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Abstract

We consider the two state sequential sampling problem of Wald (1945). We
show that any distribution of posteriors can be attained and that the ex-ante cost
of attaining any probability distribution over posteriors equals the expected change
of the log likelihood ratio. With many states, not all distributions can be attained
but we provide a characterization of those that can be attained and show that the

characterization of ex-ante cost generalizes naturally to those that can be attained.

The sequential sampling model of Wald (1945) is arguably one of the oldest and most
widely used models of information acquisition. We provide a novel reduced form char-
acterization of Wald’s model that relates it to flexible information acquisition model a la
Sims (2003). In the sequential sampling problem of Wald, a decision maker sequentially
observes signals at a cost and dynamically decides when to stop acquiring information.
Any stopping rule gives rise to a probability distribution over posteriors and we show that
in the two state case any distribution over posteriors can be induced by some stopping
rule. The ex-ante cost of acquiring information can then be identified with the expected
stopping time. We show that the expected stopping time, and thus the ex-ante cost of
information, corresponding to the Wald model, is proportional to the expected change

between the prior and posterior log likelihood ratio

glog (%q) +(1—q)log (%) .

*We thank Juan Carillo, Laura Doval, Drew Fudenberg, Emir Kamenica, Filip Mateka, Marco Otta-
viani, John Rehbeck, Tomasz Strzalecki, Bruno Strulovici and Laura Veldkamp for useful comments and
suggestions.




This expression generalizes naturally to the many state case, where the decision maker
observes a diffusion whose drift depends on the state. In this case, the cost of information

is given by the normalized expected change between the prior and the posterior weighted

arlog (%)

7 (n=1)(mi —m;)*>"

log likelihood ratio.

where the summations are over states and m; is drift in state i. Thus, the cost of distin-
guishing nearby states i and j, where m; is close to mj, is higher than the cost of distin-
guishing far away states. This expression gives the cost of attaining any distribution over
posteriors, if that distribution is feasible, independent of the stopping rule that gives rise
to it. However, in the many state case, it is no longer possible to attain any distribution
over posteriors. We provide a characterization of which distributions over posteriors may
arise which follows from a result of Rost (1971) on Skorokhod embeddings for Markov
processes.

We thus identify an ex-ante cost of acquiring information that arises from the classical
sequential sampling approach proposed in Wald (1945). Ex-ante, or static, cost functions
of information are widely used in economics. Sims (2003) proposed the relative entropy
cost function to model attention costs, reflecting the capacity necessary to transmit the
information; but the same functional form has also been widely used to represent the cost
of information acquisition. More generally, a static cost function is said to be posterior-
separable (Caplin and Dean, 2013) if it is the expectation of a strictly convex function of
posteriors ¢ : [0,1] — R... The cost function that we identify for the Wald problem is an
example of a posterior-separable cost function.

We show that all posterior-separable cost functions also have a sequential sampling
foundation. A generalization of Wald’s sampling problem (for the two state case) allows
for a posterior dependent sequential sampling cost ¢ : [0,1] — R, where ¢ (p) is the
flow cost of continuing to sample when the current posterior equals p. We characterize a
one-to-one functional which maps sequential sampling flow costs to posterior-separable
ex-ante cost functions. This functional maps the sequential sampling cost p(1 — p) to the

two state entropy cost (Sims, 2010), which corresponds to the expected change in entropy

glogg+(1—g)log(1—gq).

We also provide a many state analogue of this result.
We motivate our results by spelling out how existing economic results taking a se-
quential sampling approach to information acquisition are equivalent to taking a ex-ante

approach to the cost of information. We describe the equivalence between Bayesian per-



suasion with sequential sampling (as in Brocas and Carrillo (2007)) or with ex-ante in-
formation acquisition (as in Kamenica and Gentzkow (2011)). The Wald cost function is
linear-in-precision, and we contrast the economic implications of the Wald cost function
with the more concave entropy cost function in investment problems. !

Our work relates to Hébert and Woodford (2017) and Zhong (2017a) in connecting
dynamic information acquisition models to ex-ante cost of information. While Hébert
and Woodford (2017) analyze a model where the signals in each period are endogenously
chosen by the agent, we analyze the classical model introduced in Wald (1945) where
signals are exogenously fixed. Hébert and Woodford (2017) rule out the Wald model
through continuity and finiteness assumptions on the cost of sampling.> Closely related
Zhong (2017a) provides conditions on the cost function in a problem with endogenous
information choice, two states, and discounting, under which the posterior belief in the
continuous time limit becomes a pure jump process. Interestingly, he shows that the
belief under the optimal information acquisition policy evolves deterministically before
an action is taken. Zhong (2017b) argues that with endogenous information choice and
linear waiting cost the dynamic information acquisition problem can be reduced into a
static one. Caplin and Dean (2015); Chambers, Liu, and Rehbeck (2017); Andrew Caplin
and Leahy (2017) provide revealed preference characterizations of the static information
acquisition problem, which we show to be equivalent to a generalization of the Wald
problem if there are only two states.

Finally, Pomatto, Strack, and Tamuz (2018) provide an axiomatic characterization
of all ex-ante cost functions with constant marginal cost of information. The ex-ante cost
corresponding to the Wald problem turns out to be a special case. Our result complements
their work as it suggests a specific well founded function in the larger space of constant

marginal cost functions they identify.

