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Abstract. This note demonstrates how the insights from Morris et al. (2020) can be

applied to the problem of optimal joint design of information and transfers in team

production.

1. Introduction

In Morris et al. (2020), we studied implementation by information design in binary-

action supermodular (BAS) games. An outcome is smallest equilibrium implementable if

there exists an information structure such that that outcome is induced by the smallest

equilibrium of the game with that information structure. We characterized the set of

smallest equilibrium implementable outcomes of a given BAS game. If the outcome to

be implemented is fixed, our characterization result can be read as characterizing the set

of games for which that outcome is smallest equilibrium implementable. In this note,

we demonstrate how the methodology developed in Morris et al. (2020) is applied to the

problem of joint design of information and transfers in the context of moral hazard in team

production due to Winter (2004), where the game payoffs are endogenously determined

by a smallest amount of transfers to induce all the agents to always exert effort in the

smallest-effort, hence unique, equilibrium. Specifically, we study the settings of Halac

et al. (2021) and Moriya and Yamashita (2020) and derive their results, generalizing

some of them, by using our solution method. In particular, we show that the comparative

statics results obtained by Halac et al. (2021) (under symmetric production technology)
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extend to the general (possibly asymmetric) case, by appealing to interesting connections

between our characterizing conditions (in the presence of a potential) and some well-

known concepts from cooperative game theory.

Here we summarize the framework and results of Morris et al. (2020) relevant for the

analysis in this note. The finite set of players is denoted by I = {1, . . . , |I|}. The finite

state space is denoted by Θ, and the prior distribution over Θ by µ, where we assume

that µ(θ) > 0 for all θ ∈ Θ. Each player i ∈ I has binary actions, Ai = {0, 1}. A subset

S of players in I (resp. players in I \{i}) is identified with the action profile of all players

(resp. opponents of player i) where player j chooses action 1 if and only if j ∈ S. The

payoff gain function for player i ∈ I is given by di : 2
I\{i} × Θ → R, where di(S, θ) is

player i’s payoff gain from playing action 1 over action 0 when the subset S ⊂ I \ {i} of

players play action 1 and the state is θ ∈ Θ. With I, (Ai)i∈I , and Θ fixed, the profile

(di)i∈I is called the base game. We assume supermodular payoffs : for each θ ∈ Θ, di(S, θ)

is nondecreasing in S (i.e., di(S, θ) ≤ di(S
′, θ) whenever S ⊂ S ′). The base game (di)i∈I

satisfies the dominance state assumption if there exists θ ∈ Θ such that di(∅, θ) > 0 for

all i ∈ I.

An information structure is represented by a type space T = ((Ti)i∈I , π), where each

Ti is a countable set of types of player i ∈ I, and π ∈ ∆(T × Θ) is a common prior

over T × Θ, where we write T =
∏

i∈I Ti and T−i =
∏

j∈i Tj. We require an information

structure to be consistent with the prior µ:
∑

t∈T π(t, θ) = µ(θ) for all θ ∈ Θ.

Together with the base game (di)i∈I , an information structure T defines a supermod-

ular incomplete information game, which we refer to simply as T . In the incomplete

information game T , a (pure) strategy for player i ∈ I is a mapping σi : Ti → Ai, and the

expected payoff gain for type ti ∈ Ti against opponents’ strategy profile σ−i = (σj)j ̸=i is

Di(σ−i|ti) =
∑

t−i∈T−i,θ∈Θ

π(t−i, θ|ti)di({j ∈ I \ {i} | σj(tj) = 1}, θ),

where π(t−i, θ|ti) = π(t,θ)∑
t′−i

,θ′ π((ti,t
′
−i),θ

′)
. A strategy profile σ = (σi)i∈I is an equilibrium of T

if for all i ∈ I, Di(σ−i|ti) ≥ 0 whenever σi(ti) = 1 and Di(σ−i|ti) ≤ 0 whenever σi(ti) = 0.

By the supermodularity of payoffs, there always exists a smallest equilibrium.

A strategy profile σ = (σi)i∈I in an incomplete information game T induces an outcome,

i.e., a distribution ν ∈ ∆(2I ×Θ) over action profiles and states, by

ν(S, θ) =
∑

t∈T :{i∈I|σi(ti)=1}=S

π(t, θ),
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which, due to the consistency of T , is necessarily consistent with µ:
∑

S∈2I ν(S, θ) = µ(θ)

for all θ ∈ Θ. An outcome ν ∈ ∆(2I × Θ) is smallest equilibrium implementable (S-

implementable) in (di)i∈I if there exists an information structure such that the smallest

equilibrium induces ν. Let SI ⊂ ∆(2I ×Θ) denote the set of S-implementable outcomes.

