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Separable Preferences 
 

• Let I  be a finite (for now) set of indices (e.g. time periods, fruits, states). 
(We will see a representation theorem for countably many time periods, it 
needs more assumptions. And the expected utility representations extend to 
uncountable state spaces, this also needs more structure.)  
 

• For each i I∈  there is a set iX  , let : i I iX X∈= ×  . 
 

• Analyst observes complete transitive preference    on X. 
 

• Definition:    has an additively separable representation  if there are 
:i iu X →  s.t.  1 1 1( ,..., ) ( ) ... ( )n n nU x x u x u x= + +  represents . 

 
• In an additively separable representation, the tradeoff between any ix  and jx  is 

independent of the other components, i.e. of ,i jX −  . 
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• For any E I⊆  and any ,x y X∈  define : i
E

i

x i E
x y X

y i E
∈

∈ =  ∉
 . 

 
• Definition:    is singleton separable  if for all i I∈  and all , , , 'x y z z X∈ , 

' 'ii i iy z xx z zz y↔   .   (this should remind you of the independence axiom of 
expected utility!)    

 
• Singleton separability implies that for each index i  we have a complete 

transitive preference i   on iX  that is independent of the other components: 

ii ix y   if iix z y z  for some z. 
 

• But it doesn’t yet imply that the tradeoff between any ix  and jx  is independent 
of the other components. (E.g. in the discounting application, we need the 
tradeoff between consumption in periods t and s to be independent of 
consumption in other periods.)  
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• For example if { } { }1 21,2,3 , 1,3,5X X= = ,  the preference induced by 
2

1 2 1 2 1( . ) xu x x x x x= +   is strictly increasing in 1x   for each 2x   and vice versa. But it  
does not have an additive representation ( HW). 
 

• So we use a stronger condition:  
 
    has jointly separable indices  if for any E I⊆  and all  , , , 'x y z z X∈ , 

' 'EE E Ey z xx z zz y↔  . (Strzalecki calls this “separable.”). 
 

• With 3 or more indices this say the tradeoffs between ix  and jx   don’t depend 

on the level of some 3rd index k. 
 

• For this to have any bite we need 3 indices that “matter.”  
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• Reason:  with only 2 indices,  jointly separable indices reduces to singleton 
separability and as we saw that doesn’t imply an additive representation. 
And having 3 with one that doesn’t matter is like having 2. 

 
• Definition: An  index i is null  if for all , ,x y z X∈ , ~i ix z y z  . 
 
• The next theorem will ask that every index is non-null,  and also that each 

iX  is connected; together these two conditions mean that each coordinate 
has a continuum of elements. 

 
• Since additively separable representations have a utility function, we 

expect to need a continuity condition when X   isn’t finite. 
 
• “Technical condition”: Assume each iX   is a connected subset of k

   (or  
more generally a connected topological space) and that    on : i I iX X∈= ×  
is continuous w.r.t. the product topology. 
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Theorem (Debreu [1960], Wakker J Math Pyschology [1988]): Suppose 
complete transitive   satisfies the technical condition and has at least three 
non-null indices. Then it has jointly separable indices iff it has an additively 
separable representation by continuous utility functions :i iu X →  s.t. iu  is 
constant whenever i  is null.  Moreover, if 1,..., nv v  also represent   then there 
are 0α >  and iβ  s.t. i i iv uα β= +  .        
 
Proof: omitted.   
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Finite Horizon Consumption Streams 

 
• Start with the finite-horizon case, indices { }: 0,1,..,t T∈ =  for some 1T > . 

 
• Assume that 1TX Z +=  where Z  is a connected subset of n

 , and X has the 
product topology. 
 

• Debreu’s theorem will let us get an additively separable representation, but the 
representation 0 1( , ,..) ( )t

tt
U z z u zδ=∑  needs more assumptions to get the 

same function u  in every period and a constant discount factor. 
 

• Definition:    on  1TX Z +=  is stationary  if for all , , Tc Z x y Z∈ ∈  

0 0 11( ( , ,..., ,..., , ))T Tc yc x yx − −  iff 1 10 0,( ,... ( ,..., ) , , )T Ty yx c cx −−  . 
 