1 The Sequential Learning Problem with Two States

We begin by considering the case of only two states which much of the literature focused
on and will extend our result to the case of many states in Section 2. There are two states
6 € {—1,+1} and a single agent who wants to learn about the state. Time is continuous
and at every instant in time the agent observes a process (Z;),>0 to learn about the state 6.
We denote by pg the prior probability the agent assigns to the state 6 = +1. The change

Ivan Nieuwerburgh and Veldcamp (2010) studied this comparison restricting attention to normal sig-
nals; we study a two state analogue where the linear-in-precision Wald cost function is micro-founded and
arbitrary distributions over posteriors are possible.

>While ruling out the Wald case, Hébert and Woodford (2017) also describe a general equivalence
between posterior-separable cost functions and some non-constant flow costs. The representation in the
current version of their paper was obtained simultaneously with our characterization.



of the process Z is the sum of the state plus a noise term which is the increment of a
Brownian motion (W;);>0
dZ, = 0dr+ocdW,. (1)

Denote by p; the posterior probability the agent assigns to the high state at time ¢
= P[0 =+11(Zs)s<] -

At every point in time the agent can decide to either continue or stop observing the signal
Z, depending on the information she has already received. For every instant in time where
the agent observes the signal she pays a bounded and positive flow cost ¢(+) which depends
on her posterior belief, i.e. if the agent observes the signals until time ¢ the total cost she

pays for observing the signal is given by

/Otc(ps)ds.

In the classical formulation of the problem proposed in Wald (1945) this cost is constant.
A strategy of the agent is a stopping time 7 adapted to the natural filtration (.%;);>0 gen-
erated by the process Z. Every such stopping time T generates a distribution over final

values of the belief process p, which we denote by Fr
Fo(-) 2 Plpe <.

We define the ex ante cost of distribution G € A([0,1]) of posterior beliefs® to be the

minimal cost at which the agent can generate that distribution:

T: Fr=G

C(G)2 inf E[/Orc(ps)ds},

where we set C to infinity whenever the set {7: F; = G} is empty and there is no sampling

strategy that achieves the distribution over posteriors G.

Our goal is to characterize the ex-ante cost C(G) as a function of the distribution over

posterior beliefs G. We start by stating the dynamics of the belief process:

Lemma 1. The belief process (p;);>0 solves the stochastic differential equation (SDE)

2
dp; :Pt(l —Pt) EdBta

3Throughout we denote by A([0,1]) the space of cumulative distribution functions on [0, 1], i.e. G €
A(]0,1]) is equivalent to G : [0, 1] — [0, 1] and G non-decreasing.



where B, = é {X, — fo(2ps— l)ds} is a Brownian motion with respect to the agent’s in-

formation.

Let us denote the mean of a distribution G by ug = fol qdG(g). Next, we observe that
for a given distribution G with support on [0, 1] there exists a strategy 7 in the sequential
sampling problem, which leads to that distribution of posterior beliefs if and only if G is

consistent with the prior belief pg.
Proposition 1. There exists T with Fr = G if and only if po = Ug -

While Proposition 1 shows that any distribution of posterior beliefs can be achieved
by some sampling strategy not every distribution can be achieved by learning only for a
finite time. For example, to learn the state perfectly, i.e. achieve the posterior distribution
that assigns mass only to O and 1 the agent needs to never stop learning. More generally,
a distribution of posterior beliefs can be achieved using a finite stopping strategy if and

only if the distribution assigns no mass to 0 and 1.

Lemma 2. F; assigns strictly positive probability to either O or 1 if and only if T = o with
strictly positive probability.

It is worth noting that there will be in general multiple learning strategies which will
lead to a given distribution of posteriors. One case where the strategy is unique is if the
distribution G consists only of two mass points. In this case the strategy constructing
this distribution is the first leaving time of the interval with end-points equal to the mass

points.

One force that keeps the agent from learning forever are the sampling costs she pays.
In the following section we will characterize the sampling costs only as a function of the
posterior distribution.

Define the function ¢, : [0, 1] — R by
c(y)o?

o) 2 [ [0 avar. @)
o Jpo 2[y(1 =)

Our first result shows that the sampling cost is given by the expected value of ¢, under F:.

Proposition 2 (Characterization of Sampling Cost). For every a.s. finite stopping strategy

T the sampling cost satisfies

[ olaariia) == [ | Tc(pods] .



Proposition 2 characterizes the cost associated with any strategy in the sequential sam-
pling problem and shows that it only depends on the induced posterior belief distribution
Fr. Any sampling strategy that leads to a given posterior distribution will have the same
cost. It thus does not matter which sampling strategy the agent uses to attain a given dis-
tribution over posteriors and for most posterior distributions the optimal sampling strategy
will not be unique. In combination with Proposition 1 this leads to a characterization of

the ex ante cost C(G) associated with a given distribution of posterior beliefs G:

Theorem 1 (Equivalence of Static Cost and Sequential Sampling).

1. The ex ante cost C : A([0,1]) — R of attaining a posterior belief distribution G is
given

C(G) = ; 3)

else

{f& w(9)dG(q) if G = po

with W = ¢, defined in (2).

2. Conversely, any posterior-separable ex-ante cost C that solves (3) with Y twice

differentiable is induced by a Wald problem with prior po and flow cost c(+) of

2[q(1—q))*
o2 '

c(q) =vy"(9) )

Theorem 1 establishes a one-to-one relation between ex-ante cost functions C(-) and
dynamic flow cost ¢(-) in the sequential sampling problem. For every flow cost in the
sequential sampling problem there exists a unique function ¢.(-) defined in (2) such that
C(G) = fol 0.(q)dG(q) is an equivalent static cost function. Conversely, every affine cost
function which is sufficiently smooth can be represented by some flow cost in the dynamic
sequential sampling problem.

