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Abstract

We highlight a trade-off between speed (the rate at which behaviours

propagate in the population) and resilience (the measure of initial adopters

required for spreading) in models of threshold contagion: contagion is faster

in networks where it is harder to initiate contagion. We derive various

orderings over networks under which this trade-off is stark. While this

trade-off holds between pairs of networks for possibly different contagion

thresholds, we also outline conditions under which, for a given contagion

threshold, one network is both less resilient and propagates behaviours

more quickly; this highlights the role of intermediate links as bulwarks

against contagion.
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1 Introduction

Models of threshold contagion, in which a player adopts an action if at least

proportion q of her neighbours do the same have played a prominent role in the

analysis of how behaviours spread through a networked population.
1

We show

that when a population is more resilient (less prone to contagion), contagion is

quicker when it does occur. Resilience is measured by the minimal measure of

agents required to initiate contagion. Speed of contagion is measured by the limit

rate of contagion in the population if it is initiated. This is because nearby links

lower resilience but also lower the speed of contagion.

We prove our results in a continuum population network which allows a clean

demonstration of the speed and resilience connection . We develop an order-

ing over networks on which one can perform comparative statics of contagious

dynamics. While this speed-resilience trade-off always holds between any two

networks for possibly different contagion thresholds, we also develop conditions

under which for a given contagion threshold, one network is both less resilient

and propagates behaviours more quickly.

Our results complement the work of Morris (2000) who made the observation

that with low neighbour growth,
2

the threshold at which contagion obtains tends

to be high. In the language of our paper, networks where behaviors spread slowly

also tend to be resilient. The influential papers of Centola and Macy (2007) and

Centola, Eguı́luz, and Macy (2007) highlight the difference between simple and

complex contagion and show in simulations that under complex contagion, more

uniform rewiring in the ring lattice model of Watts and Strogatz (1998) always

speeds up the propagation of contagion, but only up to a point–beyond which

contagion might not occur at all. Intuitively, since uniform rewiring replaces

1
Threshold contagion was analyzed in Morris (2000) (see also Schelling (1973) for an early

study of binary choice in a non-networked population, and Blume (1993, 1995); Ellison (1993);

Morris (1997) for game-theoretic analyses on graphs). In the language of the influential work of

Centola and Macy (2007), threshold contagion is a form of complex contagion where multiple

infected neighbours are required for spreading, as opposed to simple contagion where only a

single infected neighbour is required.

2
i.e., when players reached (and hence potentially infected) in t steps grows slower than ex-

ponentially.
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nearby links with distant links, this has a similar flavor to our results.
3

Our paper

provides analytical results which allow us to understand the tradeoff better. In

particular, this allows us to analyze richer variations in networks than simply the

degree to which links are randomly rewired. For instance, we study the effect of

replacing intermediate-distance links with both local and faraway links. It turns

out that intermediate links are an important bulwark against contagion, without

which the network can simultaneously have low resilience (many local links)

while also spreading behaviors quickly (many faraway links).

More recent work such as that of Eckles, Mossel, Rahimian, and Sen (2018) simi-

larly studies contagion on the ring lattice (a discrete analog of our setting). Under

uniform rewiring, increasing the rate of rewiring (hence the proportion of long

ties) does not speed up threshold contagion as the number of agents grow large.
4

They propose a model of noisy contagion in which with some small probabil-

ity, an agent might be infected through simple contagion–where only a single

infected neighbour is sufficient to be infected–and show that this can speed up

contagion substantially. Our paper complements this by proposing an alternate

mechanism: instead of uniform rewiring, we study a richer class of networks in

which the density of links varies in distance and show that this can matter for

limit speeds without noise in infection thresholds.

Our benchmark model involves a continuum population situated on the real line

so that there is an infinite measure of agents; working with an infinite measure

gives cleaner results. In Appendix A we adapt our results to agents situated

on the unit circle, such that there is a bounded measure of agents. With this

adaption, our setting is that of a graphon game (Parise and Ozdaglar, 2020); we

thus follow the important work of Erol, Parise, and Teytelboym (2020) in studying

threshold contagion over a graphon. We show that at each step of the contagion

process, the set of infected agents on the graphon–to which our results on the

speed resilience tradeoff apply–approximates that on the random graph sampled

3
In Appendix A we show that the manner in which contagion is sped up under uniform

rewiring is particular to small populations: in large populations, the force driving the increase

in speed in the simulations of Centola and Macy (2007) and Centola, Eguı́luz, and Macy (2007)

disappear; rather, the speed-resilience tradeoff operates through a distinct mechanism.

4
This is because for an uninfected agent situated where the those surrounding her are simi-

larly uninfected, the probability that many of her rewired links happen to be to infected agents

vanishes at an exponential rate.
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from the graphon.
5

Further, in Appendix B we show that the tradeoffs we identify

continue to hold in higher dimensions.

The contagion in our continuum population situated on a line is related to “global

game” models of contagion in incomplete information games. The general con-

nection between global games and continuum networks is described in Morris

and Shin (2006). “Resilience” corresponds to the existence of high probability

approximate common knowledge events and “speed” corresponds to probability

of actions getting deleted in each round of iterated deletion.

2 Model

Our base model is of a weighted graph with an infinite measure of agents indexed

i ∈ R. Each agent i allocates weights to his neighbours, where the total weight is

normalized to 1. Each agent assigns half his weights to the left and half to right.

The weights are translation invariant and symmetric. Thus each agent i assigns

weight G(x) to neighbours in the interval [i, i+x]; and also G(x) to neighbours

in the interval [i− x, i]; where G:[0,+∞) →
[
0, 1

2

]
, G (0) = 0 and G(x)→ 1

2
as

x → +∞.

Denote the anti-cumulative distribution as G := 1
2
−G., so G(x) =1

2
−G (x) is

the weight agent i assigns to agents in the interval [x,+∞). .

We will focus on distributions in the following class.

Definition 1. LetG be the set of cumulative distribution functionsG :[0,+∞) →
[0, 1

2
] such that for each G ∈ G,

(i) G admits a bounded density g : [0,+∞) → [0,M ] for some M < +∞.

(ii) G fulfils strictly decreasing differences i.e., for x > x′ ≥ 0, g(x) < g(x′)

whenever g(x′) > 0.

5
Erol, Parise, and Teytelboym (2020) show that the final set of infected agents in the sampled

graph can be approximated arbitrarily well by that on the graphon. We are interested in speed

and thus focus on the step-by-step evolution of the contagion process. Erol, Parise, and Teytel-

boym (2020, Propositions 1 and 2) show that at each time period, if an agent was infected on the

graphon, then with high probability they are also infected on the sampled graph; we establish

the opposite inclusion.
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Part (i) requires that agents do not assign strictly positive weight to any indi-

vidual neighbour; part (ii) implies some degree of homophily: one might view

R as a one-dimensional space of characteristics — the condition states that each

agent has more links to those similar to themselves than to those further away.

We note that although we present our results in the main text for a fixed, deter-

ministic graph, our results also hold for random graphs where each agent’s links

are distributed according to G (see Appendix A ). In this context, part (ii) states

that each agent has in expectation more nearby than faraway neighbours.
6
Note

that for G ∈ G since limx→∞G(x) = limx→∞
∫ x

0
gdµ = 1/2 and g is strictly

decreasing, this implies limx→∞ g(x) = 0.
7

Time is discrete and infinite, indexed T = 0, 1, 2, . . .. For time t ∈ T , we use

It ⊆ R to denote the infected players, and use mt := µ(It) < ∞ to denote the

measure of infected players. Let at := mt −mt−1 denote the additional measure

of agents which are infected between periods t− 1 and t—we refer to this as the

speed of contagion at time t. At time t = 0, there is a measurable set I0 ⊂ R
of measure m0 which are initially infected. At the end of period t with agents It
infected, agent i ∈ R infected in period t+ 1 if i ∈ It or at least proportion q of

her neighbours are infected:∫ +∞

−∞
1[i− x ∈ It]g(x)dx ≥ q.

We will assume, for simplicity, that I0 is a closed interval which implies that

each It is also a closed interval. This follows from strict decreasing differences.

(property (ii) of G) and inducting on t. 8

6
A similar assumption is used in a recent paper by Frick, Iijima, and Ishii (2022) to study the

role of assortativity in causing misperceptions.

