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Stochastic Growth

Stochastic growth models: useful for two related reasons:
1 Range of problems involve either aggregate uncertainty or individual
level uncertainty interacting with investment and growth process.

2 Wide range of applications in macroeconomics and in other areas of
dynamic economic analysis.

Dynamic optimization under uncertainty is considerably harder.

Continuous-time stochastic optimization methods are very powerful,
but not used widely in macroeconomics

Focus on discrete-time stochastic models.
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Stochastic Dynamic Programming I

Introduction to basic stochastic dynamic programming.

To avoid measure theory: focus on economies in which stochastic
variables take �nitely many values.

Enables to use Markov chains, instead of general Markov processes,
to represent uncertainty.

Then indicate how the results can be generalized to stochastic
variables represented by continuous, or mixture of continuous and
discrete, random variables.
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Dynamic Programming with Expectations I I

Introduce stochastic (random) variable z (t) 2 Z � fz1, ..., zNg.
Note Z is �nite and thus compact.

Let instantaneous payo¤ at time t be U(x (t) , x (t + 1) , z (t)),
where x (t) 2 X � RK for some K � 1 and U : X � X �Z ! R.

Returns discounted by discount factor β 2 (0, 1).
Initial value x (0) is given.

Think of x (t) as the state variable (state vector) and of x (t + 1) as
the control variable (control vector) at time t.

Constraint on x (t + 1) incorporates the stochastic variable z (t):

x (t + 1) 2 G (x (t) , z (t)) ,
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Dynamic Programming with Expectations II

G (x , z) is a set-valued mapping or a correspondence:

G : X �Z � X .

z (t) follows a (�rst-order) Markov chain: current value of z (t) only
depends on its last period value, z (t � 1):

Pr [z (t) = zj j z (0) , ..., z (t � 1)] � Pr [z (t) = zj j z (t � 1)] .

Simplest example: �nitely many values and is independently
distributed over time:

Pr [z (t) = zj j z (0) , ..., z (t � 1)] = Pr [z (t) = zj ] .

But Markov chains enable modelling stochastic shocks correlated over
time.
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Dynamic Programming with Expectations III

Markov property allows simple notation for the probability distribution
of z (t).

Can also represent a Markov chain as:

Pr [z (t) = zj j z (t � 1) = zj 0 ] � qjj 0 ,

for any any j , j 0 = 1, ...,N, where qjj 0 � 0 for all j , j 0 and

N

∑
j=1
qjj 0 = 1 for each j

0 = 1, ...,N.

qjj 0 is also referred to as a transition probability.

Daron Acemoglu (MIT) Advanced Growth Lecture 21 November 19, 2007 6 / 79



Example: Optimal Growth Problem I

Objective is to maximize

E0

∞

∑
t=0

βtu (c (t)) .

Take expectations: future values of consumption per capita is
stochastic (depend on future z�s).

Production function (per capita):

y (t) = f (k (t) , z (t)) ,

z (t) 2 Z � fz1, ..., zNg, follows a Markov chain.
Most natural interpretation of z (t): TFP term, so one might write
y (t) = z (t) f (k (t)) .
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Example: Optimal Growth Problem II

Constraint facing problem at time t:

k (t + 1) = f (k (t) , z (t)) + (1� δ) k (t)� c (t) , (1)

k (t) � 0 and given k (0)
Formulation implies at time c (t) is chosen, z (t) has been realized.

Thus c (t) is a random variable depending on the realization of z (t).

More generally, c (t) may depend on the entire history of the random
variables.

De�ne
z t � (z (0) , z (1) , ...z (t))

as the history of variable z (t) up to date t.

Let Z t � Z � ...�Z (the t-times product), so that z t 2 Z t .
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Example: Optimal Growth Problem III

For given k (0), level of consumption at time t can be most generally
written as

c (t) = c̃
�
z t
�
,

Clearly, c (t) cannot depend on future realizations of z� values have
not been realized, not be feasible.

But also not all functions c̃ [z t ] could be admissible as feasible plans.

No point in making c (t) function of the history of k (t), since those
are endogenously determined by the choice of past consumption levels
and by the realization of past stochastic variables.

In recursive formulation will write c (t) as function of current capital
stock and current value of the stochastic variable.
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Example: Optimal Growth Problem IV

Let x (t) = k (t), so that

x (t + 1) = k (t + 1)

= f (k (t) , z (t)) + (1� δ) k (t)� c̃
�
z t
�

� k̃
�
z t
�
,

Feasibility: note
k (t + 1) � k̃

�
z t
�

depends only on history of stochastic shocks up to time t and not on
z (t + 1).

In addition, feasibility requires that k̃ [�] satis�es

k̃
�
z t
�
� f (k̃

�
z t�1

�
, z (t)) + (1� δ) k̃

�
z t�1

�
for all z t�1 2 Z t�1 and z (t) 2 Z .
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Example: Optimal Growth Problem V
Maximization problem:

max
fc̃ [z t ],k̃ [z t ]g∞

t=0

E

"
∞

∑
t=0

βtu
�
c̃
�
z t
��
j z (0)

#
subject to

k̃
�
z t
�
� f (k̃

�
z t�1

�
, z (t)) + (1� δ) k̃

�
z t�1

�
� c̃

�
z t
�

for all z t�1 2 Z t�1 and z (t) 2 Z ,
and starting with the initial conditions k̃

�
z�1

�
= k (0) and z (0).

Or, using function U (x (t) , x (t + 1) , z (t)) above:

max
fk̃ [z t ]g∞

t=0

Et

∞

∑
t=0

βtU
�
k̃
�
z t�1

�
, k̃
�
z t
�
, z (t)

�
,

where:
U (x (t) , x (t + 1) , z (t)) =
u (f (k (t) , z (t))� k (t + 1) + (1� δ) k (t)).

Daron Acemoglu (MIT) Advanced Growth Lecture 21 November 19, 2007 11 / 79



Example: Optimal Growth Problem VI

Timing convention:
I k̃

�
z t�1

�
=value of capital stock at time t, inherited from the

investments at t � 1, thus depends on z t�1,
I k̃ [z t ]=choice of capital stock for next period made at time t given z t .

Recursive formulation: Since z (t) follows Markov chain: z (t)
contains information about available resources and about stochastic
distribution of z (t + 1).

Thus might expect policy function of the form:

k (t + 1) = π (k (t) , z (t)) . (2)

And recursive characterization of the form:

V (k, z) = sup
y2[0,f (k ,z )+(1�δ)k ]

�
u (f (k, z) + (1� δ) k � y)

+βE [V (y , z 0) j z ]

�
, (3)
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Example: Optimal Growth Problem VII

E [� j z ] denotes the expectation conditional on current value of z and
incorporates the fact that z is a Markov chain.

Suppose this program has a solution, i.e. exists a feasible plan that
achieves the value V (k, z) starting with k and z .

Then: set of next date�s capital stock that achieve this maximum can
be represented by a correspondence Π (k, z) � X for each k 2 R+

and z 2 Z .
For any π (k, z) 2 Π (k, z),

V (k, z) = u (f (k, z) + (1� δ) k � π (k, z))

+βE
�
V
�
π (k, z) , z 0

�
j z
�
.