1.1 Equivalence of Wald’s Sequential Sampling Model to Log-Likelihood
Cost

In this section we show that Theorem 1 implies that the classical sequential sampling
problem introduced in the seminal paper by Wald (1945) where the flow cost is constant
is equivalent to a problem where the agent can chose any distribution G € A([0,1]) of
posterior beliefs and pays ex-ante cost Cy,4(G) equal to the expected change in log-
likelihood-ratio. We define the expected log-likelihood-ratio (LLR) L : [0,1] — R by

L(q) = qlog (L> +(1—¢q) log (1%61) : (5)

I—g¢q
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The cost which correspond to the cost of information acquisition in the sequential sam-
pling problem turns out the proportional to the average change in LLR from the prior pg

to the posterior, which distributed according to G.

Proposition 3 (Reformulation of Wald’s Sequential Sampling). If c is constant, C is given
by

2 .

< { I L@)aG(@) = L(po) }  if G = po

=) else

Cwaia(G) = (6)

It is worth noting that (6) assigns infinite cost to any distribution G that assigns positive
mass to the posterior beliefs zero or one. This reflects the fact that to learn the state with
certainty (with some non-zero probability), the agent has to collect a sample of infinite
expected size, which, as the cost per unit of time is constant in the Wald model, leads
to infinite costs. An immediate consequence of Proposition 3 is that the Wald model
is in terms of behavior equivalent to a model with posterior-separable ex-ante cost (as

introduced in Caplin and Dean, 2013).

1.2 Equivalence of Entropy Cost to Posterior Variance Flow Cost

We next engage in the opposite exercise and determine the dynamic flow cost correspond-
ing to the commonly used ex-ante entropy cost proposed by Sims (2003). Sims proposed
to model the cost of information as the change in the negative of the entropy H : [0,1] — R
given by

H(q) = qlog(q) + (1 —gq)log(1 —q). @)

We can ask the inverse question, which (belief dependent) cost function ¢ : [0,1] — R in
the sequential sampling problem is equivalent to entropy cost. Plugging in (4) yields that

the answer to this turns out to be

2
CEntropy(‘]) = o2 q(1—q). ®)

Proposition 4 (Reformulation of Entropy Cost as Sequential Sampling). When the cost

function in the sequential sampling problem is given by cguropy then

s ) o H(@)dG(g)~H(po) ifuo=po

oo else

C(G)

Note, that the posterior variance when the agent posterior equals ¢ is given by

var(q) = B (6~ E,[6])’] = 44(1— )

7



and the flow cost corresponding to the entropy model

var(q)

CEntropy(Q) = 252

is thus proportional to the variance of the posterior. This means that whenever the agent
is relatively sure about the state (and the posterior variance is low) the cost of sampling
another signal is low as well. The marginal cost of learning is thus decreasing: the more
an agent already knows the cheaper it becomes to acquire further information. While
this concavity might describe some situations well where the cost represent the burden of

mental processing it seems less natural in situations of physical information acquisition.

1.3 Ilustration: Comparing the Ex-Ante and Sequential-Sampling

Approaches in Economic Applications

Consider an agent who is deciding what information, i.e. distribution over posterior be-
liefs G, to generate. Suppose that the decision maker’s indirect utility of posteriors is
given by the function v : [0, 1] — R,. We will first be agnostic on the origin of the indi-
rect utility function and discuss how solve the decision maker’s problem with the ex-ante
information cost function and then discuss the sequential sampling of the same problem.
Given a posterior-separable ex-ante cost function of information C(G) = fol v(q)dG(q)

the decision problem is to solve

1
max | (v(q) — v (4))dG(g) ©

subject to the belief consistency constraint that ug = po. This problem can be solved
graphically by considering the concavification of the function (¢ — v(q) — C(g)). Ka-
menica and Gentzkow (2011) pointed this out in the case where there was no cost of
information and Gentzkow and Kamenica (2014) extended this observation to the case
of posterior separable cost. A first contribution of our result is that we complement
Gentzkow and Kamenica (2014) by providing the cost function that is micro-founded
in the Wald problem and can be used under this solution method.

Our equivalence result means that the solution to the problem with ex-ante cost is the
same as the solution to the sequential sampling problem with the equivalent flow cost
where the agent commits to a stopping rule. Brocas and Carrillo (2007) have examined a
discrete time version of this problem, both with no cost of sampling and - in an extension
in their Proposition 2 - with a constant flow cost. Our model is the continuous time
limit. In this sense, a second contribution of our result is to shows an equivalence - for

the two state case - between the analysis of Brocas and Carrillo (2007) with costless and



constant flow cost and the analysis of Kamenica and Gentzkow (2011) and Gentzkow
and Kamenica (2014), respectively, when we use our derived expected log likelihood cost
function for the posterior-separable cost function.

This analysis of optimal information acquisition is valid whatever the source of the
indirect utility function v(.). The agent making the information acquisition decision might
be using the information to choose an action of his own (the single agent case). But the
agent might be a “persuader” who can commit to make the outcome of the information
acquisition public and seeks to influence a different decision maker (the conflict of interest
case). This latter interpretation is the focus of the work of Brocas and Carrillo (2007) and
Kamenica and Gentzkow (2011). We emphasize that the analysis is exactly the same in
either case.

