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Abstract

We study games with strategic complementarities, arbitrary numbers of

players and actions, and slightly noisy payoff signals. We prove limit unique-

ness: as the signal noise vanishes, the game has a unique strategy proÞle

that survives iterative dominance. This generalizes a result of Carlsson and

van Damme (1993) for two player, two action games. The surviving proÞle,

however, may depend on Þne details of the structure of the noise. We provide

sufficient conditions on payoffs for there to be noise-independent selection.
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1 Introduction

In two player, two action games with common knowledge of payoffs, there often exist

two strict Nash equilibria. Carlsson and van Damme [4] showed a remarkable result:

if each player instead observes a noisy signal of the true payoffs, and if the ex ante

feasible payoffs include payoffs that make each action strictly dominant, then as the

noise becomes small, iterative strict dominance eliminates all equilibria but one. In

particular, if there are two Nash equilibria in the underlying complete information

game, then the risk dominant equilibrium (Harsanyi and Selten [13]) must be played

in the game with small noise. Carlsson and van Damme called the noisy game with

dominance regions a �global game.�

Carlsson and van Damme�s result can be reconstructed in two logically separate

parts. First, there is a limit uniqueness result: as the noise in the global game becomes

arbitrarily small, for almost any payoffs there is a unique action that survives iterative

elimination of dominated strategies. The second is a noise independent selection

result: as the noise goes to zero, the equilibrium played (for a given realization of the

payoffs) is independent of the distribution of the noise.

In this paper, we extend Carlsson and van Damme�s model to many player, many

action games.1 Our main assumption is that the actions can be ranked such that there

are strategic complementarities: an increase in one player�s action raises the incentive

for other players to raise their own actions. We show that the limit uniqueness result

generalizes. In contrast, the noise-independent selection result does not hold in

general. We present a counterexample (a two player, four action symmetric game)

in which the equilibrium selected in the limit as the noise goes to zero does depend

on the structure of the noise. We proceed to identify sufficient conditions for noise

independent selection to hold in games with a Þnite number of players.

1Our results also generalize the extensions of Carlsson and van Damme [5] and Kim [15], who

show limit uniqueness in games with Þnitely many identical players and two actions, under a uniform

prior assumption.
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We consider the following setting. An unknown state of the world θ ∈ R is drawn
according to some prior. Each player i observes the signal θ + νηi, where ν > 0 is a

scale factor and ηi is a random variable with density fi. Our main assumptions are

(1) strategic complementarities: for any state θ, each player�s best response is weakly

increasing in the actions of her opponents; (2) for any given opposing action proÞle,

a player�s best response is increasing in the state θ; and (3) dominance regions:

at sufficiently low (high) states θ, each player�s lowest (highest) action is strictly

dominant. Call this global game G (ν). Under these and some technical continuity

assumptions, we show that limit uniqueness holds: as the noise scale factor ν goes

to zero, there is an essentially unique2 strategy proÞle surviving iterated deletion of

dominated strategies in G(ν). In this unique surviving strategy proÞle, each player�s

action is a nondecreasing function of her signal. Moreover, for almost all states

θ, players play a Nash equilibrium of the complete information game with payoff

parameter θ.

We also show that there may not be noise-independent selection: the particular

Nash equilibrium played at a state θ may depend on the noise densities fi. This

implies that different equilibria of a given complete-information game g may be se-

lected, depending on the global game in which g is embedded. We proceed to

identify conditions on the payoffs of complete-information games g that guarantee

noise-independent selection. In particular, if g is a local potential game in which each

player�s payoffs are quasiconcave in her own action, then there is noise-independent

selection at g: a unique Nash equilibrium of g must be played in the limit as the

signal errors shrink, regardless of the global game in which g is embedded.

Local potential games include both the potential games of Monderer and Shapley

[20] and games with low p-dominant equilibria of Morris, Rob and Shin [21] and Kajii

and Morris [14]. In particular, local potential games include (1) all two player, two

action games; (2) all many player, two action games with symmetric payoffs; and (3)

2I.e., for almost all signals.
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all two player, three action games with symmetric payoffs. In each of these cases, we

characterize the selected equilibrium.3

Strategic complementarities are present in many settings, including macroeco-

nomic coordination failures, technology adoption, oligopoly, R&D competition, co-

ordination in teams, arms races, and pretrial bargaining.4 In a number of recent

applied papers, the global games approach has been used to select a unique equilib-

rium. Examples include models of currency crises (Morris and Shin [22]), bank runs

(Goldstein and Pauzner [10]) and debt pricing (Morris and Shin [23]).5 However,

the applications have generally been limited to situations with homogenous agents

and two actions. Our results make it possible to apply the global games approach

to a wider class of games. In particular, our model allows for arbitrary mixtures of

large and small (inÞnitesimal) players, who can choose their actions from arbitrary

compact sets.6 (For ease of exposition, we assume a Þnite number of players Þrst

and later generalize the model to include continua of players.)

This paper also contributes to a large literature on games with strategy comple-

mentarities, also known as supermodular games. These games were Þrst studied as a

class by Topkis [27] and are further analyzed by Vives [29] and Milgrom and Roberts

[18]. The connection between our Þndings and existing results on supermodular

games is discussed in the conclusion.

3In cases (1) and (2), there is own-action quasiconcavity since there are only two actions. In

case (3), noise-independent selection holds even without own-action quasiconcavity.

4See Milgrom and Roberts [18] for a survey of applications.

5Morris and Shin [24] survey such applications and describe sufficient conditions for limit unique-

ness in games with a continuum of identical players and two actions, under slightly weaker technical

assumptions than those assumed in this paper. Their results incorporate other applications of global

games such as Morris and Shin [22, 23].

6Note that any Þnite set of actions is compact. For recent applications of our more general

results, see, e.g., Goldstein [9] (four actions, continuum of players) and Goldsein and Pauzner [11]

(two actions, two continua of players).
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The remainder of this paper is organized as follows. The base model, with a Þnite

number of players, is presented in section 2. We prove limit uniqueness in section

3 and partially characterize the unique equilibrium in section 4. In section 5, we

show that CvD�s noise independence result does not generalize. Section 6 introduces

conditions on the payoffs of the game (own action quasiconcavity and the existence of

a local potential maximizer) that suffice for noise independent selection and discuss

classes of games that satisfy the conditions. In section 7, we show that the limit

uniqueness and partial characterization results generalize to models with large and

small players. Section 8 concludes. All proofs are relegated to the appendix.

2 The Game

The global game G(ν) is deÞned as follows. The set of players is {1, ..., I}.7 A state

θ ∈ R is drawn from the real line according to a continuous density φ with connected
support. Each player i observes a signal xi = θ + νηi, where ν > 0 is a scale factor

and each ηi is distributed according to an atomless density fi with support contained

in the interval
!−1

2
, 1
2

"
. The signals are conditionally independent: ηi is independent

of ηj for all i $= j.
The action set of player i, Ai, can be any compact subset of [0, 1] that contains 0

and 1.8 If player i chooses action ai ∈ Ai, her payoff is ui (ai, a−i, θ); a−i = (aj)j "=i
denotes the action proÞle of i�s opponents.

Let ∆ui(ai, a
!
i, a−i, θ) be the difference in the utility of player i from playing ai

versus a#i against the action proÞle a−i when the payoff parameter is θ.
9 Let us write

7As noted above, the case of a continuum of players is treated in section 7.

8In particular, Ai can be a combination of closed intervals and isolated points. Requiring Ai to

include 0 and 1 is not restrictive since a player�s highest and lowest actions can always be normalized

to 0 and 1, respectively, by rescaling the payoff functions.

9I.e., ∆ui(ai, a
!
i, a−i, θ) = ui(ai, a−i, θ)− ui(a#i, a−i, θ).
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a−i ≥ a#−i if actions are weakly higher under a−i than under a#−i: if aj ≥ a#j for each
j $= i. We make the following assumptions on payoff functions.

A1 (Strategic Complementarities) Aplayer�s incentive to raise her action is weakly

increasing in her opponents� actions: if ai ≥ a#i and a−i ≥ a#−i then for all θ,

∆ui (ai, a
#
i, a−i, θ) ≥ ∆ui

#
ai, a

#
i, a

#
−i, θ

$
.

A2 (Dominance Regions) For extreme values of the payoff parameter θ, the ex-

treme actions are strictly dominant: there exist thresholds θ < θ, where!
θ − ν, θ + ν" is contained in the interior of the support of φ, such that, for
all i and for all opposing action proÞles a−i, ∆ui (0, ai, a−i, θ) > 0 if ai $= 0 and
θ ≤ θ, and ∆ui (1, ai, a−i, θ) > 0 if ai $= 1 and θ ≥ θ.

If each player�s action space is Þnite, we can replaceA2 by the weaker assumption:

A2# (Unique Equilibrium Regions) For extreme values of the payoff parameter,

the equilibrium is unique: there exist thresholds θ < θ in the interior of the

support of θ such that for all θ < θ, the complete information game in which the

payoff function of each player i is ui (·, θ) has a unique equilibrium (a1, ..., aI);

for all θ > θ, the complete information game with payoffs ui (·, θ) has a unique
equilibrium (a1, ..., aI). By Theorem 6 in Milgrom and Roberts [18], ai ≤ ai

for all i. We assume that ai < ai for at least one player i.

Note that under assumption A1, A2# is equivalent to requiring that there is a

unique action proÞle surviving iterated deletion of strictly dominated strategies if

θ /∈ [θ, θ] (Milgrom and Roberts [18]).

A3 (State Monotonicity) Higher states make higher actions more appealing. There

is a K0 > 0 such that for all ai ≥ a#i and θ, θ# ∈ [θ, θ], θ ≥ θ#, ∆ui (ai, a#i, a−i, θ)−
∆ui (ai, a

#
i, a−i, θ

#) ≥ K0(ai − a#i)(θ − θ#).

A4 (Payoff Continuity) Each ui (ai, a−i, θ) is continuous in all arguments.
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If player i�s action space is Þnite, continuity with respect to ai is vacuous. The

following assumption is also vacuous if action sets are Þnite.

A5 (Bounded Derivatives) A player�s utility is Lipschitz continuous in her own

action and her marginal utility of raising her action is Lipschitz continuous in

other players� actions. More precisely, (a) for each θ and a−i, there exists a

constant K1 such that for all ai, a#i,

|∆ui (ai, a#i, a−i, θ)| ≤ K1 |ai − a#i|

(b) for each θ there exists a constant K2 such that for all ai, a#i, a−i, and a
#
−i,%%∆ui (ai, a#i, a−i, θ)−∆ui #ai, a#i, a#−i, θ$%% ≤ K2 |ai − a#i|

&
j "=i

%%aj − a#j%% (1)

A pure strategy for player i is a function si : R→ Ai. A pure strategy proÞle is a

vector of pure strategies, s = (si)
I
i=1. The proÞle s is increasing if si (xi) is weakly

increasing in xi for all i; it is left (right) continuous if each si is left (right) continuous.

ProÞle s# is higher than proÞle s (s# ≥ s) if s#i (xi) ≥ si (xi) for all i and xi ∈ R. A

mixed strategy is a probability distribution over pure strategies, and a mixed strategy

proÞle is an assignment of mixed strategies to players. (Players are not restricted to

pure strategies.)

3 Limit Uniqueness

Theorem 1 shows that as the signal errors shrink to zero, iterative elimination of

strictly dominated strategies selects an essentially unique Bayesian equilibrium of the

game.

Theorem 1 G (ν) has an essentially unique, increasing strategy proÞle surviving it-

erative strict dominance in the limit as ν → 0, i.e., there exists an increasing strategy

proÞle s∗ such that if, for each ν, sν is a strategy proÞle that survives iterative strict

dominance in G (ν), then sνi (xi)→ s∗i (xi) for almost all xi ∈ R.
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Intuition for Limit Uniqueness

To see the intuition, consider the case of a symmetric, two player game with a

continuum of actions (Ai = [0, 1]). Assume the two players have the same distribution

of signal errors and that their prior over θ is uniform over a large interval that includes!
θ − ν, θ + ν". (At the end of this section we explain how the argument works with a
nonuniform prior.) Further assume that a player�s payoff function is strictly concave in

her own action, so that her best response does not jump in response to small changes

in her posterior distribution over the state θ or her opponent�s action. Recall that

a pure strategy is a function from a player�s signal xi to an action ai ∈ [0, 1], and
players can choose mixtures over these pure strategies.

By the assumption of dominance regions (A2), we know that a player who observes

a signal above some threshold must choose ai = 1. This means that no player will

ever choose (i.e., put positive weight on) a pure strategy that lies below the curve in

Figure 1.

ai=1

ai=0

1 dominant

xi

0 dominant

Figure 1:

Knowing this, a player will never choose a strategy below the best response to this

curve. This relies on strategic complementarities (A1): any pure strategy that lies

above the curve would have a best response that lies weakly above the best response

to the curve. So the best response to the curve is a new lower bound on the pure

strategies that can ever be played. We iterate this process ad inÞnitum, and denote
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ai=1

ai=0 xi

S

Figure 2:

ai=1

ai=0 xi

S

Figure 3:

the limit by S (Figure 2). Note that S is a symmetric equilibrium of the game (and

thus survives iterative strict dominance) and that any strategy that survives iterative

strict dominance lies weakly above S, and so S is the smallest strategy surviving

iterative strict dominance.