In the current analysis, we will focus on the “always play action 1” outcome, i.e., the

(consistent) outcome ν̄ ∈ ∆(2I ×Θ) such that ν̄(I, θ) = µ(θ) (and ν̄(S, θ) = 0 for S 6= I)

for all θ ∈ Θ. Clearly, ν̄ is S-implementable in (di)i∈I if and only if it is fully implementable

in (di)i∈I : there exists an information structure with a unique equilibrium, which induces

ν̄. We will sometimes say that the action profile I is fully implementable to mean that

the outcome ν̄ is fully implementable.

Let Π denote the set of permutations of all players. An ordered outcome is a distribution

νΠ ∈ ∆(Π × Θ) over permutations of players and states. An ordered outcome νΠ is

consistent (with µ) if
∑

γ∈Π νΠ(γ, θ) = µ(θ) for all θ ∈ Θ. An ordered outcome νΠ

satisfies sequential obedience (resp. weak sequential obedience) in (di)i∈I if∑
γ∈Π,θ∈Θ

νΠ(γ, θ)di(S−i(γ), θ) > (resp. ≥) 0 (1)

for all i ∈ I, where S−i(γ) ⊂ I\{i} is the set of players who appear before i in permutation

γ ∈ Π. The outcome ν̄ ∈ ∆(2I ×Θ) satisfies sequential obedience (resp. weak sequential

obedience) in (di)i∈I if there exists a consistent ordered outcome νΠ ∈ ∆(Π × Θ) that

satisfies sequential obedience (resp. weak sequential obedience) in (di)i∈I .

Morris et al. (2020, Theorem 1) provided a characterization of S-implementability in

terms of sequential obedience. Applied to the outcome ν̄, it implies:

Proposition 1. (1) If the outcome ν̄ is fully implementable in (di)i∈I , then it satisfies

sequential obedience in (di)i∈I .

(2) Suppose that (di)i∈I satisfies the dominance state assumption. If the outcome ν̄ sat-

isfies sequential obedience in (di)i∈I , then it is fully implementable in (di)i∈I .

The games we consider in this note will have a potential. The base game (di)i∈I is a

potential game if there exists a function Φ: 2I ×Θ → R such that for each θ ∈ Θ,

di(S, θ) = Φ(S ∪ {i}, θ)− Φ(S, θ)

for all i ∈ I and S ⊂ I \ {i}. Such a function Φ is called a potential of (di)i∈I . By

normalization, we assume Φ(∅, θ) = 0 for all θ ∈ Θ. By the monotonicity of di(S, θ) in S,

the set function Φ(·, θ) is supermodular: Φ(S, θ) + Φ(S ′, θ) ≤ Φ(S ∪ S ′, θ) + Φ(S ∩ S ′, θ)
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for all S, S ′ ⊂ I. In potential games, sequential obedience has a simple characterization

(Morris et al. (2020, Proposition 3)).

Proposition 2. Suppose that (di)i∈I has a potential Φ. The outcome ν̄ satisfies sequential

obedience (resp. weak sequential obedience) in (di)i∈I if and only if∑
θ∈Θ

µ(θ)Φ(I, θ) > (resp. ≥)
∑
θ∈Θ

µ(θ)Φ(S, θ) (2)

for all S ⫋ I.

This is a duality result. The special case of this result where |Θ| = 1 is explained in

the Appendix, in relation to some well-known concepts from cooperative game theory.

The latter condition in this proposition is further simplified if the potential satisfies a

convexity condition (Morris et al. (2020, Proposition 4)). Potential Φ satisfies convexity

if for each θ ∈ Θ,

Φ(S, θ) ≤ |S|
|I|

Φ(I, θ) (3)

for all S ⊂ I.

Proposition 3. Suppose that (di)i∈I has a convex potential Φ. The outcome ν̄ satisfies

sequential obedience (resp. weak sequential obedience) in (di)i∈I if and only if∑
θ∈Θ

µ(θ)Φ(I, θ) > (resp. ≥) 0. (4)

Under supermodularity, convexity is satisfied in particular when payoffs are symmetric

so that Φ(S, θ) depends on S only through its cardinality |S|. In general, it is a restriction

on the degree of asymmetry in payoffs.

2. Information Design with Transfers in Team Production

In this note, we apply the arguments from Morris et al. (2020) to two extensions, by

Halac et al. (2021) and by Moriya and Yamashita (2020), of the model of moral hazard

in teams by Winter (2004).

There is a team I of agents who are engaged in a joint project. Each agent decides

whether to exert effort (action 1) or not (action 0), where the effort cost for each agent

i ∈ I is ci > 0. The probability of success of the project depends on the set of agents

who exert effort as well as the state of the world, drawn from a finite set Θ according

to a probability distribution µ on Θ. The project’s technology is given by the function

P : 2I ×Θ → [0, 1], where P (S, θ) is the success probability when the agents in set S ⊂ I
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exert effort at state θ ∈ Θ. We assume strict monotonicity and increasing returns to scale

(IRS) on P (·, θ): i.e., for each θ ∈ Θ, P (·, θ) is strictly increasing, P (S, θ) < P (S ′, θ) if

S ⫋ S ′, and is supermodular, P (S, θ) + P (S ′, θ) ≤ P (S ∪ S ′, θ) + P (S ∩ S ′, θ) for all

S, S ′ ∈ 2I . For each i ∈ I, we denote

∆iP (S, θ) = P (S ∪ {i}, θ)− P (S, θ)

for S ⊂ I \ {i}.