When Π (k, z) is single valued, π (k, z) would be uniquely de�ned
and optimal choice capital stock can be represented as in (2).
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Dynamic Programming with Expectations I

Let a plan be denoted by x̃ [z t ].

Plan speci�es the value of the vector x 2 RK for time t + 1, i.e.,
x (t + 1) = x̃ [z t ], for any z t 2 Z t .
Sequence problem takes the form:

Problem B1 :

V � (x (0) , z (0)) = sup
fx̃ [z t ]g∞

t=�1

E0

∞

∑
t=0

βtU
�
x̃
�
z t�1

�
, x̃
�
z t
�
, z (t)

�
subject to

x̃
�
z t
�
2 G (x̃

�
z t�1

�
, z (t)), for all t � 0

x̃
�
z�1

�
= x (0) given,

Expectations at time t = 0, E0, are taken over the possible in�nite
sequences of (z (0) , z (1) , z (2) , z (3) , ...).
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Dynamic Programming with Expectations II

Adopt convention that x̃
�
z�1

�
= x (0) and write maximization

problem with respect to fx̃ [z t ]g∞
t=�1 (starts at t = �1 and

x̃
�
z�1

�
= x (0) is introduced as an additional constraint).

V � is conditioned on x (0) 2 RK , taken as given, and on z (0), since
choice of x (1) is made after z (0) is observed.

First constraint in Problem B1 ensures that the sequence
fx̃ [z t ]g∞

t=�1 is feasible.

Functional equation corresponding to the recursive formulation:

Problem B2 :
V (x , z) = sup

y2G (x ,z )

�
U(x , y , z) + βE

�
V (y , z 0) j z

�	
, (4)

for all x 2 X and z 2 Z

V : X �Z ! R is a real-valued function.
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Dynamic Programming with Expectations III

y 2 G (x , z): constraint on next period�s state vector as a function of
realization of z .

Can also write Problem B2 as

V (x , z) = sup
y2G (x ,z )

�
U(x , y , z) + β

Z
V (y , z 0)Q

�
z , dz 0

��
,

for all x 2 X and z 2 Z ,R
f (z 0)Q (z0, dz 0)=Lebesgue integral of f with respect to Markov

process for z given last period�s value z0.

Want to establish conditions under which the solutions to Problems
B1 and B2 coincide.

Set of feasible plans starting with x (t) and z (t):

Φ(x (t) , z (t)) = ffx̃ [z s ]g∞
s=t�1 : x̃ [z s ] 2 G (x̃

�
z s�1

�
, z (s)),

for s = t � 1, t, t + 1, ...g.
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Dynamic Programming with Expectations IV

Denote a generic element of Φ(x (0) , z (0)) by x � fx̃ [z t ]g∞
t=�1.

Elements of Φ(x (0) , z (0)): not in�nite sequences of vectors in RK ,
but in�nite sequences of feasible plans x̃ [z t ] that assign a value
x 2 RK for any history z t 2 Z t for any t = 0, 1, ....
We are interested in when the:

1 solution V (x , z) to the Problem B2 coincides with the solution
V � (x , z); and

2 set of maximizing plans Π (x , z) �Φ(x , z) also generates an optimal
feasible plan for Problem B1 (presuming both have feasible plans
attaining supremums).

Set of maximizing plans Π (x , z): for any π (x , z) 2 Π (x , z),

V (x , z) = U(x ,π (x , z) , z) + βE
�
V (π (x , z) , z 0) j z

�
. (5)
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Dynamic Programming with Expectations V

Assumption 16.1. G (x , z) is nonempty for all x 2 X and z 2 Z .
Moreover, for all x (0) 2 X , z (0) 2 Z , and x 2Φ(x (0) , z (0)),
limn!∞ E

�
∑n
t=0 βtU(x̃

�
z t�1

�
, x̃ [z t ] , z (t)) j z (0)

�
exists and is �nite.

Assumption 16.2. X is a compact subset of RK , G is nonempty,
compact-valued and continuous. Moreover, let
XG = f(x , y , z) 2 X � X �Z : y 2 G (x , z)g and suppose that
U : XG ! R is continuous.

16.1 only imposes compactness of X ; Z is already compact.

Continuity of U in (x , y , z) is equivalent to continuity in (x , y); Z is
a �nite set, can endow it with discrete topology so continuity is
automatic.
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Dynamic Programming with Expectations VI

Theorem (Equivalence of Values) Suppose Assumptions 16.1 and
16.2 hold. Then for any x 2 X and any z 2 Z , any
V � (x , z) de�ned in Problem B1 is a solution to Problem B2.
Moreover, any solution V (x , z) to Problem B2 that satis�es
limt!∞ βtE

�
V
�
x̃
�
z t�1

�
, z (t)

��
= 0 for any

fx̃ [z t ]g∞
t=�1 2Φ(x (0) , z (0)), and any

x̃
�
z�1

�
= x (0) 2 X and z 2 Z is a solution to Problem B1,

so that V � (x , z) = V (x , z) for any x 2 X and any z 2 Z .
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Dynamic Programming with Expectations VII

Theorem (Principle of Optimality) Suppose Assumptions 16.1 and
16.2 hold. For x (0) 2 X and z (0) 2 Z , let
x� � fx̃� [z t ]g∞

t=�1 2Φ(x (0) , z (0)) be a feasible plan that
attains V � (x (0) , z (0)) in Problem B1. Then we have

V �(x̃�
�
z t�1

�
, z (t)) = U(x̃�

�
z t�1

�
, x̃�

�
z t
�
, z (t)) + (6)

βE
�
V �(x̃�

�
z t
�
, z (t + 1)) j z (t)

�
for t = 0, 1, ....

Moreover, if any x� 2Φ(x (0) , z (0)) satis�es (6), then it
attains the optimal value in Problem B1.

Theorem (Existence of Solutions) Suppose that Assumptions 16.1
and 16.2 hold. Then the unique function V : X �Z ! R

that satis�es (4) is continuous and bounded in x for each
z 2 Z . Moreover, an optimal plan x� 2Φ(x (0) , z (0))
exists for any x (0) 2 X and any z (0) 2 Z .
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Dynamic Programming with Expectations VIII
Assumption 16.3. U is strictly concave: for any α 2 (0, 1) and any
(x , y , z), (x 0, y 0, z) 2 XG :

U
�
αx + (1� α)x 0, αy + (1� α) y 0, z

�
� αU(x , y , z)+ (1� α)U(x 0, y 0, z),

and if x 6= x 0,

U
�
αx + (1� α)x 0, αy + (1� α) y 0, z

�
> αU(x , y , z)+ (1� α)U(x 0, y 0, z).

Moreover, G (x , z) is convex in x : for any z 2 Z , any α 2 [0, 1], and any
x , x 0 2 X , whenever y 2 G (x , z) and y 0 2 G (x 0, z), then

αy + (1� α)y 0 2 G
�
αx + (1� α)x 0, z

�
.

Assumption 16.4. For each y 2 X and z 2 Z , U(�, y , z) is strictly
increasing in its �rst K arguments, and G is monotone, i.e. x � x 0 implies
G (x , z) � G (x 0, z) for each z 2 Z .