We have discussed an equivalence between the static information acquisition problem
and the sequential sampling problem when the agent commits to a stopping rule ex-ante.
A natural question is: what if the agent cannot commit to a stopping rule and makes an
interim optimal choice? In the single decision maker case, this clearly does not make a
difference. But what about the conflict of interest case? A third contribution of our result
is that it highlights why it cannot make a difference. To see why, consider the stopping
rule that that the decision maker would want to commit to. This rule will be of the form
that either the decision maker stops immediately, or keeps sampling until the posterior
hits a lower or upper bound. But the decision maker will have no incentive to deviate
from that strategy, as continuing to sample within the interval is optimal and stopping is
optimal once either the lower or upper bounds are reached. Henry and Ottaviani (2018)
have already highlighted this equivalence.

Given the equivalence between the ex ante information acquisition and the interim
sampling analysis, we see that the methods to solve optimal sampling and stopping prob-
lems must tie in to the concavification analysis described above. In fact, Dayanik and
Karatzas (2003) have established this equivalence and propose to use concavification
methods to solve optimal stopping problems. A final contribution of our result is that
it highlights this connection.* While we have not yet done so, it seems likely that work-
ing directly with our closed form expression for the Wald cost function can simplify the

analysis and improve the interpretation of results in this literature.

4Henry and Ottaviani (2018) note that the solution to their “Wald persuasion” optimal stopping problem
(Proposition 1) must reduce to the two state special case of Kamenica and Gentzkow (2011) when there is
no discounting and no cost of information (in part ¢). We can add the observation that the solution must
reduce to the two state special case of Gentzkow and Kamenica (2014) if there is no discounting but a
positive cost of information.



1.4 Illustration: The Wald cost function versus Entropy cost func-
tion

We now discuss the comparison between the Wald cost function and the entropy cost
function. An immediate observation is that if the value function v is bounded, because the
Wald cost function is unbounded, it will never be optimal to acquire perfect information.
But because the entropy cost function is bounded, it is possible that it will sometimes
be optimal to acquire perfect information. This alludes to the broader point that cost of
information acquisition vanishes around certainty for Sims model while it is non vanishing
in the Wald model.

We can illustrate this difference in a classical economic insurance and consumption
problem. Suppose that an agent must decide how to allocation consumption between state
-1 or +1; if she consumes x in state 1, she can consume 1 — x in state —1. Suppose that
she is an expected utility maximizer with constant relative risk aversion p > 0 and thus

von Neumann Morgenstern utility function

5L ifp £

o) = log(x) ifp=1

Now the value function is defined to be

vp (q) = max (qup (x) + (1 - q) up (1 - x))

and calculation shows that
1 1\P
(q"+(1—61)") -1 ‘
vp(g) = = ifp#1, (10)
qlog(g) +(1—q)log(l—¢q) ifp=1

Thus the value function of an agent with log utility has the the same functional form as

entropy cost function.’ Unsurprisingly, we will see that therefore it will be important for
a decision maker with entropy cost of information whether his relative risk aversion is
greater than or less than 1. For a general convex symmetric value function v: [0,1] — R

and cost function y : [0,1] — R we can define the ratio between the marginal benefit of

SEntropy measures the value of information that arises in a number of other settings: for an agent
seeking to avoid ruin in an investment problem (Cabrales et al., 2013) and for an investors choosing a
multidimensional portfolio in a CARA-normal setting (van Nieuwerburgh and Veldcamp, 2010).

10



information and the marginal cost of information at a posterior belief g by

N VU(CI)
v'(q)

M(q)

M measures the benefit cost ratio in the sense that by Ito’s lemma the expected gain
from sampling a marginal unit of time equals ¢(1 — q) %v’ '(¢) while the cost equals
aq(l—q) 2v"(q).

We say that the benefit cost ratio is decreasing in certainty if M(q) is strictly increasing
for g € (0,1/2) and by symmetry strictly decreasing for ¢ € (1/2,1). We say that the benefit
cost ration is increasing in certainty if the opposite conclusion holds.

Proposition 5. Consider the information acquisition problem given in (9). Suppose that

the benefit cost ratio is decreasing in certainty then:
1. If the cost of information is small o« < M(1) the agent learns the state perfectly.

2. If the cost of information is intermediate . € (M(1),M(1/2)) there exists an interval
(¢*,1—q") such that the agent acquires information if and only if g € (¢*,1 — ¢*).

In this case the signal he acquires will lead to a posterior q* or 1 — g*.
3. Ifthe cost of information is large o« > M (1/2) the agent will not acquire information.
Suppose that the benefit cost ratio is increasing in certainty then:
1. If the cost of information is small o« < M(1/2) the agent learns the state perfectly.

2. If the cost of information is intermediate o. € (M(1/2),M (1)) there exists an interval
(q*,1—q") such that the agent acquires information if and only if ¢ ¢ [q*,1 — q*|.
In this case the signal he acquires will lead to a posterior of either 0 or g* if ¢ < q*

and either 1 —q* or 1 if ¢ > q*.
3. If the cost of information is large o > M (1) the agent will not acquire information.

Proposition 5 shows that the optimal information acquisition strategy looks qualita-
tively different depending on whether the cost benefit ratio M is increasing or decreasing.
If it is increasing towards certainty then the agent optimally acquires information if and
only if her prior is close to certainty if it is decreasing the agent acquires information if
she is relatively uncertain about the state of the world, ie. her prior is close to 1/2.

Whether the benefit cost ratio is increasing or decreasing depends on the shape of the
cost function. The following lemma shows that the cost function corresponding to the

Wald model leads to qualitatively different predictions from entropy cost.

