coalition perfect equilibrium. If p1 (s) , p2 (s) < l then joining the network

is a supported restriction for the coalition of all consumers. The supremum of the profit

the firm in this price range is 2l and the firm can get a profit arbitrarily close to it by

charging
¡
p1 (s) , p2 (s)

¢
= (l − ε, l − ε) for small enough ε > 0. If p1 (s) , p2 (s) < ah then

joining the network is a supported restriction for the coalition of consumers that involve

the high types from both sides of the market. Therefore the monopolist can guarantee a

profit arbitrarily close to 2a2h by charging prices
¡
p1 (s) , p2 (s)

¢
= (ah−ε, ah−ε) for small

enough ε > 0. If pj (s) < h and p−j (s) < al for some j ∈ {1, 2} then joining the network is

a supported restriction for C−j ∪ {Cj
i : i ∈ [0, a]}. Therefore the monopolist can guarantee

a profit arbitrarily close to a(h+ l) by charging prices
¡
p1 (s) , p2 (s)

¢
= (h − ε, al − ε) for

small enough ε > 0.

The above establish that πA(s) ≥ max(2l, 2a2h, a(h+ l)).
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If pj (s) > h for some j ∈ {1, 2}, then N j(s) = 0. Then N−j(s) > 0 only if p−j (s) ≤ 0.

In any case πA(s) < max(2l, 2a2h, a(h+ l)). Therefore pj (s) ≤ h for j = 1, 2.

It cannot be that pj (s) ≤ l ∀ j ∈ {1, 2} and pj (s) < l for some j ∈ {1, 2}, since then

πA(s) < 2l.

If pj (s) > l ∀ j ∈ {1, 2} then cji (s) = ∅ ∀ j = 1, 2 and i ∈ (a, 1]. Then it cannot be that

pj (s) > ah for some j ∈ {1, 2}, otherwise cji (s) = ∅ ∀ j = 1, 2 and i ∈ [0, 1] and therefore

πA(s) = 0. Furthermore, it cannot be that pj (s) < ah for some j ∈ {1, 2}, otherwise

πA(s) < 2a
2h.

Suppose now that pj (s) > l and p−j (s) ≤ l for some j ∈ {1, 2}. It cannot be that

p−j (s) < al since then πA(s) < a(l + h). If p−j (s) > al, then pj (s) > ah or p−j (s) > ah

implies πA(s) = 0. Then pj (s) < ah or p−j (s) < ah implies πA(s) < 2a2h. Finally,

pj (s) = ah and p−j (s) = ah contradict that pj (s) > l and p−j (s) ≤ l. This concludes that

p−j (s) = al. Then pj (s) = h, otherwise πA(s) < a(l + h).

Consider first the case that ah > l. If pj (s) ≥ ah then only high types can join the

network in equilibrium. Furthermore, consumers on side j only join in equilibrium if at least

some low types join the network from the other side. For that to be possible in equilibrium,

it has to be the case that p−j (s) ≤ al. The above imply that if j (s) > h for j = 1 or

j = 2 then π (s) ≤ ah + al But note that the firm can get a profit arbitrarily close to this

amount by charging (h− ε, al − ε) for small enough ε > 0, since then joining the network

is a supported restriction for the coalition of consumers involving all high types on side 1

and all consumers on side 2.

Consider now the case that l > ah. If j (s) > l for j = 1 or j = 2 the same arguments
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as above establish that π (s) ≤ ah+al, but the monopolist can get a profit arbitrarily close

to ah+ al by charging (h− ε, al − ε) for small enough ε > 0.

This concludes that π (s) ≤ max(2l, 2a2h, ah+al), but if consumers play only coalition-

ally rationalizable strategies then the monopolist can always guarantee a profit arbitrarily

close to max(2l, 2a2h, ah+al). But then it has to be the case that in every coalition perfect

equilibrium π (s) = max(2l, 2a2h, ah+ al). This establishes that the prices charged by the

monopolist are either (l, l) or (ah, ah) or (h, al) or (al, h) in any coalition perfect equilibrium,

and in the first case c1i (s) = c2i (s) = A ∀i ∈ [0, 1] , in the second case c1i (s) = c2i (s) = A ∀

i ∈ [0, a] and c1i (s) = c2i (s) = ∅ ∀ i ∈ (a, 1] and in the third case either c1i = A ∀ i ∈ [0, a],

c1i = A ∀ i ∈ (a, 1] and c2i = A ∀ i ∈ [0, 1] or p1 (s) = al, p2 (s) = h, c1i = A ∀ i ∈ [0, 1],

c1i = A ∀ i ∈ [0, a] and c1i = ∅ ∀ i ∈ (a, 1].

The above imply that if 2l > max(2a2h, ah + al) then pj (s) = l and N j(s) = 1 ∀

j ∈ {1, 2}. If 2a2h > max(2l, ah+ al) then pj (s) = ah and N j(s) = a ∀ j ∈ {1, 2}. And if

ah+ al > max(2l, 2a2h) then pj (s) = h, p−j (s) = al, N j(s) = a and N−j(s) = 1 for some

j ∈ {1, 2}.

Suppose 2a2h > al + ah. Since a > 0, this is equivalent to (2a − 1)h > l. The latter

implies a2h > l since a2h− (2a− 1)h = (a− 1)2h > 0. Therefore (2a− 1)h > l implies that

2a2h > max(2l, ah+ al).

Suppose now that ah+ al < 2l. It is equivalent to l > a
2−ah. The latter implies l > a2h

since a
2−ah− a2h = ah1−2a+a

2

2−a > 0. Therefore 2a2h < 2l. This establishes that if l > a
2−ah

then 2l > max(2a2h, ah+ al).

Note that (2a−1)h < a
2−ah. If l ∈ ((2a−1)h,

a
2−ah) then 2a

2h < al+ah and ah+al > 2l
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and therefore ah+ al > max(2l, 2a2h).

