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batch-arm means by a constant, we show that there is additional information in the data,

captured by one additional linear function of the batch-arm means. In the more restrictive

case where the stopping time, assignment probabilities, and target parameter are known to

depend on the data only through a collection of polyhedral events, we derive computationally

tractable and optimal conditional inference procedures.

Keywords. Conditional inference, sufficient statistic, bandit, selective inference, uniform

inference

1Department of Economics, Harvard University and Harvard Business School.
2Department of Economics, Massachusetts Institute of Technology.

E-mail addresses: jiafengchen@g.harvard.edu; iandrews@mit.edu.
Date: September 22, 2023. An extended abstract of this paper was presented at CODE@MIT 2021. We

thank Kei Hirano, Lucas Janson, Lihua Lei, Jonathan Roth, Brad Ross, David Ritzwoller, Pedro Sant’Anna,

and participants at the Microsoft Research causal inference reading group and at CODE@MIT for comments.
1

ar
X

iv
:2

30
9.

12
16

2v
1 

 [
st

at
.M

E
] 

 2
1 

Se
p 

20
23



1. Introduction

Consider a batched bandit experiment (Zhang, Janson and Murphy, 2020; Hirano and

Porter, 2023), where at each batch t = 1, 2, . . . , T0 an experimenter either continues or ends

the experiment. If they continue the experiment, nt units are independently randomized

among K different arms, where the probability that a unit is assigned to arm k in batch

t is Πtk, and we let Πt = diag(Πt1, . . . ,ΠtK) collect the assignment probabilities in batch

t. Observations assigned to arm k have mean outcome µk, collected in µ = [µ1, . . . , µK ]
′,

and variance σ2
k, collected in Σ = diag(σ2

1, . . . , σ
2
K). Once the experiment ends, either at an

experimenter-selected stopping time (T < T0) or upon reaching the last batch (T = T0), we

are interested in conducting inference on some linear combination of the arm means, η′µ,

where η may depend on the data.

The iterative nature of the experiment provides multiple opportunities for adaptive, data-

driven decision-making. First, treatment assignments may be selected using bandit algo-

rithms, which set Πt using the results in batches 1, . . . , t− 1. For instance, the experimenter

might assign more units to arms which have produced good outcomes in the past, as in

Thompson sampling. Second, the experimenter may choose whether to continue the experi-

ment, and thus the observed number of batches T, based on how the results are unfolding.

For instance, the experimenter might stop the experiment early if the results are either highly

promising or overly discouraging. Third, the results of the experiment may also inform what

objects the experimenter targets for inference, and hence the linear combination coefficients

η. For instance, the experimenter might be interested in inference on average outcomes under

an arm that performed especially well in the experiment.

Each of these forms of adaptivity presents challenges for inference. Zhang et al. (2020) and

Hadad, Hirshberg, Zhan, Wager and Athey (2021) highlight that standard inference proce-

dures that ignore the adaptive choice of Πt can lead to invalid inference (e.g. under-coverage

for confidence sets) in adaptive experiments, and propose alternative inference procedures

which are valid in large samples provided η and T are fixed in advance. Similarly, the large

and growing literature on anytime-valid inference is motivated by the long-standing obser-

vation that adaptively chosen stopping times T can lead to arbitrarily poor performance for

conventional inference procedures, and proposes alternatives which guarantee performance

in settings where η is fixed (see Ramdas, Grünwald, Vovk and Shafer (2023) for a recent

review). Finally the large literatures on post-selection and selective inference (e.g. Berk,

Brown, Buja, Zhang and Zhao, 2013; Fithian, Sun and Taylor, 2017; Andrews, Kitagawa

and McCloskey, Forthcoming) highlight that the data-driven choice of a target parameter

can invalidate standard inference procedures, and proposes valid alternatives focused pri-

marily on static settings or, equivalently, settings where Πt and T are fixed in advance.
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In the batched setting we consider, there is a simple procedure available which ensures

valid inference for many different choices of (T,Π1:T , η) = (T,Π1, . . . ,ΠT , η), which we will

collectively shorthand as “the experimental design.” So long as the experimental design

depends only on data observed up to period T − 1—requiring, for instance, that decisions

to stop the experiment be made one period in advance—inference based on the last batch

of the experiment is guaranteed to be valid. This “last-batch-only” approach is in one sense

quite restrictive, since it discards information from all but the last batch of the experiment.

At the same time, last-batch only inference is quite flexible in that it requires no knowledge

of how (T,Π1:T , η) are chosen, other than that (T, η) must be chosen one batch in advance.

Consequently, this approach can accommodate a very wide variety of experimental designs,

including ones where decisions are made adaptively by human decision-makers whose pref-

erences and decision rules are not fully understood.

This paper examines the extent to which it is possible to improve last-batch-only inference

while continuing to allow a very flexible class of experimental designs. In settings where

we desire valid inference (e.g. coverage 1 − α) conditional on (T,Π1:T , η) and there are

no restrictions on how these are chosen, we prove that it is impossible to improve upon

last-batch-only inference. We also observe, however, that many approaches for selecting

(T,Π1:T , η) depend only on the contrasts between different arms, and are unaffected if we

increase the average outcome for all arms by a fixed amount. This is the case, for instance,

whenever the experimenter’s decisions depend only on the difference in outcomes relative to a

fixed treatment arm. We term experimental designs with this property “location-invariant,”

and show that in the class of location-invariant experiments, a sufficient statistic for µ is

given by the outcomes in the last batch together with a scalar summarizing information

from earlier batches. Estimation of η′µ based on these statistics is a simple generalized least

squares problem, and dominates inference based on the last batch alone.

The class of location-invariant experimental designs is large, and in many contexts we

know much more about (T,Π1:T , η) than simply that they are location-invariant. When we

have such restrictions, we can exploit them to design more precise inference procedures.

To illustrate, we consider settings where the rules used to determine (T,Π1:T , η) are fully

known and can be expressed in terms of a finite number of linear-in-data inequalities (that is,

settings where these (T,Π1:T , η) depend on the experimental results only through a collection

of polyhedral events). This holds, for instance, when Π1:T is constructed using an ε-greedy

algorithm and η selects the best-performing arm. In such settings, we characterize optimal

median-unbiased estimators and equal-tailed confidence intervals conditional on (T,Π1:T , η).

Our optimality results are derived under the assumption that the batch-arm means are

exactly normally distributed in finite samples. Hirano and Porter (2023) show that this cor-

responds to the limit experiment for batched bandit experiments. To ensure that our results
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for location-invariant experiments deliver valid inference more generally, in the appendix we

prove that our procedures for location-invariant experimental designs are uniformly asymp-

totically valid across a large class of data generating processes with non-normal data.

Section 2 formally introduces the problem we consider in the context of the normal

model, and proves the optimality of last-batch-only inference absent further restrictions

on (T,Π1:T , η). Section 3 introduces the class of location-invariant experiments and derives

the sufficient statistic for µ in this class. Section 4 considers optimal conditional inference

when (T,Π1:T , η) depends on the data only through a collection of polyhedral events. Finally

Section 5 provides simulation evidence on the performance of our procedures.

Proofs and additional results are provided in the appendix. In particular, Appendix A

includes asymptotic results justifying the finite-sample normal approximation in the main

text. Appendix B proves results stated in the main text.

2. Problem setup

Let nt denote the total number of observations in batch t, n =
∑T

t=1 nt the total number

of observations, and ct = nt/n the fraction of observations assigned in batch t. We write

Xtk for the average outcome among those units assigned to arm k in batch t and Xt for the

vector of these means, Xt = [Xt1, . . . , XtK ]
′. We assume that the assignment probabilities

Πt depend on the data only through X1:t−1 = (X1, ..., Xt−1).

Since Xt is a vector of sample means, when batch sizes are large the central limit theorem

implies that Xt is approximately Gaussian conditional on Πt, X1:t−1, with Xtk | Πt, X1:t−1 ∼
N (µk,

σ2
k

ntΠtk
). For Vt the diagonal matrix with kth diagonal element

σ2
k

ctΠtk
we thus have that,

approximately,

Xt | Πt, X1:t−1 ∼ N
(
µ,

1

n
Vt

)
, (1)

The results in the main text take (1) as exact and treat Σ (and thus Vt) as known, since the

variances Σ are consistently estimable. Hirano and Porter (2023) show that this corresponds

to the limit experiment for the batched bandit experiment under mild conditions. Moreover,

in Appendix A we verify that the finite-sample analogue of our procedure converges to

its counterpart under (1), uniformly over a large class of data-generating processes. For

analytical convenience, we maintain in the main text that Πtk > 0 almost surely for all

t ∈ [T ], k ∈ [K]. This is again relaxed by our asymptotic results in Appendix A.

2.1. Inference problem. Suppose that we observe data from batches 1, . . . , T of the Gauss-

ian experiment (1), where the stopping decision is based on information available at T − 1

(i.e. 1(T ≤ t) is measurable with respect to X1:t−1 for all t). We are interested in inference

on η′µ, where the target parameter is again determined by information available at T − 1,

η = η(X1:T−1, T ).
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The restriction that stopping decisions and target parameters be determined by X1:T−1

implies that inference based only on the last batch is valid, in the sense that the z-statistic

confidence interval η′XT ± z1−α
2
ση (where z1−α

2
is the 1 − α

2
quantile of a standard normal

distribution and σ2
η = 1

n
η′VTη) has correct conditional coverage

P
(
η′µ ∈

[
η′XT ± z1−α

2
ση
]
| T,Π1:T , η

)
= 1− α.

Moreover, η′XT is unbiased for η′µ even conditional on T, Π1:T , and η

E[η′XT | T,Π1:T , η] = η′µ.

The first question we consider is whether we can construct a confidence set Cη that im-

proves on last-batch-only inference while maintaining the same flexibility. If η can be an

arbitrary function η(·) of the history X1:T−1 and we wish to maintain inferential validity

conditional on the stopping time, assignment probability, and target parameter

P (η′µ ∈ Cη(α) | T,Π1:T , η) ≥ 1− α almost surely, α ∈ (0, 1). (2)

then the answer turns out to be no.

Lemma 2.1. Suppose (2) holds for all measurable η(·), then for all fixed η ∈ RK

P (η′µ ∈ Cη(α) | X1:T−1) ≥ 1− α almost surely.

Lemma 2.1 shows that if η(·) is entirely unrestricted, then any confidence set which is valid

conditional on (T,Π1:T , η) must also be valid conditional on X1:T−1. In fact, simply requiring

conditional coverage given η is already sufficient to obtain this conclusion. This effectively

means we cannot use information from the first T − 1 batches of data, so it is impossible to

improve on the power of last-batch-only inference without losing some degree of robustness.

To make progress, we introduce two relaxations of (2). First, we observe that many bandit

algorithms are location-invariant. That is, they have the property that Πt(X1:t−1) is invariant

to adding a constant h to every batch-arm mean Xsk. If the adaptive choices of inferential

target and stopping time are similarly location-invariant, as is often the case, then we can

condition on less information, and construct procedures that dominate using solely the last

batch. Such a procedure does not require knowledge of the precise allocation algorithm nor

of η(·) and T , beyond location-invariance.