Assumption 16.5. U (x , y , z) is continuously di¤erentiable in x in the
interior of its domain XG .
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Dynamic Programming with Expectations IX

Theorem (Concavity of the Value Function) Suppose that
Assumptions 16.1, 16.2 and 16.3 hold. Then the unique
function V that satis�es (4) is strictly concave in x for each
z 2 Z . Moreover, the optimal plan can be expressed as
x̃� [z t ] = π (x� (t) , z (t)), where the policy function
π : X �Z ! X is continuous in x for each z 2 Z .

Theorem (Monotonicity of the Value Function I) Suppose that
Assumptions 16.1, 16.2 and 16.4 hold and let
V : X �Z ! R be the unique solution to (4). Then for
each z 2 Z , V is strictly increasing in x .
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Dynamic Programming with Expectations X

Theorem (Di¤erentiability of the Value Function) Suppose that
Assumptions 16.1, 16.2, 16.3 and 16.5 hold. Let π be the
policy function de�ned above and assume that x 0 2IntX and
π (x 0, z) 2IntG (x 0, z) at z 2 Z , then V (x , z) is
continuously di¤erentiable at (x 0, z), with derivative given by

DxV
�
x 0, z

�
= DxU

�
x 0,π

�
x 0, z

�
, z
�
. (7)

Since the value function now also depends on z , an additional
monotonicity result can also be obtained.

Daron Acemoglu (MIT) Advanced Growth Lecture 21 November 19, 2007 23 / 79



Dynamic Programming with Expectations XI

Assumption 16.6. (i) G is monotone in z in the sense that z � z 0
implies G (x , z) � G (x , z 0) for each any x 2 X and z , z 0 2 Z such that
z � z 0.
(ii) For each (x , y , z) 2 XG , U(x , y , z) is strictly increasing in z .
(iii) The Markov chain for z is monotone in the sense that for any
nondecreasing function f :Z ! R, E [f (z 0) j z ] is also nondecreasing in z .

To interpret the last part suppose that zj � zj 0 whenever j < j 0.
Then this condition will be satis�ed if and only if we have that for any
j̄ = 1, ...,N and any j 00 > j 0, ∑N

j=j̄ qjj 00 � ∑N
j=j̄ qjj 0 .
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Dynamic Programming with Expectations XII

Theorem (Monotonicity of the Value Function II) Suppose that
Assumptions 16.1, 16.2 and 16.6 hold and let
V : X �Z ! R be the unique solution to (4). Then for
each x 2 X , V is strictly increasing in z .
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Proofs of the Stochastic Dynamic Programming Theorems
I

For any feasible x �fx̃ [z t ]g∞
t=�1, and any initial x (0) 2 X and

z (0) 2 Z , de�ne

U(x, z (0)) � E

"
∞

∑
t=0

βtU
�
x̃
�
z t�1

�
, x̃
�
z t
�
, z (t)

�
j z (0)

#

Note that for any x (0) 2 X and z (0) 2 Z ,

V �(x (0) , z (0)) = sup
x2Φ(x (0),z (0))

U(x, z (0)).
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Proofs of the Stochastic Dynamic Programming Theorems
II

Assumption 16.1 ensures all values are bounded; it follows by
de�nition that

V �(x (0) , z (0)) � U(x, z (0)) for all x 2 Φ(x (0) , z (0)) (8)

and

for any ε > 0, there exists x0 2 Φ(x (0) , z (0)) (9)
s.t. V �(x (0) , z (0)) � U(x0, z (0)) + ε
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Proofs of the Stochastic Dynamic Programming Theorems
III

Conditions for V (�, �) to be a solution to Problem B2 are similar.

For any x (0) 2 X and z (0) 2 Z ,

V (x (0) , z (0)) � U(x (0) , y , z) + βE [V (y , z (1)) j z (0)] , (10)
all y 2 G (x (0) , z (0)),

Also

for any ε > 0, there exists y 0 2 G (x (0) , z (0)) (11)
s.t.V (x (0) , z (0)) � U(x (0) , y 0, z (0))

+βE [V (y , z (1)) j z (0)] + ε.
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Proofs of the Stochastic Dynamic Programming Theorems
IV

Lemma Suppose that Assumption 16.1 holds. Then for any
x (0) 2 X , any z (0) 2 Z , any
x �fx̃ [z t ]g∞

t=�1 2Φ(x (0) , z (0)), we have that

U (x,z (0)) = U(x (0) , x̃
�
z0
�
, z (0))

+βE
�
U(
�
x̃
�
z t
�	∞
t=0 , z (1)) j z (0)

�
.
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Proof of Equivalence of Values Theorem I

If β = 0, Problems B1 and B2 are identical, thus the result follows
immediately.

Suppose β > 0 and take an arbitrary x (0) 2 X and an arbitrary
z (0) 2 Z .
First, note that U continuous over X � X �Z (withZ endowed with
the natural discrete topology).

Assumptions 16.1 and 16.2 imply that the objective function in
Problem B1 is continuous in the product topology and the constraint
set is compact.

By Weierstrass�s Theorem, a solution to this maximization problem
exists and thus V � (x (0) , z (0)) is well de�ned.
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Proof of Equivalence of Values Theorem II

Berge�s Maximum Theorem implies that V � (x (0) , z (0)) is
continuous and thus bounded over the compact set X �Z .
Now consider some x (1) 2 G (x (0) , z (0)). Another application of
Weierstrass�s Theorem implies that there exists
x0 � fx̃ 0 [z t ]g∞

t=0 2Φ(x (1) , z (1)) attaining V � (x (1) , z (1)) for any
z (1) 2 Z (and with x̃ 0

�
z0
�
= x (1)).

This implies:

E [V � (x (1) , z (1)) j z (0)] =
N

∑
j=1
qjj 0V

� (x (1) , zj )

for j 0 de�ned by z (0) = zj 0 .
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Proof of Equivalence of Values Theorem III

Next, since (x (0) , x0) 2Φ(x (0) , z (0)) and V � (x (0) , z (0)) is the
supremum in Problem B1 starting with x (0) and z (0) 2 Z , the
Lemma above implies:

V � (x (0) , z (0)) � U
�
x (0) , x̃ 0

�
z0
�
, z (0)

�
+βE

�
U
��
x̃ 0
�
z t
�	∞
t=0 , z (1)

�
j z (0)

�
,

= U
�
x (0) , x̃ 0

�
z0
�
, z (0)

�
+βE [V � (x (1) , z (1)) j z (0)] ,

and establishes (10).

Next, take an arbitrary ε > 0. By (9), there exists
x0ε=

�
x (0) , x̃ 0ε

�
z0
�
, x̃ 0ε
�
z1
�
...
�
2Φ(x (0) , z (0)) such that

U
�
x0ε, z (0)

�
� V � (x (0) , z (0))� ε.
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Proof of Equivalence of Values Theorem IV

By the feasibility of x0ε, we have
x00ε=

�
x̃ 0ε
�
z0
�
, x̃ 0ε
�
z1
�
, ...
�
2Φ

�
x̃ 0ε
�
z0
�
, z (1)

�
for any z (1) 2 Z .

