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1 Introduction

1.1 Motivation

In many significant allocation problems, the choice of information provision and information dis-

closure interact strongly with the mechanism that guides the allocation. A leading example is the

world of digital advertising. The central problem here is that the advertisers are bidding for display

or sponsored product advertisements. The match between advertisers and viewers on the websites

of the publishers is often made through intermediaries. A given demand side platform seeks to make

bids across advertisements so as to maximize the surplus of the advertisers to be as attractive as

possible for the advertisers. A given supply side platform seeks to design the auction so as to be

attractive to the publishers and hence to maximize the profit from the auction. (Both demand and

supply platforms typically receive a commission of the surplus and thus their objective function is

roughly aligned with this description.)

A prominent tool of the demand platform is to manage the match information between adver-

tisers and viewers through the design of bidding categories and characteristics. Thus, the demand

side platform seeks to influence the information regarding values and bids whereas the supply side

platform chooses the optimal auction format.

With this perspective, we ask what is the optimal information structure that the bidders should

have to maximize the equilibrium surplus of the bidders anticipating that the supply side platform

will choose the optimal auction format to extract as much surplus as possible.

Our analysis is most immediately concerned with the information design in auctions. But the

method allows us to consider related problems in nonlinear pricing. Suppose we have a given sup-

ply of quantities as in Loertscher and Muir (2022) then this imposes restrictions on the allocation

function similar to the ones imposed by competition in an auction. We can then ask what is the

bidder or in this instance representative consumer optimal value representation. We address this

with current results by allowing for a general allocation probability or allocation quality distribu-

tion. This would correspond to a recommender or search algorithm on a digital marketplace that

makes recommendations while independent sellers choose prices optimally given the nature of the

recommendation.
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1.2 Results

The first central result that we obtain is that the optimal information structure will always generate

a regular distribution (Theorem 1). Moreover, the regular distribution will have the feature that

if it suggests exclusion and a reserve price above the lowest value in the support, then the bidders

will receive complete information about their values below the reserve price. An implication of the

regularity is that the optimal auction can always be implemented by a second price auction with a

reserve price (Proposition 4).

With this restriction on the set of candidate solutions, we then proceed to the determination of

the optimal solution. The second central result offers a complete characterization of the optimal

information structure (Theorem 2). The information structure generates a distribution of posterior

expectations of the bidders. This distribution will have at most three segments: (i) a lower segment

may be excluded and the bidders receive complete information in this segment that agrees with their

prior distribution, (ii) the intermediate segment has a shifted Pareto distribution with constant

profit elasticity, and (iii) an upper segment where each bidder has again complete information.

Thus, compared to the single buyer version of third-degree price discrimination as in Bergemann,

Brooks, and Morris (2015) or Roesler and Szentes (2017), the constant profit elasticity is only

maintained in the intermediate segment. Moreover, the profit elasticity can be below one rather

than exactly one as in Roesler and Szentes (2017). The competition generated by the auction is

suffi ciently strong that the bidders cannot secure sales with probability one as in the single bidder

version of the problem. On the other hand, the competition is suffi ciently strong that the bidders

will receive complete information in the upper tail of the distribution. Here, the auctioneer will not

want to distort the auction for profit considerations and will be guided by social effi ciency alone.

The appearance of the Pareto distribution together with a smaller support below the Pareto

distribution increases the bidders’surplus while avoiding ineffi cient exclusion as much as possible.

In any case, in the lower and upper segments of the demand distribution there is no distortion of

information and all the bidders learn their value completely.

Theorem 1 and 2 are the main results of the paper. In the remainder, we use the sharp charac-

terization of Theorem 2 to show how the nature of the allocation problem influences the information

design. We first consider two special allocation problems that relate to earlier works, namely the

single bidder environment (Proposition 6 and 7) of Roesler and Szentes (2017) and the many bidder

case when the seller has to sell, thus an absolute auction (Proposition 8). These special cases lead us

to Theorem 3 which provides a characterization of when the seller excludes bidders in the optimal
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auction.

Finally, we discuss how our analysis extends to other allocation problems. First, we discuss

settings where the objective function gives some weight to the profit of the seller. This may range

from the welfare maximization solution where profit receives equal weight as the bidders’surplus

does to any, possibly negative profit weight below 1 (Proposition 15). Then we extend the analysis

to a model with many goods of different qualities and many bidders. This model encompasses the

model of nonlinear pricing with exogenous supply as in Loertscher and Muir (2022) or the multi-unit

auction in Kleiner, Moldovanu, and Strack (2021). What is the relation to the nonlinear pricing

problem? Suppose we have a given supply of quantities or qualities, then this imposes restrictions

on the allocation function very similar to those in the symmetric auction setting, and we have

corresponding characterization of the optimal information structure (Proposition 14 and 15).

In our analysis, we restrict attention to symmetric and independent information structures across

bidders. This seems appropriate in many applications and guarantees a uniform and fair solution

across all participating bidders who are ex-ante symmetric. This is with some loss of generality. For

example, we will find that with many bidders, competition will eventually depress the bidder surplus

to near zero. If we were to choose asymmetric information structures, then a solution that would

increase the profit is an asymmetric information structure that leaves all but one bidder with their

prior information and chooses the remaining information structure in such a way as to maximize

the surplus of this singular bidder. With a large number of bidders, this asymmetric solution would

improve the aggregate surplus of the bidders relative to the symmetric solution (Proposition 12).

We could offer a symmetric version of this information structure in which we randomize across the

identity of the informed bidder. The resulting information structure would be symmetric, but would

by necessity display correlation across the bidders. Here we focus on independent and symmetric

information structures.

1.3 Related Literature

The single bidder version of the unit demand problem was analyzed in Roesler and Szentes (2017).

They showed that if there is common knowledge of the gains of trade then one optimal solution

of the information design is a Pareto distribution with shape parameter 1 that always guarantees

effi cient trade. When we consider many bidders we find that: (a) it is optimal to ineffi ciently

exclude values, (b) it is optimal to conflate values and generate inelastic demands (the distribution

stays within the class of generalized Pareto distributions), and (c) it is always optimal to perfectly
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inform high values (which in Roesler and Szentes (2017) was undetermined). Condorelli and Szentes

(2020) consider the consumer maximizing demand in the same single-unit demand problem in the

presence of lower and upper bounds on values only, but absent any majorization constraints. We

offer a similar generalization here to nonlinear allocation problems.

In a recent paper, Bergemann, Heumann, Morris, Sorokin, and Winter (2022) we considered

the information design problem in a fixed auction format, namely the second price auction without

reserve prices. We separately analyzed the seller profit maximizing information structure as well

as the bidder surplus maximizing structure. These two posterior demand distributions were mirror

images of each other. Either the upper or the lower part of the distribution is compressed in a single

mass point, and the remaining part of the value distribution leads to complete revelation of the

values. By allowing the seller to adapt to the choice of the posterior distribution with an optimal

mechanism, we find it beneficial to: (a) limit the amount of conflating to prevent the seller from

conflating allocation, (b) give additional information to lower reservation price, and (c) provide

complete information to the excluded values.

The nature of our problem is related to but different from zero-sum games that have been

used to formulate robust auction problems. Bergemann, Brooks, and Morris (2017), Brooks and

Du (2021), and Brooks and Du (2023) consider robust auction design problems where the seller is

choosing a mechanism to maximize the profit whereas nature is choosing an information structure

(and equilibrium) to minimize the profit. The problem that we are analyzing is not a zero-sum

game as the objective functions of profit maximization and bidders’surplus maximization are not

merely the negative of each other. We consider a sequential version of the game where the bidders

choose the information structure (first) in anticipation of an optimal auction being adopted by the

seller. It is an open question whether our problem allows for a saddle point and how it would differ

from the zero-sum game formulation of the above cited papers.

Bergemann and Pesendorfer (2007) offered a solution when the seller can both choose the profit

maximizing auction and information structure. The analysis there maintained the independence

assumption across bidders but allowed for asymmetric information structures across bidders. Simi-

larly, in Bergemann, Heumann, and Morris (2023c), we considered the canonical nonlinear pricing

problem where the seller could jointly optimize the information structure and the menu pricing.
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2 Model

2.1 Payoffs

There is a seller of a single indivisible good to N bidders. Each bidder i = 1, 2, ..., N has a net

utility given by:

u(vi, qi, pi) , viqi − pi,

where vi ∈ R+ is the value, qi ∈ [0, 1] is the probability and pi ∈ R+ is the payment of bidder

i . Bidders i’s value vi is distributed according to an absolutely continuous distribution F on a

compact support [v, v̄] ⊂ R+, identically and independently distributed across bidders.

Bidders do not observe their own value, rather they observe a signal s(v) about their own value.

The bidders’information structure is symmetric and is summarized by the distribution of expected

values of an individual bidder, which we denote by G. By Blackwell (1951), Theorem 5, there

exists an information signal that induces a distribution G of expected values if and only if G is a

mean-preserving contraction of F , i.e.,∫ v

v

F (x)dx ≤
∫ v

v

G(x)dx, ∀v ∈ [v, v̄],

with equality for v = v. If G is a mean-preserving contraction of F (or G majorizes F ), we write

G � F . It follows from Shaked and Shanthikumar (2007), Theorem 3.A.1 that the majorization

relationship is equivalent to the convex stochastic order, thus G � F ⇔ F �cx G.
We present much of the analysis in the quantile space t ∈ [0, 1] rather than the value space

v ∈ R+, with v = F−1 (t). We denote the respective inverses as follows:

V (t) , F−1(t) and W (t) , G−1(t). (1)

Following Shaked and Shanthikumar (2007), Theorem 3.A.5, we have that:

G � F ⇔ F−1 � G−1 ⇔ V � W.

2.2 Mechanism

The seller chooses a symmetric mechanismM = (Q,P ) to maximize profit. A direct and symmetric

(interim) mechanism is denoted by:

Q,P : [v, v̄]→ [0, 1]× R+,
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where Q(v) denotes the probability of winning and P (v) denotes the payment. It is convenient to

write the allocation rule in terms of quantiles:

r(t) , Q(W (t)). (2)

Of course, not every function Q(v) is feasible in a symmetric environment (for example, Q(v) = 1

cannot be implemented if there is more than one bidder). To write the feasibility condition, we

define the effi cient allocation rule q (t) that assigns the object with probability one to the bidder in

the highest quantile (or value):

q(t) , tN−1. (3)

A quantile allocation rule r(t) is feasible if and only if:∫ 1

t

r(s)ds ≤
∫ 1

t

q(s)ds, for all t ∈ [0, 1], (4)

in which case we write r ≺w q. We add a subscript “w”which stands for “weak”since the precedence
in (4) does not need to be satisfied with equality at t = 0.

As it is standard in the literature, the allocation rule pins down the payments via the Envelope

condition. For any information structure and allocation rule the seller’s profit is given by:

Π , N

(∫ 1

0

(1− t)W (t)dr(t) + r(0)W (0)

)
.

Thus, the surplus of an individual bidder is:

U ,
∫ 1

0

r(t)W (t)dt− Π

N
.

We wish to find the information structure that maximizes the bidders’surplus:

U∗ , max
{W :W≺V }
{r:r≺wq}

∫ 1

0

r(t)W (t)dt−
(∫ 1

0

W (t)(1− t)dr(t) + r(0)W (0)

)
(5)

subject to: r ∈ arg max
{r̂:r̂≺wq}

∫ 1

0

(1− t)W (t)dr̂(t) + r̂(0)W (0). (6)

The maximization problem is decomposed into an inner problem (6) and an outer problem (5).

The inner problem is an optimal auction design problem with one majorization constraint, namely

{r̂ : r̂ ≺w q} , which requires that allocation is feasible. The outer problem maximizes the difference
between the social surplus and the profit of the seller. It is subject to two majorization constraints,
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the feasibility constraints {r : r ≺w q} and the mean-preserving contraction constraint, {W : W ≺
V }.
Note that we have introduced the model as if the seller is restricted to a symmetric mechanism.

This is inconsequential as the optimal mechanism is symmetric when the distribution of expected

values is symmetric (see Myerson (1981)). Hence, the non-trivial assumption is that the information

structure is symmetric.

3 Optimality Without Majorization Constraint

We begin the analysis with a relaxed version of bidders’surplus problem ( 5). In this section, we

omit the majorization constraint on the distribution of values1:

{W : W ≺ V },

and replace with the weaker constraint that the distribution W of values has compact support:

w ∈ [m, 1] ,

for some m ∈ [0, 1). We refer to this as a majorization-free problem or a problem without majoriza-

tion. Thus we fix any m from now on and consider the following problem:

U∗ , max
{W∈∆[m,1]}
{r:r≺wq}

∫ 1

0

r(t)W (t)dt−
(∫ 1

0

W (t)(1− t)dr(t) + r(0)W (0)

)
(7)

subject to: r ∈ arg max
{r̂:r̂≺wq}

∫ 1

0

(1− t)W (t)dr̂(t) + r̂(0)W (0).

If the lower bound m is close to 1, then each bidder has only very limited private information.

After all, the seller already knows that the value is between m and 1. If one were to consider more

general support restrictions of the form [m,M ] the analysis would go through unchanged by simply

rescaling.

3.1 Profit-Optimal Mechanism in Quantile Space

It is useful to characterize the profit that the seller can obtain for any fixed information structure.

We do this directly in the quantile rather than the value space. Towards this end, we define a profit
1Notice that here the distribution of values essentially refers to the distribution of expected values and if without

confusion, we henceforth use these two terms interchangeably.
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function from an individual bidder as follows:

π(t) , F−1(t)(1− t). (8)

Thus π (t) is the (expected) profit that the seller would obtain if she was selling to a single bidder

and the price F−1(t) excluded the lowest fraction t of values. Bulow and Roberts (1989) used the

quantile space, or in their word, the quantity space (as the sales quantity is q = 1 − t) to state

the "simple economics of auctions", see also Dhangwatnotai, Roughgarden, and Yan (2015) and

Hartline (2017). To make the notation more compact we define the profit function under W by:

πw(t) , W (t)(1− t). (9)

Hence, πw is the counterpart of π when evaluated at information structureW . The marginal revenue

in the quantile space identifies the virtual utility:

πw(t)

dt
= (1− t)W ′(t)−W (t) .

Since the quantile

t = 1−G (W (t))⇔ W ′ (t) =
1

g (W (t))
,

we have that

(1− t)W ′(t)−W (t) = −
(
W (t)− 1−G (W (t))

g (W (t))

)
.

To describe the seller’s profit maximization problem, we denote by cav[πw] the concavification

of πw. We denote by tx a critical quantile below which the seller excludes bidders, and thus assigns

zero probability to the bidder t receiving the object:

tx , max {t |r (t) = 0} . (10)

Proposition 1 (Seller’s Profit)

For any given information structure W , the seller’s profit is given by:

max
{r:r≺wq}

∫ 1

0

πw(t)dr(t) = q(tx)πw(tx) +

∫ 1

tx

cav[πw](t)dq(t), (11)

where cav[·] is the concavification and:

tx ∈ arg max
t
πw(t). (12)
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Proof of Proposition 1. The proof corresponds to concavifying the profit function (as

originally analyzed byMyerson (1981) and more recently by Kleiner, Moldovanu, and Strack (2021)).

We give a short outline of the proof for completeness and to provide the main elements of the analysis

that we will use later.

We denote by φ(t) the derivative of −cav[πw](t):

φ(t) , −d cav[πw](t)

dt
, (13)

which is the virtual value of quantile t. By construction cav[πw](t) is concave and so φ(t) is non-

decreasing. We denote by {[ti, t̄i]}Ii=1 a collection of intervals such that:

cav[πw](t) = πw(t) ⇐⇒ t ∈ [ti, t̄i].

We then have that an optimal allocation rule r (t) given by:

r(t) =


0, if φ(t) < 0;∫ ti+1
t̄i

q(x)dx

ti+1−t̄i
, if φ(t) ≥ 0 and t 6∈ [t̄i, ti+1];

q(t), if φ(t) ≥ 0 and t ∈ [ti, t̄i].