Second, if the experimental design depends solely on a lower-dimensional but known set

of statistics, then we can also design optimal conditional inference procedures conditioning

on these statistics. We show that such procedures are particularly tractable for a large class

of discrete assignment algorithms that we call polyhedral algorithms. Since these proce-

dures require less stringent conditioning, they are more powerful than conditional inference

procedures that only use location-invariance.
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3. Conditional inference for location-invariant algorithms

This section focuses on location-invariant assignment algorithms, choices of target param-

eter, and stopping times. We show that there is a simple conditional procedure that assumes

only location-invariance and improves upon last-batch-only inference. To state these results,

we first formally define what we mean by location-invariance.

Definition 3.1. A function f(X1, . . . , Xt) is location-invariant if

f(X1 + h1K , . . . , Xt + h1K) = f(X1, . . . , Xt)

for all (X1, . . . , Xt) ∈ (RK)t and h ∈ R, where 1K ∈ RK is the vector of ones.

Definition 3.2. An assignment algorithm is location-invariant if each batchwise probability

Πt = Πt(X1, . . . , Xt−1) is location-invariant.

Definition 3.3. A stopping time T is location-invariant if whether batch t is the last batch is

determined by X1:t−1 via a location-invariant function. That is, 1(T > t) = Ξt(X1, . . . , Xt−1)

and Ξt(·) is location-invariant for all t = 1, . . . , T0.

Definition 3.4. η is location-invariant if η = η(X1, . . . , XT ;T ) and, for all t = 1, . . . , T0,

each η(X1, . . . , Xt; t) is location-invariant in its first t arguments.

For concreteness, let us first introduce two leading location-invariant assignment algo-

rithms. To do so, let

Wt =

(
t∑

s=1

V −1
s

)−1 t∑
s=1

V −1
s Xs

be the inverse-variance weighted batch-arm means, and let

Ωt =
1

n

(
t∑

s=1

V −1
s

)−1

=
Σ

n

(
t∑

s=1

csΠs

)−1

be the posterior variance of µ | Wt under a flat prior.

Example 3.5 (Thompson sampling). Let Q(ν,Λ) denote the vector of Gaussian orthant

probabilities

Qk(ν,Λ) = PX∼N (ν,Λ)

(
Xk ≥ max

ℓ
Xℓ

)
. (3)

Consider a Bayesian experimenter with a flat prior for µ. The Bayesian’s posterior distribu-

tion for µ after observing X1:t is

µ | X1:t ∼ N (Wt,Ωt) .

Thompson sampling then sets Πt+1 = Q (Wt,Ωt) . Since Q(ν+h,Λ) = Q(ν,Λ), this algorithm

is location-invariant. ■
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Example 3.6 (ε-greedy). For some 0 < ε < 1/K, the algorithm sets Πtk = 1 − (K − 1)ε

if Wtk is the largest entry in Wt. Otherwise, the algorithm sets Πtk = ε. This algorithm is

location-invariant since it only involves ordinal comparisons of Wtk. ■

Location-invariance implies that for each t ∈ {1, ..., T0}, (1(T ≤ t),Π1:t, η) is measurable

with respect to batch-arm differences against X1K :

∆X1:t−1 ≡ {Xtk −X1K : s = 1, . . . , t− 1; k = 1, . . . , K − 1} .

Consider the following statistic which represents some information from the first T−1 batches

“left over” from conditioning on (T,∆X1:T−1):

L =
T−1∑
t=1

K∑
k=1

ct
Πtk

σ2
k

Xtk

It turns out that L is the only information left over from conditioning, in the sense that

(L,XT ) is sufficient for µ with respect to the conditional distribution of the data.

Theorem 3.7. Under the preceding setup, assuming Πt > 0 for all t almost surely,[
L

XT

]
| (T,∆X1:T−1) ∼

[
L

XT

]
| (Π2:T , T ) ∼ N

([
λ′µ

µ

]
,

[
λ′1
n

0

0 1
n
VT

])
, (4)

where λ = (λ1, . . . , λK)
′ and λk = 1

σ2
k

∑T−1
t=1

nt

n
Πtk. Moreover, (L,XT ) is sufficient for µ with

respect to the conditional distribution X1:T | (T,∆X1:T−1).

Therefore, we can base inference for µ on (4). Optimal inference in (4) is also optimal

conditional inference given the finer information set ∆X1:T . The minimal sufficient statistic

for µ under (4) is the weighted least-squares coefficient

S⋆ = XT +
VTλ

λ′1 + λ′VTλ
(L− λ′XT ) (5)

where

S⋆ | (∆X1:T−1, T ) ∼ N
(
µ,

1

n

(
VT − VTλλ

′VT
λ′1 + λ′VTλ

))
. (6)

Optimal conditional inference for η′µ is thus simply based on the Gaussian statistic η′S⋆.

Appendix A formally connects these results in the Gaussian model to the finite sample

setting. We show that the finite sample analogue of η′S⋆ has asymptotic behavior analogous

to (6) and produces confidence intervals that cover the random parameter τ = η′µ conditional

on (T,Π1:T , η). Our asymptotic results are valid uniformly over a class of data-generating

processes and also allow for certain arbitrarily small assignment probabilities, which may be

of independent theoretical and practical interest.

3.1. Gain relative to last-batch inference. Theorem 3.7 shows that under location-

invariance there is one usable piece of information beyond to the last batch, namely the
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statistic L. It is therefore interesting to understand to what extent this additional informa-

tion helps us conduct inference on µ.

Let r(c) = VTλ. Note that r(c) collects the ratio of cumulative sample size and last period

sample size for each arm: r
(c)
k =

∑T−1
t=1 ntΠtk

nTΠTk
. Similarly, let r(t) = r(c) + 1 collect the ratio of

total sample size to last period sample size for each arm. Let q =
∑T−1

t=1 ntΠt1K collect the

cumulative sample size. Then we have that

Var(S⋆
k | ∆X1:T−1, T ) =

VT
n︸︷︷︸

Var(XT |ΠT )

(
I − qΣ−1(r(c))′

q′Σ−1r(t)

)
.

Thus, the reduction in variance relative to using solely the last batch depends on the align-

ment of η to the matrix qΣ−1(r(c))′

q′Σ−1r(t)
, which collects information about variance-weighted relative

sample sizes. The relative improvement is greatest when η is proportional to λ, since then

L provides the greatest amount of information.

3.2. Conditioning on ∆X1:T−1 in Thompson sampling. We have so far studied inference

conditional on all of the differences ∆X1:T−1. While this allows for any location-invariant

form of selection, one might reasonably wonder if this conditioning is excessive. If we had

more restrictions on how (T,Π1:T , η) were generated and our only goal were to ensure condi-

tional coverage (2), perhaps it would suffice to condition on a coarser set of statistics, which

could let us obtain higher power. The next section explores this possibility.

Before doing so, however, we show that conditioning on on ∆X1:T−1 is sometimes necessary

for conditional coverage (2), even when the rules generating (T,Π1:T , η) are perfectly known.

Specifically, we show in the case of Thompson sampling (Example 3.5), for fixed T and η,

efficient conditional inference given ∆X1:T−1 is also efficient given Π1:T . This is because Π1:T

in Thompson sampling contains sufficiently rich information about ∆X1:T−1.

Proposition 3.1. Under the setup of Theorem 3.7, suppose, for all t, Ξt(X1, . . . , Xt−1) is

measurable with respect to Π2:t. Under Thompson sampling, (L,XT ) is sufficient for µ with

respect to the conditional distribution X1:T | Π1:T , T .

Proposition 3.1 shows that (L,XT ) is sufficient for µ with respect to the distribution

X1:T | (Π2:T , T ). Thus, optimal inference based on (L,XT ) is optimal for η′µ. The proof

relies on inversion results from the econometrics of discrete choice (Hotz and Miller, 1993;

Norets and Takahashi, 2013) in order to show that Π1:T reveals sufficiently rich information

on ∆X1:t−1.

8



4. Conditional inference in the Gaussian model

If we have additional knowledge of the allocation algorithm as well as the inferential

target and stopping time, then we can design optimal conditional inference procedures that

condition on less information—and are hence more powerful.

Let us first introduce a general recipe for constructing optimal conditional procedures by

analyzing the likelihood of the observed data. Suppose we wish to condition on growing infor-

mation sets FT−1(X1:T−1) such that the experimental design (1(T ≤ t),Π1:t, η(X1, . . . , Xt; t))

is measurable with respect to Ft−1. The law of the observed data, for a given stopping time

T ′, is an exponential family:

pµ(X1:T | T = T ′,FT ′−1) =
1

p(FT ′−1)

T ′∏
t=1

1√
(2π)k det(Vt)

exp
(
−n
2
(Xt − µ)′V −1

t (Xt − µ)
)

= exp

(
nµ′

T ′∑
t=1

V −1
t Xt

)
h(X1:T ′)g(FT ′−1, µ) (7)

where h(·) does not depend on µ. Thus, a sufficient statistic for µ with respect to the law of

(X1:T | T,FT−1) is

S = n
T∑
t=1

V −1
t Xt.

For any τ = η′µ, where without loss of generality ∥η∥ = 1, given an orthogonal matrix Q

whose first row is η we can further partition

S ′µ = S ′Q′Qµ = (η′S)(η′µ) + (η⊥S)
′(η⊥µ) ≡ Uτ + U ′

⊥τ⊥.

By the results in Pfanzagl (1994), optimal inferences for τ , conditional on FT−1,
1 are

based on the distribution of U | U⊥,FT−1, which depends solely on τ and is stochastically

increasing in τ . The optimal α-quantile unbiased estimator for τ , based on observations

(u, u⊥,FT−1(X1:T−1)), can be computed by τ̂α such that

Pτ̂α (U ≤ u | U⊥ = u⊥,FT−1(X1:T−1)) = α.

The optimal (1− α) equal-tailed confidence interval for τ is [τ̂α/2, τ̂1−α/2].

If choices of inferential target and stopping time can be expressed in terms of linear

inequalities in X1:T−1, then the above recipe is particularly tractable. Like our results in

Section 3, the optimal conditional procedures dominate using only the last batch.

Remark 4.1 (Sufficient statistics). Notably, this procedure is based on (U,U⊥), which are

sufficient for µ with respect to the law of X1:T | FT−1, T . In contrast, we notice that the

procedure in Zhang et al. (2020) is not based on the sufficient statistic. Appendix D shows

that it can be written as a linear function of the sufficient statistics and an independent

1Adusumilli (2023) studies Neyman-Pearson-style testing with the likelihood (7).
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Gaussian noise term. The natural estimator for τ from Zhang et al. (2020) (the mid point of

the confidence interval) is thus dominated by its conditional expectation given the sufficient

statistics (i.e. Rao–Blackwellization). Moreover, we observe that the confidence intervals

in Zhang et al. (2020) is also not bet-proof (Müller and Norets, 2016), in the sense that

there exists an event of the data with positive probability on which the confidence interval

undercovers uniformly over µ ∈ RK . ■

4.1. Conditional inference for polyhedral algorithms. We consider a class of algo-

rithms such that the support of FT−1 ≡ (Π2:T , T, η) is finite. For every (π, t0, h) in its

support, there exist a conformable matrix A(FT−1) and vector b(FT−1) such that for all µ,

Pµ [(Π2:T , T, η) = (π, t0, h) ∩ A(Ft0−1)X1:t ≤ b(Ft0−1)]

= Pµ [(Π2:T , T, η) = (π, t0, h)]

= Pµ [A(Ft0−1)X1:t0 ≤ b(Ft0−1)] .