Let G1 = (I, S1, u1) ∈ Γc be the subgame following price announcements (ah, ah) and

let s1 ∈ S1 be such that (s1)1i = (s
1)2i = A ∀ i ∈ [0, a] and (s1)1i = (s1)2i = ∅ ∀ i ∈ (a, 1]. Let

G2 = (I, S2, u2) ∈ Γc be the subgame following price announcements (h, al) and let s2 ∈ S2

be such that (s1)1i = A ∀ i ∈ [0, a], (s1)1i = ∅ ∀ i ∈ (a, 1] and (s1)2i = A ∀ i ∈ [0, 1]. Let

G3 = (I, S3, u3) ∈ Γc be the subgame following price announcements (l, l) and let s3 ∈ S3 be

such that (s3)1i = (s
3)2i = A ∀ i ∈ [0, 1]. It is straightforward to establish that for k = 1, 2, 3

sk is a coalitionally rationalizable Nash equilibrium in Gk. Let now s−A ∈ S−A be any

profile that specifies sk in Gk for every k = 1, 2, 3 and specifies some arbitrary coalitionally

rationalizable Nash equilibrium in every other Gc ∈ Γc. By Lemma B.1 there exists a profile

like that. Let sA be such that pA(sA) = (ah, ah). Let s0A be such that pA(s
0
A) = (h, al). And

let s00A be such that pA(s
00
A) = (l, l). If

l
h = 2a−1 then 2a2h = ah+al = max(2l, 2a2h, ah+al).

The above then establish that both (sA, s−A) and (s0A, s−A) are coalition perfect equilibria.

If l
h =

a
2−a then 2l = ah+ al = max(2l, 2a2h, ah+ al). The above then establish that both

(s0A, s−A) and (s
00
A, s−A) are coalition perfect equilibria. ¥

Proof of Theorem 2.3

If s−A ∈ S−A is such that consumers play a coalitionally rationalizable Nash equilibrium

in every consumer subgame, then in the subgame following nA(sA, s−A) = 2 and p11 = p22 =

la− ε, p21 = p12 = la+ (1− a)h− 2ε (ε > 0), it has to hold that n1i = 2, n2i = 1 ∀ i ∈ [0, a]

and n1i = 1, n
2
i = 2 ∀ i ∈ (a, 1]. To see this, define A ⊂ S such that A = ×

i∈[0,1],j=1,2
Aj
i and

Aj
i ≡ {∅, 1, 2} ∀ i ∈ [0, a], j = 1, 2, A1i ≡ {∅, 1} ∀ i ∈ (a, 1] and A2i ≡ {∅, 2} ∀ i ∈ (a, 1]. Also

define B ⊂ S such that B = ×
i∈[0,1],j=1,2

Bj
i and B1i ≡ {2} ∀ i ∈ [0, a], B2i ≡ {1} ∀ i ∈ [0, a],
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j = 1, 2, B1i ≡ {1} ∀ i ∈ (a, 1] and A2i ≡ {2} ∀ i ∈ (a, 1]. First note that Aj
i × S−1,i is a

supported restriction by Cj
i given S ∀ i ∈ [0, 1] and j = 1, 2 (since strategies in Sj

i /A
j
i are

never best responses for Cj
i ). Next, B is a supported restriction given A by C1∪C2 since it

gives the best possible payoff to every consumer in this subgame, given A. Therefore n1i = 2,

n2i = 1 ∀ i ∈ [0, a] and n1i = 1, n2i = 2 ∀ i ∈ (a, 1] is the only coalitionally rationalizable

strategy in the above subgame.

Since ε can be arbitrarily small positive, the above establishes that if s ∈ S is a coalition

perfect equilibrium, then πA(s) ≥ 2(la+ (1− a)ah) ≡ π∗.

Suppose s−A ∈ S−A is such that consumers play a coalitionally rationalizable Nash

equilibrium in every consumer subgame and ∃ bsA ∈ SA such that πA(bsA, s−A) ≥ π∗ and it

is not the case that nA(bsA, s−A) = 2, and p1j (bsA, s−A) = p2−j(bsA, s−A) = la, p2j (bsA, s−A) =
p1−j(bsA, s−A) = la+ (1− a)h for some j = 1, 2.

Let s = (bsA, s−A).
First suppose nA(s) = 1. If l ∈

³
(4a− 1)h, a

2−ah
´
, then by Theorem 2.4 πA(s) ≤

(l + h)a. But for l > (4a − 1)h it holds that (l + h)a < 2(la + (1 − a)ah) ≡ π∗, a

contradiction. If l ∈
³
( a
2−ah,

a(1−2a)
1−a h

´
, then by Theorem 2.4 πA(s) ≤ 2l. But l < a(1−2a)

1−a h

implies 2l < 2(la+ (1− a)ah) ≡ π∗, a contradiction.

Therefore nA(s) = 2.

It cannot be that N j
k = 0 for some j = 1, 2 and k = 1, 2 since then either N−j

k (s) = 0

or p−jk (s) ≤ 0 (otherwise consumers choosing network k in s would get negative utility,

contradicting the assumption on s−A). In either case πA(s) is smaller or equal to the

supremum of profits attainable by a strategy in which A operates only one network. Then,
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as established above, πA(s) < π∗. Therefore N j
k > 0 ∀ j = 1, 2 and k = 1, 2.

Let Hj = {Cj
i : i ∈ [0, a]} and Lj = {Cj

i : i ∈ (a, 1]} ∀ j = 1, 2.

Let Xj
k = {C

j
i : n

j
i (s) = k} ∀ j = 1, 2 and k = 1, 2.

First we establish that it cannot be that for some j = 1, 2 bothXj
1∩Lj = ∅ andXj

2∩Lj =

∅. If Xj
1 ∩ Lj = ∅ and Xj

2 ∩ Lj = ∅ ∀ j = 1, 2 then πA(s) < 2a
2h < π∗. Otherwise, w.l.o.g.

assume X2
1 ∩L2 = ∅ and X2

2 ∩L2 = ∅ and X1
2 ∩L1 6= ∅. Then consider a deviation s0 by the

firm such that nA(s0) = 1, p1(s0) = max(0, p11(s)
N2
1+N

2
2

N2
2
− ε) and p2(s0) = max(0, p22(s)− ε).

In the subgame following the above prices it is a supported restriction for X1
1 ∪X1

2 ∪X2
1 ∪X2

2

(note that X1
2 ∩ L1 6= ∅ and therefore p11(s) ≤ lN2

2 ) to choose 1, which guarantees a profit

of at least π0 ≡ p1(s0)(N1
1 +N1

2 ) + p2(s0)(N2
1 +N2

2 ). Consider now deviation s00 by the firm

such that nA(s00) = 1, p1(s00) = max(0, p21(s)
N2
1+N

2
2

N2
1
− ε) and p2(s00) = max(0, p21(s) − ε).