• Definition:    on  1TX Z +=  is sensitive  if all of the indices are non-null. 



7 
 

Theorem (Fishburn [1970], Utility for Decision Making): Complete transitive 
preference   on : tX Z∈= ×   is continuous, stationary, sensitive, and has  
jointly separable indices,  iff there is a number 0δ >  and a continuous non-
constant function  :u Z →   s.t.    is represented by 0 1( , ,..) ( )t

tt
U z z u zδ=∑ . 

Moreover δ  is unique and u  is unique up to affine transformations. 

 
Proof sketch for sufficiency:  
• Debreu [1960] implies there are non-constant and continuous functions 

0 1,..., :v v Z →  s.t. 
0

( )
T

t t
t

U v z
=

=∑  represents .  

• Fix an arbitrary  e Z∈  and rescale all the tv  so that ( ) 0tv e =  for all t.  
 

• Now define preference relation *   on the “one period shorter” space TZ  by 
*

0 1 0 1( ,. ( ,.. ) .., )., TTx x y y− −  iff 1 10 0( ( ,..., , ),..., , )T Tye yx ex − − ; this preference 

can be represented by 
1

0
( )

T

t t
t

v z
−

=
∑  from the last step. 
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• From stationarity  
 

1 10 0( ( ,..., , ),..., , )T Tye yx ex − −   
iff  

0 0 11( ( , ,..., ,..., , ))T Te ye x yx − − .  

• So  *  can also be represented by 
1

1
0

( )
T

t t
t

v z
−

+
=
∑ . 

• Affine uniqueness of the representation and sensitivity implies there exist 
0tδ >   and tb   s.t. 1t t t tv v bδ += +  .   

 
• And since ( ) 0tv e =  for all t, every tb  is 0 as well, and from stationarity tδ δ= .  

 
• Define 0u v=  , then t

tv uδ=  .          
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Interpreting δ  
 

• δ  can be less, equal to, or even more than 1: the agent could care more about 
periods further in the future. 
  

• Can interpret  1δ <  either as pure time preference- prefer utility now to later- 
or as uncertainty that the consumption stream will continue. 
 

• 1δ =  gives the time average criterion 0 1 0
( , ,.., ) ( ) / ( 1)T

T tt
U z z z u z T

=
= +∑ . 

 
• In some settings we expect δ  to depend on the period length ∆   according to 

exp( )δ ρ= − ∆ , though that’s not part of this representation theorem. 
 

•  Conditions of the representation theorem are consistent with 0δ ≈ , but 
parents try to convince their kids that this is a bad idea. 
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Infinite Horizon Consumption Streams 
 

• Now let {0,1,...}=  , X Z ∞= . 

• The representation 0 1
0

( , ,..) ( )t
t

t
U z z u zδ

∞

=

=∑  corresponds to similar conditions: 

again it needs stationarity, joint separability, and some forms of non-null 
indices and continuity. 
 

• But things are more complicated here due to the possibility that the discounted 
sum diverges, and apparently technical conditions like continuity can have 
more substantive impact than you might have expected. 

 
• It is also harder to say what we mean by “complete patience” or “time 

neutrality”, as 
0

lim ( ) / ( 1)T
T tt

u z T→∞ =
+∑   need not exist.  (this has been of 

special interest in modelling society’s preferences as opposed to those of 
individuals, maybe talk about social time preference last lecture).  
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• Two alternate “completely patient” criteria: 
 

  
0

liminf ( ) / ( 1)T
T tt

u z T→∞ =
+∑  

 
 the overtaking criterion:  'z z  if there is a τ    s.t. for all T τ≥  

'
0 0

( ) ( )T T
t tt t

u z u z
= =

≥∑ ∑ . 
 

• Definition:  Preference   is stationary  if for all , ,c Z x y Z ∞∈ ∈ ,

1 10 0( ( , ,...), ,...) yx yx   iff 0 0 11( , , ,...) ( , , ,...)cc y yx x  . 
 

• Definition: Preference   is sensitive to the initial period if index 0 is non-null.  
 