As an example, suppose T, η are fixed, but at each batch t, the assignment algorithm ϵ-

greedy (Example 3.6) favors the arm k with the highest cumulative arm mean W(t−1),k.

Each realization of π2:T then corresponds to a sequence of ϵ-greedy winners (k1, . . . , kT−1).

Thus, up to a measure-zero event of ties, the sequence of winners (k1, . . . , kT−1) is equivalent

to the inequalities

{Wt,kt ≥ Wt,ℓ : t = 1, . . . , T − 1; ℓ = 1, . . . , K} .

Since Wt,ℓ is linear in X1, . . . , Xt, we may represent these inequalities as the polyhedron

A(FT−1)X1:T ≤ b(FT−1).

Following our conditional inference strategy, optimal inference for τ = η′µ depends on the

distribution

(U | U⊥,FT−1) ∼ (U | U⊥, A(FT−1)X1:T ≤ b(FT−1))

where U = η′S, U⊥ = η⊥S, and Sk =
∑T

t=1
ntΠtk

σ2
k
Xtk. The following theorem makes explicit

this distribution, and, in particular, its dependence on µ only through τ .

Theorem 4.2. Assume, without loss of generality, that ∥η∥ = 1. Define R = n
∑T

t=1 V
−1
t .

Let G = 1′T ⊗ IK = [IK , . . . , IK ] be a K × TK matrix. Let G⊥ be a (T − 1)K × TK matrix

whose rows are unit vectors that are orthogonal to each other and to the rows of G. Let

V = 1
n
diag(V1, . . . , VT ) be a TK × TK diagonal matrix. Let G̃, G̃⊥ partition the inverse of

the following matrix: [
GV−1

G⊥

]−1

=
[
G̃, G̃⊥

]
.
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where G̃ is TK ×K. Let c = 1
η′R−1η

. Then(
U

c
| U⊥ = u⊥, A(FT−1)X1:T ≤ b(FT−1)

)
∼ (Z1 |M(FT−1)Z ≤ m(FT−1))

where the right-hand side follows the law

Z = (Z1, Z
′
2)

′ ∼ N

([
τ + k′u⊥

0

]
,

[
1
c

0

0 G⊥VG
′
⊥

])
k′ =

1

c
η′GV−1G′η′⊥(η⊥GV

−1G′η′⊥)
−1

The constraints are defined by

M(FT−1) =
[
cA(FT−1)G̃η, A(FT−1)G̃⊥

]
m(FT−1) = b(FT−1)− A(FT−1)G̃(I − ηη′)S.

At any realization of the dataX1:T , the constraints and parameters (m(FT−1),M(FT−1), c, G⊥VG
′
⊥)

are functions of known quantities. The law (Z1 | M(FT−1)Z ≤ m(FT−1)) depends only on

the parameter of interest τ .

For testing the point null hypothesis H0 : τ = τ0, we can draw from the corresponding

distribution (Z1 | M(FT−1)Z ≤ m(FT−1)) induced by the null value τ0. The observed

statistic is z1 = U/c. Valid tests are then constructed by comparing z1 to its distribution

under the null. A level-(1− α) equal-tailed test, for instance, rejects H0 when z1 falls in the

lower α/2 or the upper α/2 quantiles of the distribution (Z1 |M(FT−1)Z ≤ m(FT−1)) under

τ0.

In terms of computation, we can efficiently draw from (Z | M(FT−1)Z ≤ m(FT−1))

via Gibbs sampling (Taylor and Benjamini, 2016),2 since the conditional distribution of each

coordinate of Z is a truncated Gaussian. Confidence intervals can be constructed by inverting

tests of H0 : τ = τ0 for a range of τ0. Computation of confidence intervals does not require

drawing the distribution of Z for every candidate value of τ0. Note that, since the likelihood

ratio between two candidate values (τ1, τ0) is known,

pτ1(z1 |M(FT−1)Z ≤ m(FT−1))

pτ0(z1 |M(FT−1)Z ≤ m(FT−1))
= exp (c(τ1 − τ0)z1) ,

samples from pτ0 can be reweighted to obtain estimators for quantities under pτ1 . As a

result, inference based on Theorem 4.2 is computationally efficient, at least for moderately-

sized (T,K).

5. Simulation evidence

We consider two simulated experiments. Both experiments have T = 4, K = 3, µ =

[0, 0, 0]′, n1 = n2 = n3 = n4 = 200. To demonstrate asymptotic validity of our inference

procedures, we take the individual outcomes to be i.i.d. Rademacher random variables

2We thank Brad Ross for this suggestion.
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Fixed Target
(inference on µ3)

Rejection rate Median length Median length relative to last

Leftover 0.051 0.449 0.881
ZJM 0.049 0.255 0.488
Last-only 0.048 0.524 1.000

Adaptive Target
(inference on arm with highest sample mean in the first T − 1 batches)

Rejection rate Median length Median length relative to last

Leftover 0.052 0.312 0.917
ZJM 0.071 0.199 0.570
Last-only 0.051 0.350 1.000

Notes. 100,000 replications. Nominal 5% test. “Median length relative to last” takes the
median of the ratio of confidence interval lengths relative to last-only, as opposed to the ratio
of median lengths. □

Table 1. Thompson sampling experiment

4 2 0 2 4
t-statistic for the ex-post winning arm

0.0

0.2

0.4
ZJM
Leftover

Figure 1. Distribution of t-statistics for adaptive target in the Thompson
sampling experiment

and we plug in estimated versions of Σ in the following empirical exercises. We consider a

Thompson sampling experiment and an ε-greedy experiment.3

For Thompson sampling, Table 1 displays coverage and length of different confidence

intervals (Leftover is the procedure in Section 3 (Theorem A.2), ZJM is the procedure in

3The Thompson sampling algorithm prunes the last-batch assignment probabilities at 0.01 (See Exam-
ple A.3), which is needed for our asymptotic results in Appendix A. The ε-greedy algorithm chooses ε = 0.1.
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Fixed Target
(inference on µ3)

Rejection rate Median length Median length relative to last

Polyhedral 0.049 0.368 0.622
Leftover 0.051 0.597 0.887
ZJM 0.052 0.271 0.428
Last-only 0.051 0.817 1.000

Adaptive Target
(inference on arm with highest sample mean in the first T − 1 batches)

Rejection rate Median length Median length relative to last

Polyhedral 0.048 0.244 0.789
Leftover 0.051 0.293 0.950
ZJM 0.067 0.203 0.654
Last-only 0.051 0.310 1.000

Notes. 100,000 replications. Nominal 5% test. “Median length relative to last” takes the
median of the ratio of confidence interval lengths relative to last-only, as opposed to the ratio
of median lengths. □

Table 2. ε-greedy experiment

0.04 0.06 0.08 0.10 0.12
Rejection rate

3

2

1

0

N
um

be
r o

f t
im

es
 a

rm
 3

 w
in

s

ZJM
Polyhedral
Leftover

Notes. Simultaneous 95% confidence intervals for coverage shown. □

Figure 2. Conditional coverage in ε-greedy experiment

Zhang et al. (2020),4 and Last-only is the procedure that only uses the last batch). We

compare the procedures over two setups, fixed target and adaptive target. In terms of

4That is, we use the estimated counterpart of the following pivotal quantity

ZZJM =

T∑
t=1

V
−1/2
t (Xt − µ) ∼ N (0, T IK).
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rejection rates, the conditional procedures control size for both setups, and ZJM does not

control size for the adaptive setup (Figure 1 plots the distribution of t-statistics in the

adaptive setup). In terms of length, the improvement in median length from using the

leftover information is about 10% for this particular setup of the experiment, relative to only

using the last batch, whereas the ZJM interval is 40–50% shorter than only using the last

batch. This confirms that the improvement that the additional statistic L provides relative

to last-batch-only is mild but non-trivial (a 10% improvement in length is comparable to

a 20% increase in sample size). On average, we do sacrifice confidence interval length to

maintain conditional validity, relative to the unconditionally valid procedure ZJM, and so

the length difference between Leftover and ZJM can be viewed as the price of additional

adaptivity.

Similarly, we additionally compare the behavior of the Polyhedral inference procedure

(Theorem 4.2) for an ε-greedy experiment in Table 2. For inference on a fixed target, all

procedures achieve their nominal size. The Polyhedral procedure generates 40% shorter

confidence intervals (measured in terms of median length) than Last-only, which is more

than double the improvement of Leftover. For inference on the adaptive target, we again see

that the conditional procedures maintain nominal size, whereas ZJM does not.

Lastly, we plot conditional behavior of these procedures in Figure 2, where we condition

on the number of times the inference target, arm 3, is the ε-greedy winner. We find that

the conditional procedures indeed control conditional size, whereas ZJM over-rejects when

arm 3 (for whose mean we perform inference) wins most and least often, and compensates

for the over-rejection by under-rejecting on other sequences of ε-greedy winners.

6. Conclusion

This paper investigates inference conditional on the experimental design in batched adap-

tive experiments, and explores the potential of improving upon inference procedures that

only use the last batch. For location-invariant experimental designs, we find there is scalar

statistic, beyond the last-batch result, which is left over after conditioning. Using this addi-

tional statistic provides a free lunch improvement for statistical inference, relative to using

the last batch alone. For polyhedral experimental designs, we characterize optimal condi-

tional inference procedures and demonstrate their computational tractability.

14
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Appendix A. Uniform asymptotics

While the main text focuses on the finite-sample normal model, it is motivated by a large-

batch asymptotic approximation. In this section we make this precise by explicitly showing

that the finite-sample analogue of the inference procedure following Theorem 3.7 has desired

asymptotic validity in a uniform sense.

To state these results, we introduce the finite-sample setting formally. Fix a sequence

(n, n1, . . . , nT0) indexed by n such that nt/n→ ct ∈ (0, 1) and
∑

t nt = n. Let It ⊂ [n] collect

the indicies of the nt individuals in batch t. Prior to each batch, assignment probabilities

Πtn = diag(Πt1n, . . . ,ΠtKn) are determined by the assignment algorithm, as a function of

past data. In batch t, the nt participants are assigned to one of K arms. The indicator

for individual i’s assignment is Di = [Di1, . . . , DiK ]
′, which follows a categorical distribution

with probabilities Πtn. The Di’s are independent across i. Let Ntn = [Nt1n, . . . , NtKn]
′ =∑

i∈It Di. Let Π̂tkn = Ntkn/nt be the realized frequency of samples to arm k in batch t. Let

Π̂tn = diag(Π̂t1n, . . . , Π̂tKn).
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Let Xobs
i be the outcome observed for i and let

Xtkn =
1

Ntkn ∨ 1

∑
i∈It

DikX
obs
i

be the batch-arm mean. The definition for Xtkn builds in the convention that an empty

mean is zero. Let

σ̂2
tkn =

∑t
s=1

∑
i∈Is Dik(X

obs
i −Wt,k,n)

2∑t
s=1Nskn

(A.1)

be an estimate of the arm variance using data up until batch t. Let σ̂2
kn = σ̂2

Tkn. Let

Σ̂tn = diag(σ̂2
t1n, . . . , σ̂

2
tKn) and let Σ̂n = diag(σ̂2

1n, . . . , σ̂
2
Kn).