In the subgame following the above prices it is a supported restriction for X1
2 ∪ X2

1 ∪ X2
2

to choose 1, which guarantees a profit of at least π00 ≡ p1(s00)N1
2 + p2(s00)(N2

1 +N2
2 ). It is

straightforward to verify that both π0 ≤ πA(s) and π00 ≤ πA(s), and therefore at least one of

the above deviations yields higher profit than πA(s). And since nA(s0) = 1 and nA(s00) = 1,

it holds that π0 < π∗ and π00 < π∗.

Next we establish that it cannot be that for some j = 1, 2 bothXj
1∩Lj 6= ∅ andXj

2∩Lj 6=

∅. If Xj
1 ∩ Lj 6= ∅ and Xj

2 ∩ Lj 6= ∅ ∀ j = 1, 2 then pjk(s) ≤ lN−j
k (s) ∀ k = 1, 2 and j = 1, 2.

Then πA(s) < 2l < π∗. Otherwise w.l.o.g. assumeX1
1∩L1 6= ∅,X1

2∩L1 6= ∅ andX2
1∩L2 6= ∅.

Then πA(s) < (h + l)N1
1 (s)N

2
2 (s) + 2lN

2
1 (s)N

1
2 (s), since p

1
1(s) ≤ lN2

2 (s), p
1
2(s) ≤ lN1

2 (s),

p21(s) ≤ lN1
1 (s) and p22(s) < hN1

2 (s). Note that (h+ l)N2
2 (s) < (h+ l)a < π∗ and therefore

(h+l)N2
2 (s) < (h+l)N

1
1 (s)N

2
2 (s)+2lN

2
1 (s)N

1
2 (s). This implies (h+l)N

2
2 (s) < 2lN

2
1 (s) < 2l.
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Furthermore, 2l < π∗ and therefore 2l < (h + l)N1
1 (s)N

2
2 (s) + 2lN

2
1 (s)N

1
2 (s). This implies

2l(1−N2
1 (s)N

1
2 (s)) < (h+ l)N1

1 (s)N
2
2 (s) which implies 2lN

1
1 (s) < (h+ l)N1

1 (s)N
2
2 (s) which

implies 2l < (h+ l)N2
2 (s), a contradiction.

Next we establish that it cannot be that for some k = 1, 2 both X1
k ∩ L1 6= ∅ and

X2
k∩L2 6= ∅. Suppose otherwise. Then, as established above,X1

−k∩L1 = ∅ andX2
−k∩L2 = ∅,

but X1
−k 6= ∅ and X2

−k 6= ∅. This implies N
−j
k (s)l − pjk(s) ≥ N−j

−k(s)l − pj−k(s) ∀ j = 1, 2

and N−j
k (s)h − pjk(s) ≤ N−j

−k(s)h − pj−k(s) ∀ j = 1, 2, which implies pjk(s) ≤ pj−k(s) ∀

j = 1, 2. Then by Lemma B.1 it has to be that pjk(s) = pj−k(s) ∀ j = 1, 2. But since

pjk(s) ≤ N−j
k (s)l < l ∀ j = 1, 2 , this implies πA(s) < 2l < π∗.

Therefore ∃ k ∈ {1, 2} such that X1
k ∩H1 = X1

k and X
2
−k∩H2 = X2

k . W.l.o.g. let k = 1.

Note that p21(s) ≤ lN1
1 and p

1
2(s) ≤ lN2

2 since X
2
1 ∩L2 6= ∅, X1

2 ∩L1 6= ∅ and by definition

no consumer can get negative utility in any subgame if s is played. Then hN2
1 − p11(s) ≥

hN2
2 − p12(s) implies p

1
1(s) ≤ lN2

2 + h(1 − N2
2 ) and hN1

2 − p22(s) ≥ hN1
1 − p21(s) implies

p22(s) ≤ lN1
1 + h(1−N1

1 ). This establishes that πA(s) ≤ l(N1
1N

2
1 +N1

2N
2
2 ) +(lN

2
2 + h(1−

N2
2 ))N

1
1 + (lN

1
1 + h(1−N1

1 ))N
2
2 ≤ l(N1

1 +N2
2 ) + h(N1

1 +N2
2 − 2N1

1N
2
2 ).

Note that ∂(l(N1
1+N

2
2 )+h(N

1
1+N

2
2−2N1

1N
2
2 ))

∂N1
1

= h + l − 2hN2
2 ≥ h + l − 2ha > 0 (since the

starting assumptions imply a < 1/2). Similarly it holds that ∂(l(N1
1+N

2
2 )+h(N

1
1+N

2
2−2N1

1N
2
2 ))

∂N2
2

=

h+ l − 2hN1
1 ≥ h+ l − 2ha > 0. Therefore πA(s) < l2a+ h(2a− 2a2) = π∗ unless p21(s) =

p12(s) = al, N2
1 (s) = N1

2 (s) = 1− a, p11(s) = p22(s) = la+ h(1− a) and N1
1 (s) = N2

2 (s) = a.

This concludes the claim. ¥

Proof of Theorem 2.4 Suppose ∃ s ∈ S such that s is a coalition perfect equilibrium,

nA(s) = 2 and N j
k(s) > 0 ∀ j ∈ {1, 2} and k ∈ {A,B}.
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By Lemma B.2 (see below) ∃ k ∈ {1, 2} such that p1k(s) ≤ p13−k(s) and p2k(s) ≥ p23−k(s),

otherwise N1
k (s) = N2

k (s) = 0 for some k ∈ {1, 2}. Let l1 = ( inf
i∈[0,1]:cji (s)=k

u1i )(N
2
k (s) +

N2
3−k(s)), h

1 = ( inf
i∈[0,1]:cji (s)=3−k

u1i )(N
2
k (s) + N2

3−k(s)), l
2 = ( inf

i∈[0,1]:cji (s)=3−k
u2i )(N

1
k (s) +

N1
3−k(s)) and h2 = ( inf

i∈[0,1]:cji (s)=k
u2i ) (N

1
k (s) + N1

3−k(s)). Then Nash equilibrium implies

p1k(s) ≤ N2
k (s)l

1/(N2
k (s) + N2

3−k(s)), p
2
3−k(s) ≤ N1

k (s)l
2/(N1

k (s) + N1
3−k(s)), p

1
3−k(s) ≤

(N2
k (s)−N2

k (s)) h
1/(N2

k (s) +N2
3−k(s))+ p1k(s) and p

2
k(s) ≤ (N1

3−k(s)−N1
k (s))h

2/(N1
k (s) +

N1
3−k(s)) + p23−k(s). Let x

1 = N1
k (s)/(N

1
k (s) + N1

3−k(s)) and x2 = N2
3−k(s)/ (N

2
3−k(s) +

N2
k (s)). Then πA(s) ≤ x2l1(1−x1)+x1((1−2x2)h1+x2l1)+x1l2(1−x2)+x2((1−2x1)h2+

x1h2) = h1x1 + h2x2 + l1x2 + l2x1 − 2h1x1x2 − 2h2x1x2. Taking first order conditions it

is easy to verify that the latter expression is maximized at x1 = h2+l1

2h1+2h2
, x2 = h1+l1

2h1+2h2
.

