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 Calibration and Subjective Confidence Intervals 

Answers to the questions at the end of the last class: 
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Stylized fact: most people’s confidence intervals are “too small.” 

 
• How is this related to subjective expected utility and its axioms? 

 
• Note there is a really cheap way of making sure that 90% of your 90% 

confidence intervals contain the truth. 
 

• Alpert and Raiffa [1982] (a chapter of Judgement Under Uncertainty)  :46% 
of quantities outside of 98% confidence intervals, 40% outside of 99.8% 
confidence intervals. 
 

• Biais, Hilton, Mazurier, and Pouget,  REStud [2005]: less over-confident 
traders do better in an experimental asset market. 
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• Many physicians are overconfident, especially residents (see e.g. survey by 
Berner and Graber Am. J. Medicine  [2008]: “Residents… were more 
confident about the correctness of their diagnoses, but they were less 
accurate  than the attending physicians.  [In]  a cohort of 95 board-certified 
radiologists… the confidence level of the worst performers was actually 
higher than that of the top performers.” 
 

• Feedback on accuracy of confidence intervals leads to better calibration. 
 

• As does giving advice: “spread your extreme quantiles, you probably 
shouldn’t be so certain of your beliefs…” 
 

• Calibration of subjective confidence intervals is based on self-knowledge, 
and can be applied to non-random events. 
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• Can also look at calibrated forecasts of things that happen repeatedly:  A 
weather forecaster is calibrated if on those occasions when the forecaster 
announced probability p of rain, it actually rained fraction p  of the time. 
 

• U.S. weather forecasters are pretty well calibrated. (though published 
reports may bias upwards the probability of precipitation) 
 

• Calibrated forecasts needn’t be useful as miscalibrated ones. For  example 
forecaster who  correctly predicts the  average chance of rain over the year 
can miss large seasonal effects. 
 

• And with a large enough data set a forecaster with no knowledge at all can 
ensure that she is calibrated in the long run. (Foster and Vohra, Biometrika 
[1998]). 
 

• But it still may seem like a good thing to try for. 
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The Ellsberg Paradox 

• 90 Balls in an urn composed of red, black and green. 30 of the balls are 
definitely red, while the other 60 could be black or green.  
 

• { }, ,S R G B= ,        4 acts f, g, f’, g’ that pay $x or 0.                    
 

•     
0 0

0 0
' 0
' 0

R G B
f x
g x
f x x
g x x

   

 
• Preferences f g   and ''f g   not consistent with subjective EU: f g  

implies Pr( ) Pr( )R G>   while ''f g  implies Pr( ) Pr( )R G< . 
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• Reason: if the preferences satisfy Independence,  the above choices would 
require  
  
1 1 1 1 1 1' '
2 2 2 2 2

'
2

f g gg fg+ + +   . 

    
• But these 2 lotteries are the same, they both give the constant act with .5 

chance of x  in every state.  (what implicit assumption am I using here?) 
 

• Related thought experiment of Keynes: suppose urn 1 has 50 green balls and 50 
yellow balls. Urn 2 has 100 balls, each either green or yellow, but the 
proportion is unknown.  Keynes [1921] argued that it would be reasonable to 
be indifferent between betting on a green or yellow draw from urn 1, and 
prefer both bets to either betting on green or yellow from urn 2. 

 

• But this too contradicts subjective EU. 
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• Say that someone is “ambiguity averse” if they prefer the objective lottery to 
the subjective ones. 
 

• Similar violations of independence have been observed in many experiments, 
see Camerer and Weber J Risk Uncertainty  [1992], Trautmann and Kuilen, Ch. 3 
of Handbook of Judgment and Decision Making [2015]. 
 

• In response, various models of ambiguity averse preferences relax the 
independence axiom. 
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• Maxmin preferences  (Gilboa-Schmeilder J Math Econ [1989]): start from the 
Anscombe-Aumann setup.  As before, take S  finite and let ( )( ) SZ= ∆  be the 
space of objective lotteries over prizes, one lottery per state.  
 

• Drop the independence axiom, replace it with the next two conditions. 
 

Certainty Independence:   
For all constant acts 



  and all ,f g∈ ,  
f g  iff () )(1 1gfα α α α+ − + −

 

    for all (0,1)α ∈  . 
 
 Weaker than independence, which says  f g  iff 

(1 )(1 ) gf h hα α αα +− −+    for any act h. 
 