Let the realized stopping time be Tn and the realized direction of inference be ηn. Suppose

the experimenter wishes to conduct inference for a possibly data-dependent parameter τn =

η′nµ. We let

λn =
√
n

Tn−1∑
t=1

ntΠ̂tkn

nσ̂2
kn

Ln =
√
n

Tn−1∑
t=1

K∑
k=1

ntΠ̂tkn

nσ̂2
kn

Xtkn

be scaled analogues of λ and L. Finally, let

S⋆
n =

(
λnλ

′
n√

nλ′n1
+
nTn

n
Σ̂−1

n Π̂Tn,n

)+(
λn
λ′n1

Ln√
n
+
nTn

n
Σ̂−1

n Π̂TnnXTnn

)
(A.2)

be an analogue of (5).5 The estimator for τn is τ̂n = η′nS
⋆
n, with estimated asymptotic

standard error

σ̂2
τ,n = η′n

(
λnλ

′
n/
√
n

λ′n1
+
nTn

n
Σ̂−1

n Π̂Tn,n

)+

ηn.

Our main asymptotic result is that, uniformly over a class P in the sense of Andrews,

Cheng and Guggenberger (2011),
√
nσ̂−1

τ,n(η
′
nS

⋆
n−τn)

d−→ Z where Z is conditionally standard

Gaussian given the distributional limits of the experimental design (Tn,Π1:Tn , ηn). Thus,

(1 − α) two-sided confidence intervals CSn(α) ≡ η′nS
⋆
n ± Φ−1(1 − α/2) · σ̂2

τ,n have exact

asymptotic conditional size for the parameters τn:

lim sup
n→∞

sup
P∈P

∣∣P (τn ∈ CSn(α) | Tn = T, ηn = η)− α
∣∣P (Tn = T, ηn = η) = 0. (A.3)

Such a statement is predicated on assumptions about the class P , the assignment algorithm

for generating Π1:T0,n, Tn, and ηn(·). We assume that members of P have second moments

bounded away from 0 and ∞ and uniformly bounded fourth moments.

5Here, to conform with our asymptotic results, we study the following parametrization of (4)[
L√

ntΠTXT

]
| Π2:T ∼ N

([
λ′µ√
ntΠtµ

]
,

[
λ′1
n 0
0 ΠTΣ

])
which we again treat as a weighted least-squares problem for µ. (5) follows from applying the Sherman–
Morrison identity in the case that ΠT > 0.
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Assumption A.1. P is a class of distributions satisfying the following conditions indexed

by constants C1, C2 > 0: For all P ∈ P ,

(1) For all k, 1
C1

≤ σ2
k(P ) ≤ C1.

6

(2) EP [∥X∥4] < C2 where X ∼ P is a vector of potential outcomes.

In this section, we consider Tn, ηn,Πt+1,n that depend onX1:T0 only through the cumulative

mean vector

Wtkn =
t∑

s=1

nsΠ̂skn∑t
r=1 nrΠ̂rkn

Xskn.

Our proof in Appendix C.6 considers weaker conditions.

In particular, let

Wtn =

(
t∑

s=1

Πsn

)−1 t∑
s=1

ΠsnXsn

Ωtn = Σ̂n

(
t∑

s=1

nt

n
Π̂sn

)−1

be the analogues of Wt,Ωt defined in the main text. We assume that

1(Tn > t+ 1) = Ξt+1

(√
nWtn,Ωtn

)
for some known function Ξt. Likewise, we assume that the assignment probability

κt+1,n

(
X1:t,n, Π̂1:t,n, Σ̂tn, n1:t

)
= κt+1

(√
nWtn,Ωtn

)
. (A.4)

We assume that both Ξtn and κt+1,n are location-invariant in W . Moreover, we require these

functions to be suitably continuous, so that they converge weakly when their arguments

converge weakly. All of the following assumptions are relative to some ϵ > 0.

Definition A.1. Consider a function g(w,Ω), we say that g is location-invariant and ade-

quately continuous (LIAC) if the following is true:

(1) For all c ∈ R, g(w + c1K ,Ω) = g(w,Ω)

(2) For every nonempty J ⊂ [K], every diagonal matrix Ω with entries within [ϵ, 1/ϵ],

Lebesgue-almost every (wj : j ∈ J) ∈ R|J |, and every sequence RK ∋ wm → w∞ and

Ωm → Ω where

w∞,j =

wj, if j ∈ J

−∞ otherwise.

and Ωm are positive-definite diagonal matrices, we have that

g(wm,Ωm) → g(w∞,Ω). (A.5)

6The upper bound is redundant given item (2), but we will keep it for convenience.
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Assumption A.2. For all t ∈ {2, . . . , T0 − 1}, Ξt(·) is LIAC, and Ξt ≤ Ξt−1 almost surely.

Moreover, Ξ1 = 1 and ΞT0 = 0.

Assumption A.3. For all t ∈ {2, . . . , T0 − 1},

κt+1 = ΞtΞt+1︸ ︷︷ ︸
1(Tn>t+1)

κt+1,(0) + (Ξt − Ξt+1)︸ ︷︷ ︸
1(Tn=t+1)

κt+1,(1) + (1− Ξt)︸ ︷︷ ︸
1(Tn≤t)

Π1. (A.6)

and κt+1,(1), κt+1,(0) are LIAC functions of
√
nWtn,Ωtn. Moreover, κt+1,(0),k(w,Ω) > 0 when

wk > 0, and Π1 is fixed and its entries are bounded below by ϵ.

The expression (A.6) means that κt+1 takes the form of a contingency plan. If the ex-

periment continues, then the next-batch probabilities are prescribed by κt+1,(0). Otherwise,

they are prescribed by κt+1,(1). For analytical convenience, we say that κt+1 = Π1 when the

experiment has already stopped, but this is not material since our statistic do not consider

random variables beyond batch Tn.

For the pseudoinverse
(

λnλ′
n√

nλ′
n1

+ nT

n
Σ̂−1

n Π̂Tn

)+
to converge weakly when its arguments do,

we additionally require that the rank of λnλ′
n√

nλ′
n1

+ nT

n
Σ̂−1

n Π̂Tn is well-behaved. A sufficient

condition is to assume that the range of the assignment probabilities of the last batch excludes

(0, ϵ). This can be implemented by pruning away small probabilities and set them to zero,

and redistributing the excess mass.

Assumption A.4. κt+1,(1)’s range excludes (0, ϵ) on every coordinate.

Lastly, we consider a simple form of ηn. We assume that ηn takes finitely many values,

but they can be chosen with respect to some rich information.

Assumption A.5. ηn takes finitely many values depending on Tn, the locations of the zero

entries in ΠTn,n, and the ordering of WTn,n: Let SK be the set of permutations of K symbols,

ηn =
∑

ς∈SK :WTn,n,ς(1)<···<WTn,n,ς(K)

T0∑
t=1

∑
E⊂[K]

1 (Tn = t, {k : ΠTn,n,k = 0} = E) ης,t,E.

Moreover, ∥ης,t,E,k∥ > ϵ and ης,t,E,k = 0 whenever k ∈ E.

We note that Assumptions A.2 to A.5 are stronger than necessary. We state weaker

conditions as Assumptions C.1 to C.5, and verify that the weaker conditions are implications

of the stronger ones. Under these assumptions, we formally justify (A.3).

Theorem A.2. Under Assumptions A.1 to A.5, level-(1−α) two-sided confidence intervals

CSn(α) ≡ η′nS
⋆
n±Φ−1(1−α/2)· σ̂

2
τ,n√
n
have exact conditional asymptotic size for the parameters

τn: For all η, T ,

lim inf
n→∞

inf
P∈P

∣∣∣∣P (τn ∈ CSn(α) | ηn = η, Tn = T )− α

∣∣∣∣P (ηn = η, Tn = T ) = 0.
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Another notable property of the asymptotics is that it does not require truncation of

Π2:T−1,n and instead solely requires a pruning step for ΠTn. This is because the statistic

(A.2) can be written in terms of the scaled means Ytkn =
√
ctΠ̂tkn(Xtkn − µk(Pn)) instead of

Xtkn. The statistics Ytkn admit a central limit theorem uniformly over Πtkn ∈ [0, 1].

A.1. Algorithms satisfying Assumptions A.3 and A.4.

Example A.3 (Pruned Thompson sampling). Pruned Thompson sampling is the assign-

ment algorithm of the form (A.6) where κt,(1) = (ρ ◦ Q)(·, ·) and κt,(0) = Q(·, ·) for the

Gaussian orthant probability Q defined in (3) and the pruning function

ρk(π) ∝ πk1(πk ≥ ϵ)

and
∑K

k=1 ρk(π) = 1.

Lemma A.1. This procedure satisfies Assumptions A.3 and A.4.

Proof. It suffices to check that (a) both ρ ◦Q and Q are LIAC for the continuity statements,

(b) Qk(v,Ω) > 0 when vk > 0.

Note that (b) is immediately true. Now (a) for Q is immediately true as well, since Q is

continuous at every input ν,Ω where Ω is a diagonal matrix with entries between ϵ and 1/ϵ

and ν ∈ [−∞, 0]K .

Lastly, fix a nonempty J ⊂ [K]. For κt,(1), for a fixed Ω, the discontinuities are of the form⋃
k∈J

{
ν ∈ R|J | : Qk(ν

∗,Ω) = ϵ, ν∗k = −∞ for k ̸∈ J, ν∗j = νj
}
.

Note that each entry of the union is measure zero with respect to R|J |. Hence, the (A.5) is

satisfied for almost every ν. This verifies Assumption A.3. The pruning satisfies Assump-

tion A.4 by construction. □

■

Example A.4 (ε-greedy). Consider the algorithm satisfying (A.4) and

κt,(1)(ν,Ω) = κt,(0)(ν,Ω) =

1− ε, if νk ≥ maxℓ νℓ

ε/(K − 1) otherwise.

for some ε > 0 (defined on ν where the largest entry is unique).

Lemma A.2. This procedure satisfies Assumptions A.3 and A.4.

Proof. For ϵ < ε/(K − 1), this procedure satisfies Assumption A.4 by construction. For

Assumption A.3, fix some J . Note that the discontinuities are of the form⋃
k ̸=ℓ,k∈J,ℓ∈J

{
ν : νk = νℓ ≥ max

m∈[K]
νm > −∞

}
.
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Each entry of the union is measure zero with respect to R|J |. Hence, (A.5) is satisfied for

almost every ν. Moreover, note that the assignment probabilities are never zero, and so the

second part of Assumption A.3 is automatically satisfied. This verifies Assumption A.3. □

■

Appendix B. Proofs for results in the main text

B.1. Improvability.