Substituting these values into the expression yields πA(s) ≤ (
h1+l2)(h2+l1)
2(h1+h2)

.

Let bC(s) = {Cj
i ∈ C : cji (s) 6= ∅}. Notice that if s0A ∈ SA is such that nA(s0A) = 1

and pjA(s
0
A) = lj/(N3−j

k (s) + N3−j
3−k(s)) − ε ∀ j ∈ {1, 2}, where ε > 0, then πA(s

0
A, sA) ≥

l1+ l2−ε(
P

j=1,2

P
k=1,2

N j
k(s)), since the assumptions that there is no conflict of interest among

consumers on the same side and that s is a Nash equilibrium together guarantee that in

the consumer subgame following the above price announcements joining the network is a

supported restriction for all players in bC(s). Since s is a Nash equilibrium, this implies

πA(s) ≥ l1 + l2. Therefore (
h1+l2)(h2+l1)
2(h1+h2) ≥ l1 + l2.

It is straightforward to verify that for any h1 + h2 = h > 0 and l1 + l2 = l > 0 the

expression (h1+l2)(h2+l1)
2(h1+h2)

− l1− l2 is maximized at h1 = h2 = h/2, l1 = l2 = l/2. In that case

(h1+l2)(h2+l1)
2(h1+h2)

−l1−l2 = h2−6hl+l2. Then s being a Nash equilibrium implies h2−6hl+l2 ≥ 0.

Since h > l, this implies h ≥ (3 + 2
√
2)l. Therefore if (max

i∈[0,1]
uji )/( min

i∈[0,1]
uji ) < 3 + 2

√
2 ∀
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j ∈ {1, 2}, then s cannot be a Nash equilibrium, a contradiction. ¥

Lemma B.2. Let Gc = (C,Sc, uc) be the subgame following price announcements (p1A, p
2
A, p

1
B, p

2
B).

If pjA < pjB ∀ j = 1, 2 then B is not coalitionally rationalizable in Gc for any Cj
i ∈ C. If

also pjA < uj ∀ j ∈ {1, 2} then A is the unique coalitionally rationalizable strategy in Gc

for every Cj
i ∈ C. Similarly if pjB < pjA ∀ j = 1, 2 then A is not coalitionally rationalizable

in Gc for any Cj
i ∈ C. If also pjB < uj ∀ j ∈ {1, 2} then B is the unique coalitionally

rationalizable strategy in Gc for every Cj
i ∈ C.

Proof of Lemma B.2 Consider pjA < pjB ∀ j = 1, 2. If p
j
B > uj for some j ∈ {1, 2} then in

Gc choosing B is not rationalizable for any Cj
i ∈ C. Observe that pjA ≤ uj ∀ j ∈ {1, 2}

implies pjA < uj ∀ j ∈ {1, 2}. For every Cj
i ∈ C the maximum utility Cj

i can expect

when joining B is uj−pjB. The minimum utility that C
j
i can expect if every consumer

in C joins A is uj − pjA(s) > uj − pjB. If p
j
A(s) < uj ∀ j ∈ {1, 2} then this implies that

joining A is a supported restriction for consumers in C, which implies the claim.

The other case is perfectly symmetric. ¥

Lemma B.3. For every k = 1, 2 and i ∈ [0, 1] it holds that ∅ is not coalitionally rational-

izable for Ck
i in the subgame following price announcements (0, 0, 0, 0).

Proof of Lemma B.3

Let bSk
i = {A,B} ∀ k = 1, 2 and i ∈ [0, 1]. Consider the restriction bS ≡ ×

i∈[0,1]
bS1i ×

i∈[0,1]
bS2i

given Sc by C in the subgame following price announcements (0, 0, 0, 0). Let k ∈ {1, 2},

i ∈ [0, 1] and ω−k,i ∈ Ω−k,i(bS). Let n−kA (ω−k,i) =
R

t−i∈S−i
gj(C

−k
j ∈ C−k/C−ki : tkj (0, 0, 0, 0) =
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A)dω−k,i and let n
−k
B (ω−k,i) =

R
t−i∈S−i

gj(C
−k
j ∈ C−k/C−ki : tkj (0, 0, 0, 0) = B)dω−k,i. Since

ω−k,i ∈ Ω−k,i(bS), min(n−kA (ω−i), n
−k
B (ω−i)) > 0. Then playing a best response strategy to

ω−k,i yields a positive expected payoff to Ck
i . Since U

k
i (∅) = 0 ∀ i ∈ [0, 1], this implies that

the above restriction is supported for C and therefore ∅ is not a coalitionally rationalizable

strategy for any k = 1, 2 and i ∈ [0, 1]. ¥

Lemma B.4. Let s be a coalition perfect equilibrium. If Nk
A(s) > 0 for some k = 1, 2

and N1
B(s) = N2

B(s) = 0 then (i) p1A(s) = −p2A(s), (ii) pkA(s) ≤ uk ∀ k = 1, 2 and (iii)

N1
A(s) = N2

A(s) = 1. Similarly if Nk
B(s) > 0 for some k = 1, 2 and N1

A(s) = N2
A(s) = 0

then (i) p1B(s) = −p2B(s), (ii) pkB(s) ≤ uk ∀ k = 1, 2 and (iii) N1
B(s) = N2

B(s) = 1.

Proof of Lemma B.4

Note that N1
B(s) = N2

B(s) = 0 implies πB(s) = 0. Suppose p
k
A(s) > uk for some k = 1, 2.

