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I. Introduction

One of the most enduring macroeconomic puzzles of the past several
decades is the pervasive slowdown in productivity growth across in-
dustrialized nations, despite breakneck advances in information and
communication technologies (ICT) and electronics. Figure 1 provides a
glimpse of recent breakthroughs in ICT and electronics by plotting the
distribution of patents granted over the past several decades.1 Two pat-
terns are evident from the figure: first, a rapid takeoff in the total num-
ber of patents in the 1980s; and second, a surge in the share of ICT and
electronics patents during the same time interval. Between 1990 and
2010, the total number of patents granted rose from 99,000 to 208,000,
and the combined number of ICT and electronics patents granted in-
creased by approximately 87,000, accounting for the bulk of the increase.
Figure 2 depicts the growth rate of total factor productivity (TFP) in the
US economy and in the leading Organisation for Economic Co-operation
and Development (OECD) economies in recent decades. Productivity
growth in the United States has been minimal since the mid-’00s, and it
has been slower still in many OECD countries, with the possible excep-
tion of Germany.
How can these facts be reconciled? The exponential advance of inno-

vations in ICT and electronics has led some commentators to conclude
that we are on the verge of a new age of abundance, or even “techno-
logical singularity,” driven by “superintelligent”machines (e.g., Kurzweil
2005; Diamandis and Kotler 2012; Bostrom 2014). Others looking at the
NBER Macroeconomics Annual, volume 38, 2024.
© 2024 National Bureau of Economic Research. All rights reserved. Published by The
University of Chicago Press for the National Bureau of Economic Research. https://doi
.org/10.1086/729196

https://doi.org/10.1086/729196
https://doi.org/10.1086/729196


154 Acemoglu, Autor, and Patterson
TFP data conclude that we have entered an age of slower growth because
the most impactful technologies have already been developed and ex-
ploited (e.g., Cowen 2011; Gordon 2017).2

This paper offers a potential reconciliation of these trends based on
the idea that technological advances over the past several decades have
been unbalanced across sectors and have thus created endogenous bot-
tlenecks, holding back aggregate productivity. We propose a simple
framework in which the development of new technologies or products
in a given sector requires simultaneous improvements in the quality of
several inputs. For example, breakthroughs in automotive technology
cannot be achieved solely with improvements in engine-management
software and safety sensors but will also require complementary im-
provements in energy storage, drivetrains, and tire adhesion. Conse-
quently, when some of those innovations, say batteries, do not keep
pace with the rest, we may simultaneously observe rapid technological
Fig. 1. Counts of US patents issued 1940–2010 and shares in (i) Electricity and Electronics
and (ii) Instruments and Information. This figure plots the evolution of the counts and
share (among all US utility patents) of Electricity and Electronics as well as Instruments
and Information patents. Specifically, the left-hand y-axis gives the count of US utility pat-
ents issued in each year (black line), and the right-hand y-axis corresponds to the share of
patents granted in each decade that are in Electricity and Electronics (black) and Instru-
ments and Information (gray). Instruments and Information is synonymouswith informa-
tion and communications technologies (ICT). A color version of this figure is available
online.
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progress in a subset of inputs and yet slow productivity growth in the
aggregate. The bottleneck created by slow progress in battery technol-
ogy, in this example, is endogenous in the sense that it is the advances
of nonbattery inputs that have caused batteries to become a bottleneck.
Our perspective also emphasizes how amore balanced distribution of

technological progress (and research and development) can improve
aggregate productivity performance. In fact, current bottlenecks may
offer the potential for significantly faster aggregate productivity growth:
rapid progress in these technologies could enable broader gains that are
held back at present.
Several transformative technologies of the past 3 decades illustrate

how bottlenecks emerge and how their alleviation can accelerate inno-
vation and growth. High-energy-density rechargeable batteries, which
power themobile electronics and electric vehicle industries (figuratively
and literally), provide a key example. Batteries were a bottleneck even
prior to the 1970s, when the best available technology for rechargeable
batteries (lead-acid electrochemistry) had low energy density, a slow
charging rate, a short lifecycle, and an unwelcome property of releasing
explosive hydrogen gas during recharging. Lead-acid batteries were
succeeded in the 1970s by nickel-cadmium and nickel metal hydride
(NiMH) cells, which enabled the first commercially successful gasoline-
electric “hybrid” car, the Toyota Prius, introduced in 1997. However,
the primary drive unit in the Prius remained a conventional gas engine;
Fig. 2. Time series for aggregate total factor productivity (TFP). This figure plots the time
series for aggregate TFP for the US private business sector and manufacturing (left panel)
and for selected Organisation for Economic Co-operation and Development (OECD)
countries (right panel). The US TFP in the left panel is normalized to 1 in 1987 and spans
1987–2017 (data from the Bureau of Labor Statistics Major Sector and Major Industry TFP
database). All TFP series are normalized to 1 in 1987 in the right panel as well and span
1987–2009 (data from the 2012 release of the EU KLEMS Growth and Productivity Ac-
counts). A color version of this figure is available online.
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itsNiMHbattery provided only supplemental electric propulsion and re-
generative braking capacity. The battery bottleneck was substantially
overcome by lithium-ion batteries, invented in 1973 and refined in the
1980s. The lithium-ion battery’s high energy density not only enabled
fully electric vehicles formass production but also catalyzed a host of un-
foreseen innovations: a surge in onboard automotive processing power,
enabling vehicle autonomy; battery-powered drone aircraft, nowused in
weather forecasting, emergency response, construction planning, film-
making, and building inspection; and the emerging electric passenger-
airplane industry. In awarding theNobel Prize in Chemistry 2019 to John
B. Goodenough, M. Stanley Whittingham, and Akira Yoshino for their
invention of the lithium-ion battery, the Nobel committee observed that
their work had enabled the “wireless revolution.”3

Even more foundational to the current era is the transistor, an elec-
tronic switch that is capable of amplifying, switching, and rectifying
electrical signals (Park, Steigerwald, and Walker 1976). Through the
1950s, electromechanical switches and vacuum tubes were a clear bot-
tleneck. Though used in all kinds of electronic devices, telephone lines,
radios, transmitters, audio amplifiers, and early computers, they were
bulky, fragile, and slow (Sosa 2013). The transistor supplied a tiny, fast,
and (ultimately) very cheap, mass-produced alternative to vacuum tubes,
thus breaking the bottleneck that had impeded progress in technologies
as disparate as computers, long-distance telephones, and audio amplifi-
ers. Due to its extraordinary switching speed, the transistor also ushered
in the age of digital communications. Many of the central technologies of
the present—the internet, artificial intelligence (AI), mobile computing,
digital imaging, autonomous vehicles—are transistor-dependent innova-
tions that were largely unforeseen prior to digital switching. The transis-
tor is estimated to be the most-manufactured device in history, at 13 sex-
tillion (1021) units to date, with billions more produced each day (Laws
2018; Iancu 2019). The transistor’s immense footprint is also visible in fig-
ure 1, where the patenting surge in electronics and ICT would not have
been feasible without this breakthrough technology.
The Global Positioning System (GPS) constitutes a third innovation

that broke a technological bottleneck and enabled a suite of technologies
that have become foundational to modern life. Historically, navigating
an offshore or airborne vessel required either sight lines to charted ob-
jects or a combination of optical instruments, precise clocks, and de-
tailed tables to track progress. Traditional navigation was supplemented
with radio positioning systems in the 1970s, but these tools suffered from
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either poor accuracy or limited geographic coverage and hence did not
penetrate beyond military and commercial shipping applications. GPS
overcame these shortcomings and added a second crucial feature: time-
keeping with atomic-level accuracy. First launched in 1978, GPS satellites
now provide geolocation and date and time information to any GPS re-
ceiver on or near the earth. AlthoughGPSwas built by and for theUSmil-
itary, it was opened to worldwide public use in 1983, after a Korean com-
mercial airliner inadvertently navigated over Soviet airspace and was
shot down. In addition to breaking the geopositioning logjam, GPS en-
abled a set of highly consequential innovations that were surely not envi-
sioned by the military planners who commissioned the system. These in-
clude precision agriculture, mining, and oil exploration; atomic-precision
time information for synchronization of power transmission systems;
remote surveying for geology and weather prediction; and innumerable
consumer-facing services such as ride hailing, targeted advertising, and
object trackers.
We first outline a simple conceptual framework that helps formalize

the ideas embodied in the earlier examples. In our model, technological
advances (modeled as quality improvements) in a given sector depend
upon simultaneous improvements in the sector’s supplier industries.
Although advances in each upstream sector are potentially beneficial,
these advances are complements, so that an imbalance among them is
detrimental to further innovation. Our conceptual framework thus em-
phasizes that a balanced distribution of technological advances across
sectors is important for the viability of further innovations. This mech-
anism is distinct from a standardNeoclassical channel where changes in
input prices cause a sector to move along a fixed production possibility
frontier. Our framework yields a simple estimating equation that links
growth in sectoral TFP to both the average TFP and the dispersion (var-
iance) of TFP among that sector’s inputs. We estimate this equation us-
ing 462 manufacturing industries between 1977 and 2007 and also for
the entire US economy between 1987 and 2007 by combining our man-
ufacturing data with 42 nonmanufacturing industries.
Our estimates indicate that greater dispersion of TFP growth among

an industry’s suppliers exerts a powerful negative influence on its own
growth opportunities. Our preferred specification suggests that dou-
bling the variance of input-supplier TFP growth for a sector is associated
with about 0.9 percentage points slower TFP growth for that sector.
We further document that, as conjectured, the dispersion of TFP

growth among key industries has increased significantly over the past
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several decades. Our estimates suggest that this higher dispersion can,
in an accounting sense, explain essentially all of the aggregate produc-
tivity slowdown in manufacturing between the 1970s and 2007. For ex-
ample, our results imply that if the cross-industry dispersion of TFP
growth inmanufacturing had remained at the 1977–87 level, then aggre-
gate TFP growth in manufacturing would have been slightly faster
(rather than considerably slower) in 1997–2007 than in either of the pre-
vious 2 decades.
Our methodology also clarifies which sectors are major bottlenecks

and singles out a number of industries—including pharmaceutical prep-
aration, basic inorganic chemicals, electronic connectors, and surface
active agents—as the leading bottlenecks. According to our results, a
20% decrease in the TFP growth of the 10 fastest-growing industries
and a simultaneous increase in the TFP growth of each of the bottom
50% of industries—so as to keep average upstream TFP growth the
same—would have led to 0.6 percentage points higher aggregate TFP
growth in manufacturing. In addition, our estimates reveal that surgical
and medical instruments, gas engines, and industrial valves are among
the most consequentially bottlenecked sectors—meaning that they are
large contributors to gross domestic product (GDP) but are inhibited
by high TFP growth dispersion among their suppliers.
We confirm that these empirical patterns are broadly robust. They

hold for the entire economy, and within the manufacturing sector
(where TFP is better measured), they are present in weighted and un-
weighted specifications, in different subperiods, with varying additional
controls, and with alternative measures of productivity dispersion. We
also verify that these patterns are not driven by outliers, nor are they ex-
clusively due to the rapid advances in computers and electronics sectors
(though these sectors do play a central role in our results).
There is an obvious endogeneity concern in the results we present:

technological trends or productivity shocksmay affect supplier and cus-
tomer sectors simultaneously, which could cause us to conflate the im-
pact of sectoral linkages with correlated shocks. As a partial remedy to
this threat, we exploit international (non-US) technological opportuni-
ties as an external source of identification for the variance of supplier
TFP growth and obtain very similar results. We also document that it
is the contemporaneous dispersion of TFP among suppliers, not the fu-
ture dispersion, that predicts an industry’s own TFP growth.
Another important concern relates to whether these results could be

driven by relative price effects that change input intensity (e.g., less
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innovative inputs becomemore expensive and are used less intensively).4