Moreover, also by de�nition V �
�
x̃ 0ε
�
z0
�
, z (1)

�
is the supremum in

Problem B1 starting with the initial conditions x̃ 0ε
�
z0
�
and z (1).

Then the Lemma above implies that for any ε > 0,

V � (x (0) , z (0))� ε � U
�
x (0) , x̃ 0ε

�
z0
�
, z (0)

�
+βE

�
U
��
x̃
�
z t
�	∞
t=0 , z (1)

�
j z (0)

�
= U

�
x (0) , x̃ 0ε

�
z0
�
, z (0)

�
+βE

�
V �
�
x̃ 0ε
�
z0
�
, z (1)

�
j z (0)

�
,

so that (11) is satis�ed.

This establishes that any solution to Problem B1 satis�es (10) and
(11), and is thus a solution to Problem B2.
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Proof of Equivalence of Values Theorem V
To establish the converse, (10) implies for any
x̃
�
z0
�
2 G (x (0) , z (0)),
V (x (0) , z (0)) � U

�
x (0) , x̃

�
z0
�
, z (0)

�
+βE

�
V
�
x̃
�
z0
�
, z (1)

�
j z (0)

�
.

Substituting recursively for V
�
x̃
�
z0
�
, z (1)

�
, V

�
x̃
�
z1
�
, z (2)

�
, etc.,

and taking E

V (x (0) , z (0)) � E

"
n

∑
t=0
U
�
x̃
�
z t�1

�
, x̃
�
z t
�
, z (t)

�
j z (0)

#
+βn+1E [V (x̃ [zn ] , z (n+ 1)) j z (0)] .

By de�nition:
limn!∞ E

�
∑n
t=0 U

�
x̃
�
z t�1

�
, x̃ [z t ] , z (t)

�
j z (0)

�
= U (x, z (0)) B

By the hypothesis of the theorem
limn!∞ βn+1E [V (x̃ [zn ] , z (n+ 1)) j z (0)] = 0,
So (8) is veri�ed.
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Proof of Equivalence of Values Theorem VI

Let ε > 0 be a positive scalar. From (11), for any ε0 = ε (1� β) > 0,
exists x̃ε

�
z0
�
2G (x (0) , z (0)):

V (x (0) , z (0)) � U
�
x (0) , x̃ε

�
z0
��

+βEV
�
x̃ε

�
z0
�
, z (1) j z (0)

�
+ ε0.

Let x̃ε [z t ] 2 G
�
x̃ε

�
z t�1

�
, z (t)

�
, with x̃ε

�
z�1

�
= x (0), and de�ne

xε �
�
x (0) , x̃ε

�
z0
�
, x̃ε

�
z1
�
, x̃ε

�
z2
�
...
�
.
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Proof of Equivalence of Values Theorem VII

Substituting recursively V
�
x̃ε

�
z1
��
, V (x̃ε [z t ]), etc. and taking

expectations.

V (x (0) , z (0)) � E

"
n

∑
t=0
U
�
x̃ε

�
z t�1

�
, x̃ε

�
z t
�
, z (t)

�
j z (0)

#
+ βn+1E [V (x̃ε [zn ] , z (n+ 1)) j z (0)]
+ ε0 + ε0β+ ...+ ε0βn

� U (xε, z (0)) + ε,

Last step follows using ε = ε0 ∑∞
t=0 βt and that as

limn!∞ E
�
∑n
t=0 U

�
x̃ε

�
z t�1

�
, x̃ε [z t ] , z (t)

�
j z (0)

�
= U (xε, z (0)).

Thus V satis�es (9) and completes the proof.
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Proof of Principle of Optimality Theorem I

Suppose x� �
�
x (0) , x̃�

�
z0
�
, x̃�

�
z1
�
, x̃�

�
z2
�
, ...
�
2Φ(x (0) , z (0))

is a feasible plan attaining solution to Problem B1.

Let x�t �
�
x̃�
�
z t�1

�
, x̃� [z t ] , x̃�

�
z t+1

�
, ...
�
be the continuation of

this plan from time t.

First show that for any t � 0, x�t attains the supremum starting from
x̃�
�
z t�1

�
and any z (t) 2 Z , that is,

U(x�t , z (t)) = V
� �x̃� �z t�1� , z (t)� . (12)

Proof is by induction: hypothesis is trivially satis�ed for t = 0 since,
by de�nition, x�0 = x

� attains V � (x (0) , z (0)).
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Proof of Principle of Optimality Theorem II

Next suppose that the statement is true for t, so that x�t attains the
supremum starting from x̃�

�
z t�1

�
and any z (t) 2 Z , or equivalently

(12) holds for t and for z (t) 2 Z .
Now using this relationship we will establish that (12) holds and x�t+1
attains the supremum starting from x̃� [z t ] and any z (t + 1) 2 Z .
Equation (12) implies that

V �(x̃�
�
z t�1

�
, z (t)) = U (x�t , z (t)) (13)

= U
�
x̃�
�
z t�1

�
, x̃�

�
z t
�
, z (t)

�
+ βE [U(x�t+1, z (t + 1)) j z (t)] .

Let xt+1 =
�
x̃� [z t ] , x̃

�
z t+1

�
, ...
�
2Φ(x̃� [z t ] , z (t + 1)) be any

feasible plan starting with state vector x̃� [z t ] and stochastic variable
z (t + 1).
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Proof of Principle of Optimality Theorem III

By de�nition,
xt =

�
x̃�
�
z t�1

�
, xt+1

�
2Φ

�
x̃�
�
z t�1

�
, z (t)

�
.

By the induction hypothesis, V �
�
x̃�
�
z t�1

�
, z (t)

�
is the supremum

starting with x̃�
�
z t�1

�
and z (t):

V �
�
x̃�
�
z t�1

�
, z (t)

�
� U(xt , z (t))
= U

�
x̃�
�
z t�1

�
, x̃�

�
z t
�
, z (t)

�
+βE [U(xt+1, z (t + 1)) j z (t)]

for any xt+1.
Combining this inequality with (13):

E
�
V �(x̃�

�
z t
�
, z (t + 1)) j z (t)

�
= E [U(x�t+1, z (t + 1)) j z (t)]
� E [U(xt+1, z (t + 1)) j z (t)]

for all xt+1 2Φ(x̃� [z t ] , z (t + 1)).
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Proof of Principle of Optimality Theorem IV

Next, complete the proof that x�t+1 attains supremum starting from
x̃� [z t ] and any z (t) 2 Z and equation (12) holds starting from
x̃� [z t ] and any z (t) 2 Z .
Suppose, to a obtain contradiction, that this is not the case.

Then there exists x̂t+1 2Φ(x̃� [z t ] , z (t + 1)) for some z (t + 1) = ẑ
such that

U(x�t+1, ẑ) < U(̂xt+1, ẑ).