That is, the optimal allocation rule consists of excluding types with negative virtual values, and

then conflating types whenever the profit function is smaller than its concavification. This allocation

rule generates profit (11).

The optimal mechanism is such that the seller sets a reserve price that excludes bidders whose

expected value corresponds to a quantile below tx . Furthermore, the good is not necessarily

allocated to the bidder with the highest expected value above the reserve price. Whenever πw(t) <

cav[πw](t), the seller can increase its profit by conflating the allocations of different values. This

conflating increases profit but also generates ineffi ciencies, and so it decreases total surplus. This

way, for any given distribution of values that generates profit function πw , the seller can obtain a

profit corresponding to the concavification of πw.

3.2 Positive Regular Information Structures

We now consider the following set of regular distributions (in the terminology of Myerson (1981)):

W+ , {W ∈ ∆[m, 1] : W (t)(1− t) is decreasing and concave}.
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Note that the set of distributions in W+ does not need to be majorized by V . The distributions

in W+ are those that generate positive and increasing virtual values. Hence, for any distribution

W ∈ W+, the profit-maximizing mechanism is a second-price auction without a reserve price.

Proposition 2 (Regular Information Structures are Optimal)

An information structure W ∗ solves (7) only if W ∗ ∈ W+.

Proof. We prove this by contradiction. Suppose it is not regular so there is some t such that

π∗w(t) < cav[π∗w](t) or tx > 0 (with tx as defined in Proposition 1), namely there is some t such that

π∗w(0) < cav[π∗w](t). We would then be able to generate more bidder surplus by considering the

distribution of values:

Ŵ (t) =


cav[π∗w](t)

1−t , if t ≥ tx;

cav[π∗w](tx)
1−t , if t < tx.

We now verify that Ŵ generates higher bidder surplus than W .

By construction, the seller’s profit is the same when the distribution of values is W ∗ or Ŵ .

To check this, let the profit function associated with Ŵ be π̂w, and note that for all t ≥ tx,

π̂w(t) = cav[π∗w](t); and for all t < tx, π̂w(t) = cav[π∗w](tx). We also have that Ŵ first-order

stochastically dominatesW . Furthermore, an effi cient mechanism is a profit-maximizing mechanism

when the distribution of values is Ŵ (since Ŵ generates monotone virtual values at non-excluded

quantiles). Hence, the total surplus generated when the distribution of values is Ŵ is larger than

when the distribution of values is W ∗. Hence, we find that Ŵ generates higher bidder surplus than

W ∗, thus reaching a contradiction. This proves that π∗w must be (weakly) concave and (weakly)

decreasing.

We can now characterize the optimal distribution of values by simply maximizing over W+. As

the seller employs an effi cient mechanism q (t) and collecting terms from (7) we obtain the following

problem:

Ŵ ∈ arg max
W∈W+

{ (∫ 1

0

W (t)
ds(t)

dt
dt

)}
, (14)

where

s(t) , −q(t)(1− t). (15)

Expression (14) corresponds to (7) but replacing the allocation r(t) in the objective function with

the effi cient allocation q(t). The new term s (t) represents the difference between the first and

second order statistics of the type draws (that is, the highest and the second highest realizations of
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the N independent type draws). The integral (14) tells us that the bidders’surplus is the integral

of the change in the probability differential between the first and second order statistics at quantile

t weighted by the value W (t) at quantile t.

In an absolute second-price auction, the social surplus is determined by the first-order statistic

of the values of the N bidders and the seller’s profit by the corresponding second-order statistic.

Therefore, the bidders’surplus is determined by the difference in the distribution of the first-order

and second-order statistics. For any information structure W we denote by w(1) and w(2) the first

and second-order statistics. For any t ∈ [0, 1]:

P{w(1) ≤ W (t)} = tN and P{w(2) ≤ W (t)} = NtN−1 − (N − 1)tN . (16)

The difference between these order statistics at quantile t is s(t):

s(t) =
(
P{w(1) ≤ W (t)} − P{w(2) ≤ W (t)}

)
/N = −q(t)(1− t). (17)

Hence s(t) is the probability that the highest bidder is below W (t) minus the probability that the

second-highest bidder is below W (t).

We can gain intuition for the bidder-optimal information structure by analyzing the probability

difference s (t). This function describes how the competition between bidders affects bidder surplus

(abstracting away from the effects that the information structure has on the seller-optimal reserve

price). It is easy to verify that s is quasiconvex with a unique minimum and a unique inflection

point denoted as follows:

ts , arg min
t∈[0,1]

s(t); tI , arg min
t∈[0,1]

ds(t)

dt
. (18)

The minimum and the inflection point only relate to the number of bidders:

tI =
N − 2

N
<
N − 1

N
= ts. (19)

The probability difference is therefore concave at low quantiles and convex at high quantiles. (If

N = 2 it is completely convex). The shape of the function s (t) is displayed in Figure 1 below. We

can now explain how the slope and curvature of the probability differential affect the incentives to

conflate values.

The slope of s(t) gives the incentives to reduce or increase the values of bidders. The bidders

benefit from decreasing the values of quantiles where the slope of s(t) is negative (low quantiles);

the bidders benefit from increasing the values of quantiles where the slope of s(t) is positive (high

quantiles). Typically, the slope of s would not play a relevant role in an information-design problem,
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Figure 1: Probability Differential of First and Second Order Statistics

as bidders cannot change the ex-ante distribution of values: as governed by the Bayes plausibility

condition, it is possible to conflate or separate values but not increase or decrease them. However,

when the optimal information structure induces the seller to exclude some quantiles t ∈ [0, tx], the

value of these quantiles is smaller than the value of the quantiles that are not excluded. Hence, the

information structure can conflate excluded values with non-excluded values to effectively reduce

the values of the bidders that are not excluded.

We state this formally.

Corollary 1 (Regular Information Structures are Optimal)

An information structure W ∗ solves (7) only if it solves (14).

Proof. Following Proposition 2, we have thatW ∗ ∈ W+. Thus, the profit-maximizing allocation

is r(t) = q(t). Replacing into the objective function of (7) we obtain the result.

3.3 Generalized Pareto Distribution

We can now find the solution to (14). For this we define a class of truncated generalized Pareto

distributions on the interval [m, 1] which are defined by a threshold quantile tz:

G(w |tz ) =

1− (1−tz)(1−α)
w−α , if m ≤ w < 1;

1, if w = 1.
(20)
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The parameter α is determined as a function of the quantile tz and the given support restriction m

as follows:

α =

0, if 1− tz ≥ m;

m−(1−tz)
tz

, if 1− tz < m.
(21)

The quantile tz represents the probability that the distributionG(w |tz ) attains before the truncation

at 1, thus

lim
w↑1

G(w |tz ) = tz.

With the generalized Pareto function G(w |tz ) being the value distribution, we can write the

value W (·) as a function of the quantile as follows:

W (t |tz ) = α + (1− α)
1− tz
1− t , (22)

and the associated profit function is

π (t |tz ) =

(1− tz) + α(tz − t), if t ≤ tz;

(1− t), if t ≥ tz.
(23)

Thus we find that under the generalized Pareto function the profit function is piecewise linear in

the quantile t, and the slope of the linear function depends on tz, in other words the size of the

mass point 1− tz.
We thus have that π (t |tz ) is continuous at tz, it is equal to (1 − t) at quantiles larger than

tz and it generates a linear profit function at quantiles t ≤ tz. To understand how the parameter

α is determined recall that the optimal profit function is non-increasing, so α ≥ 0 is a necessary

constraint for optimality. If the lower bound m does not bind (when (1− tz) > m), then the non-

negativity constraint on α binds and so α = 0. If (1− tz) < m, then the lower bound m binds, and

so α is the slope of the linear segment that connects the profit π (0 |tz ) = m and π (tz |tz ) = (1− tz).
The generalized Pareto distribution (see Johnson, Kotz, and Balakrishnan (1994)) is defined by

three parameters: location µ, scale σ and shape ξ:

Fξ (z) =

{
1− (1 + ξz)−

1
ξ if ξ 6= 0;

1− e−z if ξ = 0.
(24)

The related location-scale family is obtained by replacing z with

z =
w − µ
σ

. (25)
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In our analysis, the shape parameter will always satisfy ξ = 1 and the solution will determine the

location parameter µ and the scale parameter σ. The location parameter µ shifts the distribution

on x−axis as the value w has to satisfy w ≥ µ. The scale parameter σ then controls the scale

(or compression) of the distribution. A feature of the generalized Pareto distribution with shape

parameter ξ = 1 is that the value w as a function of the quantile t is a reciprocal function:

t = 1− 1

1 + w−µ
σ

⇔ w = µ− σ
(

1

t− 1
+ 1

)
.

Moreover, the profit function is expressed in the quantile space:

πw (t) = (1− t)w = (1− t)
(
µ− σ

(
1

t− 1
+ 1

))
= µ− t (µ− σ) ,

is linear in t and constant if location and scale agree, or µ = σ . Moreover, if location is larger than

scale, or µ− σ > 0, then the profit function is decreasing in the quantile t.

The class of generalized Pareto function expressed in (20) have location µ and scale σ, respec-

tively:

µ = 1− tz (1− α) , σ = (1− tz) (1− α) . (26)

3.4 Bidder Surplus Maximizing Distribution

We can now give a complete description of the bidder surplus maximizing information structure.

Proposition 3 (Optimal Information Structure)

An information structure W ∗ solves the bidders’surplus maximizing problem (7) only if W ∗(t) =

W (t |tz ) for some tz ∈ [0, 1].

Proof. We recall that ds(t)/dt < 0 for all t < ts and ds(t)/dt > 0 for all t > ts. We fix some

W ∈ W+, and consider two cases.

(Case 1) We first analyze the case W (ts)(1 − ts) ≥ m. Since πw(t) is non-increasing, we have

that for all t ≤ ts :

W (t)(1− t) ≥ W (ts)(1− ts). (27)

Since we are considering the case W (ts)(1− ts) ≥ m, we have that this condition also implies that

W (0) ≥ m. The fact that πw(t) is non-increasing also implies that for all t ≥ ts :

W (t)(1− t) ≤ W (ts)(1− ts). (28)
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Using the definition of ts (see (18)) and the fact that s(t) is quasi-convex we have that, for all

W ∈ W+:∫ 1

0

W (t)
ds(t)

dt
dt ≤

∫ ts

0

(
W (ts)(1− ts)

1− t

)
ds(t)

dt
dt+

∫ 1

ts

min{W (ts)(1− ts)
1− t , 1}ds(t)

dt
dt.

The bound is obtained because ds(t)/dt < 0 for all t < ts, so we get an upper bound by replacing

W (t) with the bound in (27) and ds(t)/dt > 0 for all t > ts, so we get an upper bound by replacing

W (t) with the bound in (28). The minimum in the second integral appears because (28) provides

one upper bound onW (t) but the support of values is bounded by 1. We can see that the inequality

is tight if and only if W (t) = W (t |tz ) for some parameter tz with α = 0 since

W (t)(1− t) = W (ts)(1− ts),

using (22).

(Case 2) We now analyze the case W (ts)(1 − ts) < m. Since πw(t) is weakly concave and it

must satisfy that the support of values is bounded by m (that is, W (0) ≥ m), we have that for all

t ≤ ts:

W (t)(1− t) ≥ W (ts)(1− ts) + α(ts − t),

where

α = −W (ts)(1− ts)−m
ts

.

By construction, we have that the right-hand-side of the inequality is equal to m when evaluated

at t = m. The fact that πw(t) is weakly concave, also implies that for all t ≥ tz

W (t)(1− t) ≤ W (ts)(1− ts) + α(ts − t).}.

As in the previous case, using the definition of ts and the fact that s is quasi-concave we have that,

for all W ∈ W+.∫ 1

0

W (t)
ds(t)

dt
dt ≤

∫ ts

0

W (ts)(1− ts) + α(ts − t)
1− t

ds(t)

dt
dt+

∫ 1

ts

min{W (ts)(1− ts) + α(ts − t)
1− t , 1}ds(t)

dt
dt.

We can see that the inequality is tight if and only if W (t) = W (t |tz ) (for some parameter tz with

α > 0).

We have shown that the optimal information structure is one where all values have a positive

probability of winning, and thus there is no exclusion. As the number of bidders increases, the

bidders can secure themselves information rents only by spreading the support of the distribution

downwards to create more dispersion in the values.
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Figure 2: Optimal Distribution Function G (t |tz ) with m = 0.

3.5 Impact of Support Restriction on Optimal Solution

We illustrate the above result by displaying the optimal distribution and associated profit function.

We start with the case when the support restriction is given by the unit interval [0, 1], thus m = 0.

In Figure 2 we display how the optimal solution changes as we increase the number of bidders N .We

observe that as the number N of bidders grows, the support of the optimal distribution G (t |tz )

expands downwards, and the size 1− tz of the atom at 1 shrinks, and conversely the probability tz
of a value below 1 increases.

Associated with the distribution G (t |tz ) is the profit function π (t |tz ) with N = 2, 4, 6 which

we display in Figure 3.

In consequence, the profit function from a single bidder falls as the number of bidders increases

but the aggregate revenue increases. Now as we increase the lower bound m of the support re-

striction, the ability of the bidders to retain information rent decreases as the scope for private

information decreases. Below we plot the resulting optimal distribution and profit function for

m = 0.15 and m = 0.4.

With a lower bound of m = 0.15, the optimal distribution G (t |tz ) remains unconstrained for a

small number of bidders, or N = 2. But as the number of bidders increases, the optimal solution

would like to create a larger support of the values to create more dispersions but are constrained

by the lower bound m (as displayed in Figure 4). In consequence the associated profit function

π (t |tz ) changes its shape as the lower bound becomes a constraint. As displayed in Figure 5, the
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Figure 3: Profit Function π (t |tz ) with m = 0.

Figure 4: Distribution Function G (t |tz ) with m = 0.15.
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Figure 5: Profit Function π (t |tz ) with m = 0.15.

profit function remains flat for N = 2, but then displays a decline even at the very beginning for

N = 4 and N = 6.

As the lower bound increases tom = 0.4, it becomes a constraint for the bidders in their attempt

to generate information rents. Now, the optimal distribution always begins at the lower bound (see

Figure 6).

The impact of the constraint then appears in the profit function which is not flat anymore, that

is it does not display the profit indifference anymore, but rather it leads to linearly decreasing profit

functions (see ?? ). Moreover, the slope of the profit function is decreasing in the number of bidders

N . We assumed the support of the values to be [m, 1] for some m ≥ 0. For m = 0, the optimal

solution is always a Pareto distribution whose scale and location agree and there is a constant

revenue. As m (and N) increases the optimal information structure cannot maintain a constant

profit anymore. The optimal solution is now a linearly decreasing profit function rather than a

constant profit function in the quantile t. This description of the optimal information structure

and associated linear profit function will also be the key in the environment with the majorization

constraint as we see next.

The additional complexity brought about by the majorization constraint will arise from low and

high values in the distribution F . For low values, the bidders will have to concede the possibility

of exclusion, and for high values, effi ciency considerations will outweigh revenue considerations.

Thus, we will have complete disclosure for low and high values, and in between there will be the

generalized Pareto distribution that emerges as the solution to the majorization-free problem in

Proposition 3.
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Figure 6: Distribution Function G (t |tz ) with m = 0.4.

Figure 7: Profit Function π (t |tz ) with m = 0.4.
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4 Optimality With Majorization Constraint

We now return to the original problem of maximizing the bidders’surplus in the presence of the

majorization constraint given by W ≺ V . In the absence of any constraint V , we showed in

Proposition 3 that the optimal information structure W is a positive regular distribution. For the

remainder of the analysis, we assume that the profit function π (t) is quasi-concave and concave

wherever it is decreasing. This assumption is a minor generalization of the classic assumption that

the virtual values are non-decreasing (that is, requiring that π(t) is concave), that is V is regular. As

we eventually transform the given distribution F of values and hence the profit function π through

the choice of mean-preserving contraction G, we may ask why we assume the quasiconcavity of the

original problem. In short, this guarantees that any conflating that arises in the information design

can be attributed to a positive impact on the bidders’surplus rather than an attempt by the seller

to conflate due to the need of ironing. In the presence of an irregular distribution F , we expect

that a more complicated characterization of the optimal information structure would prevail, but

then the need for conflating intervals would arise from two very different and conflicting sources.