We show that this is unlikely to be the case. For one, we document that
our results are driven by TFP, not by quantities and prices. More impor-
tant, we document a similar relationship in patents: sectors with greater
patenting variance across “idea suppliers” are less likely to patent them-
selves.5 We also establish the same relationship at the firm level: firms
facing greater variance of patenting activity across the patent classes
that they cite are less likely to patent themselves.
Finally, we document analogous patterns using international data

and establish that dispersion in productivity among key domestic and
international supplier industries has also been a major impediment to
productivity growth for several leading OECD economies.
We view our results as suggestive of a potentially important linkage

between (endogenous) productivity bottlenecks and productivity growth.
Although further work is needed to test whether unbalanced sectoral in-
novation is indeed constraining aggregate productivity growth, our
evidence raises the possibility of a more nuanced explanation for the
productivity slowdown experienced by industrialized nations than is
available in current literature. Our analysis further suggests that, fol-
lowing major breakthroughs in sectors acting as bottlenecks, there
should be an acceleration of both industry and aggregate productivity
growth.
A conceptual issue raised by our paper is whether the dispersion of

productivity growth across sectors is inefficiently unbalanced. High dis-
persion may result either from evolving technological opportunities or
from inefficient allocation of research effort across industries. Our strat-
egy is not geared toward identifying which allocation would be most
efficient. Nevertheless, our evidence indicates that a more balanced
trajectory of technological changewould generate substantial aggregate
gains.
Our paper is related to a small but growing literature on the causes

of the productivity slowdown. Alongside the views that productivity
growth is high but mismeasured or, alternatively, that good ideas are
becoming increasingly scarce, several other perspectives may help to
explain the productivity slowdown.6 First, and most closely related to
our work, several authors have argued that productivity growth from
new technologies, especially from new general-purpose technologies,
tends to lag the underlying breakthroughs substantially because the rele-
vant sectors only slowly discover how to harness new technological capa-
bilities. This idea was first proposed in the economics literature by David
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(1990) in the context of the effects of the electrification of American indus-
try, which David argued took place after considerable delays. It was fur-
ther elaborated by Bresnahan and Trajtenberg (1995) and Helpman and
Trajtenberg (1996), who proposed mechanisms for the slow emergence
of productivity gains from general-purpose technologies. Closer still
to our hypothesis, Brynjolfsson, Rock, and Syverson (2021) argue that
productivity gains from AI and other digital technologies will trace a
J-shaped curve because complementary investments and capabilities will
take time to develop. Our approach, emphasizing that imbalanced inno-
vation across sectors will act as a bottleneck, provides a specific mecha-
nism for extensive delays in the realization of productivity gains from
new technologies and platforms. Differently from these works, our paper
emphasizes how the extent and duration of the productivity slowdown
depend on the sectoral imbalance of innovation and the speed with
which breakthroughs can take place in lagging sectors—rather than just
slow adjustment in general-purpose technologies.
Second, Andrews, Criscuolo, and Gal (2016) provide evidence sug-

gesting that, although leadingfirms have continued to experience steadily
growing productivity, much of the aggregate productivity slowdown is
related to the poor productivity performance of nonleader firms across
various sectors and countries. Several otherworks have emphasized spe-
cific market imperfections or failures as contributing to the productivity
slowdown. These include barriers to innovation and entrepreneurship
(Decker et al. 2017; Aghion et al. 2019; Akcigit and Ates 2019); overin-
vestment in automation (Acemoglu andRestrepo 2019); insufficient gov-
ernment investment in research and development (Gruber and Johnson
2019); and patent rent-seeking by so-called nonpracticing entities (“trolls”),
which discourages further innovation (Cohen, Gurun, and Kominers
2016). Our explanation is complementary to these ideas but distinct in
its focus on productivity interactions across sectors rather than on sector-
specific or aggregate factors.
Conceptually, our framework builds on models of input-output (IO)

and idea linkages. Acemoglu and Azar (2020) provide a framework
where innovation depends on the endogenous combinations of inputs a
sector uses. Our approach here is related but emphasizes that innova-
tion depends on the advancement of (and the balance across) the set of
exogenously specified inputs. Our framework also relates to the motivat-
ing model in Acemoglu, Akcigit, and Kerr (2016), where patenting activ-
ity in a sector depends on the number of patents in “upstream” sectors
that the given sector typically cites, and to themore detailed investigation
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of differential knowledge flows over the ideas/citation network in the re-
cent work by Liu and Ma (2021). The key distinction between our ap-
proach and prior work is our focus on the drag that dispersion across
sectors imposes on aggregate innovation and productivity growth.
The rest of the paper is organized as follows. Section II presents a mo-

tivating conceptual framework that will guide our empirical explora-
tion. Section III overviews our data sources. Section IV presents our
main results, focusing on the variance of supplier TFP growth as the
measure of sectoral imbalance of innovation. This section also draws
out the quantitative implications of our estimates and establishes their
robustness. Section V provides several pieces of evidence that support
our claim that the variance of supplier TFP growth captures the effects
of imbalanced innovation across sectors. Section VI presents analogous
results for a cross-country panel, and Section VII concludes. Additional
information on our data, industry correspondences, and robustness
checks are presented in the online appendix, http://www.nber.org/data
-appendix/c14854/appendix.pdf.
II. Model

In this section, we provide a motivating conceptual framework, which
will then be used to derive our estimating equations.

A. Basic Setup

Our starting point is the idea that new product or quality innovations in
a sector depend on improvements in the quality of the inputs that they
use—a point emphasized by our case studies of technological bottle-
necks in the introduction. To develop this idea with minimal complex-
ity, we consider a framework that borrows elements from existing mod-
els of IO linkages (e.g., Long and Plosser 1983; Acemoglu et al. 2012; and
especially Acemoglu and Azar 2020) and also from canonical quality-
ladder models (e.g., Grossman and Helpman 1991; Aghion and Howitt
1992).
Suppose that there are N sectors, denoted by i 5 1, 2, ::: ,N. Assume

also that the production function of sector i at time t is

Yit 5 BiAitL
12Sj∈Si

aij

it

Y
j∈Si

Xaij

ijt: (1)

http://www.nber.org/data-appendix/c14854/appendix.pdf
http://www.nber.org/data-appendix/c14854/appendix.pdf
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Here, Yit denotes the output of sector i at time t, Ait is the productivity
of this sector at time t, and Bi is a normalizing constant.7 In addition,
each sector uses labor, Lit, and inputs that are necessary for production,
Xijt, which are those in the time-invariant set Si.8 For simplicity, these
inputs are assumed to be combined with a constant returns to scale Cobb-
Douglas technology, where aij are input shares and 1 2 Sj∈Siaij is the share
of labor in production.
We model technological improvements by using a quality-ladder

structure. In particular, we assume that Ajt 5 lnjt , where l > 1 and njt

are the number of innovations this sector has experienced in the past.
Each innovation, therefore, increases productivity by a factor of l.
Our critical assumption is that the arrival rate of innovations depends

on the distribution of input technologies that the sector uses:

fit 5 H S
j∈Si

aijh Ajt

� � !
, (2)

where ϕit denotes the arrival rate of innovations at time t, h and H are
monotone continuous functions, and we normalize Hð0Þ 5 0.9 Different
choices for these functions give different relationships between the dis-
tribution of a sector’s input quality and its innovation propensity. For
example, we could take hðxÞ 5 xr and HðxÞ 5 x1=r to obtain a constant
elasticity of substitution (CES) aggregator. Particularly important in this
context is whether the function h in equation (2) is convex or concave.
The former indicates that innovation in each sector is determined by its
most advanced inputs, which means that innovations across input sec-
tors are substitutes, implying that greater (mean-preserving) dispersion
of technological know-how across inputs helps innovation. Alternatively,
the concave case arises when innovations across different input sectors
are complements, so that greater (mean-preserving) dispersion hinders
innovation. We consider the concave case to be empirically relevant be-
cause it captures the intuitive idea, highlighted by the case studies in the
introduction, that new product and quality improvements require simul-
taneous improvements in a range of inputs, and that if some of the rele-
vant inputs fall behind, they will act as a bottleneck, slowing technologi-
cal progress.10 In both the convex and the concave cases, because h and
H are monotone, a higher level of technology for any input always helps
innovation in the sector in question.
A second-order Taylor expansion of the right-hand side of equa-

tion (2) around its mean gives
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fit ≈ H aijh �Aitð Þ 1 h00 �Aitð Þvarð aijAjt

� �
j∈Si

Þ
h i

,

where �Ait ; Sj∈SiaijAjt is the (cost-share weighted) mean of the pro-
ductivities of the inputs to sector i, and varðfaijAjtgj∈Si

Þ is the (weighted)
variance of those productivities. Next, taking a first-order expansion of
H around 0 and also approximating hð�AitÞ by h0ð�AitÞ�Ait gives

fit ≈ himean
�Ait 1 hivariancevarð aijAjt

� �
j∈Si

Þ, (3)

where himean ; H0ð0Þh0ð�AitÞ represents the effect of the mean productivity
of the technological advances across inputs, which we always control for
in our empirical work, while hivariance ; H0ð0Þh00ð�AitÞ captures the effect of
dispersion across inputs (holding the mean constant). Equation (3) will
be the basis of our empirical work. The estimates of the parameter hvariance
will show whether, in terms of our framework, the function h is convex
or concave. This coefficient will also indicate the extent to which the im-
balance of innovations across key input sectors in the economymay hold
down aggregate productivity growth.11

To illustrate this point succinctly, suppose that Si 5 S for all i and
some S ⊂ f1, ::: ,Ng and that aij 5 aj for all i and j ∈ S. Suppose also
that h is concave, so that hvariance ; H0ð0Þh00ð�AtÞ < 0, and we start with
Ajt 5 �At for all j ∈ S. Then, consider a mean-preserving spread of the
Ajt’s so that the weighted variance, varðfaijAjtgj∈Si

Þ, is given by j2. Equa-
tion (3) implies that the aggregate productivity of the economy will be
reduced by hvariancej

2. So, if j2 and hvariance are both large, there will be
a sizable negative impact on aggregate productivity.12

B. Endogenous Innovation Effort

It is straightforward to endogenize innovation and characterize the gen-
eral equilibrium.13 Although endogenous innovation does not play an
important role in our empirical work, it is nevertheless useful to consider
it to motivate our later discussion of potential inefficiencies from unbal-
anced innovative efforts.We add this channel to themodel bymodifying
equation (2) to

fit 5
1
g
H S

j∈Si

aijh Ajt

� � !12g

zgit, (4)

where g ∈ ð0, 1Þ and zit is research effort devoted to innovation in indus-
try i at time t (e.g., overall research spending or research-related resource
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use, such as scientific effort). This specification implies that there are
intratemporal diminishing returns to research effort in a given field,
which could arise from crowding out when multiple researchers simul-
taneously pursue similar ideas. We include 1=g as a constant in front of
the H function, for simplicity. Note also that the H function here repre-
sents a pure knowledge externality, and thus the fact that sector i builds
on the industries in the set Si does not generate additional profits for
these industries.
Suppose also that the per unit cost of research in industry i is ki, and

the reward to an innovation in the sector at time t is pit. The cost ki de-
pends on the opportunity cost of research-related resources in non-
research activities andmay also include sector-specific distortions, as well
asmisperceptions or fads among researchers (i.e., motivations of research-
ers to pursue a particular field beyond its social value). We interpret the
reward pit as a market outcome determined by prices, market sizes, and
markups (though here also, fads and misperceptions may affect rewards
as well).
Given this setup, privately optimal research effort devoted to sector i

at time t will be

z*it 5
pit

ki

� � 1
12g

H S
j∈Si

aijh Ajt

� � !
,

and thus

f*
it 5

1
g

pit

ki

� � g
12g

H S
j∈Si

aijh Ajt

� � !
, (5)

which is proportional to the exogenously specified success probability in
equation (2). This ensures that equation (3) applies as before and high-
lights that whether the probability of successful innovation is endoge-
nous or exogenous is not central for our empirical work.
Equation (5) emphasizes that, if the cost of research, ki, varies across

sectors for reasons unrelated to the social cost of innovation in sector i,
the unequal (unbalanced) rates of technological progress across sectors
could be inefficient. In such a scenario, policies that reduce the dispersion
of technological progress rates across sectors would improve the alloca-
tion of resources. For example, if the marginal cost of innovation were
the same across sectors, a social planner could reduce dispersion without
affecting the mean productivity of new innovations, thereby improving
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aggregate productivity (andwelfare). Conversely, if differences in ki across
sectors reflect differences in the social costs of innovation, then it may be
infeasible to reduce the sectoral dispersion of technological progress with-
out loweringmean productivity in the economy. Becausewe do not know
where differences in the rate of innovation across sectors come from, these
observations caution against drawing strong normative conclusions from
the results that follow.

III. Data Sources

The data sources that form the backbone of our paper combine time se-
ries for industry TFP growth with IO linkage data. For manufacturing
industries, we use data from the National Bureau for Economic Re-
search andCenter for Economic Studies (NBER-CES)Manufacturing In-
dustry Database.14 These data are sourced from the Annual Survey of
Manufacturers and include annual industry-level data for 1958–2011 on
output, employment, input costs, investment, capital stocks, TFP, and
industry-specific prices. We include 462 manufacturing industries, corre-
sponding to six-digit North American Industry Classification System
(NAICS) codes. In accordancewith the literature, TFP is defined as the re-
sidual change in real output after subtracting the (cost-share weighted)
change in each of five factors: capital, production labor, nonproduction
labor, energy, and nonenergymaterials. We supplement the manufactur-
ing data with annual TFP estimates for 42 nonmanufacturing industries,
corresponding to three-digit NAICS codes, from the Bureau of Labor Sta-
tistics (BLS)Major Sector andMajor Industry TFPdatabase 1987–2011. As
with the manufacturing data, TFP outside of manufacturing is defined
as the difference between real output growth and a shares-weighted com-
bination of growth in five inputs: capital, labor, energy, materials, and
purchased services.15

We construct IO tables using the detailed Make and Use tables pro-
vided by the US Bureau of Economic Analysis for 1977–2007, which are
available every 5 years, corresponding to the years of the Economic Cen-
sus. These tables provide information on the amount that each industry
produces of various commodities and the amount that they spendon each
commodity, respectively. From these two tables, we construct our basic
IO network, {aijt}, whose entries are the dollar value of inputs that indus-
try i uses from industry j at time t relative to the dollar value of its total
intermediate costs. Because each year’s release of these tables uses indus-
try coding particular to that year’s classification, we convert each table to
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a set of time-consistent NAICS-based industry codes, the details of which
are documented in the appendix, http://www.nber.org/data-appendix
/c14854/appendix.pdf. Table A1 presents summary statistics across up-
stream (supplying) and downstream (customer) industries. Panel A shows
results for only manufacturing industries 1977–2007, and panel B depicts
averages for all industries 1987–2007. In the former, we see that the av-
erage 5-year TFP growth across manufacturing sectors was 1.8 percentage
points. The average TFP growth of upstream manufacturing industries
is substantially higher, at 3.3 percentage points, reflecting the fact that more-
productive industries are usedmore intensely as intermediate inputs.
To explore innovation outcomes directly, we look at patent data,

starting from the Fung Institute Patent Data Project at the University
of California, Berkeley, which spans the years 1976–2016. These data in-
clude every patent application and patent granted by the US Patent and
Trademark Office (USPTO) during this time period. Although the data
do not include patents granted outside the United States, they contain
patents filed at the USPTO by non-US firms. The data include classifica-
tion codes, application dates, and (importantly) cross-citations to other
patents. Firm names and locations are cleaned using machine learning
and natural language processing (see Balsmeier et al. 2018 for additional
details on the disambiguation algorithm). The patent classification codes
refer to 633 unique Cooperative Patent Classification (CPC) classes. We
construct a time series that tracks the total number of patents in each
CPC class by application date, as well as a similar time series for the pat-
enting activity of each firm.16