Then construct the sequence x̂�t+1 = x
�
t+1 if z (t) 6= ẑ and

x̂�t+1 = x̂t+1 if z (t) = ẑ .
Since x�t+1 2Φ(x̃� [z t ] , ẑ) and x̂t+1 2Φ(x̃� [z t ] , ẑ), we also have
x̂�t+1 2Φ(x̃� [z t ] , ẑ).
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Proof of Principle of Optimality Theorem V

Then without loss of generality taking ẑ = z1,

E [U(̂x�t+1, z (t + 1)) j z (t)] =
N

∑
j=1
qjj 0U(̂x�t+1, zj )

= q1j 0U(̂xt+1, zj ) +
N

∑
j=2
qjj 0U(x�t+1, zj )

> q1j 0U(x�t+1, zj ) +
N

∑
j=2
qjj 0U(x�t+1, zj )

= E [U(x�t+1, z (t + 1)) j z (t)] ,

contradicting (??) and completing the induction step, which
establishes that x�t+1 attains the supremum starting from x̃� [z t ] and
any z (t + 1) 2 Z .
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Proof of Principle of Optimality Theorem VI

Equation (12) then implies that

V �
�
x̃�
�
z t�1

�
, z (t)

�
= U(x�t , z (t))
= U

�
x̃�
�
z t�1

�
, x̃�

�
z t
�
, z (t)

�
+βE [U(x�t+1, z (t + 1)) j z (t)]

= U
�
x̃�
�
z t�1

�
, x̃�

�
z t
�
, z (t)

�
+βE

�
V �(x̃�

�
z t
�
, z (t + 1)) j z (t)

�
,

establishing (6) and thus completing the proof of the �rst part.

Now suppose that (6) holds for x� 2Φ(x (0) , z (0)).
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Proof of Principle of Optimality Theorem VII

Then substituting repeatedly for x�:

V � (x (0) , z (0)) =
n

∑
t=0

βtU
�
x̃�
�
z t�1

�
, x̃�

�
z t
�
, z (t)

�
+βn+1E [V �(x̃� (zn) , z (n+ 1)) j z (0)] .

Since V � is bounded,
limn!∞ βn+1E [V �(x̃� (zn) , z (n+ 1)) j z (0)] = 0 and thus

U(x�, z (0)) = lim
n!∞

n

∑
t=0

βtU
�
x̃�
�
z t�1

�
, x̃�

�
z t
�
, z (t)

�
= V � (x (0) , z (0)) ,

Thus x� attains the optimal value in Problem B1.

This completes the proof of the second part of the theorem.
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Proof of Existence Theorem I

Consider Problem B2. In view of Assumptions 16.1 and 16.2, there
exists some M < ∞, such that jU(x , y , z)j < M for all
(x , y , z) 2 XG .
This jV �(x , z)j � M/(1� β), all x 2 X and all z 2 Z .
Consequently, consider the function V � (�, �) 2 C (X �Z).
C (X �Z): set of continuous functions de�ned on X �Z , where X
is endowed with the sup norm, kf k = supx2X jf (x)j and Z is
endowed with the discrete topology.

Moreover, all functions in C (X �Z) are bounded because they are
continuous and both X and Z are compact.
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Proof of Existence Theorem II

Now de�ne the operator T

TV (x , z) = max
y2G (x ,z )

�
U(x , y , z) + βE

�
V
�
y , z 0

�
j z
�	
. (14)

Suppose that V (x , z) is continuous and bounded.

Then E [V (y , z 0) j z ] is also continuous and bounded, since it is
simply given by

E
�
V
�
y , z 0

�
j z
�
�

N

∑
j=1
qjj 0V (y , zj ) ,

with j 0 de�ned such that z = zj 0 .

Moreover, U (x , y , z) is also continuous and bounded over XG .
A �xed point of the operator T , V (x , z) = TV (x , z), will then be a
solution to Problem B2 for given z 2 Z .
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Proof of Existence Theorem III

T is well de�ned: Maximization problem (14): max. continuous
function over compact set, by Weierstrass�s Theorem it has a solution.

Also satis�es Blackwell�s su¢ cient conditions for a contraction.

Contraction Mapping Theorem: unique �xed point V 2 C (X �Z)
to (14) exists and this is also the unique solution to Problem B2.

Now consider maximization in Problem B2.

Since U and V are continuous and G (x , z) is compact-valued,
Weierstrass�s Theorem implies that y 2 G (x , z) achieving the
maximum exists.

This de�nes the set of maximizers Π (x , z) �Φ(x , z) for Problem B2.
Let x� �

�
x (0) , x̃�

�
z0
�
, x̃�

�
z1
�
, x̃�

�
z2
�
, ...
�
2Φ(x (0) , z (0)) with

x̃� [z t ] 2 Π
�
x̃�
�
z t�1

�
, z (t)

�
for all t � 0 and each z (t) 2 Z . Then

from the previous two Theorems , x� is also an optimal plan for
Problem B1. �
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Stochastic Euler Equations I

Use ��s to denote optimal values and D for gradients.

Using Assumption 16.5 and di¤erentiability of Value function
Theorem, necessary conditions for an interior optimal plan:

DyU(x , y �, z) + βE
�
DxV

�
y �, z 0

�
j z
�
= 0, (15)

I x 2 RK=current value of the state vector,
I z 2 Z=current value of the stochastic variable, and
I DxV (y�, z 0)= gradient of the value function evaluated at next
period�s state vector y�.

Using the stochastic equivalent of the Envelope Theorem for dynamic
programming and di¤erentiating (5) with respect to the state vector,
x ::

DxV (x , z) = DxU(x , y �, z). (16)
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Stochastic Euler Equations II

No expectations, since equation is conditioned on the realization of
z 2 Z .
Note y � here is a shorthand for π (x , z).

Combining these two equations, stochastic Euler equation:

DyU(x ,π (x , z) , z)+ βE
�
DxU

�
π (x , z) ,π

�
π (x , z) , z 0

�
, z 0
�
j z
�
= 0,

I DxU: gradient vector of U with respect to its �rst K arguments, and
I DyU : with respect to the second set of K arguments.

In notation more congruent with the sequence version:

DyU(x̃�
�
z t�1

�
, x̃�

�
z t
�
, z (t)) (17)

+βE
�
DxU

�
x̃�
�
z t
�
, x̃�

�
z t+1

�
, z (t + 1)

�
j z (t)

�
= 0,

for z t�1 2 Z t�1.
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Stochastic Euler Equations III

Transversality condition? Discounted marginal return from state
variable to tend to zero as planning horizon goes to in�nity.

Stochastic environment: look at expected returns, but what
information to condition upon? In general,

lim
t!∞

βtE

�
DxU(x̃�

�
z s+t�1

�
, x̃� [z s+t ] , z (s + t))

�x̃�
�
z s+t�1

�
j z (s)

�
= 0 (18)

for all z (s) 2 Z and z s�1 2 Z s�1.
Theorem (Euler Equations and the Transversality Condition) Let

X � RK
+ and suppose that Assumptions 16.1-16.5 hold.

Then the sequence of feasible plans fx̃� [z t ]g∞
t=�1, with

x̃� [z t ] 2IntG (x̃�
�
z t�1

�
, z (t)) for each z (t) 2 Z and

each t = 0, 1, . . . , is optimal for Problem B1 given x (0) and
z (0) 2 Z if it satis�es (17) and (18).
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Proof of Theorem: Su¢ ciency of Euler Equations and
Transversality Conditions I

Consider an arbitrary x (0) 2 X and z (0) 2 Z , and let
x� � fx̃� [z t ]g∞

t=�1 2Φ(x (0) , z (0)) be a feasible plan satisfying
(17) and (18).