The principal offers incentive contracts to the agents to implement action profile I

(all agents exerting effort) as a smallest, hence unique, equilibrium outcome, where the

situation is one of hidden action, so that only the final outcome (whether success or

failure) of the project is contractible. Ex post, if the bonus payment to agent i is bi ≥ 0

and a subset S ⊂ I \ {i} of agents exert effort, this agent’s payoff is thus given by

P (S ∪ {i}, θ)bi − ci for ai = 1 and P (S, θ)bi for ai = 0. Thus, the payoff gain function is

given by

di(S, θ; bi) = ∆iP (S, θ)bi − ci.

By the assumption of IRS, di is nondecreasing in S.

In the original model of Winter (2004), there is no uncertainty (i.e., |Θ| = 1), and

the contracts are public, so that in the complete information game induced by a bonus

profile, the necessary and sufficient condition for full implementability of I is the “divide-

and-conquer” condition that there exists γ ∈ Π such that

di(S−i(γ); bi) > 0

for all i ∈ I (where the dependence on the state is dropped since |Θ| = 1).1 Under

the symmetry in the technology and the costs as assumed in Winter (2004), the optimal

(i.e., achieving the infimum of the total payment) bonus profile is given by binding the

divide-and-conquer condition sequentially along an arbitrarily chosen permutation of all

agents. In the following, we demonstrate how the methodology developed in Morris et al.

(2020) applies to this context in the alternative settings in which the bonuses may be

private with correlation across agents (Halac et al. (2021)) and information about the

state may also be transmitted to the agents via private signals (Moriya and Yamashita

(2020)), respectively.

1See also Segal (2003) for a related model where the action of an agent is contractible.
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2.1. Halac et al. (2021). Suppose that |Θ| = 1 as in Winter (2004), so that we drop

the dependence on θ within this subsection. Without loss, we assume that P (∅) = 0.

Different from Winter (2004), the principal in Halac et al. (2021) is allowed to offer a

private contract to each agent. Formally, an incentive scheme φ = (T , B) consists of an

information structure T = ((Ti)i∈I , π), where Ti is a (countable) type set for each agent

i ∈ I and π is a common prior on T =
∏

i∈I Ti, and a profile of bonus rules B = (Bi),

where Bi : Ti → R+ determines the bonus payment offered to each type of agent i ∈ I.

Write TB(φ) for the expected total bonus payment under incentive scheme φ:

TB(φ) =
∑
t∈T

π(t)P (I)
∑
i∈I

Bi(ti) = P (I)
∑
i∈I

∑
ti∈Ti

π(ti)Bi(ti),

where π(ti) =
∑

t−i∈T−i
π(ti, t−i). The optimization problem of the principal is:

TB∗ = inf
φ
TB(φ)

subject to the constraint that the profile of the “always play 1” strategies be a unique

equilibrium of the incomplete information game induced by incentive scheme φ.

Halac et al. (2021, Theorems 1 and 2) have shown, although not stated in this lan-

guage, that this problem reduces to the problem of minimizing the total bonus payment

P (I)
∑

i∈I bi subject to the constraint that I satisfies weak sequential obedience in the

complete information game given by b = (bi)i∈I :

min
b∈RI

+

∑
i∈I

bi (5a)

subject to

∃ ρ ∈ ∆(Π) :
∑
γ∈Π

ρ(γ)di(S−i(γ); bi) ≥ 0 for all i ∈ I. (5b)

Observe that, by the (continuity and) strict quasi-concavity of the function (q, bi) 7→ qbi

for q > 0 and bi > 0, an optimal solution to this problem (exists and) is unique, denoted

b∗ = (b∗i )i∈I . Note also that by strict monotonicity in bi, the constraint (5b) must bind

for all i ∈ I at the optimum.

Proposition 4. TB∗ = P (I)
∑

i∈I b
∗
i , where b∗ = (b∗i )i∈I is the unique solution to (5).

Below we show how the methods from Morris et al. (2020) help derive this result.

First, the argument in the proof of Theorem 1(1) in Morris et al. (2020) establishes

that this problem gives a lower bound of TB(φ).

Step 1. TB∗ ≥ P (I)
∑

i∈I b
∗
i .
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Proof. Fix any incentive scheme φ = (T , B) under which “always play 1” is the unique

equilibrium. It can be cast into our framework as follows. View each realization of bonus

profile B(t) = (B1(t1), . . . , B|I|(t|I|)) as a state. Thus, the (endogenously determined)

state space is Θ̂ = {B(t) | t ∈ T}. The base game (d̂i)i∈I is then given by d̂i(S, θ̂) =

di(S; θ̂i) = ∆iP (S)θ̂i − ci, where the dependence on θ̂ (bonus profile) is only through its

ith component θ̂i (bonus paid to i), and the prior π̂ on T × Θ̂ is by π̂(t, θ̂) = π(t) if

B(t) = θ̂ and π̂(t, θ̂) = 0 otherwise. As in the proof of Theorem 1(1) in Morris et al.

(2020), consider the sequential best response process from the smallest strategies. Then

the state space T is partitioned into {T (γ) | γ ∈ Π} according to the order γ in which

agents switch actions from 0 to 1 in the process so that it holds that for each i ∈ I and

ti ∈ Ti, ∑
γ∈Π

∑
t−i∈T−i:(ti,t−i)∈T (γ)

∑
θ̂∈Θ̂

π̂(t, θ̂)d̂i(S−i(γ), θ̂) > 0,

that is, ∑
γ∈Π

∑
t−i∈T−i:(ti,t−i)∈T (γ)

π(t)(∆iP (S−i(γ))Bi(ti)− ci) > 0. (6)

Define ρ ∈ ∆(Π) by

ρ(γ) =
∑

t∈T (γ)

π(t),

and for each i ∈ I and ti ∈ Ti, define ρi(·|ti) ∈ ∆(Π) by

ρi(γ|ti) =
∑

t−i∈T−i:(ti,t−i)∈T (γ)

π(t−i|ti),

where π(t−i|ti) = π(ti,t−i)
π(ti)

. Note that

ρ =
∑
ti∈Ti

π(ti)ρi(·|ti)

holds for all i ∈ I. Thus, by (6), for all i ∈ I and all ti ∈ Ti we have∑
γ∈Π

ρi(γ|ti)(∆iP (S−i(γ))Bi(ti)− ci) > 0,

and hence

Bi(ti) > hi(ρi(·|ti)), (7)

where the function hi : ∆(Π) → R is defined by

hi(ρ
′) =

ci∑
γ∈Π ρ′(γ)∆iP (S−i(γ))

.

Then multiply the inequality by π(ti) and sum it up over all ti: then we have∑
ti∈Ti

π(ti)Bi(ti) >
∑
ti∈Ti

π(ti)hi(ρi(·|ti)) ≥ hi

(∑
ti∈Ti

π(ti)ρi(·|ti)

)
= hi(ρ), (8)
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where the second inequality follows from the convexity of hi (Jensen’s inequality). Since

b = (hi(ρ))i∈I trivially satisfies the constraint (5b), we have
∑

i∈I hi(ρ) ≥
∑

i∈I b
∗
i , and

hence,

TB(φ) = P (I)
∑
i∈I

∑
ti∈Ti

π(ti)Bi(ti) > P (I)
∑
i∈I

hi(ρ) ≥ P (I)
∑
i∈I

b∗i .

Since φ has been taken arbitrarily, this implies that TB∗ ≥ P (I)
∑

i∈I b
∗
i . □

Second, analogously to the construction in the proof of Theorem 1(2) in Morris et al.

(2020), one can construct a sequence of incentive schemes that attains in the limit the

lower bound obtained in Step 1. Due to the requirement of known own payoffs, that

the value of the bonus be known to each type in the setting here, however, the concrete

construction should follow that of Oyama and Takahashi (2020, Theorem 2).

Step 2. TB∗ ≤ P (I)
∑

i∈I b
∗
i .

Proof. Let ρ∗ ∈ ∆(Π) be an ordered outcome that satisfies (5b) with respect to b = b∗.

For each i ∈ I, fix any bi strictly larger than ci
P ({i}) ; say, let bi =

ci
P ({i}) + 1.

Fix any sufficiently small ε > 0. We show that there exists an incentive scheme φ such

that TB(φ) ≤ P (I)
∑

i∈I(b
∗
i + 2ε). Let η > 0 be such that∑

γ∈Π

(1− η)|I|−|S−i(γ)|−1ρ∗(γ)di(S−i(γ); b
∗
i + ε) > 0 (9)

for all i ∈ I, and

1− (1− η)|I|−1 ≤ |I|ε∑
i∈I b̄i −

∑
i∈I b

∗
i

. (10)

Then construct the incentive scheme φ = ((T, π), B) as follows. For each i ∈ I, let

Ti = {1, 2, . . .}, and let π ∈ ∆(T ) be given by

π(t) =


η(1− η)mρ∗(γ) there exist m ∈ N and γ ∈ Π such

that ti = m+ ℓ(i, γ) for all i ∈ I,

0 otherwise,

where ℓ(i, γ) is the ranking of i ∈ I in γ ∈ Π (i.e., ℓ(i, (i1, . . . , i|I|)) = ℓ if and only if

iℓ = i). Let Bi : Ti → R be given by

Bi(ti) =

b̄i if ti ≤ |I| − 1,

b∗i + ε if ti ≥ |I|.

We claim that action 1 is uniquely rationalizable for all players of all types. Indeed, for

types ti ≤ |I| − 1, action 1 is a strictly dominant action by construction. For τ ≥ |I|,

if action 1 is uniquely rationalizable for all players of all types ti ≤ τ − 1, then, as in
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Claim A.4 in the proof of Theorem 2 in Oyama and Takahashi (2020) (or Claim A.2 in

the proof of Theorem 1(2) in Morris et al. (2020)), for a player i ∈ I of type ti = τ the

expected payoff is no smaller than∑
S⊂I\{i}

π({j ∈ I \ {i} | tj < τ} = S|ti = τ)di(S; b
∗
i + ε)

=
∑
γ∈Π

(1− η)|I|−|S−i(γ)|−1ρ∗(γ)di(S−i(γ); b
∗
i + ε)/C ′

i > 0

by (9), where C ′
i =

∑|I|
ℓ=1(1− η)|I|−ℓρ∗({γ = (i1, . . . , i|I|) ∈ Π | iℓ = i}) > 0, so that action

1 is uniquely rationalizable. By induction, “always play 1” is uniquely rationalizable,

hence the unique equilibrium.

Finally, since π({t ∈ T | ti ≥ |I| for all i ∈ I}) =
∑

m≥|I|−1 η(1− η)m = (1− η)|I|−1, we

have

TB(φ) ≤ (1− η)|I|−1P (I)
∑
i∈I

(b∗i + ε) +
(
1− (1− η)|I|−1

)
P (I)

∑
i∈I

b̄i

≤ P (I)
∑
i∈I

(b∗i + 2ε)

by (10), as desired. □

Halac et al. (2021, Theorem 2) also show that for any sequence of incentive schemes

that attains TB∗ in the limit, the corresponding sequence of bonus profile distributions

converges weakly to the degenerate distribution on b∗. In our proof of Proposition 4

above, this follows from the inequalities (7) and (8), which will be binding in the limit,

along with the strict convexity of hi.

Now, let us discuss the structure of the limit optimal bonus profile b∗. The con-

straint (5b), which is written as
∑

γ∈Π ρ(γ)∆iP (S−i(γ)) ≥ ci
bi
, must all bind at the opti-

mum. For γ ∈ Γ, let αγ(P ) = (αγ
i (P ))i∈I be the vector (“marginal contribution vector”)

defined by αγ
i (P ) = ∆iP (S−i(γ)). By substitution xi =

ci
bi
, the optimization problem (5)

is rewritten as

min
x

∑
i∈I

ci
xi

subject to x ∈ W (P ), (11)

where

W (P ) = conv{αγ(P ) ∈ RI | γ ∈ Π}.

Since, as discussed in the Appendix, the set W (P ), which is called the Weber set of P

(Weber (1988)), is equal to the core of the set function P by supermodularity (Shapley

(1971)),

C(P ) = {x ∈ RI | x(I) = P (I), x(S) ≥ P (S) for all S ⊂ I},
9



where x(S) =
∑

i∈S xi, the problem (11), hence the original problem (5), is equivalent to

min
x

∑
i∈I

ci
xi

subject to x ∈ C(P ). (12)

(This also follows from Proposition 2 in Section 1 since (di(·; bi))i∈I is a (weighted) poten-

tial game with potential P −x.) With the expression (12), one can exploit known results

from cooperative game theory to extend to the case of general P the comparative statics

results derived in Halac et al. (2021, Section IV) for symmetric P (where P (S) depends

only on |S|). The geometry of the core of a supermodular function is well known by Shap-

ley (1971). For S ⊂ I, denote CS(P ) = {x ∈ C(P ) | x(S) = P (S)} with C∅(P ) = C(P ).

These sets CS(P ), S ⊂ I, are the faces of the core C(P ). The vertices of each CS(P ) are

precisely the vectors αγ(P ) with the permutations γ ∈ Π that rank the agents in S earlier

than those in I \S, i.e., the permutations γ written as γ = (S, I \S). If P is strictly super-

modular (i.e., P (S, θ)+P (S ′, θ) < P (S∪S ′, θ)+P (S∩S ′, θ) whenever neither S ⊂ S ′ nor

S ′ ⊂ S), then the vectors αγ(P ) are all distinct. Let x∗ =
(

ci
b∗i

)
i∈I

be the solution to (12),

and let Sx∗ = {S ⊂ I | x∗ ∈ CS(P )}, which corresponds to the set of binding constraints

in (12). By supermodularity, Sx∗ is closed under union and intersection, and in fact the

members of Sx∗ are nested if P is strictly supmermodular. Suppose that P is strictly

supmermodular, and write Sx∗ = {S∗
0 , S

∗
1 , . . . , S

∗
L} with ∅ = S∗

0 ⊂ S∗
1 ⊂ · · · ⊂ S∗

L = I.

Then, any ρ∗ ∈ ∆(Π) such that x∗ =
∑

γ∈Π ρ∗(γ)αγ(P ) assigns strictly positive weights

only to permutations γ written in the form γ = (S∗
1 , S

∗
2 \ S∗

1 , . . . , S
∗
L \ S∗

L−1). Thus define

the weak order on I by i � i′ if and only if i ∈ S∗
ℓ \S∗

ℓ−1 and i′ ∈ S∗
ℓ′ \S∗

ℓ′−1 for some ℓ < ℓ′,

and i ∼ i′ if and only if i, i′ ∈ S∗
ℓ \ S∗

ℓ−1 for some ℓ. This order is the order identified by

Halac et al. (2021, Proposition 1) for the case of (strictly supermodular and) symmetric

technology. It can be readily verified that i ∼ i′ for all i, i′ ∈ I (i.e., L = 1) if and only if

P (I)∑
i∈I

√
ci

>
P (S)∑
i∈S

√
ci

for all S 6= I, while i � i′ or i′ � i whenever i 6= i′ (i.e., L = |I|, or x∗ = αγ(P ) for some

γ ∈ Π) if and only if there exists γ = (i1, . . . , i|I|) ∈ Π such that

∆ik+1
P (S−ik+1

(γ))
√
cik+1

≤ ∆ikP (S−ik(γ))√
cik

for all k = 1, . . . , |I| − 1 (compare Halac et al. (2021, Proposition 2)). In particular, if

costs are symmetric (i.e., ci = cj for all i, j ∈ I) and technology is not too asymmetric

in the sense that P satisfies the convexity condition (3), then i ∼ i′ for all i, i′ ∈ I
10



and the symmetric bonus profile (i.e., x∗
i = P (I)

|I| for all i ∈ I) is the solution, so that

the discriminatory, deterministic divide-and-conquer contract of Winter (2004) is strictly

suboptimal.

The problem (12) is a special case of a class of well-studied problems in cooperative

game theory. If costs are symmetric, the solution x∗ coincides with the constrained

egalitarian allocation of Dutta and Ray (1989), or the Dutta-Ray solution, which is the

unique element of C(P ) that Lorenz-dominates every other element of C(P ).2 For general

ci’s, x
∗ is the unique element of C(P ) such that

(
x∗
i√
ci

)
i∈I

Lorenz-dominates
(

yi√
ci

)
i∈I

for all y ∈ C(P ), which is a specific form of a generalized Dutta-Ray solution (e.g.,

Hokari (2002)).3 It follows from Hokari (2002, Proposition 1) (with the “monotone-path

function” fi(S, i) =
√
cit∑

j∈S
√
cj
) that the solution x∗ is explicitly written as

x∗
i = max

S⊂I,S∋i
min

T⊂S\{i}

√
ci(P (S)− P (T ))∑

j∈S\T
√
cj

.

Therefore, we have:

Proposition 5. The unique limit optimal bonus profile b∗ = (b∗i )i∈I is given by

b∗i = min
S⊂I,S∋i

max
T⊂S\{i}

√
ci
∑

j∈S\T
√
cj

P (S)− P (T )
. (13)

If P is strictly supermodular, then for i ∈ S∗
ℓ \ S∗

ℓ−1, the “min” and the “max” in the

formula (13) are attained with S = S∗
ℓ \ S∗

ℓ−1 and T = S∗
ℓ−1, respectively. Immediately

from Proposition 5, one can see that the comparative statics of the solution with respect

to the costs ci derived by Halac et al. (2021, Proposition 3) for the case of symmetric P

in fact holds for general P . Also, some comparative statics properties with respect to P

are known (e.g., Hokari (2002, Propositions 2–5)).

2.2. Moriya and Yamashita (2020). Now let the production technology depend on

the state of the world θ ∈ Θ which is known only to the principal. As in Winter (2004),

we assume a symmetric environment: technology is symmetric so that it depends on

S ⊂ I only through its cardinality |S|, and costs are symmetric: ci = c for all i ∈ I. Here

we allow for any finite number of states as well as agents, while Moriya and Yamashita

2For x, y ∈ RI , x Lorenz-dominates y if (x(1), . . . , x(n)) ≥ (y(1), . . . , y(n)) for all n = 1, . . . , |I|, where
x(k) denotes the kth component of x in the increasing order.

3It can also be shown that x∗ is an optimal solution to (12) if and only if it is “lexicographically
optimal” in C(P ) with respect to weight vector (

√
ci)i∈I (Fujishige (2005, Chapter V)), where several

algorithms for computing the solution have been proposed.
11



(2020) only consider the case where |Θ| = 2 and I = 2. Write P (S, θ) = p(|S|, θ), where

p(n, θ) is strictly increasing in n, and

∆p(n, θ) = p(n+ 1, θ)− p(n, θ)

is nondecreasing in n (increasing returns to scale, or IRS). Let θ ∈ Θ be a state such that

∆p(0, θ̄) ≥ ∆p(0, θ) for all θ ∈ Θ. We impose the following assumption:

∆p(0, θ) ≥
∑
θ∈Θ

µ(θ)
p(|I|, θ)− p(0, θ)

|I|
. (14)

This is a richness assumption that corresponds to the dominance state assumption. It

says that the marginal productivity by a single agent’s effort at θ (left hand side) is large

enough that it exceeds the expected average productivity (right hand side). In particular,

under the strictly monotonicity of p(n, θ) in n, it excludes the case of |Θ| = 1.

The principal chooses an information structure and a bonus payment scheme. We

assume that the state realization is unverifiable, so that the bonus payment to each agent

can depend only on the success of the project, and as in Winter (2004), assume public

contracts. If the bonus payment to agent i is bi > 0 and a subset S ⊂ I \ {i} of agents

exert effort, this agent’s payoff is thus given by p(|S|+1, θ)bi− c for ai = 1 and p(|S|, θ)bi
for ai = 0. By normalization, we let the payoff gain function be given by

di(S, θ; bi) = ∆p(|S|, θ)− c

bi
.

By the assumption of IRS, di is nondecreasing in S.

The objective of the principal is to find a bonus scheme b = (bi)i∈I and an information

structure that minimize the total payment while inducing all types of all agents to exert

effort in the unique, hence smallest, equilibrium. Thus, the problem becomes:

inf
b:ν̄∈SI (b)

∑
i∈I

bi,

where ν̄ ∈ ∆(2I×Θ) is the “always play 1” outcome, i.e., the outcome such that ν̄(I, θ) =

µ(θ) for all θ ∈ Θ, and SI (b) ⊂ ∆(2I ×Θ) is the set of S-implementable outcomes under

the bonus scheme b. We say that a bonus scheme b∗ = (b∗i )i∈I is optimal if
∑

i∈I b
∗
i is

equal to this infimum and ν̄ ∈ SI (b∗ + ε) for every ε > 0, where b∗ + ε = (b∗i + ε)i∈I .

By Proposition 1(1), sequential obedience of ν̄ under (di(·; bi))i∈I is a necessary con-

dition for ν̄ ∈ SI (b), which will give us a condition on payoffs, hence bonuses. But the

base game given b = (bi)i∈I is a potential game with a potential

Φ(S, θ; b) = p(|S|, θ)− p(0, θ)−
∑
i∈S

c

bi
.

12



Therefore, by Proposition 2, sequential obedience reduces to the simpler condition∑
θ∈Θ µ(θ)Φ(I, θ; b) >

∑
θ∈Θ µ(θ)Φ(S, θ; b) for all S ⫋ I. We consider the minimization

problem under the relaxed constraint
∑

θ∈Θ µ(θ)Φ(I, θ; b) ≥
∑

θ∈Θ µ(θ)Φ(∅, θ; b) = 0:

min
b∈RI

+

∑
i∈I

bi

subject to ∑
i∈I

c

bi
≤
∑
θ∈Θ

µ(θ)(p(|I|, θ)− p(0, θ)).

Since the left hand side of the constraint, which must be binding at the optimum, is

(continuous and) strictly quasi-convex in b, an optimal solution to this relaxed problem

(exists and) is unique. It is readily verified to be b∗ = (β∗, . . . , β∗) with

β∗ =
|I|c∑

θ∈Θ µ(θ)(p(|I|, θ)− p(0, θ))
. (15)

This will indeed be a (unique) optimal bonus scheme if ν̄ ∈ SI (b∗ + ε) for every ε > 0.

Under b∗ + ε, the potential is now

Φ(S, θ; b∗ + ε) = p(|S|, θ)− p(0, θ)− |S| c

β∗ + ε
,

which satisfies convexity by IRS. Therefore, by Proposition 3, sequential obedience is

equivalent to the condition that
∑

θ∈Θ µ(θ)Φ(I, θ; b∗ + ε) > 0, which, by the definition of

β∗, is satisfied for any ε > 0. Finally, by the assumption (14), we have β∗ ≥ c
∆p(1,θ)

, and

therefore,

di(∅, θ; b∗i + ε) = ∆p(1, θ̄)− c

β∗ + ε
> 0,

so that the dominance state assumption is satisfied for any ε > 0. Hence, from Proposi-

tion 1(2), it follows that ν̄ ∈ SI (b∗ + ε) for any ε > 0. Thus, we have:

Proposition 6. The unique optimal bonus scheme is given by b∗ = (β∗, . . . , β∗), where

β∗ is as defined in (15).

Thus, under the richness assumption (i.e., assumption (14)), a symmetric bonus scheme

is optimal, and asymmetric ones, in particular, the deterministic divide-and-conquer

schemes of Winter (2004)
(

c
∆p(1)

, . . . , c
∆p(|I|)

)
(modulo permutation), are strictly sub-

optimal.
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Appendix

In this section, we report interesting connections between sequential obedience in com-

plete information potential games and some well-known concepts in cooperative game

theory, which may help gain additional intuition about sequential obedience and its dual

characterizations, Propositions 2 and 3 in Morris et al. (2020). They are also used in the

arguments in Section 2.1 of this note.