Then Nk
A(s) = 0 since consumers cannot get negative utility in s. Then N

−k
A (s) > 0 implies

that p−kA (s) ≤ 0, again because consumers cannot get negative utility in s. Since A cannot

have negative profit in s, this implies p−kA (s) = 0. Consider the deviation (u − ε,−ε) by

B, where ε > 0. In the subgame following this deviation it is a supported restriction for

C1 ∪ C2 to play B, because that profile yields the highest possible payoff in this subgame

for every Ck
i ∈ C, and choosing A or ∅ yields a strictly smaller payoff than this maximum

no matter what strategies other consumers play. Therefore ski (p
1
A(s), p

2
A(s), u− ε,−ε) = B

∀ k = 1, 2 and i ∈ [0, 1]. Then B’s profit after this deviation is u− 2ε, which is positive for

small enough profits, a contradiction. This concludes that pkA(s) ≤ uk ∀ k = 1, 2.

Suppose now that p1A(s) + p2A(s) > 0. Consider the deviation (p1A(s)− ε, p2A(s)− ε) by

B, where ε > 0. By lemma B.2 ski (p
1
A(s), p

2
A(s), p

1
A(s) − ε, p2A(s) − ε) = B ∀ k = 1, 2 and
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i ∈ [0, 1]. Then B’s profit after this deviation is p1A(s) + p2A(s) − 2ε, which is positive for

small enough ε, a contradiction. This concludes that p1A(s) + p2A(s) ≤ 0.

Suppose now that p1A(s) + p2A(s) < 0. This implies pkA(s) < 0 for some k = 1, 2. Then

Nk
B(s) = 0 implies Nk

A(s) = 1, since A strictly dominates ∅ for side 1 consumers. But

then p1A(s) + p2A(s) implies πA(s) = p1A(s)N
1
A(s) + p2A(s)N

2
A(s) < 0, a contradiction. This

concludes that p1A(s) + p2A(s) ≤ 0.

If pkA(s) < 0 for some k = 1, 2, then Nk
B(s) = 0 implies Nk

A(s) = 1. Then πA(s) ≥ 0

implies that Nk
A(s) = 1 ∀ k = 1, 2.

Consider now p1A(s) = p2A(s) = 0. Then πA(s) = 0. If pkB(s) < 0 for some k = 1, 2, then

∅ is a strictly dominated strategy for side k consumers, and therefore Nk
B(s) = 0 implies

Nk
A(s) = 1. Then choosing A yields utility u−k > 0 for side −k consumers, and therefore

N−k
B (s) = 0 implies N−k

A (s) = 1. Suppose now that p1B(s) > 0 and p2B(s) = 0. Then

by lemma B.2 a deviation min(u − ε, p1B(s) − ε),−ε by A for ε > 0 guarantees that all

consumers join A, which for small enough ε yields positive profit for A, contradicting that

s is an equilibrium. A symmetric argument rules out that p1B(s) = 0 and p2B(s) > 0. If

p1B(s) = p2B(s) = 0, then lemma B.3 implies that N
k
A(s) +Nk

B(s) = 1 ∀ k = 1, 2, and then

N1
B(s) = N2

B(s) = 0 implies N
1
A(s) = N2

A(s) = 1. ¥

Lemma B.5. Let s be a coalition perfect equilibrium such that Nk
A(s) > 0 for some k = 1, 2

and Nk
B(s) > 0 for some k = 1, 2. Then p1A(s) = p1B(s) = −p2A(s) = −p2B(s) and pkA(s) ≤ uk

∀ k = 1, 2. Moreover, N1
A(s) = N2

A(s) = N1
B(s) = N2

B(s) = 1/2.

Proof of Lemma B.5

Suppose pkf (s) > uk for some k = 1, 2 and f ∈ {A,B}. W.l.o.g. assume p1A(s) > u1.
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Then N1
A(s) = 0 and therefore N

2
A(s) > 0. This is only compatible with consumers choosing

A in s playing a best response and A not getting negative profits if p2A(s) = 0. Then by

lemma B.2 a price announcement (u1− ε,−ε) by B for ε > 0 guarantees that all consumers

join B, which for small enough ε yields positive profit for B. Therefore πA(s) = 0 and

πB(s) > 0. The latter can only be if both N1
B(s) > 0 and N2

B(s) > 0, which imply that

pkB(s) ≤ uk ∀ k = 1, 2. Then by Lemma B.2 a deviation p1B(s) − ε, p2B(s) − ε by A for

ε > 0 guarantees that all consumers join A. For small enough ε this deviation profit is

close to p1B(s) + p2B(s). If p
k
B(s) ≥ 0 ∀ k = 1, 2, then πB(s) > 0 implies p1B(s) + p2B(s) > 0,

which implies that the above deviation is profitable for small enough ε. If p2B(s) ≤ 0, then

πB(s) > 0 implies N1
B(s) > 0, but then N2

A(s) > 0 contradicts that every consumer plays

a best response in s. Therefore p2B(s) > 0. If p1B(s) < 0 and p2B(s) > 0, then N1
B(s) = 1

since B is the unique best response in s after the equilibrium price announcements for side

1 consumers, and therefore p1B(s) + p2B(s) ≥ p1B(s)N
1
B(s) + p2B(s)N

2
B(s) = πB(s) > 0. This

again implies that the above deviation for A is profitable for small enough ε, contradicting

that s is a Nash equilibrium. This concludes that pkf (s) ≤ uk ∀ k = 1, 2 and f ∈ {A,B}.

Suppose pkA(s) 6= pkB(s) for some k = 1, 2. W.l.o.g. assume p
1
A(s) > p1B(s). Then p2A(s) ≤

p2B(s), otherwise lemma B.2 implies N
1
A(s) = N2

A(s) = 0. Suppose first that N1
A(s) =

N1
B(s) = 0. Then N

2
A(s) > 0 and N

2
B(s) > 0. This is only compatible with consumers being

in equilibrium and firms not getting negative profit if p2A(s) = p2B(s) = 0. Then πB(s) = 0.