We �rst show that x� yields a higher value than any other
x �fx̃ [z t ]g∞

t=�1 2Φ(x (0) , z (0)).
For any x 2Φ(x (0) , z (0)) and any z∞ 2 Z∞ de�ne

∆x (z∞) � lim
T!∞

T

∑
t=0

βt [U
�
x̃�
�
z t�1

�
, x̃�

�
z t
�
, z (t)

�
�U

�
x̃
�
z t�1

�
, x̃
�
z t
�
, z (t)

�
]

i.e., the di¤erence of the realized objective function between the
feasible sequences x� and x.
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Proof of Theorem: Su¢ ciency of Euler Equations and
Transversality Conditions II

From Assumptions 16.2 and 16.5, U is continuous, concave, and
di¤erentiable, so that for any z∞ 2 Z∞ and any x 2Φ(x (0) , z (0))

∆x (z∞) � lim
T!∞

T

∑
t=0

βt [DxU
�
x̃�
�
z t�1

�
, x̃�

�
z t
�
, z (t)

�
�
�
x̃�
�
z t�1

�
� x̃

�
z t�1

��
+DyU

�
x̃�
�
z t�1

�
, x̃�

�
z t
�
, z (t)

�
�
�
x̃�
�
z t
�
� x̃

�
z t
��
].

Since this is true for any z∞ 2 Z∞, we can take expectations on both
sides to obtain

E [∆x (z∞) j z (s)]

� lim
T!∞

E

�
∑T
t=0 βt [DxU

�
x̃�
�
z t�1

�
, x̃� [z t ] , z (t)

�
�
�
x̃�
�
z t�1

�
� x̃

�
z t�1

��
j z (s)

�
+ lim
T!∞

E

�
∑T
t=0 βtDyU

�
x̃�
�
z t�1

�
, x̃� [z t ] , z (t)

�
� (x̃� [z t ]� x̃ [z t ]) j z (s)

�
for any z (s) 2 Z .Daron Acemoglu (MIT) Advanced Growth Lecture 21 November 19, 2007 51 / 79



Proof of Theorem: Su¢ ciency of Euler Equations and
Transversality Conditions III

Rearranging the previous expression, we obtain

E [∆x (z∞) j z (s)] �

lim
T!∞

E

�
∑T
t=0 βtDyU

�
x̃�
�
z t�1

�
, x̃� [z t ] , z (t)

�
� (x̃� [z t ]� x̃ [z t ]) j z (s)

�
lim
T!∞

E

�
∑T
t=0 βt+1DxU

�
x̃� [z t ] , x̃�

�
z t+1

�
, z (t + 1)

�
� (x̃� [z t ]� x̃ [z t ]) j z (s)

�
� lim
T!∞

E

�
βT+1DxU

�
x̃�
�
zT
�
, x̃�

�
zT+1

�
, z (T + 1)

�
�x̃�
�
zT
�
j z (s)

�
+ lim
T!∞

E

�
βT+1DxU

�
x̃
�
zT
�
, x̃
�
zT+1

�
, z (T + 1)

�
�x̃
�
zT
�
j z (s)

�
.
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Proof of Theorem: Su¢ ciency of Euler Equations and
Transversality Conditions IV

Since x� � fx̃� [z t ]g∞
t=�1 satis�es (17), the terms in �rst and second

lines are all equal to zero.

Moreover, since x� � fx̃� [z t ]g∞
t=�1 satis�es (18), the third line is

also equal to zero.

Finally, since U is increasing in x , DxU � 0, and x � 0, the fourth
line is nonnegative, establishing that E [∆x (z∞) j z (s)] � 0 for any
x 2Φ(x (0) , z (0)) and any z (s) 2 Z .
Consequently, x� yields higher value than any feasible
x 2Φ(x (0) , z (0)), and is therefore optimal.
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Generalization to Markov Processes I

What if z does not take on �nitely many values?

Simplest example: one-dimensional stochastic variable z (t) given by
the process z (t) = ρz (t � 1) + σε (t), where ε (t) has a standard
normal distribution.

Most of the results we care about generalize to such cases.

But greater care in formulating in the sequence form of Problem B1
and in the recursive form of Problem B2.

Need to ensure existence of feasible plans, which now need to be
�measurable�with respect to the information set available at the
time.

To avoid long detour, assume both Z and X are compact and that
the function x̃ [z t ] is �well-de�ned�� in particular, �nite-valued and
measurable.
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Generalization to Markov Processes II

Again representing all integrals with the expectations, we can state
the main theorems for stochastic dynamic programming with general
Markov processes.

De�ne Z as a compact subset of R (Z as �nite number of elements
and Z as an interval are special cases).

Let z (t) 2 Z represent the uncertainty, and suppose its probability
distribution can be represented as a Markov process,

Pr [z (t) j z (0) , ..., z (t � 1)] � Pr [z (t) j z (t � 1)] .

Again use the notation z t � (z (0) , z (1) , ..., z (t)) to represent the
history of the realizations of the stochastic variable.

Objective function and the constraint sets are represented as before:
x̃ [z t ] again denotes a feasible plan.

Set of feasible plans after history z t denoted by Φ
�
x̃
�
z t�1

�
, z (t)

�
.

Set of feasible plans starting with z (0) � z0 is then Φ
�
x (0) , z0

�
.
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Generalization to Markov Processes III
Whenever there exists a function V that is a solution to Problem B2,
de�ne Π (x , z) �Φ(x , z) such that any π (x , z) 2 Π (x , z) satis�es

V (x , z) = U(x ,π (x , z) , z) + βE
�
V (π (x , y) , z 0) j z

�
.

Same assumptions as before but now require relevant functions to be
measurable and correspondence Φ(x (t) , z t ) to always admit a
measurable selection for all x (t) 2 X and z t 2 Z t (refer to these
assumptions with a *).

Theorem (Existence of Solutions) Suppose that Φ
�
x (0) , z0

�
is

nonempty for all z0 2 Z and all x (0) 2 X . Suppose also
that for any x 2Φ

�
x (0) , z0

�
,

E
�
∑∞
t=0 βtU

�
x̃
�
z t�1

�
, x̃ [z t ] , z (t)

�
j z (0)

�
is well-de�ned

and �nite-valued. Then any solution V (x , z) to Problem B2
coincides with the solution V � (x , z) to Problem B1.
Moreover, if Π (x , z) is non-empty for all (x , z) 2 X �Z ,
then any π (x , z) 2 Π (x , z) achieves V � (x , z).

Note imposes stronger requirements than Assumption 16.1.
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Generalization to Markov Processes IV

Theorem (Continuity of Value Functions) Suppose the hypotheses
in the Existence of Solutions Theorem are satis�ed and
Assumption 16.2* holds. Then there exists a unique function
V : X �Z ! R that satis�es (4). Moreover, V is
continuous and bounded. Finally, an optimal plan
x� 2Φ(x (0) , z (0)) exists for any x (0) 2 X and any
z (0) 2 Z .