7
While we will focus on the above weighted graph interpretation, there is an alternative

unweighted graph interpretation of our model where there is an infinite measure of agents

indexed by (i, k) ∈ R×[0, 1]. Agent (i, k) is linked to g(|i− j|) of neighbours in the set

{(j, k) : k ∈ [0, 1]}. We will assume throughout that each agent has a unit measure of neigh-

bours. This is a normalization and does not matter for contagion dynamics because only the

proportion of infected neighbours matter.

8Io will, in general, not be the smallest set which can precipitate contagion. In Appendix

C we derive a lower bound on the minimum size of any measurable set which can precipitate

contagion. This lower bound is tight for some graphs, and is directly related to the minimal

interval for contagion.
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Since It is a closed interval for all T , i ∈ R is infected at time t+1 if either i ∈ It
or

G
(
|min It − i| ∧ |i−max It|+ µ(It)︸ ︷︷ ︸

Distance from interval It+ length of It

)
−G

(
|min It − i| ∧ |i−max It|︸ ︷︷ ︸

Distance from interval It

)
≥ q

where here |min It − i| ∧ |i−max It| is i’s minimum distance from the interval

It. When i is exactly indifferent i.e., the equation above holds with equality, the

interval structure of contagion is depicted in Figure 1.

Figure 1: Illustration of intervals (It)t

Our initial conditions are thus a tuple (G,m0, q) comprising the graph weights,

the measure of players which are initially infected,
9

and the contagion threshold.

Definition 2. We say that starting from (G,m0, q), contagion occurs if

lim
t→∞

mt(G,m0, q) = +∞

We note that since the measure of initial adopters is finite and the total measure of

links each player possesses is finite, contagion never occurs when q ≥ 1/2. This

is the observation made by Morris (2000) though here we work with a continuum

of agents. We now introduce our measure of resilience.

9
Note that exact choice of I0 does not matter since contagion in our model is invariant to

translations.
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Definition 3 (Measure of resilience).

m0(G, q) := inf
m0∈R+

m0 s.t. lim
t→∞

mt(G,m0, q) = +∞.

Remark 1. Note that we could alternatively fix the initial measure of infected

agents and study the maximum threshold under which contagion can occur.
10

More formally, we could instead work with

q(G,m0) := sup
q∈(0,1)

q s.t. lim
t→∞

mt(G,m0, q) = +∞.

Fixing the network G, we see that q(G,m0) is increasing in m0 and similarly,

m0(G, q) is increasing in q—these two measures are thus similar. However, we

will soon see that speed depends on the contagion threshold q. To compare the

speed of spreading among different networks, we will thus fix q and vary the

initial measure of infected agents. ■

3 Speed and resilience

We first develop a simple lemma which allows us to obtain tight conditions on

whether contagion occurs. The essential idea is that when we restrict our at-

tention to G ∈ G, if contagion occurs, it does so through the growth of a closed

interval of infected agents. In particular, the decreasing differences condition im-

plies that given the set of agents It = [a, b] are infected at time t, then for agents

i, j such that b ≤ i ≤ j, if j is infected at time t + 1, i must be also infected at

time t + 1. This is because decreasing differences implies that i, being closer to

It, has a greater proportion of her neighbours in that interval.

Lemma 1. Fix G ∈ G. Contagion occurs from (G,m0, q) if and only if

G(m0) > q.

Proof. Take I0 = [x, x+m0] for some x ∈ R.

10
This in the same spirit as Morris (2000) which studied the maximum threshold under which

contagion can occur from some finite set of infected agents.
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( =⇒ ) Let a1/2 be the additional measure of infected agents at time 1 to the left

of the interval I0. a1 solves:

G(a1/2 +m0)−G(a1/2) = q

which is the condition for agent x−a1/2 is exactly indifferent between adopting

the action and not. But

G(m0) > q = G(a1/2 +m0)−G(a1/2)

which, together with decreasing differences, implies a1/2 > 0.

Now observe that by repeating the argument and the fact that the distribution

function G is increasing, at+1 ≥ at > 0 for any t ∈ T . This is sufficient to

conclude that limt→∞mt = limt→∞
∑t

s=0 as = +∞.

( ⇐= ) Consider any player i < x and let ε := x − i. If the condition does not

hold,

q ≥ G(m0) > G(ε+m0)−G(ε)

where the second inequality is from decreasing differences. This implies that any

agent i < x is not infected in period 1. By symmetry, a similar argument can

be made for agent i > x + m0. Together, this implies that limt→∞mt ≤ m0 <

+∞.

Lemma 1 tells us that contagion depends on the behaviour of local links. To see

this, rewrite the condition as m0 > G−1(pq) which also gives an expression for

the infimum of the measure of infected agents for contagion to occur:

m0(G, q) = G−1(q) (Min-Seed)

Notice that for small values of q, distributions with a lot of mass concentrated

around the middle are more susceptible i.e., requires only a small measure of

initial agents to precipitate contagion.

Let us now turn to the question of speed. Recall at = mt−mt−1 is the additional

measure of infected agents between times t and t − 1. at solves the following

8



nonlinear difference equation:

G(at/2)−G(at/2 +mt−1) = q

where we recall G(x) = 1/2 − G(x) is the anti-CDF of G. This is illustrated in

Figure 2 in which the condition for contagion is exactly fulfilled for i, the furthest

agent to the right of the infected interval It−1 to be be infected at time t.

Figure 2: Illustrating at

If contagion occurs, notice once again that since G is increasing, at+1 ≥ at.

However, the additional mass of infected agents per period will be bounded above

by what we shall call the limit speed of the process, defined as follows:

a∞ := lim
t→∞

at

= 2(G)−1(q) since lim
x→∞

G(x) = 0. (Lim-Speed)

At this point is is helpful to compare the expressions for resilience and limit

speeds. Fixing q, we saw that what matters for resilience is given by the ex-

pression in Min-Seed, = m0(G, q) = G−1(q) i.e., the mass of local links; con-

versely, what matters for the speed is the expression in Lim-Speed, a∞(G, q) ∝
(G)−1(q) i.e., the mass of faraway links.

Example 1. Consider the case in which each agent’s links are distributed accord-

ing to a normal distribution with variance σ2
i.e., Gσ(x) = Φ(x/σ)− 1/2 where

we use the subscript σ to track the variance. From Min-Seed, and Lim-Speed,

9



we have

m0(G, q) = σ · Φ(q + 1/2) a∞(G, q) = 2σ · Φ(1− q).

i.e., the speed resilience tradeoff is (i) linear in σ; and (ii) holds for all contagion

thresholds q. Indeed, since the variance of a normal distribution simply shrinks

or stretches the distribution while preserving its shape, the contagious dynamics

on graphs in this class are simply rescaled versions of each other. ■

The example above parametrized by the normal distribution is quite special. In

particular, as we vary σ, each agent’s mass of links are shifted toward or away by

simply shrinking or stretching the distribution. While this is a sufficient way to

obtain the tradeoff, we now provide a general ordering over distributions which

guarantee that the tradeoff obtains for every threshold q.

Proposition 1. If G,G′ ∈ G are such that G ≤ G′
, then for all q ∈ (0, 1/2),

(i) G is more resilient than G′
i.e., m0(G, q) ≥ m0(G

′, q); and

(ii) G has a quicker limit speed than G′
i.e., a∞(G, q) ≥ a∞(G′, q).

Conversely, if G ≰ G′
, then (i) and (ii) do not hold.

11

Proof. Fix any q ∈ (0, 1/2). G ≤ G′
implies G−1 ≤ G′−1

. Hence from Lemma 1,

m0(G, q) = G−1(q)

≤ G′−1
(q) = m0(G

′, q).

If contagion does not occur, a∞(G) = a∞ = 0; if it does, notice G ≤ G′
implies

G ≥ G
′
and so (G)−1 ≥ (G

′
)−1

. Then from our expression for limit speed,

a∞(G, q) = 2(G)−1(q)

≥ 2(G′)−1(q) = a∞(G′, q).

11
The weak inequalities can be replaced with strict inequalities.
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If G ≰ G′
, take x ∈ [0,∞) such that G(x) > G′(x) and choose q = G(x) so that

m0(G, q) = G−1(G(x)) > G′−1(G(x)) = m0(G
′, q)

as required.