Then by lemma B.2 a deviation min(u − ε, p1A(s) − ε),−ε by B for ε > 0 guarantees that

all consumers join A, which for small enough ε yields positive profit for B, contradicting

that s is an equilibrium. Suppose next that N2
A(s) = N2

B(s) = 0. Then N1
A(s) > 0 and
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N1
B(s) > 0, which contradicts that s is a Nash equilibrium, since N2

A(s) = N2
B(s) = 0 and

p1A(s) > p1B(s) implies that given s−1,i B is a better response thanA in the subgame following

the equilibrium price announcements for every C1i ∈ C1. This concludes that N1
k (s) > 0

for some k = A,B and N1
k (s) > 0 for some k = A,B. But then N1

A(s) ≤ N1
B(s) and

N2
A(s) > N2

B(s), otherwise p
1
A(s) > p1B(s) and p2A(s) ≤ p2B(s) imply that some consumers

are not playing a best response in s. Consider now following two deviations. The first is

(p1B(s)− ε, p2B(s)− ε) by A, and the second is (p1A(s)− ε, p2A(s)− ε) by B. Since pkf (s) ≤ uk

∀ k = 1, 2 and f ∈ {A,B}, lemma B.2 implies that ski (p1B(s)− ε, p2B(s)− ε, p1B(s), p
2
B(s)) =

A and ski (p
1
A(s), p

2
A(s), p

1
B(s) − ε, p2B(s) − ε) = B ∀ k = 1, 2 and i ∈ [0, 1]. Then the first

deviation yields a profit p1B(s)+p
2
B(s)−2ε to A, while the second yields p1A(s)+p2A(s)−2ε to

B. The sum of these deviation profits is p1A(s)+p2A(s)+p1B(s)+p2B(s)−4ε. The sum of the

two firms’ equilibrium profits is N1
A(s)p

1
A(s) +N2

A(s)p
2
A(s) + N1

B(s)p
1
B(s) +N2

B(s)p
2
B(s) ≡

π∗. Note that p1B(s) < 0 implies that N1
A(s) + N2

A(s) = 1, since then ∅ is never a best

response for any C1i ∈ C1. Similarly, p2A(s) < 0 implies that N1
B(s) + N2

B(s) = 1. Then

by N1
A(s) ≤ N1

B(s), N
2
A(s) > N2

B(s), p
1
A(s) > p1B(s) and p2A(s) ≤ p2B(s) it has to hold that

N1
A(s)p

1
A(s)+N2

A(s)p
2
A(s)+N1

B(s)p
1
B(s)+N2

B(s)p
2
B(s) <

1
2(p

1
A(s)+ p2A(s)+ p1B(s)+ p2B(s)).

The left hand side of this inequality is nonnegative (it is the sum of equilibrium profits),

therefore the right hand side is positive, which implies that also N1
A(s)p

1
A(s)+N2

A(s)p
2
A(s)+

N1
B(s)p

1
B(s)+N2

B(s)p
2
B(s) < p1A(s)+p2A(s)+p1B(s)+p2B(s). But that implies that for small

enough ε the sum of the two deviation profits above is larger than the sum of the two

equilibrium profits, implying that at least one of the deviations is profitable, a contradiction.

This concludes that pkA(s) = pkB(s) ∀ k = 1, 2. Suppose that πA(s) + πB(s) > 0. W.l.o.g.
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assume πA(s) ≥ πB(s). Then πB(s) < p1A(s) + p2A(s) ≤ πA(s) + πB(s) (note that pkA(s) =

pkB(s) ∀ k = 1, 2, and that pkA(s) < 0 implies that Ck
i (s) 6= ∅ ∀ Ck

i ∈ Ck). By lemma B.2 a

deviation p1A(s)− ε, p2A(s)− ε by B for ε > 0 guarantees that all consumers join B, which

yields a profit of p1A(s)+p2A(s)−2ε to B. This implies that the above deviation is profitable

for small enough ε, a contradiction. Then πA(s) + πB(s) ≤ 0 and since equilibrium profits

have to be nonnegative, πA(s) = πB(s) = 0. Suppose p1A(s) + p2A(s) > 0. By lemma

B.2 a deviation p1A(s) − ε, p2A(s) − ε by B for ε > 0 guarantees that all consumers join

B, which yields a profit of p1A(s) + p2A(s) − 2ε to B. But for small enough ε this profit is

positive, which contradicts that πB(s) = 0 and that s is an equilibrium. This concludes that

p1A(s) + p2A(s) ≤ 0. Suppose p1A(s) + p2A(s) < 0. Then pkA(s) = pkB(s) < 0 for some k = 1, 2.

Then Nk
A(s) +Nk

B(s) = 1, since ∅ is never a best response for any Ck
i ∈ Ck in the subgame

after the equilibrium price announcements. But then min(πA(s), πB(s)) < 0, contradicting

that s is a Nash equilibrium. This concludes that p1A(s) + p2A(s) = 0. If p
k
A(s) = pkB(s) < 0

for some k = 1, 2, then Nk
A(s) + Nk

B(s) = 1. Then nonnegativity of equilibrium profits

implies that also N−k
A (s) + N−k

B (s) = 1 and that N1
A(s) = N2

A(s), N
1
B(s) = N2

B(s). If

p1A(s) = p1B(s) = p2A(s) = p2B(s) = 0, then by lemma B.3 Nk
A(s) + Nk

B(s) = 1 ∀ k = 1, 2.

As shown above, Nk
A(s) + Nk

B(s) > 0 ∀ k = 1, 2. Then pkA(s) = pkB(s) ∀ k = 1, 2 implies

Nk
A(s) = Nk

B(s) ∀ k = 1, 2. This implies πA(s) = πB(s). If pkA(s) = pkB(s) < 0 for some

k = 1, 2, then the above implies that Nk
A(s) = Nk

B(s) = 1/2. Then p1A(s) + p2A(s) = 0 and

nonnegativity of equilibrium profits together imply that also N−k
A (s) = N−k

B (s) = 1/2. If

p1A(s) = p1B(s) = p2A(s) = p2B(s) = 0, then N j
A(s) +N j

B(s) = 1 ∀ j = 1, 2 and the fact that s

is a Nash equilibrium imply that N j
A(s) = N j

B(s) = 1/2 ∀ j = 1, 2. ¥
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Proof of Theorem 2.5

Lemma B.4 and lemma B.5 establish that there are no other coalition perfect equilibria

with one or two active firms than those stated in the claim. All that remains to be shown

is that there is no coalition perfect equilibrium with no active firm.

Suppose Nk
A(s) +Nk

B(s) = 0 ∀ k = 1, 2. Then πA(s) = πB(s) = 0. If pkf (s) < 0 for some

k = 1, 2 and f = A,B, then Nk
A(s)+Nk

B(s) = 1, since ∅ is a never best response strategy for

any Ck
i ∈ Ci, a contradiction. Suppose now that ∃ k ∈ {A,B} such that pjk(s) ≥ 0 ∀ j = 1, 2

and plj(s) > 0 for some l ∈ {1, 2}. W.l.o.g. assume p1A(s) > 0 (and p2A(s) ≥ 0). By lemma

B.2 the deviation min(u1 − ε, p1A(s)− ε), min(u2 − ε, p2A(s)− ε) by B for ε > 0 guarantees

that every consumer joins B, and it yields strictly positive profit for small enough ε, a

contradiction. If pjk(s) = 0 ∀ j = 1, 2 and k = A,B, then N j
A(s) +N j

B(s) = 1 ∀ j = 1, 2 by

lemma B.4 . This concludes that if s is a coalition perfect equilibrium, then it cannot be

that N j
A(s) +N j

B(s) = 0 ∀ j = 1, 2. ¥

Proof of Theorem 2.6

W.l.o.g. assume that k = 1 (the other case is perfectly symmetric), so u1 < u2.