• If we assume Z =   and set ( )u z z=  , time averaging is not sensitive to the 
initial period, the overtaking criterion is. 
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• Definition:    on  X Z ∞=  is initially separable  if for all , , ,a b c d Z∈   and 
,x y Z ∞∈  , abx cdx  iff aby cdy  . 

 
This says that the tradeoff between first two periods doesn’t depend on what 
comes afterwards. 

 
• Claim:  If   on  X Z ∞=  is stationary, then it is sensitive and jointly separable iff 

it is sensitive to the initial period and initially separable.   Proof : HW 
 

• Definition:    satisfies constant equivalence if  for any x Z ∞∈  there is c Z∈  s.t. 
( , ,...)~ :x c c c=



 . 
 
Note: this jointly constrains the set Z and how agent feels about “tail 
consumption”, as  (1,2,4,...)x =  might be better than any constant path. 
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• Definition:   is tail continuous if for any c Z∈  and x Z ∞∈  s.t.  
(a) If x c



  , there exists τ  s.t. for all t τ≥  0( ,... , , ,...)tx x c c c


   and 

(b) If x c


 , there exists τ  s.t. for all t τ≥  0( ,... , , ,...)tx x c c c


 . 
 

• Given the separability assumption, this is a 1-player version of the “continuity 
at infinity” condition that many of you saw in 14.122.  
    

• Neither time average utility nor the overtaking criterion is tail continuous. 
 

• This is related to the fact that the solution and maximized payoff to a finite-
time optimization problem with time average payoff can be very different to 
the solution to the problem with an infinite horizon, while with tail continuity 
truncation doesn’t matter much:  
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When to Harvest a Tree: 
Suppose the agent owns a tree that grows at rate 1/year; if she chops it down 
at time T gets flow utility of 1 from period T to 2T-1. 
 
So her menu of choices corresponds to this menu of utility flows: 

k times k times
{(0,1,0,0....),(0,0,1,1,0,0,...),(0,0,0,1,1,1,0,0,...),( 0, 1, 0,...),...} . 

With discount factor  δ  the payoff to chopping at T is (1 )
1

T Tδ δ
δ
−
−

 ; the best time 

is finite and increases in  δ . 
 
With the overtaking criterion the best time is “as late as possible,” so no 
maximum if the time is unbounded. 
 
And with time averaging no choice yields an improvement on chop at once. 
 
Lemma: If   is  continuous in the product topology and Z  is compact,    is tail 
continuous. 
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Theorem   If   on X Z ∞=  is stationary, sensitive, and jointly separable, 
continuous in the product topology, and Z  is connected and compact, then   

can be represented by 0 1
0

( , ,..) ( )t
t

t
U z z u zδ

∞

=

=∑  with (0,1)δ ∈  . Moreover δ   is 

identified uniquely and u  is cardinally unique.    

Proof: omitted 

 

Remarks:  

• Tail continuity forces 1δ < . 
 

• Theorem doesn’t need the same Z  each period, but does need the max 
possible u  to not grow “too quickly” compared to δ . 

• One proof technique is to prove that the representation works on 
“eventually constant” paths and then extend it to all paths using tail 
continuity as in  Strzalecki’s notes and Bleichrodt, Rohde, and Wakker (J. 
Math. Psych.  [2008]). 
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Let c


 denote a constant path ( , ,...)c c  . 

 
Definition:   likes consumption smoothing  more than '  if for all c Z∈  and  
x X∈ ,  'c xcx →

 

  , and  also 'c xcx →







 : 
 
If  '  likes (or strictly prefers) a constant consumption plan more than  a given 
alternative, so does %.  
 

Proposition  (Strzalecki) If   likes consumption smoothing more than '  and 
they both have discounting representations ( , )u δ  and ( ', ')u δ   with u, u’  
continuous and strictly increasing, then 'δ δ=   and 'u uφ=   for some φ   that is 
strictly increasing and concave. 
 

• This is a partial order on preferences.  
 
