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Abstract

We study higher-order expectations paralleling the Harsanyi (1968) approach to
higher-order beliefs—taking a basic set of random variables as given, and build-
ing up higher-order expectations from them. We report three main results. First,
we generalize Samet’s (1998a) characterization of the common prior assumption in
terms of higher-order expectations, resolving an apparent paradox raised by his re-
sult. Second, we characterize when the limits of higher-order expectations can be
expressed in terms of agents’ heterogeneous priors, generalizing Samet’s expression
of limit higher-order expectations via the common prior. Third, we study higher-
order average expectations—objects that arise in network games. We characterize
when and how the network structure and agents’ beliefs enter in a separable way.

1 Introduction

Samet (1998a) considered sequences of higher-order expectations such as: Ann’s ex-
pectation of a random variable; Bob’s expectation of Ann’s expectation; Charlie’s ex-
pectation of Bob’s expectation of Ann’s; and so on. Samet showed that any such se-
quence converges to a constant random variable whose value is common certainty—in
other words, limits of higher-order expectations are public. He also showed that order-
independence is equivalent to the consistency of beliefs. Order-independence holds if,
for all random variables, the limits of higher-order expectations are independent of the
order in which expectations are taken. Agents’ interim belief functions are consistent if
there is a single prior distribution that is simultaneously compatible with each agent’s
updating. Consistency is the interim content of the common prior assumption. Thus,
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Samet’s (1998a) result on order-independence characterizes a formulation of the com-
mon prior assumption in terms of the properties of higher-order expectations.1 Viewed
from another perspective, it provides a simple way of calculating limits of higher-order
expectations under suitable assumptions: just find the common prior, and take expec-
tations with respect to that.

In Samet’s analysis, there is a spaceΩmodeling all uncertainty, and all the conditions
he studies (in particular, order-independence) are imposed on all random variables de-
fined on this space—that is, on all the random variables the modeler can express. In
contrast, we focus on a set of random variables constructed as in the Harsanyi (1968)
construction of higher-order beliefs. That is, we fix a set of parameters or external states;
then we define the basic random variables as the ones measurable with respect to these
external states. Then we inductively build up an expectations space consisting of agents’
expectations and higher-order expectations of those basic random variables. The expec-
tations space is the natural one to study when the properties of interest are higher-order
expectations of a given set of random variables, as is the case in the study of some net-
work games and asset markets. We study analogues of Samet’s conditions on this space.

As we will explain, this seemingly small change from Samet’s (1998a) model yields
a structure that contrasts sharply with his. We report three main results concerning
higher-order expectations in this framework. The first result studies the content of
order-independence when it is imposed on the expectations space rather than on all
random variables. Because in a special case the expectations space is equal to the space
of all random variables, our result generalizes Samet’s. We will argue that our approach
resolves an apparent paradox raised by Samet’s characterization—namely, that a prop-
erty of only higher-order expectations (order-independence) can completely charac-
terize a property of beliefs (the common prior assumption), even though higher-order
expectations are a coarse measure of agents’ beliefs about any given random variable.
Our second result describes the values of higher-order expectations and shows when
these values can be expressed in terms of heterogeneous priors associated with differ-
ent agents; this result generalizes Samet’s expression of limit higher-order expectations
via the common prior. The third result focuses on objects closely related to higher-order
expectations—higher-order average expectations—that arise in network games and cer-
tain asset markets. Under suitable assumptions, we decompose the values of higher-
order average expectations in a way that separates the effects of the network structure
and agents’ beliefs; moreover, we characterize exactly when such a decomposition is
possible.

1 We follow Harsanyi (1968) in using consistency rather than the common prior assumption, both to
highlight its interim interpretation and to provide a benchmark for notions of consistency that we will
introduce later, which do not have natural interpretations from the ex ante perspective. We also differ
from Samet (1998a) in using the terminology of “higher-order” rather than “iterated” expectations; we
use the former to highlight the analogy with higher-order beliefs, which will play an important role in this
paper.
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The Expectations Space and Expectation-Consistency We approach higher-order ex-
pectations as Harsanyi (1968) approached higher-order beliefs. First, we fix a set of
external states.2 Then we define all the random variables measurable with respect to
those states, and inductively construct expectations and higher-order expectations of
those random variables. These variables together make up the expectations space. As we
will see, this contrasts with Samet’s (1998a) approach of imposing conditions on higher-
order expectations of all random variables measurable with respect to the ambient state
spaceΩ—the set of all states the modeler can conceive of.

In contrast to Samet’s focus on consistency defined in terms of beliefs, our first re-
sult uses the property of expectation-consistency. This property holds if there is a pro-
file of distributions, each a prior for one agent,3 which yield the same expectations
for all random variables in the expectations space. Our first result shows that there
is order-independence with respect to the expectations space if and only if beliefs are
expectation-consistent. We call any of these measures an expectation-consistent prior
for the environment.

The property of expectation-consistency is a significant weakening of consis-
tency—i.e., the requirement that all distributions in the profile of priors mentioned ear-
lier actually be the same distribution. This can be seen in two ways. First, because only
expectations matter, expectation-consistency depends only on each agent’s marginal
belief about each other agent’s types, but not on his beliefs about profiles of others’
types. Second, it will turn out that expectation-consistency is automatically satisfied
when there are only two agents, whereas a consistent prior is, of course, not guaranteed
to exist even in the two-agent case.

We thus show an equivalence between order-independence (when the basic space
of random variables is fixed) and a certain property of beliefs that is weaker than the
common prior assumption. That this property should be weaker is intuitive, because
an agent’s expectation of a given random variable is a coarser measure of his beliefs
than the agent’s full beliefs themselves; thus, we would not expect properties of higher-
order expectations (order-independence) to characterize properties of higher-order be-
liefs (consistency). The result of Samet (1998a) can seem paradoxical in that it is incon-
sistent with this intuition. We resolve the tension as follows: Samet (1998a) quantifies
over arbitrary random variables in his definition of order-independence. The random
variables being considered can then depend in an arbitrary way on all agents’ beliefs
and higher-order beliefs, and thus the condition of order-independence imposed on
this large set of random variables is very strong. We impose the analogous condition
on the smaller expectations space, and that characterizes a less demanding notion of
consistency.

We are interested in this result for three reasons. First, as we have just stated, it re-
solves the apparent paradox in the striking result of Samet (1998a). Second, it identifies

2 These were called parameters in the work of Mertens and Zamir (1985). Our terminology highlights
the interpretation that they reflect outcomes separate from the agents’ perceptions.

3 That is, a prior that is compatible with that agent’s belief updating.
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the relevant space of higher-order expectations, in analogy with the space of higher-
order beliefs described in Mertens and Zamir (1985). Third, it is a foundation for our sec-
ond set of results on the values of higher-order expectations even when no expectation-
consistent prior exists. We discuss these next.

Characterizing Limits of Higher-Order Expectations when Expectation-Consistency
Does Not Hold Our second set of results studies the values of higher-order expecta-
tions, with and without expectation-consistency. Samet (1998a) shows that under con-
sistency, the limit of higher-order expectations of a random variable is the common prior
expectation of that random variable.4 An analogous result holds when we replace con-
sistency with expectation-consistency. More importantly, we show that limits of higher-
order expectations can be characterized under conditions substantially more general
than expectation-consistency.

To describe this characterization, consider the higher-order expectations space con-
sisting of agents’ (first-order) expectations, and all higher-order expectations of them.
This space is a subset of the expectations space discussed earlier, because it excludes
random variables of the “zeroth order”—ones that are measurable with respect to the
external space and do not involve taking any expectations. We say that beliefs are
higher-order expectation-consistent if there is a profile of agents’ priors that agree in their
expectations of every element of the higher-order expectations space. Higher-order
expectation-consistency is a significant weakening of expectation-consistency, because
it imposes no consistency on agents’ beliefs about the external state space, and in this
sense allows arbitrary heterogeneous priors; but it does impose consistency on beliefs
about others’ expectations.