We also use these data to construct theCPC-level citation network (what
Acemoglu et al. 2016 refer to as the “innovation network”), which repre-
sents the knowledge flows between CPC classes. Specifically, following
Acemoglu et al. (2016), we calculate a citation network, gcj, whose entries
are the fraction of citations to patents in CPC class j among total citations
of patents in CPC class c. To achieve greater precision and remove the
time-dependent measurement error problem introduced by the increasing
number of patents over time, we use the average number of citations for
each class over the entire sample. We exclude all within-CPC citations,
meaning citations by patents in CPC c to other patents within-CPC c.
Likewise, we construct firm-level citation networks. In this case, we

calculate a citation network, qkc, whose entries are the share of citations
by firm-k patents (i.e., patents that belong to firm k) to the patents of other
firms within the CPC class, c. We exclude all within-firm citations (i.e., ci-
tations by firm-k patents to other firm-k patents).

http://www.nber.org/data-appendix/c14854/appendix.pdf
http://www.nber.org/data-appendix/c14854/appendix.pdf
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Last, we supplement the domestic, US data with data for select Euro-
pean countries. We use data on value-added and TFP from the 2012 EU
KLEMSGrowth andProductivityAccounts. In this exercise,we use data
from 1987 to 2007 for 30 industries in Austria, Finland, France, Germany,
Italy, the Netherlands, Spain, and the United Kingdom. We combine
these data with country-specific IO tables from the Groningen Growth
and Development Centre (GGDC) World Input-Output Database for
2000. The relevant entry in the world IO table, aik,jl, is the share of inputs
for industry i in country k that came from industry j in country l.17 PanelC
of table A1 (http://www.nber.org/data-appendix/c14854/appendix
.pdf) presents the TFP growth for this sample. Overall, the average 5-year
TFP growth within this sample was 4.6 percentage points. For patenting
outside of the United States, we use Google Patents global patent data
fromLiu andMa (2021), which contains patents frommore than 40major
patent authorities around the world. Each patent is assigned to a geo-
graphical unit using the country of residence of the inventor, the country
of residence of the assignee(s), and country of the patent authority, in
that order. We construct the number of patents in each country in each
CPC code in each year, using the date of application for each patent.
We further restrict our attention to the 20 countries with themost patent-
ing over the sample period.

IV. Sectoral Imbalances and Productivity Growth

This section presents our main results, linking the TFP growth of an in-
dustry to the dispersion of productivity growth among its suppliers—
with this dispersion representing an imbalance under our hypothesis.
Concretely, we estimate a version of equation (3), derived earlier, using
data on 462 six-digit NAICS-based manufacturing industries between
1977 and 2007, and 42 three-digit nonmanufacturing industries during
1987–2007. We also report the quantitative implications of these esti-
mates and document their robustness to additional controls, different
sample periods, and sources of variation in productivity growth.

A. Main Results

Our main estimating equation is the empirical analogue of (3):

DTFPit 5 bmeanS
j
aijt21DTFPjt 1 bvarianceVAR DTFPjt

� �
1 X

0
it21bother 1 dt 1 εit

(6)
ð6Þ

http://www.nber.org/data-appendix/c14854/appendix.pdf
http://www.nber.org/data-appendix/c14854/appendix.pdf
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where t refers to 5-year time periods, DTFPit is the TFP growth of indus-
try i during the 5-year time interval denoted by t,

VAR DTFPjt

� �
; S

j
aijt21 DTFPjt 2S

j
aijt21DTFPjt

 !2

,

and Sjaijt21DTFPjt is the average TFP growth among the suppliers of in-
dustry i during the 5-year time period, calculated using the aijt21’s as
weights. Recall that aijt represents the ratio of industry i’s spending on
inputs from industry j relative to its total intermediate spending time t.
The variance of TFP growth among the suppliers of industry i is also
computed using these cost shares as weights. In addition, X

0
it21 denotes

a vector of other (predetermined) covariates, which in some specifications
includes sector fixed effects, introducing sector-specific linear trends; dt
denotes a full set of time dummies; and εit is a heteroscedastic and (poten-
tially) serially correlated error term, capturing all omitted factors.
This equation is comparable to our model-derived equation (3), with

several operational refinements. First, we use TFP growth as our primary
measure of innovation because we do not have direct measures (though
we will look at patenting as well). Second, instead of relating innovation
to the level of technology across inputs, as in equation (3), we link TFP
growth in each sector to the TFP growth rate across inputs, because the
level of TFP is not well defined. Third, we have included an error term
and additional covariates. Fourth, instead of the sector-specific coefficients
in front of the mean and the variance in equation (3), himean and hivariance, we
have imposed constant coefficients, which should be interpreted as local
average treatment effects.
Throughout, we always control for the mean effect of supplier TFP

growth, but the main coefficient of interest for our study is bvariance,
which captures the effect of supplier TFP growth dispersion (or innova-
tion dispersion, in the case of our patent analyses) on a sector’s productiv-
ity (innovation), holding constant themean of supplier TFP growth (inno-
vation). We expect this coefficient to be significantly negative if, as we
hypothesize, imbalances in the rates of technological progress across an
industry’s suppliers impose a productivity penalty on the industry.
Table 1 reports estimates of equation (6) for 462 six-digitmanufacturing

and 42 three-digit nonmanufacturing industries. Panel A is for manufac-
turing industries, where TFP estimates aremore reliable and available for
a longer time period. Panel B combines the manufacturing and the non-
manufacturing industries to include the full set of sectors. All models



Table 1
Relationship between Industry TFP Growth and Supplier TFP Growth

(1) (2) (3) (4) (5) (6) (7) (8)

A. Manufacturing Only

Input average .425 .810 .653 .676 .255 1.096 .530 .187
(.139) (.130) (.074) (.170) (.122) (.372) (.132) (.156)

Input
variance 2.744 2.912 2.617 2.624

Input bottom
decile (.121) (.118) .059 .378 (.255) (.198) .367

(.113) (.091) (.129)
Input top
decile 2.110 2.081 2.068

(.033) (.032) (.039)
Ind. fixed
effects no no yes no yes no yes yes

Industry
weighting None None None None None Nom. Sales Nom. Sales Nom. Sales

Observations 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772
R2 .108 .133 .371 .118 .361 .159 .598 .598

B. All Industries

Input average .343 .915 .780 .636 .387 .708 .365 .248
(.178) (.161) (.119) (.183) (.170) (.399) (.230) (.268)

Input
variance 2.905 21.087 2.303 2.712

Input bottom
decile (.158) (.191) .164 .422 (.280) (.280) .295

(.099) (.115) (.190)
Input top
decile 2.117 2.139 2.154

(.034) (.035) (.058)
Ind. fixed
effects No No Yes No Yes No Yes Yes

Industry
weighting None None None None None Nom. Sales Nom. Sales Nom. Sales

Observations 2,016 2,016 2,016 2,016 2,016 2,016 2,016 2,016
R2 .079 .102 .399 .090 .395 .033 .522 .531
Note: This table reports estimates of equation (6). The dependent variable is an industry’s
total factor productivity (TFP) growth in a 5-year period, and the two key right-hand-side
variables are mean and variance of TFP growth among that industry’s suppliers. Time
dummies are included in all regressions, and industry dummies (corresponding to linear
industry trends) are included in columns 3, 5, 7, and 8. Columns 1–5 report unweighted
ordinary least squares regressions, and columns 6–8 use the industry’s 1987 share of ship-
ments as weights. Panel A is for manufacturing industries only 1977–2007, and panel B is
for all industries 1987–2007. Industries are defined using 1997 North American Industry
Classification System codes. Standard errors are clustered at the industry level.



170 Acemoglu, Autor, and Patterson
include time fixed effects, and each specification includes an alternative
with industry fixed effects, allowing each industry to have its own linear
time trend in TFP. Odd-numbered columns include no covariates other
than time dummies, whereas even-numbered columns also include in-
dustry fixed effects, thus allowing each industry to have its own linear
time trend in TFP. The standard errors account for arbitrary heteroscedas-
ticity and serial correlation at the industry level throughout. Our baseline
regressions, shown in columns 1–5, are unweighted. We weight indus-
tries by their share of 1987 nominal sales in columns 6–8.
Column 1 shows the relationship between industry TFP growth and

mean supplier (upstream) TFP growth, focusing only on the first term
in equation (6).We detect a positive relationship betweenmean supplier
TFP growth and downstream industry TFP growth. Adding the vari-
ance term in columns 2 and 3 strengthens the effect of mean supplier
TFP growth and, more importantly, shows a precisely estimated and
quantitatively large negative relationship between the variance of sup-
plier TFP growth and industry TFP growth. For example, in our base-
line specification, column 2 of panel A, the coefficient estimate of the
variance term is 20.744 (standard error 5 0:121). Adding linear indus-
try trends in column 3 modestly increases this coefficient to 20.912
(standard error 5 0:118). When we include nonmanufacturing indus-
tries in panel B, the point estimates are similar and only slightly larger.
Figure 3 depicts the industry-level variation that produces these esti-
mates. Specifically, we report binscatters for the regressionmodel in col-
umn 2 of panel A. The left panel depicts the strong positive relationship
between average supplier TFP growth and downstream industry TFP
growth, and the right panel showcases the strong negative relationship
between the variance of supplier TFP growth and downstream industry
TFP growth.
The specification in equation (6) is a natural one, using the variance

term to capture the effects from supplier TFP growth dispersion, as in
our second-order approximation earlier. Nevertheless, it is useful to
see whether well-performing and poorly performing supplier sectors
both affect TFP growth. To investigate this question, columns 4 and 5 re-
place the variance termwith TFP growth in the 10th and 90th percentiles
of the (weighted) TFP distribution of suppliers (as we continue to con-
trol for mean supplier TFP growth). Consistent with our hypothesis,
holding mean supplier TFP fixed, higher bottom-decile supplier TFP
growth predicts faster own-industry TFP growth, whereas the top-
decile supplier TFP growth predicts slower own-industry TFP growth
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(with these relationships typically exhibiting statistical significance at
the 5% level or below).
Last, columns 6 through 8 replicate our main specifications, but

now using nominal industry sales in 1987 as weights. These weighted
estimates are very similar to the unweighted specifications. For ex-
ample, in column 6, the coefficient on the variance term is 20.617
(standard error 5 0:255), which is only a little smaller than the estimate
in the corresponding unweighted specification in column 2, 20.744.
Overall, the estimates in table 1 uniformly show a negative estimated

impact of TFP growth dispersion across a sector’s suppliers on own-
industry TFP growth. In terms of our motivating conceptual framework,
this suggests that productivity growth in a sector is held back when ad-
vances among its suppliers are unbalanced. In the rest of the paper, we
demonstrate the robustness of these results and document a similar rela-
tionship in innovation activity. Before moving on to innovation, we draw
out the quantitative implications of the productivity growth estimates in
the next subsection.

B. Quantitative Implications

The results in table 1 imply that an imbalance in productivity growth
across sectors couldbe adrag onaggregate growth. Temporarilydeferring
Fig. 3. Bottleneck patterns: distribution of upstream TFP growth. This figure reports
binscatters (50 bins) for the regressionmodel in table 1 frompanelA, column 2 for the (con-
ditional) relationship betweenmanufacturing TFP growth and either themean (left panel)
or the variance (right panel) of supplier TFP growth. Specifically, the left panel plots the
residuals from independent regressions of the x- and y-axis variables on the supplier var-
iance of TFP growth, with time fixed effects. The right panel plots the residuals from in-
dependent regressions of the x- and y-axis variables on the supplier average of TFP
growth, with time fixed effects. A color version of this figure is available online.
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robustness checks, we explore whether such sectoral imbalances could
be a quantitatively meaningful contributor to the productivity slow-
down in the United States. For this to be the case, two conditions must
be satisfied. First, the coefficient estimates in table 1 must be economi-
cally large. Second, the dispersion of sectoral TFP growth must have in-
creased over the decades during which we witnessed the productivity
slowdown.
Figure 4 confronts the latter issue by plotting the evolution of the var-

iance of TFP acrossmanufacturing industries. PanelA of figure 4 depicts
the simple variance of TFP growth across all manufacturing industries,
and panels B and C show the average variance of industry supplier TFP
growth: for manufacturing only and for the economy overall, respec-
tively. Both within upstreammanufacturing and across all manufactur-
ing industries, there was a striking rise in the dispersion of sectoral pro-
ductivity growth in the US economy over the past several decades. This
is true both overall and when weighting industries by their input share.
Quantitatively, the TFP variance in manufacturing was about 0.002 be-
fore themid-1970s and now is three times as large, around 0.006. As sug-
gested by the patenting time series in figure 1, the electronics and com-
puter sector accounts for a large portion of the increase in TFP variance
through the 1990s. The right-hand-side plots of figure 4 document that
when this sector is taken out, the rise in the variance of TFP growth is
noticeably smaller—though still present—in recent decades. When we
zoom out to include nonmanufacturing supplier industries, there is a
similarly large increase in the variance of TFP growth from the 1980s
to the present, but the pattern is not monotone, perhaps reflecting the
fact that TFP is measured less reliably outside of manufacturing.
How much of the productivity slowdown can be explained by the ris-

ing variance of TFP growth? Figure 5 addresses this question by applying
our (nominal sales-) weighted estimates reported in column 7 of panelsA
and B in table 1. We find a sizable productivity penalty from TFP growth
dispersion. The estimates imply that TFP dispersion reducedmanufactur-
ing TFP growth significantly in both the 1987–97 and the 1997–2007 peri-
ods, as shown by the gray bars in the figure. If, counterfactually, input
TFP variance remained at its 1977–87 value throughout the sample, then
during 1987–97, instead of a 0.8 percentage point slowdown in aggregate
TFP growth, wewould have seen a 1.5 percentage point faster growth (as
shown by the counterfactual patterned bar). Similarly, during 1997–2007,
instead of themuch slower 3.3%average TFPgrowth, theUSmanufactur-
ing sector is predicted to have had only amild TFP slowdown, to 6.5%. In