The construction that guides us to the bidders’optimal bidding structure in the presence of the

majorization constraint is now similar to the one without the constraint, but some additional steps

are needed to account for the possibility of exclusion and the prevalence of effi ciency consideration

for high values.

4.1 Regular Information Structure

We now show that the bidder-optimal information structure dissuades the seller from introducing

ineffi ciencies to the mechanism that arise from conflating allocation. For this, we introduce a class

of information structures that are parametrized by a critical quantile tx ∈ [0, 1]. The threshold tx
will be the critical quantile that determines the exclusion level of the profit-maximizing mechanism

(consistent with the notation used in Proposition 1). We formally define:

W(tx) ,
{
W ≺ V :

∀t ≤ tx : W (t) = V (t) and V (t) (1− t) ≤ W (tx) (1− tx) ;

∀t > tx : W (t) (1− t) is non-increasing and weakly concave.

}
. (29)

In other words, any distribution in W(tx) has the following properties: (i) the profit-maximizing

quantile is tx; as we vary tx we can span all possible maximizing quantiles; (ii) any information

structure in this set is decreasing and concave for quantiles larger than the profit-maximizing quan-

tile tx and (iii) the information structure is complete information for quantiles below tx. The
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relevance of this set is immediate from the following proposition.

Any elementW ∈ W(tx) thus generates a regular problem or regular distribution in the sense of

Section 5 of Myerson (1981). The additional property is that the quantile valuesW (t) coincide with

the value V (t) at the lower end of the quantiles, that is for t ∈ [0, tx]. We could therefore refer to

the information structure as composite regular, but for simplicity refer to it as regular information

structure.

Proposition 4 (Implication of Regular Information Structures)

If W ∈ W(tx) then, (i) a second-price auction with reserve price W (tx) maximizes profit and (ii)

bidders whose expected values are below the reserve price know their ex post values. Furthermore,

any W satisfying these two properties also satisfies W ∈ W(tx), for some tx ∈ [0, 1].

Proof. Following the proof of Proposition 1, whenW (t)(1− t) is locally concave, it corresponds
to the case when virtual values are locally increasing. Hence, if W ∗ ∈ W(tx) whenever the virtual

value is positive it is increasing. Hence, the optimal mechanism is a second-price auction with a

reserve price (see Myerson (1981)). The converse follows in an analogous way.

Hence, when the information structure is inW(tx) the seller can use a mechanism that allocates

the good interim effi ciently to bidders that have expected values above the reserve price. It is

interim effi cient because the bidder with the highest interim value wins the object (conditional on

being above the reserve price), but the winner might differ from the bidder with the highest ex post

value.

We can then rewrite the problem of maximizing the bidders’surplus as stated earlier in (5) for

regular information structures as follows:

Corollary 2 (Computing the Bidder-Optimal Regular Information Structure)

A regular information structure W solves (5) if and only if it solves:

W ∗ ∈ arg max
tx∈[0,1],W∈W(tx)

(∫ 1

tx

W (t)
ds(t)

dt
dt− (1− tx)q(tx)W (tx)

)
. (30)

Expression (30) corresponds to (5) but replacing the allocation r(t) in the objective function

with the following allocation:

r(t) =

0 if t < tx;

q(t) if t ≥ tx.
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The integral (30) tells us that the bidders’surplus is the integral of the change in the probability

differential between the first and second order statistics at quantile t weighted by the value W (t)

at quantile t.

While conflating is never optimal in the optimum, this type of variation is useful to show that,

when there is exclusion tx > 0, then the seller must be indifferent between multiple reserve prices.

It is this indifference that precludes the possibility of further conflating that reduces the expected

value of bidders that are not excluded. This is the seller’s optimal allocation because, following

Theorem 1, the optimal information structure satisfies W ∗ ∈ W(tx). Hence, we are left with an

optimization over a single distribution W ∈ W(tx) and the cutoff tx.

4.2 Optimality of Regular Information Structures

We can now formally state that a bidder-optimal information structure is indeed a regular distrib-

ution.

Theorem 1 (Regular Information Structures are Optimal)

An information structure W ∗ solves (5) only if W ∗ ∈ W(tx) for some tx ∈ [0, 1].

The theorem shows that in any bidder-optimal information structure, the distribution of values

will be regular. The intuition is that whenever the seller conflates the allocation this decreases the

total surplus and increases profit. Hence, it is detrimental to bidder surplus. Hence, the bidder-

optimal information structure induces the seller to allocate the good interim effi ciently among those

bidders that have expected values above the reserve price.

The proof of Theorem 1 proceeds in several steps which are laid out in detail in the Appendix.

First, we characterize the most-effi cient profit-maximizing mechanism. This will be the mechanism

used by the seller (which obviously depends on the information structure). We then characterize

the distribution of expected values of bidders who do not buy the good. We then characterize the

distribution of values in any non-regular interval. Finally, we show that bidder surplus is maximized

by a regular distribution.

4.3 Characterization of Optimal Information Structure

We now provide the bidder-optimal information structure. For this, we first introduce the family of

distributions of expected values that will turn out to be optimal. The family of distributions will
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be parametrized by three parameters (tx, tz, α). The first parameter is the exclusion level tx. The

second parameter is a threshold tz and an associated value vz:

vz , V (tz) . (31)

If a bidder’s value is below V (tx) or above V (tz), then the bidder learns his value; bidders whose

values are in between have expected values that are drawn according to a different distribution

that is determined by α. When α = 0, then this distribution is a Pareto distribution (with shape

parameter 1); when α > 0, then the distribution of expected values below the cutoff follows a

generalized Pareto distribution as defined earlier in (20). We define:

G(w |tx, tz ) ,

1− (1− F (vz))
vz−α
w−α , if w ∈ [F−1(tx), F

−1(tz)];

F (w), if w 6∈ [F−1(tx), F
−1(tz)].

(32)

We observe that the above distribution G(w |tx, tz ) is closely related to the distribution G(w |tz )

that we introduced in the analysis of the majorization-free environment, see (20). The additional

elements in the definition of G(w |tx, tz ) relative to the distribution G(w |tz ) reflect the presence of

the majorization constraints: (i) without the majorization constraint, the solution did not display

any exclusion and thus resulted in tx = 0; (ii) with majorization constraint, there is complete

disclosure above the quantile threshold tz. Thus the distribution G(w |tx, tz ) has to match the

distribution F (v) at the critical quantile tz = F (vz) and the threshold tz is attained at vz rather

than at v = 1 as in the majorization-free problem.

We illustrate some examples of distributions in Figure 8 and their respective densities in Figure 9,

which are optimal for a given N (as stated in the respective figures). The distribution is determined

by three parameters (tx, tz, α). However, it must also satisfy F (·) ≺ G(· |tx, tz ), so there are only two

“free parameters”, namely (tx, tz), while α is endogenously determined to satisfy the majorization

constraint. This is the reason we do not add α as an argument of G(w |tx, tz ). We shall later see

that α can be interpreted as the shadow cost of allocating the good in the optimal information

structure. Note also that not all pairs (tx, tz) ∈ [0, 1]× [0, 1] are feasible.

Lemma 1 (Free Parameters)

For every (tx, tz), there exists at most one α such that F (·) ≺ G(· |tx, tz ).

Proof. We define:

H(v |tx, tz, α) ,

1− (1− F (vz))
vz−α
v−α , if v ∈ [F t−1(tx), F

−1(tz)];

F (v), if v 6∈ [F−1(tx), F
−1(tz)].
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This is the same as the definition of G(v |tx, tz ) but we allow α to vary independently of (tx, tz).

The distribution H(v |tx, tz, α) is well defined only if α < F−1(tx). We can then see that for any

α′ < α:

H(v |tx, tz, α) < H(v |tx, tz, α′ ).

Hence, H(v |tx, tz, α) first-order stochastically dominates H(v |tx, tz, α′ ). Hence, there can be only
one α that satisfies: ∫ 1

0

H−1(t |tx, tz, α)dt =

∫ 1

0

F−1(t)dt.

Thus, for any given (tx, tz), there exists at most one α such that the majorization constraint is

satisfied.

We now characterize the bidder-optimal information structures.

Theorem 2 (Bidder Optimal Information Structure)

Every bidder-optimal information structure satisfies

G∗(w) = G(w |tx, tz ),

for some parameters (tx, tz). Furthermore, α ≥ 0 and, if tx > 0, then α = 0.

We can also present the optimal information structure in the quantile space and write it directly

in terms of the values W (t) or the profit function πw (t). The value W (t) in the quantile space is

given by

W (t |tx, tz ) , α + (vz − α)
1− tz
1− t , (33)

which generalizes the expression (22) to the majorization constraint problem.

Proposition 5 (Bidder Optimal Information Structure: Profit Function)

Any bidder-optimal profit function π∗w is given by:

π∗w(t) ,

π(tz) + α(tz − t), if t ∈ [tx, tz];

π(t), if t 6∈ [tx, tz];
(34)

for some parameters (tx, tz). Furthermore, α ≥ 0 and, if tx > 0, then α = 0.

We illustrate some examples of profit functions in Figure 10, which correspond to the profit

functions of the distributions in Figure 8. Hence, the distribution below the cutoff tz is designed
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Figure 8: Prior and Posterior Distributions in Value Space v, w

to generate a linear profit function with slope −α. When α = 0, the seller is indifferent between

allocating or discarding the good and is indifferent on how to allocate the good among bidders

whose expected values are below vz. When α > 0, the seller finds it strictly optimal to allocate the

good (so it is never discarded), but the seller is still indifferent on how to allocate the good among

bidders whose values are below vz.

When α > 0 the distribution of expected values below vz follows a generalized Pareto distribu-

tion. The generalized Pareto distribution is a Pareto distribution whose values are shifted upwards.

Hence, discarding the good introduces more ineffi ciencies than with the classic Pareto distribution,

so it is never optimal to discard the good. However, the cost-benefit analysis of any re-allocation

among bidders of different values remains the same as with the classic Pareto distribution, so the

seller is indifferent on how to allocate the good to bidders whose values are below vz.

We can interpret the distribution of expected values as a demand function, where the mass of

bidders willing to pay w per unit is:

D∗(w) , 1−G∗(w). (35)

The generalized Pareto distribution generates demand functions with elasticity:

w

D∗(W )

dD∗(W )

dw
= − w

w − α. (36)

Hence, when α = 0 we get the classic unit elasticity. In contrast, when α > 0, the demand is elastic

(less than -1) and it is increasing in w (the distribution will always satisfy w ≥ α).

If the prior distribution F (v) is the uniform distribution on the unit interval, critical values vz
and critical quantiles tz happen to coincide.
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Figure 9: Prior and Posterior Densities in Value Space v, w

Figure 10: Profit Functions in Quantile Space for Uniform Distribution F (v) = v.
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5 Two Reasons to Conflate Values

Theorem 2 characterizes the bidder-optimal information structure. The characterization is complete

up to two parameters (tx, tz) that are endogenously determined by the distribution of values F and

the number of bidders N . We now explain how these two endogenous parameters are determined

by the parameters of the model.

5.1 Exclusion and Competition

Conflating values can increase bidder surplus for two reasons. First, conflating values allows to

reduce the reserve price in the seller-optimal mechanism (that is, reducing tx). Second, conflating

values can decrease competition at the bottom of the distribution which increases bidder surplus

(captured by the fact that s(t) is concave at low quantiles). We begin by studying two auxiliary

problems that shut down one of the two reasons to conflate values.

We first analyze the bidder-optimal information structure when there is a single bidder. In this

case, the seller’s problem is completely determined by the reserve price as established in Roesler

and Szentes (2017). They showed that the bidder-optimal information structure will minimize this

reserve price and no value will be excluded. Naturally, the solution to this problem depends only on

the distribution of values (as we are fixing the number of bidders). The solution will be determined

by a quantile t1 that determines when the generated profit function is non-increasing. Roesler and

Szentes (2017) first provided an analysis of this problem. We offer a different approach and solution

here for two reasons. First, for completeness, it is useful to explain the nature of the solution in the

quantile space. Second, the original problem has multiple solutions and the solution we provide here

will not coincide with the one given by Roesler and Szentes (2017). In particular, the distribution

of values G∗ that we derive will replace the mass point in the truncated Pareto distribution with a

segment of complete information disclosure, and thus G∗ will coincide with the original distribution

F on the upper end of the support.

We then analyze the problem where the seller is constrained to choose a mechanism in which

the good is assigned with probability one, that is, constrained to use a “must-sell”mechanism. Of

course, even if the seller is constrained to sell the good with probability one, he can use ineffi cient

mechanisms. We show the solution to this alternative problem is also determined by a single quantile

tm. The most remarkable property is that the optimal cutoff tm depends only on the number of

bidders but not on the distribution of values F . Furthermore, it is increasing in N.
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Finally, we connect the solution to both problems with the bidder-optimal information structure

characterized in Theorem 2. We show that, if the bidder-optimal information structure when the

seller is constrained to sell the good is indeed feasible in the general problem (that is, the solution

would not induce the seller to exclude bidders even if he were allowed to do so), then this is the

solution to the unconstrained problem. Otherwise, the solution will be designed to minimize the

reserve price, possibly with some exclusion.

We illustrate the nature of the solution in Figures 11-12. For this, it is visually simpler to see

the solution by allowing N to take continuous values. While there is no economic interpretation

for non-integer values of N in the auction setting we have studied so far, optimization problem (5)

remains well defined. Furthermore, we will see later that this problem can be interpreted naturally

in a different economic environment. In Figure 11 we illustrate tm (dependent only on N) that is

increasing in N , and the cutoff t1 (dependent only on F ). We denote the intersection by N̂ , and

illustrate some parameters of the solution in Figure 12. If N ≥ N̂ , then the solution is the same

as when the seller is constrained to sell the good: there is no exclusion (tx = 0) and typically the

distribution of expected values does not generate a demand with unit elasticity (α > 0). If N ≤ N̂ ,

then the solution will consist of an exclusion level tx and a cutoff tz such that the distribution of

expected values generates a demand with unit elasticity in quantiles [tx, tz]. In the former case

(N ≥ N̂) conflating arises to reduce competition at the bottom of the distribution of expected

values; in the latter case (N ≤ N̂) conflating arises to reduce the reserve price (possibly generating

some exclusion). Note that when N ≤ N̂ the solution does not necessarily coincide with the single-

bidder solution because it may be optimal to allow for some exclusion. The reason exclusion may

be optimal is that conflating introduces ineffi ciencies even if the seller allocates the good interim

effi ciently (in general, interim effi ciency will differ from ex-post effi ciency).

Throughout this section, we assume that π(t) is concave at every t ∈ [0, 1].We recall our results

so far relied on a mildly weaker assumption (that is, π being quasi-concave and concave on its

decreasing part). The former assumption is equivalent to requiring that the virtual values are

non-decreasing, while the latter assumption is equivalent to requiring that the virtual values are

non-decreasing whenever they are positive.

The bidder-optimal information structure is determined by the parameters (tx, tz), which are

endogenously determined by the distribution of values and the number of bidders. A substantive

part of the analysis in this section consists of understanding how the parameters of the model

change tz for a fixed level of exclusion tx. To provide an alternative interpretation of this exercise,
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Figure 11: Threshold Values of the Solution to the Restricted Problems: (i) N=1 and (ii) Must

Sell Mechanism.

Figure 12: Solution to General Problem with N > 1
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we characterize how tz changes the informativeness of the information structure.

Lemma 2 (Effect of Threshold tz)

For all tx, tz, t′z ∈ [0, 1] with tz < t′z, W (· |tx, tz ) ≺ W (· |tx, t′z ).