By Theorem 2.5 if N1
k (s) + N2

k (s) > 0 for some k ∈ {A,B}, then p1k(s) = −p2k(s) and

plk(s) ≤ ul ∀ l = 1, 2. Furthermore, πA(s) = πB(s) = 0.

Assume N1
A(s) + N2

A(s) > 0 and suppose p1A(s) > u1 − u2. Consider the deviation

p1A(s)−u1− ε, u2− ε by B for ε > 0. In the subgame following the deviation B is a strictly

dominant strategy for every C1i ∈ C1, therefore it is the only rationalizable strategy. But

then B is the only rationalizable strategy in the subgame for every C2i ∈ C2 too. Therefore

after the above deviation B’s profit in s is p1A(s) − u1 + u2 − 2ε. Since p1A(s) > u1 − u2,
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this profit is strictly positive for small enough ε, contradicting that s is an equilibrium.

A perfectly symmetric argument shows that it cannot be that N1
B(s) + N2

B(s) > 0 and

p1B(s) > u1 − u2.¥

Proof of Theorem 2.7

Let s be a coalition perfect equilibrium.

Suppose first that N j
k(s) = 0 for some j ∈ {1, 2} and k ∈ {A,B}. W.l.o.g. assume

k = A and j = 1. Then either N1
A(s) = N2

A(s) = 0 or N
2
A(s) > 0 and p1A(s) = 0. In either

case πA = 0 and then by the starting assumption πB(s) > 0. Let bC = {Cj
i : c

j
i (s) = B}.

Note that pjB(s) < 0 for some j ∈ {1, 2} implies that Cj ⊂ bC. Consider now deviation

(p1B(s) − ε, p2B(s) − ε) for ε > 0 by A. Similar arguments as in lemma B.2 establish that

in the subgame after this deviation A is the unique coalitionally rationalizable strategy for

every Cj
i ∈ bC. But then for small enough ε the deviation is profitable, a contradiction.

Therefore N j
k(s) > 0 ∀ j ∈ {1, 2} and k ∈ {A,B}.

If pjA(s) > pjB(s) ∀ j = 1, 2 then similar arguments as in B.2 establish that N1
A(s) +

N2
A(s) = 0, contradicting the above result. Similarly it cannot be that pjA(s) < pjB(s) ∀

j = 1, 2.

Consider now pjA(s) = pjB(s) ∀ j = 1, 2. Let bC = {Cj
i : c

j
i (s) 6= ∅}. There exists

k ∈ {A,B} such that πk(s) ≤ (π1(s) + π2(s))/2 > 0. W.l.o.g. assume k = A. Consider

deviation (p1B(s) − ε, p2B(s) − ε) by A. Similar arguments as in Lemma B.2 establish that

in the subgame after this deviation A is the unique coalitionally rationalizable strategy for

every Cj
i ∈ bC. Therefore if ε is small enough then after this deviation A’s profit is larger

than (π1(s) + π2(s))/2 (note that p
j
B(s) < 0 for some j = 1, 2 implies that Cj ⊂ bC), a
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contradiction.

Finally, notice that if pjA(s) ≤ pjB(s) for some j ∈ {1, 2}, then N j
B(s) > 0 and the

assumption that s is a Nash equilibrium imply that N3−j
B (s) ≥ N3−j

A (s). If pjA(s) < pjB(s)

for some j ∈ {1, 2}, then N j
B(s) > 0 and the assumption that s is a Nash equilibrium imply

that N3−j
B (s) > N3−j

A (s). Similarly if pjB(s) ≤ pjA(s) (correspondingly pjB(s) < pjA(s)) for

some j ∈ {1, 2}, then N3−j
B (s) ≤ N3−j

A (s) (correspondingly N3−j
B (s) < N3−j

A (s)). ¥

Lemma B.6. Let Gc = (C,Sc, uc) be the subgame following price announcements (p1A, p
2
A, p

1
B, p

2
B).

If pjA < pjB ∀ j = 1, 2 then B is not coalitionally rationalizable in Gc for any Cj
i ∈ C.

Furthermore, if A is rationalizable for some Cj
i ∈ C in a subgame following price an-

nouncements (q1A, q
2
A, p

1
B, p

2
B) where q

1
A > p1A and q

2
A > p2A then A is the unique coalitionally

rationalizable strategy in Gc for Cj
i . Similarly if p

j
B < pjA ∀ j = 1, 2 then A is not coali-

tionally rationalizable in Gc for any Cj
i ∈ C. Furthermore, if B is rationalizable for some

Cj
i ∈ C in a subgame following price announcements (p1A, p

2
A, q

1
B, q

2
B) where q1B > p1B and

q2B > p2B then B is the unique coalitionally rationalizable strategy in Gc for Cj
i .

Proof of Lemma B.6

Analogous to the proof of Lemma B.2, therefore omitted.

Proof of Theorem 2.8

Let ∆ = min(
supk u

1
k

infj,k u
1
k
,
supk u

2
k

infj,k u
2
k
) and let s be a coalition perfect equilibrium. By the

starting assumption ∆ ≤ 4/3. Assume the theorem does not hold for s. Then by Theorem