• A strict order on  ( ) exp( )u z Az= − −   or ( )u z zα=  : higher A  or lower  α  

likes smoothing more.  
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• Suppose the agent is maximizing 
0

( )t
t

t
u zδ

∞

=
∑  given a sequence of prices and 

( )u z zα=  . Then the agent has a constant elasticity of intertemporal 
substitution, i.e. the response of 1 /t tz z+  to changes in prices is constant. 

 
 
• If we extend the additively separable discounting representation to 

expected utility, it  links the agent’s risk aversion and preference for 
smoothing over time. 

 
• This has led to interest in more flexible specifications such as Epstein-Zinn: 

( ) //
1( ) (1 ) ( )t t tV z z V z

α ρρ ρ αδ δ += − + ; will discuss this next class. 
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Dynamic Choice 

• So far this lecture has only considered period-0 preference. 
 
• Additive discounting is recursively consistent if time-t preference 

maximizes ( ) : ( )t
t

t
u x V xτ

τ
τ

δ
∞

−

=

=∑ . 

 
• Here we have the familiar dynamic programming equation 

 
  1( ) ( ) ( ).t t tV x u x V xδ += +  
 
• Note:  we can represent the same choices with the “normalized” value 

function ( ) : (1 ) ( )t
t

t
U x u xτ

τ
τ

δ δ
∞

−

=

= − ∑  so that  1(1 ) ( )t t tU u z Uδ δ += − +  and 

value is measured in per-period utility. 
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• Koopmans Ema [1960] defined more general recursive preferences: 

1( ) ( , ( ))t t tV x W x V x+=  , 

with W  strictly increasing in its 2nd argument, and each tV   only depending 
on 1( , ,...)t tx x +   (and not on xτ   for tτ < , as it might with e.g. habit 
formation.) 

 

This says that the preferred choice today depends on current consumption  
(which I set to 0 in the special 2-period model of last lecture) and the  
value of the continuation problem. 

 

• Period-0 preferences 0  satisfy tail separability   if for any 10, , ,tt c d Z +> ∈  

and ,x y Z∞∈  , 00 0( ,..., , ) ( ,..., , )t tc c x c c y   iff 00 0( ,..., , ) ( ,..., , )t td d x d d y : 
preferences from period t+1  don’t depend on consumption through 
period t. 
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• All Koopmans preferences are tail separable. 
 

• For tail-separable preferences we can define time-t preferences by 

1tx y+  if 00 0( ,..., , ) ( ,..., , )t tc c x c c y  for some 0( ,... )tc c  . 
 
• And with tail separability the family of preferences  { }tt  is recursively 

consistent- this makes them intuitive/easy to work with. 

 

• Koopmans preferences are used in macro and growth (e.g. Lucas and 
Stokey JET  [1984],  Straub and Werning [2015])  both to test the generality 
of conclusions and to better fit some data. 

 
• Straub and Werning identify /W V∂ ∂   with the “local discount factor”- this 

is the sensitivity of the aggregator to tomorrow’s value. 
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• Some of their results assume this is non-constant, which rules out the 
usual constant-discount-factor representation. 

 
• One special case of Koopmans preferences  is Uzawa [1968] preferences, 

where V  is additively separable between today’s utility and the 
continuation value 

 

1( ) ( ) ( ( )) ( ),t t t tV x u x u x V xδ += +  so  /W V∂ ∂  is independent of V  but 
depends on x. 

 
Then 0 0 0 1 0 1 2( ) ( ) ( ( )) ( ) ( ( )) ( ( )) ( ) ...V x u x u x u x u x u x u xδ δ δ= + + + . 

 
• Uzawa preferences let impatience depend on current consumption, but 

only through its impact on current flow utility. 
 
• Literature assumes δ   monotone and compares “increasing marginal 

impatience” and “decreasing marginal impatience.”  
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• Used in growth and macro, e.g. Obstfeld J Mon E  [1990], which studied the 

implied optimal consumption and savings paths, and how they respond to 
taxes and to transitory shocks.  

 
 
Reading for next time:  Strzalecki 6.1-6.5; Tversky and Kahneman Science  
[1974]. Optional: read Strzalecki 8.1-8.2 