We characterize this property by relating it to higher-order-independence. Order in-
dependence says that a limiting higher-order expectation, such as · · ·ECharlieEBobEAnn f ,
of a random variable f does not depend on the sequence at all. Higher-order indepen-
dence says that the limiting higher-order expectation can depend only on the identity of
the rightmost agent in the sequence of expectations—in this case, Ann.

We show that higher-order expectation-consistency is equivalent to higher-order-
independence. Moreover, we can describe the limiting higher-order expectations in a
simple way. They are simply prior expectations of the relevant random variable, eval-
uated according to a certain prior distribution associated with the rightmost agent; no
aspect of the order other than the identity of the rightmost agent matters. The prior
distribution in question is one that corresponds to that agent’s information and thus is a
prior distribution over his types (i.e., partition elements). We call this the public prior on
that agent. An interpretation is that, under higher-order expectation-consistency, there
is a consistent public view about each agent’s first-order beliefs. Very high-order expec-
tations depend exclusively on this public prior about the agent who is the rightmost in
the sequence.

4 In interim terms, it is the expectation under the consistent prior, which is uniquely determined under
Samet’s maintained assumptions.
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In the case of expectation-consistency, all the public priors are the same, and taking
expectations with respect to them yields expectations corresponding to the uniquely
identified expectation-consistent prior.

Higher-Order Average Expectations in Networks and the Separability of Networks and
Beliefs Our third set of results considers a relative of higher-order expectations that
comes up in network games and other applications: higher-order average expectations.
Fix a random variable on the external state space. Higher-order average expectations of a
group of agents are formed by starting with their expectations of a random variable, and
then considering each agent’s expectation of a weighted average of others’ expectations.
The averaging, for each agent, is done according to arbitrary weights on others. This
profile of weights is interpreted as a network.

In Golub and Morris (2017), we have shown that such higher-order average expecta-
tions characterize behavior in certain coordination games. In particular, suppose agents
place some weight on coordinating with the actions of others and some weight on coor-
dinating with the realized value of a basic random variable. The actions and the random
variable enter linearly in each agent’s best response. As coordination motives dominate,
an agent’s equilibrium play converges to the limit of his nth-order average expectation
of the basic random variable as n tends to infinity. The network with respect to which
the higher-order average expectations are defined reflects the agents’ coordination mo-
tives: the weight agent i places on j in the network corresponds to how much i wants
to coordinate with j . Under suitable conditions, play is deterministic and equal across
players, and we call the common action played the consensus expectation.

Motivated by this application, we are interested in the interaction of two factors in
determining consensus expectations: (i) agents’ beliefs and (ii) the network structure. It
turns out that the condition of higher-order consistency that figured in our second set of
results implies that these two ingredients interact in a very simple way: The consensus
expectation is the weighted average of various agents’ public prior expectations, with
a given agent’s contribution to the average weighted by his eigenvector centrality in the
network. In this case we say that consensus expectations are separable. Our main re-
sult in this section is that separability is actually equivalent to higher-order expectation-
consistency. The main formula we derive in this section echoes formulas known in the
study of deterministic network games (Ballester et al., 2006; Calvó-Armengol et al., 2015)
but in a much more general setting. In this sense we identify a class of environments in
which those formulas generalize nicely.

Our first and second sets of results, before we come to higher-order average expec-
tations, are mathematically straightforward extensions of Samet (1998a). It is their con-
ceptual content that we want to stress. The third set of results, about higher-order av-
erage expectations, is more subtle; deriving them requires a number of steps involving
a connection between higher-order average expectations and a Markov process. The
probabilistic approach turns out to be useful, in that a key lemma uses the idea of a
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Markov chain reversal. These subtleties are discussed in more detail in Section 6.2.
We describe the model in the next section. In Section 3, we describe the expecta-

tions space and higher-order expectations space and explain how these two spaces give
rise to a coarser notion of redundancy. In Section 4, we collect our results about order-
independence and compare them with the results of Samet (1998a). In Section 5, we
describe higher-order versions of our order-independence and limit characterization
results. In Section 6, we describe the relation between backward-looking and forward-
looking higher-order expectations and use them to give our characterizations of con-
sensus expectations and separability.

2 Model

2.1 States, Types, Priors, and Expectations

Let I = {1,2, . . . ,n}, with n ≥ 2, be a set of agents. Let Θ be a finite set of external states.
We are interested in the agents’ beliefs about Θ, their expectations of random variables
defined on Θ, and higher-order beliefs and expectations. The model has a finite set of
states Ω, whose elements ω ∈Ω fully resolve all uncertainty. We denote by θ(ω) the ex-
ternal state at ω ∈Ω. The mapping θ generates a partition ofΩ,5 and we will refer to this
partition asΘ (note the different typesetting of thisΘ). For each i ∈ I , there is a partition
P i ofΩ representing agent i ’s information, and Pi (ω) is the element of P i containingω.
Now, let6 ti :Ω→∆(Ω) be a function such that, for each ω ∈Ω:

1. ti (ω) is a probability distribution with support contained in Pi (ω), i.e., such that
(ti (ω))(Pi (ω)) = 1;

2. for any Pi ∈P i , the value ti (ω) ∈∆(Ω) is the same at all ω ∈ Pi .

We call ti the type function or belief function of agent i .
This is the model Samet (1998a) uses; the only (formal) difference from his for-

mulation is that we introduce external states and their associated partition Θ into
the description of his model. Just as Samet does, we maintain the assumptions that
ti (ω) (ω) > 0 for every ω ∈ Ω (a common support assumption)7 and that the meet of
agents’ partitions is the trivial partition consisting ofΩ and the empty set (this amounts
to an assumption of no nontrivial common certainty).8

A random variable is a function f :Ω→ R, also written f ∈ RΩ. We say f is measur-
able with respect to a family of sets P ⊆ 2Ω if, for any r ∈R, the preimage f −1(r ) is in P .

5 That is, it partitionsΩ into sets which are mapped by θ to the same element ofΘ.
6 ∆(Ω) denotes the set of probability measures, or probability distributions, overΩ.
7 This assumption is with some loss of generality, but analogous results can be proved in its absence.
8 This assumption is without loss of generality: if it failed, our results would be true when conditioned

on the realized element of the meet of agents’ partitions.
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We denote by mP the vector space of all random variables measurable with respect to
P . In the reverse direction, given a set of random variables V , define

πV = {
f −1(r ) : f ∈V ,r ∈R}

,

which is the coarsest partition with respect to which that random variable is measurable.
For any probability measure p ∈ ∆(Ω) and any random variable f : Ω→ R, the ex-

pectation of f under p is p f =∑
ω∈Ωp(ω) f (ω). To define the subjective expectation Ei f

for any random variable f :Ω→ R, we let (Ei f )(ω) := ti (ω) f . This is the expectation of
f taken with respect to the belief that i holds when ω occurs. It is a random variable
because it depends on which element of P i the realized state ω falls in.

2.2 Priors

A prior for agent i is a convex combination of his posterior beliefs, or “types” (Samet,
1998b). That is, pi ∈Ω(∆) is a prior for i if there is a tuple of nonnegative real numbers
(α(Pi ))Pi∈P i such that

pi =
∑

Pi∈P i

α(Pi )ti (Pi ) and
∑

Pi∈P i

α(Pi ) = 1. (1)

A “prior” refers to a hypothetical ex ante belief with the property that the agent’s interim
beliefs could be derived by Bayes-updating of the prior. However, throughout the paper
we take an interim approach to beliefs and expectations; the ex ante stage never plays
an explicit role.