 Reasons this might fail…?  
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Uncertainty Aversion: Whenever ~f g  , (1 )f g fα α+ −    (0,1)α ∈ . 
(could also call this a preference for hedging). 
 
• To understand this name suppose there are two states R  and B. 

 
• act f  pays 1 in R  and 0 in B; act g pays 0 in R  and 1 in B. 

 

• Then (1 )f gα α+ −  pays  ( ,(1 ))α α−   so “less uncertain,” 1/ 2α =  pays 
EU=1/2 regardless of which state occurs. 
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Theorem (Gilboa and Schmeidler) Complete transitive preferences on   satisfy 
mixture continuity, monotonicity, non-triviality, certainty independence, and 
uncertainty aversion iff there is a linear, non-constant : ( )u Z∆ →   and a non-
empty, closed, convex set of distributions ( )C S∈∆   s.t.  

 

( ) : min ( ) ( ( ))p C s
V f p s u f s∈= ∑  .   

 

Moreover, C is identified uniquely, and  u  is unique up to affine 
transformations. 

 

In this representation, C  can be viewed as the priors the agent thinks are 
possible, and she tries to maximize her worst possible payoff: she acts as if 
Nature were out to get her. 

 



11 
 

Maxmin preference:  maximize min ( ) ( ( ))p C s
p s u f s∈ ∑  .   

Examples: 

 
• { }C p=   for some single p  is subjective expected utility. 

 
• ( )C S= ∆   is very pessimistic: evaluate every act by its worst possible 

result. 
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• In the 3-color Ellsberg urn described earlier, one candidate for C  is 
{ }( ) : ( ) 1/ 3C p S p R= ∈∆ =  . 

 
• This allows the Ellsberg choices:  Set ( ) 1, (0) 0u x u= =  . 

 

1 0 0
0 1 0

' 1 0 1
' 0 1 1

R G B
f
g
f
g  

 

Then  

min ( ) ( ( )) 1/ 3 0 min ( ) ( ( ))p C p Cs s
p s u f s p s u g s∈ ∈= > =∑ ∑  

 

min ( ) ( '( )) 1/ 3 2 / 3 min ( ) ( '( ))p C p Cs s
p s u f s p s u g s∈ ∈= < =∑ ∑ . 
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Idea of proof of the Gilboa-Schmeidler representation theorem. 

Start out following our proof of the Anscombe-Aumann theorem: 

 

1.  Show the  induced preference on ( )Z∆  is represented by a non-trivial 
utility function u  that is linear in the objective probabilities. Normalize the 
range of u to be [ 1,1]U = −  . 
 

2.  Define utility acts : S Uτ →  and define *   on SU  by * 'τ τ  iff f g   for 
some ,f g∈  s.t. u fτ =   and ' u gτ =   .   
 

3.  For each utility act τ ,  let )I τ(  be the number s.t.   ) ~I τ τ(


. 
(as before need to show this is well defined.) 
 

In A-A the indifference function I was additive, now it need not be, as the a
 agent may strictly prefer a mixture of two acts (to “hedge.”) 
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Instead, we can  use the assumptions on preferences to show I is: 

 

-monotone (same definition as in A-A: If (( )) gf s s s∀
    

  then f g  )   

 

-normalized (for any u,  ( )I u u=


 ) ,  

 

-positively homogeneous    (same  proofs for these as in  AA, but we use 
certainty independence in place of independence) 

 

-“translation invariant” (for any ,SU kτ ∈ ∈  , ( ) ( )I k I kτ τ+ = +


)) 

(from certainty-independence and homogeneity). 

 

-concave (from  uncertainty aversion) 
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Use translation invariance and monotonicity to show we can extend I to all of 
SR   ( Gilboa-Schmeidler let S  be an arbitrary set, and work on the space of all 

bounded measurable functions) 

 

 Proof of concavity: from homogeneity and extension of  I, it is enough to show  

 
1 1 1 1' ( ) ( ')
2 2 2 2

I I Iτ τ τ τ + ≥ + 
 

 for any , ' SUτ τ ∈  . 

(for other combinations, rewrite  1 1(1 ) ' '
2 2

v vατ α τ+ − = +  for 

2 , ' 2(1 )ν ατ ν α τ= = − ) .) 

 
• Fix  f,g, s.t. , 'u f u gτ τ= =  . 
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• If ( ( )) 'I I ττ =  ,  uncertainty aversion implies  1 1
2 2

f fg+    , 

so 1 1 1 1' ( ) ( ) ( ')
2 2 2 2

I I I Iτ τ τ τ τ + ≥ = + 
 

. 

• If ( ( )) 'I I ττ >   define ( ) ( ')I Iδ τ τ= −   and " 'τ τ δ= +


 . 

 

Then ( )( ") 'I Iτ τ δ= +  (from translation invariance) so  

 

 

1 1 1 1 1' "
2 2 2 2 2

1 1 1 1 1( ) ( ") ( ) ( ')
2 2 2 2 2

I I

I I I I

τ τ δ τ τ

τ τ τ τ δ

   + + = +   
   

≥ + = + +

   

So I  is concave. 
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The representation theorem now follows from a result in convex analysis: 
functions I with the properties we established above can be identified with a 
unique  convex set ( )C S∈∆  s.t. ( ) : min ( ) ( )p C s

I s p sτ τ∈= ∑  - this set C  is  the 

set of priors in the minmax representation. 

 

This uses the idea of support functions:    

Definition: For closed convex and non-empty  ( )C S⊆ ∆ ,  the support function  
: S

CR →     is  

( ) : inf ( ) ( )C p C s
R p s sτ τ∈= ∑ . 

 

If p  is a vector of inputs, C  is the set of all inputs that produce a given output, 
and τ   is a price vector, this is the problem of finding the least-cost way of 
producing a given output. (if we let the firm both buy input and sell output, and 
consider a supremum instead of an infimum,  we compute the profit of a given 
production plan.) 
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The support function of any convex set is positive homogeneous and 
translation invariant.   

Because I  is concave, monotone, and normalized, we can  replace the inf with a 
min, and uniquely identify C.    (see e.g. Rockafellar [1997] Cor. 13.2.2) 
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• Charactering I  as the support function of  set is an example of conjugate 
duality.   
 

• Support functions also used in mechanism design, see Goeree and Kushnir 
GEB [2016] and their working paper “Geometric Approach to Mechanism 
Design.”  
 

• With minmax preferences, a probability distribution p  is either in or out of 
the support. 
 

• More general representations allow for different non-zero weights on 
different beliefs. 
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• Variational preferences  (Maccheroni, Marinacci, and Rustichini Ema 
[2006]): 

( )( ) min ( ) ( ( )) ( )p S s
V f p s u f s c p∈∆= +∑  ,   

where : ( ) [0, ]c S∆ → ∞ ,  ( ) 0c p =  for at least one p,  and is convex and 
lower semi-continuous. 

• Note that this nests minmax EU: set 0c =  or ∞  for p  in or out of C, but 
more general, so corresponds to weaker conditions on the function I. 
 

• Variational preferences also nests  the “multiplier preferences” of Hansen 
and Sargent AER [2001], where ( || )c R p qθ=  is a constant times the 
relative entropy between p  and a fixed function q: 

( )( || ) ( ) ln , ;  else 
( )s

p sR p q p s p q R
q s

 
= << = ∞ 

 
∑ . 

• Here q  represents the agent’s “best guess” of the distribution. ( p q<<  
means p is  absolutely continuous w.r.t q so the ratio is well defined.)    
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• HS’s motivation comes from robust control theory, where q  is a best 
estimate given a model the agent thinks may be mis-specified; Bayesian 
posterior converges to a point mass on the distribution that minimizes the 
divergence.    
 

• As θ   grows, the agent is more  focused on p’s  that are “very near” q.  
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Variational preferences are characterized by  almost the same axioms as for 
maxmin, with “weak certainty independence” (defined at the end of these 
notes) replacing independence. 

 

The proof  then uses a more general result about convex duality:  

( )( ) min ( ) ( ( )) ( )p S s
V f p s u f s c p∈∆= +∑  is the Legendre conjugate of the 

function c . 

 

MMR show that the indifference function I  satisfies the conditions for being 
the Legendre conjugate of a convex function c  and that this function is 
uniquely determined. 
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Ghili and Klibanoff [2017]  show that all variational preferences (including 
maxmin) that fit the Ellsberg paradox violate the following “monotonicity in 
mixtures” axiom: 

For all acts , ',f f g   s.t. ('( ))f f ss s∀
 

 ,  and all  1 ' 0α α≥ ≥ ≥ ,  

 

(1 ) ' (1' (1 ') ' ' )(1 ')f f g f gg f gα α α ααα α α+− − −→ ++ −+  ,  

and  the strict-preference version,  

(1 ) ' (1' (1 ') ' ' )(1 ')f f g f gg f gα α α ααα α α+− − −→ ++ −+  . 

This says that if the decision maker likes moving probability weight from g to f,  
she also likes moving it from g  to the dominating act f’.   Comments? 

Note that monotonicity in mixtures limits the agent’s preference for hedging… 

Some forms of “second order variational preferences” (Klibanoff, Marinaci, and 
Mukerji Ema [2005],  Stzralecki section 10.9)  can accommodate both Ellsberg 
and this monotonicity condition. 
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Halevy Ema  [2007]: ambiguity-aversion is highly correlated with not reducing 
objective  compound lotteries 
 

4 “urns”: (the experiment called these “boxes,” implemented via computer) 
 urn 1: 5 red balls and 5 black balls. 
 urn 2: 10 balls, each either red or black, composition unspecified.  
 urn 3: Number of red chosen uniformly from [0,10]. 
 urn 4: (1/2,1/2) randomization between all red and all black. 
 

• If subjects reduce compound lotteries, urns 1, 3, and 4 are equivalent; urn 2 is 
“ambiguous.” 
 

• Subjects bet on red or black from each urn.  
 

• Then given chance to sell their bets using the Becker DeGroot Marshak (BDM) 
mechanism. 
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• The argument that “bid your value” is optimal in BDM relies on reduction 
of compound lotteries and the independence axiom, so may not work well 
for ambiguity-averse subjects. 
 

• But anyone who reduces compound lotteries should have the same certain 
equivalent for bets on 1, 3, and 4. 

 
• Two rounds, second “robustness” round had higher stakes, slightly different 

instructions. 
 
“Subjects who reduced compound lotteries were almost always ambiguity 
neutral, and most subjects who were ambiguity neutral reduced compound 
lotteries appropriately (15–20% of the subjects). The remainder of the subjects 
exhibited violations of ROCL (reduction of compound lotteries) and ambiguity 
aversion, but there is no unique theory that can accommodate the different 
choice patterns in the population. The population is heterogeneous and two 
choice patterns, which account for approximately 70% of all subjects, emerge… 
that currently there is no unique theoretical model that universally captures 
ambiguity preferences.” 
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• The correlation of ambiguity aversion and failure to reduce compound lotteries 
was replicated by Chew, Miao, and Zhong Ema [2017] and Baillon and 
Bleichcrodt  AEJ:Micro [2017]. 

 
• In some situations, people seem to be ambiguity-seeking instead of ambiguity-

averse. 
 
• For example urn 1 has 10 colors,  10% each; urn 2 has same 10 colors, unknown 

proportions. Would you rather “bet on red” in urn 1 or urn 2? Many subjects 
prefer urn 2.    
 

• For moderate and high probability events in the “gains domain,” many people 
prefer objective lotteries and so are “ambiguity averse.” 
 

• However, the prevalence and magnitude of ambiguity aversion depends on the 
elicitation method: people are less ambiguity averse when asked to choose an 
objective “probability equivalent” than when asked for certain equivalents. 



28 
 

• And there is some evidence that people have different ambiguity attitudes in 
the loss domain. 

 
• Baillon and Bleichcrodt  AEJ:Micro [2017] observed a “fourfold pattern of 

ambiguity attitudes: ambiguity aversion for likely gains and unlikely losses 
and ambiguity seeking for unlikely gains and likely losses.” 

 
• For more on this see  the “Ambiguity Attitudes” survey by Trautmann and van 

de Kuilen in Handbook of Judgment and Decision Making [2015]. 
 
• So the question of how to model ambiguity aversion is far from settled… 

 

Reading for next class:  Strzalecki ch. 2, 3.1-3.3 
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Appendix: Weak Certainty Independence   

• Variational preferences imply the following relaxation of certain-independence: 

For all ,f g∈ , (0,1)α ∈ , and constant acts  , '







,  

(1 ) (1 ) ' (1(1 ) ')f fg gαα α α αα α α+ − ⇔ + −+ − + −
  





 



     

 

• Weaker than certainty independence ( f g   iff () )(1 1gfα α α α+ − + −
 

  ) 

which is equivalent to for all ,f g∈ , , (0,1]α β ∈ , and constant acts  , '







, 
() )(1 1gfα α α α+ − + −

 

    iff  (1 )(1 ) ' 'f gβ β β β+ − + −


 



 . 

 

• Setting α β=   here gives weak certainty dependence and translation 
invariance. 