Proof. There is a simple suffi cient condition for W ≺ V that we repeatedly use throughout the

paper. We write

sign(W − V ) , (−,+), (37)

if there exists a unique t̂ ∈ [0, 1] such that W (t)− V (t) is non-positive for quantiles t ≤ t̂ and it is

non-negative for quantiles t ≥ t̂. A suffi cient condition for V � W is that V and W have the same

mean, that is, ∫ 1

0

W (t)dt =

∫ 1

0

V (t)dt,

and sign(W − V ) = (+,−) (see Theorem 3.A.44, Shaked and Shanthikumar (2007)).

We observe that for all tz, t′z we have that:∫ 1

0

W (t |tx, tz )dt =

∫ 1

0

W (t |tx, t′z )dt.

This implies that
∂α

∂tz
> 0,

where α is the parameter that determines πw(t |tx, tz ) in (34). We thus have that sign(W (t |tx, tz )−
W (t |tx, t′z )) = (+,−), hence W (t |tx, tz ) ≺ W (t |tx, t′z ), which proves the result.

As we provide a comparative statics analysis of how tz changes with the parameters of the model,

we can thus compare how much information is conveyed in information structure W (· |tx, tz ) versus

W (· |tx, t′z ).

5.2 Single Bidder Problem

We now analyze the problem of finding the bidder optimal information structure when there is a

single bidder. Since there is a single bidder, the only ineffi ciency that can arise is that the object

remains unsold. Formally, we solve the following problem:

W ∗ ∈ arg max
tx∈[0,1],W∈W(tx)

1

N

(∫ 1

tx

W (t)dt− (1− tx)W (tx)

)
. (38)

This corresponds to (30) but replacing q(t) ∈ [0, 1] with q(t) = 1 for all t ∈ [0, 1].
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We now define t1 implicitly as follows. If π(t) is decreasing at every t ∈ [0, 1], then we set t1 = 0.

Otherwise, we define t1 > 0 as the unique solution to the following equation:∫ t1

0

V (t1)(1− t1)

1− t dt =

∫ t1

0

V (t)dt. (39)

The threshold t1 identifies the critical upper threshold tz in the special case of a single bidder. By

construction, we have that, if t1 > 0 , then tx = 0, and thusW (t |0, t1 )(1−t) is constant in t ∈ [0, 1],

where W (t |0, t1 ) is the information structure expressed in values given earlier in (33).

Proposition 6 (Optimal Information Structure for a Single Bidder)

A solution to the single bidder problem (38) is W (t |0, t1 ). Furthermore, if π(t) is increasing at

t = 0, then t1 > 0.

We can provide comparative statics to describe how t1 changes with F . In general, if F is

“greater and less variable” than F̂ , then t1 ≤ t̂1. We now formalize this intuition. For this we

define:

Φ(x |V ) ,
∫ x

0

V (x)(1− x)

1− t dt−
∫ x

0

V (t)dt.

We note that Φ(x |V ) is quasi-concave in x and Φ(x |V ) is increasing at x = 0 if and only if π(x)

is increasing at x = 0. Hence, at t = t1 we have that Φ(t |V ) is decreasing.

We then have that, for any k ∈ R+ and distribution of values V̂ (t) = V (t) + k, we have that:

Φ(t̂
∣∣∣V̂ ) ≤ Φ(t̂ |V ),

and hence t̂1 ≤ t1. Hence, translating a distribution to higher values leads to a lower cutoff t1.

However, the cutoff t1 is not necessarily decreasing in the first-order stochastic dominance.

Consider for example the distribution F being uniform in [1/4, 1/2] and the distribution F̂ being

uniform in [1/2, 3/2]. We have that F̂ first-order stochastically dominates F , however, t1 < t̂1. Since

first-order stochastic dominance is a suffi cient condition for second-order stochastic dominance, the

latter order is also insuffi cient to guarantee the monotonicity of the cutoff t1.

Definition 1 (Dispersive Order)

F̂ is smaller than F in the dispersive order if

V̂ (β)− V̂ (α) ≤ V (β)− V (α),

for all 0 ≤ α < β ≤ 1 (see Definition 3.B.1., Shaked and Shanthikumar (2007)).
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The dispersive order requires the difference between any two quantiles of F̂ to be smaller than

the difference between the corresponding quantiles of F . If the quantile functions are differentiable,

then a necessary and suffi cient condition for a dispersive order is that:

dV̂ (t)

dt
≤ dV (t)

dt
.

This is a notion of variability. For example, if two random variables have the same mean and F̂

is smaller than F in the dispersive order then F̂ is also smaller than F in the convex order. It is

also translation invariant, that is, if F̂ is smaller than F in the dispersive order, then the order

will be preserved if one of the random variables is translated by a constant. In the example above,

the random variable that is uniform in [1/2, 3/2] is greater in the dispersive order than the random

variable that is uniform in [1/4, 1/2]. Hence, in this case, the higher variability leads to a higher

cutoff t̂1 ≤ t1.

Proposition 7 (Comparative Statics t1)

If F̂ is smaller than F in the dispersive order and F̂ first-order stochastically dominates F , then

t̂1 ≤ t1.

The proposition shows that first-order stochastic dominance jointly with the dispersive order

can provide suffi cient conditions for obtaining a monotone comparative static on t1. To prove the

result, we note that we can write Φ as follows:

Φ(x |V ) ,
∫ x

0

1

1− t

∫ x

t

−φ(z)dzdt,

where φ is defined as in (13) and can be explicitly written as follows:

φ(z) = V (z)− dV (z)

dz
(1− z).

If F̂ is smaller than F in the dispersive order, then dV̂ (z)/dz ≤ dV (t)/dz. If F̂ first-order stochas-

tically dominates F , then V (t) ≤ V̂ (z). This proves the result.

We can alternatively interpret the proof as stating if F̂ is smaller than F in the dispersive order

and F̂ first-order stochastically dominates F , then the virtual values in quantile space generated

by F̂ are larger than the virtual values in quantile space generated by F . Hence, if F̂ is smaller

than F in the dispersive order and F̂ first-order stochastically dominates F , then the solution to

the single-bidder optimal-pricing problem exhibits less exclusion under F̂ than under F .
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5.3 Must-Sell Mechanisms

We now consider the following problem:

Um , max
tz∈[0,1]

1

N

∫ 1

0

W (t |0, tz )
ds(t)

dt
dt; (40)

the maximizing cutoff that solves this maximization problem is denoted by tm. The subscript “m”

is an acronym for must sell. We consider an auxiliary problem in which the seller is constrained to

transfer the good but can use any mechanism. Formally, the problem is written as in (5)-(6), except

the maximization is over all allocations subject to r ≺ q instead of r ≺w q . If the majorization

constraint is not weak, then the mechanism will be non-wasteful. We then have that, if tm ≥ t1,

then W (t |0, tm ) solves the problem where the seller is constrained to sell the good. We begin by

providing properties of the optimization problem.

Lemma 3 (Characterization of Threshold tm)

The objective function of the must-sell mechanism (40) is quasi-concave in tz with a unique interior

optimum (denoted tm). Furthermore, tm is determined independent of the distribution of values

(that is, it depends on N but not on F ).

The most remarkable aspect of this lemma is that the distribution of values does not play any

role in determining the cutoff.

Proposition 8 (Comparative Statics with Respect to N and Limit)

The cutoff tm is increasing in N , tm = 0 when N = 2, and in the limit N →∞, tm → 1.

As N increases and the seller must sell the good, the optimal information structure becomes less

informative. In the limit N → ∞ the information structure converges to an information structure

that gives no information (generates a distribution of expected values that is an atom), except at

the very top of the distribution.

5.4 The Determinants of the Optimal Information Structure

We use the above two benchmarks and in particular the thresholds t1 and tm to characterize the

bidder-optimal information structure with N bidders, while allowing the seller to exclude bidders.

Theorem 3 (Bidder-Optimal Information Structure)

If t1 < tm, then the optimal information structure is given by W (t |0, tm ). Otherwise, the optimal

mechanism displays α = 0 (possibly with exclusion level tx > 0).
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The above theorem gives a sharp characterization of the nature of the solution. If the solution

to the must-sell mechanism (40) is feasible, then this is the solution. These are the situations in

which avoiding exclusion is not a concern when designing the bidder-optimal information structure.

In this case, low values are conflated to decrease competition at the bottom of the distribution,

which increases consumer surplus.

If the solution to (40) is not feasible, then the solution is shaped by the information structure

that can best avoid exclusion. Hence, lower values are conflated following a Pareto distribution,

which allows to lower the reserve price. In this case, the planner has two instruments to prevent

exclusion. First, the seller can increase the amount of conflating (increase tz), but this leads to too

much conflating relative to tm. The other instrument is to accept some exclusion (tx > 0), which

allows to reduce the amount of conflating.

We now immediately obtain the nature of the solution when tm = 0 or t1 = 0. First, we can find

situations in which the solution to the bidder-optimal information structure when the seller must

sell the good is feasible.

Proposition 9 (When the Must-Sell Mechanism is Optimal)

If π is non-increasing or if there is a suffi ciently large number of bidders N , then the optimal

information structure is given byW (t |0, tm ). Furthermore, the resulting optimal mechanism exhibits

no exclusion.

This proposition characterizes when the solution corresponds to (40). In these cases, the cutoff

tz does not depend on the distribution of values. In these cases, there is also no exclusion. Note that

when N = 1 the optimal mechanism also does not exhibit exclusion. Hence, exclusion only arises for

intermediate values of N . These are the situations in which the seller wants only a moderate level

of conflating to dampen competition of low values. In these cases, exclusion arises because avoiding

exclusion completely introduces too many ineffi ciencies. Note that even if π is non-increasing, the

profit function generated by a given information structure might be non-monotonic.

Proposition 10 (Two Bidders)

If N = 2, then in the optimal mechanism α = 0.

Proof. If N = 2, we have that s(t) is convex and thus tm = 0. If π is non-increasing, then

t1 = 0. The result then follows from applying Theorem 3.
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6 Related Allocation Problems

Throughout the proofs in the paper we have used the following facts: (i) the distribution of values

satisfies that π(t) is quasi-concave and concave wherever it is decreasing, (ii) any variation of the

information structure that increases total surplus and reduces profit will lead to a higher bidder

surplus, (iii) s(t) has a unique inflection point, being concave for low quantiles, (iv) s(t) is qua-

siconvex, and (v) q(0) = 0. We can now apply the results to alternative allocation problems and

alternative objective functions.

6.1 Other Objective Functions

We now assume that the information structure is chosen to maximize a linear combination of total

surplus and a negative weight on profit λ ∈ (0,∞):

Wλ , TS − λΠ,

where TS is the total surplus. We formally write the problem as follows, where the only variation

is that we have added a weight λ to profit.

W ∗
λ , max

{W :W≺V }
{r:r≺wq}

∫ 1

0

r(t)W (t)dt− λ
(∫ 1

0

W (t)(1− t)dr(t) + r(0)W (0)

)
subject to (6)

The case we have studied so far is the case λ = 1; the case λ→∞ corresponds to the case where the

information structure minimizes total profit; the case λ = 0 is when the objective is to maximize

total surplus. Note that the analysis requires that λ ≥ 0 as the arguments rely on variations of

the information structure that increase the total surplus and reduce the profit will lead to a higher

bidder surplus. When λ < 0, this is no longer valid.

To explain how results are extended, we define:

sλ(t) ,
∫ 1

t

[
q(x)dx− λ

∫ 1

t

q(x)− q(t)
]
dx.

The analysis goes through unchanged as long as sλ is concave for low quantiles and convex for high

quantiles.

To verify this condition we explicitly calculate the second derivative:

d2sλ
dt2

= −(1 + λ)q′(t) + λ(1− t)q′′(t).
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If q′′ ≤ 0, then sλ is convex and the condition is immediately satisfied (q′′(t) ≤ 0 corresponds to

assuming the distribution of qualities has increasing density). We also have that sλ is convex if λ ≥ 0

and the distribution of qualities has increasing hazard rate (that is, if (1− t)q′(t) is decreasing). If
q(t) = tN−1, then there is a unique inflection point at:

tI =
λ(N − 2)

λ(N − 1) + 1
.

So the condition is also satisfied. We can then conclude the following theorem.

Theorem 4 (Welfare-Maximizing Information Structure)

For every λ ≥ 0, any welfare-optimal information structure W ∗
λ satisfies

G∗λ(t) = G(t |tx, tz ),

for some parameters (tx, tz). Furthermore, α ≥ 0 and, if tx > 0 , then α = 0.

A particular instance of the above problem is when λ = 0. In this case, the information is

chosen to maximize the total surplus. Note that the mechanism is endogenously chosen, so complete

information might still not be the surplus-maximizing information structure. However, it is easy to

see s0 is always convex, so the problem is completely analogous to that studied in Section 9.2.1.

Corollary 3 (Surplus-Maximizing Information Structure)

If the objective is to maximize total surplus, then for any optimal information structure W ∗
0 , there

exists (tx, tz) such that:

G∗0(t) = G(t |tx, tz ).

Furthermore, G∗0(t) generates a unit-elasticity demand in [tx, tz] (and possibly tx > 0).

6.2 Multi-Unit Auction

Suppose instead of a single good for sale, the seller has N goods of qualities θ1 ≤ ... ≤ θN . If a

bidder with value vi buys a good of quality θj, he gets a utility viθj. The model studied so far

corresponds to the case θ1 = ... = θN−1 = 0 and θN = 1.

Following Kleiner, Moldovanu, and Strack (2021), for any information structure, the seller’s

profit is given by:

r ∈ arg max
{r̂:r̂≺wq}

∫ 1

0

(1− t)W (t)dr̂(t) + r̂(0)W (0), (41)
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where now q(t) is given by:

q(t) =
N∑
j=1

θj

(
(1− t)N−jtj−1 (N − 1)!

(j − 1)!(N − j)!

)
.

Thus, the set of feasible allocations are those that are weakly majorized by the effi cient allocation,

written in terms of quantiles.

We solve:

U∗ , max
{W :W≺V }
{r:r≺wq}

∫ 1

0

r(t)W (t)dt−
(∫ 1

0

W (t)(1− t)dr(t) + r(0)W (0)

)
, (42)

subject to (41).

The results of Theorem 1 and 2 go through as long as (i) s(t) has a unique inflection point, being

concave for low quantiles and convex for high quantiles, (ii) s(t) is quasiconvex, and (iii) q(0) = 0.

If the first condition is satisfied but either of the last two conditions is not satisfied, then a weaker

characterization can be found (see Proposition 15 in the Appendix).

6.3 Large Market

Consider now the situation in which there is a seller that has a unit mass of goods for sale. Goods

have various qualities with distribution Fq. There is also a mass 1 of bidders with a value distribution

Fv. We now denote the inverse of Fq by:

q(t) = F−1
q (t).

As before, we consider the situation in which first the bidders choose their information structure and

then the seller chooses the optimal mechanism. The payoff environment studied here is a particular

instance of the payoff environment studied by Bergemann, Heumann, and Morris (2023c). The

main difference is that here we study the consumer-optimal information structure while there we

considered the seller-optimal information structure.

In the large market setting, we recover the same problem as in (5) except that now q(t) is

determined by the exogenous distribution of qualities (the derivation can be found in Bergemann,

Heumann, and Morris (2023c)). Note that we can now interpret the distribution of qualities of the

form q(t) = tN−1 even for non-integer values of N . In the limit N → 1, we have that q(t) converges

to 1 pointwise.
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As before, the results of Theorem 1 and 2 go through as long as (i) s(t) has a unique inflection

point, being concave for low quantiles and convex for high quantiles, (ii) s(t) is quasiconvex, and

(iii) q(0) = 0. If s(t) is convex, then we do not need to impose s(0) = 0.2 If the first condition is

satisfied but either of the last two conditions is not satisfied, then a weaker characterization can be

found (see Proposition 15 in the Appendix).

We can, for example, easily characterize the optimal mechanism when Fq has increasing hazard

rate.

Proposition 11 (Increasing Hazard Rate)

If Fq has increasing hazard rate, then for any bidder-optimal information structure W ∗, there exists

(tx, tz) such that:

G∗(t) = G(t|tx, tz).