The underlying intuition is illustrated in Figure 3: when we move from G to G′
,

this exactly corresponds to shifting mass from nearby links (e.g., those closer

than x) to faraway links (e.g., further away than x). Proposition 1 states that

by shifting mass ‘in one direction’ in an arbitrary way, this uniformly (i.e., for

all contagion thresholds) makes the new distribution G′
more resilient but, if

contagion occurs, it does so more quickly.

Figure 3: Perturbing G to G′

We have seen that for a particular ordering, the tradeoff is especially stark. We

now show that this tradeoff holds in general i.e., for any pair of G,G′
though

not for every contagion threshold. The insight behind this observation is that

starting from a distribution G ∈ G, any perturbation must alter the network’s

resilience and speed somewhere i.e., for some contagion threshold. The following

proposition formalizes this:

Proposition 2. For G,G′ ∈ G, if G ̸= G′
then there exists q, q′ ∈ (0, 1/2) such

that one is more resilient than the other under q, but has a quicker limit speed

than the other under q′.

Proof. Since G ̸= G′
, let us assume, without loss, that G(x) < G′(x) for some

x ∈ [0,∞). This implies that there exists y ∈ (G(x), G′(x)) such that G−1(y) >

11



x > G′−1(y). Now set q = y < 1/2 and by the argument above,

m0(G, q) = G−1(q) = G−1(y)

> G′−1(y) = G′−1(q) = m0(G
′, q).

Next, recalling that we defined G = 1/2−G as the anti-cumulative distribution

function of G, there exists z ∈ (G
′
(x), G(x)) such that G′−1

(z) < x < G
−1
(z)

and setting q′ = z < 1/2, we have

a∞(G, q′) = G
−1
(q′) = G

−1
(z)

> G′−1
(z) = G′−1

(q′) = a∞(G′, q′)

as required.

Proposition 2 illustrates a fundamental tension between speed and resilience: we

never have a pair of distributions such that, for all contagion thresholds q, one

is both more resilient, and has slower limit speeds than the other. The logic un-

derlying this result is specific to threshold models of contagion: since relative

rather than absolute measure of infected neighbours is what matters for conta-

gion, less local links (making the distribution more resilient) requires that mass

be reallocated toward faraway links (making spread faster).

Proposition 2 developed a particular speed resilience tradeoff for arbitrary net-

works: when links are shifted in an arbitrary way (thus altering G), the tradeoff

obtains for some contagion threshold. Conversely, Proposition 1 developed a

general speed resilience tradeoff for a particular ordering over networks: when

links are shifted in a ‘monotone’ way (i.e., toward or away from each agent),

we obtain the tradeoff for every contagion threshold. Both of these results were

driven by the underlying insight that what matters for resilience are local links

while what matters for speed are faraway links. Of course, it is possible to have

many local links whilst also having many faraway links. The next proposition

shows that by shifting intermediate links both closer and further away, this can

make the network less resilient while also facilitating quicker limit speeds.

Proposition 3. For G,G′ ∈ G, suppose that there exists some x̄ ∈ (0,+∞) such

that for all x ≤ x̄, G(x) ≤ G′(x) and for all x ≥ x̄, G(xz) ≥ G′(x). Then

12



(i) for sufficiently low values of q, G is both more resilient than G′
as well as

has slower limit speeds; and

(ii) for sufficiently high values of q, G is both less resilient than G′
as well as

has quicker limit speeds.

Before we prove the claim, let us briefly develop some intuition. The condition in

Proposition 3 amounts to a single-crossing condition between G and G′
: it states

that if G crosses G′
once from below i.e., if relative to G, G′

has: (i) more mass

on nearby links; (ii) more mass on faraway links; and (iii) less mass on interme-

diate links (which follows from (i) and (ii)) then for low contagion thresholds,G′

is both more susceptible and allows for quicker limit speeds. This is because, as

we previously saw, what matters for resilience are nearby links: as the conta-

gion threshold becomes smaller, the links which matter for resilience are those

which are more local. Conversely, what matters for speed are faraway links: as

the contagion threshold becomes smaller, the links which matter for speed be-

come further away. For a faraway agent to be infected, that agent must have a

substantial measure of links to those which are already infected—but since the

agent is faraway, this corresponds exactly to having sufficient mass on the tails

of the distribution of her links. Finally, we note that unlike Proposition 1, this

‘single crossing’ condition on G and G′
is not tight—as long as G′

is more local

links and fatter tails, this is sufficient for G′
to be less resilient and have quicker

speeds than G for sufficiently small q.

Example 2. Let the distribution of links under G be that of the normal distri-

bution with standard deviation σ = 2 and G′
be that under (standard) Cauchy.

12

G(x) = Φ(x/2)− 1/2 G′(x) = (1/π) arctan(x).

The density of links and distribution functions are illustrated in Figure 4.

12
i.e., with γ = 1.
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Figure 4: Normal vs Cauchy: distribution and densities

(a) G vs G′
(b) g vs g′

From direct computation, with the expressionsLim-Speed, we have that a∞(G′, q) =

2 · tan((1/2− q) · π) which implies that a∞(G′, q) ≃ 1/q2 since the tails of the

Cauchy distribution decay polynomially. On the other hand, since the normal

distribution has (sub-)Gaussian tails, a∞(G, q) ≲ (log(1/q))1/2. Limit speeds

and resilience for a range of contagion thresholds are illustrated in Figure 5.

14



Figure 5: Normal vs Cauchy: speed and resilience

(a) Comparison of speed (b) Comparison of resilience

Here we see that for relatively small contagion thresholds (q ≤ 0.15), G′
has

quicker limit speeds (panel (a)) but also lower resilience (panel (b)). As the con-

tagion threshold q becomes small, we see that the limit speed under G′
quickly

outstrips that under G. ■

Proof of Proposition 3. Choose q′ = G(x) and note that by the condition of single

crossing at x in the proposition, for any q ≤ q′,

m0(G, q) = G−1(q)

≥ G′−1(q) = m0(G
′, q).

with the reverse equality for q ≥ q′. Similarly, choose q′′ = G(x) and for q ≤ q′′

by the condition in the proposition,

a∞(G, q) = 2G
−1
(q)

≤ 2G′−1
(q) = a∞(G′, q)

with the reverse equality for q ≥ q′′. Part (i) follows for thresholds q ≤ q′ ∧ q′′;

15



part (ii) follows for thresholds q ≥ q′ ∨ q′′.

4 Concluding remarks

We have highlighted a fundamental tension between the resilience of a net-

worked population to contagion, and the speed at which, conditional on con-

tagion occurring, behaviours propagate. We showed this trade-off in a canonical

one-dimensional setting and derived various orders over networks for which the

trade-off is particularly stark. Our analysis also highlighted the role intermediate

links play as a bulwark against contagion–without them , networks can simul-

taneously have many local links (reducing resilience) as well as many faraway

links (increasing limit speed).

We conclude with two remarks. First, while we studied deterministic contagion

dynamics with an infinite measure of agents, our results also apply to settings

with a unit measure of agents, or those with discrete random graphs. In Ap-

pendix A, we develop this model for the unit circle and show that the essen-

tial tradeoffs still obtain. This setting generates a particular class of continuous

graphs—graphons—which we show approximates the step-by-step contagion dy-

namics of random graphs sampled from the graphon (where each agent’s links

are distributed according to the corresponding distribution G). This problem is

studied by an important paper of Erol et al. (2020) who show that the final set of

infected agents (i.e., as t → ∞) on the graphon can approximate that of the sam-

pled graph arbitrarily well. Since we are interested in speed, we are interested

in the evolution of infected agents over time (i.e., the set of infected agents for

each t); to this end we use standard techniques to complete the approximation

for each time period. Second, while we worked with networks embedded in a

single-dimension, the forces we have highlighted carry over into higher dimen-

sions. In Appendix B, we develop our model for networks embedded in Rn
and

show that versions of our results continue to obtain there.
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Appendix to ‘Speed vs Resilience in Contagion’

A Unit measure of agents & relation to discrete
random graphs

Outline of Appendix A. In Appendix A.1, we outline class of graphs which

are compatible with a unit measure of agents arranged on the [0, 1] circle; such

graphs can be represented by graphons (Borgs et al., 2008). We then develop a

mapping parameterized by a shrinkage factor s which sends graphs we studied

in the main text (with potentially infinite support) to graphs which are compat-

ible with the unit circle. In Appendix A.2, we show that this mapping fulfills

basic desiderata: in the limit of the map (when s ↓ 0), the values of resilience

and limit speeds coincide exactly. In Appendix A.3, we draw on our map and

Propositions 1-3 in the main text to show that the tradeoff between resilience

and average speed obtains for graphs on the unit circle.
13

In Appendix A.4, we

link the contagion dynamics over graphons to that over random graphs sampled

from the graphon (Lovász, 2012, Chapter 10). To do so, we extend the results

of Erol, Parise, and Teytelboym (2020) to show that contagion on graphons can

approximate contagion on the sampled graph at each step of the contagion pro-

cess arbitrarily well. Collectively, Appendices A.1-A.4 allow us to conclude that

the forces we identify in the main text apply more broadly to standard models of

random graphs.

A.1 Model

There is now a unit measure of agents indexed i ∈ [0, 1] arranged on a circle.

We will continue to be interested in the class of CDFs G. However, note that

since this class allows for distributions which assign positive measure to agents

further than distance 1/2 away, not every distribution in G will be compatible

with the circle model. Instead, the set of CDFs within G which are compatible

13
For fixed s, the notion of limit speed is no longer meaningful since conditional on contagion

obtaining, the whole population is infected in finite time.
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with the circle model is given by those which have zero measure of links to agents

beyond distance 1/2 away which we denote by GT :=
{
G ∈ G : G(1/2) = 1/2

}
.

Further note that every distribution G ∈ GT
with density g ≤ 1 corresponds to a

graphon (Lovász, 2012); we will make use of this fact at the end of this appendix

to show how the results on contagion dynamics developed for a unit measure of

agents applies to large but discrete random graphs.

Our goal for this section will be to define a surjective mapG 7→ GT,R
s parametrized

by a shrinkage factor s ∈ [0, 1]. The map will proceed in several steps. First, we

shrink the graph G; next, we truncate it so that agent i only assigns positive

weight to the interval [i − 1/2, i + 1/2]; finally, we rescale the density so that

i’s density over [i − 1/2, i + 1/2] is below 1. The last step ensures that the end

product is a graphon. These steps are depicted in Figure 6.

Figure 6: Illustration of G 7→ GT,R
s

For G ∈ G and shrinkage factor s > 0, define Gs as the rescaled CDF such that

Gs(sx) = G(x) for all x > 0.

Further, given G ∈ G and s > 0, define GT
s : [0, 1/2] → R≥0 such that for all

x ∈ [0, 1/2],

GT
s (x) =

(
Gs(x)

Gs(1/2)

)
·
1

2

i.e., we truncate the distribution such that the domain is now [0, 1/2], and rescale

masses such that GT
s (1/2) = 1/2, the mass of the original distribution Gσ. Ob-

serve that G ∈ G implies Gs, G
T
s ∈ G for any s ∈ (0, 1] since rescaling and

normalization preserves strict decreasing differences.

20



Of course, with a unit measure of agents we also need to rescale each agent’s

measure of links appropriately. To this end, for any G ∈ G, define

GR(x) = G(x)/R

i.e., the graph rescaled by R. We will often apply this rescaling to GT
s ,and denote

the result withGT,R
s where the superscript ‘T’ stands for truncated, and ‘R’ stands

for rescaled. We require that

R ≥
dGT

s

dx

∣∣∣
x=0

= g(0/σ)
1/2s

G(1/2s)
=: RG(s).

This is sufficient to imply

gT,Rs (x) ≤ gT,Rs (0) ≤
dGT

s

dx

∣∣∣
x=0

/
R ≤ 1

for all x ∈ [0, 1/2], ensuring that the output graph can be represented by a

graphon (see Appendix A.4). We will write GT,R
s with the implicit understanding

that this is for any value of R ≥ RG(s); the exact value of R is immaterial to

contagion dynamics.

A.2 Contagion dynamics on the real line converges to dy-
namics on the unit circle

We first establish that the contagion dynamics of the graph GT,R
s on the unit

circle does, in fact, converge to that of the graph G on the real line.

Proposition 4. Contagion dynamics on GT,R
s over the unit circle converges to

the contagion dynamics on G over the real line as s ↓ 0, i.e.,

(i) (Convergence in resilience) lim
s↓0

(
GT,R

s , q)

s

)
= m0(G, q); and

(ii) (Convergence in speed) lim
s↓0

at(G
T,R
s , q, sm0)

s
= at(G, q,m0) for all t ∈ T .
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Proof. For part (i), note that GT,R
s and its inverse is continuous in the supnorm

with respect to σ which then implies

lim
s↓0

m0(G
T,R
s , q) = lim

s↓0
(GT,R

s )−1(q/R) (Apply Min-Seed)

= lim
s↓0

(GR
s )

−1(q/R) (lims↓0∥GT,R
s −GR

s ∥∞ = 0)

= lim
s↓0

(Gs)
−1(q) (Def. of GR

)

= lim
s↓0

sG−1(q) (Def. of Gs)

= lim
s↓0

sm0(G, q) (Apply Min-Seed)

as required.

For part (ii), we know from part (i) that in the limit, contagion either occurs, or

does not occur on both GT,R
s and G. If it does not occur, both sides are zero.

If it does, redefine at := at(G
T,R
s , q,m0) as the speed at time t on the modified

graph, and bt := at(G, q,m0) as the speed at time t on the original graph, and

τ(GT
s , q,m0) := inf{t ∈ T : mt(G

T
s ,m0, q) ≥ 1} as the first time at which the

whole population is infected.

For each t < τ(GT
s , q,m0), at is characterized by the non-linear difference equa-

tion

G
T,R

s (at/2)−G
T,R

s (at/2 +mt) = q/R.

Similarly, bt is characterized by

G(bt/2)−G(bt/2 +mt) = q.
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Now combining both equations and taking limits,

G(bt/2)−G(bt/2 +mt) = lim
s↓0

R ·GT,R

s (at/2)− lim
s↓0

R ·GT,R

s (at/2 +mt)

= lim
s↓0

G
T

s (at/2)− lim
s↓0

G
T

s (at/2 +mt)

= lim
s↓0

Gs(at/2)− lim
s↓0

Gs(at/2 +mt)

= lim
s↓0

G

(
at/2

s

)
− lim

s↓0
G

(
at/2 +mt

s

)
= G

(
lim
s↓0

at/2

s

)
−G

(
lim
s↓0

at/2 +mt

s

)
.

where the second equality is from the definition of GR,the third equality fol-

lows from noting that lims↓0∥GT
s −Gs∥∞ = 0, and fourth inequality is from the

definition of Gs, and the last inequality is from the continuity of G.

We now proceed by induction. For t = 1, we can rewrite the above equation to

get

G(bt/2)−G(b1/2 +m0) = G

(
lim
s↓0

at/2

s

)
−G

(
lim
s↓0

at/2

s
+m0

)
and since G is strictly decreasing, we match terms and have lims↓0(at/s) = bt.

Now for arbitrary 1 < t < τ(GT
s , q,m0), supposing that for each s ≤ t − 1,

lims↓0(as/s) = bs, then notice that mt−1 = m0 +
∑t−1

s=1 as, we similarly have

G(bt/2)−G(b1/2 +mt−1) = G

(
lim
s↓0

at/2

s

)
−G

(
lim
s↓0

at/2

s
+mt−1

)
which completes the inductive step. Finally, our argument was for t < τ(GT

s , q,m0)

but noting that lims↓0 τ(G
T
s , q,m0) = +∞, this extends to all t ∈ T .

Proposition 4 establishes that the model we worked with in the main text can be

viewed as the limit of the circle model with a unit measure of agents as we we

rescale each agents’ links such that they become increasingly local. Part (i) states

that as s ↓ 0, the requisite measure of initial infected agents in the circle model
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converges to that of the real line. Part (ii) states that as s ↓ 0, at each time step,

the set of infected agents on the circle model under GT
s converges to that under

G. A simple corollary of part (ii) is also that whenever contagion occurs,

lim
t→+∞

lim
s↓0

at(G
T,R
s , q, sm0)

s
= a∞(G, q, sm0).

A.3 Fixed s > 0

We now develop our analysis for a fixed shrinkage factor s > 0. In such settings

there is no meaningful notion of limit speed since, if contagion occurs, there is

some finite time after which the whole population is infected. Nonetheless, a

version of the speed-resilience tradeoff continues to hold, but with a different

measure of speed which we now define.

Define τ(GT,R
s ,m0, q) := inf{t ∈ T : mt(G

T
s ,m0, q) ≥ 1} as the first time at

which the whole population is infected and define

aAV G(G
T,R
s ,m0, q) :=

1

τ(GT,R
s ,m0, q)

(τ(GT,R
s ,m0,q)∑
t=1

at(G
T,R
s ,m0, q)

)
as the time average of the contagion process. When there is no ambiguity, we

drop the arguments from aAV G and τ . It is easy to see that aAV G ≈ τ−1
for small

s since m0 and at are both O(s).

The following proposition develops approximations for aAV G for small but fixed

values of s. The underlying intuition is straightforward: as we take s small,

the system is in effect getting larger because at each time step the additional

measure of infected agents is order s. This also extends τ , the time taken for the

whole population to be infected. But as τ gets large, the network spends a large

fraction of the time close to the limit speed, and so the average speed is also well-

approximated by the limit speed, and the time taken for the whole population to

be infected is similarly well-approximated by the reciprocal of limit speed.

Proposition 5. If contagion occurs from (G,m0, q) on R, then for any ε > 0

there exists s̃ > 0 such that for any s ≤ s̃ contagion on the unit circle exhibits

the following properties:
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(i)

m0(G
T,R
s , q)

s
∈
[
m0(G, q)− ε,m0(G, q) + ε

]
; and

(ii)

aAV G

s
∈
[
a∞ − ε, a∞ + ε

]
.

Proof. Part (i) is immediate from Proposition 4 part (i). For part (ii), we know

that from part (ii) of Proposition 4, for each t ∈ T ,

lim
s↓0

at(G
T,R
s , q, sm0)

s
= at(G, q,m0)

for each t. Now for each t < τ(GT,R
s , q,m0) and any η > 0, there then exists

s̄t such that for all s ≤ s̄t, |at(GT,R
s , q, sm0)/s − at(G, q,m0)| ≤ η/2. Take

s̄ = mint≤τ s̄t > 0. Now consider the contagion dynamics of G on the real line

and observe that limt→∞ at(G, q,m0) = a∞ and that this sequence is increasing.

Define s := inf{t ∈ T : at(G,m0, q) ≥ a∞(G,m0, q) − η/2} as the first time

the speed of contagion on the real line under G exceeds the limit speed less η/2,

noting that this is independent of s. By the triangle inequality, for s < s̄ and

t ≥ s, |at(GT,R
s , q,m0)/s− a∞(G,m0, q)| ≤ η.

Now for a given η > 0, we have

aAV G(G
T
s , q,m0)

s
:=

1

sτ(GT,R
s ,m0, q)

( τ(GT,R
s ,m0,q)∑
t=1

at(G
T,R
s ,m0, q)

)

=
1

sτ(GT,R
s ,m0, q)

( s∑
t=1

at(G
T
s ,m0, q) +

τ(GT,R
s ,m0,q)∑
t=s+1

at(G
T,R
s ,m0, q)

)

=
ms(G

T,R
s , q,m0)− sm0

sτ(GT,R
s ,m0, q)

+
τ(GT,R

s ,m0, q)− s

τ(GT,R
s ,m0, q)

· a∞ +O(η)

= a∞ −
s

τ(GT,R
s ,m0, q)

+
ms(G

T,R
s , q,m0)− sm0

sτ(GT,R
s ,m0, q)

+O(η)

= a∞ +O(τ−1) +O(η)

where theO(τ−1) term in the last inequality is becausems(G
T,R
s , q,m0) = sm0+
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∑s
t=1 at(G

T,R
s , q,m0) = O(s). Now for any ε > 0, we see that we can choose s̄

such that for all s ≤ s̃, ∣∣∣∣aAV G(G
T,R
s , q,m0)

s
− a∞

∣∣∣∣ ≤ ε

since lims↓0 τ = +∞ and η > 0 was arbitrary.

Interpreting the results for fixed s > 0 over the unit circle. Let us briefly

interpret our results through a simple example.

Example 3. Proposition 5 tells us the orderings developed in the previous sec-

tion applies to the unit circle for small but fixed values of s. In particular, suppose

G,G′ ∈ G are such that G(x) < G′(x) for all x > 0 i.e., G strictly first-order

stochastically dominates G′. Proposition 1 in the main text states that G is more

resilient (m0(G, q) > m0(G
′, q)) but, if contagion occurs, facilitates quicker limit

spreading (a∞(G, q) > a∞(G′, q)). Proposition 5 tells us that this tradeoff is pre-

served for GT,R
s and (G′)T,Rs on the unit circle for sufficiently small values of s:

from Part (i), we have that

lim
s↓0

m0(G
T,R
s , q)/s = m0(G, q) > m0(G

′, q)

= lim
s↓0

m0((G
′)T,Rs , q)/s

and so for sufficiently small s, m0(G
T,R
s , q) > m0((G

′)T,Rs , q). If contagion occurs

on both networks, then Part (ii) tells us that for sufficiently small s,

aAV G(G
T,R
s ,m0, q) > aAV G((G

′)T,Rs ,m0, q) and τ(GT,R
s ,m0, q) < τ((G′)T,Rs ,m0, q)

so we continue to obtain a version of Proposition 1, but with average speed in-

stead of limit speed. We can do the same for Propositions 2 and 3. ■

A.4 Approximating discrete random graphs

We now build on the results developed above to approximate the contagion dy-

namics over large but discrete random graphs.
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Definition 4 (Graphon). A graphon is a measurable functionW : [0, 1]2 → [0, 1]

Notice that for any G ∈ G and fixed s > 0, GT,R
s corresponds to a (symmetric)

graphon in which W (i, i + x) = W (i, i − x) = gT,Rs (x) for x ∈ [0, 1]. Let WG

denote the graphon associated with the graph G ∈ GT
.

Definition 5 (Sampling from graphons). Take a graphon W and an a uniform

sample of n nodes from the set [0, 1], letting S = {i1, i2, . . . in} be the random

collection of sampled nodes. We then connect the nodes im and im′ with in-

dependent probability W (im, im′). We call the result random graph G(n,W )

where n is the number of sampled points, and W is the corresponding graphon

it is sampled from.

The reader is referred to Lovász (2012, Chapters 8-10) for more detail on the

existence, construction, and properties of graphons and sampled random graphs.

Definition 6 (Contagion on sampled graphs). Given the sampled graphG(n,W )

and a set of initially infected agents on the sampled graph I
(n)
0 ⊂ S = {i1, i2, . . . in},

define the sets of infected agents at times t ∈ T as (I
(n)
t )t∈T . Agent xi is infected

at time t + 1 if either i ∈ I
(n)
t (i.e., i was infected at time t) or d(i, I

(n)
t )/d(i) ≥

q where we use d(i, I) to denote the degree of i among nodes in the set I ⊆ S,

and d(i):= d(i, S).

We now show that contagious dynamics on the random graphG(n,WGT,R
s

) is ap-

proximated by that on GT,R
s for large n. We start by developing some additional

notation to move between the graphon and the sampled graph. Define

V (n)(I) = {i : i ∈ I ∩ S}

as the set of sampled agents who are within the (measurable) set I ⊆ [0, 1].

We will initialize I
(n)
0 = V (n)(I0) := {i : i ∈ I0 ∩ S} as the set of initially

infected agents in the sampled graph. These are agents who (i) are infected in

the graphon; and (ii) are drawn in the sample. Since we are interested in speed,

our goal will, roughly, be to show that V (n)(It) = I
(n)
t with high probability i.e.,

given a set of agents It which are infected on the underlying graphon at time t,

the set of sampled agents S ∩ It within this set approximates the set of agents

which are infected on the sampled graph G(n,W ) at time t.

27



Proposition 6 (Propositions 1 & 2 of Erol et al. 2020). For anyG ∈ GT
, contagion

on the graphon WG and contagion on the sampled graph G(n,WG) are such that

for all t ∈ T and ϵt, κt > 0, there exists Nκ
such that for all n > Nκ

, with

probability ≥ 1− κt,
14

V (n)(It) ⊆ I
(n)
t .

The Proposition of Erol et al. 2020 gives us one direction of inclusion which is

sufficient for them to show that the final set of infected agents on the sampled

graph I
(n)
∞ is well-approximated by the final set of infected agents on the graphon

V (n)(I∞).

However, since we are interested in the speed of the process, this states that

the speed of contagion under the graphon is weakly lower than that under the

sampled graph. However,

We additionally wish to show that for each time period t, the set of infected

agents on the graphon approximates that of the sampled graph well i.e., step-

by-step approximation. To this end, we will draw on standard probabilistic tech-

niques to show that the opposite inclusion holds with arbitrarily high probability

for sufficiently large samples.

Proposition 7. For any G ∈ GT
, contagion on the graphon WG and contagion

on the sampled graph G(n,WG) are such that for all t ∈ T and ϵt, κt > 0, there

exists N ϵ,κ
such that for all n > N ϵ,κ

, with probability ≥ 1− κt

I
(n)
t ⊆ V (n)(Iϵtt )

for some measurable set Iϵtt ⊆ It which ϵt-approximates It (i.e., |µ(Iϵtt )−µ(It)| <
ϵt).

Proof. We would like to establish that the inclusion holds with probability ≥
1 − κt, and that the set Iϵtt is ϵt measure away from the actual set of infected

agents It. For the latter goal, although we are only interested in ϵt, we will

14
Note that because we defined threshold contagion as i being infected if greater than or equal

to q proportion of her neighbours are infected, we do not need to remove an ϵ-measure set of

agents for the approximation; see the discussion following Propositions 1 and 2, and Appendix

A.3 of Erol, Parise, and Teytelboym (2020) for details.
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construct an accompanying increasing sequence (ϵs)s≤t where we choose Iϵtt =

[min It− ϵt
2
,max It+

ϵt
2
] for each t i.e., It augmented with an additional buffer of

length ϵt/2 on either side. The idea will be that at each time step t, there might

potentially be some agents who are infected on the sampled graph, but not on

the graphon; but such agents–if they exist–will accumulate close (within ϵt/2

distance) to the infected set on the graphon. By controlling the sequence (ϵs)s≤t

appropriately, we are able to control this accumulation so that they always fall

within the approximating set I
ϵt+1

t+1 .

We proceed by inducting on t for a given sequence (ϵs)s (which we will choose),

and then conclude by showing that we can always choose this sequence to make

ϵt the desired size. For t = 0, there is nothing to prove since by construction

I
(n)
0 = V (n)(I0) ⊆ V (n)(Iϵ00 ) for any ϵ0 > 0. We now show that if the claim is

true for time t given ϵt, it is also true for time t+ 1 for an ϵt+1.

For notational simplicity, denote the event Et :=
{
I
(n)
t ⊆ V (n)(Iϵtt )

}
where we

suppress dependence on ϵt. By the law of total probability,

P(Et+1) = P(Et+1 | Et)·P(Et) + P(Et+1 | Ec
t ) · P(Ec

t ).

By induction P(Et) ≥ 1−κt and the second term P(Et+1 | Ec
t ) ·P(Ec

t ) is weakly

positive so the main step will be to obtain a lower bound on P(Et+1 | Et). To

this end, note

P(Et+1|Et) =1− P
( ⋃

i∈S:
i/∈V (n)(I

ϵt+1
t+1 )

i ∈ I
(n)
t+1

)

≥1−
∑
i∈S:

i/∈V (n)(I
ϵt+1
t+1 )

P(i ∈ I
(n)
t+1|Et)

where the inequality is from the union bound. Now observe that for i /∈ V (n)(I
ϵt+1

t+1 ),
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i is infected on the sampled graph with conditional probability

P(i ∈ I
(n)
t+1|Et) =P

( ∑
j∈I(n)

t

A
(n)
ij ≥ q ·

∑
j∈S

A
(n)
ij | Et

)

≤P
( ∑

j∈V (n)(I
ϵt
t )

A
(n)
ij ≥ q ·

∑
j∈S

A
(n)
ij

)

=P
(∑

j∈S

1(j ∈ V (n)(Iϵtt )) · A
(n)
ij ≥ q ·

∑
j∈S

A
(n)
ij

)

where we define Aij := 1({i and j are connected on the sampled graph}) and

the inequality came from the fact that we conditioned on the eventEt =
{
I
(n)
t ⊆ V (n)(Iϵtt )

}
and replaced I

(n)
t with V (n)(Iϵtt ) in the sum. Now define the random variable

Xij := 1
(
j ∈ V (n)(Iϵtt )

)
· A(n)

ij − qA
(n)
ij

noting thatXij andXij′ are independent for j ̸= j′ (by construction ofG(n,W )).

Define the operator B : B(R) → B(R) which maps a set of infected agents at

time t to a new set of infected agents at time t + 1 (e.g., in our notation so far,

B(It) = It+1). A first observation is that for i /∈ B(Iϵtt ),

E[Xij] =

∫
j∈Iϵtt

W (i, j)dj − q ·
∫
j∈[0,1]

W (i, j)dj

<0

where the inequality follows from the fact that i /∈ B(Iϵtt ) on the graphon. Note

that j was uniformly sampled from [0, 1], we are implicitly integrating against

the uniform density.

But we need to do slightly better than this to obtain a uniform bound on i: what

we will do is to choose I
ϵt+1

t+1 ⊃ B(Iϵtt ) slightly larger by setting

ϵt+1 = µ(B(Iϵtt ))− µ(B(It)) + ϵt

and since we assumed i /∈ V (n)(I
ϵt+1

t+1 ), i is by construction bounded away from
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the set B(Iϵtt ) by ϵt, this tightens our bound further:

E[Xij] =

∫
j∈Iϵtt

W (i, j)dj − q ·
∫
j∈[0,1]

W (i, j)dj

<− f(ϵt) where f(ϵt) > 0

where here

f(ϵt) = q − [G(µ(B(Iϵtt )) + ϵt/2)−G(ϵt/2)] > 0

from strict decreasing differences and the fact that G(µ(B(Iϵtt )) = q (from the

definition of the operator B). Now recall that |S| = n and pick δ ∈ (0, f(ϵt))

(independent of i). Then note

P(i ∈ I
(n)
t+1|Et) ≤P

(
1

n

∑
j∈S

Xij ≥ 0

)
≤P

(
1

n

∑
j∈S

Xij ≥ δ + E[Xij]︸ ︷︷ ︸
<0

)

≤P
(
1

n

∑
j∈S

Xij − E[Xij] ≥ δ

)
≤P

(∣∣∣∣∑
j∈S

Xij − n · E[Xij]

∣∣∣∣ ≥ n · δ
)

≤ exp(−2nδ2)

where the last inequality is from McDiarmid/Hoeffding since that differences are

bounded by 1. Now note that since our choice of δ did not depend on i, this bound

applies to every i ∈ S \ V (n)(I
ϵt+1

t+1 ). Then from before,

P(Et+1|Et) ≥1−
∑
i∈S:

i/∈V (n)(I
ϵt+1
t+1 )

P(i ∈ I
(n)
t+1|Et)

≥1− n · exp(−2nδ2) =: η(n)

which can be made arbitrarily small since the exponential term dominates; the
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intuition is that as n grows, there are more nodes which could be infected on the

sampled graph although they are not infected on the graphon. However, as n

grows, the probability of this event is also decaying exponentially quickly. Now

for any κt+1 > 0,

P(Et+1) =P(Et+1 | Et)P(Et) + P(Et+1 | Ec
t )P(Ec

t )

≥(1− η(n)) · (1− κt(n))

and choose n sufficiently large so that (1− δ(n)) · (1− κt(n)) ≥ 1− κt+1.

Finally, our induction step was for a fixed ϵt and choosing ϵt+1 = µ(B(Iϵtt )) −
µ(B(It)) + ϵt. Now notice that for any closed interval I µ(B(Iϵt )) is continuous

in ϵ for ϵ ≥ 0., and B(Iϵ=0
t ) = B(It) so limϵ↓0 |µ(B(Iϵ))− µ(B(I))| = 0. Hence

for any t ∈ T , ϵt, κt > 0, we can construct the sequence (ϵs)s≤t where we set

ϵs = µ(B(Iϵts−1))− µ(B(Is−1)) + ϵs−1

which can be done for sufficiently small ϵ0 so that our induction argument to

obtain the event with probability ≥ 1− κt does indeed apply.

Let us take stock. We showed in Appendix A.1-A.4 earlier that Propositions 1,2,

and 3 in the main text on the tradeoffs (or lack thereof) between speed and re-

silience among (infinite) graphsG is approximated by that among rescaled graphs

with a unit measure of agents. Proposition 6 from Erol et al. (2020) and Proposi-

tion 7 extends this to random graphs sampled from the corresponding graphon.

More explicitly, the contagion dynamics (and hence speed resilience tradeoff) on

the graph GT,R
s for G ∈ G also applies to the random graph sampled from WGT,R

s
.
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B Higher dimensions

The model in the main text was developed for networks embedded in R. We now

show that a version of this tradeoff continues to obtain in higher dimensions.

B.1 Model

Consider a continuum of agents indexed by Rn
for n ≥ 1. Agent i ∈ R has mea-

sure of links given by µi : B(Rn) → [0,+∞) where we use B(E) to denote the

Borel sigma-algebra generated by the set E. We will impose the following regu-

larity assumptions which are analogous to symmetry and translation in variance

in the main text.

Assumption 1 (Translation invariance in n dimensions). Take i, j ∈ Rn
and

let Vij : Rn → Rn
be the linear operator which sends i to j i.e., Vij(i) = j.

Then for all B ∈ B(Rn), µi(B) = µj(Vij(B)) where we adopt the notation

Vij(B) := {Vij(k) : k ∈ B}.

Define µ := µ0 as the measure centered on the point zero.

Assumption 2 (Rotational symmetry in n dimensions). For any set E ∈ B(Rn),

letR(E) ⊆ Rn
be a measure-preserving rotation around the origin. Thenµ0(E) =

µ0(R(E)).15

These assumptions allow us to reduce the network to a single function G :

R≥0 → R≥0. We work with the Euclidian norm || · ||2 on Rn
. Let Bδ(i) :=

{k ∈ Rn : ||k − i||2 ≤ δ} denote the δ−ball around the point i. Assump-

tions 3 and 4 imply that the entire network {µi}i∈Rn is characterised by function

G(δ) := µ(Bδ(0)) for δ ≥ 0. We now define the class of functions G we will

focus on.

Definition 7. Define G as the set of functions [0,+∞) → [0, 1] such that for

each G ∈ G,

15R is a standard ‘rotation matrix’.
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(i) G is increasing, limx→∞G(x) = 1, and G is absolutely continuous. This

implies there exists a function g : [0,∞) → [0,M ] for some M < +∞
such that for any a, b ≥ 0, a ≤ b,∫ b

a

g(x)dx = G(b)−G(a).

(ii) g(x) < g(x′) whenever (i) x > x′
; and (ii) g(x′) > 0.

We will focus on networks in the class G: part (i) provides weak regularity con-

ditions to guarantee that µ is smooth and admits a density g; part (ii) states that

each agent has fewer links to neighbours further away. As in the main text, we

might think of Rn
as a latent space of traits or opinions—part (ii) then reflects

the homophily of the network.

We will consider contagious dynamics of the system given by the tuple (G, I0, q)

in which G characterizes the network in question, I0 is the initial set of infected

agents, and q is the contagion threshold. As in the main text, we assume that I0 is

a compact ball in whatever dimension we work on, and that it is centered around

the origin. As such, we write I0 = Br0(0) where r0 is the radius of the initial set

of infected agents. We let m0 := µ(I0) be the measure of initially infected agents.

Fixing the dimension n ≥ 1 : n ∈ N we are working on, we can equivalently

work with m0 and r0. As in the main text, we let (It)t∈T denote the sequence of

infected agents, and mt := µ(It) to denote the measure of infected agents at any

time t ∈ T .

We start with a simple observation that along every time path, the set of infected

agents remains a compact Euclidian ball.

Lemma 2. For any n ≥ 1 : n ∈ N and any t ∈ T , It is a compact ball in Rn
.

Proof. If t = 0 there is nothing to prove since we assumed I0 was a closed ball.

Now suppose that It is a closed ball with center normalized at 0. Conclude by

observing that for any two agents i, j ∈ Rn
such that ||i−0||2 = ||j−0||2 , at time

t+ 1 either both i and j are infected, or both are not since rotational symmetry

guarantees that both have and equal proportion of neighbours infected at time
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t. Hence It+1 is a closed ball. Finally, it is not hard to see that the limit speed of

this process is finite so for any t, µ(It) is bounded.

In light of the above lemma, since for each t ∈ T the set of infected agents is a

closed ball, we can equivalently track the path of contagion through the sequence

(rt)t∈T where It = Brt(0) i.e., rt is the radius of the infected set at time t.

We now introduce an additional piece of notation. For dimension n ≥ 1 : n ∈ N,

we define pn(r, d, x) as follows. Suppose there is a closed ball of radius r in Rn

and take any point distance d away from the ball. pn(r, d, x) gives the proportion

of the surface of a hypothetical closed ball of radius x+ d centered on that point

within the original ball. Figure 7 illustrates this for n = 2 in which pn(r, d, x)

gives the ratio of the red arc divided by the circumference of the circle the arc is

on.

Figure 7: Illustration of pn(r, d, x).

For n = 1, we have that

p1(r, d, x) =

{
1/2 if 0 ≤ x ≤ 2r

0 otherwise,

which made our analysis in the main text simple. Forn > 1, there will, in general,

be more complicated non-monotonicities captured by pn. Observe that for each
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dimension n,

∂pn(r, d, x)

∂r
≥ 0,

∂pn(r, d, x)

∂d
≤ 0,

and

pn(r, d, 0) = 0, lim
x→+∞

(
lim

r→+∞
pn(r, d, x)

)
= 1/2.

Finally observe that pn(r, d, x) can be non-monotone in x: for instance, for n = 2

since the infected agents is a circle, we have that pn is first increasing in x, and

then decreasing thereafter. Finally, observe that pn homogenous of degree 0:

pn(λr, λd, λx) = pn(r, d, x)

for any λ > 0.

Now suppose that at time t, there is a ball of radius rt infected. Under network

G ∈ G with associated density g, agent distance d away from the infected ball

has ∫ x=2r

x=0

pn(r, d, x)g(x+ d)dx

infected neighbours, noting that this is increasing in r. Analogous to the main

text, define r0(q,G) as the minimum radius of infected agents required to pre-

cipitate contagion. We have

r0(G, q) = inf

{
r ≥ 0 :

∫ x=2r

x=0

pn(r, 0, x)g(x)dx ≥ q

}
.

Similarly, conditional on contagion occurring, define a∞(q,G) as

a∞(G, q) = sup

{
d ≥ 0 :

∫ ∞

x=0

lim
r→+∞

pn(r, d, x)g(x+ d)dx ≥ q

}
.

Our first result develops an ordering over networks which shows the tradeoff

for all contagion thresholds q. This is an analogue of Proposition 1 developed in
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the main text, although the conditions are more special than that of first-order

stochastic dominance.

Proposition 8. For any dimension n, suppose that G,G′
are such that G′

is a

rescaled version of G i.e.,

G(x) = G′(λx) for λ > 1.

Then for all q ∈ (0, 1/2), (i) λ · r0(G, q) = r0(G
′, q); and (ii) λ · a∞(G, q) =

a∞(G′, q).

Before we prove the proposition, it is useful to highlight its connection to Exam-

ple 1 in the main text: when we ‘stretch’ G in this way (as when we increase the

variance of the normal distribution), we are, in effect, preserving the contagious

dynamics, but ‘stretching’ the metric we are working on. It should therefore

be unsurprising that since G and G′
are scaled-up/scaled-down versions of each

other, that the speed-resilience tradeoff obtains for all contagion thresholds.

Proof. Observe g(x) = λg′(λx) and for any r0 > 0 (radius of the initial ball), we

have ∫ x=2r0

x=0

pn(r, 0, x)g(x)dx =

∫ x=2r0

x=0

pn(λr, 0, λx)g(x)dx (pn is HOD0)

=

∫ x=2r0

x=0

pn(λr, 0, λx)λg′(λx)dx

(replacing g with g′)

=

∫ y=2λ·r0

y=0

pn(λr, 0, y)g′(y)dy

(change of var. y = λ · x)
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and part (i) follows from our definition of r0. Similarly,∫ ∞

x=0

lim
r→+∞

pn(r, d, x)g(x+ d)dx =

∫ ∞

x=0

lim
r→+∞

pn(r, d, x)λ · g′(λx+ λd)dx

(replacing g with g′)

=

∫ ∞

x=0

lim
r→+∞

pn(λr, λd, λx)λ · g′(λx+ λd)dx

(pn is HOD0)

=

∫ ∞

y=0

lim
r→+∞

pn(λr, λd, y)g′(y + λd)dy

(change of var. y = λ · x)

=

∫ ∞

y=0

lim
r→+∞

pn(r, λd, y)g′(y + λd)dy

(λ > 1)

and part (ii) follows from our definition of a∞.

The ordering in the previous proposition was quite strong, and required that the

two graphs, G,G′
were rescalings of each other. This was, for instance, fulfilled

by Example 1 in the main text since the normal distribution had this property

as we control the variance. We now consider the condition of Proposition 1 the

main text–that of first-order stochastic dominance–and show that a weaker (i.e.,

not for all contagion thresholds) version of this tradeoff continues to obtain in n

dimensions.

Proposition 9. For any dimension n, suppose that G ≤ G′
. Then there exists

q, q ∈ (0, 1/2) such that

(i) For q ≤ q, G is more resilient than G′
.

(ii) For q ≥ q, G has quicker limit speed than G′
.

Proof. The condition implies there is an interval [0, x] where g ≤ g′ pointwise,

and an interval [x,+∞) where g ≥ g′ pointwise. For resilience, choose q such
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that ∫ x=x

x=0

pn(r, d, x)g(x)dx ≤
∫ x=x

x=0

pn(r, d, x)g′(x)dx = q

noting that this can always be done since∫ x=y

x=0

pn(r, d, x)g′(x)dx

is continuous in x over the interval [0,+∞) and starts at zero. Then clearly we

have x = r0(q,G
′) ≤ r0(q,G). This extends to q ≤ q since g ≤ g′ over the

interval [0, x].

For speed, observe that ∫ ∞

x=0

lim
r→∞

pn(r, d, x)g′(x+ d)dx

is continuous in d over the interval [0,+∞), as well as decreasing in d with

lim
d→+∞

∫ ∞

x=0

lim
r→∞

pn(r, d, x)g′(x+ d)dx =0 and

lim
d→0

∫ ∞

x=0

lim
r→∞

pn(r, d, x)g′(x+ d)dx =1/2.

Now pick d = x, and from the intermediate value theorem we can find q such

that

q′ =

∫ ∞

x=0

lim
r→∞

pn(r, x, x)g′(x+ x)dx ≤
∫ ∞

x=0

lim
r→∞

pn(r, x, x)g(x+ x)dx

where the inequality follows from the fact that g(x) ≥ g′(x) for all x ≥ x. Then

once again noticing that the integral is decreasing in d, we have x = a∞(q′, G′) ≤
a∞(q′, G). This extends to q ≥ q since g ≥ g′ over the interval [x̄,+∞).

Note that since pn is a nonlinear and potentially complicated function, here we

are relying on dominance of one density function over the other on some interval

to make comparisons. The next result develops an analog of Proposition 3 in the
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main text.

Proposition 10. For any dimension n, and G,G′ ∈ G suppose that there exists

some x̄ ∈ (0,+∞) such that for all x ≤ x̄, G(x) ≤ G′(x) and for all x′ ≥ x̄,

G(x′) ≥ G′(x′). Then for sufficiently low values of q, G is both more resilient

than G′
as well as has slower limit speeds.

Proof. Observe that the condition implies that there exists a pair of thresholds

z, z̄ ∈ [0,+∞) such that for x ≤ z, g(x) ≤ g′(x) and for x ≥ z̄, g(x) ≤ g′(x).

Part (i) proceeds identically to the proof of Proposition 10: there then exists a

threshold q′′ ∈ (0, 1/2) such that for all q ≤ q′′, r0(G, q) ≤ r0(G
′, q).

For part (ii) on speed, observe that∫ ∞

x=0

lim
r→∞

pn(r, d, x)g(x+ d)dx

is continuous in d over the interval [0,+∞) and decreasing in d with

lim
d→+∞

∫ ∞

x=0

lim
r→∞

pn(r, d, x)g′(x+ d)dx = 0 lim
d→0

∫ ∞

x=0

lim
r→∞

pn(r, d, x)g′(x+ d)dx = 1/2.

Now pick d = z, and from the intermediate value theorem we can find q′ ∈
(0, 1/2) such that

q′ =

∫ ∞

x=0

lim
r→∞

pn(r, z, x)g(x+ x)dx ≤
∫ ∞

x=0

lim
r→∞

pn(r, z, x)g′(x+ z)dx

where the inequality is because g(x) ≤ g′(x) for all x ≥ z̄. Then since the

functional ∫ ∞

x=0

lim
r→∞

pn(r, d, x)g(x+ d)dx

is decreasing in d, for any q ≤ q′ we can find x′ ≥ z̄ such that

q =

∫ ∞

x=0

lim
r→∞

pn(r, x′, x)g(x+ x′)dx ≤
∫ ∞

x=0

lim
r→∞

pn(r, x′, x)g′(x+ x′)dx

hence a∞(q,G) ≤ a∞(q,G) for all q ≤ q′. Conclude by picking q′ ∧ q′′ i.e., the

minimum of the two thresholds.
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C Minimum seed set

Throughout the main text, we assumed that I0 is a closed interval. It is not

difficult to see that this will not, in general, be the minimum seed required to

precipitate contagion: consider, for instance, the case in which starting from

I0 = [−a, a] which precipitates contagion under G, we instead choose [−a,−ϵ]∪
[ϵ, a]and one can verify that contagion nonetheless obtains for sufficiently small

ϵ. This is because g is strictly decreasing on its support, so contagion first occurs

over the region [−ϵ, ϵ] before spreading to the rest of the real line.

Naturally, one might ask whether we can continue to carve out portions of the

original set I0. Suppose that I0 is the smallest closed interval on which contagion

occurs i.e., µ(I0) = m0(G, q). Define Imin
0 as the minimum set in R(not neces-

sarily an interval) which can precipitate contagion i.e., Imin
0 is a solution to the

problem

inf
I0⊆R

µ(I0) s.t. lim
t→+∞

µ(It) = +∞.

We now lower-bound the value of the problem:

Proposition 11 (Lower bound on minimum seed set). µ(Imin
0 ) ≥ 2m0(G, q/2).

Proof. Let I0 be a minimal interval to precipitate contagion and without loss cen-

ter I0 = [−a, a] on the point 0 where a = µ(I0)/2. Now let Imin
0 be a measurable

set which is sufficient to precipitate contagion. Let (Imin
t )t be the sequence of

sets of infected agents starting from the initial infected set Imin
0 . Since contagion

occurs, a necessary condition is that there must exist some i ∈ R\Imin
0 for which

i ∈ Imin
1 i.e., is infected in period 1.

We will show that this necessary condition imposes a lower bound on µ(Imin
0 )

Fix any agent i ∈ R \ Imin
0 and observe that the minimum set required for i

to be affected cannot be attained; but it can be approached by sets of the form

Eϵ := [i − x, i − ϵ] ∪ [i + ϵ, i + x] because of symmetry and strict decreasing

differences. The set which attains the infimum is thus of the form [i − x, i + x]

where x is chosen so that

2G(x) ≥ q =⇒ x = G−1(q/2) = m0(G, q/2)
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hence µ(Imin
0 ) ≥ 2m0(G, q/2) as required.

Finally note that this bound is tight: take G(x) = x for x ≤ 1/2 and G(x) = 1/2

otherwise.
16

Then observe that

2m0(G, q/2) = G−1(q/2) = 2 · q/2 = q = G−1(q) = m0(G, q).

16
In the main text we assumed that G has strict decreasing differences for ease of exposition;

we could consider Gϵ(x) = x+ ϵ
√
x instead and take ϵ small.
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