Theorem (Concavity of Value Functions) Suppose the hypotheses in
the Existence of Solutions Theorem are satis�ed and
Assumptions 16.2* and 16.3* hold. Then the unique
function V that satis�es (4) is strictly concave in x for each
z 2 Z . Moreover, the optimal plan can be expressed as
x̃� [z t ] = π (x (t) , z (t)), where the policy function
π : X �Z ! X is continuous in x for each z 2 Z .
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Generalization to Markov Processes* V

Theorem (Monotonicity of Value Functions) Suppose the
hypotheses in the Existence of Solutions Theorem are
satis�ed and Assumptions 16.2* and 16.4* hold. Then the
unique value function V : X �Z ! R that satis�es (4) is
strictly increasing in x for each z 2 Z .

Theorem (Di¤erentiability of Value Functions) Suppose the
hypotheses in the Existence of Solutions Theorem are
satis�ed and Assumptions 16.2*, 16.3* and 16.5* hold. Let
π be the policy function de�ned above and assume that
x 0 2IntX and π (x 0, z) 2IntG (x 0, z) for each z 2 Z , then
V (x , z) is continuously di¤erentiable at x 0, with derivative
given by

DxV
�
x 0, z

�
= DxU

�
x 0,π

�
x 0, z

�
, z
�
. (19)
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Applications: The Permanent Income Hypothesis I

Consider a consumer maximizing discounted lifetime utility

E0

∞

∑
t=0

βtu (c (t)) ,

To start with assume that u (�) is strictly increasing, continuously
di¤erentiable and concave and denote its derivative by u0 (�).
Will shortly look at the case in which u (�) is given by a quadratic.
Consumer can borrow and lend freely at a constant interest rate
r > 0, lifetime budget constraint:

∞

∑
t=0

1

(1+ r)t
c (t) �

∞

∑
t=0

1

(1+ r)t
w (t) + a (0) , (20)

a (0) denotes his initial assets and w (t) is his labor income.

Daron Acemoglu (MIT) Advanced Growth Lecture 21 November 19, 2007 59 / 79



Applications: The Permanent Income Hypothesis II

Assume w (t) is random and takes values from the set
W � fw1, ...,wNg.
Suppose that w (t) is distributed independently over time and the
probability that w (t) = wj is qj (naturally with ∑N

j=1 qj = 1).

Lifetime budget constraint (20) is a stochastic constraint: require it
to hold almost surely, i.e. with probability 1.

That lifetime budget constraint must hold with probability 1 imposes
endogenous borrowing constraints.

For example, suppose w1 = 0 and q1 > 0: then there is a positive
probability that the individual will receive zero income for any
sequence of periods of length T < ∞.
Hence if he ever chooses a (t) < 0 there will be a positive probability
of violating lifetime budget constraint, even with zero consumption in
all future periods.
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Applications: The Permanent Income Hypothesis III

Thus, endogenous borrowing constraint:

a (t) � �
∞

∑
s=0

1
(1+ r)s

w1 � �b1,

with w1 denoting the minimum value of w within the set W and the
last relationship de�ning b1.

First solve as a sequence problem: choosing sequence of feasible plans
fc̃ [w t ]g∞

t=0.

Lagrangian: even though a single lifetime budget constraint (20), not
a unique Lagrange multiplier λ.

Consumption plans are made conditional on the realizations of events
up to a certain date.

In particular, consumption at time t will be conditioned on the history
of shocks up to that date, w t � (w (0) ,w (1) , ...,w (t)).
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Applications: The Permanent Income Hypothesis IV

Notation c̃ [w t ] emphasizes consumption at t is a mapping from the
history of income realizations, w t .

Lagrange multiplier, representing marginal utility of money, is also a
random variable and can depend only on w t .

Therefore write multiplier as λ̃ [w t ].

The �rst-order conditions for this problem:

βtu0
�
c̃
�
w t
��
=

1

(1+ r)t
λ̃
�
w t
�
, (21)

(Discounted) marginal utility of consumption after history w t equated
to the (discounted) marginal utility of income after history w t , λ̃ [w t ].

Economically interpretable, but not particularly useful unless we know
law of motion of λ̃ [w t ].
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Applications: The Permanent Income Hypothesis V

Not straightforward to derive: formulation where prices for all possible
claims to consumption contingent on any realization of history are
introduced is more convenient for this.

For now, formulate the same problem recursively.

Flow budget constraint of the individual:

a0 = (1+ r) (a+ w � c) ,

Conversely, this implies c = a+ w � (1+ r)�1 a0.
Value function conditioned on current asset holding a and current
realization of the income shock w :

V (a,w) = max
a02[�b1,(1+r )(a+w )]

(
u
�
a+ w � (1+ r)�1 a0

�
+βEV (a0,w 0)

)
,
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Applications: The Permanent Income Hypothesis VI

Used that w is distributed independently across periods: expectation
of the continuation value not conditioned on current w .

Need to restrict the set of feasible asset levels to be able to apply
Theorems.

Take ā � a (0) + wN/r , where wN is the highest level of labor
income.

Impose that a (t) 2 [0, ā] and verify the conditions under which this
has no e¤ect on the solution.

First-order condition for the maximization problem:

1
1+ r

u0 (c (t)) = βEt
∂V (a (t + 1) ,w (t + 1))

∂a
. (22)

Noting that ∂V (a0,w 0) /∂a is also the marginal utility of income, this
equation is very similar to (21).
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Applications: The Permanent Income Hypothesis VII

But additional mileage now comes from the envelope condition from
the diferentiability Theorem:

∂V (a (t) ,w (t))
∂a

= u0 (c (t)) .

Combining this equation with (22), obtain the famous stochastic
Euler equation of stochastic permanent income hypothesis:

u0 (c (t)) = β (1+ r)Etu0 (c (t + 1)) . (23)

Equation becomes even simpler and perhaps more insightful when
utility function is quadratic:

u (c) = φc � 1
2
c2,

with φ su¢ ciently large that in the relevant range u (�) is increasing
in c .
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Applications: The Permanent Income Hypothesis VIII

Using this quadratic form with (23), Hall�s famous stochastic
equation:

c (t) = (1� κ) φ+ κEtc (t + 1) , (24)

where κ � β (1+ r).

Striking prediction: variables such as current or past income should
not predict future consumption growth.

I Large empirical literature tests this focusing on excess sensitivity: if
future consumption growth depends on current income, this is
interpreted as evidence for excess sensitivity, rejecting (24).

I Rejection often considered as evidence in favor of credit constraints
I But excess sensitivity can also emerge when the utility function is not
quadratic (see, for example, Zeldes, 1989, Caballero, 1990).

Equation (24) takes an even simpler form when β = (1+ r)�1, i.e.,
when the discount factor is the inverse of the gross interest rate.
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Applications: The Permanent Income Hypothesis IX

In this case, κ = 1 and c (t) = Etc (t + 1) or Et∆c (t + 1) = 0, so
that the expected value of future consumption should be the same as
today�s consumption.

Referred to as �martingale�property: random variable z (t) is a
martingale with respect to some information set Ωt if
E [z (t + 1) j Ωt ] = z (t).

It is a submartingale, if E [z (t + 1) j Ωt ] � z (t) and
supermartingale if E [z (t + 1) j Ωt ] � z (t).
Thus whether consumption is a martingale, submartingales or
supermartingale depends on the interest rate relative to the discount
factor.
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Applications: Search for Ideas I

Problem of a single entrepreneur, with risk-neutral objective function

∞

∑
t=0

βtc (t) .