Furthermore, G∗(t) generates a unit-elasticity demand in [tx, tz] (and possibly tx > 0).

Proof. By definition, Fq has increasing hazard rate if and only if:

F ′q(x)

(1− Fq(x))
,

is increasing. Taking the derivative, we obtain:

(F ′q(x))2

(1− Fq(x))2
+

F ′′q (x)

(1− Fq(x))
≥ 0.

Writing this condition in quantile space, we obtain:

1

(q′(t))2(1− t)2
− q′′(t)

(q′(t))3(1− t) ≥ 0.

On the other hand,

s′′(t) = 2q′(t)− (1− t)q′′(t) ≥ q′(t) ≥ 0.

We thus obtain that s(t) is convex. Thus, we obtain the same solution as with N = 2 (we also

study this case in Section 9.2.1 in the Appendix).

We can provide a corollary showing when full disclosure is optimal.

Corollary 4 (When Full Disclosure is Optimal)

If Fq(v) has increasing hazard rate and π(t) is non-increasing, then full disclosure is the optimal

information structure G∗ = F..
2If s(t) is convex and s(0) 6= 0, we can approximate s(t) by a sequence of convex functions sk(t) satisfying that

sk(0) = 0 and they converge to s(t) pointwise for every t 6= 0.
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7 Asymmetric and Correlated Information Structures

We now analyze asymmetric and correlated information structures. We first show that under

some conditions an asymmetric information structure may generate higher bidder surplus than the

optimal symmetric information. Under the asymmetric information structure there will be only 1

bidder who gets positive bidder surplus. By randomizing ex ante over all agents (to identify which

agent might get positive rents), we find that a correlated information structure can replicate the

asymmetric information structure, and thus yield higher bidder surplus than the optimal symmetric

information structure.

We make the following assumptions. We assume that π is weakly concave and non-increasing

and there is an upper bound v̄ on the support of values. To simplify the algebra, we also assume

there is an atom (arbitrarily small) at v̄ (the analysis goes through unchanged if we relax this last

assumption). We compare the information structure in two situations.

We first obtain an upper bound on the bidder surplus generated by the optimal symmetric

information structure by considering a situation in which the seller is constrained to use an effi cient

mechanism. That is, we consider first a situation in which the seller must sell the good via the

second-price auction. Following Bergemann, Heumann, Morris, Sorokin, and Winter (2022), the

optimal information structure consists of conflating all values below quantile tq = (N − 2)/(N − 1).

It is simple to check that in the limit N →∞ there is an infinite number of bidders with expected

value µv and the number of bidders with value v̄ is distributed according to Poisson distribution

with parameter λ = 1. The bidders get positive rents only if there is 1 and only 1 bidder with value

v̄, which occurs with probability 1/e. Hence, the bidder surplus is bounded as follows:

U∗ ≤ v̄ − µv
e

.

We remark that this bound holds only for a large enough N .

We now consider the following asymmetric information structure. There are N − 1 bidders that

obtain no information and so they have an expected value µv and there is one bidder that has

complete information. Since π is weakly concave and non-increasing the seller will find it optimal

to use a second-price auction. In this situation, the bidder’s surplus will be:

UA , E[max{v − µv, 0}].

That is, when the bidder who has complete information has a value above µv he gets positive rents

equal to the difference between his value and the second-highest bid that is always equal to µv.
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We compare the profit generated by the asymmetric information structure with the upper bound

for symmetric information structures, and if:

v̄ − µv
e

< E[max{v − µv, 0}], (43)

then the asymmetric information structure generates strictly higher rents than the optimal sym-

metric information structure does.

Proposition 12

As N →∞, if (43) is satisfied, then there exists an asymmetric information that generates higher
bidder surplus than the optimal symmetric information structure.

8 Conclusion

In this paper, we studied the bidder-optimal information structure when the seller responds with the

seller-optimal allocation. In Theorem 3 we explored when the nature of solution remains qualita-

tively the same under varying objective functions. In concurrent work, Bergemann, Heumann, and

Morris (2023b), we study the profit-minimizing information structure for a large number of bidders

and given supply of quantities. This corresponds to a nonlinear pricing problem and we show that

a saddle point exists. We use the saddle point to construct the corresponding robust mechanism

that guarantees the highest profit across all information structures in a large market with a contin-

uum of bidders. The main connection we find is that the profit-minimizing information structure

is always a regular distribution (in fact, this holds without having to make any assumptions on the

distribution of values).

The interpretation that we offered here is that the bidders can influence the surplus property of

the bids by suppressing some information about their values for the object. A different, and perhaps

more elementary exercise is how to combine bundles of different objects with different information

structures so as to raise the profit and or the surplus. In Bergemann, Heumann, and Morris (2023a)

we pursue this line of reasoning in the presence of assets with common and idiosyncratic payoff

shocks. The analysis still relies on majorization arguments, but now only along a single dimension

of common vs. idiosyncratic shock rather than the two-dimensional analysis in terms of values

and quantities that are at the core of this paper and Bergemann, Heumann, and Morris (2023b).

Loertscher and Muir (2023) and Sadzik and Woolnough (2023) are recent contributions that also
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investigate how the composition of the object influences the profit. Loertscher and Muir (2023)

consider a model where the private information is the location on the Hotelling line and the seller

chooses the composition of the goods offered in terms of a weighted sum of their locations at the

extremes of the Hotelling line. Sadzik and Woolnough (2023) consider a strategic trading model

where there are informed and uninformed traders. A central issue is to determine conditions under

which strategic traders do not wish to issue assets in complete markets, and thus support the

bundling of goods in equilibrium.
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9 Appendix

The Appendix collects the proofs and auxiliary results that were omitted in the main body of the

paper.

9.1 Proof of Theorem 1

We now proceed to prove this theorem in several steps. First, we characterize the most-effi cient

revenue-maximizing mechanism. This will be the mechanism used by the seller (which obviously

depends on the information structure). We then characterize the distribution of expected values of

bidders who do not buy the good. We then characterize the distribution of values in any non-regular

interval. Finally, we show that bidder surplus is maximized by a regular distribution.

9.1.1 The Most-Effi cient Revenue-Maximizing Allocation

While the characterization of the seller’s revenue is standard in the literature, to characterize the

bidder surplus, we need to describe explicitly the allocation function that maximizes revenue for

a fixed information structure, i.e., we describe the quantile allocation r that solves the revenue

maximization problem:

r ∈ arg max
{r̃:r̃≺wq}

∫ 1

0

W (t)(1− t)dr̃(t). (44)

There may be multiple revenue-maximizing allocations only if there exists some interval [t1, t2] such

that for every quantile t ∈ [t1, t2]: (a) cav[πw](t) = πw(t), and (b) πw(t) is linear. For a “generic”

information structure W (t), maximization problem (44) has a unique solution, which gives the

revenue described in Proposition 1. However, since the information structure is endogenous, we

might have that there are multiple solutions to (44). If multiple allocation functions maximize

revenue, the most effi cient one will be the one that generates the highest bidder surplus. Hence, we

now characterize the most-effi cient revenue-maximizing allocation function.

For any fixed profit function πw we define:

tm(πw) , min{t ∈ [0, 1] : t ∈ arg max cav[πw](t)}. (45)

That is, tm(πw) is the smallest quantile that maximizes revenue. Consider {[ti, t̄i]}i∈I being a
collection of monotonic disjoint intervals in [tm(πw), 1] such that cav[πw](t) = πw(t) for every t ∈
[ti, t̄i] and cav[πw](t) > πw(t) for every t ∈ (t̄i, ti+1).
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Proposition 13 (Most Effi cient Optimal Allocation Rule)

The following allocation rule r solves the revenue maximization problem (44):

1. For all t < tm(πw), r(t) = 0;

2. For all t ∈ [ti, t̄i], r(t) = q(t);

3. For all t ∈ ([)t̄i, ti+1), r(t) =

∫ ti+1
t̄i

q(s)ds

ti+1−t̄i
.

Furthermore, this allocation rule generates higher total surplus than any other allocation rule r̂ that

solves (44).

Proof of Proposition 13. The first part of the statement corresponds to showing that

the allocation rule generates the same revenue as the ones that appear in Proposition 1. But this

corresponds to the proof of Proposition 1. The second part of the proof corresponds to showing

that this is the most effi cient optimal allocation rule. We consider a different allocation rule r̂(t)

that solves (44) and show it generates less total surplus than r.

We first show that for every t ∈ [0, 1]:∫ 1

t

r(s)ds ≥
∫ 1

t

r̂(s)ds. (46)

This corresponds to showing that r weakly majorizes r̂ (i.e., r̂ ≺w r). For every t ∈ [ti, t̄i] with

t ≥ tm(πw) we have that: ∫ 1

t

r(s)ds =

∫ 1

t

q(s)ds ≥
∫ 1

t

r̂(s)ds.

If there exists t ∈ [t̄i, ti+1] such that ∫ 1

t

r(s)ds <

∫ 1

t

r̂(s)ds,

we necessarily have that:∫ 1

t̄i

r(t)dt <

∫ 1

t̄i

r̂(t)dt or
∫ 1

ti+1

r(t)dt <

∫ 1

ti+1

r̂(t)dt. (47)

To check this, note for any t such that πw(t) < cav[πw](t) we must have that

dr

dt
=
dr̂

dt
= 0.
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We thus have that the majorization constraint would be violated. Finally, for every t ≤ tm(πw) we

must have that r̂(t) = 0. Hence, we also get that (46) is satisfied for t ≤ tm(πw). Hence, r weakly

majorizes r̂.

The total surplus generated by r is given by:∫ 1

0

r(t)W (t)dt =

∫ 1

0

∫ 1

t

r(s)dsdW (t) +W (0)

∫ 1

0

r(s)ds, (48)

where the equality is obtained by integrating by parts. The analogous expression holds for r̂. We

have that (46) implies that total surplus generated by r will be larger than that generated by r̂.

Hence, r generates a higher total surplus and the same profit as r̂.

Henceforth, we assume that the seller always implements the allocation described in Proposi-

tion 13. Hence, the quantiles {[ti, t̄i]}i∈I are defined as in Proposition 13.

9.1.2 Excluded Types

We now characterize the distribution on the domain of values that are excluded by the seller’s

mechanism.

Lemma 4 (Excluded Types)

If W ∗ is a bidder-optimal information structure, then the majorization constraint binds at tm(π∗w):∫ 1

tm(π∗w)

V (s)ds =

∫ 1

tm(π∗w)

W ∗(s)ds.

Furthermore, without loss of generality, there is an optimal information structure in which W ∗(t) =

V (t) for all t ∈ [0, tm(π∗w)].

Proof of Lemma 4. Suppose π∗w is an optimal information structure and consider tx = tm(π∗w)

(defined as in (45)). Suppose that the majorization constraint does not bind at tx, i.e.,∫ 1

tx

W ∗(t)dt <

∫ 1

tx

V (t)dt.

We then consider the following information structure:

Ŵ (t) =


W ∗(t), for all t ∈ [tx, 1];

W ∗(tx)
1−t , for all t ∈ [tx − η, tx];

V (t), for all t ∈ [0, tx − η];



Bidder-Optimal Information Structures February 9, 2024 46

where η is such that: ∫ 1

tx−η
Ŵ (t)dt =

∫ 1

tx−η
V (t)dt.

We then have that Ŵ is monotonic and satisfies the majorization constraint. We have that the

total surplus generated is larger and the revenue is the same, so bidder surplus is larger.

There will be a natural indeterminacy in the bidder-optimal information structure because the

bidder surplus (and total surplus) does not depend on the information that is provided to quantiles

that are excluded by the revenue-maximizing mechanism. Hence, the bidder-optimal information

structure may prescribe any information for quantiles that are excluded. Hence, in what follows,

we say W (t) = Ŵ (t) if both distributions are the same for quantiles that are not excluded, that is,

W (t) = Ŵ (t) ⇐⇒ tm(W ) = tm(Ŵ ) and W (t) = Ŵ (t), for all t ≥ tm(W ).

Of course, this only disciplines the information of quantiles that do not buy the good.

9.1.3 Structure of Irregular Intervals

We now show that, if the bidder-optimal information structure is not regular (i.e., π∗w(t) < cav[π∗w](t)

for some t), then the quantiles that are being conflated have a constant expected value. That is,

the information structure generates an atom of expected values.

Lemma 5 (Atoms in Pooling Intervals)

In every conflating interval (t̄i, ti+1):

W ∗(t) = W ∗(t̄i), for all t ∈ (t̄i, ti+1).

Proof. Suppose there exists an interval (t̄i, ti+1) in which:

W ∗(t̄i) < lim
t↑ti+1

W ∗(t),

where the limit is taken from below. We show that W ∗ does not maximize bidder surplus.

We denote by m the slope of cav[π∗w] in this interval:

m =
π∗w(ti+1)− π∗w(t̄i)

ti+1 − t̄i
.
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Then, consider the following information structure:

Ŵ (t) =


W ∗(t), if t 6∈ (t̄i, ti+1);

W ∗(t̄i)(1−t̄i)+m(t−t̄i)
1−t , if t ∈ (t̄i, t̄i + η];

W ∗(t̄i)(1−t̄i)+mη
1−t̄i−η , if t ∈ [t̄i + η, ti+1);

where η is implicitly defined to satisfy:∫ ti+1

t̄i

W ∗(t)dt =

∫ ti+1

t̄i

Ŵ (t)dt. (49)

We first show such η exists. When η = 0,∫ ti+1

t̄i

W ∗(t)dt >

∫ ti+1

t̄i

W ∗(t̄i)dt =

∫ ti+1

t̄i

Ŵ (t)dt;

when η = ti+1 − t̄i,∫ ti+1

t̄i

W ∗(t)dt =

∫ ti+1

t̄i

π∗w(t)

1− t dt <
∫ ti+1

t̄i

cav[π∗w](t)

1− t dt =

∫ ti+1

t̄i

Ŵ (t)dt.

Since the integrals are continuous in η, there exists η such that (49) is satisfied.

We now prove that Ŵ is feasible, and it generates higher total surplus and the same revenue as

W . Hence, Ŵ generates higher bidder surplus.

(Feasibility) First, note that for all t ∈ (t̄i, t̄i + η),

Ŵ (t)(1− t) = cav[π∗w](t) > W ∗(t)(1− t).

We also have that Ŵ and W ∗ cross only once in [t̄i + η, ti+1) (since Ŵ is constant in this range).

We thus have that sign(W ∗ − Ŵ ) = (−,+). Second, note that Ŵ (t) is clearly non-decreasing in

each of the segments of the definition. Also, it is continuous at t̄i + η, and we have that:

lim
t↑ti+1

Ŵ (t) < lim
t↑ti+1

W ∗(t) ≤ W ∗(ti+1).

Hence it is non-decreasing. Hence W ∗ is a mean-preserving spread of Ŵ .

(Equal Revenue) Since π∗w(t) = π̂w(t) for all t 6∈ (t̄i, ti+1), we have that cav[π∗w](t) ≤ cav[π̂w](t).

Nevertheless, by construction, we have that:

π̂w(t)

= cav[π∗w](t), for all t ∈ (t̄i, t̄i + η];

< cav[π∗w](t), for all t ∈ (t̄i + η, ti+1).
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Thus, cav[π∗w] = cav[π̂w].

(Higher Total Surplus) Let r∗ and r̂ be the profit-maximizing allocation rules when the infor-

mation structure is W ∗ and Ŵ , respectively. We have that r∗(t) is constant in the domain (t̄i, ti+1),

while r̂ is constant in [t̄i + η, ti+1) and screens quantiles in (t̄i, t̄i + η]. So r̂ is a mean-preserving

spread of r∗. We thus have that:∫ ti+1

t̄i

r∗(t)W ∗(t)dt =

∫ ti+1

t̄i

r∗(t)Ŵ (t)dt <

∫ ti+1

t̄i

r̂(t)Ŵ (t)dt.

The first equality follows from the fact that r∗ is constant in the interval (t̄i, ti+1) and (49) is

satisfied; the inequality follows from the fact that r̂ is a mean-preserving spread of r∗ (and Ŵ is

not constant in this interval so the inequality is strict). Thus, Ŵ generates higher total surplus.

9.1.4 Regular Information Structures are Optimal

We now conclude the proof by showing that the bidder-optimal information structure is regular,

that is, W ∗ ∈ W(tx) for some tx ≥ 0. We assume that the bidder-optimal information structure

W ∗ contains a conflating interval and we reach a contradiction.

We begin by fixing some interval conflating interval (t̄i, ti+1) and denote by [t1, t2] an interval such

that: (a) (t̄i, ti+1) ⊂ [t1, t2], (b) cav[π∗w](t) is affi ne in [t1, t2], and (c) cav[π∗w](t) is strictly concave

at the limits t ∈ {t1, t2}. That is, [t1, t2] is an interval in which cav[π∗w](t) is affi ne, it contains a

conflating interval and in any strictly larger interval cav[π∗w](t) is not affi ne. Furthermore, without

loss of generality, we assume that π∗w(t) = cav[π∗w](t) for all [t1, t̄i] (this amounts to considering the

“left-most”non-regular interval in [t1, t2]). As before, the slope of cav[π∗w](t) in the interval [t̄i, ti+1]

is denoted by:

m =
π∗w(ti+1)− π∗w(t̄i)

ti+1 − t̄i
. (50)

We show that there exists another information structure Ŵ that generates higher bidder surplus,

thus reaching a contradiction.

We first provide properties as to where the majorization constraint binds.

Lemma 6 (Binding Constraints at the Lower Bound of Affi ne Interval)

If a non-regular interval exists, then there exists tb ∈ [t1, t̄i] such that the majorization constraint

binds at tb and W ∗(tb) = V (tb).
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Proof. Recall that in the interval [t1, t̄i], cav[π∗w](t) = π∗w(t). We assume that the majorization

constraint does not bind in [t1, t̄i] or it binds at tb and W ∗(tb) 6= V (tb). We reach a contradiction

by proving that there exists Ŵ that generates higher bidder surplus.

We consider information structure Ŵ parameterized by ε > 0 as follows:

Ŵ (t) =


W ∗(t), for all t ∈ [0, t̂] ∪ [ti+1, 1];

π∗w(ti+1)+(m+ε)(t−ti+1)

1−t , for all t ∈ (t̂, t̄′i];

π∗w(ti+1)+(m+ε)(t̄i−ti+1)

1−t̄i , for all t ∈ [t̄′i, ti+1);

where t̄′i and t̂ are defined as follows. First, we have that:

t̂ , min{t ∈ [0, t̄i] : π∗w(t) ≥ π∗w(ti+1) + (m+ ε)(t− ti+1)}.

Note that

π∗w(t̄i) = π∗w(ti+1) +m(t̄i − ti+1) > π∗w(ti+1) + (m+ ε)(t̄i − ti+1),

and π∗w(t) is upper-hemicontinuous. Hence t̂ exists and t̂ ≤ t̄i. Second, t̄′i is implicitly defined so

that: ∫ 1

0

W ∗(t)dt =

∫ 1

0

Ŵ (t)dt. (51)

We prove such t̄′i exists (when ε is small enough) when we prove Ŵ is feasible.

We now prove that Ŵ : (i) is feasible (when ε is small enough), (ii) generates higher total surplus

than W ∗, and (iii) generates lower revenue than W ∗.

(Feasibility) We first show that there exists t̄′i such that (51) is satisfied appealing to the Inter-

mediate Value Theorem. We first note that for all t 6∈ (t̂, ti+1), Ŵ (t) = W (t) so proving that the

integrals are the same with limits {t̂, ti+1} (instead of limits {0, 1}) suffi ces to prove the result. If
t̄′i = ti+1, then we have that ∫ ti+1

t̂

W ∗(t)dt <

∫ ti+1

t̂

Ŵ (t)dt. (52)

To prove this, we note that:

lim
ε→0

∫ ti

t̂

Ŵ (t)dt =

∫ ti

t̂

cav[π∗w](t)(1− t)dt >
∫ ti

t̂

π∗w(t) (1− t)dt =

∫ ti

t̂

W ∗(t)dt.

Hence, we can find a ε small enough such that (52) is satisfied. We now define t̃ as follows:

t̃ , max{t ∈ [0, ti+1] : π∗w(t) ≥ π∗w(ti+1) + (m+ ε)(t− ti+1)}.
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If t̄′i = t̃, then we have that: ∫ ti

t̂

W ∗(t)dt >

∫ ti

t̂

Ŵ (t)dt, (53)

which follows from the fact that in this case Ŵ (t) ≤ W ∗(t) for every t (and strict for some t). Since

the integrals are continuous in t̄′i, we have that there exists t̄
′
i such that (51) is satisfied. We also

note that Ŵ is increasing.

Finally, we prove the majorization constraint is satisfied, that is,∫ 1

t

W ∗(s)ds ≤
∫ 1

t

V (s)ds.

We have that, for all t 6∈ (t̂, ti+1),∫ 1

t

Ŵ (s)ds =

∫ 1

t

W ∗(s)ds ≤
∫ 1

t

V (s)ds.

Hence, we now check the majorization constraint is also satisfied by quantiles t ∈ (t̂, ti+1). For this,

note that we must have that t̂ → t1 as ε → 0 and possibly t̂ = t1 for a small enough ε if W ∗ is

discontinuous at t1.

Consider first the case in which the majorization constraint does not bind in [t1, t̄i]. In the limit

ε→ 0 we have that Ŵ (t)→ W ∗(t) for every t. If the majorization constraint is not binding at any

t ∈ [t1, t̄i], then the majorization constraint will not be violated by Ŵ when ε is small enough.

On the other hand, if the majorization constraint binds at some tb ∈ [t1, t̄i] and W ∗(tb) 6= V (tb)

then W ∗(t) ≥ V (t) for all t in some neighborhood [tb, tb + δ] (otherwise, the majorization constraint

would be violated in some neighborhood [tb, tb + δ]). Furthermore, if W ∗(tb) > V (tb), then W ∗(tb)

must be discontinuous at tb (otherwise, the majorization constraint would be violated in some

neighborhood [tb − δ, tb]). Hence, we consider the case that W ∗(t) > V (t) and use the fact that in

this case W ∗(t) is discontinuous at tb to prove Ŵ is feasible. Since W ∗(t) is discontinuous at tb we

have that tb = t1 and the majorization constraint does not bind in (t1, t̄i]. We then define:

Ψ∗(t) ,
∫ t

0

[W ∗(s)− V (s)] ds and Ψ̂(t) ,
∫ t

0

[
Ŵ (s)− V (s)

]
ds.

We have that Ψ∗(t) > 0 for all t ∈ (t1, t̄i], Ψ̂(t)→ Ψ∗(t) for every t, and Ψ̂′(t1) > 0. Hence, for a ε

small enough Ψ̂(t) > 0 for all t ∈ (t1, t̄i]. Hence Ŵ satisfies the majorization constraint.
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(Lower Revenue) By construction, we have that cav[π∗w](t) can be written as follows:

cav[π∗w](t) =


π∗w(t), if t ∈ (t̂, t̄i];

π∗w(t̄i) +m(t̄i − t), if t ∈ [t̄i, ti+1);

cav[π∗w](t), if t 6∈ (t̂, ti+1).

An analogous expression holds for cav[πw] (but using t′i, t̄
′
i, ti+1). We now note that,

cav[π̂w](t) =

π∗w(ti+1) + (m+ ε)(t− ti+1), if t ∈ (t̂, ti+1);

cav[π∗w](t), if t ∈ [0, t̂] ∪ [ti+1, 1].

As explained above, for all t ∈ (t̄i, ti+1),

π∗w(ti+1) + (m+ ε)(ti+1 − t) < π∗w(ti+1) +m(ti+1 − t),

and for all t ∈ (t̂, t̄i],

π∗w(ti+1) + (m+ ε)(ti+1 − t) < π∗w(t).

We thus have that cav[π̂w](t) ≤ cav[π∗w](t). Finally, for all t 6∈ (t̂, ti+1), we have that π∗w(t) = π̂w(t).

Hence, for all t 6∈ (t̂, ti+1) cav[π∗w](t) ≥ cav[π̂w](t). Hence, π̂w generates lower total revenue.

(Higher Total Surplus) We note that sign(Ŵ (t)−W ∗(t)) = (−,+) so W ∗ ≺ Ŵ (see Shaked and

Shanthikumar (2007)). We also have that t̄i < t̄′i. Hence, r̂ is a mean-preserving spread of r. Hence,

Ŵ generates a higher total surplus.

Lemma 7 (Quantiles in the Convex Zone (t ≥ tI))

If there exists tb ≥ tI such that (a) the majorization constraint binds at tb, (b) W ∗(tb) = V (tb), and

(c) cav[π∗w](tb) =∗w (tb), then V (t) = W ∗(t) for all t ∈ [tb, 1] .

Proof. Suppose otherwise that there exists tb satisfying the above conditions andW ∗(t) 6= V (t)

for some t ≥ tb. Then the following information structure is feasible and generates higher bidder

surplus than W :

Ŵ (t) =

W ∗(t), if tb ≤ t;

V (t), if tb ≥ t.

The information structure Ŵ is clearly feasible: the majorization constraint is not binding at

quantiles t ≥ tb and for every t ≤ tb:∫ 1

t

W ∗(s)ds =

∫ 1

t

Ŵ (s)ds.
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Hence, if W ∗ satisfies the majorization constraint so does Ŵ .

We also note that, for every t ≥ tb, cav[π∗w](t) = π∗w(t). We can see this by noting that π(t)

is concave for every t > tb. At t = tb, π∗w(t) must also be concave. We can see this by noting

that, if the derivative of π∗w(t) were smaller than the derivative of π(t) at tb, then the majorization

constraint would be violated in some neighborhood [tb, tb + δ]. That is, we must have that:

dπ(tb)

dt
<
dπ∗w(tb)

dt
.

Hence, π∗w(t) is concave at t = tb.

Finally, we check that Ŵ generates higher bidder surplus. We note that the revenue-maximizing

allocation at quantiles t ≥ tb when the information structure is Ŵ is equal to the effi cient allocation.

Hence, the difference in bidder surplus can be written as follows:

U∗ − Û =

∫ 1

tb

W ∗(t)d(r∗(t)(t− 1))−
(∫ 1

tb

V (t)d(q(t)(t− 1))

)
.

Here we used that Ŵ (t) = V (t) for all t ≥ tb. For any given information structure, the bidder surplus

is weakly larger when the seller uses the effi cient allocation as opposed to the revenue-maximizing

allocation (the effi cient allocation generates by construction higher total surplus and lower revenue).

We thus have that:

U∗ − Û <

∫ 1

tb

(W ∗(t)− V (t))
s(t)

dt
dt =

∫ 1

tb

d2s(t)

dt2

∫ 1

t

(W ∗(`)− V (`))d`dt.

Note that s(t) is strictly convex for all t > tI and the majorization constraint implies that∫ 1

t

(W ∗(`)− V (`))d` ≤ 0.

If W ∗(t) 6= V (t) for some t ≥ tb, then the inequality will be strict in some open interval of types.

Hence, if W ∗(t) 6= V (t) for some t ≥ tb, then Û generates more bidder surplus. We thus reach a

contradiction.

Lemma 8 (Quantiles in the Concave Zone (t ≤ tI))

Suppose that there exists a non-regular interval (t̄i, ti+1) such that ti+1 < tI , then cav[π∗w] must be

linear in [ti+1, tI ].

Proof. Suppose there exists t̂ ∈ [ti+1, tI ] such that cav[π∗w] is strictly concave at t̂. To make

the notation more compact, we will write the proof assuming that ti+1 < t̂, but the proof goes
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through essentially the same way when ti+1 = t̂ (we explain the adjustment required at the end of

the proof).

Let m̂ be the derivative of cav[π∗w] at t̂. If it is non-differentiable at t̂ we take the average of the

right and left limits of the derivatives:

m̂ = lim
∆→0

cav[π∗w](t̂+ ∆)− cav[π∗w](t̂−∆)

2∆
.

We consider the following information structure:

π̂w(t) =

min{π∗w(t), π∗w(t̂)− ε+ m̂(t− t̂)}, if t 6∈ [ti+1 − η, ti+1);

π∗w(ti+1) +m(t− ti+1), if t ∈ [ti+1 − η, ti+1),
(54)

where m is defined in (50) and η is defined such that:∫ 1

0

W (t)dt =

∫ 1

0

Ŵ (t)dt. (55)

Note that by construction we have that π̂w(t̂) < π∗w(t̂), and cav[π∗w] is strictly concave at t̂, so

π̂w(t) ≤ π∗w(t) only in some neighborhood around t̂. More precisely, let 0 < ε1 < ε2 be such that

ε1 = inf{x > 0 : π∗w(t̂− x) > π∗w(t̂)− ε− m̂ · x},

ε2 = sup{x > 0 : π∗w(t̂+ x) > π∗w(t̂)− ε+ m̂ · x}.

In other words, π̂w(t) ≤ π∗w(t) if and only if t ∈ [t̂ − ε1, t̂ + ε2]. In the limit ε → 0, we have that

ε1, ε2 → 0.

We also have that, for every t ∈ (ti+1 − η, ti+1):

π∗w(t) < cav[π∗w](t) = π̂w(t).

Hence, for a ε small enough we can find η such that (55) is satisfied. We also have that sign(W ∗ −
Ŵ ) = (−,+) so Ŵ is a mean-preserving contraction of W .

We now verify that Ŵ generates a higher bidder surplus. By definition, the revenue-maximizing

allocation when the information structure isW ∗ conflates types in (t̄i, ti+1). A weakly higher bidder

surplus is attained if types in (t̄i, ti+1 − η] are conflated and types in [ti+1 − η, ti+1) are given the

effi cient allocation. More precisely, we consider the allocation:

r̂(t) =



∫ ti+1−η
t̄i

q(s)ds

ti+1−η−t̄i
, if t ∈ (t̄i, ti+1 − η];

q(t), if t ∈ [ti+1 − η, ti+1);

r∗(t), if t 6∈ (t̄i, ti+1).
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We note that r∗ ≺ r̂, so:

U∗ ≤
∫ 1

0

W ∗(t)d((1− t)r̂(t)).

We note that by construction cav[π̂w](t) = π̂w(t) for all t ∈ [ti+1 − η, ti+1). Hence, the revenue-

maximizing allocation at quantiles t ∈ [ti+1−η, ti+1)∪ [t̂−ε1, t̂+ε2] when the information structure

is Ŵ is equal to the effi cient allocation. So r̂ is also the revenue-maximizing allocation when the

information structure is Ŵ .

We now define:

Ŵ , [ti+1 − η, ti+1] ∪ [t̂− ε1, t̂+ ε2].

We note that for every t 6∈ Ŵ, we have that:

π̂w(t) = π∗w(t) and cav[π̂w](t) = cav[π∗w](t).

Hence, the information structures W ∗ and Ŵ only differ in quantiles t ∈ Ŵ. Hence, the difference
in bidder surplus can be written as follows:

U∗ − Û ≤
∫
t∈Ŵ

W ∗(t)d(r̂(t)(t− 1))−
(∫

t∈Ŵ
Ŵ (t)d(r̂(t)(t− 1))

)
.

Since for every t ∈ Ŵ, r̂(t) = q(t), we can write the difference as follows:

U∗ − Û ≤
∫
t∈Ŵ

(W ∗(t)− Ŵ (t))
s(t)

dt
dt =

∫
t∈Ŵ

d2s(t)

dt2

∫ 1

t

(W ∗(`)− Ŵ (`))d`dt.

Note that s(t) is strictly concave for all t < tI and Ŵ is a mean-preserving contraction of W ∗ so we

have that: ∫ 1

t

(W ∗(`)− Ŵ (`))d` ≥ 0,

and the inequality is strict at every t ∈ Ŵ . Hence, Û generates more bidder surplus. We thus reach

a contradiction. This proves the result when t̂ > ti+1.

Finally, we explain the adjustment needed to make when ti+1 = t̂. In this case, we define π̂w as

follows:

π̂w(t) =

min{π∗w(t), π∗w(t̂)− ε+ m̂(t− t̂)}, if t 6∈ [ti+1 − η, ti+1);

π∗w(ti+1) + m̂(t− ti+1), if t ∈ [ti+1 − η, ti+1).
(56)

The only change is that we replaced m with m̂ in the case t ∈ [ti+1 − η, ti+1). The rest of the proof

goes through without changes.
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Lemma 9 (Properties of Non-Regular Information Structure)

Let [t1, t2] be such that the concavification of the optimal information cav[π∗w] is affi ne in this interval

and strictly concave at the limits {t1, t2}, and there is some non-regular interval (t̄i, ti+1) ⊂ [t1, t2],

then:

1. t1 < tI ;

2. tI < t2;

3. t1 < t̄i, and

4. for every t ≥ t2, cav[π∗w](t) = π∗w(t).

Proof. We prove each of the items:

(1)If tI ≤ t1, then following Lemma 6 and 7 this would not be an optimal information structure.

(2) If tI ≥ t2, then following Lemma 8 this would not be an optimal information structure.

(3) Suppose we have that t1 = t̄i and following Proposition 6, we must have thatW ∗(t̄i) = V (t̄i)

and the majorization constraint binds at t̄i. Since there is an atom in quantiles (t̄i, ti+1), we must

have that W ∗(t) < V (t) for all t in (t̄i, ti+1). We thus have that W ∗(t) will violate the majorization

constraint at every quantile t ∈ (t̄i, ti+1).

(4) Following items (1) and (2), there can only be one interval [t1, t2] in which π∗w(t) < cav[π∗w](t).

Final Steps of the Proof of Theorem 1. We can now reach a contradiction. We fix an

optimal information structure W ∗ and suppose a conflating interval (t̄i, ti+1) exists and let {t1, t2}
be as previously defined. Following Lemma 9, we assume that tI ≤ t2. Without loss of generality we

assume that for all t ∈ [ti+1, t2], π∗w(t) = cav[π∗w](t) (this amounts to considering the “right-most”

regular interval). We reach a contradiction by proving there is another information structure that

generates higher bidder surplus. We first address the case t2 = ti+1 and then address the case

t2 > ti+1.

We now consider the following information structure:

π̂w(t) =

π∗w(t), if t ≤ t2;

min{π(t), π∗w(t̄i) + m̂(t− t̄i)}, if t ≥ t2;
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where m̂ is such that: ∫ 1

0

W ∗(t)dt =

∫ 1

0

Ŵ (t)dt. (57)

We prove such m̂ exists. If m̂ = −W ∗(t̄i), we would then have that π̂(t) ≤ π∗w(t) for every t ≥ t̄i. If

m̂ = m, as defined in (50), we have that π̂w(t) ≥ π∗w(t) for every t ≥ t̄i. Hence, there exists m̂ such

that (57) is satisfied.

We now recall that for all t < t2, W ∗(t) = Ŵ (t) and for all t ≥ t2, π∗w(t) = cav[π∗w](t). Hence,

the difference in bidder surplus can be written as follows:

U∗ − Û =

∫ 1

t2

∫ 1

t

(W ∗(`)− Ŵ (`))d`
d2s(t)

dt2
dt.

We also have that tI ≤ t2, so in the interval [t2, 1]:

d2s(t)

dt2
> 0.

Finally, we prove that for all t ∈ [t2, 1]:∫ 1

t

[
W ∗(s)− Ŵ (s)

]
ds ≤ 0. (58)

To prove this we define t̂ implicitly as follows:

V (t̂) = W ∗(t̄i) + m̂(t̂− t̄i).

We then have that for every t ≥ t̂∫ 1

t

[
W ∗(s)− Ŵ (s)

]
ds =

∫ 1

t

[W ∗(s)− V (s)] ds ≤ 0,

where the equality follows from the definition of Ŵ and the inequality follows from the fact that

W ∗ satisfies the majorization constraint.

We now prove that, for every t ∈ [t2, t̂], (58) is satisfied. We proceed to prove this by contra-

diction. Suppose there exists tz ∈ [t2, t̂] such that (58) is not satisfied. Since (58) is satisfied at

t = t̂, we can consider tz such that (58) is not satisfied and Ŵ (tz) < W ∗(tz). But (58) is satisfied

at t = t2, so there also exists t′z < tz such that Ŵ (t′z) > Ŵ (tz). We thus have that t2, t′z, and tz
satisfy:

π̂w(t2) ≤ π∗w(t2); π̂w(t′z) > π̂∗w(t′z); π̂(tz) < π∗w(tz).
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Since π̂ is linear in this interval, this means that W ∗ is not concave. So we reach a contradiction,

so (58) is satisfied. This implies that Ŵ generates higher bidder surplus than W ∗ so we reach a

contradiction.

The case ti+1 < t2 can be addressed in a completely analogous way. For this, we define

t̃ = max{tI , ti+1},

and consider the following information structure:

π̂(t) =

π∗w(t), if t ≤ t̃;

min{π(t), πw(t̃) + m̂(t− t̃)}, if t ≥ t̃.

The rest of the proof follows line-by-line the same way.

9.2 Proof of Theorem 2

We prove Theorem 2 by first proving Proposition 5 explicitly, and then Theorem 2 follows from the

definition of the profit function. The proof proceeds in 3 steps. We first find the optimal information

structure when s is convex everywhere (that is, when N = 2). We then find the optimal information

structure using only that s(t) has a unique inflection point. Since we are only going to use this

property of s we will reach a weaker characterization of the bidder-optimal information function,

but this is a natural stepping stone towards proving the main result. Finally, we use that s is

quasiconvex and q(0) = 0. Throughout the proof, we fix the exclusion level tx (and we can find the

optimal exclusion level by maximizing over all tx).

Before we begin the proof, we define:

πw (t |tx, tz ) =

π(tz)− α(t− tz), if t ∈ [tx, tz];

π(t), if t 6∈ [tx, tz].
(59)

Thus the optimal information structure is π∗w(t) = πw (t |tx, tz ) for some optimally chosen parameters

(tx, tz) ∈ [0, 1]× [0, 1].

9.2.1 Convex Objectives

We first consider the case when s(t) is convex, which corresponds to the case N = 2. This is a

natural benchmark to begin analyzing and it will allow us to introduce notation and concepts that

are used when analyzing the general case.
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We begin by considering the following class of information structures:

πw (t |tx ) ,

π(t), if t 6∈ [tx, tv];

π(tv), if t ∈ [tx, tv],
(60)

where tv is defined implicitly as follows. If π(t) is decreasing at every t ∈ [tx, 1], then we set tv = tx.

Otherwise, we define tv > tx as the unique solution to the following equation:∫ tv

tx

V (tv)(1− tv)
1− t dt =

∫ tv

tx

V (t)dt. (61)

We note that tv depends on tx (we do not make this reference in the notation explicit because there

will be no ambiguity). We prove the existence and uniqueness of such tv as follows. We define:

Ψ(tv) ,
∫ tv

tx

V (tv)(1− tv)
1− t dt−

∫ tv

tx

V (t)dt,

and note that

Ψ′(tv) =

∫ tv

tx

π′(tv)

1− t dt.

Since π is quasi-concave and concave wherever it is decreasing, Ψ is quasi-concave (Ψ′ is positive

if and only if π′ is positive), Ψ(0) = 0, and Ψ(1) < 0. Hence Ψ(tv) crosses 0 only once. Hence,

πw (t |tx ) = πw (t |tx, tz ), where tz is chosen such that α = 0.

We next show that πw (t |tx ) ∈ W(tx). For this, note that by construction∫ 1

0

W (t|tx)dt =

∫ 1

0

V (t)dt,

and sign(πw (t |tx ) − π(t)) = (+,−). Hence W (t|tx) ≺ V . We also have that π′(tv|tx) ≤ 0. Hence,

π′w(t|tx) = 0 for t < tv and π′w(t|tx) ≤ 0 for t > tv. Hence πw (t |tx ) ∈ W(tx). We now show this is

the most informative information structure in W(tx).

Lemma 10 (Most Informative Regular Information Structure)

Any profit function πw ∈ W(tx) satisfies πw ≺ πw (t |tx ).

Proof. For every t ≥ tv, we have that:∫ tv

0

πw (t |tx ) dt =

∫ tv

0

π(t)dt ≤
∫ tv

0

πw(t)dt. (62)
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We now consider the quantiles t < tv. Suppose there exists t̃ < tv such that:∫ t̃

0

πw (t |tx ) dt >

∫ t̃

0

πw(t)dt.

We then have that, for some t ∈ [tx, t̃]

πw (t |tx ) > πw(t).

But since (62) must be satisfied, there must also exist t′ ∈ [t̃, tv] such that:

πw(t′|tx) < πw(t′).

Hence, πw must be increasing in some part of the domain [tx, tv].We thus have that πw(tx) 6∈ W(tx)

.

We can thus conclude that this is the optimal information structure when N = 2.

Proposition 14 (Bidder-Optimal Information Structure)

If s is convex (that is, if N = 2), for every bidder-optimal information structure W ∗, there exists

tx such that:

W ∗(t) =
πw (t |tx )

1− t .

Proof. We write the difference between the revenues generated byW ∗ and byW (t|tx) as follows:

D ,
(∫ 1

tx

W ∗(t)
ds(t)

dt
dt− (1− tx)q(tx)W ∗(tx)

)
−
(∫ 1

tx

W (t|tx)
ds(t)

dt
dt− (1− tx)q(tx)W (tx|tx)

)
(63)

=

∫ 1

tx

∫ 1

t

(W ∗(`)−W (`|tx))d`
d2s(t)

dt2
dt− (1− tx)q(tx)(W ∗(tx)−W (tx|tx)).

Since W ∗ ≺ W (t|tx), we have that:∫ 1

t

(W ∗(`)−W (`|tx))d` ≤ 0,

and the inequality is strict at some t if W ∗(s) 6= W (s|tx) at some s. We also have that

d2s(t)

dt2
> 0.

Hence, the first term is strictly negative if W ∗(s) 6= W (s|tx) at some s. Since W ∗(t) ≺ W (t|tx), we
also have that:

W ∗(tx)−W (tx|tx) ≥ 0.
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Thus, the second term is also weakly negative. We thus reach a contradiction, which implies

W ∗(t) = W (t|tx),

for some tx.

9.2.2 Unique Inflection Point

We now provide a characterization of the optimal information structure using only that s has a

unique inflection point. We introduce the following family of information structures:

πw (t |tx, π0, tz ) =

min{π(tz)− α(t− tz), π0}, if t ∈ [tx, tz];

π(t), if t 6∈ [tx, tz],
(64)

where (tx, π0, tz) are parameters of the information structure that belong to a domain we specify

next and α is implicitly defined to satisfy:∫ 1

0

πw(t|tx, π0, tz)

1− t dt =

∫ 1

0

π(t)

1− tdt.

As a notation, we later use W ∗∗ to denote the value associated with πw. We prove such α exists

in the proof of Proposition 15. In other words, the information structure is equal to the true

distribution of values for quantiles larger than tz and linear for quantiles below tz but with a cap

at π0. When π0 ≥ π(tx)− α(tx − tz) we have that πw (t |tx, π0, tz ) = πw (t |tx, tz ) .

The parameters (tx, π0, tz) are in the following domain: (i) π0 ∈ [πw(tv|tx), µv], (ii) tz ∈ [tv, 1],

and (iii) tx ∈ [0, 1], where the parameter µv is defined as follows:

µv ,
∫ 1

tx

V (t)dt.

We can now show that every bidder-optimal information structure is of the form W (t |tx, π0, tz ),

for some (tx, π0, tz). This is a weaker result than Proposition 5 because we are allowing the profit

function to be nonlinear in [tx, tz].

Proposition 15 (Bidder-Optimal Information Structure)

For every bidder-optimal information structure W ∗, there exists (tx, π0, tz) such that:

W ∗(t) =
πw (t |tx, π0, tz )

1− t .

Furthermore, W (t|tx, π0, tz) is linear in (tI , tz) (recall that tI is defined in (18)).
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We first prove that for every (tx, π0, tz) in the specified domain, there exists α such that

πw (t |tx, π0, tz ) is feasible. If tz = tv then we obviously have that the information structure is

feasible for α = 0 (since in this case πw (t |tx, π0, tz ) = πw (t | tx) and the upper bound π0 will not

bind). Hence, we consider tz > tv.

If α = 0, we have that:

πw (t |tx, π0, tz ) ≤ πw (t |tx ) , for every t ∈ [0, 1].

If α = π′(tz) we have that

πw (t |tx, π0, tz ) ≥ πw (t |tx ) , for every t ∈ [0, 1].

Hence, there exists α such that:∫ 1

0

πw (t |tx, π0, tz ) dt =

∫ 1

0

π(t)dt =

∫ 1

0

πw (t |tx ) dt.

Furthermore, since α < −π′(tz), we have that sign(πw (t |tx, π0, tz ) − π(t)) = (+,−). Hence,

πw (t |tx, π0, tz ) is a mean-preserving contraction of π.

We now fix some bidder-optimal information structure W ∗ such that W ∗ 6= W ∗∗(tx, π0, tz) (for

any (tx, π0, tz)) and show it is suboptimal, thus reaching a contradiction. We denote by tx the

exclusion quantile of information structure W ∗ , that is, for all t ∈ [0, 1]:

W ∗(t)(1− t) ≤ W ∗(tx)(1− tx),

with strict inequality for all t < tx. Throughout this section, we fix the parameter π0 to be:

π0 , W ∗(tx)(1− tx),

and note that:

π0 = max
t
π∗w(t).

We begin by proving that there exists tz such that πw (t |tx, π0, tz ) is more informative than any πw
for quantiles t ≥ tI and less informative than any πw for quantiles t ≤ tI .

Lemma 11 (Dominating Information Structure)

For any information structure Ŵ ∈ W(tx), there exists tz such that:
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∫ t

0

W (t |tx, π0, tz ) dt ≥
∫ t

0

Ŵ (t)dt, for all t ≤ tI ; (65)∫ t

0

W (t |tx, π0, tz ) dt ≤
∫ t

0

Ŵ (t)dt, for all t ≥ tI , (66)

where π0 = πw(tx). Furthermore, if Ŵ (t) 6= W (t |tx, π0, tz ) for some tz, then some inequality is

strict.

Proof. We first prove that for any information structure W ∈ W(tx), there exists tz such that:∫ tI

0

W (t |tx, π0, tz ) dt =

∫ tI

0

Ŵ (t)dt. (67)

For this, we recall that πw is the most informative information structures, which corresponds to

πw (t |tx, π0, tv ) (with tv defined in (61)). We thus have that for all t ∈ [0, 1]:∫ t

0

W (s |tx, π0, tv ) ds ≤
∫ t

0

Ŵ (s)ds.

On the other hand, we must also have that for all t ∈ [0, 1]:∫ t

0

W (s |tx, π0, 1) ds ≥
∫ t

0

Ŵ (s)ds.

In particular, the two inequalities above also hold evaluated at t = tI . Hence, by the Intermediate

Value Theorem, there exists t̂ ∈ [tv, 1] such that (67) is satisfied.

We first prove that there exists at most two quantiles {t1, t2} such that πw(t) and πw (t |tx, π0, tz )

strictly cross. That is, there exists at most two quantiles t1, t2 ∈ [tx, tz] such that the sign of

πw(t)− πw (t |tx, π0, tz )

changes. To prove this, note that πw is concave and π∗∗w is linear in the range t ∈ [tx, tz] wherever

πw (t |tx, π0, tz ) < π0, so they cross at most twice in the range [tx, tz] (that is, strict crossings).

Hence, there exist quantiles {t1, t2} such that:∫ t

0

W (s |tx, π0, tz ) ds−
∫ t

0

Ŵ (s)ds

is (weakly) increasing in t ∈ [0, t1] ∪ [t2, tz] (wherever W (t |tx, π0, tz ) ≥ Ŵ (t)) and is (weakly)

decreasing in t ∈ [t1, t2] (wherever W (t |tx, π0, tz ) ≤ Ŵ (t) ). By construction, we have that∫ tI

0

W (t |tx, π0, tz ) dt =

∫ tI

0

Ŵ (t)dt.
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We thus have that, for all t ∈ [0, tI ]:∫ t

0

W (s |tx, π0, tz ) ds ≥
∫ t

0

Ŵ (s)ds, (68)

and for all t ∈ [tI , tz] ∫ t

0

W (s |tx, π0, tz ) ds ≤
∫ t

0

Ŵ (s)ds. (69)

This last inequality must also be satisfied in the range [tz, 1] since in this range W (t |tx, π0, tz ) =

V (t). This proves the result.

We now write the difference between the revenues generated by W ∗ and by W ∗∗ as follows:

D ,
(
−
∫ 1

tx

W ∗(t)
ds(t)

dt
dt− q(tx)W ∗(tx)

)
−
(
−
∫ 1

tx

W (t |tx, π0, tz )
ds(t)

dt
dt− q(tx)W (tx|tx, π0, tz)

)
(70)

=−
∫ tI

tx

(W ∗(t)−W (t |tx, π0, tz ))
ds(t)

dt
dt−

∫ 1

tI

(W ∗(t)−W (t |tx, π0, tz ))
ds(t)

dt
dt (71)

− q(tx)(W ∗(tx)−W (tx |tx, π0, tz )). (72)

We now prove each of the terms is weakly negative with some being strictly negative. The last term

is negative because:

W (tx |tx, π0, tz ) = πw(tx |tx, π0, tz ) ≤ π0 = π∗w(tx) = W ∗(tx)(1− tx),

where the inequality follows from the construction of πw(tx |tx, π0, tz ). Integrating by parts the

second term, we get:

−
∫ 1

tI

(W ∗(t)−W (t |tx, π0, tz ))
ds(t)

dt
dt =

∫ 1

tI

∫ t

tI

(W ∗(`)−W (` |tx, π0, tz ))d`
d2s(t)

dt2
dt ≤ 0,

where the inequality follows from (69) and the fact that s is convex in this domain. Finally, for

the first term, we do the analogous calculation:

−
∫ tI

tx

(W ∗(t)−W (t |tx, π0, tz ))
ds(t)

dt
dt = −

∫ tI

tx

∫ tI

t

(W ∗(s)−W (s |tx, π0, tz ))ds
d2s(t)

dt2
dt ≤ 0.

Now the inequality follows from (68) and the fact that s is concave in this domain.

We thus conclude that W ∗(t) = W (t |tx, π0, tz ) for some (tx,π0, tz). Finally, we show that

W (t |tx, π0, tz ) is linear in (tI , tz). IfW ∗(t) is not linear in (tI , tz), we consider information structure
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W (t |tx, π0, tz ), where tz is chosen such that W (t |tx, π0, tz ) is linear in (tI , tz). We can find such tz
by noting that for all t ∈ [0, 1]:

W
(
t
∣∣tx, π0, π

−1(π0)
)
≥ W ∗(t) and W (t |tx, π0, 1) ≤ W ∗(t).

In other words, if we take tz = π−1
v (π0) we get a revenue function pointwise larger than W ∗ and if

tz = 1 then we get a profit function pointwise smaller than W ∗. Hence, such tz exists.

The difference between the revenues generated can be written as follows:

D = −
∫ 1

tI

(W ∗(t)−W (t |tx, π0, tz ))
ds(t)

dt
dt < 0.

The equality follows the same way as in (63)-(72) but noting that:

W (t |tx, π0, tz ) = W ∗(t) for all t ∈ [0, tI ].

The inequality follows from the fact that sign[W ∗ (t) − W (t |tx, π0, tz )] = (−,+) (following the

same steps as before) and by definition ds(t)/dt is increasing for all t ≥ tI . We thus prove that

W (t |tx, π0, tz ) generates more consumer surplus than W ∗, which is a contradiction. This proves

that W ∗ must be linear in (tI , tz).

9.2.3 Quasi-concavity and q(0) = 0

We now conclude the proof of Proposition 5. So far we have only used the curvature properties

of s(t). That is, it has a unique inflection point. We now use two additional properties of s(t).

Namely, that it is quasiconvex and that q(0) = 0. We begin by defining:

ts = arg max s
t∈[0,1]

(t).

We show that π∗w must be affi ne in [tx, ts] whenever tx > 0.

Lemma 12 (Affi ne Section when there is Exclusion)

Suppose that tx > 0, then π∗w is affi ne in [tx, ts].

Proof. Suppose that there exists t1 ∈ [tx, ts] such that π∗w is strictly concave at t1 and tx > 0.

We reach a contradiction by proving that π∗w is not a bidder-optimal information structure.

We consider the following information structure:

π̂w(t) =

min{π∗w(t), π∗w(tx)− ε1}, if t ≥ tx;

min{π(t) + ε2(1− t), π∗w(tx)− 2ε1}, if t ≤ tx,
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where ε1 and ε2 are such that (i) the majorization constraint is satisfied, (ii) Ŵ is increasing and

(iii) π̂w(t) = π∗w(t) for all t ≥ ts. We prove such ε1, ε2 can be found.

We begin by proving (iii), and for this we define t2 implicitly as follows:

π∗w(t2) = π∗w(tx)− ε1.

By construction, π̂w(t) = π∗w(t) for all t ≥ t2. We now prove that t2 ≤ ts. When ε1 is small enough,

t2 varies continuously with ε1 and t2 → t1 as ε1 → 0. So we can obviously find ε1 that is small

enough such that the third condition is satisfied.

We now prove (ii). For this we write Ŵ explicitly:

Ŵ (t) =

min{W ∗(t),W ∗(tx)− ε1(1−tx)
1−t }; if t ≥ tx.

min{V (t) + ε2,W
∗(tx)− 2ε1(1−tx)

1−t }; if t ≤ tx.

At tx, Ŵ is clearly increasing. Furthermore, at all t 6= tx, Ŵ is the minimum of increasing functions,

so it is also increasing.

Finally, we prove (i). We denote by t3 ∈ [0, tx] the solution to the following equation:

π(t3) + ε2(1− t3) = π∗w(t3)− 2ε1.

We note that Ŵ (t) ≥ W ∗(t) if and only if t ≤ t3. Hence, sign(Ŵ −W ∗) = (+,−). Finally, if ε1 → 0

(keeping ε2 fixed), we have that: ∫ 1

0

Ŵ (t)dt >

∫ 1

0

W ∗(t)dt.

On the other hand, if ε2 → 0 (keeping ε1 fixed), we have that:∫ 1

0

Ŵ (t)dt <

∫ 1

0

W ∗(t)dt.

Hence, we can find ε1, ε2 such that: ∫ 1

0

Ŵ (t)dt =

∫ 1

0

W ∗(t)dt.

Since sign(Ŵ −W ∗) = (+,−) this means that Ŵ satisfies the majorization constraint.

We now note that:

tm(π∗w) = tm(π̂w) = tx.
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So the quantile that maximizes revenue is not changed when ε1, ε2 are small enough. The difference

in bidder surplus generated by W ∗ and Ŵ is given by:

U∗ − Û =−
∫ 1

tx

(W ∗(t)− Ŵ (t))
ds(t)

dt
dt− q(tx)(1− tx)(W ∗(tx)− Ŵ (tx))

=−
∫ t2

tx

(W ∗(t)− Ŵ (t))
ds(t)

dt
dt− q(tx)(1− tx)(W ∗(tx)− Ŵ (tx)).

We first note that W ∗(tx) ≥ Ŵ (tx), so

−q(tx)(1− tx)(W ∗(tx)− Ŵ (tx)) ≤ 0.

We also note that for all t ∈ [tx, t2], we have that s′(t) > 0 and W ∗(t) ≥ Ŵ (t). We thus have that:

−
∫ t2

tx

(W ∗(t)− Ŵ (t))
ds(t)

dt
dt < 0.

We thus have that:

U∗ − Û < 0.

We thus have thatW ∗ is not a bidder-optimal information structure. We thus reach a contradiction,

which proves the result.

Lemma 13 (Affi ne Section when there is No Exclusion)

Suppose that tx = 0, then π∗w is affi ne in [0, tz].

Proof. Suppose tx = 0 and W ∗ is not affi ne in [0, tz]. We reach a contradiction by proving that

π∗w is not a bidder-optimal information structure.

Consider information structure πw (t |0, tz ) where tz is such that (65)-(66) are satisfied. The

proof that such tz exists follows the same way as in Lemma 11. We now write the difference

between the revenues generated by W ∗ and by W (t |0, tz ) as follows:

D ,
(
−
∫ 1

tx

W ∗(t)
ds(t)

dt
dt− q(tx)W ∗(tx)

)
−
(
−
∫ 1

tx

W (t |0, tz )
ds(t)

dt
dt− q(tx)W (tx |0, tz )

)
(73)

=−
∫ tI

tx

(W ∗(t)−W (t |0, tz ))
ds(t)

dt
dt−

∫ 1

tI

(W ∗(t)−W (t |0, tz ))
ds(t)

dt
dt

− q(tx)(W ∗(tx)−W (tx |0, tz )).

As in (71) we have that the first two terms after the second inequality are negative, while the third

term is 0. Hence, we reach a contradiction.
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9.3 Proofs of Results in Section 5

Proof of Theorem 3. As shorthand notation, we introduce:

U(W, r) ,
∫ 1

0

r(t)W (t)dt−
(∫ 1

0

W (t)(1− t)dr(t) + r(0)W (0)

)
;

m(W ) , arg max
{r̂:r̂≺wq}

∫ 1

0

(1− t)W (t)dr̂(t) + r̂(0)W (0).

If multiple solutions exist so that m(W ) is not uniquely defined, we consider the solution charac-

terized in Proposition 13. Using this notation, we have that:

Um = max
tz∈[0,1]

U(W (t |0, tz ) , q).

We now prove that Um ≥ U∗.

For every w0 ∈ R, the function
(π(t) + w0(1− t))

is concave, so Theorem 2 applies for every w0 ≥ 0. 3 Hence there exists (tx(w0), tz(w0)) : R+ →
[0, 1]× [0, 1] such that:

(W (t |tx(w0), tz(w0)) + w0) ∈ arg max
W≺(V+w0)

U(W,m(W )),

where we make explicit that the solution (in general) depends on w0. To make the notation more

compact, we use shorthand notation:

W (tx |w0 ) , W (tx |tx(w0), tz(w0)) .

Hence, we only make reference to the shift in values w0.

We note that for all (W, r) and for all w0 ∈ R+, we have that:

U(W, r) = U(W + w0, r).

That is, if we keep the mechanism fixed and shift the distribution of values by a fixed amount,

bidder surplus remains unchanged. We also have that for anyW ≺ V , m(W ) ≺w m(W +w0). That

is, if the values are shifted upwards the optimal mechanism is less wasteful. Thus, for all W , we

have that:

U(W,m(W + w0)) ≥ U(W,m(W )).

3If π(t) is quasi-concave but not concave on its increasing segment, then (π(t) + w̄0(1 − t)) might be decreasing
and convex, which violates the assumption in Section 2.



Bidder-Optimal Information Structures February 9, 2024 68

And, in particular, we can conclude that:

U(W (tx |w0 ) + w0,m(W (tx |w0 ) + w0)) ≥ U(W ∗,m(W ∗)) = U∗, (74)

for all w0 ≥ 0.

We also have that in the limit w0 →∞,

tx(w0)→ 0 and m(W (tx |w0 ) + w0)→ q.

To verify this, note that we must have that for any information structure W̃ (t|tx, tz):

W̃ (0|tx(w0), tz(w0)) + w0 ≤ (W̃ (tx|tx(w0), tz(w0)) + w0)(1− tx(w0)).

But, in the limit, this is satisfied only when tx(w0)→ 0. We thus have that:

lim
w0→∞

U(W (tx(w0) |w0 ) + w0,m(W (tx(w0) |w0 ) + w0)) = max
tz∈[0,1]

U(W (t |0, tz ) , q) = Um. (75)

Combining (75) and (74) we get Um ≥ U∗.

If t1 < tm, we have that W (t |0, tm ) is non-increasing. We thus have that Um is attainable and

thus U∗ = Um. Since (40) is quasi-concave in tz, we have that when t1 > tm, then

W (t |0, t1 ) ≥ W (t |0, tz ) , for all tz ≥ t1.

Thus, the solution is W (t |0, t1 ) or W (t |tx, tz ) and in both cases α = 0.

Proof of Lemma 3 and Proposition 8. If N = 2, we have that s(t) is convex, so in this

case we have that tm = 0. We thus analyze N > 2. It is easy to see that tz = 0 and tz = 1 are not

optimal, so we must have an interior optimum that satisfies the first-order condition. To check that

tz = 1 is not optimal it suffi ces to note that this information structure generates 0 bidder surplus.

To check that tz = 0 is not optimal it suffi ces to note that s(t) is concave for low enough quantiles

so any conflating of small quantiles increases bidder surplus.

We now verify that the first-order condition can be written as follows:

q(tm)(tm + (1− tm) log(1− tm))

tm
−
∫ tm

0

q(t)

1− tdt = 0. (76)

Let α be the parameter that determines πw (t |tx, tz ) in (59). For every tz we have that:∫ 1

tx

πw (t |tx, tz )

1− t dt =

∫ 1

tx

V (t)dt.
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Taking the derivative with respect to tz we get:∫ tz

tx

π′(tz) + α− ∂α
∂tz

(t− tz)
1− t dt = 0.

We thus get:
∂α

∂tz
= −

∫ tz
tx

π′(tz)+α
1−t dt∫ tz

tx

−(t−tz)
1−t dt

. (77)

Taking the first derivative of (40), we get:

d

dtz

∫ 1

0

W (t |0, tz ) ds(t) = −
∫ tm

0

π′(tz) + α− ∂α
∂tz

(t− tz)
1− t

ds(t)

dt
dt.

Replacing ∂α/∂tz with (77), we get:

d

dtz

∫ 1

0

W (t |0, tz ) ds(t) = −(π′(tz) + α)

(∫ tz

0

1

1− t
ds(t)

dt
dt+

∫ tz
0

1
1−tdt∫ tz

0
−(t−tz)

1−t dt

∫ tz

0

(t− tz)
1− t

ds(t)

dt
dt

)
.

We can write this more compactly as follows:

d

dtz

∫ 1

0

W (t |0, tz ) ds(t) = −(π′(tz)+α)

(∫ tz

0

1

1− t

(
1− log(1− tz)

tz + (1− tz) log(1− tz)
(t− tz)

)
ds(t)

dt
dt

)
.

Integrating by parts, we get:

d

dtz

∫ 1

0

W (t |0, tz ) ds(t) = −(π′(tz) + α)

(
q(tz)−

tz
tz + (1− tz) log(1− tz)

∫ tz

0

q(t)

1− tdt
)
.

Rearranging terms, we get (76).

We thus define:

h(tz) ,
q(tz)(tz + (1− tz) log(1− tz)

tz
−
∫ tz

0

q(t)

1− tdt.

Since the first-order condition must be satisfied by some tz, we have that h(tz) has a root in

tz ∈ (0, 1). We now prove it has a unique root. We note that:

lim
tz↓0

h(tz) = 0,

and
dh(tz)

dtz
= −(N(tz − 1)− tz + 2)q(tz)((tz − 1) log(1− tz)− tm)

tz(tz − 1)
.
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We thus have that:
dh(tz)

dtz
= 0 ⇐⇒ tz =

N − 2

N − 1
.

Thus, h(tz) has a root and it has a unique root.

To verify the comparative statics, we note that:

d

dN

(∫ tz
0

q(t)
1−tdt

q(tz)

)
< 0.

Thus, the root is increasing in N .
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