Lemma 2.1. Suppose (2) holds for all measurable η(·), then for all fixed η ∈ RK

P (η′µ ∈ Cη(α) | X1:T−1) ≥ 1− α almost surely.

Proof. Suppose not. Then there exists some event E and some η0 where P(X1:T−1 ∈ E) > 0

and

P
(
η′0µ ∈ Ĉη0(α) | X1:T−1 ∈ E

)
< 1− α.

Let η = η0 on E and η = e1 on EC . Then

P
(
η′µ ∈ Ĉη(α) | η(X1:T−1) = η0

)
< 1− α

and P(η(X1:T−1) = η0) > 0. This contradicts (2). □

B.2. Leftover information L.

Theorem 3.7. Under the preceding setup, assuming Πt > 0 for all t almost surely,[
L

XT

]
| (T,∆X1:T−1) ∼

[
L

XT

]
| (Π2:T , T ) ∼ N

([
λ′µ

µ

]
,

[
λ′1
n

0

0 1
n
VT

])
, (4)

where λ = (λ1, . . . , λK)
′ and λk = 1

σ2
k

∑T−1
t=1

nt

n
Πtk. Moreover, (L,XT ) is sufficient for µ with

respect to the conditional distribution X1:T | (T,∆X1:T−1).

Proof. We first scale Xt by Πt and use Lemma B.1—doing so mainly conforms with our

subsequent asymptotic results. Recall that Πt = diag(Πt1, . . . ,ΠtK), Σ = diag(σ2
1, . . . , σ

2
K),

VT = 1
n

1
cT
Π−1

T Σ where ct = nt/n. Note that we can represent conditioning on ∆X1:T−1 as

conditioning on certain linear transformations AX1:T−1, where X1:T−1 = [X ′
1, . . . , X

′
T−1]

′.

To apply Lemma B.1, define Yt =
√
ctΠt

√
n(Xt − µ) and let Y1:t = [Y ′

1 , . . . , Y
′
t ]

′. When

Πt > 0, it suffices to study the joint distribution of L and YT conditional on BY1:(T−1), where

B = A


√
nc1Π1

. . .
√
ncT−1ΠT−1


−1

.

21



Note that since A takes pairwise differences, A1(T−1)K = 0. Thus,

B


√
ctΠ11K
...

√
cT−1ΠT−11K

 = 0.

Note that we can define At, Bt to be the submatrices that only act on Y1:t such that

A = AT−1, B = BT−1. Note that for all t, (B.1) is satisfied. Thus we can apply Lemma B.1

to show that [√
n(L− λ′µ)

YT

]
| T,BT−1Y1:T−1 ∼ N

(
0,

[
λ′1 0

0 ΠTΣ

])
Therefore, [

L

XT

]
| T,AX1:T−1 ∼ N

([
λ′µ

µ

]
,

[
λ′1/n 0

0 1
n
VT

])
Since the right-hand side of the above display depends only on Π2:T , T ,[

L

XT

]
| T,AX:T−1 ∼

[
L

XT

]
| Π2:T , T.

This proves (4).

To prove the “moreover” part, we show that the information in X1:T−1 can be recovered

from L and ∆X1:T−1. Since ∆X1:T−1 and L are both linear transformations of X1:T−1, it

suffices to show that the coefficients that generate ∆X1:T−1 and L are linearly independent.

Precisely speaking, note that by construction, L = ℓ′X1:T−1 where ADℓ = 0 (almost surely

for some positive definite diagonal matrix D that depends on T ). It suffices to show that

the rows of A and ℓ span the whole space RK(T−1). Since A is rank K(T − 1)− 1, it suffices

to show that ℓ is not spanned by the rows of A.

The condition ADℓ = 0 is sufficient for this. This shows that ℓ is linearly independent

with rows of A, since Dℓ ∈ Nul(A) = Col(A′)⊥. Since ℓ′Dℓ > 0, ℓ ̸∈
(
Col(A′)⊥

)⊥
= Col(A′).

Hence ℓ is not in the row space of A. Since A is rank-deficient by a single rank, we conclude

that we can invert L,AX1:T−1 into X1:T−1.

Hence (L,XT , AX1:(1−T )) maps into X1:T , which is trivially sufficient for µ with respect

to X1:T | T . Since (L,XT , AX1:(1−T )) is sufficient for µ with respect to X1:T | T , (L,XT ) is

sufficient with respect to X1:T | T,∆X1:T−1 ∼ X1:T | ∆X1:T . This proves the “moreover”

part. □

Lemma B.1. In the Gaussian model (where we allow Πtk = 0 with positive probability),

recall that Πt = diag(Πt1, . . . ,ΠtK) and Σ = diag(σ2
1, . . . , σ

2
K). Let Yt =

√
ctΠt

√
n (Xt − µ)

such that Yt | Πt ∼ N (0,ΠtΣ). Let Y1:t = [Y ′
1 , . . . , Y

′
t ]

′. Let Bt = Bt(Π1:t) be a matrix such
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that

Bt


√
ctΠ11K
...

√
ctΠt1K

 = 0 (B.1)

almost surely. Assume that, for all t, 1(T > t+ 1) and Πt+1 are measurable with respect to

B1Y1:1, . . . , BtY1:t. Consider
√
n(L− λ′µ) = 1′KΣ

−1
∑T−1

t=1

√
ctYt. Then[√

n(L− λ′µ)

YT

]
| T,B1Y1:1, . . . , BT−1Y1:T−1 ∼ N

(
0,

[
1′
(
Σ−1

∑T−1
t=1 ctΠt

)
1 0

0 ΠTΣ

])
.

Proof. We show the following claim with a fixed stopping time: For all s = 2, . . . , T0, let

Zs = 1′KΣ
−1

s−1∑
t=1

√
ctYt.

Then, for all s,

(Zs, Ys) | B1Y1:1, . . . , Bs−1Y1:s−1 ∼ N

(
0, diag

(
1′

(
Σ−1

s−1∑
t=1

ctΠt

)
1,ΠsΣ

))
. (B.2)

Given (B.2), note that for all s,

{(ZT , YT ) | T = s, B1Y1:1, . . . , BT−1Y1:T−1} ∼ {(Zs, Ys) | B1Y1:1, . . . , Bs−1Y1:s−1} ,

by our assumptions about the stopping time T . This proves this lemma.

To show (B.2), we induct on t. To that end, define

λt =


√
ctΣ

−11K
...

√
ctΣ

−11K

 ≡

λ̃1...
λ̃t


We wish to verify the following claims for all t = 1, . . . , T − 1:

(1) Y1:t+1 | {BsY1:s : s ≤ t} ∼ N
(
µt+1|t,Σt+1|t

)
where

Σt+1|t =

[
Σt|t 0

0 ΣΠt+1

]
Σt|t = Σt|t−1 − Σt|t−1B

′
t(BtΣt|t−1B

′
t)

+BtΣt|t−1,

µt+1|t =

[
µt|t

0

]
µt|t = µt|t−1 + Σt|t−1B

′
t(BtΣt|t−1B

′
t)

+Bt(Y1:t − µt|t−1)

Σ1|0 = ΣΠ1

µ1|0 = 0
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(2)

Σt|tλt = Σt|t−1λt =


√
c1Π11K

...
√
ctΠt1K


(3) BtΣt|t−1λt = 0

(4) λ′tµt|t = 0

Assuming items (1)–(4), we show (B.2). Note that Zs = λ′s−1Y1:s−1. Hence,[
Zs

Ys

]
=

[
λ′s−1 0

0 IK

]
Y1:s

and is jointly Gaussian. Its mean conditional on {BtY1:t : t ≤ s− 1} is thus[
λ′s−1 0

0 IK

][
µs−1|s−1

0

]
= 0

and its conditional variance is[
λ′s−1 0

0 IK

][
Σs−1|s−1 0

0 ΣΠs

][
λ′s−1 0

0 IK

]′

=

[
λ′s−1Σs−1|s−1λs−1 0

0 ΣΠs

]
=

[
1′K
(
Σ−1

∑s−1
t=1 ctΠt

)
1K 0

0 ΣΠs

]
as desired. Thus, items (1)–(4) prove (B.2).

Finally, to verify items (1)–(4), consider the base case t = 1. ThenY1 = Y1 ∼ N (0,ΣΠ1) =

N (µ1|0,Σ1|0). Note that

Y1 | B1Y1 ∼ N

µ1|0 − Σ1|0B
′
1(B1Σ1|0B

′
1)

+B1(Y1 − µ1|0)︸ ︷︷ ︸
µ1|1

,Σ1|0 − Σ1|0B
′
1(B1Σ1|0B

′
1)

+B1Σ1|0︸ ︷︷ ︸
Σ1|1


and (Y2 | B1Y1) ∼ (Y2 | Π2) ∼ N (0,Π2Σ). Thus Y1:2 | B1Y1:1 ∼ N (µ2|1,Σ2|1). This verifies

item (1). For items (2) and (3), note that Σ1|0λ1 = ΣΠ1
√
ctΣ

−11K =
√
ctΠ11K . Note that

B1Σ1|0λ1 = B1
√
ctΠ11K = 0 by assumption. Hence Σ1|1λ1 = Σ1|0λ1. This verifies items (2)

and (3). Finally, λ1µ1|1 = λ′µ1|0 = 0 by (3). This verifies item (4).

For the inductive case, assume that items (1)–(4) holds for all s ≤ t− 1. Then

Y1:t | {BsY1:s : s ≤ t− 1} ∼ N (µt|t−1,Σt|t−1)

is jointly Gaussian. Hence

Y1:t | {BsY1:s : s ≤ t} ∼ N
(
µt|t,Σt|t

)
.
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Note too that

Yt+1 | {BsY1:s : s ≤ t} ∼ (Yt+1 | Πt+1) ∼ N (0,Πt+1Σ) .

independently from Y1:t. This verifies item (1) for t.

For items (2) and (3), note that

Σt|t−1λt =

[
Σt−1|t−1λt−1

ΣΠtλ̃t

]
=


√
c1Π11K

...
√
ct−1Πt−11K√
ctΠt1K

 and BtΣt|t−1λt = Bt


√
c1Π11K

...
√
ctΠt1K

 = 0

by assumption. Hence Σt|t−1λt = Σt|tλt. Finally, for (4), λ
′
tµt|t = λ′tµt|t−1 = λ′t−1µt−1|t−1 = 0

by (3). This completes the proof. □

B.3. Sufficiency in Thompson sampling.

Proposition 3.1. Under the setup of Theorem 3.7, suppose, for all t, Ξt(X1, . . . , Xt−1) is

measurable with respect to Π2:t. Under Thompson sampling, (L,XT ) is sufficient for µ with

respect to the conditional distribution X1:T | Π1:T , T .

Proof. We will show the following two claims:

(1) Under Thompson sampling, (L,Π2:T ) is sufficient for µ with respect to X1:T | T .
This follows directly from Lemma B.2.

(2) If (L,Π2:T ) is sufficient for µ with respect to X1:T | T , then (L,XT ) is sufficient for µ

with respect to X1:T | T,Π2:T .