Fig. 4. Variance of total factor productivity (TFP) growth. This figure plots the variance
of TFP across manufacturing industries, variance of supplier TFP across manufacturing
industries, and variance of supplier TFP across all industries. Each industry observation
is weighted by its share of total nominal sales. Panel A is for the variance of TFP growth
across manufacturing industries for each 5-year period, spanning 1958–2011 (averaged
into 15-year bars). Panel B reports the variance of supplier TFP growth across 462 six-digit
North American Industry Classification System (NAICS)-based manufacturing indus-
tries, again for 1977–2007 (averaged into 10-year bars). PanelC reports the variance of sup-
plier TFP growth across all industries (adding 42 three-digit nonmanufacturing indus-
tries). Figures on the right exclude the computer and electronics sector (NAICS 334). In
panels B and C, the input-output network is defined at the beginning of each 5-year period.
A color version of this figure is available online.
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ig. 5. Magnitude of bottleneck estimates. This figure reports actual and counterfactual
tal factor productivity (TFP) growth, and the contribution from supplier variance, for
anufacturing and all industries for the periods 1977–87, 1987–97, and 1997–2007. The
ounterfactuals are based on regression estimates from the column 7 specification of ta-
le 1. Counterfactual TFP (patterned bars) is computed from the regression coefficients
s the TFP growth that would have been observed in the given period if the variance of
FP growth had remained at the same level as during the initial period (1987–92). Specif-
ally, we calculate counterfactual TFP growth by subtracting the contribution of the in-

crease in supplier variance relative to 1977–87; the 1977–87 supplier variance is shown
with the black bar, and by construction, counterfactual TFP growth in 1977–87 is equal
to actual growth in this period. A color version of this figure is available online.
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the lower panel of this figure, we see similar patterns for all industries.
Thus, the quantitatively sizable estimates in table 1 can potentially ac-
count for the bulk of the US productivity slowdown in recent decades.
We emphasize that these magnitudes are suggestive but far from defin-
itive, given the limitations of our measurement and identification.
To provide more detailed insight into these aggregate relationships,

we explored the identities of the sectors that have contributed to this
quantitative effect. The variance of supplier TFP in manufacturing in-
creased over this period both because lagging industries failed to grow
and because leading industries pulled away from the rest. PanelA of ta-
ble 2 lists illustrative examples of the fastest-growing industries, which
are defined as those that have had the largest impact on supplier TFP
variance between 1997 and 2007. These industries include electronic
Table 2
Examples of Limiting and Limited Industries

Panel A: List of Select Fastest-Growing Industries That Drive Rising TFP Variance

Semiconductor and related devices
Electronic computers
Iron and steel mills
Computer storage devices
Motor vehicle electrical and electronic equipment

Panel B: List of Select Bottleneck Industries

Petroleum refineries
Pharmaceutical preparation
Turbine and turbine generator set units
Printed circuit assembly
Basic organic chemicals

Panel C: List of Select Limited (Bottlenecked) Industries

Surgical and medical instruments
Relay and industrial controls
Gasoline engine and engine parts
Guided missile and space vehicles
Industrial valves
Note: Bottleneck industries (panel B) are defined as those for which a 10% increase in total
factor productivity (TFP) would result in the largest aggregate reduction in the variance of
TFP growth across all supplying industries (i.e., VAR(DTFPjt) from eq. [6]). Fastest-growing
industries (panelA) are conversely defined as those for which a 10% increase in TFPwould
result in the smallest aggregate reduction in the variance of TFP growth across supplying
industries. Limited (“bottlenecked”) industries (panel C) are defined as the 50manufactur-
ing industries with the highest variance of TFP among suppliers, after limiting to the 100 in-
dustries with the highest value-added. Sample is restricted to 462 manufacturing industries
1997–2007. See table A2, http://www.nber.org/data-appendix/c14854/appendix.pdf, for
an ordered list of the top 10 industries in each category 1997–2002 and 2002–07.

http://www.nber.org/data-appendix/c14854/appendix.pdf
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computers, computer storage devices, and semiconductors. To gauge
the economic leverage of these outlier industries, consider a hypotheti-
cal mean-preserving contraction of TFP growth dispersion: reduce the
TFP growth of the 10 fastest-growing industries between 1997 and
2007 by 0.2 percentage points and increase the TFP growth of each of
the bottom 50% of industries just enough to keep the average TFP growth
constant.18 In this scenario, the variance of supplier TFP growth between
1997 and 2007would have been 23% lower, and aggregate TFP growth in
manufacturing would have been 0.6 percentage points higher.
The remaining panels of table 2 round out the evidence on bottleneck

industries. Panel B reports illustrative examples of slow-growing indus-
tries that became the biggest bottlenecks over the same time period.
These include pharmaceutical preparation, basic organic chemicals,
printed circuit assembly, and turbine generators. Panel C reports exam-
ple industries that are most bottlenecked—that is, held back by the un-
even innovation across their suppliers. These include surgical and med-
ical instruments, gas engines, and industrial valves.
C. Endogeneity Concerns

Because the estimates in table 1 are obtained from regressions of an
industry’s TFP growth on the contemporaneous TFP growth of its
suppliers, productivity shocks that are common across several indus-
tries might generate mechanical correlations between our right-hand-
side and left-hand-side variables. In this subsection, we explore two
strategies that, in net, lend support to the case that these results are in-
formative about the effects of productivity bottlenecks.
Our first strategy is to isolate industry productivity changes that em-

anate from common technological developments across several ad-
vanced economies. We do this in table 3 by exploiting changes in indus-
try TFP in major OECD countries, as reported by the 2012 EU KLEMS
Growth and Productivity Accounts. For this exercise, we focus on all
504 industries (both manufacturing and nonmanufacturing), mapped
to 29 EU KLEMS industries.19 In panel A, we use the mean and variance
of supplier TFP in France, Germany, and the United Kingdom as instru-
ments for the corresponding variables in the United States. To purge
measurement error in these instruments, panel B uses the rank of TFP
growth by industry within-country. In both panels, columns 1 and 2
present the baseline ordinary least squares (OLS) results, and columns 3
and 4 depict two-stage least squares (2SLS) estimates.
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The first-stage F-statistics are given at the bottom of panelsA and B in
table 3; these are somewhat low in both panels (the full first stages are
reported in table A8, http://www.nber.org/data-appendix/c14854
/appendix.pdf). This motivates the limited information maximum like-
lihood (LIML) estimates presented in columns 5 and 6, which are consis-
tent even in the presence of weak instruments. These estimates confirm
that our findings are not driven by weak instruments.
Table 3
Country-Specific Instruments

OLS Estimates IV Estimates

(1) (2) (3) (4) (5) (6)

A. Average TFP Growth

Upstream average .951 .780 1.369 1.416 1.387 1.509
(.232) (.119) (.363) (.655) (.378) (.758)

Upstream variance 2.876 21.066 2.902 2.887 2.897 2.795
(.155) (.135) (.385) (.527) (.391) (.588)

Estimate OLS OLS 2SLS 2SLS LIML LIML
Ind. fixed effects No Yes No Yes No Yes
Observations 2,478 2,478 2,478 2,478 2,478 2,478
R2 0 0 0 0 0 0
First-stage F-stat 1.38 .63 1.38 .63

B. Rank of TFP Growth

Upstream average .951 .780 .928 1.093 .928 1.094
(.232) (.119) (.338) (.348) (.342) (.349)

Upstream variance 2.876 21.066 2.667 21.480 2.664 21.482
(.155) (.135) (.445) (.661) (.449) (.665)

Estimate OLS OLS 2SLS 2SLS LIML LIML
Ind. fixed effects No Yes No Yes No Yes
Observations 2,478 2,478 2,478 2,478 2,478 2,478
R2 0 0 0 0 0 0
First-stage F-stat .8 2.1 .8 2.1
Notes: This table reports instrumental-variables (IV) estimates of equation (6) for all indus-
tries 1982–2007. The dependent variable is an industry’s total factor productivity (TFP)
growth in a 5-year period, and the two key right-hand-side variables aremean and variance
of TFP growth among that industry’s suppliers. Excluded instruments are mean and var-
iance of supplier TFP growth in France, Germany, and the United Kingdom. All columns
report unweighted regressions. Time dummies are included in all columns, and industry
dummies (corresponding to linear industry trends) are included in even-numbered col-
umns. Columns 3 and 4 report two-stage least squares (2SLS) estimates, and columns 5
and 6 report limited information maximum likelihood (LIML) estimates. Panel A defines
the upstream moments, taking the average and variance of TFP growth across industries.
In panel B, we rank industries in each country according to their TFP growth and calculate
the input-share weighted average and variance of TFP ranks. Standard errors are clustered
at the aggregated KLEMS industry level. OLS 5 ordinary least squares.

http://www.nber.org/data-appendix/c14854/appendix.pdf
http://www.nber.org/data-appendix/c14854/appendix.pdf
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The instrumental-variables (IV) estimates of the relationship between
industry TFP growth and supplier TFP mean and variance correspond
closely to our earlier OLS estimates. In both panels, the OLS and IV es-
timates are very similar across columns 1–2 and 3–4. For example, in col-
umns 1 and 3 of panelA, which do not include industry fixed effects, the
OLS coefficient on the variance term is 20.876 (standard error 5 0:155),
and the IV estimate for the same variable in the same specification is
20.902 (standard error 5 0:385). The variance term estimates are also
quite close in columns 2 and 4, where we add industry fixed effects. We
see a similar pattern in panel B when we exploit the variation in the rank
ofTFPgrowth:20.667 (standard error 5 0:445) for the IVestimatewithout
industry fixed effects in column 3 and21.480 (standard error 5 0:661) for
the IVestimatewith industryfixed effects in column4.TheLIMLestimates
in columns 5 and 6 are also comparable. For example, in panel B, the var-
iance term’s coefficient estimate is 21.482 (standard error 5 0:665) with
industry fixed effects—similar to the 2SLS estimates in column 4 and the
OLS estimates in column 2.
The congruence between the baseline OLS estimates and the IV esti-

mates that exploit TFP changes in other leading economies bolsters
our confidence that these results are not driven by shocks that are com-
mon across US industries and their suppliers. We also note that because
the IV coefficient estimates are similar to the OLS estimates from table 1,
the implied quantitative magnitudes are comparable as well.
Panel A of table 4 explores whether there is a correlation between fu-

ture average and variance of TFP across suppliers and an industry’s cur-
rent TFP growth. Such a relationship would be concerning for the inter-
pretation of productivity bottlenecks as a constraint on TFP growth.
Across the eight columns (the first four for manufacturing industries
and the last four for all industries), we do not see any evidence that fu-
ture variance of TFP growth of suppliers has a negative relationship
with current TFP growth of an industry.Whenwe focus on all industries
and look at the relationship between future variance and current TFP
growth, the correlation is positive, but it disappears when we include
our main regressors, contemporaneous average and variance of TFP
across suppliers. It is also zero across all specifications for manufactur-
ing industries. This pattern is reassuring for our overall interpretation.
Panel B of the same table explores whether a similar relationship ex-

ists between the variance of TFP growth among an industry’s customers
and its own TFP growth. Such a correlation is a distinct possibility, be-
causemany industries have customers and suppliers that are overlapping.
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The general pattern is that customer variance is also negatively correlated
with an industry’s TFP growth, but typically only when it is entered by it-
self (without the variance of TFP among input suppliers). When both sets
of variables are included, the coefficient on customer variance becomes
less significant and smaller, whereas the variance of TFP across input
suppliers remains negative and significant. This pattern is broadly sup-
portive of our overall interpretation, even if it raises the possibility that
in some specifications, there is a high enough correlation between down-
stream and upstream variances that we cannot rule out additional effects
working from customers’ TFP growth.
PanelC of table 4 investigateswhethermean-reversion dynamicsmay

be confounding our estimates. In particular, if TFP growth is serially
correlated, then failing to account for this could lead to a spurious
Table 4
Relationship between Industry TFP Growth and the Distribution of TFP Growth

Manufacturing Industries All Industries

(1) (2) (3) (4) (5) (6) (7) (8)

A. Future Supplier TFP Growth

Future input average .166 .154 2.006 .083 2.003 .016 2.171 2.063
(.145) (.123) (.079) (.077) (.178) (.168) (.110) (.104)

Future input variance .065 .011 2.010 2.066 .244 .239 .343 .149
(.098) (.120) (.101) (.103) (.133) (.156) (.158) (.146)

Input average .787 .670 .867 .752
(.121) (.076) (.158) (.116)

Input variance 2.810 2.919 2.982 21.061
(.124) (.122) (.163) (.186)

Ind. fixed effects No No Yes Yes No No Yes Yes
Industry weighting None None None None None None None None
Observations 2,772 2,772 2,772 2,772 2,016 2,016 2,016 2,016
R2 .085 .137 .334 .371 .073 .106 .375 .399

B. Customer TFP Growth

Customer average .626 .499 .499 .367 .460 .344 .383 .280
(.066) (.066) (.074) (.078) (.077) (.078) (.102) (.099)

Customer variance 2.503 2.302 2.796 2.529 2.443 2.264 2.907 2.662
(.200) (.236) (.161) (.151) (.257) (.314) (.265) (.254)

Input average .466 .454 .765 .687
(.123) (.083) (.173) (.122)

Input variance 2.566 2.634 2.778 2.784
(.127) (.125) (.178) (.201)

Ind. fixed effects No No Yes Yes No No Yes Yes
Industry weighting None None None None None None None None
Observations 2,769 2,769 2,769 2,769 2,015 2,015 2,015 2,015
R2 .157 .173 .373 .387 .093 .115 .393 .408

Continued
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relationship between supplier TFP variance and own TFP growth. Panel C
addresses this issue by including the lag of own TFP growth, as well as
lagged input average and variance terms (in some specifications). Over-
all the results prove quite robust, and the statistical significance and
quantitative impact of the input variance termare hardly affected. For ex-
ample, in specifications that include only the lagged dependent variable,
the input variance has a coefficient of 20.747 (standard error 5 0:115)
for manufacturing industries and 20.923 (standard error 5 0:152) for
all industries, similar to our baseline findings in table 1 in both cases.
The estimates are again similar when we include lagged input average
and variance terms.
Table 4
(Continued)

Manufacturing Industries All Industries

(1) (2) (3) (4) (5) (6) (7) (8)

C. Lagged TFP Growth: Dependent Variable
and Supplier Metrics

Input average .641 .637 .509 .530 .915 .921 .724 .744
(.101) (.097) (.077) (.081) (.151) (.153) (.117) (.121)

Input variance 2.678 2.715 2.753 2.776 2.923 2.939 2.889 21.014
(.111) (.112) (.121) (.126) (.152) (.163) (.173) (.183)

Lagged input average .056 .208 .069 .330
(.110) (.085) (.137) (.112)

Lagged input variance .015 2.471 2.049 2.793
(.146) (.130) (.195) (.177)

Lagged dep. var. .089 .086 2.255 2.280 .070 .066 2.362 2.391
(.099) (.103) (.042) (.045) (.115) (.122) (.045) (.050)

Ind. fixed effects No No Yes Yes No No Yes Yes
Industry weighting None None None None None None None None
Observations 2,310 2,310 2,310 2,310 1,974 1,974 1,974 1,974
R2 .129 .130 .418 .425 .107 .108 .464 .476
Note: This table reports estimates of equation (6). The dependent variable is an industry’s
total factor productivity (TFP) growth in a 5-year period, and the right-hand-side variables
are mean and variance of TFP growth among that industry’s suppliers, plus lead terms,
mean, and variance of TFP growth among the industry’s customers, and lagged dependent
variables. Time dummies are included in all regressions, and industry dummies (corre-
sponding to linear industry trends) are included in columns 3, 4, 7, and 8. Columns 1–4
are for manufacturing industries 1977–2007 and columns 5–8 for all industries 1987–
2007. All columns report unweighted ordinary least squares regressions. In addition to
the mean and variance of TFP growth among an industry’s suppliers, panel A includes
the 5-year lead of the same variables. Panel B includes the mean and variance of TFP
growth among the industry’s customers. Panel C includes the 5-year laggedmean and var-
iance of TFP growth among the industry’s suppliers and the lag of the dependent variable
(the industry’s TFP growth rate). Standard errors are clustered at the industry level.
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D. Robustness

Table 5 further investigates the robustness of our results to a battery of
controls and specifications. For brevity, we focus on the manufacturing
sample and report analogous results for all industries in the appendix
(see table A7, http://www.nber.org/data-appendix/c14854/appendix
.pdf). PanelA documents robustness for the specificationwithout indus-
try fixed effects, and panel B includes industry fixed effects that allow for
linear trends in industry TFP.
For ease of reference, columns 1 and 2 report our unweighted and

(nominal sales-) weighted specifications from table 1, which include
only themean and the variance of TFP aswell as time dummies. The rest
of the table focuses on our unweighted specification. Column 3 esti-
mates the same models but now using 10-year periods rather than the
5-year intervals in table 1. This specification purges higher-frequency
variation in TFP and focuses on longer-term variation. The results from
these models are similar to the baseline estimates.
Our estimating equation (3) defines sectors that are falling behind

as those that have relatively slow TFP growth in the contemporaneous
5-year period. However, if high variance in the current period reflects
mean reversion following rapid growth in the recent past, this would
not correspond to an imbalance but rather to a potential rebalancing.
Column 4 checks this possibility by adding the covariance between
the supplier TFP growth in the current and the prior periods to our spec-
ification.20 Intuitively, this covariance term accounts for potential per-
sistence and reversal patterns in industry-level TFP changes. We find
that the covariance of TFP across periods does not meaningfully affect
the relationship of primary interest. The coefficient on the variance term
in panel A is only slightly larger, 20.640 (standard error 5 0:127), and
the covariance term is relatively small and imprecisely estimated. The
estimate on the covariance term is larger and statistically significant in
panel B, but the coefficient on the variance of upstream TFP growth re-
mains unaffected by the inclusion of this covariance term.We infer from
these results that the first and secondmoments of the upstream TFP dis-
tribution provide informative measures of sectoral imbalances.
The subsequent columns of table 5 provide additional robustness

checks. Another factor that could affect measured industry TFP is
changing import penetration. Column 5 controls for average imports
fromChina by other countries in the industry and in the input-weighted
average of the supplying industries (from Autor, Dorn, and Hanson

http://www.nber.org/data-appendix/c14854/appendix.pdf
http://www.nber.org/data-appendix/c14854/appendix.pdf
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2013), addressing the concern that Chinese import penetration may itself
affect productivity growth (e.g., Autor et al. 2020). Accounting for imports
does not appreciably change the coefficient on supplier TFP variance.21

We noted the importance of the electronics and computer sectors ear-
lier. Column 6 confirms that the negative relationship between industry
TFP growth and supplier TFP dispersion holds even when computers
and electronics manufacturing (NAICS 334) is excluded from the esti-
mation sample as well as from the calculation of upstreammetrics.With
these key sectors excluded, the variance term is less precisely estimated,
as expected. Nevertheless, it remains statistically significant at the 5%
level or below in all of our specifications: 21.231 (standard error 5
0:587) in panel A and21.197 (standard error 5 0:624) in panel B. These
estimates reveal that our hypothesized mechanism is present even when
the ICT and electronics sectors are excluded, but also that the ICT and
electronics sectors showcase our mechanism and contribute substantially
to its identification and quantitative implications (as corroborated by the
examples in table 2).
Column 7 shows a similar relationship to our baseline results when

we estimate a robust regression that downweights outliers that have a
major effect on the slope of the relationship between upstream TFP var-
iance and downstream TFP growth. Notice that in this case, the stan-
dard error of the input variance term is much smaller, highlighting that
outliers were, indeed, reducing the precision of our estimates, though
not affecting their magnitudes much.
Column 8 confirms that the results are again similar when we use a

fixed IO matrix, rather than the time-varying IO matrix from our base-
line specification. Column 9 probes robustness to our definition of input
shares. Here,we define upstream shares,aijt21, as total-cost shares rather
than as intermediate-cost shares (as in our baseline specification). These
two share measures will differ to the extent that the intermediate share
of total costs varies across sectors. The results are once again very sim-
ilar. Finally, column 10 excludes own three-digit industry when con-
structing the IO network. This does change the magnitude of the coeffi-
cient estimates but not their signs or statistical significance. Table A7
(http://www.nber.org/data-appendix/c14854/appendix.pdf) shows
analogous estimates for the entire economy, rather than just themanufac-
turing sector. These results are again similar to our baseline estimates.
Because our empirical analysis is confined to the 462manufacturing (or

the 504 total) industries, our estimates will not capture any imbalances in
innovation or productivity growth that happens at more-disaggregated

http://www.nber.org/data-appendix/c14854/appendix.pdf
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levels. To explore whether these more-micro imbalances may also matter,
and to further probe the robustness of our results, in the appendix we use
estimates of within-industry, across-establishment TFP growth from the
USCensus Bureau’sDispersion Statistics onProductivity. Thesemeasures
of dispersion have also increased during our sample period, but table A3
documents that the average upstream TFP growth dispersion among in-
put suppliers, when added to our regression, is not statistically significant
and does not change the relationship between our measure of supplier
TFP growth dispersion and own TFP growth.
A final concern is that TFP growth estimates from the NBER-CES

manufacturing data do not allow for fully subtracting the contribution
of intermediate inputs, and this might be one reasonwhy they are lower
than estimates at more-aggregated levels that incorporate such correc-
tions. To verify that this aspect of the data is not responsible for our re-
sults, in tables A4–A6 we repeat our main analysis (in particular, the re-
gressionmodels and tables 1–4) using an adjusted TFP series. This series
is computed using factor shares for each disaggregated industry that are
adjusted by a factor calculated to equate the factor shares at the three-
digit industry level in the NBER-CES data with those in the National
Income and Product Accounts data. We apply the same factor to all dis-
aggregated industries in our data that belong to the same three-digit in-
dustry.22 These results show very similar patterns to our main estimates.
In summary, these results confirm that the negative relationship be-

tween industry TFP growth and supplier TFP variance is statistically
significant, pervasive, and largely unaffected by the inclusion of a vari-
ety of potential confounders.

E. Prices, Quantities, and Productivity

Could these patterns be explained by mismeasurement of TFP? In a
standard Neoclassical setting, industries benefit when the productivity
of their suppliers increases because this reduces input costs (e.g.,
Acemoglu et al. 2012). If TFP is measured correctly, it will be unaffected
by fluctuations in employment, demand factors, and input costs that in-
duce industries to move along (rather than changing) their production
possibility frontiers. If TFP ismismeasured, however, theseNeoclassical
effects could erroneously spill over to TFP estimates. If, in addition, elas-
ticities of substitution between inputs are nonunitary, as explored in
Atalay (2017) and Baqaee and Farhi (2019), changes in sectoral produc-
tion may affect our TFP estimates and confound our results.
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We investigate the role of these Neoclassical channels in table 6. Be-
cause these Neoclassical effects work through sectoral prices or through
output changes that affect sectoral outputs and prices, we do this by add-
ing the mean and variance of supplier prices and employment levels to
our baseline regressions.23 For comparison, columns 1 and 2 restate our
baseline estimates. The alternative specifications in columns 3–8 indicate
that controlling for these Neoclassical channels does not qualitatively
change the relationship between supplier TFP variance and industry
TFP growth (and that the coefficients on these channel variables are
typically insignificant). For example, when we include the mean and
variance of supplier prices in column 3 (without industry fixed effects),
the TFPvariance termhas a coefficient of20.686 (standard error 5 0:232),
which is 90% of the baseline estimate, though less precisely estimated.
When we include the mean and variance of supplier employment levels
Table 6
Exploring Neoclassical Effects

Baseline Prices Employment Combined

(1) (2) (3) (4) (5) (6) (7) (8)

Input TFP average .810 .653 .815 .692 .720 .497 .602 .436
(.130) (.074) (.113) (.083) (.134) (.075) (.107) (.089)

Input TFP variance 2.744 2.912 2.686 2.527 2.703 2.786 2.655 2.424
(.121) (.118) (.232) (.243) (.118) (.115) (.233) (.245)

Input price average .006 .077 2.141 2.069
(.085) (.061) (.091) (.065)

Input price variance 2.051 2.329 2.123 2.381
(.204) (.198) (.201) (.201)

Input employment
average .224 .244 .264 .262

(.045) (.056) (.051) (.062)
Input employment
variance .166 2.106 .117 2.213

(.219) (.235) (.218) (.246)
Ind. fixed effects No Yes No Yes No Yes No Yes
Observations 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772
R2 .133 .371 .133 .373 .149 .384 .152 .387
Note: This table reports estimates of equation (6) for manufacturing industries 1977–2007.
The dependent variable is an industry’s total factor productivity (TFP) growth in a 5-year
period, and the right-hand-side variables aremean and variance of TFP growth among that
industry’s suppliers plus the mean and variance of supplier prices and employment. Time
dummies are included in all regressions, and industry dummies (corresponding to linear
industry trends) are included in even-numbered columns. All columns report unweighted
ordinary least squares regressions. Industries are defined using 1997 North American In-
dustry Classification System codes. Standard errors are clustered at the industry level.
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in column 5 (also without industry fixed effects), the coefficient estimate
on TFP variance is 20.703 (standard error 5 0:118), which is nearly
identical to the baseline estimates in column 1. The results remain similar
when we include both sets of variables (prices and employment) to-
gether. When we include industry fixed effects, the estimates are once
again similar to our baseline results.
The evidence in table 6 suggests that the relationship between supplier

TFP and industry TFP is not a reflection of (potentially mismeasured)
Neoclassical effects. Instead, the evidence suggests that it captures eco-
nomic effects thatwork through the innovation or product-qualitymech-
anism identified by our model. We next offer more direct evidence on
this mechanism.

V. Innovation

This section investigates whether innovation, as encoded in patents, is
one of the underlying mechanisms that could explain our results. For
this exercise, we replace the IO network (comprised of aijt entries) with
the patent citation network (corresponding to the gcj’s capturing citation
patterns across CPCs). Our sectoral analysis starts at the CPC level, but
we also consider firm-level results later in this section. The main ques-
tion explored in this section is whether a greater imbalance of innova-
tion across upstream sectors or firms (“idea suppliers”) reduces the in-
novation of a downstream sector or firm. We will see that the answer to
this question is a strong yes.24

A. CPC-Level Results

We begin the analysis at the patent-class level and estimate the follow-
ing variant of equation (6):

DPatentct 5 bmeanS
j
gcjDPatentjt 1 bvarianceVAR DPatentjt

� �
1 dt 1 εct, (7)

where t refers to 5-year time periods, DPatentct is a measure of patenting
growth within-CPC c during the 5-year time interval denoted by t,

VAR DPatentjt
� �

; S
j
gcj DPatentjt 2S

j
gcjDPatentjt

 !2

,

and SjgcjDPatentjt is the average patent growth during the 5-year time
period among the CPCs that are upstream to c (i.e., among the CPC codes
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that c, the focal CPC, cites). As indicated earlier, its entries, the gcj’s, are
the share of total citations over the entire sample period from patents in
CPC c that go to patents in CPC j. The upstream variance of patenting
growth is also computed analogously to the upstreamvariance of supplier
TFP, though now using the gcj’s as weights.
Table 7 presents our main estimates of the patent-based version of

equation (6). The first three columns measure innovation activity by
log patents, which implies that sectors with zero patenting activity are
dropped (this produces a sample of around 4,326 observations for our
main specifications). Columns 4–6 instead focus on the Davis-Haltiwanger-
Schuh (DHS) transformation (Davis, Haltiwanger, and Schuh 1998), which
allows us to define growth rates when there are zero patents in a
CPC in either the beginning or the end period.25 This expands our sam-
ple slightly to 4,379 CPC observations. Throughout, we focus on un-
weighted specifications.
Columns 1 and 4 show a strong positive association between aver-

age patenting activity in a sector’s upstream CPCs and the sector’s own
patenting activity. Columns 2–3 and 5–6 add the variance of patenting ac-
tivity in the upstream CPCs to proxy for the imbalance of innovation
activity across sectors. The latter two columns also include CPC fixed
effects, which allow for linear trends at the CPC level. The estimates show
Table 7
Bottleneck Regressions Using Patenting by CPC Code

Log Patent DHS Specification

(1) (2) (3) (4) (5) (6)

Citation average 1.291 1.335 1.473 1.284 1.307 1.402
(.064) (.064) (.093) (.065) (.064) (.098)

Citation variance 2.959 2.876 21.040 2.911
(.266) (.314) (.381) (.532)

CPC fixed effects No No Yes No No Yes
Observations 4,326 4,326 4,323 4,379 4,379 4,376
R2 .245 .250 .372 .202 .207 .307
Note: Standard errors are clustered at theCooperative Patent Classification (CPC) level. All
columns report unweighted ordinary least squares estimates. Year fixed effects are included
in all regressions, and CPC fixed effects are included for columns 3 and 6. All regressions
consider changes across 5-year averages 1975–2014. Columns 1–3 specify patent growth us-
ing the change in the log number of patents. Columns 4–6 specify patent growth as the
change in patenting activity, normalized using the Davis-Haltiwanger-Schuh (DHS) trans-
formation: ðPit 2 Pt21= 1

2 ðPit 1 Pt21ÞÞ. In both cases, these specifications apply to both the de-
pendent variable and the citation-weighted moments (i.e., the independent variables).
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a powerful negative effect of upstream variance. In column 2, for example,
the coefficient estimate for the variance is20.959 (standard error 5 0:266).
The variance estimate remains essentially unchanged in column 3 when
CPC fixed effects are included. The coefficient estimates are very similar
in columns 5 and 6 with the DHS transformation, though standard errors
are somewhat larger.
Table 8 is the patenting analogue of table 3 from our IV analysis for

TFP, but now focusing on patents and exploiting variation in upstream
patenting among foreign patents contained within the Google Patents
global database. The estimates in table 8 are broadly supportive of the
negative relationship between upstream variance and a sector’s own
patenting. Panel A depicts specifications using the change in log patent-
ing (as in cols. 1–3 of table 7), and panel B shows results with the DHS
transformation (as in cols. 4–6 of table 7). In each panel, columns 1
and 2 show the OLS relationship in this sample, columns 3 and 4 report
2SLS estimates, and columns 5 and 6 present the LIML estimates (which
are again motivated by the weak first stages in cols. 3 and 4). Across
essentially all columns, we see negative and statistically significant esti-
mates of the impact of upstream variance.
Following the design of table 4, table 9 explores whether downstream

patenting variance alsomatters, the possible relationship between future
upstream variance and current patenting, and whether mean-reversion
dynamicsmay be confounding our results. Reassuringly, the results in this
table confirm the robustness of the estimates in table 7 to these checks. In
particular, in panelA future citations have a smaller and often insignificant
coefficient when entered at the same time as our main citation variables,
and the coefficient on our citation variance measure remains similar to
the baseline estimates.
In panel B, downstream variance—that is, variance among citing,

rather than cited, patents—is negative and significant when entered
by itself, which reflects the fact that, just as in the IO network, upstream
and downstream measures are correlated. Nevertheless, when we also
include our upstream citation variables, the downstream variance is
no longer statistically significant and is in fact positive inmost specifica-
tions, whereas our upstream citation variance has a similar coefficient to
our baseline estimates and is statistically significant with log patents in
columns 2 and 4, though it becomes less precise with DHS in columns 6
and 8.
Finally, in panel Cwe find that the inclusion of lagged patenting (the

dependent variable) and the lagged citation average and variance terms
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has very little effect on our results when focusing on the log patents mea-
sure. This is also the parent we findwith the DHS transformation without
fixed effects (col. 6), though with DHS and CPC fixed effects, the coeffi-
cient on the citation variance falls and becomes statistically insignificant
(col. 8).
Table 8
Bottleneck Regressions Using Cross-Country Variation in Patenting as Instruments
for US-Firm Patenting

(1) (2) (3) (4) (5) (6)

Panel A: Log Patents

Citation average 1.335 1.473 1.495 1.788 1.497 1.802
(.064) (.093) (.075) (.144) (.076) (.148)

Citation variance 2.959 2.876 21.289 22.289 21.300 22.477
(.266) (.314) (.452) (1.067) (.469) (1.201)

Year-by-CPC FEs No Yes No Yes No Yes
Estimator OLS OLS 2SLS 2SLS LIML LIML
Observations 4,326 4,323 4,285 4,283 4,285 4,283
R2 .250 .372 .162 .095 .162 .092
First-stage F-stat 0 0 14.53 8.51 14.53 8.51

Panel B: DHS Specification

Citation average 1.307 1.402 1.446 1.679 1.447 1.687
(.064) (.098) (.076) (.150) (.076) (.153)

Citation variance 21.040 2.911 21.206 22.176 21.208 22.288
(.381) (.532) (.475) (1.097) (.483) (1.179)

Year-by-CPC FEs No Yes No Yes No Yes
Estimator OLS OLS 2SLS 2SLS LIML LIML
Observations 4,379 4,376 4,325 4,324 4,325 4,324
R2 .207 .307 .138 .078 .138 .077
First-stage F-stat 0 0 30.8 13.73 30.8 13.73
Note: Standard errors are clustered at the Cooperative Patent Classification (CPC) level.
Year fixed effects (FE) are included in all regressions, and year-by-CPC fixed effects are in-
cluded where indicated. All regressions consider changes across 5-year averages 1975–
2014. All observations are unweighted. We use patenting growth in the 10 countries with
the most patents over the sample period as instruments (Canada, China, Germany, France,
the United Kingdom, Italy, Japan, Korea, Russia, Taiwan, and the United States). Specifi-
cally, we calculate the average and variance of patenting growth for each cited-CPC code
in each of the five countries. Then, we use these 20 variables—the average and variance for
each of the 10 countries—to instrument the average and variance of patenting growth in
each cited-CPC code across US firms. Columns 3 and 4 report two-stage least squares
(2SLS) estimates; columns 5 and 6 report limited information maximum likelihood (LIML)
estimates. Panel A specifies patent growth using the change in the log number of patents;
panel B specifies patent growth as the change in patenting activity, normalized using the
Davis-Haltiwanger-Schuh (DHS) transformation: ðPit 2 Pt21=

1
2 ðPit 1 Pt21ÞÞ. In both cases,

these specifications apply to the dependent variable and the citation-weighted moments
(i.e., the independent variables). OLS 5 ordinary least squares.
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Table 10 confirms the robustness of our main CPC-level estimates to
the same battery of tests we conducted in table 7 for TFP. (For brevity,
we focus on log patents as the dependent variable.) We see broadly sim-
ilar patterns across specifications that include or exclude CPC trends,
areweighted by their share of total patenting, are at the 10-year frequency,
include the covariance term, exclude the ICT and electronics sectors, leave
out all citations to patents in the focal sector’s three-digit CPC, limit the
sample to years before 2005 to make the sample more similar to the data
used for the TFP growth analyses, or focus on patents filed by US resi-
dents. The only two specifications in which the variance term is signifi-
cantly weakened are columns 5 and 8. The former of these excludes the
ICT and electronics sectors, and theweaker results likely reflect the factors
discussed for the analogous specification in table 5—computers and elec-
tronics are emblematic of the imbalances that are our focus, so excluding
these industriesweakens the relevant economic forces and the precision of
the estimates. The latter, column 8, excludes 54% of total patents filed by
non-US residents at theUSPTO,which likely accounts for the reducedpre-
cision of these estimates.
Quantitatively, these estimates suggest that upstream innovation im-

balances have a major impact on overall innovation. For example, the
weighted coefficient estimate in column 2 of panelA in table 10 suggests
that a one standard deviation higher upstream variance (which is 0.03)
is associatedwith a decline in the growth rate of patenting in a CPC code
of 0.042 log points. This is a 47% reduction relative to theweightedmean
of patenting across sectors, which is equal to 0.09 (weighting by the total
number of patents in the CPC code in the initial 5-year period). These
numbers are in the same ballpark as those implied by our TFPmodels.26

In sum, although the results in this subsection show a few specifica-
tions where the estimates are less stable than our main results reported
in the prior section, they are overall supportive of a robust negative as-
sociation between upstream variance of innovation activity and down-
stream patenting at the CPC level.

B. Firm-Level Evidence

We next turn to the firm-level relationship between upstream imbal-
ances and patenting. For this exercise, we disaggregate the patents
data to the firm level and allow for variation across firms: specifically,
the extent to which they rely on different CPCs for their patenting.
This produces our firm-level citation network, summarized by {qkc},
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Table 10
Robustness for Bottleneck Regressions Using Patenting by CPC Code

Baseline Weighted
10-
Year Cov.

No
Comp.

3-Digit
Leaveout

Excluding
Post-2005

US
Firms
Only

(1) (2) (3) (4) (5) (6) (7) (8)

A. Without CPC Trends

Citation
average 1.335 1.305 1.378 1.330 1.377 1.175 1.292 1.299

(.064) (.084) (.073) (.065) (.074) (.078) (.072) (.060)
Citation
variance 2.959 21.414 2.840 2.730 2.102 2.624 2.945 2.323

(.266) (.393) (.197) (.298) (.260) (.219) (.271) (.218)
Citation
covariance 2.337

(.454)
CPC fixed
effects No No No No No No No No

Observations 4,326 4,305 1,853 3,094 3,783 4,326 3,098 4,224
R2 .250 .442 .347 .279 .265 .195 .230 .207

B. With CPC Trends

Citation
average 1.473 1.433 1.555 1.466 1.474 1.211 1.326 1.363

(.093) (.129) (.112) (.107) (.087) (.109) (.113) (.091)
Citation
variance 2.876 21.215 2.594 2.765 2.310 2.574 2.724 2.209

(.314) (.400) (.247) (.356) (.318) (.295) (.370) (.284)
Citation
covariance .179

(.471)
CPC fixed
effects yes yes yes yes yes yes yes yes

Observations 4,323 4,304 1,846 3,090 3,781 4,323 3,096 4,221
R2 .372 .580 .601 .453 .369 .333 .414 .303
Note: Standard errors are clustered at theCooperative Patent Classification (CPC) level. All
columns report unweighted ordinary least squares estimates. All regressions consider
stacked, sequential 5-year changes 1975–2014, except for column 3, where we consider
stacked, sequential 10-year changes. In all columns, we specify patent growth using the
change in the log number of patents. Time fixed effects are included in all specifications,
and CPC fixed effects are included in panel B. Column 2 weights observations by the
CPC code’s share of total patenting in the sample period. Column 4 controls for covariance
between the idea-supplier patenting growth in the current and the prior 5-year periods.
Column 5 removes patents that belong to CPC class G, which includes computers. Column 6
excludes the CPC’s own three-digit CPC code when constructing the citation network. Col-
umn 7 limits the sample to years before 2005. Column 8 limits to the patents of US-based
firms.
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representing citations by firm k to CPC class c. We estimate the follow-
ing equation:

DPatentkt 5 bmeanS
c
qkcDPatentct 1 bvarianceVAR DPatentctð Þ 1 dt 1 εkt, (8)

where t refers to 5-year time periods, DPatentkt is a measure of patenting
growth of firm k during the 5-year time interval denoted by t,

VAR DPatentctð Þ ; S
c
qkc DPatentct 2S

c
qkcDPatentct

� �2

,

and ScqkcDPatentct is the average patent growth in the 5-year time period
among the CPCs upstream to firm k (meaning those cited-to by firm k).
As indicated earlier, these are calculated using the share of total citations
over the entire sample period by firm k’s patents to patents in CPC c. The
variance of patent growth among the cited CPCs is computed using the
qkc’s as weights.
This disaggregation produces a much larger sample, consisting of

almost 2 million observations at the firm level. For many firm-period
combinations, however, there are no patents. Thus, in this table, we
use the DHS transformation. In particular, in columns 1–3 we use the
standard DHS transformation, where observations are dropped when
there are two consecutive zeros. In columns 4–6, we use a modified
DHS transformation, where in such cases, the transformation imputes
a value of zero.27

Table 11 presents the main results from this exercise. The firm-level
structure of the data in this table enables us to control for firm fixed effects
or forCPC-times-yearfixed effects, thuspurging a large fractionof the var-
iation in patenting between firms. The general pattern is a negative rela-
tionship betweenupstreamvariance at theCPC level and afirm’s ownpro-
pensity to patent. For example, in column 1, the coefficient estimate of the
citation variance is 20.264 (standard error 5 0:042). In column 3, when
we include CPC-times-year fixed effects, the coefficient increases slightly,
to20.292 (standard error 5 0:045). The exception to this pattern is in col-
umn 2, where we see a positive and significant coefficient when firm fixed
effects are included with the standard DHS transformation. We suspect
that this is driven by firms that have many zeros and thus many miss-
ing observations. Indeed, in columns 4–6, when we use the modified
DHS so that all zeros are kept, the coefficients on the variances are
more stable and always negative (and strongly statistically significant
except in col. 5).
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Table 12 provides a number of robustness checks for these firm-level
results, considering analogous specifications to those we presented for
the TFP and CPC-level patenting models and focusing on the standard
DHSmeasure. Panel A of this table corresponds to column 1 of table 11,
and panel B adds CPC-times-year fixed effects, as in column 3 of that table.
The results are robust across specifications that are weighted by the firm’s
share of total patenting, control for the lagged dependent variable, change
the sample period, or focus only on domestic patents. As a further robust-
ness test, column6adds themean andvariance of future citations in afirm’s
patenting network. Future citations as well as our main measures are now
statistically significant. Given the high degree of serial correlation in pat-
enting within classes, these patterns are not surprising. They highlight,
however, that future tests of our proposed mechanism should attempt
to exploit shocks that affect patenting during certain discrete periods.
Quantitatively, these estimates imply that upstream firm-level imbal-

ances have similarly sized innovation effects as we measure at the CPC
level. For example, the coefficient estimate in column 2 of panel A of ta-
ble 12, which shows the weighted regression specification, suggests that
a one standard deviation higher upstream variance (which is again 0.03,
as in the CPC case in the previous section) is associated with a decline in
firm-level patenting of 0.13 log points. This is a sizable (73%) decline rel-
ative to a baseline of 0.18. These numbers are similar when we include
Table 11
Bottleneck Patterns Using Firm-Level Patenting

DHS Specification DHS Specification with Zeros

(1) (2) (3) (4) (5) (6)

Citation average 1.089 1.048 1.039 .234 .282 .233
(.010) (.024) (.015) (.003) (.006) (.004)

Citation variance 2.264 .337 2.292 2.065 2.025 2.051
(.042) (.083) (.045) (.011) (.017) (.012)

Firm FEs No Yes No No Yes No
CPC � Year FEs No No Yes No No Yes
Observations 654,583 617,894 640,397 1,888,705 1,888,705 1,828,778
R2 .037 .414 .044 .009 .038 .013
Note: Standard errors are clustered at the firm level. Year fixed effects (FE) are included in
all regressions and firm fixed effects or year-by-CPC (Cooperative Patent Classification)
fixed effects are included where indicated. All regressions consider changes across 5-year
averages 1975–2014. Observations are unweighted. In all columns, we specify patent
growth as the change in patenting activity, normalized using the Davis-Haltiwanger-
Schuh (DHS) transformation: ðPit 2 Pt21= 1

2 ðPit 1 Pt21ÞÞ. In columns 1–3, we replace miss-
ing values with 0 for these specifications. In columns 4–6, we leave missing values as is.



Table 12
Robustness for Bottleneck Regressions Using Firm-Level Patenting

Baseline Weighted Lagged
Excluding
Post-2005 US Only

Lead
Horserace

(1) (2) (3) (4) (5) (6)

A. Without CPC-by-Year Fixed Effects

Citation average 1.089 2.029 0.593 1.242 1.074 1.014
(.010) (.143) (.011) (.012) (.012) (.016)

Citation variance 2.264 22.567 2.290 2.446 2.055 2.187
(.042) (.407) (.038) (.057) (.045) (.059)

Lagged 5-year
growth 2.261

Future citation
average (.002) .176

(.018)
Future citation
variance 2.341

(.059)
CPC � Year FEs No No No No No No
Observations 654,583 654,583 378,905 384,258 363,911 528,162
R2 .037 .206 .076 .020 .035 .029

B. With CPC-by-Year Fixed Effects

Citation average 1.039 2.391 .591 1.209 1.018 1.064
(.015) (.133) (.016) (.019) (.019) (.022)

Citation variance 2.292 22.687 2.104 2.462 2.088 2.286
(.045) (.414) (.041) (.060) (.049) (.063)

Lagged 5-year
growth 2.253

Future citation
average (.002) .096

(.024)
Future citation
variance 2.225

(.063)
CPC � Year FEs Yes yes yes yes yes yes
Observations 640,397 640,397 373,321 380,680 356,228 520,627
R2 .044 .233 .083 .025 .043 .035
Note: Standard errors are clustered at the firm level. Year fixed effects (FE) are included in
all regressions, and Cooperative Patent Classification (CPC) by year fixed effects are in-
cluded in panel B. In all regressions, we specify patent growth as the change in patenting ac-
tivity, normalized using the Davis-Haltiwanger-Schuh transformation: ðPit 2 Pt21=

1
2 ðPit1

Pt21ÞÞ. Observations are unweighted except for column 2, where we weight observations
by the firm’s share of total patenting in the sample period. All regressions consider changes
across 5-year averages 1975–2014. Column 3 controls for the lagged dependent variable
(downstream-firm patenting growth) from the previous 5-year period. Column 4 only limits
the sample to years before 2005. Column 5 only includes US-firm patents, which applies to
both the dependent variable and the citation-weighted moments (i.e., the independent vari-
ables). Columns 6 and 7 include the leading average and variance of patent growth from the
5-year period.
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CPC-by-year fixed effects in the same column of panel B. Overall, these
numbers are broadly comparable to those from the CPC-level analysis
in Subsection V.A.

VI. International Evidence

Our primary analysis focuses on TFP growth and innovation in the
United States (except when instrumenting domestic TFP growth and in-
novationwith contemporaneous foreign development in tables 3 and 8).
We supplement this evidence here by estimating a variant of equation (6)
for TFP growth across European countries. As outlined in Section III, we
use the GGDC World Input-Output Database to construct consistent IO
linkages for 30 industries in Austria, Finland, France, Germany, Italy,
the Netherlands, Spain, the United Kingdom, and the United States. We
fix the global IO table at the year 2000 and focus on industry TFP growth
in this cross-country sample between 1987 and 2007. These data enable us
to include international IO linkages, which we exploit in our calculations
of the mean and variance of supplier TFP growth.28

We report these cross-country estimates in table 13. We report the
baseline specifications in the first four columns. These specifications
are unweighted and include combinations of country effects, year ef-
fects, year-by-country effects, and year-by-industry effects, as noted at
the bottom of each column. In column 1, we focus on a specification con-
taining country and year effects. This estimate verifies that an industry’s
TFP growth is predicted by the average TFP growth of its suppliers. Col-
umn 2 includes the variance of supplier TFP growth. The coefficient on
this measure is negative, highly significant and broadly similar to the
US-based estimate, at 20.820 (standard error 5 0:211).
Subsequent columns probe the robustness of this finding. Column 3

includes industry-by-year effects, so that the identifying variation is
within-industry rather than cross-industry, as in the main specifications
of the paper. The relationship is similar to column 2, although somewhat
smaller. In particular, the coefficient on the variance term is 20.528
(standard error 5 0:142). Column 4 includes both industry-by-year and
country-by-year interactions, restricting to variation within-industry and
within-country. In this demanding specification, the coefficient on the
variance term remains negative and statistically significant, at 20.441
(standard error 5 0:158).
The negative effect of supplier TFP variance is also present when we

include the lagged dependent variable to control for mean-reversion
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dynamics (col. 5). It is weaker but still present when we use 1992 within-
country (nominal) value-addedweights instead of our baseline unweighted
specification (cols. 6 and 7, with and without controlling for the lagged
dependent variable).29 It is equally large, and (in this case) statistically sig-
nificant, when we focus on a 10-year panel rather than stacked 5-year
changes in column 8. In column 9, we show that the estimates are similar
when we only use each country’s domestic IO network, rather than the
Table 13
Evidence on Bottlenecks from Cross-Country Regressions Using TFP

Baseline

Lagged
Dep.
Var.

VA
Weight

VA
Weight

10-Year
Changes

Within-
Country

IO

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Upstream
average .258 .270 .107 2.225 .264 .278 .266 .276 .280

(.074) (.078) (.079) (.112) (.085) (.103) (.084) (.115) (.081)
Upstream
variance 2.820 2.528 2.442 2.815 2.560 2.758 2.722 2.713

(.211) (.142) (.158) (.180) (.579) (.420) (.362) (.215)
Year FEs Yes Yes No No Yes Yes Yes Yes Yes
Country FEs Yes Yes Yes No Yes Yes Yes Yes Yes
Year �
Country FEs No No No Yes No No No No No

Year �
Industry FEs No No Yes Yes No No No No No

Lagged dep.
var. No No No No Yes No Yes No No

Observations 982 982 982 982 896 982 896 462 982
R2 .065 .076 .364 .401 .120 .062 .192 .119 .075
Note: This table reports estimates of equation (6) for 1987–2007 using cross-country obser-
vations. The dependent variable is total factor productivity (TFP) growth of an industry in a
given country in a 5-year period, and the two key right-hand-side variables are mean and
variance of TFP growth among that country-industry pair’s suppliers. All regressions are
unweighted unless otherwise indicated. Time and country dummies are included in all re-
gressions. The sample includes 30 industries in nine countries: Austria, Finland, France,
Germany, Italy, the Netherlands, Spain, the United Kingdom, and the United States. Col-
umns 1 and 2 are cross-country analogues of columns 1 and 2 in table 1. Column 3 includes
industry-by-year fixed effects (FE), and column 4 adds country-by-year fixed effects. Col-
umn 5 includes the lagged dependent variable, and columns 6 and 7 weight each industry
observation by its share of within-country value-added (VA; countries themselves are not
weighted). Column 8 uses 10-year periods. Although columns 1–8 exploit variation in in-
put shares across both countries and industries, column 9 focuses onwithin-country, cross-
industry input-output (IO) linkages. See text for details. Standard errors are clustered at the
industry level.
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full international IO table (which incorporates inputs from each country-
industry pair).30 Finally, in table A9 (http://www.nber.org/data-appendix
/c14854/appendix.pdf), we report cross-country regressions that include
both own-country (domestic) values and foreign-country average values
of the mean and variance of upstream (supplier) TFP growth as explana-
tory variables for sectoral productivity growth. These models show that
own-country supplier TFP values are a far more robust predictor of sec-
toral productivity growth than the corresponding other-country values.
This is especially the case for the variance term, where the own-country
coefficient is negative and significant in all columns, whereas the other-
country measure is neither significant nor consistently signed. This pat-
tern is reassuring against the concern that our upstream TFP variance
Fig. 6. Magnitude of bottleneck estimates in international data. Thisfigure reports actual
and counterfactual total factor productivity (TFP) growth between 1992 and 2007 across
the countries in our international panel data (Austria, Spain, Finland, France, Germany,
Italy, theNetherlands, and theUnited Kingdom). The counterfactuals are based on regres-
sion estimates from the column 2 specification of table 13. Specifically, counterfactual TFP
(white bars) is computed from the regression coefficients as the TFP growth that would
have been observed in the given country and year if the variance of supplier TFP growth
had remained at the same level as during the initial period (1992–97). This is calculated by
subtracting the contribution of supplier TFP variance from the actual TFP growth (pat-
terned). A color version of this figure is available online.

http://www.nber.org/data-appendix/c14854/appendix.pdf
http://www.nber.org/data-appendix/c14854/appendix.pdf
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termsmay be misspecified because they do not include productivity growth
among important intermediates (see endnote 21).
These cross-country models also enable us to investigate whether our

mechanism can account for the international slowdown in productivity
growth. Figure 6, which is analogous to figure 5 for the United States,
reports the results of this exercise. Across the European countries in
our sample, we estimate that the rising variance of supplier TFP reduced
aggregate productivity growth in eight of nine countries—all except It-
aly. This bottleneck effect is largest in Finland and theNetherlands,where
we estimate that it reduced aggregate TFP growth 1992–2007 by 30% and
60%, respectively.
We also implement a similar specification where the outcome is pat-

enting amongfirms located in different countries.Weuse the sameCPC-
citation linkages for each country (calculated using all patentswithin the
USPTO database), but we apply a variant of equation (6) for patenting
growth of firms located in the 20 largest countries within Google global
patent data. Table 14 reports these cross-country estimates (which are
again unweighted). Columns 1 through 4 use log patents, and columns 5
through 8 use the DHS transformation. Exploiting the cross-country
Table 14
Evidence on Bottlenecks from Cross-Country Regressions Using Patenting

Log Patent DHS Specification

(1) (2) (3) (4) (5) (6) (7) (8)

Citation average 1.231 1.240 1.229 1.404 1.103 1.096 1.077 1.200
(.021) (.022) (.022) (.054) (.013) (.013) (.013) (.033)

Citation variance 2.031 2.030 2.025 2.048 2.034 2.056
(.010) (.011) (.018) (.020) (.020) (.031)

Year-by-CPC Fes no no yes yes no no yes yes
Year-by-country FEs no no no yes no no no yes
Observations 84,870 84,870 84,862 84,862 85,698 85,698 85,694 85,694
R2 .223 .223 .278 .281 .241 .241 .306 .309
Note: Standard errors are clustered at the Cooperative Patent Classification (CPC) level.
We consider the 20 countries with the greatest number of patents in the sample period
(Austria, Australia, Belgium, Canada, Switzerland, China, Germany, Denmark, Spain, Fin-
land, France, the United Kingdom, Italy, Japan, Korea, the Netherlands, Russia, Sweden,
Taiwan, and the United States). Fixed effects (FE) for year and country are included in
all regressions, and year-by-CPC or year-by-country fixed effects are included where indi-
cated. Observations are unweighted. All regressions include changes across 5-year averages
1975–2014. Cols. 1–4 specify patent growth using the change in the log number of patents.
Columns 5–8 specify patent growth as the change in patenting activity, normalized using
the Davis-Haltiwanger-Schuh (DHS) transformation: ðPit 2 Pt21=

1
2 ðPit 1 Pt21ÞÞ.
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variation, we see in columns 2 and 6 that, with either specification, there
is a negative effect of upstream imbalances on patenting. This remains
true in columns 3 and 7, where we include year-by-CPC fixed effects,
thus identifying the relationship exclusively from cross-country varia-
tion in the upstream variance. The relationship is also broadly robust,
though a little less precisely estimated, in columns 4 and 8, where we
further include year-by-country fixed effects, thus focusing entirely on
within-country variation.

VII. Conclusion

Despite the exponential pace of innovation in the ICT and electronics sec-
tors, aggregate productivity growth in the United States and many other
industrialized nations has been disappointing since the 1970s—and only
more so since the early 2000s. Some have interpreted this pattern, vari-
ously, as reflecting a severe underestimation of quality and actual produc-
tivity growth, a temporary lull that proceeds amajor surge in productivity,
or an exhaustion of the potential supply of truly transformative innova-
tions—leading to a long-term deceleration of productivity growth.
We proposed an alternative hypothesis that implies neither a perma-

nent slowdown in productivity growth nor an incipient surge. We then
investigated this new hypothesis empirically. The foundational idea of
our approach is that innovation in any one industry relies on comple-
mentary innovations in—and subsequent productivity gains from—its
input and idea suppliers. When innovation is unbalanced across indus-
tries, this holds back aggregate productivity growth by creating innova-
tion “bottlenecks” along the IO or patent citation (idea) networks.
After presenting a simple version of this productivity bottleneck hypoth-

esis, we explored it using data on IO linkages, citation linkages, patenting,
and TFP growth. Across a variety of measurement approaches, productiv-
ity outcomes, and countries, we verify the primary prediction of this hy-
pothesis: an industry’s productivity growth is augmentedby themeanpro-
ductivity growth of its suppliers (measured by TFP or innovation) and,
crucially, it is hampered by the variance of their productivity growth.
Our primary evidence exploits IO linkages and TFP growth to docu-

ment the sensitivity of industry productivity growth to the mean and
variance of supplier productivity growth. We supplemented this evi-
dence by looking at patenting as a direct measure of innovation. This
analysis suggests that there is a similarly powerful linkage between
the innovativeness of a sector or firm and the imbalances it faces across
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its upstream (idea-supplier) sectors. For these results, we measured the
upstream sectors based on industry- or firm-level citation networks.
At face value, our evidence implies that the bulk of the productivity

slowdown in the United States (and several other industrialized econo-
mies) can be explained by the sizable increase in the cross-industry vari-
ance of TFP growth and innovation. For example, if TFP growth variance
had remained at its 1977–87 level for the subsequent 2 decades, US man-
ufacturing productivity would have grown twice as rapidly in 1997–2007
as it did—yielding a counterfactual growth rate that would have been
close to its observed level in either of the 2 prior decades. These estimates
illustrate the potential importance of ourmechanism, but given the limita-
tions of ourmeasurement and sources of variation, theydonot constitute a
definitive assessment of its quantitative contribution.
We view our paper as a first step in the theoretical and empirical in-

vestigation of the interlinked nature of innovation across sectors. Based
on the earlier findings, many areas of research appear fruitful. First, our
hypothesis raises a critical theoretical question: Will the endogenous di-
rection of technological progress tend to clear productivity bottlenecks,
or might the market mechanism exacerbate imbalances? Second, this
initial evidence highlights the need for additional empirical strategies
to explore dependencies among innovating sectors and the innovations
generated by their suppliers. These same relationships could be tested,
for example, using firm-level IO data, where we suspect that the impor-
tance of supplier-customer linkages would be even larger. Third, another
interesting context to explore is the role of global supply chains in pro-
ductivity bottlenecks. On the one hand, imported intermediates and
technologies can relax domestic bottlenecks. On the other hand, global
supply chains may introduce more extensive technological dependen-
cies, which could intensify bottlenecks if those trade channels become
constrained. Fourth, it would be valuable to investigate the bottleneck
hypothesis using historical data—focusing, for example, on major tech-
nological breakthroughs in the first half of the twentieth century. Finally,
our framework makes a strong—perhaps even rash—prediction, whose
verification awaits the passage of time: if andwhen lagging industries ul-
timately increase their innovation and productivity growth rates, a rapid
takeoff in aggregate productivity should ensue.
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1. The black bars correspond to the share of US Patent and Trademark Office (USPTO)
patents granted in Electricity and Electronics (i.e., “electronics”), and the gray bars plot the
share of patents granted in Instruments and Information (i.e., “ICT”). The black line shows
the total number of patents granted.

2. Those who subscribe to the first view often highlight that growth is mismeasured,
which is undoubtedly true. Nevertheless, mismeasurement does not seem to account
for the broad outlines of the productivity slowdown since the 1970s. First, growth was al-
most surely mismeasured in the decades that followed World War II, when many new
consumer goods and technologies were introduced. Second, many implications of the
growth mismeasurement thesis, such as faster productivity growth in sectors with less
potential for mismeasurement, do not receive support from the data (Byrne, Fernald,
and Reinsdorf 2016; Syverson 2017). Third, there is no evidence for even the most basic
predictions of fast, ICT-driven productivity growth; for example, industries with
more-intensive use of ICT (outside of the ICT-producing industries themselves) have
exhibited, if anything, slower growth of nominal and real value-added (Acemoglu et al.
2014).

3. See https://www.nobelprize.org/prizes/chemistry/2019/popular-information.
4. See Atalay (2017) and Baqaee and Farhi (2019) for such Neoclassical effects, which

arise once we depart from unitary elasticities in production.
5. Specifically, using the Cooperative Patent Classification (CPC) scheme, we look at

the mean and variance of patenting at the “upstream” patent classes. Upstream classes
are constructed according to the citation network, which follows the approach in
Acemoglu et al. (2016). We do not mix the patenting and TFP analyses, both because
the idea network based on citations and the IO network are different and because the link
between patents and productivity in our sample is modest, which may be due to the im-
perfect correspondence between industry classifications and patent technology classes.

6. Themost sophisticated version of the “running out of ideas” hypothesis is developed
in Bloom et al. (2020), who argue that innovations have become difficult inmany fields but
the rate of innovation has not declined commensurately because the amount of effort de-
voted to invention and innovation has increased.

7. Bi 5 ðð1 2 Sj∈SiaijÞ12 Sj∈Siaij
Q

j∈Si
a
aij

ij Þ21. See Acemoglu andAzar (2020) formore details
on this functional form.

8. It is straightforward to allow these sets to be time-varying, but we do not do so, to
reduce notation. In our empirical work, we explore models both with and without
time-varying input sets.

9. We have equated the importance of an input to its share in production, aij. This is not
necessary for any of ourmain arguments, but it is the benchmark functional form assump-
tion that we use in our empirical work. We also consider an alternative where the impor-
tance of an input innovation is measured by the number of citations to the innovation by
patents from other industries.

10. The inputs that need tomake technological advances before sector i can successfully
innovate may be a subset of the inputs in Si. Because we do not have a way to empirically
determinewhich subset of inputs is important for innovation, we assume that all inputs in
Si are relevant, then verify robustness using other measures of industry linkages.

11. Evenwhen hivariance < 0, an increase in the productivity of an input-supplier industry
is always beneficial (and thus, the negative effect through the variance is weaker than the
positive impact through the mean, himean) because the functions h and H are monotone.

https://www.nber.org/books-and-chapters/nber-macroeconomics-annual-2023-volume-38/bottlenecks-sectoral-imbalances-and-us-productivity-slowdown
https://www.nber.org/books-and-chapters/nber-macroeconomics-annual-2023-volume-38/bottlenecks-sectoral-imbalances-and-us-productivity-slowdown
https://www.nber.org/books-and-chapters/nber-macroeconomics-annual-2023-volume-38/bottlenecks-sectoral-imbalances-and-us-productivity-slowdown
https://www.nobelprize.org/prizes/chemistry/2019/popular-information
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12. As we discuss in the next subsection, it may not be possible to reduce the dispersion
of technological progress across sectors without affecting the mean. In particular, such a
mean-preserving dispersion reduction would require that the cost of improving technol-
ogy in every sector is the same.

13. Finding the general equilibrium will also require us to solve for the wage rate (and
the allocation of labor across sectors) and the interest rate (as a function of the aggregate
growth rate of the economy). We do not derive these (standard) aspects of the general
equilibrium.

14. See https://www.nber.org/research/data/nber-ces-manufacturing-industry-database.
15. The BLS also produces similar statistics for aggregated three-digit NAICSmanufac-

turing industries. Although we do not use these BLS measures in our analysis, these sta-
tistics are highly correlatedwith themultifactor productivitymeasures for manufacturing
in the Census data.

16. If there is more than one CPC code provided for a patent, we use the first-reported
(i.e., primary) code.

17. In our baseline specification, this share includes inputs from all other countries. We
explore alternative definitions and, in table A9 (http://www.nber.org/data-appendix
/c14854/appendix.pdf ), show that our results are mostly driven by TFP growth patterns
among a country’s domestically sourced inputs, with a more limited role for imported
intermediates.

18. Like the fastest-growing industries, the bottom 50% industries are defined in terms
of their contribution to supplier TFP variance between 1997 and 2007. Table A2 (http://
www.nber.org/data-appendix/c14854/appendix.pdf ) reports the full set of industries
corresponding to each panel of table 2.

19. More specifically, we calculate these instruments using the US-based IO table, but tak-
ing the TFPgrowth across industries fromeach of three European countries (France, Germany,
and the United Kingdom). Because the international industry data are more aggregated than
our underlying NAICS data, six-digit NAICS codes are mapped to the most similar interna-
tional industry code available, and theTFPgrowthvalue observed in the European instrument
panel is assigned toUS industries based on thesemappings. To reflect this,we cluster the stan-
dard errors at the level of the 29 KLEMS industries in table 3. Throughout this exercise, we fo-
cus on our main, unweighted specifications, corresponding to cols. 2 and 3 of table 1.

20. Specifically, we calculate the covariance between the TFP growth of suppliers in the
previous 5-year period (t 2 10 to t 2 5) and the current period (t 2 5 to t), weighting each
supplying industry by their input share in t 2 10.

21. An additional concern is whether our variance term is misspecified, because it does
not account for the productivity of offshored and imported inputs. Here we note that this
concern would create attenuation toward zero and hence is unlikely to account for our
findings. It also does not apply when we turn to patenting, because our analysis there will
include foreign patents as well. We further discuss this issue in Sec. VI.

22. We are grateful to our discussant John Fernald for pointing out this problem and
proposing the adjustment we implement here.

23. We use employment rather than output, because output numbers would be directly
correlatedwith TFP estimates.We also focus on unweighted specifications, as in our other
robustness explorations.

24. Because the mappings between CPCs and Standard Industrial Classification/
NAICS classifications are imperfect, we do not explore the relationship between upstream
patenting and downstream productivity growth.

25. The DHS transformation for a variable X is Xt 2 Xt21=ð1=2ðXt 1 Xt21ÞÞ.
26. In particular, our main TFP estimates from col. 2 of table 1 suggest that a one stan-

dard deviation increase in upstream TFP growth variance is associated with TFP growth
that is 0.035 percentage points lower.

27. Recall from endnote 25 that the DHS transformation is Xt 2 Xt21=ð1=2ðXt 1 Xt21ÞÞ.
This is undefined when both Xt and Xt21 are equal to zero. In the modified DHS, rather
than dropping such observations, we set 0=0 5 0.

28. Specifically, we use the world IO tables to calculate the input share aik,jl as the share
of inputs from industry i in country k that come from industry j in country l. The shares are
based only on the nine countries listed earlier.

https://www.nber.org/research/data/nber-ces-manufacturing-industry-database
http://www.nber.org/data-appendix/c14854/appendix.pdf
http://www.nber.org/data-appendix/c14854/appendix.pdf
http://www.nber.org/data-appendix/c14854/appendix.pdf
http://www.nber.org/data-appendix/c14854/appendix.pdf
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29. We do not have nominal sales data in our international panel and hence use nominal
value-added weights rather than nominal sales weights. All weights are within-country,
meaning that they are relative to total GDP of the country.

30. We do not report estimates using the manufacturing sample in this case, both be-
cause manufacturing industries are not sufficiently disaggregated in this data set and be-
cause doing so would reduce our sample by about two-thirds. Finally, table A10 (http://
www.nber.org/data-appendix/c14854/appendix.pdf ) shows the robustness of our US
results, aggregated to the 30 industries used in table 13.
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