2.3 Higher-Order Expectations

A sequence9 of agents is a map σ : {1,2, . . .} → I . Following Samet’s terminology, an I -
sequence is defined to be a sequence in which each agent in I appears infinitely often.
Let I be the set of all I -sequences.

For any sequenceσ, we will define the higher-order (backward) expectation operator
S(k;σ) :RΩ→RΩ by

S(k;σ) = Eσ(k) · · ·Eσ(2)Eσ(1).

“Backward” in the definition refers to the fact that the entries of the sequence appear in
reverse order when read from left to right. We define S(0;σ) to be the identity operator
for any sequence σ.

Note that S(k;σ) is a composition of linear operators, and hence is linear. A fact
observed and used extensively by Samet (1998a) is that expectations and their products
are not just linear but correspond to Markov kernels (see also Gaifman (1986)). When
expressed in terms of the standard basis for RΩ, they are Markov matrices—nonnegative

9 Sequences are understood to be infinite unless otherwise noted.
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matrices where every row sums to 1. We will identify the Ei and products of them with
the corresponding Markov matrices whenever convenient.

3 Expectations and Higher-Order Expectation Spaces

Before analyzing properties of expectations and higher-order expectations, we devote
this section to identifying what we mean by expectations and higher-order expectations.
First, fixing a probability space, we will define spaces of random variables corresponding
to expectations and higher-order expectations. This exercise is necessary for us to iden-
tify the properties of these objects that will be important in our analysis. Second, we will
construct hierarchies of expectations, paralleling the standard exercise for hierarchies of
beliefs, independent of the arbitrary choices of representation.

3.1 Expectation and Higher-Order Expectation Spaces of Random
Variables

This subsection defines spaces of random variables corresponding to expectations and
higher-order expectations.10

We first let
V 0

i = mΘ

be the space of the basic random variables; basic is thus defined, throughout, to mean
Θ-measurable. For k ≥ 1, we now inductively define the kth-order expectations of agent
i :

V k
i =

{
Ei f : f ∈V k−1

j for some j ∈ I
}

.

For k ≥ 2, this is is the set of random variables which are i ’s expectations about various
agents’ (k −1)th-order expectations. Define

V ∞ = ⋃
i∈I
k≥0

V k
i

to be the union of all the sets inductively defined so far. We will call this set the expecta-
tion space, noting that it also includes V 0

i = mΘ, the basic random variables that involve
taking no expectation. Observe that

V ∞ = ⋃
σ∈I ,k≥0

f ∈mΘ

S(k;σ) f

We can also inductively define a space corresponding to expectations and higher-

10 Recall the presentation of expectations as random variables from Section 2.1.

8

Electronic copy available at: https://ssrn.com/abstract=2979089



order expectations of the variables in V ∞:

Ṽ ∞ = {
Ei f : i ∈ I , f ∈V ∞}

We will call this space the higher-order expectation space. Observe that

Ṽ ∞ = ⋃
σ∈I ,k≥1

f ∈mΘ

S(k;σ) f . (2)

From this it is clear that Ṽ ∞ (V ∞.

3.2 Expectation Hierarchies

The spaces of random variables defined in the previous section offer the most concise
way of representing higher-order expectations for the purpose of stating our results in
this paper. But, for several reasons, it is useful to also have an alternative representation
of expectations and higher-order expectations. First, the definition of the previous sec-
tion references the space Ω, but this space is being used as an ambient setting for pur-
poses of an analyst’s representation and does not have meaning in its own right. Second,
we would like to make a careful analogy between (i) beliefs and higher-order beliefs and
their classical representation as belief hierarchies and (ii) expectations and higher-order
expectations and their representation as expectation hierarchies. Finally, we would like
to address the issue of redundancy—i.e., the idea thatΩmay make distinctions not rele-
vant for players’ expectations and higher-order expectations. This issue is addressed by
collapsing states inΩwith identical higher-order expectation hierarchies.

3.2.1 Belief Hierarchies

We will briefly review standard material on belief hierarchies in order to compare them
with expectation hierarchies. To describe belief hierarchies, we must first describe a
space containing them. We write T k

i for a set containing all possible kth-level belief
types of agent i . These sets can be defined inductively as follows: Let T 1

i =∆(Θ) and, for
all k ≥ 1, let

T k+1
i =∆

((∏
j 6=i

T k
j

)
×Θ

)

Thus a (k +1)th-level belief type is a joint distribution over the kth-level belief types of
the other n −1 agents and the external statesΘ. A belief hierarchy is now a sequence(

t 1
i , t 2

i , . . .
) ∈ H belief

i := T 1
i ×T 2

i ×·· ·

For each agent i , there is natural mapping, τi : Ω → H belief
i , from our ambient space

Ω into i ’s belief hierarchies. We will spell out this mapping, again using an inductive
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construction. Let τ1
i :Ω→ T 1

i be given by

τ1
i [ω]

(
θ̂
)= (ti (ω))

({
ω′ | θ(ω′) = θ̂})

.

That is, τ1
i [ω]

(
θ̂
)

gives agent i ’s first-order belief at ω. For k ≥ 1, let τk+1
i :Ω→ T k+1

i be
defined by

τk+1
i [ω]

(
t̂ k
−i , θ̂

)
= (ti (ω))

({
ω′ | τk

j [ω′] = t̂ k
j for all j 6= i and θ(ω′)=θ̂

})
. (3)

This specifies an agent’s (k +1)th-level beliefs by giving the probability he places on the
occurrence of a profile t̂ k

−i combined with a state θ̂.
Finally, let agent i ’s belief hierarchy be

τi [ω] =
(
τk

i [ω]
)∞

k=1
.

Thus, for each state of the world ω, we have given an explicit description of agent i ’s
higher-order beliefs.

We say that there is no redundancy if for any pair ω and ω′ , there is an agent i with
different hierarchies at those states:

τi [ω] 6= τi [ω′].

If this condition fails for some states ω and ω′, we will say that those states are belief-
redundant.

An important set of results about belief hierarchies concerns the existence and prop-
erties of a universal space of belief hierarchies with the properties that (i) all type spaces
can be mapped into the universal space of belief hierarchies in a natural way;11 and (ii)
there is a homeomorphism between an agent’s belief hierachies and the set of probabil-
ity distributions over external states and others’ hierarchies (Mertens and Zamir, 1985).
We omit a formal statement of this result.

3.2.2 Expectation Hierarchies

We will construct expectation hierarchies analogously. This will coarsen the set of be-
lief hierarchies of the previous section, because distinct higher-order beliefs can yield
the same higher-order expectations. The description of expectation hierarchies will be
simpler than the description of belief hierarchies. It does not need to be inductive: The
space of expectations of order n+1 does not need to be defined in terms of expectations
of order n, but can be described explicitly. However, at the end of this section, we will
briefly discuss how we could define the same objects in a way that more closely parallels
the belief hierarchy case.

11 In particular, a mapping such that belief-redundant states map to the same universal type.
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We will represent an agent’s higher-order expectations of Θ-measurable random
variables12 via probability distributions on Θ, noting that many distributions will cor-
respond to the same expectations. An agent’s first-order expectation type is represented
by a first-order belief type—that is, an element of ∆(Θ). Agent i ’s second-order expecta-
tion type will specify i ’s expected first-order type of each other agent—that is, for each
j 6= i , a distribution over ∆(Θ) corresponding to i ’s expectation of j ’s expectation of
Θ-measurable random variables. Thus a second-order expectation type can be repre-
sented by an element of (∆(Θ))n−1. An agent’s third-order expectation type will specify
that agent’s expectation of the second-order type of each other agent j , which we have
just described, and so on.

To represent these objects in general, write S (k) for the set of finite sequences of
elements of I which are of length k and let S (k; i ) be the set of all sequences s ∈ S (k)
with s (k) = i .13 Now, the set of kth-level expectation types of agent i is defined as

X k
i = (∆(Θ))S (k,i ) . (4)

An element of X k
i (a kth-level expectation type) can be written as

xk
i =

(
xk

i (s)
)

s∈S (k,i )
,

where xk
i (s) ∈∆(Θ). (Note that k is fixed and the indexing in the tuple is over sequences.)