Lemma 3. The benefit cost ratio M

11



1. is increasing (decreasing) towards certainty under entropy cost and relative risk

aversion p less than 1 (greater than 1),
2. and is decreasing towards certainty under the Wald cost given in (5).

Lemma 3 establishes that the learning strategies under Wald and entropy cost are very
different. Under entropy the decision maker will acquire more information when she is
already relatively certain about the state of the world (g close to O or 1), while under Wald
cost the decision maker will acquire information if she is relative uncertain about the state
of the world (g close to 1/2). Intuitively, as entropy cost has decreasing marginal cost of
information it is more attractive to acquire information if one is already well informed.

The Wald model delivers a cost function that is linear in the precision of posteriors.
There is a long tradition of considering a linear cost in the precision of information when
information comes in the form of normal signals : see Wilson (1975) for an early refer-
ence, van Nieuwerburgh and Veldcamp (2010) for a recent application discussed further
below and Veldcamp (2011) for a review of this literature. The assumption that the cost
of normal signals is linear in the precision can be naturally given a Wald-like motiva-
tion: suppose that a decision maker can choose ex ante how many signals to acquire and
there is a constant cost of signals. Our cost function is more general in that it allows
the decision maker to condition his decision to acquire more information on what he has
learnt so far. van Nieuwerburgh and Veldcamp (2010) compare linear cost and entropy
cost in an investment problem with normal signal and (while they focus on a different
question)® our analysis for the two state example parallels theirs in showing how agents’
investment problems will have interior optima with the linear-in-precision cost function

but have corner solutions with the more concave entropy cost function.

2 The Sequential Learning Problem with Many States

We now generalize our results beyond the two state case. Consider the generalization of
the Wald model to the case with n > 2 states denoted by m,...,m, € R. As in the two
state case we assume that the signal (Z;),~., equals the state 8 € {my,...,m,} plus a noise

term which is the increment of a Brownian motion (W;);>0
dZ, = 0dr + odW,. (1)

We denote by pi =P [0 =m; | (Z) sgz} the posterior probability assigned to state i condi-

tional on the signal realization up to time #. Optimal stopping in this generalization of the

®They consider a multi-asset portfolio choice problem and consider how an investor allocates a fixed
amount of attention across assets.

12



Wald model has been considered in the statistical literature (e.g. Chernoff 1961; Bather
and Walker 1962) under the assumption that the prior pg is Normally distributed. Our

next lemma characterizes the evolution of the posterior belief:

Lemma 4. The belief process (p);>o solves the SDE
dp; = pi | mi—)_ pim; EdBta
=1

where B; = % {X, — f6(2ps — l)ds} is a Brownian motion with respect to the agent’s in-

formation.

Feasible Posterior Distributions and Learning Strategies We start out by describing
the set of feasible posterior distributions, i.e. the set of distributions G such that there ex-
ists a (potentially randomized) stopping time T with G ~ p;. We first state a tractable suf-
ficient condition. To derive this condition we first characterize the posterior log-likelihood

ratio between any pair of states:

Lemma 5. The posterior log-likelihood between state i and j equals

i i . .

logp—jzlogp—(}—i—(mi—mj) (Zl_tm;—f-m/) ) (12)
Pz Py 2

An immediate consequence of (12) is the following necessary condition for a distri-

bution to be implementable:

Proposition 6. If there exists a stopping time T such that p; ~ G then for every belief q
in the support of G we have that there exists constants z € R and t > 0 such that for all

states i, j _ '
log;f—:—mi(z—t%):logq—;—mj<z—t%> . (13)

0 Py
Proposition (6) implies that the support of G is contained in a two-dimensional man-
ifold. Note, that as the belief space is of dimension n — 1 this immediately implies that
not all distributions of posterior beliefs can be the result of some learning strategy T when
there are at least 4 states. Notably, (13) of Proposition (6) implies a uniform continuity
restriction on the posterior distribution if the prior probabilities of two states are close and
their associated mean signals m; and m; are close then their posterior log-likelihood must

be close.

While Proposition (6) states a necessary condition it is not sufficient. The following
proposition provides a sharp characterization of all distributions which can be the result

of some learning strategy.

13



Proposition 7 (Rost, 1971). There exists a (potentially randomized) strategy T such that
G = F; if and only if for every non-negative function h : [0,1]" — R

E{/Owh(pz)\powG] SIEVOwh(szpo}- (14)

That the condition of Proposition 7 is necessary is an immediate consequence of the
strong Markov property of the belief process as the distribution F; of the posterior belief

at time 7 equals G and 4 is non-negative

E [/Owh(pz) |p0} =K ;/th(l?t) |po} +E {/jh(l?z) |P0}

~E| [ \po] E [/O“hm) | 2o ~FT}

EE:/OMh(pt)\pONG}-

That it is also sufficient is not immediate and was shown for general Markov processes in

Rost (1971). From now on we denote by
9

the set of all distributions which satisfy (14).

Sampling Cost As in the two state case we assume that for every instant in time where
the agent observes the signal she pays a bounded and positive flow cost ¢(+) which depends
on her posterior belief, i.e. if the agent observes the signals until time ¢ the total cost she

pays for observing the signal is given by

/Otc(ps)ds.

While there are now many distributions of the posterior belief for which no sampling
strategy exists the cost associated with a given posterior distribution F; can be character-
ized using the same argument we used in the case of two states. To this end assume that

there exists a function ¢, : R" — R, with ¢.(po) = 0 such for all p’

c(p) = 2%2 Y 0cii(p)p'p’ <m,~— ijmj> (mj_ ijmj) . (15)

i,j=1 J=1 j=1

"We denote by ¢ ;(p) = ﬁ;ﬂ@ (p) the cross derivative with respect to p’ and p/.