Observe that

pµ(X1:T | T ) = pµ(X1:T−1 | T )pµ(XT | X1:T−1, T )

= g(X1:T−1 | Π2:T , L, T )pµ(Π2:T , L | T )pµ(XT | Π2:T , T )

where g does not depend on µ since (Π2:T , L) is sufficient with respect to X1:T−1 | T .
Since µ enters only through functions that depend on L,XT ,Π2:T , we conclude that

(L,XT ,Π2:T ) is sufficient for µ with respect to X1:T | T . Thus, (L,XT ) is sufficient

for µ with respect to X1:T | Π2:T , T .

□

Lemma B.2. Under Thompson sampling, assume that Ξt is measurable with respect to

Π2:t. Then (Π2:T , L) is sufficient for µ with respect to X1:T−1 | T .

Proof. Let Ls =
∑K

k=1

∑s−1
t=1

ntΠtk

nσ2
k
Xtk. We shall show the claim that (Π2:s, Ls) is sufficient

for µ with respect to X1:s−1. Given this result (which has a fixed stopping time), we note

that, since {T = s} is measurable with respect to Π2:s,

p(X1:T−1 | T = s,Π2:T , L) = p(X1:s−1 | T = s,Π2:s, Ls) = p(X1:s−1 | Π2:s, Ls).
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Since (Π2:s, Ls) is sufficient for µ with respect to X1:s−1, the above display does not depend

on µ. As a result, (Π2:T , L) is sufficient for µ with respect to X1:T−1 | T . This proves

Lemma B.2 provided the claim holds.

To prove the claim, note that by the Hotz and Miller (1993) inversion result (Norets and

Takahashi, 2013), Q is a bijection between Πt+1 and the differences

∇t = (Wt,1 −Wt,K , . . . ,Wt,K−1 −Wt,K).

Thus, it suffices to show that (∇1:s−1, Ls) is sufficient for µ with respect to X1:s−1.

Note that

Ls =
K∑
k=1

s−1∑
t=1

ntΠtk

nσ2
k

Xtk

=
K∑
k=1

(
s−1∑
t=1

ntΠtk

nσ2
k

)
Ws−1,k

Ls −
K−1∑
k=1

(
s−1∑
t=1

ntΠtk

nσ2
k

)
(Ws−1,k −Ws−1,K) =

(
s−1∑
s=1

ntΠtK

nσ2
K

)
Ws−1,K +

K−1∑
k=1

(
s−1∑
t=1

ntΠtk

nσ2
k

)
Ws−1,K

= Ws−1,K

s−1∑
t=1

K∑
k=1

ntΠtk

nσ2
k

.

That is, we can transform (∇1:s−1, Ls) into (Π1:s,Ws−1), the latter of which is sufficient for

µ with respect to X1:s−1. This completes the proof. □

B.4. Polyhedral assignment.

Theorem 4.2. Assume, without loss of generality, that ∥η∥ = 1. Define R = n
∑T

t=1 V
−1
t .

Let G = 1′T ⊗ IK = [IK , . . . , IK ] be a K × TK matrix. Let G⊥ be a (T − 1)K × TK matrix

whose rows are unit vectors that are orthogonal to each other and to the rows of G. Let

V = 1
n
diag(V1, . . . , VT ) be a TK × TK diagonal matrix. Let G̃, G̃⊥ partition the inverse of

the following matrix: [
GV−1

G⊥

]−1

=
[
G̃, G̃⊥

]
.

where G̃ is TK ×K. Let c = 1
η′R−1η

. Then(
U

c
| U⊥ = u⊥, A(FT−1)X1:T ≤ b(FT−1)

)
∼ (Z1 |M(FT−1)Z ≤ m(FT−1))

where the right-hand side follows the law

Z = (Z1, Z
′
2)

′ ∼ N

([
τ + k′u⊥

0

]
,

[
1
c

0

0 G⊥VG
′
⊥

])
k′ =

1

c
η′GV−1G′η′⊥(η⊥GV

−1G′η′⊥)
−1
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The constraints are defined by

M(FT−1) =
[
cA(FT−1)G̃η, A(FT−1)G̃⊥

]
m(FT−1) = b(FT−1)− A(FT−1)G̃(I − ηη′)S.

Proof. Note that S = GV−1X1:T and that R = GV−1G′. We are interested in the joint

distribution of [
U

U⊥

]
| Π2:T = π ∼

[
U

U⊥

]
| A(FT−1)X1:T ≤ b(FT−1)

∼

[
η′GV−1

η′⊥GV
−1

]
X1:T | A(FT−1)X1:T ≤ b(FT−1)

∼

[
η′GV−1

η′⊥GV
−1

]
X∗

1:T | A(FT−1)X
∗
1:T ≤ b(FT−1)

where X∗
1:T ∼ N (1T ⊗µ,V). Let S∗ = GV−1X∗

1:T . Thus, it suffices to study the conditional

distribution

η′GV−1X∗
1:T︸ ︷︷ ︸

cZ1

| η′⊥GV−1X∗
1:T︸ ︷︷ ︸

Z3

, A(FT−1)X
∗
1:T ≤ b(FT−1).

Let G⊥X
∗
1:T = Z2.

We first study the Gaussian distribution (Z1, Z
′
2) | Z3. This amounts to calculating con-

ditional means and variances. Note that

E[cZ1 | Z3] = η′Rµ+ ck′(Z3 − η⊥Rµ)

η′Rµ− ck′η⊥Rµ = η′Rµ− η′Rη′⊥(η⊥Rη
′
⊥)

−1η⊥Rµ

= η′Rµ− η′Rη′⊥(η⊥Rη
′
⊥)

−1η⊥R(ηη
′ + η′⊥η⊥)µ

= η′Rµ−
(
η′Rη′⊥(η⊥Rη

′
⊥)

−1η⊥Rη
)
· τ − η′Rη′⊥η⊥µ

= η′R(I − η′⊥η⊥)µ−
(
η′Rη′⊥(η⊥Rη

′
⊥)

−1η⊥Rη
)
· τ

=
(
η′Rη − η′Rη′⊥(η⊥Rη

′
⊥)

−1η⊥Rη
)
τ

and hence

E[cZ1 | Z3] = ck′Z3 +
(
η′Rη − η′Rη′⊥(η⊥Rη

′
⊥)

−1η⊥Rη
)
τ.

Next, we show that

c = η′Rη − η′Rη′⊥(η⊥Rη
′
⊥)

−1η⊥Rη = η′R1/2
(
I −R1/2η′⊥(η⊥Rη

′
⊥)

−1η⊥R
1/2
)
R1/2η

The matrix
(
I −R1/2η′⊥(η⊥Rη

′
⊥)

−1η⊥R
1/2
)
projects to the space of all vectors perpendicular

to η⊥R
1/2. Note that this space is one dimensional with basis vector R−1/2η. As a result,

I −R1/2η′⊥(η⊥Rη
′
⊥)

−1η⊥R
1/2 =

R−1/2ηη′R−1/2

η′R−1η
.
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Hence

η′R1/2
(
I −R1/2η′⊥(η⊥Rη

′
⊥)

−1η⊥R
1/2
)
R1/2η =

1

η′R−1η
= c.

Hence

E[Z1 | Z3] = τ + k′Z3.

Note that Cov(S∗, Z2) = GV−1VG′
⊥ = 0 by construction. Hence Cov(Z1, Z2 | Z3) = 0,

Var(Z2 | Z3) = G⊥VG
′
⊥, and E[Z2 | Z3] = 0. Lastly,

Var(cZ1 | Z3) = η′Rη − η′Rη′⊥(η⊥Rη
′
⊥)

−1η′Rη = c

and hence

Var(Z1 | Z3) = 1/c.

This implies that [
Z1

Z2

]
| Z3 ∼ N

([
τ + k′Z3

0

]
,

[
1/c 0

0 G⊥VG
′
⊥

])
.

It remains to show that the constraintA(FT−1)X
∗
1:T ≤ b(FT−1) is equivalent toM(FT−1)Z ≤

b(FT−1). This is true by plugging in

X∗
1:T = G̃S∗ + G̃⊥Z2 = G̃(cZ1) + G̃ (I − ηη′)︸ ︷︷ ︸

η′⊥η⊥

S∗ + G̃⊥Z2.

This completes the proof. □

Appendix C. Proofs for results in Appendix A

C.1. Outline of the general argument. We recall the following notation choices in Ap-

pendix A and define some more notation.

• Recall that there are at most T0 > 0 batches with an adaptive stopping time Tn. Assume

that the sample sizes nt/n→ ct for all t = 1, . . . , T0 are fixed sequences.

• Let Πtkn be the algorithm-determined probability of assigning to arm k in batch t

• Let Ntkn | Πtkn ∼ Bin(nt,Πtkn) be the realized number of samples assigned to arm k in

batch t, where Ntkn =
∑

i∈It Dik.

• Let Π̂tkn = Ntkn/nt.

• Let Xtkn = 1
Ntkn∨1

∑
i∈It DikX

obs
i be the mean arm value for batch t and arm k. If no

one is assigned to arm k, then Xtkn = 0. Let Xtn collect Xtkn.

• Let Ytkn = Ntkn√
nt
(Xtkn − µnk) =

√
ntΠ̂tkn(Xtkn − µnk) =

1√
nt

∑
i∈It Dik(X

obs
i − µnk) be a

scaled version of Xtkn. Let Ytn collect Ytkn.

• Let Y:t,k,n =
∑t

s=1

√
ns/nYs,k,n

• Let Π̂:t,k,n =
∑t

s=1 Π̂s,k,n
ns

n
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• Let

Wt,k,n =

∑t
s=1NsknXskn∑t

s=1Nskn

be the cumulative arm-k mean where

√
n(Wt,k,n − µnk) =

1

Π̂:t,k,n

Y:t,k,n.

• Let (A.1) be an estimate of the arm variance using data up until batch t. Let σ̂2
kn = σ̂2

Tkn.

• Let

Ln =
Tn−1∑
t=1

K∑
k=1

ntΠ̂tkn√
nσ̂2

kn

Xtkn

be the properly scaled empirical analogue to L.

• Let λkn =
∑T−1

t=1
ntΠ̂tkn√
nσ̂2

kn
and λn = [λ1n, . . . , λKn]

′. Note that

Ln − λ′nµn =
Tn−1∑
t=1

K∑
k=1

ntΠ̂tkn√
nσ̂2

kn

(Xtkn − µnk) =
Tn−1∑
t=1

K∑
k−1

√
nt/n

σ̂2
kn

Ytkn.

Our goal is to show that (A.2) converges to a Gaussian random variable, and its limit is

conditionally Gaussian given limits of Π1:T,n, Tn, ηn. To do so, we first analyze the behavior

of (Π1:T0,n, Y1:T0,n) without a stopping time—we could imagine that the experiment carries

on after Tn. Using the scaling Y instead of X allows for Πtkn to be very close to zero or

actually zero.

We show (Π1:T0,n, Y1:T0,n) weakly converges by the following iterative process. So long

as Πt+1 is a suitably continuous function of the past information Gt,n = (Π1:t,n, Y1:t,n), it

weakly converges to a function of the limits of the past information Πt+1(Gt). Given this

convergence, we also show that Yt+1 converges to N (0,Πt+1Σ), and hence Gt+1,n converges

(Theorem C.1).