As we will state formally below, for a given sequence s the distribution xk
i (s) corresponds

to the measure associated with the higher-order expectation

Es(k) · · ·Es(2)Es(1),

which, as in Section 2.3, is a backward expectation. An expectation hierarchy is then an
element of (

x1
i , x2

i , . . .
) ∈ H expectation

i := X 1
i ×X 2

i ×·· ·
For each agent i , there natural mapping, ξi : Ω → H expectation

i , from our ambient
space Ω into i ’s expectation hierarchies,. An explicit construction follows. For any se-
quence s ∈ S (k; i ), we will define ξk,s

i :Ω→ X k
i , and for every ω ∈Ω and s ∈ S (k; i ), we

will define xk
i (s)[ω] ∈ ∆(Θ). In order to do this, we must specify the value the measure

µ= xk
i (s)[ω] assigns to every F ∈Θ; we do this as follows:

µ(F ) = (Es(k)Es(k−1) · · ·Es(2)Es(1)1F )[ω]. (5)

12 Recall from Section 3.1 that basic is defined to mean Θ-measurable.
13 Recall our introduction of infinite sequences in Section 2.1; we will follow the convention that the

letter s is used for a typical finite sequence and σ is used for a typical infinite sequence.
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Finally, putting into one (infinite) tuple these values across all lengths k, we get

ξi [ω] =
(
xk

i [ω]
)∞

k=1

Thus, for each state of the world ω, we have given an explicit description of agent i ’s
higher-order expectation hierarchy. It can be seen that, by construction, ξi gives rise to
a coarser partition than τi .

We now have a corresponding notion of “redundancy”: We will say that there is no
expectation redundancy if, for all ω and ω′ , there is an agent i with

ξi [ω] 6= ξi [ω′]

If this condition fails for some states ω and ω′, we will say that those states are
expectation-redundant.

Expectation types at any level k were defined directly using sequences of length k,
but could also have been done inductively to more closely parallel our definition of belief
types. For a given level k, an agent’s expectation hierarchy corresponds to that agent’s
first-order expectation of other agents’ expectation hierarchies of level k −1, where we
collapse everything to ultimately yield a measure over ∆(Θ). Proceeding this way gives
an expectations version of equation (3) and a closer analogy to our construction of be-
lief hierarchies. In the case of expectations, it is possible to roll together the inductive
construction into (4), as we have done; there is no good analogue of this for beliefs.

We leave the construction of a universal expectation space as an open question.

4 Limits of Higher-Order Expectations and Order-
Independence

4.1 Limits of Higher-Order Expectations and Samet’s Result

We first define the relevant notion of convergence of higher-order expectations. Recall
that σ refers to an arbitrary infinite sequence.

Condition 1 (Convergence to a Deterministic Limit). Convergence to a deterministic
limit occurs with respect to sequence σ if

i) S(k;σ) converges14 to some limit operator S(∞;σ);

ii) for any f ∈RΩ, the limit S(∞;σ) f is nonrandom (i.e., constant).
14 A sequence of operators (Sk )∞k=1 converges to S if it converges in the operator norm: if
sup

f :‖ f ‖∞≤1

∥∥(Sk −S) f
∥∥∞ → 0. Here ‖ ·‖∞ denotes the supremum norm.
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Proposition 1 in Samet (1998a) established that there is convergence to a determin-
istic limit for every I -sequence σ. Given convergence to a deterministic limit, there is a
linear map `(σ) :RΩ→R such that `(σ) = S(∞;σ). Because `(σ) is a limit of expectation
operators, we can identify `(σ) with a limit measure on Ω. The limit measure will, in
general, depend on the I -sequence σ.

Samet (1998a) then studies when `(σ) is independent of the sequence σ, defining
order-independence with respect to all random variables.

Condition 2 (Full Order-Independence). For any random variable f ∈ mΩ, the limit ex-
pectation l (σ) f along any I -sequence σ does not depend on σ.

The following definition is the interim version of the common prior assumption.

Condition 3 (Belief-Consistency). There exists a p ∈∆(Ω) such that p is a prior for each
agent.

The main result in Samet (1998a) is then:

Proposition 1. Full order-independence and belief-consistency are equivalent.

This result can be deduced from our results below. As discussed in the introduction,
a paradoxical feature of this result is that full order-independence concerns expectations
and higher-order expectations only, while belief-consistency imposes a condition on all
beliefs and higher-order beliefs. Given a random variable, expectations of it are strictly
less informative about beliefs than the beliefs themselves; the expectation of any ran-
dom variable f is determined by all beliefs about the events

{
ω : f (ω) = a

}
but not vice

versa. Thus, it cannot be only by reference to higher-order expectations of a random
variable f that consistency of beliefs about f is established.

The resolution of the paradox is that by allowing any random variable on Ω as the
initial variable whose higher-order expectations are taken, Samet is already allowing this
random variable to depend on beliefs and higher-order beliefs in an arbitrary way. The
condition of order-independence is imposed with any such variable as the initial one.
In the approach pursued in this paper, the key contrast is this: We impose conditions
such as order-independence not on all of mΩ but only on the (typically strict) subset
V ∞—that is, the set of higher-order expectations of basic random variables. The next
subsection studies the generalization of Samet’s result to this setting.

4.2 Order-Independence and Expectation-Consistency

Relative to the condition of full order-independence, the following condition is imposed
on a smaller class of random variables (mΘ rather than mΩ).

Condition 4 (Order-Independence). For any Θ-measurable random variable f ∈ mΘ,
the limit expectation l (σ) f along any I -sequence σ does not depend on σ.

13
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We will characterize this in terms of a more primitive condition on beliefs. It is a
weakening of belief-consistency that requires beliefs to be consistent only in the sense
of giving the same expectations of random variables in V ∞. A fuller discussion of the
contrast with belief-consistency is in Section 4.3.

Condition 5 (Expectation-Consistency). There exists a tuple (pi )i∈I of priors (pi ∈∆(Ω)
is a prior for agent i ), such that, for each i and each f ∈V ∞, we have pi f = p j f for all i
and j . In this case, we call (pi )i∈I the expectation-consistent priors.

The following generalization of Samet (1998a) will be derived later from Proposition
3:

Proposition 2. Order-independence and expectation-consistency are equivalent.

This result is tight in the following sense: In the absence of expectation-consistency,
the condition of order-independence cannot hold in general: `(σ) may unavoidably de-
pend on σ(1). For example, suppose agent σ(1)’s conditional probability of some event
F ⊆Θ is always in [α,β], no matter what the state—i.e.,

[
Eσ(1)1F

]
(ω) ∈ [α,α] for allω ∈Ω.

Then all higher-order expectations of 1F along the sequence also take values in [α,α],
since they are expectations of agentσ(1)’s first-order belief. It follows that the limit mea-
sure `(σ) must put a probability on F that lies in [α,α]. Since agent σ(1) and the interval
[α,α] were arbitrary, it follows that order-independence cannot hold. Our main result,
in the next section, exactly characterizes when the dependence on the initial agent just
described is the only dependence there is—that is, when `(σ) depends only on σ(1).
This reduces to Proposition 2 of Samet (1998a) in the case where the partition Θ is the
finest one onΩ.

4.3 Comparison of Expectation-Consistency with Consistency

Expectation-consistency is a significant weakening of belief-consistency. We can high-
light this by decomposing the weakening into three parts.

First, belief-consistency requires that players’ priors agree on all states, even about
the relative probabilities of states that are belief-redundant in the sense that they are
indistinguishable based on agents’ beliefs and higher-order beliefs about any random
variable defined onΩ. (Recall Section 3.2.1.)

Second, even if we defined Ω to rule out belief redundancies (by requiring that the
coarsest common refinement of agents’ partitions consist of singletons), it could still be
that the agents’ priors agree on the partitions corresponding to all beliefs and higher-
order beliefs about Θ but do not agree on every subset of Ω. This would correspond to
the agents disagreeing about some random variables “orthogonal” to θ.

Finally, even if this situation is also ruled out—by assuming that all uncertainty in
Ω corresponds to beliefs and higher-order beliefs about Θ15—expectation-consistency

15 That is, the mapping τi :Ω→ H belief
i of Section 3.2.1 is one-to-one.
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is still weaker than belief-consistency because expectations and higher-order expecta-
tions of Θ-measurable random variables do not fully determine an agent’s beliefs. For
example, consider two situations: (i) agent 1 believes that agents 2 and 3 always have
identical types and (ii) agent 1 believes that agents 2 and 3 have types that are condi-
tionally independent given the realization of Θ. Holding marginals fixed, higher-order
expectations cannot detect this difference.

5 Higher-Order-Independence and Higher-Order
Expectation-Consistency

Section 4 studied the situation in which agents’ priors are consistent in terms of their
beliefs (or expectations) about Θ. In the remainder of the paper, we focus on the pos-
sibility of some disagreement. Our goal is to characterize the values of higher-order ex-
pectations, especially when they can be represented via heterogeneous priors associated
with various agents. A key condition we will study is higher-order-independence:

Condition 6 (Higher-Order-Independence). For any Θ-measurable random variable
f ∈ mΘ, the limit expectation l (σ) f depends on σ only through its initial index σ(1):
for any two infinite sequences σ and σ′, if σ(1) =σ′(1), then `(σ) f = `(σ′) f .

A more accurate name would be higher-order order-independence, since the condi-
tion requires that the limit expectation depend on the sequence only through the iden-
tity of agentσ(1), and that it be otherwise independent of the sequence in which higher-
order expectations are taken.

We will again characterize higher-order-independence in terms of a more primitive
condition on beliefs. This condition imposes consistency on higher-order expectations
about random variables measurable with respect to some agent’s types:

Condition 7 (Higher-Order Expectation-Consistency). There exists a tuple (pi )i∈I of
priors (pi ∈ ∆(Ω) is a prior for agent i ) such that, for each i and each f ∈ Ṽ ∞, we
have pi f = p j f for all i and j . If this last condition holds, we call (pi )i∈I higher-order
expectation-consistent priors.

Higher-order expectation-consistency requires that there be priors for all of the
agents that assign the same expectation to all random variables measurable with re-
spect to any agent’s higher-order expectations (which include first-order expectations).
Note that the same family of priors must satisfy this requirement simultaneously for
all the pairs of agents. Under our maintained assumptions, there is a unique profile
of higher-order expectation-consistent priors when they exist.16 As with expectation-
consistency, it is an agent’s beliefs over each other agent’s types, and not the corre-
lation between them, that matters. But this property is a considerable weakening of

16 This follows from Proposition 3.
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expectation-consistency. First, it puts no restrictions on first-order expectations. Sec-
ond, as we will be able to argue when we present Corollary 1 below, it always holds when
there are two agents (while, of course, expectation-consistency may fail even with two
agents.)

Now we have:

Proposition 3. 1. Higher-order-independence and higher-order expectation-
consistency are equivalent.

2. When either condition holds, the expectation of any Θ-measurable random vari-
able under `(σ) is equal to its expectation under pσ(1) in any profile of higher-order
expectation-consistent priors.

Proof. Suppose higher-order expectation-consistency holds, with the tuple (pi )i∈I of
agent priors. Fix some I -sequence σ. We will show that `(σ) f is equal to pσ(1) f for
each Θ-measurable random variable f —that is, higher-order-independence holds.

By the definition of a prior, for any Θ-measurable random variable f we have
pσ(1) f = pσ(1)Eσ(1) f . Because Eσ(1) f ∈ Ṽ ∞, higher-order expectation-consistency im-
plies that the right-hand side is also equal to pσ(2)Eσ(1) f . Combining these facts, we
have

pσ(1) f = pσ(2)Eσ(1) f . (6)

Applying the same conclusion with the random variable Eσ(1) f in place of f , agent
σ(2) in place of σ(1), and agent σ(3) in place of σ(2), we see that pσ(2)Eσ(1) f =
pσ(3)Eσ(2)Eσ(1) f . (We used here that Eσ(2)Eσ(1) f is in Ṽ ∞.) Combining that result with
(6) shows that

pσ(1) f = pσ(3)Eσ(2)Eσ(1) f .

We can continue in this way inductively to conclude that pσ(1) f = pσ(k)S(k;σ) f for every
k, and consequently, since S(∞;σ) f is a constant `(σ) f , we have pσ(1) f = `(σ) f . Since
f was arbitrary, this establishes the claim.

Conversely, suppose higher-order-independence holds. Our goal is to construct a
family of priors (pi )i∈I so that for any g ∈ Ṽ ∞ and any i and j , we have pi g = p j g .

Define pi = `(σ)Ei , where σ is an arbitrary I -sequence. We prove two claims. First,
that for random variables g ∈ Ṽ ∞, the expectation pi g does not depend on the choice of
σ. Second, that beyond being well-defined, pi g does not depend on the choice of i .

By equation (2) in Section 3.1, any g ∈ Ṽ ∞ can be expressed as

g = Es(k) · · ·Es(2)Es(1) f , (7)

where f ∈ mΘ and s(·) is some finite sequence. Thus it suffices to show that pi g (=
`(σ)Ei g ) does not depend on the choice of σ or i . By (7) we can rewrite this quantity as

pi g = `(σ)Ei Es(k) · · ·Es(2)Es(1) f .
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By higher-order-independence, this does not depend on σ, showing that pi is well-
defined. But the same property of higher-order-independence also shows that the right-
hand side cannot depend on any index in the sequence of higher-order expectations
except s(1), and in particular not on i . Therefore, pi g = p j g for any i and j .

Now, we show that this result readily implies Proposition 2: First, suppose that
expectation-consistency holds. Then higher-order expectation-consistency holds with
pi = p for some single p, and so Proposition 3 yields that higher-order independence
holds—and moreover, that for anyσ and f ∈ mΘ, we have `(σ) f = pσ(1) f = p f . Thus we
in fact have full order-independence. Conversely, suppose order-independence holds.
Then higher-order independence holds. Proposition 3 then yields that higher-order
expectation-consistency holds with some profile of priors (pi )i∈N for which `(σ) f =
pσ(1) f holds whenever f ∈ mΘ. Now, because full order-indepenence holds, we know
that the left-hand side of this equation cannot depend on σ(1). In other words, there
is some p that satisfies `(σ) f = p f whenever f ∈ mΘ. That verifies expectation-
consistency.

5.1 Interpretation and Discussion

Because expectation-consistency is related to belief-consistency and the common prior
assumption, the notion of higher-order expectation-consistency resembles a common
prior on individuals’ beliefs about Θ—a condition we might call Consistency of Higher-
Order Beliefs. For example, if beliefs arise from signals, then expectation-consistency is
implied by a common prior about the signals agents receive. We pursue this interpreta-
tion in detail in Golub and Morris (2017).

However, higher-order expectation-consistency is weaker than consistency of
higher-order beliefs. A corollary of Proposition 3 illustrates this:

Corollary 1. If there are two agents, then higher-order expectation-consistency always
holds.

The reason is as follows: For any random variable f ∈ mΘ, the only two limit higher-
order expectations to consider are

· · · E1E2E1E2E1 f and

· · · E2E1E2E1E2 f

and so Samet’s (1998a) result that both limits exist gives higher-order-independence.
This proves the corollary.

In contrast, even with two agents it is possible not to have consistency of higher-
order beliefs. The essential reason is that Ṽ ∞ contains only events measurable with
respect to each individual’s information, while consistency of higher-order beliefs would
require consistency on product events as well. For example, consider a case with two
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agents where one is sure that there is common certainty of f = 1 and the other is sure
that there is common certainty of f = 2 (both random variables being degenerate or
constant). There is clearly not consistency of higher-order beliefs, but on the other hand
higher-order expectation-consistency does hold.

6 Higher-Order Average Expectations and Separability

In this section, we apply the characterizations derived earlier to analyze higher-order av-
erage expectations, which come up in a variety of applications, including network games.

An average expectation of a random variable is defined to be a weighted average of
agents’ expectations. One can then take average expectations of individuals’ average
expectations. Indeed, we can proceed in this way on and consider the limit of such
higher-order average expectations. As we will discuss below, these objects arise in appli-
cations, and they turn out to have nice connections to the higher-order expectations we
have been discussing.

In defining higher-order average expectations, we must specify what weights are
used in taking averages. For this, we fix a nonnegative row-stochastic matrix Γ whose
rows and columns are indexed by I ; assume it is irreducible and aperiodic. Let Γ be the
class of all such matrices.17 In taking averages from i ’s perspective, the weights placed
on others come from row i of Γ, so that Γ(i , j ) is the weight that i places on j .

In this section, we define and characterize higher-order average expectations. We
then show how to establish their properties—especially an important one called separa-
bility—using results from the previous section.

6.1 Definitions and Main Result

Define the operators Ai : mΩ→ mΩ by

Ai (1;Γ) = Ei ;

A(k +1;Γ) = ∑
j∈I
Γ(i , j )A j (k;Γ), k = 1,2, . . ..

The operator Ai (1;Γ) is agent i ’s expectation operator; Ai (2;Γ) is agent i ’s expectation
of the average of others’ expectations; Ai (3;Γ) is agent i ’s expectation of the average
expectation of the average expectation, and so on. In each case, in taking averages from
i ’s perspective, the weights placed on others come from row i of matrix Γ.

Our motivation for studying higher-order average expectations comes from network
games with linear best responses and incomplete information (Bergemann et al. (2015),

17 Note that Γ is italicized. The irreducibility and acyclicity assumptions do involve loss of generality,
but analogous results hold with these assumptions relaxed. We will discuss below where we use each of
these.
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Blume et al. (2015), and Golub and Morris (2017)). In these games, predictions—e.g.,
Nash equilibria or rationalizable outcomes—depend on higher-order average expecta-
tions. More precisely, fix a random variable f . Suppose agents choose actions ai in a
compact interval containing the maximum and minimum values of f . The matrix Γ that
we introduced at the start of Section 6 has the interpretation that Γ(i , j ) is the weight
that a given player puts on others’ actions; here we assume Γ(i , i ) = 0. For a constant
β ∈ (0,1), the best response of agent i is

BRi (a−i ) = (1−β)Ei f +β∑
j 6=i
Γ(i , j )Ei a j .

According to this best-response function, the agent wants to take an action equal to
a convex combination of his subjective expectation of the random variable f and the
average of his expectations of others’ actions. As discussed in ?,18 agent i ’s action in any
rationalizable action profile is given by

∞∑
k=1

βk−1 Ai (k;Γ) f . (8)

The limit β ↑ 1 is a particular focus of Golub and Morris (2017). It is clear that behavior
in this high-coordination limit is determined by Ai (k;Γ) f for large k, which motivates
our study of this limit.

One basic question about the limit is whether it exists. In order to study it, we first
define an adjusted version of convergence to a deterministic limit.

Condition 8 (Convergence to a Deterministic Limit for Higher-Order Average Expecta-
tions). This condition occurs with respect to network Γ if the following hold:

i) For each i , the sequence Ai (k;Γ) converges, as k →∞, to some limit operator c(Γ),
independent of i ;

ii) for any f ∈RΩ, the limit c(Γ) f is nonrandom (i.e., constant).

We will show that this convergence always holds under our maintained assump-
tions.19

Suppose there is convergence to a deterministic limit. Because c(Γ) is a limit of ex-
pectation operators, we will, as before, identify it with a limit measure c(Γ) on Ω. We
will refer to c(Γ), in either sense, as the consensus expectation. The analogue of order-
independence is now:

18 See Ui (2009) for a more general version of this fact.
19 This requires our maintained assumption of acyclicity as well as irreducibility. To illustrate the need

for irreducibility, take n = 2 and Γ(1,2) = Γ(2,1) = 1. Then A1(0;Γ) = E1, A1(1;Γ) = E1E2, A1(3;Γ) =
E1E2E1,and so on. This sequence will converge to a two-cycle. Without acyclicity in such cases, we would
still have convergence of the Abel average limβ↑1

∑∞
k=1β

k−1 A j (k,Γ) f , which is what is relevant for the
game (see equation (8)).
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Condition 9 (Network-Independence). If both Γ and Γ′ are irreducible and aperiodic,
then c(Γ) = c(Γ′).

Recall our study of the condition of higher-order expectation-consistency, which was
equivalent to higher-order-jndependence. Under that condition, the limit of higher-
order expectations (the consensus expectation) along a sequence was determined by
a public prior on the type of the agent appearing rightmost in the sequence. In the
network context, there is no longer a single sequence, so there is no direct analogue of
this condition. It turns out that an appropriate version of the condition is separability.
This condition states that the consensus expectation is a linear combination of network-
independent priors (one for each agent) with weights on these priors determined by the
network.

Condition 10 (Separability). There exist a tuple (pi )i∈I of priors (pi ∈∆(Ω) is a prior for
agent i ), and real-valued functions ei (Γ) such that for all networks Γ

c (Γ) =
∑

i
ei (Γ)pi (9)

Separability is an important property in the context of our network game. If sepa-
rability holds, equilibrium play in the β ↑ 1 limit is determined by the network and the
beliefs in a simple way: The numbers ei (Γ), which are weights depending on the net-
work, determine the relative importance of the measures pi .

Separability plays a central role in Golub and Morris (2017). If it holds, our results
there extend those in the literatures on network games and on incomplete information,
as we explain there. If separability fails, qualitatively new properties emerge, because
beliefs and the network become “entangled” in a more complex way than separability
permits. It is therefore important to understand the dichotomy between separability
and non-separability. Here we can give an exact characterization of separability.20

Before stating our main result on this, we define eigenvector centrality.

Definition. Given a matrix Γ ∈Γ , the eigenvector centrality vector e(Γ) is defined to be
the unique vector e ∈∆(I ) satisfying eΓ= e.

Since Γ ∈ Γ , uniqueness of e in the definition follows from the Perron–Frobenius
Theorem.

Now we can state the following proposition, which summarizes network analogues
of Propositions 1, 2, and 3.

Proposition 4. 1. Higher-order average expectations satisfy convergence to a deter-
ministic limit.

2. Beliefs satisfy expectation-consistency if and only if network-independence holds.

20 Our formalism in Golub and Morris (2017) is not well-suited to this, because (among other things) it
does not handle redundancy well. For discussion of redundancy, see Sections 3.2.1 and 3.2.2.
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3. Beliefs satisfy higher-order expectation-consistency if and only if separability holds.
Moreover, in this case:

3.i. the (pi )i∈N in the definition of separability are higher-order expectation-
consistent priors;

3.ii. e(Γ) is the eigenvector centrality vector of Γ.

The rest of this section is devoted to proving this result.

6.2 Key Ideas Behind Proposition 4

We start with a high-level overview of the key ideas involved in Proposition 4. The first
step is to reinterpet higher-order average expectations via an artificial random process.
It turns out that higher-order average expectations are the same as expected higher-order
expectations along a sequence that is drawn randomly in a certain way, according to a
Markov process reflecting players’ network weights. In particular, we select a starting
agent, say Ann, then draw the next agent in proportion to Ann’s coordination weights,
and continue in this way to construct a random sequence. The expected operator we get
(averaging across random sequences) turns out to be the higher-order average expecta-
tion.

The second step is to understand limiting higher-order expectations along such ran-
dom sequences when the sequences are long. One key tool is Proposition 3, in which
we showed that, under higher-order expectation-consistency, the limiting higher-order
expectation along a sequence depends exclusively on the public prior corresponding to
the rightmost agent in the sequence of expectations, called σ(1) in that result.21

The third step is to characterize the distribution of the final agent in the random se-
quence. Assuming that the matrix of network weights (and thus the Markov process on
agents) is irreducible, the Markov process has an ergodic distribution. Moreover, the en-
try corresponding to an agent in this ergodic distribution is (just by definition) his eigen-
vector centrality in the network of weights. Thus, the probability that a long sequence
ends in a given agent is that agent’s ergodic weight, or eigenvector centrality. Putting
these facts together makes higher-order average expectations converge to a centrality-
weighted sum of public prior expectations, no matter which agent appears leftmost in
the sequence. While this description covers the essence of the final step, there are some
technical subtleties in carrying it out, which we defer to Section 6.4.1.

6.3 A Markovian Formalism for Higher-Order Average Expectations

We now formalize the outline, starting with a Markovian formalism for higher-order av-
erage expectations.

21 This involves some restrictions on the sequences, which will be satisfied when they are drawn in the
Markovian way we describe.
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We have claimed that the Ai (k;Γ) can be related to a Markov process on agents. To
make this precise, it will be useful to define an object (Ai (k;Γ))i∈I that keeps track of all
the kth-order average expectations simultaneously, and to define a Markov iteration on
it. To carry this out, let the higher-order average expectation profile A(k,Γ) be defined
as follows: For any f ∈ RΩ, define A(k,Γ) f ∈ RI×Ω by stipulating that the (i ,ω) entry of
A(k;Γ) f is (Ai (k;Γ) f )(ω). This defines a linear operator A(k;Γ) : RI×Ω → RI×Ω. Next,
define a Markov kernel BΓ on I ×Ω by

BΓ((i ,ω), (i ′,ω′)) = Γ(i , i ′) · (ti (ω))(ω′).

The transition probability from state (i ,ω) to state (i ′,ω′) is defined to be the product of
(i) the weight individual i places on i ′ and (ii) the subjective probability that type ti (ω)
of i places on state ω′.22

It can be checked from the definition of A(k;Γ) that

A(k +1;Γ) = BΓA(k;Γ),

so that
A(k;Γ) = B k−1

Γ A(1;Γ), (10)

where the superscript k − 1 corresponds to the (k − 1)-fold application of BΓ, i.e., the
corresponding matrix power.

6.3.1 Convergence

Using this formalism, we can state and prove our result on the convergence of higher-
order average expectations (under our maintained assumptions).

Lemma 1. Convergence to a deterministic limit holds.

Proof. The irreducibility of BΓ can be deduced from the assumed irreducibility of Γ and
the maintained assumption of no nontrivial common certainty. Similarly, aperiodicity
of BΓ can be shown from the aperiodicity of Γ along with the maintained assumption
of common support. Then it follows from the standard Markov chain convergence re-
sult that A(k;Γ) f converges to a constant vector as k →∞, which (by definition) yields
convergence to a deterministic limit for higher-order average expectations.

6.3.2 Form of the Limit

Standard results on the Markov iteration summarized in (10) can deliver more infor-
mation about higher-order average expectations. Under our maintained assumptions,

22 It is a consequence of this that the transition probability from any (i ,ω) whereω ∈ Pi ∈P i to
{
i ′

}×P i ′
where Pi ′ ∈P i ′ is equal to Γ(i , i ′) multiplied by the subjective probability that i (given that he has type Pi )
places on type Pi ′ of i ′. Here we have identified types of agents with elements of the corresponding parti-
tions. Golub and Morris (2017) has a notation that is more suited to expressing the subjective probabilities
that various types place on one other.
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there is a uniquely determined stationary distribution µ(Γ) ∈∆(I ×Ω), with no zero en-
tries, such that, if viewed as a row vector in RI×Ω, it satisfies the stationarity equation

µ(Γ)BΓ =µ(Γ). (11)

For any i , let µi (Γ) refer to the row vector in RΩ consisting of entries (i ,ω) of µ(Γ) as
ω ranges over Ω. Then, recalling (10) and our definition of the higher-order average
expectation profile A(0,Γ), we may rewrite c(Γ) f as follows:

c(Γ) f = B∞
Γ A(1,Γ) f =∑

i
µi (Γ)Ei f . (12)

Proposition 4 can be established based on this expression, as we now outline.
The following lemma allows us to analyze the entries of µi (Γ).

Lemma 2. If Γ is irreducible, then for each i we have∑
ω∈Ω

µ(i ,ω)(Γ) = ei (Γ),

where e(Γ) ∈∆(I ) is the (strictly positive) stationary distribution of Γ when Γ is viewed as
a Markov transition matrix on the agents.

That is, the entries of µi (Γ) add up to the number ei (Γ), the eigenvector centrality of
i . One proof that can be adapted to the present setting appears as Lemma 1 in Golub
and Morris (2017). We give a self-contained proof here.

Proof. Define µ̂(Γ) ∈∆(I ) by µ̂i =∑
ω∈Ωµ(i ,ω)(Γ). We will show that µ̂(Γ) = e(Γ).

Define a matrix M whose rows are indexed by I ×Ω and whose colums are indexed
by I . Let

M((i ,ω), j ) = 1i= j .

Post-multiply both sides of the stationarity condition µ(Γ)BΓ =µ(Γ) by M to get

µ(Γ)(1|Ω|⊗Γ) = µ̂(Γ),

where 1|Ω| is the vector of all ones with length |Ω|, and 1|Ω|⊗Γ denotes the Kronecker
product of the column vector 1|Ω| with the matrix Γ. This is equivalent to

µ̂(Γ)Γ= µ̂(Γ).

Since for an irreducible Markov matrix Γ, there is just one probability distribution that
is a left-hand Perron eigenvector of Γ, it follows that µ̂(Γ) = e(Γ).

We can now define µi (Γ) ∈∆(Ω) to be µi (Γ) divided by ei (Γ); because Γ is irreducible,
all the entries ei (Γ) of the left-hand unit eigenvector Γ are positive. Then

µ(i ,ω)(Γ) = ei (Γ)µ(i ,ω)(Γ), (13)
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and we may rewrite (12) as
c(Γ) f =∑

i
ei (Γ)µi (Γ)Ei f . (14)

The content of statement (3) of Proposition 4 is that beliefs satisfy higher-order
expectation-consistency if and only if µi (Γ) is an expectation-consistent prior for i (in-
dependent of Γ).

In the following subsection, we introduce some useful methods based on higher-
order expectations for studying (12), and then use them, along with the formulas estab-
lished here, to deduce statements (2) and (3) of Proposition 4.

6.4 Connection between Higher-Order Expectations and Higher-
Order Average Expectations

In Section 2.3, we studied higher-order backward expectations of the form

S(k;σ) = Eσ(k) · · ·Eσ(1).

It turns out that higher-order average expectations relate more closely to higher-order
forward expectations. To study these, define

T (σ;k) := Eσ(1)Eσ(2) · · ·Eσ(k).

Observe that
Ai (1;Γ) = Ei ; Ai (k +1;Γ) = E j∼Γ(i ,·)[A j (k;Γ)]. (15)

In words, the first-order average expectation is just Ei . The (k + 1)th-order average
expectation is the expected kth-order expectation of agent j , where j is drawn according
to the probability distribution in row i of Γ.

Now, fix i ∈ I and let σi denote a random sequence of agents starting at i and gener-
ated by a Markov process on I with transition matrix Γ. Now, starting with the observa-
tion that T (σi ;1) = Ai (1;Γ), we can show, by repeatedly applying (15), that

Ai (k;Γ) = E[T (σi ;k)].

Here the expectation E is with respect to the distribution over sequences σ induced by
the Markov process just described. Thus, a higher-order average expectation is the ex-
pected value of a higher-order forward expectation, where the sequence of agents is gen-
erated according to a Markov process.

Using this way of writing the higher-order average expectations, we will establish the
key lemma behind Proposition 4:

Lemma 3. If beliefs satisfy higher-order expectation-consistency, then separability holds.
Moreover, in this case, the pi (i ∈ I ) in the definition of separability are higher-order
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expectation-consistent priors, and ei (Γ) is the i th entry of the stationary distribution of
Γ viewed as a Markov chain.

6.4.1 The Idea behind the Proof of the Lemma

The lemma corresponds to the final step in our outline in Section 6.2. Recall that the final
step requires only that we understand the expected value of higher-order forward expec-
tations as we generate a random forward sequence of agents according to the Markov
process Γ. However, there are technical subtleties involved in doing this.

If we think of that expected value as a weighted average of higher-order expectations
(each for some deterministic sequence), there are more and more such sequences to av-
erage over as the order of the higher-order average expectation increases. The leftmost
agent, σ(1) in Eσ(1)Eσ(2) · · ·Eσ(k), is always the same, but the sequences become very dif-
ferent further along. It is not obvious how to understand this profusion of higher-order
expectations along different sequences using our main tool so far, a result on the limit
of higher-order backward expectations along a single infinite sequence.

The technical problem can be solved by using the idea of Markov chain reversal. That
is, rather than thinking of a random sequence—e.g., σ(1),σ(2), . . . ,σ(k)—as being con-
structed starting with σ(1), we instead think of it as starting with a given σ(k) and being
built up backwards. It is possible to do this in a way that keeps the distribution of se-
quences the same—that is the essence of Markov chain reversal. To focus on the expec-
tation we are ultimately interested in, where σ(1) is a particular agent, we condition on
the corresponding realization of σ(1). The advantage of the backward approach is that
sequences can now be naturally grouped into sets that have the same (long) segment at
the end (closest to the random variable). That allows us to apply our prior results on the
limits of backward expectations.

6.4.2 Completion of the Proof of Lemma 3

Proof of Lemma 3. Suppose higher-order expectation-consistency holds. Recall that

Ai (k;Γ) = E[T (σi ;k)].

By the law of iterated expectations, breaking the outcome up according to the value of
the final index σ(k), we have

E[T (σi ;k)] = ∑
j∈I
P(σi (k) = j )E[T (σi ;k) |σi (k) = j ].

Hence
lim

k→∞
E[T (σi ;k)] = lim

k→∞
∑
j∈I
P(σi (k) = j )E[T (σ;k) |σi (k) = j ].

Now, since all operators involved are uniformly bounded (in total variation norm),
and P(σi (k) = j ) converges to ei (Γ) as k →∞ by the basic properties of a Markov chain,
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we may use the Dominated Convergence Theorem to write

lim
k→∞

E[T (σi ;k)] = ∑
j∈I

e j (Γ) lim
k→∞

E[T (σi ;k) |σi (k) = j ]. (16)

Recall that σi is a random sequence conditioned to start at i . Define σ̃ j to be a ran-
dom sequence that starts at j and makes transitions according to Γ̃, the time-reversal23

of Γ. The transition matrix of this time-reversed process is

Γ̃(i , j ) = e j (Γ)Γ( j , i )

ei (Γ)
.

Let ρ(σ) be the reversal of a sequence. The probability distribution over sequences
ρ(σi ) conditional on the sequence σi ending at j is the same as the distribution over
sequences σ̃ j conditioned to end at i . This is by the basic properties of Markov chain
reversal. Then we may write

lim
k→∞

E[T (σi ;k)] = ∑
j∈I

e j (Γ) lim
k→∞

E[T (σi ;k) |σi (k) = j ] by (16)

= ∑
j∈I

e j (Γ) lim
k→∞

E[S(σ̃ j ;k) | σ̃ j (k) = i ].

A Markov process on I with an irreducible and aperiodic transition matrix generates
an I -sequence almost surely. Thus by higher-order expectation-consistency and Propo-
sition 3, we deduce that almost surely S(σ̃ j ,k) converges to the expectation-consistent
prior p j as k →∞, irrespective of what σ̃ j (k) is.

6.5 Completion of the Proof of Proposition 4

The final major step in the proof of Proposition 4 is the converse of Lemma 3:

Lemma 4. If separability holds, then beliefs satisfy higher-order expectation-consistency.

Proof. Assume that separability holds with a tuple (pi )i∈I of priors. By using the separa-
bility condition with a suitable Γ, we will show that for each i and j ,

pi E j = pi , (17)

which implies higher-order expectation-consistency.
Recall that separability states that for any Γ ∈Γ ,

c(Γ) = ∑
i ′∈I

ei ′(Γ)pi ′ .

23 See (1.31) in Levin et al. (2009), and the book more generally, for basic properties of time reversals.
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Plugging the above into the equation c(Γ)BΓ = c(Γ), we have∑
i ′

ei ′(Γ)pi ′BΓ =
∑

i
ei ′(Γ)pi ′ . (18)

Fix i and j , as well asα ∈ (0,1). For small δ,ε> 0, consider Γδ,ε defined as follows (we
describe the essence of the construction after the definition).

1. Γδ,ε(i ′, j ′) = ε for i ′ ∈ {
i , j

}
, j ′ ∉ {

i , j
}
;

2. Γδ,ε(i ′, j ′) = 1/n for all i ′ ∉ {
i , j

}
any j ′ ∈ I .

3. Γδ,ε(i , i ) = δα;

4. Γδ,ε( j , j ) = δ(1−α).

5. Γδ,ε(i , j ) and Γδ,ε( j , i ) are defined so that the corresponding rows sum to 1.

The idea is this: There are two distinguished states, i and j . The constant ε will be
smaller than δ. (1) says that the probability of transitioning from

{
i , j

}
to a state outside

that set is “small,” of order ε. (2) says that the transition probabilities from all states
outside the distinguished pair

{
i , j

}
are uniform. (3) says that the probability of a self-

transition at i is δα, and the probability of a self-transition at j is δ(1−α). The purpose
of this is to ensure that the ratio of these holding probabilities is α/(1−α).

Now consider
e = lim

δ↓0
lim
ε↓0

e(Γδ,ε).

It can be shown that e i (Γ) = α, while e j (Γ) = 1−α, and all other entries of e are zero.24

Now,
lim
δ↓0

lim
ε↓0

pi BΓδ,ε = p j and lim
δ↓0

lim
ε↓0

p j BΓδ,ε = pi .

Thus, taking limδ↓0 limε↓0 on both sides of (18), we get

αpi E j + (1−α)p j Ei =αpi + (1−α)p j .

Since this must hold for all α, we conclude that pi E j = pi , as desired.

What we have shown now implies all the claims in Proposition 4. The only thing we
have not yet discussed is how to establish statement (2) of that result. If expectation-
consistency holds with pi = p for all i , and then by statement (3) we have network-
independence. Conversely, if network-independence holds, then c(Γ) = c for some fixed
c, and then separability holds (with pi = c for each i ), and so (again by statement (3) of
the proposition) expectation-consistency holds.

24 For any δ≥ 0, the chain Γδ,0 has one recurrent class (namely,
{
i , j

}
) and the stationary distribution is

uniquely defined and continuous around such a chain (Schweitzer (1968)). The stationary distribution of
Γδ,0 depends only on the restriction of this matrix to i , j , and it can easily be computed to be e.
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