14



Note, that in the case of two states n =2 and m; = +1, my = —1 one can express ¢, as a

function of the first variable only ¢.(p!, p?) = ¢.(p'). Then, condition (15) simplifies to

e(p) = 52300 (P (1= (P (1)~ (1= ') (- 1)}) = 25000 (11— ')

a2c(p)
2(p'(1—ph)*

which is equivalent to (2). Thus, (15) generalizes the definition of ¢, given in the two

=9/ (p") =

state model.
Our next result shows that the cost of acquiring a posterior distribution F; is charac-

terized by a result analogous to the two state case:

Proposition 8 (Characterization of Sampling Cost). For every a.s. finite stopping strategy

T the sampling cost satisfies

[ olaariia) == [ J Tc(pods] .

Proposition 2 characterizes the cost associated with any sampling strategy in the Wald
problem and shows that it only depends on the induced posterior belief distribution Fr.
As in the two state case, any sampling strategy that leads to a given posterior distribution
will have the same cost. It thus does not matter which sampling strategy the agent uses to
attain a given distribution over posteriors and for many posterior distributions the optimal
sampling strategy will not be unique.

As in the two state case Proposition 2 immediately leads to a static cost function
representing the cost dynamic cost in Wald’s sequential sampling problem: We define the
distance weighted expected log-likelihood-ratio (LLR) L : [0,1] — R by

arlog () .

7 (n=1)(m;i —mj)*"

L(q) =

Proposition 9 (Reformulation of Wald’s Sequential Sampling). If ¢ is constant, the equiv-

alent static cost function C is given by

2¢0?{ J§ Lig)dGla) ~Lipo)} i#GEY

oo else

Cwaid(G) = 7
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The multi-state version of Shannon entropy H : R" — R is given by

H(q) =) qilog(gi). (18)
=1

We can again ask the inverse question, which (belief dependent) cost function c: R* — R
in the sequential sampling problem is equivalent to entropy. Plugging in (15) yields that

the answer to this turns out to be exactly the posterior variance

2
n
gi (mi_ Zq’mj> :
1 j=1

Proposition 10 (Reformulation of Entropy Cost as Sequential Sampling). When the cost

N

1
CEntropy (Q) = F
i

function in the sequential sampling problem is given by Cgpropy then the equivalent static

cost function equals entropy

o ) o H(@)dGla)~H(p) ifGeY

oo else

C(G)

This result may seem paradoxical, as the entropy cost function does not depend on the
difference between states, yet the corresponding flow cost cgu0py depends on the drift
m; corresponding to the different states. The resolution is that the dependence of the flow
cost on drift exactly counteracts the role of the difference between states, so this drops out
of the final expression for cost.

Applications for the many state case are more complicated because not all distribu-
tions of posteriors can arise. Our characterization of the Wald cost function could be used

to put bounds on solutions to optimization problems if we ignore feasibility constraints.
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Proofs

Proof of Lemma 1. Follows from Liptser and Shiryaev (2013) Theorem 9.1. [

Proof of Proposition 1. Theorem 2 in Ankirchner, Hobson, and Strack (2015) implies
that there exists a stopping time 7 such that F; = G if G has mean pg. The first part of

Proposition 2 in Ankirchner, Hobson, and Strack (2015) shows that F; must have mean

Po- O]

Proof of Lemma 2. By Feller’s test for explosions (c.f. Theorem 5.29 in Karatzas and
Shreve, 2012) the belief process (p;); hits neither 0 nor 1 in finite time. Hence, it follows
that T = oo with strictly positive probability whenever G assigns positive probability to
either O or 1.

To see that the converse is also true observe that (p;); converges almost surely to 0
or 1 and thus whenever T = oo, the final distribution over posterior must assign strictly

positive probability to O or 1. [l

Proof of Proposition 2. Let T be an arbitrary a.s. finite stopping time. To simplify nota-

tion we define 17(¢) £ 2¢(1 —g). By Ito’s Lemma, we have that
t T 77(1?‘:)2
0c(pe) = dclpo)+ [ 0lpn(p)aBit [ l(p) T e (9)
By definition ¢.(pg) = 0. Define,®
t
rnénmnf{r: / }¢é<ps>|2n(ps>2dszn}. (20)
0

Consider the sequence of random variables (@.(pzar,))n- As, due to the definition of r,
(given in (20)), the integral over |(l>c’|2n2 is bounded, the second summand in (19) is a

Martingale and thus vanishes when taking expectations

E[0e(pers,)] = E { / " py) "“;Vds] —E [ / o c(ps)ds} ey

Here, the last equality follows, by the definition of ¢,

Y (ps) = = (22)

Note, that the sequence r;, satisfies r, — oo for n — . As p is a bounded Martingale it

8We set the infimum over the empty set to be infinity.
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a.s. converges. Consequently, pc,, converges to p; for n — oo. By Fatou’s Lemma

E[9c(pe)] = E [liminf@.(pey,)| < liminf B[4 (pe,,)] = liminf B { /Or/\rnc(ps)ds]

<E { /0 Tc(ps)ds} . -

As pr ~ F; it follows, that [y ¢.(q)dFz(q) <E [ [ ¢(ps)ds] .

To complete the proof and it remains to be shown that equality holds. Assume that

/0 | ¢c(q)dFr(q) < oo

as otherwise the equality is an immediate conclusion of the above inequality. As @, is

convex and (p;), is a Martingale it follows from Jensen’s inequality that

¢C(prArn) <E[¢:(pr) | yr/\rn] . (23)

As the right-hand side of (23) is a conditional expectation of @.(pz) and E[¢.(pr)] < e it

follows from the law of iterated expectations that

E[E[¢:(pe) | Frnr)] = E[@c(pr)] < oo

the right-hand side of (23) is uniformly integrable. As the right-hand side is uniformly
integrable the left-hand side of (23) is uniformly integrable as well. Consequently,

1
’}EEOE[(PC(pT/\rn)] =E L}i_rgﬁbcwrwn)} =E[¢:(pc)] = /0 dc(q)dFz(q) -

We thus have that,

n—soo

[ 0@arii) = jim= [ / W”c(m)ds] |

As ¢ > 0 and r, is non-decreasing the sequence on the right-hand side is increasing and

we can apply the monotone convergence theorem to get that

lim { /0 TN"C(Ps)ds} —E [’111330 /0 W"c(ps)ds} —E { /0 Tc(ps)ds} . O

Proof of Theorem 1. We begin by characterizing the static cost function C(-) which is
equivalent to the dynamic cost in the Wald problem. First, note that by Proposition 1 the
sampling cost are infinite if g # po and there exists a stopping time 7 such that F; = G
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whenever U = p,. By Proposition 2 C(G) = fol 0.(q)dG(g). Thus, for every dynamic
cost in the Wald problem there exist an equivalent static cost function.

To show the converse we note, plugging in the flow cost ¢ given in (6) yields that

d(q) = w(g) — w(po) — (g — po)¥ (po) -

Taking the expectation over the posterior g ~ G, with mean pg = U yields that

1
0

[ 096(0) = [ wia)6ta) - vim).

which completes the proof. ]

Proof of Proposition 3. The result follows from Theorem 1 by observing that the function

¢, defined in (2) for constant cost ¢ is given by

c 2
6:(9) = S {L{a) ~L(po) — (4= o)L (p0)} .

As the mean of G is given by pg the second term vanishes when taking the expectation

with respect to G. [

Proof of Proposition 4 . The result follows from the second part of Theorem 1 with v =
H. m

Proof of Proposition 5. The agent choose an information structure that solves

[ vt0) - awig)aciy)

If M(q) = % is decreasing towards certainty then h(g) £ v(q) — ay(q) changes it’s
second derivative at most once from positive to negative for g € (0,1/2). This implies that
there exists ¢* € [0,1/2] such that A is strictly concave in (0,¢*) and convex in (g*,1/2).
Thus, no information acquisition is optimal in (0,¢*) and information acquisition is op-
timal in (¢*,1/2). If a < M(1) then h”(0) = A”(1) > 0 and thus ¢* = 0 and the agent
acquires information for every prior. If o > M(1/2) then A”(1/2) < 0 and thus ¢g* = 1/2
and the agent never acquires information. The proof if M increases towards certainty is

completely analogous. [

Proof of Lemma 3. We begin by considering entropy cost y/(q) = g log(g)+ (1 —¢g)log(1—
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q). In this case we have that

We thus have that
P () _ Lo( 1/p _ \1/p p-3
M(9)= oty 5 (1= 0)0)> 2 (47 (1-)'7)

% (q"P(pg=1) = (p(1-g) = 1)(1 - )"/P) .

It follows that the sign of M’(g) equals the sign of

q9'P(pg—1)—(p(1—q) = 1)(1—g)"/P = h(g) —h(1 —q),
where h(g) = ¢'/P(pg— 1). Note that the derivative of & is given by
L_1

g =2 (qp(5+ H-1

Hence, for p < 1 the derivative is negative for ¢ € (0,1/2) and thus h(q) —h(l —q) =
M'(q) > 0 for g € (0,1/2). We next consider the case of p > 1. In this case we note that

ql/p(pq_ I)—(p(l—¢q)—1)(1 _q)l/p — [(1 _q)l/P _ql/p} —p [(1 _q)l/p—i-l _ql/p—i-l]
< [(1 _q)l/P _ql/p} _ [(1 _q)l/p—i-l _ql/p—i-l]

=(1—q)"/P[1—(1—q)]—¢"P[1 4]
q(1—q) [(1—@1/”*1 —ql/”’l} <0.

It thus follows that M’(g) < 0 for g € (0,1/2) when p > 1. O

We next consider Wald cost y(gq) = g log <ﬁ> +(1—¢)log (%). In this case we
have that

<

"(q) 2<p_1)((1_Q)Q)l/p <q1/9+<1_q)1/p)p_2
v (q) (2P —2)p )
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We thus have that
/ 2(p—1) p=3
M(g) =5 gy oa (1= (47 (1-)'7)

% ((p(g—=1)+1)g"? + (pg=1)(1-q)"/?) .