By a symmetric argument, there must exist a largest strategy surviving iterated

deletion of strictly dominated strategies, which we denote by S, which must lie above

S (see Figure 3). Now if we show that S must equal S, we will have established

the existence of a unique strategy proÞle surviving iterative strict dominance. This

strategy for proving the dominance solvability of a game was discussed in Milgrom

and Roberts [18].
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ai=1

ai=0 xi

S

••  

Figure 4:

Our argument establishing that S and S must coincide exploits the monotonicity

properties A1 and A3. We will note where each property is used in the following

argument. Because of the dominance regions, the strategy S must prescribe playing

0 for low enough signals. Thus, there is a translation of S that lies entirely to the left

of S and touches S at at least one point (see Figure 4). Label this translated curve'S. Let the amount of the translation be δ. Let x∗ be the signal corresponding to the
point at which S and 'S touch. Finally, write a∗ for the best response of a player who
has observed signal x∗ and believes that his opponent is following strategy 'S.
Since both S and S are equilibria, we know that

S (x∗) = S (x∗ + δ) . (2)

But since 'S is everywhere above S, we know by strategic complementarities (A1)
that

a∗ ≥ S (x∗) . (3)

We will now show that with a uniform prior over θ, a∗ must be strictly less than

S (x∗ + δ) unless 'S and S coincide. Since this inequality would contradict (2) and

(3), the two curves must coincide. As S lies entirely between them, it must also

coincide with S; this will show that a unique equilibrium survives iterative strict

dominance.
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With a uniform prior over θ, the posterior of a player with signal x∗ over the

error in her signal, x∗− θ, is exactly the same as the posterior of a player with signal
x∗ + δ over the error in her signal, x∗ + δ − θ. Since the signal error of the player�s
opponent is independent of θ, the player�s posterior over the difference between her

signal error and that of her opponent is also the same if her signal is x∗ as if her

signal is x∗ + δ. But the difference between the two players� signal errors is just the

difference between their signals: (xi − θ) − (xj − θ) = xi − xj. Thus, a player�s

posterior over the difference between her signal and that of her opponent is the same

at x∗ as at x∗+ δ. Hence, since 'S is an exact translation of S, a player who observes
x∗ and thinks that her opponent will play according to 'S expects the same action
distribution as a player who observes x∗ + δ and thinks that the opponent will play

according to S. But assumption A3 implies that a player�s optimal action is strictly

increasing in her estimate of θ, controlling for her opponent�s action distribution.

Hence, if δ > 0, then a∗ must be less than S (x∗ + δ). Since in fact a∗ is at least

S (x∗ + δ), δ must equal zero, and thus S and S coincide if the prior over θ is uniform.

The same property still holds with a general prior, in the limit as the signal errors

shrink to zero. When the signal errors are small, a player can be sure that the true

payoff parameter θ is very close to her signal. Consequently, her prior over θ is

approximately uniform for the small interval of values of θ that are still possible given

her signal. (Recall that the model assumes a continuous prior over θ and a Þnite,

very small support of the signal errors.) Thus, the above argument still holds in the

limit: δ must shrink to zero (and thus S and S must coincide) as the signal errors

become small.

4 A Partial Characterization

Theorem 2 partially characterizes the surviving equilibria of the global game when

the noise is small. It states that in the limit, for all but a vanishing set of payoff
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parameters θ, players play arbitrarily close to some Nash equilibrium of the complete

information game with payoffs ui(·, θ#) for some θ# that is close to θ. The intu-

ition is that for small signal errors, players can precisely estimate both the payoff

parameter θ and, for most signals, what other players will do.10 Since players are

best-responding to beliefs that are arbitrarily precise, the result must be very close

to a Nash equilibrium of the underlying complete information game.

For any ε > 0 and ν > 0, let Q(ε, ν) be the set of parameters θ for which the

surviving strategy proÞles in G(ν) do not all prescribe that players play ε-close to

some common Nash equilibrium of some complete information game whose payoff

parameter is ε-close to θ. More precisely, Q(ε, ν) is the set of parameters θ for

which there is no Nash equilibrium action proÞle a, of the complete information game

with payoffs (ui(·, θ#))Ii=1 for some θ# ∈ [θ − ε, θ + ε], such that for every strategy sν
surviving iterative strict dominance in G(ν), |sνi (θ)− ai| ≤ ε for all i. Theorem 2

shows that for any ε > 0, this set becomes arbitrarily small as ν shrinks to zero.

Theorem 2 In G(ν) in the limit as ν → 0, for almost all payoff parameters θ, players

play arbitrarily close to some Nash equilibrium of the complete information game with

payoffs ui(·, θ#) for some θ# that is arbitrarily close to θ. More precisely, for any ε > 0
there is a ν > 0 such that for any ν < ν, Q(ε, ν) is contained in a Þnite union of

closed intervals of R whose measure is less than ε.11

Theorem 2 has an interesting implication for symmetric games with a continuum

of actions. Suppose that the action played in a locally stable (unstable) equilibrium

of the underlying complete information game with payoff parameter θ monotonically

10With small signal errors, there cannot be many signals at which players are very uncertain about

opponents� possible actions. Otherwise, over a wide range of signals, opponents� strategies would

have to rise considerably for small increases in their signals. (Recall that strategies must be weakly

increasing when the signal errors are small.) This is impossible since the action space is bounded.

11For any ε, the number of intervals in the union is independent of ν. The number is Þnite for

any given ε but may grow without bound as ε shrinks to zero.
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rises (falls) if θ rises.12 Then by Theorems 1 and 2, any strategy proÞle that survives

iterative dominance must almost always prescribe that players play a stable Nash

equilibria of the underlying complete information game. The strategy cannot coincide

with an unstable Nash equilibrium of the underlying game as θ rises since surviving

strategies are nondecreasing in players� signals.

This implication is illustrated in Figure 5. The dashed line shows the set of

Nash equilibria of the underlying complete information games with payoff parameters

equal to xi. The upwards (downwards) sloping segments correspond to the locally

stable (unstable) Nash equilibria of these games. The bold curve illustrates how the

essentially unique surviving strategy proÞle in the global game G(ν) must look in the

limit as ν shrinks. It must coincide with a stable Nash equilibrium except at points

where it jumps from a lower stable equilibrium to a higher one.

 1=ia

xi0

Nash equilibria of
underlying complete
information game Strategy profile surviving

iterative dominance in
small-noise limit of
incomplete information gam 

Figure 5:

12�Locally stable� refers to the traditional notion in which the best response function intersects

the 45 degree line at an slope of less than 1.
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5 Noise Independent Selection: A Counterexam-

ple

In showing limit uniqueness, we began with a given noise structure and scaled it

down by taking the scale factor ν to zero. Our result does not imply that the

selected equilibrium is independent of the structure of the noise (i.e., of the densities

fi).

Carlsson and van Damme�s result implies that noise-independent selection holds

in 2 × 2 games. Their proof method does not rely on properties of the game�s

payoffs. This method can be generalized to additional classes of games, but not

to all. To obtain some intuition, suppose the game has two players, each with the

same Þnite action set A and the same payoff function, and each player�s noise term

has the same symmetric distribution f . Assume that each player follows the same

increasing strategy, s : R → A. As ν → 0, what beliefs does each player have over

the action of her opponent at the critical point where she switches from one action

to another? Recall that for small ν, each player�s posterior belief about the other�s

signal is computed approximately as if she had a uniform prior over θ.

Suppose Þrst that there are two actions, 0 and 1. Consider a symmetric equilib-

rium given by a pure strategy proÞle s satisfying

s (x) =

 0, if x < c

1, if x ≥ c

A player observing signal c will assign probability 1
2
to her opponent�s choosing action

0 and probability 1
2
to her opponent�s choosing action 1. This is independent of the

choice of c and the distribution f . Thus as the noise goes to zero, c must converge

to the payoff parameter at which the player is indifferent between the two actions if

she has a 50/50 conjecture over her opponent�s action. This is simply the symmetric

version of Carlsson and van Damme�s [4] result.
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Now suppose that there are three actions, 0, 1/2, and 1, so that

s (x) =


0, if x < c1
1
2
, if c1 ≤ x < c2
1, if c2 ≤ x

A player observing signal c1 will assign probability 1
2
to her opponent choosing action

0, some probability λ to her opponent choosing action 1
2
, and probability 1

2
−λ to her

opponent choosing action 1; a player observing signal c2 will assign probability 1
2
− λ

to her opponent choosing action 0, probability λ to her opponent choosing action 1
2

and probability 1
2
to her opponent choosing action 1. For any distribution f , we can

choose c1 and c2 so that λ takes any value in [0, 1/2]. In other words, the distribution

of noise does not affect the limiting conjectures that each player may end up having

over her opponent�s actions.

This implies noise independent selection: any proÞle (c1, c2) that is an equilibrium

as ν → 0 under a noise structure f must also be an equilibrium under any other noise

structure f #. To see why, let us distinguish between two cases. In the Þrst, c1−c2 does
not shrink to 0 as ν → 0. This means that λ converges to 1/2: for sufficiently small ν,

a player with signal c1 is indifferent between 0 and 1/2 and thinks that her opponent

will play 0 or 1/2 with equal probabilities; a player with signal c2 is indifferent between

1/2 and 1 and puts equal probabilities on her opponent�s playing 1/2 and 1. These

signals clearly must converge to particular payoff parameters, independent of the

structure of the signal errors (since the player�s beliefs are independent of f).

In the second case, limν→0 (c1 − c2) = 0. Here, λ need not converge to 1/2. But if
we replace the signal error structure f with some other structure f #, we can construct

an equilibrium near the one given by f by simply adjusting the gap between c1 and

c2 so as to keep λ the same under f # as under f . Since the gap between c1 and

c2 asymptotically shrinks to zero, we can make this adjustment without changing

the limit to which both cutoffs converge. Thus, under f # there is a sequence of

equilibria of the global game that converges to the same limit as the sequence of

15



equilibria under f . This explains why there is noise-independent selection. In the

next section, we show that there is noise-independent selection for two player, three

action, symmetric-payoff games, even with general asymmetric noise distributions fi.

With four or more actions, the above property ceases to hold. The set of conjec-

tures a player can have over her opponent�s action can depend on the structure of the

noise. With three actions, each proÞle (c1, c2) gave rise to one unknown, λ, which

could be adjusted arbitrarily by changing the distance between c1 and c2. With four

actions, each proÞle (c1, c2, c3) gives rise to three unknowns. This is illustrated in

Figure 6. The density centered at each threshold ci represents the posterior distrib-

ution over the signal of the opponent of a player whose signal is ci. The area under

the segment marked b (respectively, c) of the posterior of a player with signal c3 is

the probability she assigns to her opponent�s having seen a signal between c1 and c2

(respectively, between c2 and c3).13

a a

b a+c-b

cc

c3c2c1

Figure 6:

13Likewise, the area under the segment marked c (respectively, b) of the posterior of an agent

with signal c3 is the probability she assigns to her opponent�s having seen a signal between c2 and

c3 (respectively, between c1 and c2). By symmetry of the signal errors, the two areas marked a are

equal, as are the two areas marked c. Also by symmetry, the probability that an opponent of an

agent with signal c1 sees a signal between c2 and c3 must equal a+ c− b, as indicated.
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The three probabilities a, b, and c are a minimal set of probabilities that suffice

to determine the action distributions expected by players at each of the thresholds.

However, by altering the proÞle we have only two degrees of freedom: we can change

c3 − c2 and c2 − c1. This means that if we change the noise structure f , we will not
necessarily be able to adjust the proÞle in order to preserve the action distribution

seen by players at each of the thresholds c1, c2, and c3. Thus, if f changes, we

may not be able to keep the players indifferent between adjacent actions simply by

adjusting the distance between the thresholds. It may also be necessary to shift

the entire proÞle in order to change the payoff parameter that each player sees. In

other words, changing the noise structure may alter the signals at which the unique

surviving strategy proÞle jumps between any two actions. This is what it means for

the equilibrium to depend on the structure of the noise.

Theorem 3 There exists a two-person, four-action game satisfying A1-A5 in which

for different noise structures, different equilibria are selected in the limit as the signal

errors vanish.

Theorem 3 is proved by constructing such a game. It is clear from the proof that

noise-independent selection would continue to fail if the payoffs of the game were

perturbed by a small amount.

6 A Sufficient Condition for Noise-Independent Se-

lection

The preceding counter example shows that for certain complete information games,

different ways of embedding them into global games (with different noise structures)

can lead to different predictions. That is, the payoffs of the complete information

game may not tell us which equilibrium will be selected. We now focus on the com-

plete information game corresponding to some parameter θ and identify conditions

17



on payoffs of that game that guarantee that a particular equilibrium will be selected

in the limit regardless of the noise structure. We will show that there is noise-

independent selection in that game if (a) its payoffs are own-action quasiconcave and

(b) it has a strategy proÞle that is a local potential maximizer.

A complete information game g = (g1, ..., gI) is a collection of payoff functions,

with each gi : A→ R. For any player i, letA−i be the set of all opposing action vectors

(aj)j "=i. The complete information game g is own-action quasiconcave if for all i and

opposing action proÞles a−i ∈ A−i and for all constants c, the set {ai : gi (ai, a−i) ≥ c}
is convex.14 It has local potential maximizer a∗ if there is a function v(a) (where

a = (ai)
I
i=1 is an action proÞle), called a local potential function, which is strictly

maximized by a∗, such that against any action proÞle a−i ∈ A−i, if moving i�s action
a bit closer to a∗i raises v, then this also raises i�s payoff. More formally:

DeÞnition 1 Action proÞle a∗ is a local potential maximizer (LP-maximizer) of the

complete information game g if there exists a local potential function v : A→ R such

that v (a∗) > v (a) for all a $= a∗ and, for each i, a function µi : ai → R+ such that

for all ai ∈ Ai and a−i ∈ A−i,

1. if ai > a∗i then there is an a
#
i ∈ Ai that is strictly less than ai, such that for all

a##i ∈ Ai lying in [a#i, ai],

v (a##i , a−i)− v (ai, a−i) ≤ µi (ai) [gi (a##i , a−i)− gi (ai, a−i)] (4)

2. if ai < a∗i then there is an a
#
i ∈ Ai that is strictly greater than ai, such that for

all a##i ∈ Ai lying in [ai, a#i], (4) holds.

The local potential function generalizes the notion of a potential function in Mon-

derer and Shapley [20]. A potential function is a common payoff function v on action

14Unlike concavity, this does not imply that the slope of i�s payoff is decreasing in her action. It

only guarantees that there are no local maxima other than the global maxima (which could be a

single action or an interval).
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proÞles such that the change in a player�s payoff from switching from one action to

another is always the same as the change in the potential function. For local poten-

tial function, we make the weaker requirement that the payoff change from switching

away from a∗ is always less (after multiplying by a constant) than the change in the

potential function.

Importantly, the LP-maximizer property guarantees that a proÞle is a strict Nash

equilibrium if payoffs are own-action quasiconcave:

Lemma 1 If a∗ is an LP-maximizer of the own-action quasiconcave complete infor-

mation game g, then a∗ is a strict Nash equilibrium.

The main result of this section (stated formally at the end) is that in the global

game, if the payoffs at θ are own-action concave and have an LP-maximizing action

proÞle a∗, then in the limit as the signal errors vanish, any strategy proÞle that

survives iterative strict dominance must assign to each player i the action a∗i at the

signal θ. Thus, there is noise-independent selection at θ: the proÞle a∗ depends only

on the payoffs at θ and not on the shape of the signal errors.

An intuition is as follows. For concreteness, let us regard v as God�s utility

function. God is pleased when people take steps that are in their self-interest: �God

helps those who help themselves� (Benjamin Franklin, Poor Richard�s Almanack,

1732). More precisely, a change in a player�s action pleases God (i.e., raises v) if

and only if it raises the player�s own payoff. Not all games have a local potential

function; in those that don�t, God does not have a preference ordering over strategy

proÞles. For example, in matching pennies, God must want player A to play B�s

action but must also want B to play the opposite of A�s action, since both are best

responses. There is no preference ordering with this property.

Suppose for simplicity that the game is symmetric and has a Þnite set of actions

and that a player�s utility depends directly on her signal, rather than on θ (which

is approximately true anyway when the signal errors are small). Suppose also that
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for the complete information game corresponding to each signal x, there is a local

potential function vx(), which is maximized when all players take some action a∗x. vx()

represents God�s preferences over action proÞles when the payoff parameter equals x.

Assume that a∗x is nondecreasing in x. Figure 7 depicts a
∗
x as a function of x.

  ai=1

 ai=0 x

Figure 7:

We can interpret the function depicted in Figure 7 as a strategy proÞle: if player

i�s signal is xi, the proÞle instructs her to play a∗xi. This proÞle is very pleasing to God,

since each player plays according to the action proÞle that maximizes God�s utility if

the payoff parameter equals her signal (which it approximately does for small signal

errors). However, God may not be entirely pleased near the points of discontinuity

of the strategy proÞle, since there might be miscoordination: some players will get

signals above the threshold and others below, so a potential-maximizing strategy

proÞle will not generally be played. But God is pleased as punch if the payoff

parameter θ is at least ν away from any point of discontinuity since then players

coordinate on the potential-maximizing action.

Starting with this proÞle, let us imagine what happens if we let players take turns

in best-responding.15 Critically, God likes it when people best-respond, since she

wants them to do what is in their best interests. Thus, seeing a player best-respond

can only increase God�s pleasure. But since the original proÞle depicted in Figure 7 is

15That is, player 1 switches to her best response, then 2 best responds to the resulting proÞle, and

so on, repeatedly cycling through the players.
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already very pleasing to God, iterative best response cannot lead us to stray far from

this proÞle. In particular, at a distance of more than ν from any discontinuity of

the original strategy proÞle, the proÞle cannot change, since for signals received here

players are already playing the proÞle that is most pleasing to God. Moreover, the

limit of the iterations must be an equilibrium, since the best response to the limit is

the limit itself.16 However, any equilibrium must survive iterative strict dominance.

By limit uniqueness, for small v, all strategies surviving iterative strict dominance

must be close to this limiting equilibrium, which itself must be close to the original

proÞle depicted in Figure 7. This implies that for small ν, players must play close to

the potential-maximizing action in any strategy proÞle that survives iterative strict

dominance, regardless of the noise structure.

Theorem 4 Let s∗ be either the left- or the right-continuous version of the unique

strategy proÞle surviving iterative strict dominance in G(ν) in the limit as ν → 0. If

the complete information game at some payoff parameter θ is own-action quasiconcave

and has an LP-maximizer a∗, then s∗ (θ) = a∗, regardless of the noise structure.

The LP-maximizer conditions of DeÞnition 1 are rather complex. In Sections 6.1

and 6.2, we describe simpler conditions that are sufficient for an action proÞle to be

an LP-maximizer. In Sections 6.3 to 6.5, we apply those results to give a complete

characterization of the LP-maximizer in certain special classes of games.

6.1 Weighted Potential Maximizers

One sufficient condition for a∗ to be a local potential maximizer is that a∗ is a weighted

potential maximizer. This is a slight generalization of Monderer and Shapley [20]�s

notion of an action proÞle that maximizes a potential function for a game.

DeÞnition Action proÞle a∗ is a weighted potential maximizer (WP-maximizer) of

g if there exists a vector µ∈RI+ and a weighted potential function v : A → R

16In this intuition we assume such a limit exists.

21



with v (a∗) > v (a) for all a $= a∗, such that for all i, ai, a#i ∈ Ai and a−i ∈ A−i,

v (ai, a−i)− v (a#i, a−i) = µi [gi (ai, a−i)− gi (a#i, a−i)] .

6.2 p-Dominance Conditions

Let p = (pi)
I
i=1. The notion of p-dominance is a many player, many action game

generalization of risk dominance (see Kajii and Morris [14]). An action proÞle a∗ is

p-dominant if it is a best response for each player i if she puts weight at least pi on

her opponents� playing according to a∗:

DeÞnition 2 Action proÞle a∗ is p-dominant in g if&
a−i

λi (a−i) gi (a∗i , a−i) ≥
&
a−i

λi (a−i) gi (ai, a−i) ,

for all i, ai ∈ Ai and λi ∈ ∆ (A−i) with λi
#
a∗−i
$ ≥ pi.

For low enough p, p-dominance is a sufficient condition for an action proÞle to be

an LP-maximizer.

Lemma 2 (Morris and Ui [25]) If action proÞle a∗ is p-dominant for some p with
I,
i=1

pi < 1, then a∗ is an LP-maximizer.

6.3 Two Player, Two Action Games with Two Strict Nash

Equilibria

Let I = 2 and A1 = A2 = {0, 1}. Let g1 (0, 0) > g1 (1, 0), g1 (1, 1) > g1 (0, 1),

g2 (0, 0) > g2 (0, 1) and g2 (1, 1) > g2 (1, 0), so (0, 0) and (1, 1) are both strict Nash

equilibria. Now let

q∗1 =
g1 (0, 0)− g1 (1, 0)

g1 (0, 0)− g1 (1, 0) + g1 (1, 1)− g1 (0, 1)
q∗2 =

g2 (0, 0)− g2 (0, 1)
g2 (0, 0)− g2 (0, 1) + g2 (1, 1)− g2 (1, 0)
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A weighted potential function v is given by the following matrix:

0 1

0 q∗1 + q
∗
2 q∗1

1 q∗2 1

(0, 0) is a LP-maximizer if q∗1 + q
∗
2 > 1 and (1, 1) is a WP-maximizer if q

∗
1 + q

∗
2 < 1.

Thus, generically, there is a WP-maximizer. The WP-maximizer is the risk dominant

equilibrium in the sense of Harsanyi and Selten [13].

6.4 Many Player, Two Action Games with Symmetric Pay-

offs

Let Ai = {0, 1} for each i and suppose gi (ai, a−i) = g (ai, a−i) depends only on ai and
the number of players j $= i who play 1. Let ξ (n) be the relative payoff to playing

1 versus 0 when n other players play 1. (I.e., ξ (n) = g(1, a−i) − g(0, a−i) for any
a−i in which n players play 1.) Assume strategic complementarities: i.e., ξ (n) is

increasing in n. Let the potential function be

v (a) =


m−1,
k=0

ξ (k) , if the number of players playing 1 in a is m > 0

0, if no players play 1 in a

Also set µi = 1 for all i. One can easily verify that 1 =(1, .., 1) is the WP-maximizer

if
I−1,
k=0

ξ (k) > 0 and that 0 is the WP-maximizer if
I−1,
k=0

ξ (k) < 0. Thus generically in

this class of games, there exists a WP-maximizer.

An equivalent characterization of the WP-maximizer is the following. Suppose

that a player believes that the number of her opponents playing action 1 is uniformly

distributed (between 0 and I − 1). If the action 1 is a best response to that conjec-
ture, then the action proÞle 1 is the WP-maximizer; if 0 is a best response to that

conjecture, then 0 is the WP-maximizer. These are equivalent since 1
I

,I−1
k=0 ξ (k)

is just the relative payoff to playing 1 if one has such beliefs. This case (2 actions,
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many players) was Þrst studied by Carlsson and van Damme [5] and Kim [15], who

obtained the same result using different techniques in more restrictive settings.

This characterization extends naturally to the case of a continuum of players (not

formally treated here). In such games, the formula becomes
- 1
0
ξ (n) dn, where ξ (n)

is the relative payoff to playing 1 versus 0 when a proportion n of the other players

play 1. Such 2-action, symmetric payoff games with continuum of players have been

the focus of the applied literature using global games discussed in the introduction.

6.5 Two Player, Three Action Games with Symmetric Pay-

offs

Let I = 2, A1 = A2 = {0, 1, 2}; g1 (a1, a2) = g2 (a2, a1) = wa1wa2 , where wxx > wyx
for all y $= x and wxy − wx!y > wxy! − wx!y! if x > x# and y > y#. Write ∆xyx!y! for the
net expected gain of choosing action x rather than y against a 50/50 conjecture on

whether the opponent will choose action x# or y#. Thus

∆xyx!y! = wx!x + wx!y − wy!x − wy!y.

Note that ∆xyx!y! = ∆
yx
x!y! and ∆

xy
x!y! = −∆xyy!x!. Note that ∆xyxy > 0 implies that action

proÞle (x, x) pairwise risk dominates action proÞle (y, y). Now we have the following

complete (for generic games) characterization of the LP-maximizers.

� (0, 0) is the LP-maximizer if ∆0101 > 0 and either (1) ∆1212 > 0 or (2) ∆2121 > 0

and∆
02
10

∆0101
<

∆0212
∆2121
.

� (1, 1) is the LP-maximizer if ∆1010 > 0 and ∆1212 > 0.

� (2, 2) is the LP-maximizer if ∆2121 > 0 and either (1) ∆1010 > 0 or (2) ∆0101 > 0 and
∆0210
∆0101

>
∆0212
∆2121
.
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The following example illustrates these conditions:

(g1, g2) 0 1 2

0 4, 4 0, 0 −6,−3
1 0, 0 1, 1 0, 0

2 −3,−6 0, 0 2, 2

(0, 0) is the LP-maximizer, since ∆0101 = 3, ∆2121 = 1, ∆0210 = 2 and ∆0212 = 1. Note

that (2, 2) pairwise risk dominates both (1, 1) and (0, 0), but nonetheless is not the

LP-maximizer.

Proving the above claims (i.e., constructing the local potential functions) involves

tedious algebra. Here, we will just note two cases to illustrate the issues.

Case 1: ∆1010 > 0 and ∆1212 > 0. Consider the following local potential function:

v 0 1 2

0 −∆1010 w01 − w11 −ε
1 w01 − w11 0 w21 − w11
2 −ε w21 − w11 −∆1212

for some small but strictly positive ε. Setting a∗ = (1, 1) and µ1 (0) = µ1 (2) =

µ2 (0) = µ2 (2) = 1, one can verify that the conditions of DeÞnition 1 are satisÞed.

Case 2: ∆0101 > 0, ∆2121 > 0, ∆0210 > 0, ∆0212 > 0 and
∆0210
∆0101

<
∆0212
∆2121
. Consider the following

local potential function:

v 0 1 2

0 ε ε+ λ1 [w (1, 0)− w (0, 0)] λ1 [w02 − w12] + λ2 [w12 − w22]
1 ε+ λ1 [w10 − w00] −λ2∆2121 λ2 [w12 − w22]
2 λ1 [w02 − w12] + λ2 [w12 − w22] λ2 [w12 − w22] 0

for some small but strictly positive ε and positive λ1 and λ2 such that

∆2121
∆0101

<
λ1
λ2
<
∆0212
∆0210

.
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Setting a∗ = (0, 0), µ1 (1) = µ2 (1) = λ1, µ1 (2) = µ2 (2) = λ2, one can verify that the

conditions of DeÞnition 1 are satisÞed.

7 A Continuum Player Generalization

The results stated above are for a Þnite set of players. However, many applications

of global games assume a continuum (or several different continua) of players. We

now show that our limit uniqueness results (Theorems 1 and 2) extend to this case.

Consider the following generalized global game G(ν). The set of players, denoted

I, is partitioned into a Þnite set T of �types� (subsets) of players. Each type contains

either a single player or a continuum of identical players of Þnite measure. This can

capture, e.g., the presence of both large and small players. For each player i ∈ I
let τ(i) ∈ T be the type of i: the element of T to which i belongs. Each player i

observes a signal xi = θ + νηi, where each ηi is distributed according to an atomless

density fτ(i) with support contained in the interval
!−1

2
, 1
2

"
. Signals are conditionally

independent.17

The action set of type-t players, At, can be any compact subset of [0, 1] that

contains 0 and 1. Let O(i) be the set of types of opponents of player i.18 If a type-t

player i chooses action ai ∈ At, her payoff is ut (ai, a−i, θ); a−i = (av)v∈O(i) denotes
the action proÞle of i�s opponents, where av is the cumulative distribution function

of actions chosen by type-v players.19 This implies that opponents of a given type

are interchangeable: the c.d.f. of their actions is all that player i cares about and

all that the action proÞle a−i captures. We assume players always play measurable

17If there is a continuum of players of type t, we assume that the realized distribution of the error

terms (ηi)i∈t in this type is given by ft with probability one.

18It is equal to T unless τ(i) is a singleton, in which case O(i) = T − τ(i).
19That is, av(c) is the proportion of type-v agents who play actions less than or equal to c. If v

is a singleton {j}, then av(c) equals one if j�s action is no greater than c and zero otherwise.
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action proÞles (those that can be expressed as a vector of c.d.f.�s). Note that all

players of a given type have the same action set, signal error distribution, and payoff

function.20

Let ∆ut(ai, a
!
i, a−i, θ) = ut(ai, a−i, θ) − ut(a#i, a−i, θ). Let us write a−i ≥ a#−i

if actions are weakly higher under a−i than under a#−i: if av(c) ≤ av#(c) for each

opposing type v and for all c. We deÞne the distance |at − at#| to be the largest
difference in actions between players with the same rank in the two distributions.21

We make the same assumptions A1 through A5 on payoff functions as in the Þnite

player, where a−i is now understood to be the collection of opponents� cdfs deÞned

above and we replace each ui with uτ(i) and each ∆ui with ∆uτ(i).22 Note that in this

case, assumption A5 now has bite even in Þnite action games, since in this case there

exist pairs a−i and a#−i that are different but arbitrarily close.

The generalizations of Theorems 1 and 2 are now as follows:

Theorem 5 G (ν) has an essentially unique, increasing strategy proÞle surviving it-

erative strict dominance in the limit as ν → 0, i.e., there exists an increasing strategy

proÞle s∗ such that if, for each ν, sν is a strategy proÞle that survives iterative strict

dominance in G (ν), then sνi (xi) → s∗i (xi) for almost all xi ∈ R. Moreover, s∗

prescribes the same strategy for all players of a given type.

Theorem 6 In G(ν) in the limit as ν → 0, for almost all payoff parameters θ, players

play arbitrarily close to some Nash equilibrium of the complete information game with

20Agents of different types can also be identical.

21That is,

%%at − at#%% = sup.k : for all ai ∈ At, either at(ai + k) ≤ at#(ai) or at#(ai + k) ≤ at(ai)/

22In A2, (a1, ..., aI) and (a1, ..., aI) become (ai)i∈I and (ai)i∈I , respectively. The right hand side

of equation (1) becomes K2 |ai − a#i|
,
t∈O(i) |at − at#|.
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payoffs ut(·, θ#) for some θ# that is arbitrarily close to θ. More precisely, for any ε > 0
there is a ν > 0 such that for any ν < ν, Q(ε, ν) is contained in a Þnite union of

closed intervals of R whose measure is less than ε.23

8 Concluding Remarks

8.1 Contagion Arguments

Our limit uniqueness argument generalizes the �infection� arguments of Carlsson and

van Damme [4] and Morris, Rob and Shin [21]. (A precursor to this literature

is Rubinstein [26].) However, providing a general argument for the case of many

actions requires a signiÞcant extension of that logic. The intuition is most closely

related to results in Burdzy, Frankel, and Pauzner [2] and its extension, Frankel

and Pauzner [8].24 These papers study dynamic models with complete information.

There is a continuum of players who switch between two actions. There are frictions,

so that players change actions asynchronously. Instantaneous payoffs depend on

a parameter that follows a Brownian motion. This payoff parameter can reach

�dominance regions� in which either action is strictly dominant.

These papers show that a unique equilibrium survives iterative dominance. While

the details are different,25 there is an analogy. In both cases, players play against

opponents in different but nearby �states�: the value of the Brownian motion at the

moment when the opponent picks her action in those papers and a player�s payoff

23For any ε, the number of intervals in the union is independent of ν. The number is Þnite for

any given ε but may grow without bound as ε shrinks to zero.

24These papers are further extended in Frankel [7] and Levin [16].

25In particular, the vertical axis in Burdzy, Frankel, and Pauzner [2] captures not the opponent�s

action but the population action distribution; the horizontal axis captures the current value of the

Brownian motion rather than the payoff signal; and the curves in that paper slope downwards rather

than upwards.
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signal in our paper. This local interaction gives rise to a contagion effect that begins

in the dominance regions and spreads throughout the state space. The whole state

space is affected because the interaction structure is stationary: the probability of

playing against an agent who sees a state a given distance from one�s own state is

independent of one�s own state.26 Using this property, a translation argument as in

section 3 implies that the lowest and highest strategies surviving iterative dominance

must coincide.

8.2 Supermodular Games

Our global game belongs to the class of supermodular games, Þrst studied by Topkis

[27] and further analyzed by Vives [29] and Milgrom and Roberts [18].27 Arguments

in that literature establish (1) the existence of a largest and smallest strategy proÞle

surviving iterated deletion of strictly dominated strategies; (2) that the largest and

smallest strategy proÞles are themselves equilibria; and (3) that those largest and

smallest strategies are monotonic in players� signals. In global games, an additional

property holds: the largest and smallest strategy proÞles coincide in the limit as the

signal errors vanish. Thus, there is a unique, monotonic equilibrium in the limit.

In the light of this interpretation, it is natural to ask if there still exists exactly

one monotonic equilibrium when the supermodularity assumption (A1) is weakened

(see Athey [1]). The answer may be yes, if a player�s best response rises when her

opponents switch from one monotonic strategy to a higher monotonic strategy. This

26In our paper, a player�s signal asymptotically has no effect on her posterior belief that her

opponent�s signal differs from hers by a given amount. In Burdzy, Frankel, and Pauzner [2], the

stationarity of Brownian motion implies that the payoff parameter a player sees when choosing her

action has no effect on the probability that she will meet an opponent who will have chosen his

action when the payoff parameter will have shifted by a given amount.

27To be more precise, the uniform prior game is a supermodular game and our continuity arguments

establish that non-uniform prior games are close to the supermodular game when noise is small.

29



might be proved using something like the translation argument of section 3. (We

have not checked this rigorously as it is beyond the scope of this paper). However,

without A1 we cannot show that iterative dominance yields a unique equilibrium; in

particular, we cannot rule out the existence of other, non-monotonic equilibria.28

8.3 Noise-Independent Selection and Robustness

Our example in which noise independent selection fails is for a two player, four action

symmetric payoff game. This example is minimal in the sense that noise independent

selection must hold with two players and symmetric payoffs if there are fewer than

four actions. However, noise independent selection can fail in games with three

players if payoffs are asymmetric, as shown by Carlsson [3]. One application is

Corsetti, Dasgupta, Morris and Shin [6], who study models of currency attacks in

which noise-independent selection can fail.

Our noise independent selection results are related to work on the robustness of

equilibria to incomplete information (Kajii and Morris [14]). A Nash equilibrium of

a complete information game is robust to incomplete information if every incomplete

information game in which payoffs are almost always given by that complete infor-

mation game has an equilibrium in which that Nash equilibrium is almost always

played. Kajii and Morris showed that risk dominant equilibria of two player, two

action games and, more generally, p-dominant equilibria of many player, many ac-

tion games with
I,
i=1

pi < 1 are robust to incomplete information. Ui [28] has shown

28Morris and Shin [24] show that among binary action symmetric payoff continuum player games,

a single crossing property on payoffs and a monotone likelihood ratio property on signals implies

the existence of a unique monotonic equilibrium. However, there is no guarantee that there do not

exist non-monotonic equilibria. The bank run game of Goldstein and Pauzner [10] belongs to this

class. By assuming that noise is uniformly distributed, Goldstein and Pauzner [10] are able to show

the existence of a unique equilibrium, which is monotonic, but their argument does not show that

the game is dominance solvable.
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that potential maximizing action proÞles are robust to incomplete information.29 The

global games introduced by Carlsson and van Damme [4] and studied in this paper

represent a different way of adding an intuitively small amount of incomplete informa-

tion about payoffs. However, one can show that if a complete information game has

a robust equilibrium, then that equilibrium must be the noise independent selection.

The sufficient conditions for noise independent selection in this paper are in fact also

sufficient for robustness to incomplete information (see Morris and Ui [25]).

29In the absence of strategic complementarities, the potential maximizing action proÞle actually

satisÞes a slightly weaker notion of robustness to incomplete information.
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Appendix

We Þrst prove Theorems 5 and 6, for the continuum player extension of section 7.

Our main Theorems 1 and 2 for the Þnite player case are then special cases.

Proof of THEOREM 5. The proof has two parts. In the Þrst (Lemma 3), we

consider a simpliÞed game in which a player�s prior over θ is uniform over some very

large interval that includes
!
θ, θ
"
, and her payoff depends directly on her signal rather

than on θ. Because of the prior, if a player�s signal is not in a dominance region,

then her posterior over the difference between her signal and those of other players

is independent of her signal, so we can show that a unique (up to discontinuities),

increasing strategy proÞle survives iterative strict dominance even without taking the

signal error scale factor ν to zero. The argument generalizes the translation argument

used in the intuition.

In the second part of the proof, we show that the original game �converges� to

the simpliÞed one as the signal errors shrink. That is, a player�s posterior over

the differences between her signal and those of other players becomes approximately

independent of her own signal (Lemma 4). Moreover, in the limit it does not matter

whether a player�s payoffs depends on her signal or on θ since these become arbitrarily

close. As a result, the strategy proÞles surviving iterative dominance in the original

and simpliÞed games converge to each other (Lemma 5).

For each type t ∈ O(i), let zt be the realized c.d.f. of normalized differences

between signals of type-t players and the signal of i: zt(c) is the proportion of players

j ∈ t for whom xj−xi
ν

≤ c.30 Let Z−i be the set of all vectors of the form (zt)t∈O(i).

Let 'πτ(i) (z |xi, ν ) be player i�s density over z ∈ Z−i in the game G(ν) given i�s signal
xi and the scale factor ν.

The simpliÞed game is deÞned as follows. Let the state θ be drawn uniformly

30The same deÞnition of zt is used if t is a singleton type {j}: zt(c) equals one if xj−xiν ≤ c and
zero else.
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from some large interval that includes [θ−ν, θ+ν] and let player i�s payoff depend on
her signal xi instead of the state. Thus uτ(i) (ai, a−i, xi) is player i�s payoff if action

proÞle (ai, a−i) is chosen and she observes signal xi. Note that with a uniform prior

on states, player i�s posterior 'πτ(i) (z |xi, ν ) is independent of her signal xi and the
scale factor ν, so we can write it as πτ(i)(z).

Lemma 3 shows that each game G∗ (ν) has an essentially unique strategy proÞle

surviving iterative strict dominance, which is weakly increasing, and that the strate-

gies assigned to players of a given type are the same except perhaps at a countable

set of common points of discontinuity.

Lemma 3 For each ν > 0 there exists a weakly increasing strategy proÞle s∗ν such

that any proÞle s that survives iterative strict dominance in G∗(ν) must (a) be weakly

increasing in xi for all i and (b) agree with s∗νi except perhaps at the (at most countably

many) signals xi at which s∗νi (xi) is discontinuous. Moreover, s
∗ν prescribes the same

strategy for all players of a given type.

Proof. For any player i of type t, let Z−t be the set of all possible vectors

z = (zt)t∈O(i) of normalized differences between i�s opponents signals and her own

signal. For any pure strategy proÞle s = (st)t∈T (which, as the notation indicates,

prescribes the same strategy st for all players of type t), let a−i(s, xi, z; ν) denote the

opposing action distribution that a player i faces if she sees the signal xi, others play

according to s, z is the vector of normalized signal differences, and ν is the scale

factor. More precisely, a−i(s, xi, z; ν) = (at#)t!∈O(i) where at#(c) is the proportion of

players j ∈ t# for whom the prescribed action st!(xi + νzj) is no greater than c.

Let BRt(s, xi) be the set of optimal actions for a player i of type t who sees signal

xi and whose opponents play according to the strategy s = (st)t∈T :

BRt(s, xi) = argmax
at∈At

Eπt [ut (ai, a−i(s, xi, z; ν), xi)]

where for any function h(z), Eπt [h(z)] =
-
z∈Z−i πt (z)h(z)dz. Note that by assump-

tion A4 and the theorem of the maximum, BRt must be upper hemicontinuous in xi,
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even if s is discontinuous. (Because of the noise in the signals, i�s posterior over the

distribution of opponents� actions changes continuously in her signal).

We Þrst do iterated dominance to establish a lower bound on the actions players

can choose for each signal. We deÞne a sequence of strategy proÞles sk ≡ #skt $t∈T for
k = 0, 1, . . . as follows. Let s0 be the constant proÞle in which all players play 0 for

any signal. Let sk+1 be the smallest best response to sk: sk+1t (xi) = minBRt(s
k, xi).

A1 andA3 imply that (i) skt (xi) is weakly increasing in xi for all (t, k) and (ii) s
k
t (xi)

is weakly increasing in k for all (t, xi). A2 implies skt (θ) = 0 and s
k
t

#
θ
$
= 1 for all

types t and for k ≥ 1. Let s be deÞned by st (xi) = limk→∞ skt (xi). A player i seeing
signal xi must choose an action that is at least sτ(i) (xi). By induction, st is weakly

increasing. Since BRt is upper hemicontinuous and (by an induction argument)

minBRt(s, xi) is weakly increasing in xi, st (xi) must be left continuous.

We next construct an upper bound on players� actions. For any λ ∈ R, let 0s be
the right-continuous version of s (i.e., 0st(xi) = limε↓0 st(xi + ε)) and let sλ = (sλt )t∈T
be the translation of 0s to the left by λ: for all t and xi, sλt (xi) = 0st(xi + λ). Let

λ0 be large enough that, for all t, s
λ0
t (θ) = 1; since s

λ0 is weakly increasing, a player

of type t with signal xi will never play an action that is greater than s
λ0
t (xi). Now

let λk be the smallest number such that no type-t player who expects others to play

according to sλk−1 will ever play above sλkt :

λk = inf{λ : sλt (xi) ≥ maxBRt(sλk−1 , xi) ∀t, xi}

A1 and A3 imply that λk is weakly decreasing in k. Let λ∞ = limk→∞ λk, and

denote s = sλ∞. (Note that λ∞ ≥ 0 since the iterations cannot go beyond s.)
By construction, a type-t player who sees signal xi will never play an action that

exceeds st: st(xi) ≥ maxBRt(s, xi) for all xi. We will show by contradiction that

λ∞ = 0: s and s coincide. This means that the strategies in any proÞle that survives

iterative dominance in G∗(ν) must be weakly increasing functions that agree with s

at all points of continuity. This will prove the lemma since a monotonic function can

have at most a countable number of discontinuities.
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Claim 1 There is a player i and a signal x∗i such that si(x
∗
i −ε) < maxBRi(s, x∗i +ε)

for all ε > 0.

Proof Since s is the limit of the iterations from the left, for all ε > 0 there is a player

i and a signal xi such that si(xi − ε) < maxBRi(s, xi). (Otherwise let ε# be such

that there is no i and xi for which si(xi− ε#) < maxBRi(s, xi); deÞne λ#∞ = λ∞− ε#.
The limit of the iterations must be no greater than λ#∞, a contradiction.) Since the

number of players is Þnite and each si is weakly increasing, there must be a particular

player i such that for all ε > 0, si(xi(ε)−ε) < maxBRi(s, xi(ε)) for some xi(ε). DeÞne
x#i(ε) = xi(2ε)− ε; we know that for all ε > 0, si(x#i(ε)− ε) < maxBRi(s, x#i(ε) + ε).
Since for all ε, x#i(ε) ∈ [θ, θ], there is a convergent subsequence of x#i(ε) as ε→ 0; let

x∗i be the limit. For all ε > 0, si(x
∗
i −ε) < maxBRi(s, x∗i +ε). (Why: we can take ε#

small enough that si(x#i(ε
#)− ε/2) < maxBRi(s, x#i(ε#)+ ε/2) and |x#i(ε#)− x∗i | < ε/2;

hence, si(x#i(ε
#)−ε/2) ≥ si(x∗i−ε) andmaxBRi(s, x#i(ε#)+ε/2) ≤ maxBRi(s, x∗i+ε).)

Q.E.D.(Claim 1)

We claim that if λ∞ > 0, then for some ε > 0,

maxBRi(s, x
∗
i + ε) ≤ maxBRi(0s, x∗i + λ∞ − ε) ≤ 0si(x∗i + λ∞ − ε) = si(x∗i − ε)

Only the Þrst inequality is nontrivial. In the two cases (i.e., i getting signal x∗i + ε

and expecting others to play s vs. i getting signal x∗i +λ∞−ε and expecting others to
play 0s), the distributions of action proÞles i expects to see become identical as ε→ 0.

Let

0ai = maxBRi(0s, x∗i + λ∞ − ε)
ai = maxBRi(s, x

∗
i + ε)

We must show that ai ≤ 0ai. We know that 0ai is strictly better than any higher
action if i gets signal x∗i + λ∞ − ε and expects others to play 0s: for all ai > 0ai,
Eπt(∆uτ(i)(ai,0ai, a−i(0s, 0xi, z; ν), 0xi) < 0 where 0xi = x∗i + λ∞ − ε. We claim that

Eπt(∆uτ(i)(ai,0ai, a−i(s, xi, z; ν), xi)) < 0 where xi = xi+ε. (This will imply ai ≤ 0ai.)
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Since the action distributions played by i�s opponents in the two situations differ by

the order of ε while the payoff parameter differs by λ∞ − 2ε, assumptions A3 and
A5 imply:

Eπt(∆uτ(i)(ai,0ai, a−i(s, xi, z; ν), xi))−Eπt(∆uτ(i)(ai,0ai, a−i(0s, 0xi, z; ν), 0xi)
≤ −K0(ai − 0ai) (λ∞ − 2ε) +K2(ai − 0ai) |T | o(ε)
→
ε→0

−K0(ai − 0ai)λ∞
which is negative if λ∞ > 0. (|T | denotes the number of types in the game and o(ε)
denotes a term that is on the order of ε.) This establishes that λ∞ = 0.

When all action sets are Þnite, assumption A2 can be replaced by A2# by use of

the following claim.

Claim 2 Suppose all action sets are Þnite and assume A1, A2#, A3, A4, and A5.

Let a = (at)t∈T and a = (at)t∈T be the unique Nash equilibrium strategy proÞles of

the underlying complete information game for payoff parameters θ < θ and for θ > θ,

respectively.31 There is a constant K such that for any weakly increasing equilibrium

strategy proÞle s of G∗(ν) that assigns the same strategy to all players of a given type,

a must be played for all signals below θ# = θ−Kν and a must be played for all signals
above θ

#
= θ +Kν.

Proof. For any positive integer n, consider the signal vector given by xi = θ−nν
for all i. Since a is the unique Nash equilibrium when payoffs equal θ−nν, the only
way that s can prescribe something other than a at this signal vector is if some

31As implied by the notation, these unique equilibria must prescribe the same action for all

players of a given type. Else the players of a given type would be indifferent between two different

actions. But then if all switched to (say) the higher of these actions and we then performed iterative

best response in the complete information game, we would (by A1) converge to a different Nash

equilibrium in which all players� actions were weakly higher and some were strictly higher. This

contradicts the assumption that there is a unique Nash equilibrium.
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player i is uncertain (expecting s to be played) about the action played by one of her

opposing types: if, for some t ∈ O(i), st(x) takes on more than one value for signals
x ∈ [θ− (n+ 1)ν, θ − (n− 1)ν].32 Since s is monotonic and each action set is Þnite,

this condition can hold for at most a Þnite set of positive integers n. In particular,

if x < θ# = θ − ν,t∈T |At| then st (x) = at for all t. Likewise, a must be played for
signals above θ

#
= θ + ν

,
t∈T |At|. Q.E.D.(Claim 2)

We now iterate from above to obtain an upper bound on the set of equilibrium

strategies. For all t, let 0s0t (xi) = 1 for all xi ∈ R and let sk+1t (xi) = maxBRt(s
k, xi).

Let 0s be deÞned by 0st (xi) = limk→∞ 0skt (xi). A player i seeing signal xi must choose
an action that is at most 0sτ(i) (xi). By induction, 0st is weakly increasing and since 0s
is a best response to itself, it is an equilibrium of G∗(ν). By Claim 2, under 0s players
must play a for signals below θ# and a for signals above θ

#
.

For any λ ∈ R, let sλ denote the translation of the right-continuous version of s to
the left by λ. Let λ0 be large enough that, for all t and signals xi, s

λ0
t (xi) ≥ 0st (xi).

(λ0 = θ
#− θ# will suffice.) Players cannot choose actions that lie above sλ0 . The rest

of the proof proceeds as before: we iterate from the left using translations sλk until

we reach a limit, and prove (using identical arguments) that this limit must equal s.

Q.E.D.Lemma 3

Lemma 4 shows that as ν → 0, players� posteriors over normalized signal differ-

ences G(ν), 'πτ(i) (z |xi, ν ), converge to the posteriors in G∗(ν). For any probability
measure µ on Z−i, let Ψε (µ) be the set of probability measures that differ from µ by

no more than ε for any subset of Z−i:

Ψε (µ) ≡
1
µ# : sup

S⊂Z−i
|µ (S)− µ# (S)| ≤ ε

2
.

32Because of the bounded supports, player i knows that all other players� signals will be within ν

of xi = θ − nν.
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Lemma 4 For any ε > 0 and compact interval B = [b0, b1] such that [b0 − ν, b1 + ν] is
contained in the interior of the support of φ, there exists ν > 0 such that 'πτ(i) (· |xi, ν ) ∈
Ψε
#
πτ(i) (·)

$
for all xi ∈ B and all ν ≤ ν.

Proof. Denote

ρ (ν) = sup
xi∈B

max
θ!∈[− 1

2
, 1
2 ]
φ (xi + νθ

#)

min
θ!∈[− 1

2
, 1
2 ]
φ (xi + νθ

#)
.

Since the support of φ includes [b0 − ν, b1 + ν], φ has a strictly positive minimum
value over this interval. Since φ is also continuous, maxθ!∈[−1

2
, 1
2 ]
φ (xi + νθ

#) −
minθ!∈[− 1

2
, 1
2 ]
φ (xi + νθ

#) converges to 0 as ν → 0 uniformly for xi ∈ [−b, b]. Hence,

ρ (ν) = sup
xi∈B

1 + max
θ!∈[− 1

2
, 1
2 ]
φ (xi + νθ

#)− min
θ!∈[−1

2
, 1
2 ]
φ (xi + νθ

#)

min
θ!∈[− 1

2
, 1
2 ]
φ (xi + νθ

#)

→ 1 as ν → 0.

Since the support of each fi is contained in the interval
!−1

2
, 1
2

"
, for all xi ∈ B,

πi (z)

ρ (ν)
≤ 'πi (z |xi, ν ) ≤ ρ (ν)πi (z) .

since

If t is a singleton type {j}, let Γt(zt, θ, xi; ν) = ft
9
xj−θ
ν

:
. If t is a continuum

type, let Γt(zt, θ, xi; ν) be the Dirac delta function [12, p. 276] that equals inÞnity if zt

is the c.d.f. of normalized signal differences between the signals of type-t players and

the signal xi if the distribution of type-t signal errors is ft and the true parameter is

θ. Since zt(c) is the proportion of players j ∈ t for whom xj−xi
ν

≤ c or, equivalently,
for whom j�s signal error xj−θ

ν
is no greater than c + xi−θ

ν
, Γt(zt, θ, xi; ν) = ∞ iff

z#t(c) = ft(c +
xi−θ
ν
) for all c and Γt(zt, θ, xi; ν) = 0 otherwise. Letting θ# = −xi−θ

ν
,
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Γt(zt, θ, xi; ν) = Γt(zt, θ
#, 0; 1). By Bayes�s Rule,

'πτ(i) (z |xi, ν ) = Pr(z&xi)

Pr(xi)
=

∞-
θ=−∞

φ (θ) fi
#
xi−θ
ν

$ ;
t∈O(i)

Γt(zt, θ, xi; ν)dθ

∞-
θ=−∞

φ (θ) fi
#
xi−θ
ν

$
dθ

(5)

=

∞-
θ!=−∞

φ (xi + νθ
#) fi (−θ#)

;
t∈O(i)

Γt(zt, θ
#, 0; 1)dθ#

∞-
θ!=−∞

φ (xi + νθ
#) fi (−θ#) dθ#

(6)

Thus, for any S ⊂ Z−i,%%%%%%
<
z∈S

'πi (z |xi, ν ) dz − <
z∈S

πi (z) dz

%%%%%% ≤
<
z∈S

πi (z) dz

max=ρ (ν)− 1, 1

ρ (ν)
− 1
>

≤ max
=
ρ (ν)− 1, 1

ρ (ν)
− 1
>
.

Q.E.D.Lemma 4

Lemma 5 uses the above results to show that as the signal noise shrinks, players�

behavior in G(ν) converges to the unique outcome of G∗(ν). Write sν (sν) for the

left (right) continuous version of s∗ν , the essentially unique equilibrium of the game

G∗ (ν). By Lemma 3, sν and sν each prescribes the same strategy for all players of

a given type.

Lemma 5 For any ε > 0, there exists ν > 0 such that for all ν ≤ ν and any strategy
proÞle sν of G (ν) surviving iterated deletion of strictly dominated strategies,

sνi (xi + ε) ≥ sνi (xi) ≥ sνi (xi − ε)

Proof. We Þrst reiterate some deÞnitions from the proof of Lemma 3. For any

player i of type t, Z−t is the set of all possible vectors z = (zt)t∈O(i) of normalized

differences between i�s opponents signals and her own signal. For any pure strategy

proÞle s = (st)t∈T (which prescribes the same strategy st for all players of type
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t), a−i(s, xi, z; ν) is the opposing action distribution that player i faces if she sees

the signal xi, others play according to s, and z is the vector of normalized signal

differences.

We begin with a claim.

Claim 3 Let s = (st)t∈T be a weakly increasing strategy proÞle satisfying

Eπt [∆ut (st (xi) , ai, a−i(s, xi, z; ν), xi)] ≥ 0

for all i ∈ I, xi ∈ R and ai ≤ st (xi) (where t is the type of i).
Then, for any ε > 0 and for any compact interval B ⊂ R, there exists δ > 0, such

that

Eπ!t [∆ut (st (xi) , ai, a−i(s, xi, z; ν), xi + ε)] > 0

for all i ∈ I, π#t ∈ Ψδ (πt), xi ∈ B and ai < st (xi).

Proof. For all δ > 0 and π#i ∈ Ψδ (πi),

Eπ!t [∆ut (st (xi) , ai, a−i(s, xi, z; ν), xi + ε)]

≥
 (1− δ)Eπt [∆ut (st (xi) , ai, a−i(s, xi, z; ν), xi + ε)]
+δ∆ut (st (xi) , ai,0−i, xi + ε)



≥


(1− δ)Eπt

 ∆ut (st (xi) , ai, a−i(s, xi, z; ν), xi + ε)
−∆ut (st (xi) , ai, a−i(s, xi, z; ν), xi)

 dz
+(1− δ)Eπt [∆ut (st (xi) , ai, a−i(s, xi, z; ν), xi)]
+δ∆ut (st (xi) , ai,0−i, xi + ε)


By A3, we can Þnd a constant K2 > 0 such that for all xi in the compact interval

B, the Þrst term is at least (1− δ)K2ε (st (xi)− ai). The second term is at least 0, by
the premise of the lemma. ByA5 there is a constantK3 such that the third term is at

least −δK3 (st (xi)− ai). Thus the sum is at least ((1− δ)K2ε− δK3) (st (xi)− ai).
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This expression must be positive (for all ai < st (xi)) if we choose δ such that δ
1−δ <

K2ε
K3
. Q.E.D.Claim 3

By construction of s, we know that for all b ≥ ε, i = 1, ..., I and xi ∈ R

Eπt [∆ut (st (xi − b) , ai, a−i(s, xi − b, z; ν), xi − b)] ≥ 0

for all ai ≤ st (xi − b). This implies (by Lemma 4 and Claim 3) that there exists 'ν
such that for all ν ≤ 'ν, b ≥ ε and xi ∈ R,

E'πt(·|xi,ν )
F
∆ut

=
st (xi − b) , ai, a−i(s, xi − b, z; ν), xi −

b

2

>G
≥ 0

for all ai ≤ st (xi − b).33 This implies (changing notation only) that<
z∈Z−i

∞<
θ=−∞

'φt (z, θ|xi, ν)∆ut=st (xi − b) , ai, a−i(s, xi − b, z; ν), xi − b2
>
dzdθ ≥ 0

for all ai ≤ st (xi − b), where

'φt (z, θ|xi, ν) = φ (θ) fi
#
xi−θ
ν

$ ;
v∈O(i)

Γv(zv, θ, xi; ν)

∞-
θ=−∞

φ (θ) fi
#
xi−θ
ν

$
dθ

is the density of (z, θ) given xi. Now if ν < b
2
we have by assumption A3 that<

z∈Z−i

∞<
θ=−∞

'φt (z, θ|xi, ν)∆ut (st (xi − b) , ai, a−i(s, xi − b, z; ν), θ) dzdθ ≥ 0 (7)

for all ai < st (xi − b). Set ν ≤ ν = min
.
ε
2
,'ν/. Consider the strategy proÞle s#

where s#t (xi) = st (xi − b). By equation 7, we know that, in G (ν), each player�s best
response to s# is always at least s#.

33Assuming A2, Claim 3 implies this for xi − b ∈ [θ, θ]. For xi − b not in this interval, the result
holds since st(xi− b) must be either 0 or 1, depending on which is dominant at the payoff parameter
xi − b. Assuming A2# instead of A2, Claim 3 implies this for xi − b ∈ [θ# − 'ν, θ# + 'ν], where θ# and
θ
#
are deÞned near the end of the proof of Lemma 3. Below θ#, a must be played; above θ

#
, a must

be played. Thus, changing the distribution of z leaves the integral unchanged.
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Since this is true for any b ≥ ε, this ensures that iterated deletion of strictly

dominated strategies (using translations of s as in the proof of lemma 3), cannot lead

below sνt (xi − ε). A symmetric argument (using a symmetric version of Claim 3,

whose proof is analogous) gives the upper bound. Q.E.D.Lemma 5

Finally, we show that as the signal errors shrink, the essentially unique surviving

strategy proÞle in the simpliÞed game G∗(ν) converges to a limit.

Lemma 6 There is a weakly increasing strategy proÞle s, which prescribes the same

strategy for all players of a given type, such that for any ε > 0 there is a ν > 0 such

that for all ν < ν and any strategy proÞle sν surviving iterative strict dominance in

G∗(ν), the maximum horizontal distance between sν and s is ε: i.e., sνi (xi + ε) >

si(xi) > s
ν
i (xi − ε) for all i and xi.

Proof. To prove this, we will show that the surviving proÞles are a Cauchy

sequence. Fix ε > 0 and consider any ν #, ν ##, such that ν > ν # > ν ##, where ν will

be speciÞed later. Let sν
!
and sν

!!
survive iterative strict dominance in G∗(ν #) and

G∗(ν ##), respectively. (Note that these are equilibria of the corresponding games.)

We will show that the maximum horizontal distance between sν
!
and sν

!!
is ε: i.e.,

sν
!!
t (x+ ε) > s

ν!
t (x) > s

ν!!
t (x− ε) for all types t and signals x.

We will transform sν
!
into a strategy proÞle 0s and then do iterative dominance in

G∗(ν ##) using translations of 0s, and show that the limit (which bounds sν!!) is within
ε of sν

!
.

We deÞned Q1(ν, ε#) above to be such that in any surviving proÞle in G∗(ν),

each player i who sees a signal that is not in Q1(ν, ε#) can bound the action of each

opponent j within an interval of length ε#. By Claim 5 below, there is a ν > 0 such

that if ν # < ν, Qν
!
1 = Q1

9
ν #, ε

2
K0

K2I

:
is contained in a Þnite union of closed intervals

of the form [2nν #, 2(n + 1)ν #] (each of length 2ν#) for integer n; the measure of this

union is less than ε
2
.
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We transform sν
!
into 0s as follows. For signals x outside of Qν!1 , let 0st(x) = sν!t (x).

For signals in any maximal interval34 [z − δ, z + δ] in Qν!1 , we compress the segment
of sν

!
horizontally by the ratio of ν ## and ν # and patch the remaining gaps with a

constant action proÞle. More precisely, for each signal x ∈ [z − δ, z + δ], let:

0st(x) =


sν
!
t (z − δ) if x ≤ z − δ ν

!!
ν!

sν
!
t (z + (x− z) ν

!
ν!! ) if x ∈

!
z − δ ν!!

ν! , z + δ
ν!!
ν!
"

sν
!
t (z + δ) if x ≥ z + δ ν

!!
ν!

We now perform iterative dominance in G∗(ν ##) using translations of 0s from the

left, yielding an bound from the left on the proÞles surviving iterative dominance

in the game. Suppose the iterations stop at a horizontal distance λ to the left of0s. Let this translation be sλ. We Þrst assume that both that the action space

is [0, 1] and the strategies surviving iterative dominance are continuous functions of

players� signals, and the best-response correspondence is always single-valued. Later

we consider the general case. Under these assumptions, there is a type t and a signal

x such that sλt (x) equals BR
ν!!
t (s

λ, x), the best response to sλ in the game G∗(ν ##) for

a type-t player with signal x.

First suppose x+ λ /∈ Qν!1 . This means that x corresponds to the part of sλ that
was not altered in the construction of 0s. In this case we show directly that the bound
sλ is within a horizontal distance of ε from sν

!
. Suppose i got the signal x+λ in the

game G∗(ν #) and expected her opponents to play according to sν
!
. Then she could

place each opponent j�s action within an interval Ij of length ε
2
K0

K2I
. By construction,

if i gets signal x in G∗(ν ##) and expects others to play proÞle sλ, she can place each

opponent�s action within the same interval Ij. (By Claim 5 below, each interval in

Qν
!
1 is of measure at least 2ν

# and ν ## < ν #. Thus, by construction of sλ, the signals

at which an opponent j plays actions outside of Ij can also be ruled out if i sees

signal x.) This means that in the two cases (i.e., i getting signal x+λ in G∗(ν #) and

34More precisely, [z − δ, z + δ] is a union of contiguous intervals in Qν!1 that is not contiguous to

any other interval in Qν
!
1 .
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expecting others to play sν
!
vs. i getting signal x in G∗(ν ##) and expecting others to

play sλ), i expects approximately the same opponents� actions; more precisely, each

action differs by no more than ε
2
K0

K2I
, the length of Ij. By assumptions A3 and A5,

the change in ut following a unit change in any opposing type�s action is no more

than K2 while the change in ut following a unit change in θ (which in G∗ equals the

player�s signal) is at least K0. Thus, for sλt (x) to be a best response a player who

expects sλ, the difference λ in signals between the two cases must be less than ε.

Now suppose x + λ ∈ Qν!1 . Denote the maximal interval in Qν
!
1 in which this

signal lies by [z − δ, z + δ]. We can assume WLOG that x+ λ ∈ !z − δ ν!!
ν! , z + δ

ν!!
ν!
"
;

otherwise, x must on a horizontal part of sλ, but the iterations cannot have been

blocked at such a point. We now consider the signal y = z + (x+ λ− z) ν!
ν!! . This

is the reverse-translation of x+ λ and has the property that sλt (x) = s
ν!
t (y). We will

argue that the action distribution seen in each case is almost the same. A player

seeing y and playing against sν
!
in G∗(ν #) knows that her opponents� signals will be

in the interval Y = [y − ν #, y + ν #]. We split Y into two parts. For opponents�

signals in the part of Y that lies in [z− δ, z+ δ], the actions prescribed by sν! are, by
construction, identical to the actions prescribed by sλ at the corresponding signals in

G∗(ν ##). For opponents� signals lying outside, these signals lie in an interval of length

at most ν # that is contained in the complement of Qν
!
1 . We know that for each type

t, the actions prescribed by sν
!
t for such signals all lie in an interval It of size at most

ε
2
K0

K2I
. By construction of sλ, for each player of type t, the actions prescribed by sλ

for the corresponding signals in G∗(ν ##) are also in It. Thus, the above argument

implies that |x− y| < ε: sν!! cannot anywhere lie more than ε to the left of sν!. This
completes the proof for the continuous case.

We now explain how the proof changes in the general case. The construction and

iterations are as before. However, we let sν
!
be the right-continuous version of the

essentially unique surviving proÞle in G∗(ν #). This ensures that its transformation0s is also right-continuous, so the limit sλ is an upper bound on strategies chosen in
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G∗(ν ##). We also can no longer assume that sλt (x) = BR
ν!!
t (s

λ, x) for some t and x.

We can say only that (a) sλ lies above its highest best response: a type-t player who

sees signal x will never play an action that exceeds the right continuous version of

sλt ; and (b) s
λ cannot be translated to the right without falling below its highest best

response somewhere: more precisely, as in Claim 1, there must be a type t and a

signal x such that sλt (x− ε#) < maxBRν!!t (sλ, x+ ε#) for all ε# > 0.35
For ε# ≈ 0, let x − ε# in the game G∗(ν ##) with proÞle sλ correspond to y − ε# in

G∗(ν #) with proÞle sν
!
: players with these signals Þnd themselves at corresponding

points on the two action proÞles and thus are prescribed to take the same action. We

claim that if λ > ε, then for ε# very small relative to λ,

maxBRν
!!
t (s

λ, x+ ε#) ≤ maxBRν!t (sν
!
, y − ε#) ≤ sν!t (y − ε#) = sλt (x− ε#)

Only the Þrst inequality is nontrivial. Between the two cases (i.e., a player getting

signal x + ε# in G∗(ν ##) and expecting others to play sλ vs. a player getting signal

y−ε# inG∗(ν #) and expecting others to play sν!), the possible actions of each opponent
differ by no more than ε

2
K0

K2I
+ o(ε#). Let

a#t = maxBR
ν!
t (s

ν! , y − ε#)
aλt = maxBR

ν!!
t (s

λ, x+ ε#)

We must show that aλt ≤ a#t. By deÞnition, a#t is strictly better than any higher

action if a type-t player i gets signal y − ε# in G∗(ν #) and expects others to play sν!:
for all at > a#t, Eπt(∆ut(at, a

#
t, a−i(s

ν! , y − ε#, z; ν #), y − ε#) < 0, where the expectation
is based on the signal distribution in G∗(ν #). We claim that a#t is also strictly better

than any higher action if a type-t player i gets signal x + ε# in G∗(ν ##) and expects

others to play sλ: for all at > a#t, Eπt(∆ut(at, a
#
t, a−i(s

λ, x + ε#, z; ν ##), x + ε#)) < 0.

Since the possible actions of each of i�s opponents differ by no more than ε
2
K0

K2I
+o(ε#)

in the two situations while the payoff parameter differs by at least λ − 2ε# − ε/2,

35In the general case, the best response is a correspondence rather than a function.
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assumptions A3 and A5 imply:

Eπt(∆ut(at, a
#
t, a−i(s

λ, x+ ε#, z; ν ##), x+ ε#))

−Eπt(∆ut(at, a#t, a−i(sν
!
, y − ε#, z; ν #), y − ε#))

≤ −K0(at − a#t) (λ− 2ε# − ε/2) +K2(at − a#t)I
=
ε

2

K0

K2I
+ o(ε#)

>
→
ε!→0

K0(at − a#t) (ε− λ)

which is negative if λ > ε. This proves the lemma. Q.E.D.(Lemma 6).

Theorem 5 follows immediately from this result and Lemmas 3, 5 and 6.Q.E.D.(Theorem 5)

The following three claims were used in the proofs of Lemma 6 and will be used

in the proof of Theorem 6.

For any ε > 0 and ν > 0, let Q0(ν, ε) be the set of parameters θ for there is some

strategy proÞle sν∗ = (sν∗t )t∈T that survives iterative strict dominance in G
∗(ν) and

some strategy proÞle sν = (sνi )i∈I that survives iterative strict dominance in G(ν) for

which |sν∗t (θ)− sνi (θ)| > ε for some i of type t. (Unlike sν∗, sν has not been shown

to assign the same strategy to all players of a given type.)

Claim 4 For any ε > 0 there is a ν > 0 such that for all ν < ν, Q0(ν, ε) is contained

in a union of at most 4 |T | /ε closed intervals of R; the total measure of the union is
less than ε.

Proof. Let sν∗ and sν be any strategies surviving iterative strict dominance in

G∗(ν) and G(ν), respectively. By Lemma 5, for any ε# > 0, there exists ν > 0 such

that for all ν ≤ ν,

sνt (θ + ε
#) ≥ sνi (θ) ≥ sνt (θ − ε#)

where t is i�s type and sν and sν are, respectively, the right-continuous and left-

continuous versions of the essentially unique surviving strategy proÞle of G∗(ν). In
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addition, by Lemma 3, any sν∗ that survives in G∗(ν) must be weakly increasing, so

sνt (θ + ε
#) ≥ sν∗t (θ) ≥ sνt (θ − ε#)

Thus, the absolute difference between sνi (θ) and s
ν∗
t (θ) is bounded by s

ν
t (θ + ε

#) −
sνt (θ − ε#). We now divide the real line into intervals In = [nε#, (n+ 1)ε#] for integral
n. Let M0 be the set of such intervals for which there is a θ ∈ In and a player i
of some type t for whom, for some sν∗ and sν surviving iterative strict dominance in

G∗(ν) and G(ν), |sνi (θ)− sν∗t (θ)| ≥ ε. Clearly, Q0(ν, ε) ⊆ M0. By the preceding

argument, sνt (θ + ε
#) − sνt (θ − ε#) ≥ ε, so sνt ((n+ 2)ε

#) − sνt ((n− 1)ε#) ≥ ε. By

deÞnition of sν and sν, sνt (z) ≥ sνt (z#) for any z > z#, so

sνt ((n+ 2)ε
#)− sνt ((n− 2)ε#) ≥ ε (8)

Since sνt is weakly increasing and in [0, 1] for each t, the set of integers n and types t

for which (8) holds is at most 4 |T | /ε. Thus, M0 is a Þnite set and the total measure

of M0 is at most 4 |T | ε#/ε. For this measure to be less than ε, it suffices to take

ε# < ε2/4 |T |. Q.E.D.(Claim 4)

Claim 5 shows that when signal errors are small, for most signals players can

closely approximate what other players will do. For any ν > 0 and ε > 0, let Q1(ν, ε)

be the set of parameters θ such that after removing strategies that do not survive

iterative strict dominance in G∗(ν), there are types t $= v such that conditional on

a player of type t getting signal θ, the set of actions a type-v player might take are

not contained in an interval of length ε. Each player j who sees a signal that is not

in Q1(ν, ε) can bound the action of each opponent i within an interval of length ε.

Claim 5 shows that Q1(ν, ε) is of measure less than ε for small enough ν. This claim

is also used in the proof of Lemma 6.

Claim 5 For any ε > 0 there is a ν > 0 such that for all ν < ν, Q1(ν, ε) is contained

in a union of at most 5 |T | /ε intervals of the form [2nν, (2n+2)ν] for integral n; the
total measure of the union is less than ε.
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Proof. Since each signal error is at most ν/2 and since sν and sν are upper

and lower bounds on the strategies that survive iterative strict dominance in G∗(ν), a

necessary condition for θ to be inQ1(ν, ε) is that for some type t, sνt (θ+ν)−sνt (θ−ν) >
ε. Divide the real line into intervals In = [2nν, (2n+ 2)ν] for integral n. Let M1

be the set of such intervals for which there is a θ ∈ In and a type t for which

sνt (θ + ν) − sνt (θ − ν) > ε. Clearly, Q1(ν, ε) ⊆ M1. By deÞnition of sν and sν ,

sνt (z) ≥ sνt (z#) for any z > z#, so

sνt ((2n+ 4)ν)− sνt ((2n− 1)ν) > ε (9)

Since sνt is weakly increasing and in [0, 1] for each t, the set of integers n and types t

for which (8) holds is at most 5 |T | /ε. Thus, M1 is a Þnite union of intervals whose

total measure is at most 5 |T | ν/ε. For this measure to be less than ε, it suffices to
take ν < ε2/5 |T |. Q.E.D.(Claim 5)

The next claim uses the prior one to show that for almost all payoff parameters

θ, strategies that survive iterative strict dominance in G∗(ν) must prescribe at θ that

players play close to some Nash equilibrium of some complete information game with

payoff parameter close to θ. More precisely, let Q2(ε, ν) be the set of parameters θ

for which there is no action proÞle a = (at)t∈T with the following two properties: (1)

for some θ# ∈ [θ − ε, θ + ε], the complete information game with payoffs (ut(, θ#))t∈T
has a Nash equilibrium in which all players of type t play at; (2) for every strategy

s∗ν surviving iterative strict dominance in G∗(ν), |s∗νt (θ)− at| ≤ ε for all types t.

Claim 6 For any ε > 0 there is a ν > 0 such that for all ν < ν, Q2(ν, ε) is contained

in a Þnite union of closed intervals of R whose measure is less than ε. The number

of intervals in the union can depend on ε but not on ν.

Proof.36 Fix ε > 0. Recall that Q1(ν, η) is the set of signals x such that, after

removing strategies that do not survive iterative strict dominance in G∗(ν), there are

36We thank Itzhak Gilboa for suggesting this proof.

48



types t $= v such that conditional on a type-t player getting signal x, the set of actions
type-v players choose are not contained in an interval of length η. By Claim 5, for

any η > 0 there is a νη > 0 such that for all ν < νη, Q1(ν, η) is contained in a Þnite

union of closed intervals whose measure is less than η. But for any η,

Q2(ν, ε) = [Q2(ν, ε) ∩Q1(ν, η)]
∪ !Q2(ν, ε) ∩QC1 (ν, η)" (10)

where QC1 (ν, η) is the complement of Q1(ν, η). Every signal x in Q2(ν, ε) ∩QC1 (ν, η)
has the property that on getting it, each player knows to within η what players of all

types will do in G∗(ν) (since x ∈ QC1 (ν, η)) yet there is no Nash equilibrium (at)t∈T of
the complete information game with payoff parameter θ ∈ [x− ε, x+ ε] such that each
at is ε-close to the action prescribed for type t in the essentially unique equilibrium

of G∗(ν) at the signal x.

We will show that for Þxed ε > 0, there is an ηε such that for η ≤ ηε, the set

Q2(ν, ε)∩QC1 (ν, η) is empty for any ν. Thus, by setting η = min {ηε, ε} and ν = νη,
we ensure that (a) for all ν < ν, Q1(ν, η) (and thus Q2(ν, ε) ∩Q1(ν, η)) is contained
in a Þnite union of closed intervals whose measure is less than ε; and (b) since η ≤ ηε,
the set Q2(ν, ε) ∩QC1 (ν, η) is empty. By (10), this will prove Claim 6.

Suppose instead that the set Q2(ν, ε)∩QC1 (ν, η) is nonempty for arbitrarily small
η, where ν can depend on η. This means that there are arbitrarily small positive η�s

such that for some θ, even though in G∗(ν) each player i with signal θ has the utility

function uτ(i)(, θ) and best-responds to a belief that each opponent j�s action is in some

interval of length η that contains j�s true action (while follows from θ ∈ QC1 (ν, η)), the
action proÞle the players play in G∗(ν) is not ε-close to any Nash equilibrium of the

game with payoff parameter θ# ∈ [θ − ε, θ + ε] (which is the meaning of θ ∈ Q2(ν, ε)).
Let η0 > η1 > ... be a sequence of such η�s that converges to zero. For each ηk take

some θk ∈ Q2(ν, ε)∩QC1 (ν, ηk) and consider the action proÞle
#
akt
$
t∈T = (s

∗ν
t (θk))t∈T .

By construction, each of these action proÞles differs by at least ε from any Nash

equilibrium. Since each type�s action space is compact and each θk must lie in the
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compact region
!
θ, θ
"
,37 there is a subsequence of the ηk�s such that the corresponding

sequence
#
ak, θk

$
converges to some limit (a∞, θ∞). By continuity of the payoff

functions (axiom A4), each action a∞t is a best response if a type-t player knows

her opponents are playing according to a∞ and the payoff parameter is θ∞. Thus,

a∞ is a Nash equilibrium of the underlying complete information game when the

payoff parameter is θ∞. But then for high enough k, ak is ε-close to the Nash

equilibrium a∞ of the complete information game with payoff parameter θ∞, which

itself must be ε-close to θk. Thus,
#
ak, θk

$
does not satisfy the condition assumed of

it. Q.E.D.(Claim 6)

Proof of THEOREM 6. Theorem 6 follows immediately from claims 4, 5 and 6,

since Q(ε, ν) ⊂ Q0(ε/2, ν) ∪Q2(ε/2, ν). Q.E.D.(Theorem 6)

Proof of THEOREM 3. Let the actions be 0, 1/3, 2/3, and 1, so that a strategy

proÞle takes the form

s (x) =



0, if x < c1
1
3
, if c1 ≤ x < c2
2
3
, if c2 ≤ x < c3
1, if c3 ≤ x

A player observing signal c1 will assign probability 1
2
to her opponent choosing action

0, some probabilities λ and µ to her opponent choosing actions 1
3
and 2

3
, respectively,

and probability 1
2
− λ − µ to her opponent choosing action 1. A player observing

signal c2 will assign probability 1
2
− λ to her opponent choosing action 0, probability

λ to her opponent choosing action 1
3
, some probability η to her opponent choosing

2
3
, and probability 1

2
− η to her opponent choosing action 1. A player seeing signal

37If the action spaces are Þnite, axiom A2 is replaced by the weaker A2# so θk may not lie in!
θ, θ
"
. But by Claim 2, since any strategy proÞle surviving iterative strict dominance in G∗(ν) is an

equilibrium of G∗(ν), it must prescribe that agents play Nash equilibria of the underlying complete

information game for any θ /∈ [θ −Kν, θ +Kν]. Since each θk is in Q2(ν, ε), each θk must lie in a
compact interval (in [θ −Kν, θ +Kν]), which is all the proof requires.
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c3 will assign probability 1
2
to her opponent playing 1, η to her opponent choosing

2
3
, some probability ν to her opponent choosing 1

3
, and probability 1 − η − ν to her

opponent choosing 0. Hence, each proÞle gives rise to four unknowns, λ, µ, η, and

ν, as claimed.

We now present a speciÞc counterexample with four actions, in which the equilib-

rium selected in the limit depends on the noise. Let I = 2, A1 = A2 =
.
0, 1

3
, 2
3
, 1
/

and let G (ν) and 0G (ν) be two games satisfying the assumptions of Section 2; these
two games are identical except that in G (ν), η1 and η2 are distributed according to

the density

f (η) = 1

on the interval
!−1

2
, 1
2

"
; in 0G (ν), η1 and η2 are distributed according to the density

0f (η) = 2− 4 |η|
on the interval

!−1
2
, 1
2

"
. Note that under a uniform prior on θ, the resulting symmetric

distributions of z = η1 − η2 have support [−1, 1] and densities

π (z) = 1− |z|

0π (z) =

2 (1 + z)2 , if − 1 ≤ z ≤ −1

2

1− 2z2, if − 1
2
≤ z ≤ 1

2

2 (1− z)2 , if 1
2
≤ z ≤ 1

Assume that u (·, θ∗) = g∗ (·), where g∗ is given by the following symmetric matrix:

g∗ 0 1
3

2
3

1

0 2000, 2000 1936, 1656 1144, 1056 391, 254

1
3

1656, 1936 2000, 2000 1600, 1800 1245, 1000

2
3

1056, 1144 1800, 1600 2000, 2000 1660, 2160

1 254, 391 1000, 1245 2160, 1660 2000, 2000
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One may verify that this is a game of strategic complementarities, with payoffs qua-

siconcave in own actions, since g∗i
#
ai +

1
3
, aj
$ − g∗i (ai, aj) is strictly decreasing in ai

and strictly increasing in aj.

Let strategy proÞle 0s [k] be deÞned by:

0si [k] (xi) =


0, if xi < k − 1
4

1
3
, if k − 1

4
≤ xi < k

2
3
, if k ≤ xi < k + 1

4

1, if k + 1
4
≤ xi

Lemma 7 Let the interaction structure be given by 0π. There exists 0ε > 0 and 0δ > 0
such that if θ ∈

H
θ∗ − 0δ, θ∗ + 0δI and payoffs are always given by u (·, θ∗), the best

response to strategy proÞle 0s [k] is less than or equal to 0s [k +0ε].
PROOF. If player 1 observes x1, she believes that x2−x1 is distributed according

to 0π. If she believes that her opponent is following strategy 0s2 [k], her conjectures
over her opponents� actions are the following:

Player 1�s Signal

a2 = 0 a2 =
1
3
a2 =

2
3
a2 = 1

k − 1
4

1
2

23
96

17
96

1
12

k 25
96

23
96

23
96

25
96

k + 1
4

1
12

17
96

23
96

1
2

One may verify that if player 1 observes signal k− 1
4
and has payoffs given byu (·, θ∗),

then she strictly prefers action 0 to action 1
3
(since 1

2
(−344) + 23

96
(64) + 17

96
(456) +

1
12
(854) = −19

4
< 0). Similarly, if player 1 observes signal k and has payoffs given

by u (·, θ∗), she strictly prefers action 1
3
to action 2

3
(since 25

96
(−600) + 23

96
(−200) +

23
96
(400) + 25

96
(415) = −25

96
< 0) and if player 1 observes signal k + 1

4
and has payoffs

given by u (·, θ∗), she strictly prefers action 2
3
to action 1. By continuity, these strict

preferences will be maintained for signals in a small neighborhoods of those cutoff

points and for payoffs in a small neighborhood of u (·, θ∗). !

52



Now consider the game 0GD (ν, θ∗), which is like 0G∗ (ν), except that the payoff
functions are replaced by:

uDi (a, θ) =


ui (a, θ) , if θ ≤ θ
ui
9
a, θ∗ + 0δ: , if θ ≤ θ ≤ θ∗ + 0δ

ui
#
a, θ
$
, if θ ≥ θ∗ + 0δ

Corollary 1 In the game 0GD (ν, θ∗), any strategy s satisfying iterated deletion of
strictly dominated strategies satisÞes s ≤ 0s Hθ∗ + 0δ − νI; thus si (xi) = 0 for all xi ≤
θ∗ + 0δ − 2ν.
PROOF. By induction, verify that if strategy proÞle s survives k + 1 rounds of

deletion of strictly dominated strategies, then s ≤ 0s Hmax9θ − ν + k0ε, θ∗ + 0δ − ν:I.
!
Now we have:

Lemma 8 If sν is the essentially unique equilibrium of 0G∗ (ν), then sνi (xi) = 0 for
all xi ≤ θ∗ + 0δ − ν.
But now let strategy proÞle s [k] be deÞned by:

si [k] (xi) =



0, if xi < k − 7
25

1
3
, if k − 7

25
≤ xi < k

2
3
, if k ≤ xi < k + 7

25

1, if 7
25
≤ k + xi

Lemma 9 Let the interaction structure be given by π. There exists ε > 0 and δ > 0

such that if θ ∈ [θ∗ − δ, θ∗ + δ] and payoffs were always given by u (·, θ∗), the best
response to strategy proÞle s [k] is more than or equal to s [k − ε].

PROOF. If player 1 observes x1, she believes that x2−x1 is distributed according
to π. If she believes that her opponent is following strategy 0s2 [k], her conjectures
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over her opponents� actions are the following:

Player 1�s Signal

a2 = 0 a2 =
1
3
a2 =

2
3
a2 = 1

k − 7
25

1
2

301
1250

203
1250

121
1250

k 162
625

301
1250

301
1250

162
625

k + 7
25

121
1250

203
1250

301
1250

1
2

One may verify that if player 1 observes signal k − 7
25
and her payoffs are given by

u (·, θ∗), then she strictly prefers action 1
3
to action 0 (since 1

2
(−344) + 301

1250
(64) +

203
1250

(456) + 121
1250

(854) = 83
625

> 0). Similarly, if player 1 observes signal k and her

payoffs are given by u (·, θ∗), she strictly prefers action 2
3
to action 1

3
and if player 1

observes signal k+ 7
25
and her payoffs are given by u (·, θ∗), she strictly prefers action

1 to action 2
3
. By continuity, these strict preferences will be maintained for signals in

a small neighborhoods of those cutoff points and for payoffs in a small neighborhood

of u (·, θ∗).
But now mimicking the above argument, we have:

Lemma 10 If sν is the essentially unique equilibrium of G∗ (ν), then sνi (xi) = 1 for

all xi ≥ θ∗ − δ + ν.

Q.E.D.Theorem 3

Proof of LEMMA 1. Consider any player i. In the continuous action space case,

for any δ ∈ [0, ci],

0 > v
#
a∗i + δ, a

∗
−i
$− v #a∗i , a∗−i$ ≥ µi(a∗i ) #gi #a∗i + δ, a∗−i$− gi #a∗i , a∗−i$$ ,

so gi
#
a∗i + δ, a

∗
−i
$
< gi

#
a∗i , a

∗
−i
$
. By own-action quasiconcavity, gi

#
a∗i , a

∗
−i
$
exceeds

gi
#
ai, a

∗
−i
$
for any ai > a∗i . An analogous argument shows the same for any ai < a

∗
i .

A similar proof applies in the case of Þnite actions. Q.E.D.Lemma 1

Proof of THEOREM 4. For each i ∈ I, let g
i
(ai, a−i) be a payoff function with

the property that action 0 is strictly dominant. Fix some θ∗ ∈ R and consider the
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global game G∗∗ (ν, θ∗) with uniform prior, some noise structure (fi)i∈I , and payoff

functions

ui (ai, a−i, xi) =

 ui (ai, a−i, θ∗) , if xi ≥ θ∗

g
i
(ai, a−i) , if xi < θ∗

Suppose that action proÞle a∗ = (a∗i )i∈I is an LP-maximizer of the complete informa-

tion game g= (ui (·, θ∗))i∈I and that this game is own-action quasiconcave.
For now, Þx ν = 1. We will be interested in left-continuous, weakly increasing

strategy proÞles in which no player i ever chooses an action above a∗i . (The same ar-

gument works for right-continuous strategies.) Any such strategy can be represented

by a function ζi : [0, a
∗
i ]→ R where ζi(ai) is the highest signal at which player i plays

an action less than or equal to ai.

We wish to deÞne the unique left-continuous best response to strategy proÞle ζ

in the game G∗∗ (ν, θ∗) . Note that the assumption that a∗ is an LP-maximizer (and

thus, by lemma 1, a strict Nash equilibrium) and the strategic complementarities

assumption imply that the best response to ζ will itself involve each player i choosing

an action less than or equal to a∗i . We write β (ζ) = (βi (ζ))i∈I for this best response.

To give an explicit expression for βi (ζ), Þrst write s
ζi
i for player i�s strategy

written in standard notation, i.e., sζii (xi) = min{ai : ζi (ai) ≥ xi}. (It is correct to

take the min because of left continuity.) For any player i, let (xi, x−i) denote the

vector of signal realizations. Let X−i be the space of all signal vectors x−i. Write

s
ζ−i
−i (x−i) =

9
s
ζj
j (xj)

:
j "=i
and sζ (x) =

9
s
ζj
j (xj)

:
j∈I
.

If player i observes xi < θ∗, action 0 is dominant. If she observes xi ≥ θ∗, her

payoff to choosing action ai, if she believes her opponents are following strategies ζ−i,

is <
θ∈R

<
x−i∈X−i

gi
99
ai, s

ζ−i
−i (x−i)

:
, xi
:JK

j "=i
fj(xj − θ)

L
dx−idθ.
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Thus an action less than or equal to ai is a best response if

min

argmaxa!i∈Ai

<
θ∈R

<
x−i∈X−i

gi
99
a#i, s

ζ−i
−i (x−i)

:
, xi
:JK

j "=i
fj(xj − θ)

L
dx−idθ

 ≤ ai.

Recall that ζ i (ai) is the largest value of xi at which an action less than or equal to

ai is played under i�s strategy. Thus βi (ζ) (ai) is the maximum of θ∗ and

max

xi : min
argmaxa!i∈Ai

<
θ∈R

<
x−i∈X−i

gi
99
a#i, s

ζ−i
−i (x−i)

:
, xi
:JK

j "=i
fj(xj − θ)

L
dx−idθ

 ≤ ai

 .

Now deÞne:38

V (ζ) =

<
θ

a∗1<
a1=0

· · ·
a∗I<

aI=0

(v(a)− v(a∗)) dFI(ζI(aI)− θ) · · · dF1(ζ1(a1)− θ)dθ

Intuitively, V (ζ) is the expected value of v (a) − v (a∗), conditional on θ ≥ θ∗ − 1
2
.

The expectation is taken with respect to an improper prior, so this expression will

only be well deÞned if each player plays a∗i for high enough signals; i.e., if ζi (a
∗
i ) is

Þnite for all i. Otherwise V (ζ) will equal −∞, since v (a) < v (a∗) for all a $= a∗.

38In order to accommodate action sets that can include both intervals and points, the integrals

are interpreted as follows. Let Ai = ∪Mm=1[bm, cm] where M ≥ 1 can be inÞnity and the intervals
are disjoint. (Isolated points are represented by setting bm = cm.) We deÞne

- a∗i
ai=0

f(ai)dg(ai) to

equal

M&
m=1

< cm

ai=bm

f(ai)dg(ai) +
M−1&
m=1

f(bm+1) [g(bm+1)− g(cm)]

One can verify that the standard integration by parts formula holds using this deÞnition:< a∗i

ai=0

f(ai)dg(ai) = f(a
∗
i )g(a

∗
i )− f(0)g(0)−

< a∗i

ai=0

g(ai)df(ai)
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Now consider the sequence ζ0, ζ1, ..., where ζ0i (ai) = θ
∗ for all i and ai ∈ [0, a∗i ],

and ζn = β
#
ζn−1

$
for all n > 0. An induction argument shows that this is an

increasing sequence: ζni (ai) ≥ ζn−1i (ai) for all n, i, and ai. Moreover, V (ζ
0) is Þnite

and negative. We will show that V (ζn) is increasing in n. Thus, V (limn→∞ ζn) $=
−∞. This implies that in the limiting strategy proÞle limn→∞ ζn, each player i plays
a∗i if her signal is high enough.

Let ζ = ζn for any n ≥ 0. DeÞne dF i(a−i|θ) to be

dFI(ζI(aI)− θ) · · · dFi+1(ζ i+1(ai+1)− θ)dFi−1(β(ζ)i−1(ai−1)− θ) · · · dF1(β(ζ)1(a1)− θ)

This is the probability of the action proÞle a−i at the state θ if players i − 1 and
under play according to β(ζ) while players i+ 1 and above play according to ζ. We

separate V (β(ζ))− V (ζ) into a telescopic sum and then integrate each summand by

parts:

V (β(ζ))− V (ζ) =
I&
i=1

<
θ

<
a−i


a∗i<

ai=0

(v(ai, a−i)− v(a∗)) d
 Fi(β(ζ)i(ai)− θ)
−Fi(ζi(ai)− θ)


 dF i(a−i|θ)dθ

=
I&
i=1

<
θ

<
a−i

(v(ai, a−i)− v(a∗))
 Fi(β(ζ)i(ai)− θ)
−Fi(ζi(ai)− θ)


%%%%%%
a∗i

ai=0

dF i(a−i|θ)dθ

−
I&
i=1

<
θ

<
a−i


a∗i<

ai=0

 Fi(β(ζ)i(ai)− θ)
−Fi(ζ i(ai)− θ)

 (v(ai, a−i)− v(ai − dai, a−i))
 dF i(a−i|θ)dθ

Since no action above a∗i is played in either strategy proÞle, β(ζ)i(a
∗
i ) = ζi(a

∗
i ) =∞,

so(v(ai, a−i)− v(a∗))
 Fi(β(ζ)i(ai)− θ)
−Fi(ζ i(ai)− θ)


%%%%%%
a∗i

ai=0

= − (v(0, a−i)− v(a∗))
 Fi(β(ζ)i(ai)− θ)
−Fi(ζ i(ai)− θ)

 ≥ 0
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since a∗ maximizes v and since β(ζ)i(0) ≥ ζi(0). Thus,

V (β(ζ))− V (ζ) ≥ −
I&
i=1

<
θ

<
a−i


a∗i<

ai=0

 Fi(β(ζ)i(ai)− θ)
−Fi(ζ i(ai)− θ)

 [v(ai, a−i)− v(ai − dai, a−i)]
 dF i(a−i|θ)dθ

But for any ai and θ, Fi(β(ζ)i(ai)− θ)− Fi(ζ i(ai)− θ) is just the probability that a
signal is observed between ζi(ai) and β(ζ)i(ai) - the interval where under ζ player i

plays more than ai and her best response to ζ is to play something no greater than

ai. If instead players 1 through i− 1 play according to β(ζ), player i�s best response
in this interval is still no greater than ai by strategic complementarities. Therefore,

by own-action quasiconcavity, player i�s payoff, conditional on getting a signal in this

interval, must be weakly decreasing in her own action: for a#i ∈ Ai, a#i ≤ ai,<
θ

<
a−i

[gi(ai, a−i)− gi(a#i, a−i)]
 Fi(β(ζ)i(ai)− θ)
−Fi(ζi(ai)− θ)

 dF i(a−i|θ)dθ ≤ 0
Since ai ≤ a∗i , v(ai, a−i) − v(ai − dai, a−i) ≤ gi(ai, a−i) − gi(ai − dai, a−i) by the
LP-maximizer condition. Thus:

V (β(ζ))− V (ζ)

≥ −
I&
i=1

<
θ

<
a−i

a∗i<
ai=0

[v(ai, a−i)− v(ai − dai, a−i)]
 Fi(β(ζ)i(ai)− θ)
−Fi(ζ i(ai)− θ)

 dF i(a−i|θ)dθ
≥ −

I&
i=1

<
θ

<
a−i

a∗i<
ai=0

µi(ai) [gi(ai, a−i)− gi(ai − dai, a−i)]
 Fi(β(ζ)i(ai)− θ)
−Fi(ζ i(ai)− θ)

 dF i(a−i|θ)dθ
≥ 0

as claimed.

This implies that for all i and ai ∈ [0, a∗i ], ζni (ai) converges to some Þnite upper
bound ζ∞i (ai) as n grows. Let 0s1 be this upper bound written in standard notation
(i.e., 0s1i (xi) = min{ai : ζ∞i (ai) ≥ xi}). This is the smallest strategy proÞle surviving
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iterated deletion of strictly dominated strategies in G∗∗ (1, θ∗); moreover, there exists

a c > 0 such that 0s1i (xi) = a∗i for all i and xi ≥ θ∗ + c.
Changing ν is equivalent to relabeling the game G∗∗ (ν, θ∗). Thus if we write 0sν for

the unique strategy proÞle surviving iterated deletion of strictly dominated strategies

in G∗∗ (ν, θ∗), we have 0sν (xi) = 0s1 #xi−θ∗ν

$
. This in turn implies that 0sνi (xi) = a∗i for

all xi ≥ θ∗ + νc.
But now if sν is the essentially unique equilibrium of G∗ (ν), we have that sν ≥ 0sν

(this is true because the game G∗ (ν) has everywhere higher best responses than the

game G∗∗ (ν, θ∗)). So we have:

Lemma 11 For all ε > 0, there exists ν such that for all ν ≤ ν, sνi (θ∗ + ε) ≥ a∗i .

A symmetric construction gives:

Lemma 12 For all ε > 0, there exists ν such that for all ν ≤ ν, sνi (θ∗ − ε) ≤ a∗i .

These two lemmas imply that if s∗ is the left continuous limit of sν as ν → 0, then

s∗i (θ) ≤ a∗i if θ < θ∗ and s∗i (θ) ≥ a∗i if θ > θ∗. By left continuity, s∗i (θ∗) = a∗i . This
proves the theorem. Q.E.D.Theorem 4
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