Consider the complete information case where µ(θ∗) = 1 for some θ∗ ∈ Θ (whereby

we will suppress the dependence on θ within this section), and suppose that (di)i∈I has

a potential Φ: 2I → R at θ∗: di(S) = Φ(S ∪ {i}) − Φ(S) for all i ∈ I and S ∈ 2I\{i},

where we normalize Φ(∅) = 0. We restrict attention to the action profile I, or the “all

play action 1” outcome.

The (supermodular) set function Φ is viewed as a cooperative game, where Φ(S) is the

“worth” of coalition S ⊂ I. Let Π denote the set of permutations of all players, and for

γ ∈ Π, let αγ(Φ) = (αγ
i (Φ))i∈I ∈ RI be the vector defined by

αγ
i (Φ) = di(S−i(γ)) = Φ(S−i(γ) ∪ {i})− Φ(S−i(γ)),

where S−i(γ) is the set of players listed before i in γ. These vectors αγ(Φ), γ ∈ Π, are

called the marginal contribution vectors of Φ. Then the sequential obedience condition

for I reads: there exists ρ ∈ ∆(Π) such that
∑

γ∈Π ρ(γ)αγ(Φ) � 0, or equivalently,

W (Φ) ∩ RI
++ 6= ∅, (A.1)

where

W (Φ) = conv{αγ(Φ) ∈ RI | γ ∈ Π}

is called the Weber set of Φ (Weber (1988)). By duality (or the separating hyperplane

theorem), sequential obedience of I is equivalent to maxγ∈Π λ · αγ(Φ) > 0 for all λ ∈

RI
+ \ {0}, or equivalently,

max
x∈W (Φ)

λ · x > 0 for all λ ∈ RI
+ \ {0}. (A.2)

This is a special case of Proposition 2 in Morris et al. (2020).

The core of Φ is the set

C(Φ) = {x ∈ RI | x(I) = Φ(I), x(S) ≥ Φ(S) for all S ⊂ I},

where x(S) =
∑

i∈S xi. In general, C(Φ) ⊂ W (Φ) (by (A.7) below), and when Φ is

supermodular, C(Φ) = W (Φ), where the marginal contribution vectors αγ(Φ), γ ∈ Π,
14



(A.1) (A.2)

(A.6) (A.5)

(A.3) (A.4)

(∗)

(†)

(‡)

(‡)(†)

(∗)By supermodularity (Shapley (1971))
(†)By duality
(‡)By (A.7)

Figure 1. Equivalence

are precisely the vertices of C(Φ) (Shapley (1971)). Thus, under the supermodularity of

Φ, (A.1) is equivalent to

C(Φ) ∩ RI
++ 6= ∅, (A.3)

which by duality (or the separation hyperplane theorem) is equivalent to

max
x∈C(Φ)

λ · x > 0 for all λ ∈ RI
+ \ {0}. (A.4)

Proposition 3 in Morris et al. (2020), applied to the current special case, proves that

(A.2) is equivalent to

Φ(I) > Φ(S) for all S ⫋ I. (A.5)

The equivalence of this condition to (A.2), and hence to (A.4), can be understood as

follows. The (signed) Choquet integral with respect to Φ (also known as the Lovász

extension of Φ) is defined by∫
λdΦ =

|I|∑
k=1

(λik − λik−1
)Φ({ik, . . . , i|I|})

=

|I|∑
k=1

λik(Φ({ik, . . . , i|I|})− Φ({ik+1, . . . , i|I|})),

where the components of λ = (λi)i∈I ∈ RI are ordered so that λi1 ≤ · · · ≤ λi|I| , and

λi0 = 0. Note that

−
∫
(−λ)dΦ =

|I|∑
k=1

(λik − λik−1
)(Φ(I)− Φ({ik, . . . , i|I|})) =

∫
λdΦ#,

where Φ#(S) = Φ(I)− Φ(I \ S). Hence, (A.5) is equivalent to

−
∫

(−λ)dΦ > 0 for all λ ∈ RI
+ \ {0}. (A.6)
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It is readily verified from the definitions that we have minx∈W (Φ) λ · x ≤
∫
λdΦ ≤

minx∈C(Φ) λ · x for all λ ∈ RI , and hence

max
x∈W (Φ)

λ · x ≥ −
∫

(−λ)dΦ ≥ max
x∈C(Φ)

λ · x for all λ ∈ RI , (A.7)

where the inequalities hold with equality when Φ is supermodular. This establishes,

under the supermodularity of Φ, the equivalence of (A.6) to (A.2) and (A.4) (Figure 1).

Thus, Propositions 2 and 3 of Morris et al. (2020) can be viewed as an incomplete

information generalization of the equivalence among (A.1)–(A.6).
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