It follows that the sign of M’(g) equals the sign of

~[1=p(1=9))g"? = (1-pa)(1 =) /*| =h(g) ~n(1-q), (@4
where h(q) = —(1—p(1—q))q"/P. As his decreasing in g it follows that M'(q) = h(g) —
h(1—g) >0 forall g € (0,1/2).
Proof of Lemma 4. Follows from Liptser and Shiryaev (2013) Theorem 9.1. [

The proof of Proposition 8 is mostly parallel to the proof of Proposition 2 with the
main difference that instead of Ito’s Lemma for single dimensional Markov processes we

make use of it’s multi-dimensional generalization as the belief process lives in R":

Proof of Proposition 8. Let T be an arbitrary a.s. finite stopping time. To simplify nota-

tion we define
ni(q) £ 1/op; <mi -Y Pt]mj> :
J=1

Recall that we denote by ¢,; the first partial derivative of ¢, with respect to p’ and by Oci,j

the cross-derivative with respect to p’ and p/. By Ito’s Lemma, we have that

¢C(pf) :¢c(p0)+/ Zd’w Ps Th Ps st+/ Z ¢C1,,] ps nl( )n (pS)ds (25)
i,j=1
By definition ¢.(pg) = 0. Define,’
a ) N e R 2
rn—n/\lnf{t. /0 Z|¢C,(ps)| ni(ps) dszn} ) (26)
i=1

Consider the sequence of random variables ((b (Pear,))n- As, due to the definition of r,

(given in (26)), the integral over } ' ; \(Z)C’l\ n is bounded, the second summand in (25) is

9We set the infimum over the empty set to be infinity.
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a Martingale and thus vanishes when taking expectations

/()T/\rn i ¢Cl7](ps) nl(ps>n](ps>dS]

E[¢:(prar,)] =E L )
i,j=1

| . " -
- 2_62 Z ¢Ci7.i<p)plp] (mi - Z p]m,) (m] — Z p]m]>
. = =

=1

TN,
—E { / c(m)ds] . @7)

Here, the last equality follows, by the definition of @., i.e. (15). Note, that the sequence r,
satisfies r,, — oo for n — oo. As p is a bounded Martingale it a.s. converges. Consequently,

Prhr, converges to pr for n — oo, By Fatou’s Lemma

TAIy,

E[¢(pe)] =E [li;gglf%(pwn)} <liminf B [¢(pzar, )] = liminf E [ /0 C(ps)ds]

<E [/Ofc(ps)ds} .

As pr ~ F; it follows, that [y ¢.(q)dFz(q) <E [ [ c(ps)ds] .

To complete the proof and it remains to be shown that equality holds. Assume that

/0 l ¢c(q)dFr(q) < oo

as otherwise the equality is an immediate conclusion of the above inequality. As @. is

convex and (p;), is a Martingale it follows from Jensen’s inequality that

‘Pc(p’r/\rn) S E[‘Pc(l%) | ngr/\rn]- (28)

As the right-hand side of (28) is a conditional expectation of @.(pz) and E[¢.(pr)] < e it
follows from the law of iterated expectations that

E[E[¢:(pe) | Finr)] = E[@c(pr)] < oo

the right-hand side of (28) is uniformly integrable. As the right-hand side is uniformly
integrable the left-hand side of (28) is uniformly integrable as well. Consequently,

r}gl’oloE [¢c(pTArn)] =E r}glzoﬁbc(pr/\rn) = E[(Pc(pf)] = /01 ¢C(Q)dFT(Q) :
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We thus have that,

[ ocla)arita) = im = [ / W"c(pods] |

n—oo

As ¢ > 0 and r, is non-decreasing the sequence on the right-hand side is increasing and

we can apply the monotone convergence theorem to get that

lim E { /0 TAr"c(ps)ds} —E [nlgxgo /O W"c(ps)ds} —E { /0 TC(Ps)ds} . 0

Proof of Proposition 6. As a consequence of (12) we have that

i i . .
logp—f.zlogp—Q—i—(mi—mj) (Zt—tml+mj)
J J 2
Pz Py
q m; q’ mj mj m;
= log — —m; (z—t—) zlog—.—mj (z—t—)—mit—+mjt—
24 2 p{) 2 2 2
i . J .
élog%—m,(z—t%) zlogq—j—mj (z—t%). [
Po Py

Proof. Proof of Proposition 9: We have to show that 262 cL(p) (where L is defined in
(16)) satisfies (15) with constant c. We have that the second partial derivatives of L are

given by

pPitDpj
Lii(p) = Z—z L Bij
i#i o Pi

Lij(p) = —PBi; Bl * pl]]
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(nfl)(m,'fmj)2 ’

2%2 i 20°cL;j(p)p'p’ (m - ipjmj) (m;— ipjmf>
ij=1 Jj=1 J=1
:sz_ﬁld |:i+i:| plp] (mi_ ipkmk> (mj — Zpkmk>
i j#i i Pj k=1 k=1
CLE 0 (- $ )
i i Pi k=1
o) (o) ()
i j#i

+cY Y [pi+p) Bij (mi_/;p mk>

i j#i

:c;;iﬁi,f [P+ 1] (mi—képk’""> [(m"‘,gpk’"") B (mj_képkmk” |

Plugging in the definition of f3;; yields that that
c Y Lij(p)p'p’ | mi— Y pmj | (mj—} p'm;
i,j=1 j=1 =1

. . n k

! + J mi — pimy mi —m;
e PP i L [mi—mj]

+p]] -k

_cZZ n—l mj) (mi—Zp mg

i ﬁél k=1
Zk Pmg) ! (mp =Y pm) ! (mi—my)
Z§ o —mp) =D —m) = D —m)

~Yy L O

i ﬁéz I’l—l ml) i

- =c 1_pi =c
—1) Xi"(n—l) '

Thus, ¢ (p) = 262 cL(p) solves satisfies (15) with constant ¢ and the result follows from
Proposition 8. L

Proof of Proposition 10. As the cross derivatives of H defined in (18) equal zero we have
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that

i=1 k=1 k=1
ZFZH”(Q) (CI) mi_zqu
i=1 k=1

Thus, cspannon iIn combination with H solves satisfies (15) and the result follows from

Proposition 8. 0
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