Entrepreneur�s consumption given by the income he generates in that
period (there is no saving or borrowing):

y (t) = a0 (t)

a0 (t) is the quality of the technique he has available for production.

At t = 0, entrepreneur starts with a (0) = 0.

At each date, can either engage in production using one of the
techniques already or spend searching for a new technique.
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Applications: Search for Ideas II

Each period in search, he gets an independent draw from a
time-invariant distribution function H (a) de�ned over a bounded
interval [0, ā].

Consumption decision is trivial: no saving or borrowing, has to
consume current income, c (t) = y (t).

Write the maximization problem facing the entrepreneur as a
sequence problem.

Let at 2 At � [0, ā]t=sequence of techniques observed by the
entrepreneur over past t periods, with a (s) = 0, if at s engaged in
production.

Write at = (a (0) , ..., a (t)).
Then a decision rule for this individual would be

q (t) : At ! fa (t)g [ fsearchg ,
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Applications: Search for Ideas III

Pt : set of functions from At into a (t) [ fsearchg, and P∞ the set
of in�nite sequences of such functions.

Individual�s problem:

max
fq(t)g∞

t=02P∞
E

∞

∑
t=0

βtc (t)

subject to c (t) = 0 if q (t) =�search�and c (t) = a0 if q (t) = a0 for
a (s) = a0 for some s � t.
Problem looks complicated but dynamic programming formulation
quite tractable.

Two observations from fact problem is stationary:
1 Can denote value of an agent who has just sampled a technique
a 2 [0, ā] by V (a): can discard all techniques sampled except last one.

2 Once start producing at technique a0, continue forever: if willing
produce at a0 would also do so at time t + 1.
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Applications: Search for Ideas IV
Thus if production at some technique a0 at date t, c (s) = a0 for all
s � t.
Thus value on accepting technique a0:

V accept
�
a0
�
=

a0

1� β
.

Therefore:

V
�
a0
�
= max

q2f0,1g
qV accept

�
a0
�
+ (1� q) βEV

= max
�
V accept

�
a0
�
, βEV

	
= max

�
a0

1� β
, βEV

�
, (25)

I q is acceptance decision (q = 1 is acceptance) and expected
continuation value of not producing at available techniques is:

EV =
Z ā
0
V (a) dH (a) (26)
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A slight digression I
Special structure of search problem enables a direct solution, but
optimal policies can be derived with Contraction Mpping Techniques.
For this, combine the two previous equations and write

V
�
a0
�
= max

�
a0

1� β
, β
Z ā

0
V (a) dH (a)

�
, (27)

= TV
�
a0
�
,

where the second line de�nes the mapping T .
Now (27) is in a form to which we can apply the above theorems.
Blackwell�s su¢ ciency theorem applies: T is a contraction since it is
monotonic and satis�es discounting.
Next, let V 2 C ([0, ā]), i.e., the set of real-valued continuous (hence
bounded) functions de�ned over the set [0, ā], which is a complete
metric space with the sup norm.
Contraction Mapping Theorem implies unique value function V (a)
exists in this space.
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A slight digression II

Thus dynamic programming formulation immediately leads to
existence of an optimal solution (and thus optimal strategies).

Moreover, can apply Theorems on properties of contraction mappings,
taking S 0 to be the space of nondecreasing continuous functions over
[0, ā], which is a closed subspace of C ([0, ā]).
Therefore, V (a) is nondecreasing.

Could also prove that V (a) is piecewise linear with �rst a �at portion
and then an increasing portion.

Let the space of such functions be S 00, which is another subspace of
C ([0, ā]), but is not closed.
Starting with any nondecreasing function V (a), TV (a) will be a
piecewise linear function starting with a �at portion.

Theorems on properties of contraction mappings imply that the
unique �xed point, V (a), must have this property too.

Daron Acemoglu (MIT) Advanced Growth Lecture 21 November 19, 2007 73 / 79



Applications: Search for Ideas V

The digression used Theorems on properties of contraction mappings
to argue that V (a) would take a piecewise linear form.

Can also be deduced directly from (27): V (a) is a maximum of two
functions, one of them �at and the other one linear.

Therefore V (a) must be piecewise linear, with �rst a �at portion.

Now determine the optimal policy using the recursive formulation of
Problem B2.

The fact that V (a) is linear (and strictly increasing) after a �at
portion immediately tells us that the optimal policy will take a cuto¤
rule.

I.e., there will exist a cuto¤ technology level R such that all
techniques above R are accepted and production starts.
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Applications: Search for Ideas VI

V (a) is strictly increasing after some level: if some a0 is accepted, all
technologies with a > a0 will also be accepted.

Moreover, this cuto¤ rule must satisfy:

R
1� β

=
Z ā

0
βV (a) dH (a) , (28)

Also since a < R are turned down, for all a < R

V (a) = β
Z ā

0
V (a) dH (a)

=
R

1� β
,

And for all a � R, we have

V (a) =
a

1� β
.
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Applications: Search for Ideas V
Using these observations:Z ā

0
V (a) dH (a) =

RH (R)
1� β

+
Z
a�R

a
1� β

dH (a) .

Combining this equation with (28), we have

R
1� β

= β

�
RH (R)
1� β

+
Z
a�R

a
1� β

dH (a)
�
. (29)

Manipulating this equation, we obtain

R =
β

1� βH (R)

Z ā

R
adH (a) ,

Equation (29) can be rewritten in a more useful way as follows:

R
1� β

= β

�Z
a<R

R
1� β

dH (a) +
Z
a�R

a
1� β

dH (a)
�
.
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Applications: Search for Ideas VI

Now subtracting
βR/ (1� β) = βR

R
a<R dH (a) / (1� β)+ βR

R
a�R dH (a) / (1� β)

from both sides, we obtain

R =
β

1� β

�Z ā

R
(a� R) dH (a)

�
, (30)

Left-hand side=cost of foregoing production with a technology R.

Right-hand side=expected bene�t of one more round of search.

At the cuto¤, have to be equal.

De�ne the right-hand side of (30):

γ (R) � β

1� β

�Z ā

R
(a� R) dH (a)

�
.
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Applications: Search for Ideas VII

Suppose also that H has a continuous density, denoted by h.

Then we have

γ0 (R) = � β

1� β
(R � R) h (R)� β

1� β

�Z ā

R
dH (a)

�
= � β

1� β
[1�H (R)] < 0

This implies that equation (30) has a unique solution.

Higher β, by making the entrepreneur more patient, increases the
cuto¤ threshold R.
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Other Applications

1 Asset Pricing:
I Lucas (1978): economy in which a set of identical agents trade claims
on stochastic returns of a set of given assets (�trees�).

I Each agent solves a consumption smoothing problem similar but has to
save in assets with stochastic returns rather than at a constant interest
rate.

I Market clearing will be achieved when the total supply of assets is
equal to total demand: each agent is happy to hold the appropriate
amount of claims on the returns from these assets.

2 Investment under Uncertainty.
3 Optimal Stopping Problems: search model discussed is an example.
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