Second, given a stopping time Tn that is a suitably continuous function of the past in-

formation, we can further show that Ln, YTn,n converges to quantities that behave like their

Gaussian experiment counterparts (Corollary C.1).

Third, given suitably continuous ηn, we can show that the statistic (A.2), properly nor-

malized, converges to a random variable Z where Z | Π1:T , T, η ∼ N (0, 1), where Π1:T , T, η

are limits of their finite-sample analogues (Theorem C.2). Since Z is conditionally Gauss-

ian, for sufficiently continuous weighting functions f , we can show that f -weighted average

mis-coverage rates converge to zero uniformly over P (Theorem C.3).

Finally, we verify Theorem A.2 by verifying that the continuity restrictions on Πt,1(Tn >

t), ηn are satisfied given the assumptions in Appendix A.
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The uniformity aspects of the argument use the subsequencing argument in Andrews

et al. (2011). The key to doing so is the following lemma, which establishes that certain

subsequences exist given our assumptions on P .

Lemma C.1. Under Assumption A.1, for any sequence Pn ∈ P and any subsequence nr of

n, there exists a further subsequence np of nr such that, as p→ ∞,

(1) µnp ≡ µ(Pnp) → µ ∈ [−∞,∞]K ,

(2) hnp ≡
√
np(µnp −maxk µnp,k) → h ∈ [−∞, 0]K ,

(3) For all k ̸= k′ ∈ [K], ∆µk,k′,np ≡
√
n(µk,np − µk′,np) → ∆µk,k′ ∈ [−∞,∞],

(4) For all k, σ2
k(Pnp) → σ2

k ∈ [C−1
1 , C1],

(5) For all k ∈ [K], t ∈ [T0], σ̂
2
tknp

p−→ σ2
k.

Proof. Fix the subsequence nr and the sequence Pn. There exists a subsequence for which

(1)–(4) are satisfied since [−∞,∞], [−∞, 0] (under the metric d(x, y) = | arctan(x) −
arctan(y)|), and [C−1

1 , C1]
K are all compact.

Lastly, for (5), note that (A.1) can be written as

σ2
tkn = −(Wtkn − µk(Pn))

2 +
1∑t

s=1Nskn

∑
i∈I1:t

Dik(X
obs
i − µk(Pn))

2.

We verify the following claims:

(a) We have

P

[∣∣∣∣∑
i∈I1:t

Dik(X
obs
i − µk(Pn))

∣∣∣∣ >√n log n

]
≤ C1

log n
.

(b) We have
1∑t

s=1Nskn

= Op(1/n)

(c) For some C > 0,

P

[∣∣∣∣∑
i∈I1:t

Dik((X
obs
i − µk(Pn))

2 − σ2
k(Pn))

∣∣∣∣ >√n log n

]
≤ C

log n
.

Given these claims, note that (a) and (b) imply that Wtkn − µk(Pn) = op

(√
logn
n

)
and (b)

and (c) imply that

1∑t
s=1Nskn

∑
i∈I1:t

Dik(X
obs
i − µk(Pn))

2 − σ2
k(Pn) = op

(√
log n

n

)
.

As a result, σ2
tkn − σ2

k(Pn) = op(
√

log n/n). Hence σ2
tkn − σ2

k = op(1).
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For (a), we note that the sum is a martingale. By Kolmogorov’s inequality for martingales,

P

(∣∣∣∣∑
i∈I1:t

Dik(X
obs
i − µk(Pn))

∣∣∣∣ >√n log n

)
≤ 1

n log n

n∑
i=1

σ2
k(Pn) ≤

C1

log n
.

For (b), we note that
∑

sNskn > N1kn ∼ Bin(c1n, π1k). Since N1kn grows at the rate of n,
1∑t

s=1 Nskn
= Op(1/n). Similarly, we recognize that the sum in (c) is again a martingale. To

apply Kolmogorov’s inequality, we need that the second moment of (Xobs
i −µk(Pn))

2−σ2
k(Pn)

is finite. This is true due to the fourth moment condition in Assumption A.1. □

C.2. Behavior of random variables without a stopping time. We first analyze the

limiting behavior of the various random variables without a stopping time. That is, we

consider letting the experiment run until T0.

Recall that Πtn = diag(Πt1n, . . . ,ΠtKn) collect the batch t probabilities and that Σ̂tn collect

σ̂2
tkn. We assume that, for some function κt+1,n,

Πt+1,n = κt+1,n

(
X1:t,n, Π̂1:t,n, Σ̂tn, n1:t

)
.

Note that

Xtkn =


1√

ntΠ̂tkn
Ytkn + µnk, if Π̂tkn > 0

0 otherwise.

and thus is a function of nt, Π̂tn, Ytn. Therefore, we can write instead

Πt+1,n = κt+1,n

(
Y1:t,n, Π̂1:t,n, Σ̂tn, n1:t, µn

)
. (C.1)

We require that κt+1 satisfies the following implication of the continuous mapping theorem.

This is more general than the conditions in Appendix A.

Assumption C.1. The assignment algorithm (π1, κ2, . . . , κT0), for κt in (C.1), satisfies the

following properties: Fix some ϵ > 0,

(1) The assignment probabilities in the first batch are fixed and bounded away from zero:

π1k > ϵ > 0 for every k ∈ [K]. Let Π1 = π1.

(2) Let Pnm denote a (sub)sequence of data-generating processes satisfying the conclusion

of Lemma C.1. Let Σ = diag(σ2
1, . . . , σ

2
K). Assume that, if

Y1nm

d−→ Y1 ∼ N (0,Π1Σ) Π̂1nm

p−→ Π1, (C.2)

then for some measurable function κ2, we have the following convergence jointly with (C.2)

Π2nm = κ2,nm

(
Y1,nm , Π̂1, Σ̂1nm , n1, µnm

)
d−→ κ2

(
Y1,Π1;h, σ

2
1:K , c1

)
≡ Π2.

Moreover, assume that, if for some given 1 < t < T0,

(Y1nm ,Π2nm , . . . ,Πtnm , Ytnm)
d−→ (Y1,Π2, . . . ,Πt, Yt) and Π̂1:t,nm

p−→ Π1:t, (C.3)
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where for all s, Ys | Y1:s−1,Π2:s ∼ N (0,ΠtΣ), then there is a measurable function κt+1 such

that we have the following convergence jointly with (C.3)

Πt+1,n = κt+1,n

(
Y1:t,n, Π̂1:t,n, Σ̂tn, n1:t, µn

)
d−→ κt+1

(
Y1:t,Π1:t;h, σ

2
1:K , c1:t

)
≡ Πt+1. (C.4)

(3) For all t = 2, . . . , T0, the limiting random variable Πt is measurable with respect toBt−1(Π1:t−1, c1:t−1)

 Y1
...

Yt−1

 ,Π1:t−1


for some conformable matrix Bt−1(Π1:t−1, c1:t−1) such that

Bt−1(Π1:t−1, c1:t−1)


√
c1Π11K

...
√
ct−1Πt−11K

 = 0

almost surely.

Let Gtn = (Π1:t,n, Y1:t,n) and let Gt = (Π1:t, Y1:t). The following theorem characterizes the

asymptotic behavior of GT0,n and connects to the normal model results.

Theorem C.1. Under Assumption A.1, Assumption C.1(1), and Assumption C.1(2), for

any sequence Pn ∈ P and any subsequence nr of n, there exists a further subsequence nm

such that, as m→ ∞,

GT0,nm

d−→ GT0 = (Π1:T0 , Y1:T0)

where, for all t ∈ [T0],

Yt | Y1:t−1,Π1:t ∼ N (0,ΠtΣ).

and Πt+1 is measurable with respect to {BsY1:s : s ≤ t}.

Proof. Fix Pn and a subsequence nr of n. By Lemma C.1, there exists a further subsequence

nm such that the conclusions of Lemma C.1 hold.

We induct on t. Consider the base case of G1n = (Π1n, Y1n). By assumption Π1n is fixed

and constant in n. Thus it suffices to show that

Y1nm

d−→ N (0,Π1Σ).

This is true by the moment condition in Assumption A.1, where we apply the central limit

theorem in Lemma C.2.

For the inductive case, suppose Gtnm

d−→ (Π1:t, Y1:t) for some 1 ≤ t < T0. We wish to show

that Gt+1,nm

d−→ (Π1:t+1, Y1:t+1). First, note that by a simple Chernoff bound in Lemma C.3,

for all s ≤ t,

Π̂s,n − Πs,n = op(1).
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Hence, Π̂s,n
p−→ Πs under the inductive hypothesis. Now, by our assumptions on the assign-

ment algorithm in Assumption C.1(2),

(Π1:t+1,nm , Y1:t,nm)
d−→ (Π1:t+1, Y1:t). (C.5)

By Assumption C.1(2), Πt+1 is measurable with respect to (BtY1:t,Π1:t), which is further

measurable with respect to {BsY1:s : s ≤ t}.
It remains to show that Yt+1,nm converges jointly. Let

g(·) ∈ BL1 ≡
{
sup
x

|g(x)| ≤ 1, |g(x)− g(y)| ≤ d(x, y)

}
be a bounded Lipschitz function with respect to the distance metric d, where d is the product

metric for Π1:t+1, Y1:t+1:

d(Gt+1, G
′
t+1) = max

s∈[t+1],k∈[K]

{
|Πs,k − Π′

s,k|, |Ys,k − Y ′
s,k|
}
.

Let Unm = Πt+1,nmZnm for some Znm ∼ N (0,Σ(Pnm)) independently. Observe that∣∣E[g(Gt,nm ,Πt+1,nm , Yt+1,nm)]− E[g(Gt,nm ,Πt+1,nm , Unm)]
∣∣

=
∣∣E [E[g(Gt,nm ,Πt+1,nm , Yt+1,nm) | Gt,nm ,Πt+1,nm ]]− E [E[g(Gt,nm ,Πt+1,nm , Unm) | Gt,nm ,Πt+1,nm ]]

∣∣
We claim that for some cm independent of g,∣∣E[g(Gt,nm ,Πt+1,nm , Yt+1,nm) | Gt,nm ,Πt+1,nm ]− E[g(Gt,nm ,Πt+1,nm ,Wnm) | Gt,nm ,Πt+1,nm ]

∣∣
≤ cm → 0 (C.6)

with probability one. Assuming this claim, we would show that

sup
g∈BL1

∣∣E[g(Gt,nm ,Πt+1,nm , Yt+1,nm)]− E[g(Gt,nm ,Πt+1,nm ,Wnm)]
∣∣→ 0.

Observe that by construction of Unm and (C.5), for some Yt+1,

(Gt,nm ,Πt+1,nm , Unm)
d−→ (Gt,Πt+1, Yt+1) .

Equivalently,

sup
g∈BL1

∣∣E[g(Gt,nm ,Πt+1,nm , Unm)]− E[g(Gt,Πt+1, Yt+1)]
∣∣→ 0.

Therefore, by the triangle inequality,

sup
g∈BL1

∣∣E[g(Gt,nm ,Πt+1,nm , Yt+1,nm)]− E[g(Gt,Πt+1, Yt+1)]
∣∣→ 0.

Equivalently,

Gt+1,nm

d−→ Gt+1.
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Thus, to conclude the proof, we show (C.6). For given values of Gt,nm ,Πt+1,nm = (G,Π),

let

h(y) = g(G,Π, y).

Observe that h(·) is bounded and Lipschitz with respect to dy(y1, y2) = maxk |y1k − y2k|.
Thus, (C.6) amounts to the following:∣∣EYt+1,nm |Π[h(Yt+1,nm)]− EUnm |Π[h(Unm)]

∣∣ ≤ cm.

Note that by Lemma C.2 and Assumption A.1, for prok the Prokhorov metric (see Lemma C.2

and Proposition A.5.2 in van der Vaart and Wellner (1996)),∣∣EYt+1,nm |Π[h(Yt+1,nm)]−EUnm |Π[h(Unm)]
∣∣ ≲ sup

Π∈∆K−1,P∈P
prok (Ynm(Π, P ), Unm(Π, P )) ≤ cm → 0,

where

Yk,nm(Π, P ) =
1

√
nt

∑
i∈It

DikXi(k) Di ∼ Mult(1,Π), Xi(·) ∼ P

and

Unm(Π, P ) ∼ N (0,ΠΣ(P )).

This concludes the proof. □

C.2.1. Stopping time. So far, we have shown that GT0,nm converges. Now, we consider the

following assumption on the stopping time Tn. Let Ξt,n = 1(Tn > t). We assume that Ξt,n

satisfies conditions analogous to those satisfied by κt in Assumption C.1.

Assumption C.2. We assume that for all t = 1, . . . , T0,

(1) Ξt,n = Ξt,n

(
X1:t−1,n, Π̂1:t−1,n, Σ̂t−1,n, n1:t−1

)
= Ξt,n

(
Y1:t−1,n, Π̂1:t−1,n, Σ̂t−1,n, n1:t−1, µn

)
is measurable with respect to (Y1:t−1,n, Π̂1:t−1,n) and ΞT0,n = 0 a.s.

(2) Let Pnm denote a subsequence of the data-generating process satisfying the conclusion

of Lemma C.1. Then, if

(Π̂1:T0,n, Y1:T0,n)
d−→ GT0 = (Π1:T0 , Y1:T0)

then for all t = 1, . . . , T0, we have the following convergences:

Ξt,nm

(
Y1:t−1,n, Π̂1:t−1,n, Σ̂t−1,n, n1:t−1, µn

)
d−→ Ξt

(
Y1:t−1,Π1:t−1;h, σ

2
1:K , c1:t−1

)
and

Tn
d−→ T ≡ argmax

t=1,...,T0

(Ξt−1 − Ξt)

jointly.

(3) For all t = 1, . . . , T0−1, the limiting random variable Ξt (Y1:t−1,Π1:t−1;h, σ
2
1:K , c1:t−1) is

measurable with respect to the same random variables as Πt is in Assumption C.1(3). That is,

Ξt is measurable with respect to {BsY1:s : s ≤ t− 1} for matrices Bs in Assumption C.1(3).
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Note that we can write

Ln − λ′nµ =

T0∑
s=1

(Ξs−1,n − Ξs,n)︸ ︷︷ ︸
1(Tn=s)

s−1∑
t=1

K∑
k=1

ntΠ̂tkn√
nσ̂2

skn

(Xtkn − µ)

and

YTn,n =

T0∑
s=1

(Ξs−1,n − Ξs,n)Ysn.

The following corollary shows the asymptotic analogue of Theorem 3.7.

Corollary C.1. Additionally under Assumption C.1(3) and Assumption C.2, on the subse-

quence nm, [
Lnm − λ′nµnm

YT,nm

]
d−→

[
1′Σ−1Y:T−1

YT

]
,

where, in the limit,[
1′Σ−1Y:T−1

YT

]
| (T, {BsY1:s : s ≤ T − 1}) ∼ N

([
0

0

]
,

[
1′Σ−1Π:T−1 0

0 ΣΠT

])
Proof. The weak convergence is by the continuous mapping theorem and Lemma C.4, noting

that σ̂skn → σ2
k and nt/n→ ct for all s, t.

The second claim is a claim on the properties of the limiting distribution. Note that

Assumption C.1(3) and Assumption C.2(3) ensure that the limiting assignment probabilities

and the limiting stopping time are functions of certain differences in Y1:t. As a result, we

can apply Lemma B.1 directly to finish the proof. □

C.3. Behavior of the test statistic. We now rewrite the empirical analogue of the least-

squares coefficient (A.2):

S⋆
n =

(
λnλ

′
n/
√
n

λ′n1
+
nTn

n
Σ̂−1

n Π̂Tnn

)+(
λn
λ′n1

Ln√
n
+
nTn

n
Σ̂−1

n Π̂TnnXTnn

)
.

Let ηn = η(Π̂1:Tn,n) be a direction of inference. We additionally assume that when the

experiment stops, the probability of the last batch is pruned so as to exclude (0, ϵ).

Assumption C.3 (Pruning). For some ϵ > 0, the random variable

ΠTn,n = κTn,n(·) =
T∑

s=1

(Ξs−1,n − Ξs,n)κs,n(·)

takes values outside of
{
q ∈ ∆K−1 : qk ∈ (0, ϵ) for some k ∈ [K]

}
with probability one.

We assume that η(·) is suitably continuous.
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Assumption C.4. Under a subsequence nm of n that satisfies the consequences of Lemma C.1

and Theorem C.1, if

(Π̂1:T0,n, Y1:T0,n)
d−→ GT0 and Tn

d−→ T

Then ηn = η
(
Y1:Tn,n, Π̂1:Tn,n, Tn, Σ̂Tn,n, n1:Tn , µn

)
d−→ η(Y1:T ,Π1:T , T,Σ, c1:T ) along the subse-

quence nm. Moreover, η is measurable with respect to (T, {BsY1:s : s ≤ T − 1}) for matrices

B in Assumption A.3. We also assume that ∥ηnm∥ > ϵ > 0 with probability one. Moreover,

η(T,Π1:T ) is in the column space of

λλ′

1′λ
+ cTΣ

−1ΠT

almost surely and ηnm is in the column space of

λnmλ
′
nm
/
√
nm

λ′nm
1

+
nT

nm

Σ̂−1
nm

Π̂Tnm

almost surely for all sufficiently large m.

Under this assumption, note that

√
n(η′nS

⋆
n − η′nµn) = η′n

(
λnλ

′
n/
√
n

λ′n1
+
nT

n
Σ̂−1

n Π̂Tn

)+(
λn
λ′n1

(Ln − λ′nµn) +
√
cT Σ̂

−1
n YTn

)
since η′nQ

+Qµ = η′nµ if ηn is in the column space of the symmetric matrix Q. Let

σ̂2
τ,n = η′n

(
λnλ

′
n/
√
n

λ′n1
+
nT

n
Σ̂−1

n Π̂Tn

)+

ηn.

Then, we obtain the uniform convergence of the test statistic.

Theorem C.2. Under Assumptions A.1 and C.1 to C.4, for every sequence Pn ∈ P and

every subsequence nr of n, there exists a further subsequence nm such that, jointly,
√
nm(η

′
nm
S⋆
nm

− η′nm
µnm)

σ̂τ,nm

d−→ Z (ηnm ,Π1:Tnm
, Tnm)

d−→ (η,Π1:T , T )

where Z | (η,Π1:T , T ) ∼ N (0, 1).

Proof. Let nm be the subsequence that satisfies Corollary C.1. Under Assumption C.4,

ηnm

d−→ η jointly with (Π1:Tnm
, Tnm)

d−→ (Π1:T , T ). By the continuous mapping theorem

and Lemma C.4,

λnmλ
′
nm
/
√
nm

λ′nm
1

+
nTnm

nm

Σ̂−1
nm

Π̂Tnmnm

d−→ λ′λ

λ′1
+ cTΣ

−1ΠT

jointly with GTnm ,nm

d−→ GT,nm .

Next, Lemma C.6 shows that the convergence in the above display is preserved by the

Moore-Penrose pseudoinverse, despite the discontinuity in the pseudoinverse. This is becasue

of pruning.
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Next, we show that the standard error is positive in the limit. Note that there exists some

c > 0 such that, uniformly over P ,

η′
(
λ′λ

λ′1
+ cTΣ

−1ΠT

)+

η ≥ λ−1
max

(
λ′λ

λ′1
+ cTΣ

−1ΠT

)
∥η∥ > c > 0

where λmax(A) is the maximum eigenvalue of A. Thus, continuous mapping theorem implies

that
√
n(η′nS

⋆
n − η′nµn)

σ̂τ,n

d−→
η′
(
λ′λ
λ′1

+ cTΣ
−1ΠT

)+ ( λ
λ′1

1′Σ−1Y:T−1 +
√
cTΣ

−1YT
)√

η′
(
λ′λ
λ′1

+ cTΣ−1ΠT

)+
η

≡ Z.

Note that by Corollary C.1

η′
(
λ′λ

λ′1
+ cTΣ

−1ΠT

)+(
λ

λ′1
1′Σ−1Y:T−1 +

√
cTΣ

−1YT

)
| η,Π1:T , T

∼ N

(
0, η′

(
λ′λ

λ′1
+ cTΣ

−1ΠT

)+

η

)
Thus,

η′
(
λ′λ
λ′1

+ cTΣ
−1ΠT

)+ ( λ
λ′1

1′Σ−1Y:T−1 +
√
cTΣ

−1YT
)√

η′
(
λ′λ
λ′1

+ cTΣ−1ΠT

)+
η

| η,Π1:T , T ∼ N (0, 1).

This completes the proof since η,Π1:T , T is measurable with respect to

(T, {BsY1:s : s ≤ T − 1}).

□

C.4. Conditional coverage performance.

Assumption C.5. Let f(Π1:T , T, η) < C < ∞ be a bounded function such that along all

subsequences Pnm ∈ P , if

(Π̂1:Tnm ,nm , Tnm , ηnm)
d−→ (Π1:T , T, η)

then

f(Π̂1:Tnm ,nm , Tnm , ηnm)
d−→ f (Π1:T , T, η) .

Theorem C.3. Suppose Assumptions A.1 and C.1 to C.4 hold and let α ∈ (0, 0.5). Let

f(Π1:T , T, η) > 0 be a function satisfying Assumption C.5. Then,

lim sup
n→∞

sup
P∈P

∣∣∣∣EP

[
1

(
|η′nS⋆

n − η′nµ(P )| > z1−α/2
σ̂τ,n√
n

)
f(Π1:Tn,n, Tn, ηn)

]
−αEP [f(Π1:Tn,n, Tn, ηn)]

∣∣∣∣ = 0.

where z1−α/2 = Φ−1(1− α/2).
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Proof. Suppose to the contrary, for some ϵ > 0,

lim sup
n→∞

sup
P∈P

∣∣∣∣EP

[
1

(
|η′nS⋆

n − η′nµ(P )| > z1−α/2
σ̂τ,n√
n

)
f(Π1:Tn,n, