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Abstract
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1 Introduction

The data of billions of individuals are currently being utilized and are set to grow for personalized
advertising, product offerings, and pricing. This exponentially increasing amount of data in the hands
of tech companies such as Google, Facebook, Amazon, Netflix, and others are raising a host of concerns,
including those related to privacy. Many economists, AI experts, and researchers have a fairly optimistic
take on this: more data will mean more informative advertising, better product targeting, and finer
service differentiation, benefiting users (see, e.g., Varian [2018]). Zuboff [2019] in The Age of Surveillance
Capitalism takes a diametrically opposed position. She argues that the economic model of AI “claims
human experience as free raw material for hidden commercial practices of extraction, prediction, and
sales?” (p. 9). She maintains that the logic of this new system, dominated by Big Tech, turns on the
extraction of “behavioral surplus”, created by what she calls “behavioral modification”, meaning the
ability of tech companies with vast amounts of data to be able to modify the behavior of users and
profit from this. A similar perspective has been discussed in Hanson and Kysar [1999] who note: “Once
one accepts that individuals systematically behave in non-rational ways, it follows from an economic
perspective that others will exploit those tendencies for gain” (p. 635).

Yet these arguments are insufficient since the modification of behavior may be for the user’s good
(directing her towards better products). In this paper, we are interested in the conditions under which
behavioral modification harms consumers. We develop a behavioral model to theoretically explore the
“bad” type of modification, which we refer to as behavioral manipulation. Some examples include re-
tailers forecasting whether a woman is pregnant and presenting them hidden ads for baby products;
various companies estimating “prime vulnerability moments” and send ads for beauty products; mar-
keting strategies targeted at more “vulnerable populations” such as the elderly or children; websites
favoring products (including credit cards and subscription programs) with delayed costs and apparent
short-term benefits; or streaming platforms algorithmically estimating more addictive videos for certain
consumer types to maximize engagement. This type of behavioral manipulation would not be possible
if consumers were fully rational and understood that with vast amounts of data, platforms may acquire
and manipulate relevant information that they do not know about their preferences. However, when
the full implications of the superior information of platforms, due to advances in AI and big data, are
not properly understood by users, there could be room for much more pernicious types of behavioral
modification, which we systematically explore in this paper.

1.1 Our Model and Results

We suppose consumers are sufficiently used to and can thus act rationally in the status quo environ-
ment. But they are not “hyper-rational” enough to understand how the environment changes after tech-
nology platforms can collect vast amounts of data both on them and on other consumers with similar
characteristics, thus acquiring greater behavioral predictive power (meaning prediction of future behavior
conditional on current inducements).

More formally, we consider a platform that offers one of n products to a user together with an asso-
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ciated price at any point in time. Each product i has a quality that is either 1 (high) or 0 (low). When
the user consumes a product, she receives a signal about its quality. There is an extraneous factor that
impacts the signal received by the user: some products may initially be in a state that masks bad news
(e.g., people tend to be favorably disposed toward products with some properties such as better appear-
ance, salient attractive characteristics, or hidden and delayed costs). We denote this state for product
i at time 0 by αi,0, and refer to it as the “glossiness” of the item. We model the dynamics of αi,t with a
continuous-time Markov chain that starts from either 0 or 1. The bad news about the quality of a product
will be masked if and only if the initial glossiness state is α = 1 — meaning that the product is glossy.
However, this state is temporary, indicating that a low-quality product may initially appear good, but
eventually, the user will understand this. In particular, the continuous-time Markov chain transitions
from an initial glossiness state of 1 to an absorbing glossiness state of α = 0 at the rate ρ. Finally, if a
low-quality product is not glossy, the user receives bad news about it at the rate γ (here, bad news means
the product is of low quality).

We consider two informational environments: (i) A pre-AI environment (or status quo) in which the
platform has no informational advantage, and the glossiness state is unknown to both the platform and
the user. By observing the signals — specifically, whether bad news has arrived or not — the platform
and the user update their belief about both the product’s underlying quality and the product’s state.
(ii) A post-AI environment in which the platform can estimate the product’s glossiness for this user from
the behavior of others with similar characteristics from whom it has collected data.1 The key (and only)
behavioral bias in our model is that users do not understand that the platform knows and can exploit its
knowledge of the glossiness state in this new environment. This means, in particular, that the user does
not learn from the offering and the price decision of the platform.

After characterizing the learning dynamics and the equilibrium strategy of the platform and the user,
we turn to our main results. First, we prove that for a large enough transition rate ρ — which means
that the initially glossy products remain glossy for a short period — the ex-ante expected user utility,
welfare, and platform profits in the post-AI environment are larger than in the pre-AI environment.
This confirms the common wisdom that data collected by online platforms can enable better product
offerings and higher quality matches for the users. To further understand the intuition for this result,
we highlight two forces that impact the user utility in the post-AI environment in opposing directions.
There is a manipulation effect, resulting from the platform offering a low-quality glossy product ahead
of non-glossy products. Counteracting this, there is a helpfulness effect, which means that the platform
guides the user towards higher-quality products. With a sufficiently large transition rate ρ, the helpful-
ness effect dominates. This is because, for low-quality products, the “manipulation”state in which bad
news is masked is short, making the manipulation effect both less profitable for the platform and less
consequential for the utility of the user.

1Specifically, the platform can harness the purchase, webpage visit and review data of users with similar characteristics to
estimate which products have strong short-term appeal to the relevant demographic group.

In this context, see Ekmekci [2011] and Che and Hörner [2018] for past analysis of the information content of online recom-
mendation systems. In Acemoglu et al. [2022a], even if users are fully Bayesian, they will learn less from such reviews than
the platform because they see a summary statistic of past scores.
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Second, in contrast with the modal view in the literature, we establish that when the transition rate
ρ is small — the initially glossy products remain glossy for a long period — the ex-ante expected user
utility and welfare in the post-AI environment will be smaller than in the pre-AI environment. While this
happens, platform profits always increase because platforms benefit from this manipulation. Intuitively,
in this case, with platform superior information, the manipulation effect dominates, as glossy items
remain so for a while, enabling the platform to extract significant surplus from the user.2

Third, we establish that in the case of a sufficiently small transition rate ρ, as the number of products
increases, the ex-ante expected user utility and welfare in the post-AI environment decreases, while the
platform continues to benefit. Intuitively, a greater number of products provides more opportunities for
the platform to manipulate user behavior by finding glossy items that are profitable. This result implies
that as advances in AI simultaneously expand the ability of platforms to collect more information about
users and widen their offerings, there may be a “double whammy” from the viewpoint of the consumers.

1.2 Related Literature

Our paper relates to the literature on the legal and economic aspects of big data owned by digital plat-
forms. For example, Pasquale [2015] and Zuboff [2019] argue that big data gives digital platforms enor-
mous power for actions that can potentially harm users. Similarly, Calo [2014], Lin [2017], and Zarsky
[2019] argue that digital platforms can manipulate consumer behavior and suggest regulatory measures
(see also Tirole [2020] for a discussion of regulations and policy implications).

More closely related to our paper are a few works investigating whether information harms con-
sumers, either because of surveillance (Tirole [2021]) or because of price discrimination reasons (Taylor
[2004], Acquisti and Varian [2005], Fudenberg and Villas-Boas [2007], Hidir and Vellodi [2019], Berge-
mann et al. [2015], and Bonatti and Cisternas [2020]). See Acquisti et al. [2016], Bergemann and Bonatti
[2019b], and Agrawal et al. [2018] for excellent surveys of different aspects of this literature. We depart
from this literature by focusing on behavioral manipulation — distortion of product choice and experi-
mentation — rather than price discrimination.3 Within this literature, our paper is most closely related to
independent work by Liu et al. [2023], which examines the impact of data sharing on consumer welfare
and algorithmic inequality. This paper argues that data sharing benefits consumers by providing access
to desired products and services, but also enables firms to identify and exploit temptation and self-
control problems. This differs but is complementary to our emphasis on platforms identifying sources
of mis-learning due to glossiness and other extraneous factors.

Our paper also relates to the growing literature on information markets. One branch of this litera-
ture focuses on the use of personal data for improved allocation of online resources (e.g., Bergemann

2This result also implies that our model derives “endogenous privacy costs” (due to manipulation) when ρ is small, while
there are no such privacy costs when ρ is large.

3Our paper also relates to the works that study privacy concerns in data markets such as Choi et al. [2019], Bergemann
and Bonatti [2019a], Acemoglu et al. [2022b], and Gradwohl [2017], who study data externalities; Fainmesser et al. [2023]
and Jullien et al. [2020], who consider the negative effects of leaking user’s (private) personalized; and Ichihashi [2020b] and
Ichihashi [2020a], who explore the role of information intermediaries and dynamic data collection by platforms. More recent
work by Köbis et al. [2021] has empirically investigated broader social implications of extensive data collection and use of
machine learning techniques online.
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and Bonatti [2015], Goldfarb and Tucker [2011], and Montes et al. [2019]). Another branch investigates
how information can be monetized either by dynamic sales or optimal mechanisms (e.g., Admati and
Pfleiderer [1986], Anton and Yao [2002], Horner and Skrzypacz [2016], Bergemann et al. [2018], and
Begenau et al. [2018]).

Our work more directly builds on the literature on experimentation and multi-armed bandits. Ban-
dit models, first analyzed in Robbins [1952], have been used for many applications, including pric-
ing (Rothschild [1974]); the optimal design of clinical trials (Berry and Fristedt [1985]); product search
(Bolton and Harris [1999]); research and development problems (Keller and Rady [2010]); and learn-
ing and wage setting (Felli and Harris [1996]). See also Berry and Fristedt [1985] and Krylov [2008] for
book-length treatments of bandit problems. Even more closely related to our analysis is the exponential
bandit framework of Keller et al. [2005], which we build on and extend. The mathematical arguments
in our paper are different from those in these past works, however, because we have to keep track of
the beliefs of the platform and the user, which follow different laws of motion, and we use structural
properties of the Gittins index characterization in order to compare the expected discounted values of
different strategies.

Finally, our work is inspired and draws on a growing body of evidence that platforms are acquiring
a large amount of information about users and influencing their behavior by various strategies. Susser
and Grimaldi [2021] has recently summarized this literature. A few other contributions include Acquisti
et al. [2015] and Martin and Nissenbaum [2017] who empirically study individuals’ ability to control
their personal information and Calvo et al. [2020] who study how platform algorithms can enable price
manipulation.

The rest of the paper proceeds as follows. Section 2 presents our model. Section 3 provides several
results useful for the rest of the analysis. Sections 4 and 5 characterize the equilibrium in the pre-AI
and post-AI environments, respectively. Section 6 establishes that manipulation occurs — it is possible
for the user to be worse off in the post-AI. Section 7 concludes, while the online Appendix presents the
proofs.

2 Model

We consider a platform that hosts n > 1 products denoted by N = {1, . . . , n}. Each product i ∈ N has
a quality denoted by θi ∈ {0, 1} and an initial glossiness state αi,0 ∈ {0, 1}. The quantity θi is fixed and
we refer to it as the quality of product i (θi = 1 means a high-quality product). On the other hand, αi,t
changes over time and we refer to αi,t as the glossiness state, or simply glossiness, of product i at time t.

The platform interacts with a user over an infinite time horizon in continuous time, and at each time
t ∈ R+ offers one of the products and an associated price to the user. We let xi,t ∈ {0, 1} denote the
platform’s decision about offering product i at time t and pi,t stand for the offered price. If the user
purchases the product, she receives a signal about its quality and updates her belief (about both θi and
αi,t). In particular, if the user purchases product i at time t, she observes a signal, described as follows:

1. If θi = 1, then there is no “bad” news about product quality.
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2. If θi = 0 and αi,t = 0, then bad news (fully revealing signal about product quality) arrives at the
rate γ > 0.

3. If θi = 0 and αi,t = 1, then there is no bad news about product quality.

In summary, a high-quality product never generates bad news (the first case), but a low-quality
product may (the second case). In the third case, where αi,t = 1, the low-quality product is glossy and
does not generate bad news. Glossiness is what makes products appear better than they are (at least in
the short run) and enables behavioral manipulation. In what follows, we let Si,t = B to designate the
arrival of bad news for product i at time t and Si,t = NB to designate no bad news for product i at time
t. When purchasing product i, the user does not receive any signal about other products j ∈ N \ {i}.

We assume that αi,t follows a continuous-time Markov chain that transitions from state 1 to state 0

at the rate ρ ≥ 0 where state 0 is an absorbing state. This means that a low-quality product appears
high-quality for a while, but this type of glossiness is not forever. Formally, {αi,t}t≥0 is a homogeneous
continuous-time Markov Chain (CTMC) with two states {0, 1} and transition rate matrix[

1 0

ρ 1− ρ

]
.

2.1 Information Environment

The platform and the user share a common prior about the initial glossiness state and the quality of each
product. In particular, they both understand that a low-quality product can initially be glossy (αi,0 = 1)
or non-glossy (αi,0 = 0), while high-quality products are always non-glossy. Specifically, for any i ∈ N
we have the following as common knowledge:

P[αi,0 = 0 | θi = 1] = 1, P[αi,0 = 1 | θi = 0] = λ, and µi,0 = P[θi = 1] (1)

for some initial belief µi,0 ∈ [0, 1] and λ ∈ (0, 1).
At any time t, the information available to the user and the platform is whether bad news for product

i has arrived for all i ∈ N . We let

NBNi,t = {Si,τ = NB for all τ ∈ [0, t)}

denote the event that there has been no bad news for product i at times τ ∈ [0, t). We also use

Ii,t =

1 if Si,τ = NB for all τ ∈ [0, t)

0 otherwise

be the indicator that product i’s quality at time t is not 0 from the users’ perspective (and therefore, the
platform can still offer it and make a non-zero payoff).
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The information sets of the platform and the user only differ in the initial signals that the platform
observes about the glossiness of different products. In particular, we consider two settings:

1. Pre-AI environment in which the platform does not have an information advantage and observes
the same signals as the user.

2. Post-AI environment in which the platform has an information advantage and observes the initial
glossiness state αi,0 for all i ∈ N .

The justification for additional information possessed by the platform in the post-AI environment
was already discussed in the Introduction, but briefly, we consider this as a simple representation of the
fact that the platform has a wealth of data about the behavior and preferences of other users with similar
characteristics, and thus can estimate which are the products that will (temporarily) appear to the user
in question to be more attractive than their quality warrants. For simplicity, we assume that these data
are not directly informative about the true quality of the product.

A few points about the model are worth mentioning. First, as already noted, for simplicity, we
assume that in the post-AI environment, the platform can perfectly estimate the initial glossiness state
αi,0. Second, we assume that the information advantage of the platform is about the initial glossiness
state and not the product’s truth quality, which could be idiosyncratic across users. Our main results
continue to hold even if we relax these two assumptions. Third, we assume that the platform’s only
information advantage is about the initial glossiness state and not the glossiness trajectory (which is
likely to be idiosyncratic across users within the same demographic group). This assumption limits
the informational advantage of the platform as well. We establish that even with this limited form
of informational advantage, the platform can have a very profitable behavioral manipulation strategy.
Finally, as we explain below, we assume that the users will remain unaware of the platform’s ability to
estimate the initial glossiness state in the post-AI environment. This could be interpreted as a behavioral
bias, but our favorite interpretation would be that most users do not understand the informational
capabilities of digital platforms in today’s economy.

2.2 Utilities

If the platform offers item i at time t at price pi,t, the user’s instantaneous utility from purchasing the
item is

θi − pi,t,

and the instantaneous utility of the platform, if the user purchases, is pi,t. We let bi,t ∈ {0, 1} denote the
purchase decision of the user if product i is offered to her. We also assume that both the platform and
the user discount the future at rate r for some r ∈ R+ and update their beliefs using Bayes’s rule. The
platform’s expected profit (utility) at time 0 is given by

EP,0

[∫ ∞
0

re−rt
n∑
i=1

xi,tpi,tbi,tdt

]
,
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and the user’s expected utility at time 0 is

EU,0

[∫ ∞
0

re−rt
n∑
i=1

xi,tbi,t (θi − pi,t) dt

]
,

where xi,t and pi,t are adapted to the natural filtration of the platform at time t, denoted by FP,t and bi,t
is adapted to the natural filtration of the user’s information set at time t, denoted by FU,t.

2.3 Equilibrium Concept

In the pre-AI environment, when the platform does not have an information advantage, neither the
user nor the platform knows or receives signals about the initial glossiness αi,0 for i ∈ N . Therefore,
the platform’s decision at time t, (xi,t, pi,t) for i ∈ N , does not contain any extra information about the
quality of the product or the glossiness state. In this environment, both the platform and the user are
fully Bayesian, and we adopt Markov Perfect Equilibrium (MPE) as the solution concept. This means that
the platform’s and the user’s decisions at each time t are dependent on the game’s history through their
respective beliefs about the quality of each product and their strategies are conditioned on the payoff-
relevant states in this game, which are summarized by these beliefs.

In the post-AI era, the platform possesses superior knowledge about the initial glossiness state αi,0.
Although, the platform does not receive additional information about this variable after the initial date.
Nevertheless, the knowledge of αi,0 enables it to estimate αi,t more accurately than the user for any
t. In this environment, we again use the notion of MPE, except that in this case each player evaluates
payoffs according to their beliefs, which differ because they have access to different information. The
platform’s decision at time t, (xi,t, pi,t) for i ∈ N , contains additional information about the quality of
the product and the glossiness state, and the only behavioral aspect of our model is that the user does
not recognize this informational superiority and does not update her beliefs on the basis of the offers of
the platform. This behavioral assumption is in line with the equilibrium concepts proposed in Eyster
and Rabin [2005], Esponda [2008], and Esponda and Pouzo [2016]. Our equilibrium concept can thus be
viewed as the equivalent of the Berk-Nash equilibrium notion in Esponda and Pouzo [2016].4

3 Belief Dynamics and Equilibrium Characterization

We next determine the learning trajectories of the user and the platform and then provide a preliminary
characterization of equilibrium.

3.1 Belief Dynamics

We now provide belief dynamics in the pre-AI and post-AI environments.
4(Non-behavioral) Bayesian Nash equilibrium would involve the user drawing inferences from the product offering and

pricing decisions of the platform. It is straightforward to show that one (simple) equilibrium in this case would be that the
user interprets any deviation from the offering of the highest-belief product as a signal of manipulation, and thus the platform
would be unable to use any of its post-AI information.
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Pre-AI environment: At any given time t, if bad news has been received for a product i ∈ N , both
the user and the platform believe with certainty that the product is of low quality. Otherwise, their
Bayesian belief will be given by the posterior probability:

µi,t = P [θi = 1 | NBNi,t] .

In forming this expectation, both the user and the platform recognize that the reason why no bad news
may have been received so far is that the product is glossy (αi,t = 1). For this reason, they also have to
update the probability that the product is glossy, which is

λi,t = P [αi,t = 1 | θi = 0,NBNi,t] .

We next characterize the dynamics of the user’s belief in the pre-AI environment, which are identical to
the platform’s belief.5

Lemma 1. For any {xi,t, pi,t, bi,t}i∈N ,t, in the pre-AI environment, the beliefs of the user and the platform evolve
as follows:

dµi,t = xi,tbi,tµi,t(1− µi,t)(1− λi,t)γdt with initialization µi,0

dλi,t = xi,tbi,tλi,t ((1− λi,t)γ − ρ) dt with initialization λi,0 = λ.

Moreover, the probability of receiving bad news for product i at time t, given that bad news has not arrived during
[0, t), is:

P[Ii,t+dt = 0 | Ii,t = 1] = xi,tbi,t (1− µi,t) (1− λi,t) γdt.

The evolution of these beliefs highlights that the user is Bayesian and knows about the (existence
of) glossiness state αi,t. In particular, the updating equation shows that when λi,t is smaller, µi,t moves
faster because it is recognized that no bad news is more likely to correspond to a high-quality product
in this case (whereas with higher λi,t it may be the product’s glossiness that hides bad news).

Post-AI environment: Again, at time t, if bad news about product i ∈ N has arrived, then the
belief of the platform and the user is that the product is of low quality with probability 1. Otherwise,
the user’s posterior Bayesian belief is

µi,t = P [θi = 1 | NBNi,t] .

In the post-AI environment, the main difference is that the platform knows the initial glossiness state
αi,0 of all products and therefore has a different belief about product qualities. We let

µ
(P )
i,t = P [θi = 1 | NBNi,t, αi,0]

5Throughout, we follow the standard practice of dropping terms of order o(dt).
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stand for the belief of the platform (hence, the superscript “P”) about product i’s quality. Notice that
if the initial glossiness state is αi,0 = 1, then the platform knows the product is of low quality with
probability 1, and hence µ(P )

i,t = 0. If the initial glossiness state is αi,0 = 0, then the platform’s belief
evolves as we characterize in the next lemma. We also denote by

λ
(P )
i,t = P [αi,t = 1 | NBNi,t, αi,0]

the belief of the platform about the product being in state αi,t = 1 given the initial glossiness state and
that no bad news has arrived at time t. Notice that if the initial glossiness state is αi,0 = 0, then the state
remains at αi,t = 0 at time t, and therefore λ(P )

i,t = 0. If the initial glossiness state is αi,0 = 1, λ(P )
i,t evolves

as we show next.

Lemma 2. For any {xi,t, pi,t, bi,t}i∈N ,t∈R+ , in the post-AI environment, the user’s beliefs are the same as in
Lemma 1, and the platform’s beliefs evolve as follows:

• If αi,0 = 1, then

µ
(P )
i,t = 0 and dλ(P )

i,t = xi,tbi,tλ
(P )
i,t

(
(1− λ(P )

i,t )γ − ρ
)
dt with initialization λ(P )

i,0 = 1.

• If αi,0 = 0, then

dµ
(P )
i,t = xi,tbi,tµ

(P )
i,t (1− µ(P )

i,t )γdt with initialization µ(P )
i,0 =

µi,0
µi,0 + (1− µi,0)(1− λ)

and λ(P )
i,t = 0.

Moreover, from the platform’s perspective, the probability of receiving bad news for product i at time t, given
that bad news has not arrived during [0, t), is:

P[Ii,t+dt = 0 | Ii,t = 1, αi,0 = 0] = xi,tbi,t

(
1− µ(P )

i,t

)
γdt for αi,0 = 0

P[Ii,t+dt = 0 | Ii,t = 1, αi,0 = 1] = xi,tbi,t

(
1− λ(P )

i,t

)
γdt for αi,0 = 1.

3.2 Preliminary Equilibrium Characterization

We first prove a simple lemma that characterizes the equilibrium pricing strategy of the platform and
the equilibrium purchasing strategy of the user.

Lemma 3. The time-t utility of the user from purchasing product i for which no bad news has arrived (Ii,t = 1)
is

E [θi | NBNi,t]− pi,t = µi,t − pi,t.

Thus, the time-t equilibrium price of product i for which no bad news has arrived is

pi,t = E[θi | NBNi,t] = µi,t.

For a product i at time t for which bad news has arrived (Ii,t = 0), the equilibrium price is zero.
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Intuitively, the continuation game gives zero utility to the user according to her own expectations
because of the platform’s take-it-or-leave-it offers.

We next provide expressions for platform and user utilities in the pre-AI and post-AI environments.

Pre-AI environment: In the pre-AI environment, the platform’s equilibrium strategy is a solution
to a stochastic dynamic optimization problem whose state is given by beliefs about the product’s qual-
ity. Since both the platform and the user share the same information in this setting, we let {µi}i∈N
denote their initial belief. With this notation, the platform’s offering strategy in equilibrium denoted by
{xpre−AI

i,t }i∈N ,t∈R+ solves

Πpre−AI({µi}ni=1) = max
{xi,t}i∈N ,t∈R+

EP,0

[∫ ∞
0

re−rt
n∑
i=1

xi,tµi,tdt

]
(2)

dµi,t = Ii,txi,tµi,t(1− µi,t)(1− λi,t)γdt µi,0 = µi

dλi,t = Ii,txi,tλi,t ((1− λi,t)γ − ρ) dt λi,0 = λ

µi,t = 0 if Ii,t = 0

P[Ii,t+dt = 0 | Ii,t = 1] = xi,t (1− µi,t) (1− λi,t) γdt Ii,0 = 1,

and the platform’s pricing strategy in equilibrium is ppre−AI
i,t = µi,t (see Lemma 3). Here, the sub-

script P, 0 denotes that the expectation is with respect to the platform’s information at time 0, and
Πpre−AI({µi}ni=1) denotes the platform’s payoff starting from user’s belief {µi}ni=1. Notice that the user’s
purchasing decision bi,t does not appear in the above expression. This is because, as we proved in
Lemma 3, the platform always offers one of the products with a price equal to the user’s belief, and the
user’s equilibrium strategy is always to purchase that product.

We evaluate the user’s utility according to the expectations of “true events”. Given the platform’s
equilibrium strategy, the expectation of the user’s utility is

Upre−AI({µi}ni=1) = E0

[∫ ∞
0

re−rt
n∑
i=1

xpre−AI
i,t (θi − µi,t) dt

]
. (3)

The expected utilitarian welfare is the sum of the user’s utility given in (3) and the platform’s payoff
given in (2):

W pre−AI({µi}ni=1) = E0

[∫ ∞
0

re−rt
n∑
i=1

xpre−AI
i,t θidt

]
.

Post-AI environment: In contrast with the pre-AI setting, here, the platform knows the initial
glossiness state of the product and therefore has a different belief from the user. Starting from any
user’s belief {µi}i∈N and the initial glossiness state {αi}i∈N , the platform’s equilibrium offering strat-
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egy {xpost−AI
i,t }i∈N ,t∈R+ solves

Πpost−AI({µi, αi}ni=1) = max
{xi,t}i∈N ,t∈R+

EP,0

[∫ ∞
0

re−rt
n∑
i=1

xi,tµi,tdt

]
(4)

dµi,t = Ii,txi,tµi,t(1− µi,t)(1− λi,t)γdt µi,0 = µi

dλi,t = Ii,txi,tλi,t ((1− λi,t)γ − ρ) dt λi,0 = λ

dµ
(P )
i,t = Ii,txi,tµ

(P )
i,t (1− µ(P )

i,t )γdt and λ
(P )
i,t = 0 if αi = 0

µ
(P )
i,t = 0 and dλ

(P )
i,t = Ii,txi,tλ

(P )
i,t

(
(1− λ(P )

i,t )γ − ρ
)
dt if αi = 1

µi,t = µ
(P )
i,t = 0 if Ii,t = 0

P[Ii,t+dt = 0 | Ii,t = 1, αi = 0] = xi,tbi,t

(
1− µ(P )

i,t

)
γdt

P[Ii,t+dt = 0 | Ii,t = 1, αi = 1] = xi,tbi,t

(
1− λ(P )

i,t

)
γdt with Ii,0 = 1,

and the platform’s pricing strategy in equilibrium is ppost−AI
i,t = µi,t (see Lemma 3). Notice that µ(P )

i,0 and

λ
(P )
i,0 , depending on the initial glossiness state is characterized in Lemma 2. The expectation of the user’s

utility is then

Upost−AI({µi, αi}ni=1) = E0

[∫ ∞
0

re−rt
n∑
i=1

xpost−AI
i,t (θi − µi,t) dt

]
. (5)

Similar to the pre-AI environment, the expected utilitarian welfare is the sum of user utility in (5) and
platform profits in (4). With these expressions, we next provide the equilibrium characterizations.

4 Equilibrium Characterization in the Pre-AI Environment

Our first theorem characterizes the platform’s equilibrium decision in the pre-AI environment.

Theorem 1. Let µ1,0 ≥ · · · ≥ µn,0 be the initial beliefs for the n products (this ranking is without loss of
generality). Then, in the pre-AI environment, the platform’s equilibrium decision is to offer product 1 until bad
news occurs for this product (i.e., xpre−AI

1,t = 1 for all t ∈ [0, τ1) where τ1 ∈ R+ ∪ {∞} is the stochastic time at
which bad news for product 1 occurs), and then to offer product 2 and so on.

We establish this theorem by leveraging the Gittins index theorem (see, e.g., [Gittins et al., 2011,
Chapter 2]), which asserts that the platform always chooses the product with the highest Gittins index.
We make use of two key properties of the Gittins index in our context: (i) products with higher beliefs
have initially higher Gittins indices, and (ii) in the absence of bad news, the Gittins index for a product
increases. Therefore, the platform begins by offering the product with the highest belief. As long as
there is no bad news for this product, its Gittins index continues to grow, maintaining its status as the
product with the maximum Gittins index. Thus, the platform continues to offer this product until bad
news occurs, at which point it switches to the product with the second highest belief, and so on.
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5 Equilibrium Characterization in the Post-AI Environment

Here, we determine the platform’s equilibrium decision in the post-AI environment.

Theorem 2. Let µi1,0 ≥ · · · ≥ µin0 ,0 be the initial beliefs for products with initial glossiness state αi,0 = 0 and
µj1,0 ≥ · · · ≥ µjn1 ,0 be the initial beliefs for the products with initial glossiness state αi,0 = 1 (these rankings
are without loss of any generality). In the post-AI environment, the platform’s equilibrium strategy involves first
offering either i1 or j1. If the platform first offers i1 [respectively, j1], the platform continues to offer this product
until bad news occurs, i.e., xpost−AI

i1,t
= 1 for all t ∈ [0, τi1) where τi1 ∈ R+ ∪ {∞} is the stochastic time at

which bad news for product i1 occurs [respectively, xpost−AI
j1,t

= 1 for all t ∈ [0, τj1) where τj1 ∈ R+ ∪ {∞} is
the stochastic time at which bad news for product j1 occurs]. The platform then offers either i2 or j1 [respectively,
offers either i1 or j2] and so on.

Theorem 2 is proved using the same properties of Gittins indices as in the proof of Theorem 1,
discussed above. It characterizes the structure of the platform’s equilibrium decision, but it does not
pin down the comparison between a product with αi,0 = 0 and another product with αi′,0 = 1, which
we provide next.

In the pre-AI environment, the platform always offers the product with the highest belief. In the
post-AI environment, this is no longer the case, as the platform may prefer to opt for a glossy product
(αi,0 = 1) with a lower belief, rather than a higher belief non-glossy product (αi,0 = 0). We next formalize
this observation.

Proposition 1 (Manipulation Effect). Consider two products i, i′ ∈ N in the post-AI environment with αi′,0 =

1 and αi,0 = 0. There exists a function µi,0 7→ f(µi,0;λ, γ, r) parameterized by λ, γ, r that is everywhere below
µi,0, and ρ, such that for ρ ≤ ρ when

µi′,0 > f(µi,0;λ, γ, r),

the platform prefers to offer product i′ rather than offering product i.

We call this phenomenon the manipulation effect because the platform is offering a low-quality prod-
uct with a lower user belief. To understand this effect and why it requires ρ to be small, observe that
there are two forces that determine the platform’s choice: (i) when αi′,0 = 1, the platform knows that
the quality is low, and therefore, once αi′,t becomes 0, the user will receive bad news at the rate γ. This
force incentivizes the platform to not offer product i′; (ii) when αi′,0 = 1, the platform knows that the
user’s belief increases for a while because bad news will not arrive. This force incentivizes the platform
to offer product i′. For sufficiently small ρ, the second force dominates, because the glossy state is very
persistent and thus bad news for product i′ will not arrive for a long time. In this case, the platform
prefers to offer product i′ rather than product i.

We next show that the opposite phenomenon to the one presented in Proposition 1, which we call
the helpfulness effect, arises when ρ is sufficiently large.

Proposition 2 (Helpfulness Effect). Consider two products i, i′ ∈ N in the post-AI environment with αi′,0 = 1

and αi,0 = 0. There exists a function µi′,0 7→ g(µi′,0;λ, γ, r) parametrized by λ, γ, r that is everywhere below
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µi′,0, and ρ̄, such that for ρ ≥ ρ̄ when
µi,0 > g(µi′,0;λ, γ, r),

the platform prefers to offer product i relative to offering product i′.

In this configuration, the platform prefers not to offer a low-quality with a moderately higher user
belief than an alternative product with unknown quality with a lower user belief. This is helpful to
the user as it avoids the low-quality product. The platform recognizes the low-quality product simply
from the fact that it has an initial glossiness state αi,0 = 1, and deploys this information for the user’s
benefit. To see the intuition, recall that when ρ is large, the platform understands that the glossiness
of the product will not last, and bad news will start arriving for product i′ (which has initial glossiness
state αi′,0 = 1). Therefore, even if µi′,0 > µi,0, so long as the belief µi,0 is not too small (ensured by
the condition µi,0 > g(µi′,0;λ, γ, r)), the platform prefers offering product i instead of product i′. We
conclude this section by noting that both functions characterized in Propositions 1 and 2, can be written
explicitly in terms of the primitives (µ, λ, γ, r).

6 Who Benefits from the Platform’s Superior Information?

In this section, we discuss how the information advantage of the platform in the post-AI environment
can have either positive or negative effects on the user. We then investigate the implications of expand-
ing the set of products available to the platform.

6.1 When Users Benefit from the Platform’s Superior Information

Our next theorem establishes that for sufficiently large ρ, the platform’s information advantage in the
post-AI environment always benefits the user and the platform.

Theorem 3. Suppose the initial beliefs {µi}ni=1 are i.i.d. and uniform over [0, 1]. For any r, γ, λ, there exists ρh
such that for ρ ≥ ρh we have

E
[
Πpost−AI({µi, αi}ni=1)

]
> E

[
Πpre−AI({µi}ni=1)

]
E
[
Upost−AI({µi, αi}ni=1)

]
> E

[
Upre−AI({µi}ni=1)

]
E
[
W post−AI({µi, αi}ni=1)

]
> E

[
W pre−AI({µi}ni=1)

]
,

where the expectations are over µi ∼ Unif[0, 1], θi ∼ Bern(µi), and αi drawn according to (1) for all i ∈ N .

The informational advantage of the platform always increases its own profits, as it enables the plat-
form to modify the user’s behavior. Theorem 3 establishes that this informational advantage also in-
creases the expected user’s utility and welfare for large enough ρ. This theorem confirms what might
be viewed as the conventional wisdom in the literature: more data enables better allocation of products
and, therefore, benefits the users and society as a whole. This theorem follows from the fact that for
large enough ρ, the helpfulness effect dominates the manipulation effect.

13



We next see that this intuition does not hold in general, and the platform’s information advantage
may harm users.

6.2 When Behavioral Manipulation Harms Users

Here, we show that in the post-AI environment, the user’s utility decreases because of behavioral ma-
nipulation — since the manipulation effect dominates the helpfulness effect.

Theorem 4. Suppose the initial beliefs {µi}ni=1 are i.i.d. and uniform over [0, 1]. For any r, γ, λ, there exists ρl
such that for ρ ≤ ρl we have

E
[
Πpost−AI({µi, αi}ni=1)

]
> E

[
Πpre−AI({µi}ni=1)

]
E
[
Upost−AI({µi, αi}ni=1)

]
< E

[
Upre−AI({µi}ni=1)

]
E
[
W post−AI({µi, αi}ni=1)

]
< E

[
W pre−AI({µi}ni=1)

]
.

In this case with low ρ, the platform’s informational advantage enables it to engage in behavioral
manipulation: the user is pushed towards products that have initial glossiness state αi,0 = 1. Because
these products do not generate bad news in the short run, the user’s belief will become more positive
for a while, and this will enable the platform to charge higher prices and increase its profits. However,
because glossy products are low quality, such behavioral manipulation is bad for user utility and util-
itarian welfare. That ρ is small here is important. As we saw, when ρ is large, the platform expects
the glossiness of the production to wear off quickly, and thus it is not worthwhile to push the user to-
wards glossy products. But from a welfare point of view, it is more costly to have users consume glossy
products when ρ is small because they will not discover for quite a while that the product is actually
not high-quality. It is this feature of behavioral manipulation that reduces user utility and utilitarian
welfare.

Finally, we observe that the uniform assumption for the initial beliefs in Theorems 3 and 4 is without
loss of generality: the comparisons hold with weak inequalities for any fixed initial beliefs, and the strict
inequalities hold whenever the platform’s equilibrium strategies in the two environments are different.

6.3 Big Data Double Whammy: More Products Negatively Impact User Welfare

The availability of big data provides platforms with valuable insights into predictable patterns of user
behavior, which can be leveraged for behavioral manipulation, as we have established thus far. More-
over, the same advances in AI also enable digital platforms to expand the range of products and services
they offer. Next, we demonstrate that this combination of greater choice and more platform information
may be particularly pernicious — as the number of products increases, the potential for behavioral ma-
nipulation increases as well. This result highlights that multiple aspects of the new capabilities of digital
platforms closely interact in affecting user welfare.
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Theorem 5. Suppose the initial beliefs {µi}n+1
i=1 are i.i.d. and uniform over [12 −∆, 12 + ∆]. For any r, γ, λ, there

exist ∆̄ and ρ̃l such that for ∆ ≤ ∆̄, ρ ≤ ρ̃l, and n ≥ d1− log λ
log(2−λ)/(1−λ) e in the post-AI environment we have:

E
[
Πpost−AI({µi, αi}n+1

i=1 )
]
> E

[
Πpost−AI({µi, αi}ni=1)

]
E
[
Upost−AI({µi, αi}n+1

i=1 )
]
< E

[
Upost−AI({µi, αi}ni=1)

]
E
[
W post−AI({µi, αi}n+1

i=1 )
]
< E

[
W post−AI({µi, αi}ni=1)

]
.

Before providing an intuition for this result, we first explain the role of the various assumptions we
impose in this theorem. The assumption that ρ ≤ ρ̃l is adopted for the same reasons as before — this
is the range where the platform’s superior information can be costly to the user. The assumptions That
∆ ≤ ∆̄ and n is large are added are adopted to ensure that the initial beliefs of the user are not very
informative about product quality and that the platform has enough products to engage in behavioral
manipulation. This combination then leads to a configuration where the presence of more products
creates greater opportunities for the platform to select initially glossy items (with initial beliefs that are
sufficiently close to the beliefs of non-glossy products). An alternative way of expressing this intuition
is that, while in standard choice theory, greater choices are good for the consumer, in the presence of
behavioral manipulation, they may be bad precisely because they enable the platform to engage in more
intense behavioral manipulation.

7 Conclusion

This paper has argued that the vast amounts of data collected by online platforms may also enable
behavioral manipulation, harming the users. We view our paper as a first step in the systematic analysis
of product choice and consumer experimentation in online markets in which platforms have extensive
and growing information about user preferences (and biases). There are several interesting questions
for future research, which we list briefly:

• Can behavioral manipulation persist in the long-run even as users become used to the big data
environment?

• Can AI tools be used for correcting, rather than exploiting, behavioral biases of users?

• How does dynamic learning by platforms (rather than estimating product characteristics perfectly,
as we have assumed) affect the scope for behavioral manipulation?

• How does the presence of users with different levels of sophistication affect platform behavior?

• How does competition between platforms affect behavioral manipulation?

• Last but not least, what types of regulations can be useful for lessening the negative effects of
behavioral manipulation?
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A1 Online Appendix

This Appendix includes the omitted proofs from the text.

Proof of Lemma 1

If xi,tbi,t = 0, the user belief about θi does not change. Next, we consider xi,tbi,t = 1 and, for notational
convenience, let us suppress subscript i. Then, by using Bayes’ rule, the probability of θi = 1 is

µt+dt =
P[NBNt+dt | θ = 1]P[θ = 1]

P[NBNt+dt]

=
P[NBNt | θ = 1]P[NBNt,t+dt | NBNt, θ = 1]P[θ = 1]

P[NBNt]P[NBNt+dt | NBNt]

= µt
P[NBNt+dt | NBNt, θ = 1]

P[NBNt+dt | θ = 1,NBNt]P[θ = 1 | NBNt] + P[NBNt+dt | θ = 0,NBNt]P[θ = 0 | NBNt]

(a)
=

µt
µt + (1− µt)P[NBNt+dt | θ = 0,NBNt]

=
µt

µt + (1− µt) (λt + (1− λt)(1− γdt))

=
µt

1− (1− µt)(1− λt)γdt
(b)
= µt (1 + (1− µt)(1− λt)γdt) (A1)

where (a) follows from

P[NBNt+dt | θ = 0,NBNt] =P[NBNt+dt | θ = 0,NBNt, αt = 1]P[αt = 1 | θ = 0,NBNt]

+ P[NBNt+dt | θ = 0,NBNt, αt = 0]P[αt = 0 | θ = 0,NBNt]

and (b) follows by using Taylor expansion of 1/(1 − x) around 0 and dropping the terms of the order
(dt)2. From (A1), we then have

dµt = µt+dt − µt = µt(1− µt)(1− λt)γdt.

Again, by using Bayes’ rule,

λt+dt = P[αt+dt = 1 | θ = 0,NBNt+dt]

=
P[NBNt+dt | θ = 0, αt+dt = 1]P[αt+dt = 1 | θ = 0]

P[NBNt+dt | θ = 0]

= P[αt = 1 | θ = 0]P[αt+dt = 1 | αt = 1, θ = 0]

× P[NBNt | θ = 0, αt+dt = 1]P[NBNt+dt | θ = 0,NBNt, αt+dt = 1]

P[NBNt | θ = 0]P[NBNt+dt | NBNt, θ = 0]

=
λtP[αt+dt = 1 | αt = 1, θ = 0]P[NBNt+dt | θ = 0,NBNt, αt+dt = 1]

P[NBNt+dt | θ = 0,NBNt]
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(a)
=

λt(1− ρdt)
λt + (1− λt)(1− γdt)

=
λt(1− ρdt)

1− (1− λt)γdt
(b)
= λt − λtρdt+ λt(1− λt)γdt (A2)

where (a) follows from

P[NBNt+dt | θ = 0,NBNt] =P[NBNt+dt | αt = 1, θ = 0,NBNt]P[αt = 1 | θ = 0,NBNt]

+ P[NBNt+dt | αt = 0, θ = 0,NBNt]P[αt = 0 | θ =,NBNt]

and (b) follows by dropping the terms of the order (dt)2. From (A2), we now have

dλt = λt((1− λt)γ − ρ)dt.

Finally, given xi,tbi,t = 1, we have

P[Ii,t+dt = 0 | Ii,t = 1] = (1− µi,t) (1− λi,t) γdt.

This completes the proof. �

Proof of Lemma 2

Similar to the proof of Lemma 1, if xi,tbi,t = 0, the user belief about θi does not change, and when
xi,tbi,t = 1, we let

µ
(P )
i,t = P [θ = 1 | αi,0 = 0,NBNt]

be the probability of a product being high quality if the initial glossiness state is zero and no bad news
has arrived by time t, and

λ
(P )
i,t = P [αi,t = 1 | αi,0 = 1,NBNt]

be the probability of the glossiness state being 1 if the initial glossiness state is 1 and no bad news has
arrived by time t. Again, to make the notation easier, in this proof, we drop the subscript i. Notice that
conditioning on α0 = 1, the platform knows the product is of low quality and therefore µ(P )

t = 0 for all
t. Also, conditioning on α0 = 0, the glossiness state remains at zero and therefore λ(P )

t = 0. We next
evaluate µ(P )

t conditioning on α0 = 0 and λ(P )
t conditioning on α0 = 1.

By using Bayes’ rule, for the probability of θi = 1 when α0 = 0 we have

µ
(P )
t+dt =

P[NBNt+dt | θ = 1, α0 = 0]P[θ = 1 | α0 = 0]

P[NBNt+dt | α0 = 0]

=
P[NBNt | θ = 1, α0 = 0]P[NBNt,t+dt | NBNt, θ = 1, α0 = 0]P[θ = 1 | α0 = 0]

P[NBNt | α0 = 0]P[NBNt+dt | NBNt, α0 = 0]
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=
µ
(P )
t P[NBNt+dt | NBNt, θ = 1, α0 = 0]

P[NBNt+dt | NBNt, α0 = 0]

(a)
=

µ
(P )
t

µ
(P )
t + (1− µ(P )

t )(1− γdt)

=
µ
(P )
t

1− (1− µ(P )
t )γdt

(b)
= µ

(P )
t

(
1 + (1− µ(P )

t )γdt
)

(A3)

where (a) follows from

P[NBNt+dt | NBNt, α0 = 0] =P[NBNt+dt | θ = 1,NBNt, α0 = 0]P[θ = 1 | NBNt, α0 = 0]

+ P[NBNt+dt | θ = 0,NBNt, α0 = 0]P[θ = 0 | NBNt, α0 = 0]

= µ
(P )
t +

(
1− µ(P )

t

)
(1− γdt)

and (b) follows by dropping the terms of the order (dt)2. By using (A3),

dµ
(P )
t = µ

(P )
t+dt − µ

(P )
t = µ

(P )
t (1− µ(P )

t )γdt.

By using Bayes’ rule, when α0 = 1 we obtain

λ
(P )
t+dt = P[αt+dt = 1 | θ = 0, NBNt+dt, α0 = 1]

=
P[NBNt+dt | θ = 0, αt+dt = 1, α0 = 1]P[αt+dt = 1 | θ = 0, α0 = 1]

P[NBNt+dt | θ = 0, α0 = 1]

(a)
=

P[αt = 1 | θ = 0, α0 = 1]P[αt+dt = 1 | αt = 1, θ = 0, α0 = 1]P[NBNt | θ = 0, αt+dt = 1, α0 = 1]

P[NBNt | θ = 0, α0 = 1]P[NBNt+dt | NBNt, θ = 0, α0 = 1]

=
λ
(P )
t P[αt+dt = 1 | αt = 1, θ = 0, α0 = 1]

P[NBNt+dt | θ = 0,NBNt, α0 = 1]

(b)
=

λ
(P )
t (1− ρdt)

λ
(P )
t + (1− λ(P )

t )(1− γdt)

=
λ
(P )
t (1− ρdt)

1− (1− λ(P )
t )γdt

(c)
= λ

(P )
t − λ(P )

t ρdt+ λ
(P )
t (1− λt)γdt, (A4)

where (a) follows from P[NBNt+dt | θ = 0,NBNt, αt+dt = 1, α0 = 1] = 1, (b) follows from

P[NBNt+dt | θ = 0,NBNt, α0 = 1]

= P[NBNt+dt | θ = 0,NBNt, α0 = 1, αt = 1]P[αt = 1 | θ = 0,NBNt, α0 = 1]

+ P[NBNt+dt | θ = 0,NBNt, α0 = 1, αt = 0]P[αt = 0 | θ = 0,NBNt, α0 = 1],
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and (c) follows by dropping the terms of the order (dt)2. By using (A4), we obtain

dλ
(P )
t = λ

(P )
t ((1− λ(P )

t )γ − ρ)dt.

Finally, we have

P[ bad news at t | α0 = 0,NBNt] =P[ bad news at t | α0 = 0, θ = 0,NBNt]P[θ = 0 | α0 = 0,NBNt]

+ P[ bad news at t | α0 = 0, θ = 1,NBNt]P[θ = 1 | α0 = 0,NBNt]

=γdt
(

1− µ(P )
t

)
+ 0

and

P[ bad news at t | α0 = 1,NBNt] = P[ bad news at t | α0 = 1,NBNt, θ = 0]

= P[ bad news at t | α0 = 1, θ = 0,NBNt, αt = 1]P[αt = 1 | α0 = 1, θ = 0,NBNt]

+ P[ bad news at t | α0 = 1, θ = 0,NBNt, αt = 0]P[αt = 0 | α0 = 1, θ = 0,NBNt]

= 0 + γdt
(

1− λ(P )
t

)
.

The initializations follow by using Bayes’ rule, completing the proof. �

Proof of Lemma 3

For any {xi,t}i∈N ,t∈R+ the equilibrium pricing strategy of the platform is to offer price pi,t = µi,t when
xi,t = 1 and the equilibrium purchasing strategy of the user is to purchase that product. This can be seen
by using the one-stage deviation principal: if the platform deviates and offers a lower price, then the
continuation game does not change and the platform would make strictly lower profits from this lower
current price. If the platform offers a higher price, then if the user purchases, the continuation game
would be the same and her continuation payoff (from her perspective) remains zero. But, her current
and discounted utility would then be negative, and thus not purchasing is a better response, leading to
lower payoff for the platform. This establishes that pi,t = µi,t with xi,t = 1 is optimal for the platform. To
establish that this equilibrium is the only MPE, we note that the user’s continuation payoff can never be
strictly positive since, otherwise, the platform would increase the price of the product she’s purchasing.
It can also never be negative since the user would prefer not to purchase. This implies that the platform
can never offer a price greater than the user’s belief and would prefer never to offer a price less than this
belief. This establishes uniqueness. �

Proof of Theorem 1

Before presenting the proof, let us state a lemma that we use in this proof.

Lemma A1. In the pre-AI environment, for any product i ∈ N that has been offered for [0, t) with NBNi,t (no
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bad news), we have

λi,t =
(γ − ρ)λ

λγ + e(ρ−γ)t((1− λ)γ − ρ))
,

and
µi,t =

µi,0(γ − ρ)

µi,0(γ − ρ) + (1− µi,0) (e−ρtλγ + e−γt ((1− λ)γ − ρ))
.

Moreover, µi,t is increasing in µi,0 and t and converges to 1 as t→∞. Additionally:

• If ρ > γ, then λi,t is monotonically decreasing and limits to zero as t→∞.

• If ρ ≤ γ, then:

– If (1− λ)γ − ρ ≥ 0, λi,t is monotonically increasing and converges to γ−ρ
γ as t→∞.

– If (1− λ)γ − ρ < 0, λi,t is monotonically decreasing and converges to γ−ρ
γ as t→∞.

Proof of Lemma A1: The differential equation of the evolution of λi,t, as we established in Lemma 1, is
given by

d

dt
λi,t = λi,t ((1− λi,t)γ − ρ)

whose solution is
γ − ρ

γ + ce(ρ−γ)t

for some constant c. Using the initial condition λi,0 = λ, we then have

λi,t =
(γ − ρ)λ

λγ + e(ρ−γ)t((1− λ)γ − ρ))
.

The differential equation of the evolution of µi,t, as in Lemma 1, is given by

d

dt
µi,t = µi,t (1− µi,t) (1− λi,t) γ

whose solution is

µi,t =
e(γ+ρ)t

e(γ+ρ)t + ceγtλγ + ceρt((1− λ)γ − ρ)

for some constant c. Using the initial condition µi,0, we obtain

µi,t =
e(γ+ρ)tµi,0(γ − ρ)

e(γ+ρ)tµi,0(γ − ρ) + (1− µi,0) (eγtλγ + eρt ((1− λ)γ − ρ))
.

The rest of the proof follows by evaluating the monotonicity of λi,t and µi,t. In particular, to see that µi,t
is increasing in the initial belief µi,0, let us take the derivative of µi,t with respect to µi,0 which is

(γ − ρ)
(
e−ρtλγ + e−γt ((1− λ)γ − ρ)

)
(µi,0(γ − ρ) + (1− µi,0) (e−ρtλγ + e−γt ((1− λ)γ − ρ)))2

.
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This expression is nonnegative. To see this, notice that the denominator is always positive, and as
we show next, the numerator is also nonnegative. Let us consider the following (exhaustive) three
possibilities:

1. γ(1 − λ) − ρ ≥ 0. In this case, we have γ − ρ ≥ 0 and therefore both terms in the numerator are
nonnegative.

2. γ(1− λ)− ρ ≤ 0 and γ − ρ ≥ 0. In this case, e−ρt ≥ e−γt and we have

(γ − ρ)
(
e−ρtλγ + e−γt ((1− λ)γ − ρ)

)
≥(γ − ρ)

(
e−γtλγ + e−γt ((1− λ)γ − ρ)

)
=(γ − ρ)e−γt (λγ + ((1− λ)γ − ρ))

=(γ − ρ)2e−γt ≥ 0.

3. γ − ρ ≤ 0. In this case, (γ − ρ) ((1− λ)γ − ρ) ≥ 0 and e−γt ≥ e−ρt and we have

(γ − ρ)
(
e−ρtλγ + e−γt ((1− λ)γ − ρ)

)
≥(γ − ρ)e−ρtλγ + (γ − ρ) ((1− λ)γ − ρ) e−ρt

=(γ − ρ)e−ρt (λγ + ((1− λ)γ − ρ))

=(γ − ρ)2e−ρt ≥ 0.

This completes the proof of the lemma. �
Lemma A1 characterizes the evolution of user beliefs about the quality of a product, conditioning

on no bad news realization until the time in question. This lemma enables us to compare the belief
trajectory of different products based on the user’s initial belief and their history of experimentation.
Building on this property,

We now proceed with the proof of the theorem. In the pre-AI environment, the state of each prod-
uct is a pair (µi, λi), where µi is the user and platform belief about the product’s quality and λi is the
probability of having a glossiness α = 1, given no bad news has occurred. For any product i ∈ N , we
introduce the Gittins index:

M(µi, λi) = sup
τ≥0

E0

[∫ τ
0 e
−rtµi,tdt

]
E0

[∫ τ
0 e
−rtdt

] (A5)

dµi,t = Ii,tµi,t(1− µi,t)(1− λi,t)γdt µi,0 = µi

dλi,t = Ii,tλi,t ((1− λi,t)γ − ρ) dt λi,0 = λi

µi,t = 0 if Ii,t = 0

P[Ii,t+dt = 0 | Ii,t = 1] = (1− µi,t) (1− λi,t) γdt Ii,0 = 1,

where the supremum is over all stopping times. In what follows, for analogy with the Gittens index
literature, we refer to product i as arm i, and we refer to offering product i as pulling arm i.
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Lemma A2. In the pre-AI environment, the platform’s equilibrium decision at any time t is to offer i∗ where

i∗ ∈ arg max
i∈N

M(µi, λi).

This lemma is an immediate implication of the optimality of the Gittins index established in, e.g.,
[Gittins et al., 2011, Chapter 2]. We make use of the following three lemmas in this proof.

Lemma A3. Consider product i with the state (µi, λi). The optimal stopping time in the definition of Gittins
index is to stop pulling arm i until bad news occurs for it. That is

τi , inf {t ∈ R+ : It = 0}

Proof of Lemma A3: This lemma follows because µi,t is increasing in t (Lemma A1). �

Lemma A4. For two products i and i′ with λi = λi′ , we have

M(µi, λi) ≥M(µi′ , λi′) for µi ≥ µi′ .

Proof of Lemma A4: First note that by using Lemma A1, we know that µi,t is increasing in µi,0. There-
fore, µi,t ≥ µi′,t for all t. Now consider the first time for which bad news occurs for both arms i and i′

and let us denote them by τi and τi′ . We claim that τi first-order stochastically dominates τi′ , as

P[Ii,t+dt = 0 | Ii,t = 1] = (1− µi,t) (1− λi,t) γdt
(a)
= (1− µi,t)

(
1− λi′,t

)
γdt

≤
(
1− µi′,t

) (
1− λi′,t

)
γdt = P[Ii′,t+dt = 0 | Ii′,t = 1],

where (a) follows from the fact that, as established in Lemma A1, given λi,0 = λi′,0 = λ, we have
λi,t = λi′,t.

Using Lemma A3 and given the above two properties, we have that

M(µi, λi) =
Et∼τi [e−rtµi,t]
Et∼τi [e−rt]

≥
Et∼τi′ [e

−rtµi′,t]

Et∼τi′ [e−rt]
= M(µi′ , λi′).

This completes the proof. �

Lemma A5. Consider arm i with initial state (µi, λi). If bad news does not occur, the Gittin’s index of this arm
increases.

Proof of Lemma A5: Letting τi be the first time for which bad news occurs and using Lemma A3, we
can write

M(µi, λi) =
Et∼τi [e−rtµi,t]
Et∼τi [e−rt]

=
P[Ii,0 = 0]µi,0 + P[Ii,0 = 1]Et∼τi

[
e−rtµi,t | NBNi,0

]
P[Ii,0 = 0] + P[Ii,0 = 1]Et∼τi [e−rt | NBNi,0]
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(a)

≤
Et∼τi

[
e−rtµi,t | NBNi,0

]
Et∼τi [e−rt | NBNi,0]

,

where (a) follows from the fact that µi,t is increasing in t, as established in Lemma A1. �
We now continue with the proof of Theorem 1. Without loss of generality, let us suppose µn,0 ≥ · · · ≥

µ1,0. Using Lemma A4, and given λi,0 = λ for all i ∈ N , we have M(µn, λn) ≥ M(µi, λi). Therefore, the
platform starts by offering product n. If bad news does not occur for this product, using Lemma A5, the
Gittins index of arm n weakly increases while the other Gittins indices remain unchanged. Therefore,
using Lemma A2, the platform finds it optimal to keep pulling arm n until bad news occurs. Whenever
bad news occurs for product n (if at all), the platform’s problem becomes offering the best arm among
n− 1 products, and by induction, again, the platform starts offering product n− 1 and so on. �

Proof of Theorem 2

Let us first state a lemma that we use in this proof.

Lemma A6. In the post-AI environment, for any product i ∈ N that has been offered for [0, t) with NBNi,t (no
bad news), the dynamics of µi,t and λi,t are the same as Lemma A1, and additionally

• If αi,0 = 0, then

µ
(P )
i,t =

µi,0
µi,0 + e−γt(1− λ)(1− µi,0)

, λ
(P )
i,t = 0, P[NBNi,t | αi,0 = 0] =

µi,0 + e−γt(1− λ)(1− µi,0)
1− λ(1− µi,0)

,

and

P[Ii,t+dt = 0, Ii,t = 1 | αi,0 = 0] =
e−γt(1− λ)(1− µi,0)

1− λ(1− µi,0)
γdt.

• If αi,0 = 1, then

µ
(P )
i,t = 0, λ

(P )
i,t =

γ − ρ
γ − e(ρ−γ)tρ

, P[NBNi,t | αi,0 = 1] =
e−ρtγ − e−γtρ

γ − ρ
,

and

P[Ii,t+dt = 0, Ii,t = 1 | αi,0 = 1] =

(
e−ρt − e−γt

)
ρ

γ − ρ
γdt.

Proof of Lemma A6: The differential equation of the evolution of λ(P )
i,t when αi,0 = 1, as we established

in Lemma 2, is given by
d

dt
λ
(P )
i,t = λ

(P )
i,t

(
(1− λ(P )

i,t )γ − ρ
)

whose solution is
eγt+ρc(γ − ρ)

eρt+γc − eγt+ρcγ
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for some constant c. Using the initial condition λ(P )
i,0 = 1, we obtain

λ
(P )
i,t =

γ − ρ
γ − e(ρ−γ)tρ

The differential equation of the evolution of µ(P )
i,t when αi,0 = 0, as shown in Lemma 2, is given by

d

dt
µ
(P )
i,t = µ

(P )
i,t

(
1− µ(P )

i,t

)
γ

whose solution is
µ
(P )
i,t =

1

1 + ce−γt

for some constant c. Using the initial condition µ(P )
i,0 =

µi,0
µi,0+(1−µi,0)(1−λ) , we obtain

µ
(P )
i,t =

µi,0
µi,0 + e−γt(1− λ)(1− µi,0)

.

For αi,0 = 1, we have

P[NBNt | αi,0 = 1] = e
−
∫ t
0

(
1− γ−ρ

γ−e(ρ−γ)sρ

)
γds

=
e−ρtγ − e−γtρ

γ − ρ
.

Also, the probability of bad news arriving for the first time in (t, t+ dt] is

P[It+dt = 0, It = 1 | αi,0 = 1] =P[NBNt | αi,0 = 1]

(
1− γ − ρ

γ − e(ρ−γ)tρ

)
γdt

=

(
e−ρt − e−γt

)
ρ

γ − ρ
γdt.

For αi,0 = 0, we have

P[NBNt | αi,0 = 0] = e
−
∫ t
0

(
1−

µi,0

µi,0+e
−γs(1−λ)(1−µi,0)

)
γds

=
µi,0 + e−γt(1− λ)(1− µi,0)

1− λ(1− µi,0)
.

Also, the probability of bad news arriving for the first time in (t, t+ dt] is

P[It+dt = 0, It = 1 | αi,0 = 0] = P[NBNt | αi,0 = 0]

(
1− µi,0

µi,0 + e−γt(1− λ)(1− µi,0)

)
γdt

=
e−γt(1− λ)(1− µi,0)

1− λ(1− µi,0)
γdt.

This completes the proof of the lemma. �
Lemma A6 characterizes the evolution of user and platform beliefs, conditioning on no bad news

realization in the post-AI environment. This lemma enables us to compare the belief trajectories of
different products based on the user’s initial beliefs about them and the initial glossiness state αi,0.
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We now proceed with the proof of the theorem. In the post-AI environment, the state of each product
is given by the tuple (µi, λi, µ

(P )
i , λ

(P )
i ), where µi is the user belief about product’s quality, λi is the

probability of having a glossiness state α = 1 given no bad news has occurred and (µ
(P )
i , λ

(P )
i ) are the

same quantities but from the platform’s perspective. Similar to the analysis of pre-AI, for any product
i ∈ N , we introduce the Gittins index as

M(µi, λi, µ
(P )
i , λ

(P )
i ) = sup

τ≥0

E0

[∫ τ
0 e
−rtµi,tdt

]
E0

[∫ τ
0 e
−rtdt

] (A6)

dµi,t = Ii,tµi,t(1− µi,t)(1− λi,t)γdt µi,0 = µi

dλi,t = Ii,tλi,t ((1− λi,t)γ − ρ) dt λi,0 = λ

dµ
(P )
i,t = Ii,tµ

(P )
i,t (1− µ(P )

i,t )γdt µ
(P )
i,0 = µ

(P )
i

dλ
(P )
i,t = Ii,tλ

(P )
i,t

(
(1− λ(P )

i,t )γ − ρ
)
dt λ

(P )
i,0 = λ

(P )
i

µi,t = µ
(P )
i,t = 0 if Ii,t = 0

P[Ii,t+dt = 0 | Ii,t = 1, αi,0 = 0] =
(

1− µ(P )
i,t

)
γdt

P[Ii,t+dt = 0 | Ii,t = 1, αi,0 = 1] =
(

1− λ(P )
i,t

)
γdt,

where the supremum is over all stopping times. Notice that the platform, in the post-AI environment,
observes the initial αi,0 which we can compactly write as some initialization for µ(P )

i,0 and λ(P )
i,0 :

If the initial glossiness state is αi,0 = 1, then

µ
(P )
i,0 = 0, λ

(P )
i,0 = 1,

and if the initial glossiness state is αi,0 = 0, then

µ
(P )
i,0 =

µi,0
µi,0 + (1− µi,0)(1− λ)

, λ
(P )
i,0 = 0.

Lemma A7. In the post-AI environment, the platform’s equilibrium decision at any time t is to offer i∗ where

i∗ ∈ arg max
i∈N

M(µi, λi, µ
(P )
i , λ

(P )
i ).

Using a similar argument to that of Lemma A4, and given λi,0 = λ for all i ∈ N , the platform starts
by offering the product with the highest user belief either among those with the initial glossiness state
α = 1 or among those with the initial glossiness state of 0. If bad news does not occur for this product,
again using a similar argument to Lemma A5, establishes that the Gittins index of this arm weakly
increases while the other Gittins indices remain unchanged. Therefore, the platform finds it optimal to
keep offering this product until bad news occurs. Whenever bad news occurs for this product (if at all),
the platform’s problem becomes offering the best arm among the n − 1 remaining products, and the
proof follows by induction on the number of products. �
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Proof of Proposition 1

By using Lemma A7, it suffices to consider the platform’s problem with two products with initial beliefs
µi′,0 = µ1, αi′,0 = 1 and µi,0 = µ0, αi,0 = 0 and characterize the platform’s equilibrium decision. Also,
notice that by using Lemma A5, the platform’s equilibrium strategy is to either offer product i until
bad news occurs and then switch to the product i′ or to offer product i′ until bad news occurs and then
switch to the product i. We next evaluate the platform’s utility with these two strategies and compare
them. We find it useful to write the platform’s payoff with these two strategies as a function of ρ.

Using Lemma A6, the platform’s payoff when it offers product i first and when bad news occurs,
switches to i′ is

U0,1(ρ, µ0, µ1) ,
µ0

µ0 + (1− λ)(1− µ0)

∫ ∞
0

re−rtµi,tdt

+
(1− λ)(1− µ0)

µ0 + (1− λ)(1− µ0)

∫ ∞
0

re−rtµi,tP [NBNi,t | θi = 0, αi,0 = 0] dt

+
(1− λ)(1− µ0)

µ0 + (1− λ)(1− µ0)

(∫ ∞
0

e−rtP [Ii,t+dt = 0, Ii,t = 1 | θi = 0, αi,0 = 0]

)
×
(∫ ∞

0
re−rtµi′,tP

[
NBNi′,t | αi′,0 = 1

])
=

∫ ∞
0

re−rtµi,t
µ0 + (1− µ0)(1− λ)e−γt

µ0 + (1− λ)(1− µ0)
dt

+
(1− λ)(1− µ0)

µ0 + (1− λ)(1− µ0)

(∫ ∞
0

e−rtγe−γtdt

)(∫ ∞
0

re−rtµi′,t
γe−ρt − ρe−γt

γ − ρ
dt

)
,

where, using Lemma A1, we have

µi,t =
µ0(γ − ρ)

µ0(γ − ρ) + (1− µ0) (e−ρtλγ + e−γt ((1− λ)γ − ρ))
and

µi′,t =
µ1(γ − ρ)

µ1(γ − ρ) + (1− µ1) (e−ρtλγ + e−γt ((1− λ)γ − ρ))
.

Again, using Lemma A6, the platform’s payoff by offering product i′ first and when bad news occurs
then switching to product i is given by

U1,0(ρ, µ0, µ1) ,
∫ ∞
0

re−rtµi′,tP
[
NBNi′,t | αi′,0 = 1

]
dt

+

(∫ ∞
0

e−rtP
[
Ii′,t+dt = 0, Ii,t = 1 | αi′,0 = 1

])(∫ ∞
0

re−rtµi,tP [NBNi,t | αi,0 = 0] dt

)
=

∫ ∞
0

re−rtµi′,t
γe−ρt − ρe−γt

γ − ρ
dt

+

(∫ ∞
0

e−rtγρ
e−ρt − e−γt

γ − ρ
dt

)(∫ ∞
0

re−rtµi,t
µ0 + e−γt(1− λ)(1− µ0)

1− λ(1− µ0)
dt

)
.

Notice that both functions are (uniformly) continuous in ρ, and therefore it suffices to establish the
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statement in the limit of ρ→ 0. We can write

lim
ρ→0

U1,0(ρ, µ0, µ1)− U0,1(ρ, µ0, µ1)

=

∫ ∞
0

re−rt
µ1γ

µ1γ + (1− µ1) (λγ + e−γt(1− λ)γ)
dt

−
∫ ∞
0

re−rt
µ0γ

µ0γ + (1− µ0) (λγ + e−γt(1− λ)γ)

µ0 + e−γt(1− λ)(1− µ0)
1− λ(1− µ0)

dt

−
(∫ ∞

0
e−rt

e−γt(1− λ)(1− µ0)
1− λ(1− µ0)

γdt

)(∫ ∞
0

re−rt
µ1γ

µ1γ + (1− µ1) (λγ + e−γt(1− λ)γ)
dt

)
=

(∫ ∞
0

re−rt
µ1γ

µ1γ + (1− µ1) (λγ + e−γt(1− λ)γ)
dt

)(
1− (1− λ)(1− µ0)γ

(1− λ(1− µ0)) (r + γ)

)
−
∫ ∞
0

re−rt
µ0γ

µ0γ + (1− µ0) (λγ + e−γt(1− λ)γ)

µ0 + e−γt(1− λ)(1− µ0)
1− λ(1− µ0)

dt

=

(∫ ∞
0

re−rt
µ1γ

µ1γ + (1− µ1) (λγ + e−γt(1− λ)γ)
dt

)(∫ ∞
0

re−rt
µ0 + e−γt(1− λ)(1− µ0)

1− λ(1− µ0)
dt

)
−
∫ ∞
0

re−rt
µ0γ

µ0γ + (1− µ0) (λγ + e−γt(1− λ)γ)

µ0 + e−γt(1− λ)(1− µ0)
1− λ(1− µ0)

dt. (A7)

We next prove that the above expression is strictly positive for µ0 = µ1 = µ. This follows from FKG-
Harris inequality (see, e.g., [Alon and Spencer, 2016, Chapter 6.2]) that states if a : R+ → R+ is an
increasing and b : R+ → R+ is a decreasing function, then we have

E [a(X)b(X)] ≤ E [a(X)]E [b(X)]

for random variable X distributed over R+. Moreover, the above inequality is strict if both functions
are strictly monotone and X has a strictly positive mass everywhere. In particular, the positivity of the
right-hand side of (A7) follows by invoking the above inequality for

a(t) =
µγ

µγ + (1− µ) (λγ + e−γt(1− λ)γ)
, b(t) =

µ+ e−γt(1− λ)(1− µ)

1− λ(1− µ)
,

and t distributed as P[t = s] = re−rs. Therefore, there exists a function f(µ, λ, γ, r) that is everywhere
below µ, such that for µ1 ≥ f(µ0, λ, γ, r), the right-hand side of inequality (A7) is positive. �

Proof of Proposition 2

Similar to the proof of Proposition 1, it suffices to consider the platform’s problem with two products
with initial beliefs µi′,0 = µ1, αi′,0 = 1 and µi,0 = µ0, αi,0 = 0 and characterize the platform’s equilibrium
decision. Again, using a similar notation to that of Proposition 1, we let U1,0(ρ, µ0, µ1) denote the plat-
form’s payoff from offering product i′ first and U0,1(ρ, µ0, µ1) denote the platform’s payoff from offering
product i first. Again, notice that both functions are (uniformly) continuous in ρ (over R+ ∪ {∞}), and
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therefore it suffices to establish the statement in the limit of ρ→∞. We can write

lim
ρ→∞

U0,1(ρ, µ0, µ1)− U1,0(ρ, µ0, µ1)

=

∫ ∞
0

re−rt
µ0

µ0 + e−γt(1− µ0)
µ0 + e−γt(1− λ)(1− µ0)

1− λ(1− µ0)
dt

+

(∫ ∞
0

e−rt
e−γt(1− λ)(1− µ0)

1− λ(1− µ0)
γdt

)(∫ ∞
0

re−rt
µ1

µ1 + e−γt(1− µ1)
e−γtdt

)
−
∫ ∞
0

re−rt
µ1

µ1 + e−γt(1− µ1)
e−γtdt

−
(∫ ∞

0
e−rtγe−γtdt

)(∫ ∞
0

re−rt
µ0

µ0 + e−γt(1− µ0)
µ0 + e−γt(1− λ)(1− µ0)

1− λ(1− µ0)
dt

)
=

(∫ ∞
0

re−rt
µ1

µ1 + e−γt(1− µ1)
e−γtdt

)(
γ(1− λ)(1− µ0)

(1− λ(1− µ0))(γ + r)
− 1

)
+

∫ ∞
0

re−rt
µ0

µ0 + e−γt(1− µ0)
µ0 + e−γt(1− λ)(1− µ0)

1− λ(1− µ0)
dt

(
1− γ

r + γ

)
. (A8)

For µ1 = µ0 = µ, the right-hand side of (A8) can be written as(
r

r + γ

)2

(E [a(t)b(t)]− E [a(t)]E [b(t)])

for a(t) = µ
µ+e−γt(1−µ) and b(t) = µeγt+(1−λ)(1−µ)

1−λ(1−µ) and t being distributed as P[t = s] = (γ + r)e−(γ+r)s.
Again using FKG-Harris inequality for (strictly) increasing functions a(·) and b(·), we conclude that the
right-hand side of (A8) is strictly positive. Therefore, there exists a function g(µ, λ, γ, r) that is every-
where below µ, such that for µ0 ≥ g(µ1, λ, γ, r), the right-hand side of (A8) is positive. �

Proof of Theorem 3

As we established in Theorems 1 and 2, the equilibrium in both pre-AI and post-AI settings start with the
offering of one of the products until bad news occurs, and then following bad news, the platform offers
another product and so on. Also, as in Propositions 1 and 2, both the expected utility obtained from
offering any product and the probability of bad news occurring for a product are continuous functions
of ρ. Therefore, it suffices to prove the theorem statement in the limit of ρ → ∞ with strict inequality.
This establishes the existence of large enough ρh such that the inequalities hold for ρ ≥ ρh.

First, note that the platform’s information advantage in the post-AI implies that its expected payoff
is higher than in the pre-AI environment. We next prove that the expected user utility in the post-AI is
higher than in the pre-AI environment. Since utilitarian welfare is the summation of the user and the
platform utilities, we conclude that the expected welfare in the post-AI is higher than in the pre-AI.

Let us consider a realization of the products’ beliefs and, without loss of generality, assume

µ1,0 ≤ · · · ≤ µn,0.
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As we established in Theorem 1, in the pre-AI environment, the platform first offers the product with
the highest belief, that is, product n, and if bad news happens, offer the product with the second highest
product, and so on. Using Proposition 2, in the post-AI environment, the platform may start offering
product i where i < n, αi,0 = 0, and αn,0 = 1. In the post-AI environment, the platform equilibrium
strategy may also differ in the order of other products. However, we can obtain the platform strategy in
the post-AI from its strategy in the pre-AI by performing a series of helpful swaps, defined next.

Suppose µ1,0 ≤ · · · ≤ µn,0 and i is the highest index for which αi,0 = 0. Consider the strategy of
offering products in decreasing order of their beliefs. A helpful swap offers product i first and then offers
the rest of the products in decreasing order of their beliefs.

The proof of theorem follows from the following lemma that establishes for large enough ρ, a helpful
swap increases the user expected utility.

Lemma A8. The expected user utility increases for large enough ρ after performing a helpful swap.

Proof of Lemma A8: It suffices to prove the lemma in the limit of ρ → ∞ with strict inequality. This
establishes the existence of large enough ρ for which the statement holds. For any j ∈ N , we let τj be the
stochastic time at which bad news occurs for product j given θj = 0. Notice that in the limit of ρ → ∞,
for both a product with αj,0 = 1 and a low-quality product with αj,0 = 0, the platform knows that bad
news arrive with rate γ. We let

Aj , E
[
−
∫ τj

0
re−rtµj,tdt

]
for j = n, n − 1, i. Using this notation, and that for j = n, n − 1, . . . , i + 1, δ , Et∼τj [e−rt] < 1, the
expected utility before the swap is

U1 ,
i+1∑
j=n

Ajδ
n−j + δn−i

(
µ
(P )
i,0

∫ ∞
0

re−rt(1− µi,t)dt+ (1− µ(P )
i,0 )Ai

)
+δn−i+1(1− µ(P )

i,0 ) (Expected utility from products i− 1, . . . , 0) , (A9)

where µ(P )
i,0 =

µi,0
µi,0+(1−λ)(1−µi,0) when αi,0 = 0. The expected utility after the swap is

U2 ,µ
(P )
i,0

∫ ∞
0

re−rt(1− µi,t)dt+ (1− µ(P )
i,0 )Ai + δ(1− µ(P )

i,0 )

i+1∑
j=n

Ajδ
n−j

+δn−i+1(1− µ(P )
i,0 ) (Expected utility from products i− 1, . . . , 0)

(a)
>δn−iµ

(P )
i,0

∫ ∞
0

re−rt(1− µi,t)dt+ (1− µ(P )
i,0 )Ai + δ(1− µ(P )

i,0 )
i+1∑
j=n

Ajδ
n−j

+δn−i+1(1− µ(P )
i,0 ) (Expected utility from products i− 1, . . . , 0)

=U1 +Ai

(
(1− µ(P )

i,0 )− δn−i(1− µ(P )
i,0 )

)
+

i+1∑
j=n

Aj

(
δn+1−j(1− µ(P )

i,0 )− δn−j
)
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(b)

≥U1 +Ai

(
(1− µ(P )

i,0 )− δn−i(1− µ(P )
i,0 )

)
+

i+1∑
j=n

Ai

(
δn+1−j(1− µ(P )

i,0 )− δn−j
)

=U1 − µ(P )
i,0 Ai

n−i+1∑
j=0

δj

 (c)
> U1 (A10)

where (a) follow from µ
(P )
i,0

∫∞
0 re−rt(1−µi,t)dt > 0 and 1 > δn−i, (b) follows fromAj < Ai and δn+1−j(1−

µ
(P )
i,0 )− δn−j < 0 for j = n, n− 1, i+ 1, and (c) follows from Ai < 0, completing the proof of lemma. �

We now continue with the proof of the theorem. If αn,0 = 0, then in both pre-AI and post-AI the
platform starts by offering product n, and the proof follows by induction on the number of products. If
αn,0 = 1, then letting i be the largest index for which αi,0 = 0, with positive probability we have that
µi,0 > g(µn,0, λ, γ, r) and therefore Proposition 2 implies that the platform starts by offering product i in
the post-AI. The above Lemma establishes the expected user utility increases by this helpful swap. The
proof completes by noting that the platform strategy in the post-AI can be obtained from its strategy in
the pre-AI by performing a series of helpful swaps. �

Proof of Theorem 4

Again, as we established in Theorems 1 and 2, the equilibrium in both pre-AI and post-AI settings
start offering one of the products until bad news occurs for it and then offers another product and so
on. Also, as we showed in the proof of Propositions 1 and 2, both the expected utility obtained from
offering any product and the probability of bad news occurring for a product are continuous functions
of ρ. Therefore, it suffices to prove the theorem statement in the limit of ρ→ 0 with strict inequality. This
establishes the existence of small enough ρl such that the inequalities hold for ρ ≤ ρl. First, note that the
platform’s information advantage in the post-AI implies its expected payoff is higher than in the pre-AI
environment. We next prove that the expected utilitarian welfare in the post-AI is smaller than in the
pre-AI environment. Since utilitarian welfare is the summation of the user and the platform utilities, the
expected user utility in the post-AI is smaller than in the pre-AI.

Let us consider a realization of the products’ beliefs and, without loss of generality, assume

µ1,0 ≤ · · · ≤ µn,0.

Using the characterizations of Theorems 1 and 2, we have the following cases:

1. αn,0 = 1: In this case, in both pre-AI and post-AI environments, the platform starts offering prod-
uct n. Since ρ = 0, bad news does not arrive for this product, and the expected welfare in pre-AI
and post-AI environments are the same.

2. αn,0 = 0, there are two cases:

2.1. For all products j ∈ N \ {n} for which αj,0 = 1, we have µj,0 ≤ f(µn,0, λ, γ, r). In this case, in
both the pre-AI and post-AI environment, the platform starts offering product n. Therefore,
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by induction on the number of products, the expected welfare in the post-AI is smaller than
in the pre-AI environment.

2.2. There exists product j ∈ N \ {n} for which αj,0 = 1 and µj,0 > f(µn,0, λ, γ, r). We let i
be the largest index among such products. In the post-AI environment, the platform starts
offering product i, and given that bad news does not occur for this product (ρ = 0) and θi = 0,
the expected welfare becomes 0. In the pre-AI environment, the platform starts by offering
product n, and therefore, with probability µn,0 we have θn = 1, ensuring an expected welfare
of at least µn,0.

Finally, notice that case 2.2 happens with a positive probability, proving that the expected welfare in
the post-AI environment is strictly lower than in the pre-AI environment. �

Proof of Theorem 5

Similar to the argument of Theorem 4, it suffices to prove the theorem statement for the expected welfare
in the limit of ρ→ 0 with strict inequality. This establishes the existence of small enough ρ̃l such that the
inequalities hold for ρ ≤ ρ̃l. We let ∆1 be small enough so that

f

(
1

2
+ ∆1;λ, γ, r

)
≤ 1

2
−∆1. (A11)

Such ∆1 exists because f(µ;λ, γ, r) is continuous in µ and is everywhere below µ and in particular,
f(12 ;λ, γ, r) ≤ 1

2 . The continuity of f(·) follows from the characterization of the function f(·) derived
in Proposition 1 (and in particular, (A7)) and implicit function theorem. Let us compare the expected
welfare conditioned on the belief realization for the first n products. Without loss of generality, we
assume µ1,0 ≤ µ2,0 ≤ . . . µn,0. Let us assume ∆ ≤ ∆1. We have the following cases:

1. There exists i ∈ N for which αi,0 = 1: In this case, given ∆ ≤ ∆1 and (A11), the platform’s
equilibrium strategy with and without the n+ 1-th product is to offer one of the products with the
initial glossiness state of 1. Therefore, the expected welfare with and without the extra product is
zero.

2. αi,0 = 0 for all i ∈ N and αn+1,0 = 1: In this case, given ∆ ≤ ∆1 and (A11), the platform’s
equilibrium strategy with the n + 1-th product is to offer that product, and the expected welfare
becomes 0. The platform’s equilibrium strategy with n products, however, is to offer them in the
decreasing order of their belief whose expected welfare is recursively defined as

W (µn,0, . . . , µ1,0) = µ
(P )
n,0 + (1− µ(P )

n,0 )δW (µn−1,0, . . . , µ1,0), (A12)

where δ , Et∼τj
[
e−rt

]
< 1, τj is the arrival time of bad news for a low-quality product in the

initial glossiness state of 0, and µ(P )
i,0 =

µi,0
µi,0+(1−λ)(1−µi,0) when αi,0 = 0.
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3. αi,0 = 0 for all i ∈ {1, . . . , n} and αn+1,0 = 0: In this case, again, the expected welfare with n

products is W (µn,0, . . . , µ1,0) as defined in (A12). The expected welfare with n+ 1 products is

W (µn,0, . . . , µi+1,0, µn+1,0, µi,0 . . . , µ1,0) (A13)

where i is such that µi+1,0 ≥ µn+1,0 ≥ µi,0.

With the extra product, the expected welfare in case 2 increases while the expected welfare in case
3 decreases. We next prove that, for small enough ∆2, when µi ∈ [1/2 −∆2, 1/2 + ∆2], in expectation,
the expected welfare decreases. In case 2, the difference between expected welfare with and without the
extra product is upper bounded by

−µl
1− ((1− µl)δ)n

1− (1− µl)δ
, where µl =

1
2 −∆2

1
2 −∆2 + (12 + ∆2)(1− λ)

,

noting that µl is the smallest belief conditional on the initial glossiness state being 0 obtained by using
Bayes’ rule. In case 3, the difference between expected welfare with and without the extra product is
upper bounded by

µh
1− ((1− µh)δ)n+1

1− (1− µh)δ
− µl

1− ((1− µl)δ)n

1− (1− µl)δ
, where µh =

1
2 + ∆2

1
2 + ∆2 + (12 −∆2)(1− λ)

,

noting that µh is the largest belief conditional on the initial glossiness state being 0 obtained by using
Bayes’ rule. Therefore, the expected welfare with n + 1 products minus the expected welfare with n

products is upper bounded by

−(1− µh)λµl
1− ((1− µl)δ)n

1− (1− µl)δ
+ (1− (1− µh)λ)

(
µh

1− ((1− µh)δ)n+1

1− (1− µh)δ
− µl

1− ((1− µl)δ)n

1− (1− µl)δ

)
.

We claim that the above expression is negative for small enough ∆2. Notice this expression is continuous
in ∆2 and for ∆2 = 0 it becomes

−(2− λ)(1− λ)λ+
(
δ 1−λ2−λ

)n (
(2− λ)2 − δ(1− λ)(2− (2− λ)λ)

)
(2− δ(1− λ)− λ)(2− λ)2

(a)
<
−(2− λ)(1− λ)λ+

(
1−λ
2−λ

)n
(2− λ)2

(2− δ(1− λ)− λ)(2− λ)2

(b)

≤ 0

where (a) follows from the fact that the denominator is positive and that (2−λ)2−δ(1−λ)(2−(2−λ)λ) ≥
(2−λ)2− (1−λ)(2− (2−λ)λ) = 2(1−λ) > 0, δ < 1, and δ(1−λ)(2− (2−λ)λ) > 0 and (b) follows from

n ≥
log 2−λ

(1−λ)λ

log 2−λ
1−λ

= 1 − log λ

log 2−λ
1−λ

. This proves that for ∆ = min{∆1,∆2}, the expected welfare (and therefore

the expected user utility) decreases as the number of products increases. �
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