2.7 ∃ j ∈ {1, 2} such that pjA(s) < pjB(s), N
j
A(s) ≥ N j

B(s) and p−jA (s) ≥ p−jB (s), N
−j
A (s) <

N−j
B (s). For every j ∈ {1, 2} let infk ujk ≡ lj . If pjk(s) ≤ lj ∀ k ∈ {A,B} and j ∈ {1, 2} then
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an analogous proof to the proof of lemma B.5 establishes that there is a profitable deviation

for at least one firm, contradicting that s is a coalition perfect equilibrium. The same holds

if pjk(s) ≥ 0 ∀ k ∈ {A,B} and j ∈ {1, 2}. It is straightforward to show that it cannot be that

for some k ∈ {A,B} it holds that pjk(s) > lj ∀ j ∈ {1, 2}. Below we consider the remaining

possibilities. Consider first the case that for some k ∈ {A,B} and j ∈ {1, 2} it holds that

pjk(s) > lj , p−jk (s) < 0 and 0 ≤ p1−k(s), p
2
−k(s). Since supk u

j
k ≤ ∆lj ≤ 4

3 l
j and pjk(s) > lj , for

N j
k(s) > 0 it has to be that N−j

k (s) > 3
4 . Furthermore, p

j
k(s) > pj−k(s) implies N

j
k(s) ≤ 1

2 ,

and supk u
j
k ≤ ∆lj ≤ 4

3 l
j implies pjk(s) <

4
3 l
j . Therefore πk(s) ≤ 2

3 l
j + 3

4p
−j
k (s). Then

πk(s) ≥ 0 implies lj + p−jk (s) >
2
3 l
j + 3

4p
−j
k (s) and therefore πk(s) < lj + p−jk (s). But note

that −k can get a profit arbitrarily close to lj+p−jk (s) by deviating to price announcements

(lj−ε, p−jk (s)−ε) for small enough ε > 0 (since by lemma B.6 after that price announcement

all consumers join B). So if π−k(s) ≤ πk(s) then −k has a profitable deviation from s. On

the other hand note that k can get a profit arbitrarily close to lj + p−jk (s) by deviating to

price announcements (p1−k(s)− ε, p2−k(s)− ε) for small enough ε > 0. So if π−k(s) > πk(s)

then k has a profitable deviation from s. This concludes that s cannot be a coalition

perfect equilibrium, a contradiction. Consider now the case that for some k ∈ {A,B} and

j, h ∈ {1, 2} it holds that pjk(s) > lj and 0 > ph−k(s). Just like in the previous case, it

has to be that N−j
k (s) > 3

4 and therefore N
−j
−k(s) <

1
4 . Then supk u

j
k ≤ ∆lj ≤ 4

3 l
j implies

pj−k(s) <
1
3 l
j . Then 0 > ph−k(s) and

4
3 l
j > p−h−k(s) imply that π−k(s) <

1
3 l
j . Since N j

k(s) ≤ 1
2

and pjk(s) ≤ 4
3 l
jN−j

k (s) and πk(s) ≥ 0, it holds that 23 ljN
−j
k (s)+p−jk (s)N

−j
k (s) ≥ 0, therefore

p−jk (s) ≥ −23 lj . Therefore lj + p−jk (s) ≥ 1
3 l
j . But note that −k can get a profit arbirarily

close to lj +p−jk (s) by deviating to price announcement (l
j − ε, p−jk (s)− ε) for small enough
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ε > 0. This concludes that s cannot be a coalition perfect equilibrium, a contradiction. ¥



Appendix C

This Appendix contains the proof of the Theorem presented in Chapter 3

Proof of Theorem 3.1

We have observed that the behavior of the process depends on whether bpt(12) is above
or below p∗t (

1
2) =

2
3 .

Recall that

bpt =
X
k∈St

s+ (xk, xt)X
k∈St

s+ (xk, xt) +
X
k∈Ft

s− (xk, xt)

We simplify notation by defining

At =
X
k∈St

s+
µ
xk,

1

2

¶
(C.1)

Bt =
X
k∈Ft

s−
µ
xk,

1

2

¶
(C.2)

c = p∗t (
1

2
) =

2

3
(C.3)

bptµ1
2

¶
=

At

At +Bt
(C.4)

zt = At − cBt − cAt (C.5)
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so that

bptµ1
2

¶
> c⇔ At

At +Bt
> c⇔ (C.6)

At − cBt − cAt > 0⇔ zt > 0 (C.7)

Suppose we start from zt > 0.

Then,

• with probability p0 the next draw will be 0 , there will be a success and zt will change

(increase) by (1− c) (At+1 −At) = (1− c)
¡
1 +

¡
0− 1

2

¢¢
= (1− c) 12 = +

1
6

• with probability p 1
2
the next draw will be 12 , there will be a success and zt will change

(increase) by (1− c) (At+1 −At) = (1− c) 1 = +1
3

• with probability p1 the next draw will be 1 , there will be a failure and and zt will

change (decrease) by −c (Bt+1 −Bt) = −c
¡
1−

¡
1− 1

2

¢¢
= − c

2 = −
1
3 .

For zt > 0

Prob. zt+1 − zt

p0
1
6

p 1
2

1
3

p1 −13

(∗)

Similarly, if we start from zt ≤ 0 what will happen is that:

• with probability p0 the next draw will be 0 , there will be a success and zt will change

(increase) by (1− c) (At+1 −At) = (1− c)
¡
1 +

¡
0− 1

2

¢¢
= (1− c) 12 = +

1
6

• with probability p 1
2
the next draw will be 12 , there will be a failure and zt will change

(increase) by −c (Bt+1 −Bt) = −c (1) = −23
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• with probability p1 the next draw will be 1 , there will be a failure and and zt will

change (decrease) by −c (Bt+1 −Bt) = −c
¡
1−

¡
1− 1

2

¢¢
= − c

2 = −
1
3 .

For zt ≤ 0

Prob. zt+1 − zt

p0
1
6

p 1
2

−23
p1 −13

(∗∗)

We conclude that zt is a Markov process, which, for non-negative values is governed by

(∗), and for negative ones — by (∗∗).

To establish convergence, we wish to show that, with probability 1, zt ends up being

always positive or always negative from some point on. To see that this is the case, we note

that for every (p0, p 1
2
, p1), (i) the process (∗) has a positive drift, or (ii) the process (∗∗) has

a negative drift, or both. If (i) holds but not (ii), then zt will be always positive form some

point on with probability 1. Conversely, it will be always negative (from some point on

with probability 1) if (ii) holds but not (i). We are left with the case in which both (i) and

(ii) hold. In this case, starting with any positive value of zt, there is a positive probability

(independent of t) that zt will never be non-positive, and vice versa for negative values of

zt. Hence the probability of switching infinitely many times between positive and negative

values is zero.

To establish convergence, it remains to note that if, for some T , for all t ≥ T we have

zt ≥ 0, then Ft converges to L1, whereas if, for some T , for all t ≥ T we have zt < 0, then

Ft converges to L2.

Finally, we observe that both (i) and (ii) hold when p0+2p 1
2
> 2p1 and p0− 4p 1

2
< 2p1.

This defines a convex and non-empty set of vectors (p0, p 1
2
, p1), of which (13 ,

1
3 ,
1
3) is a
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member. ¥
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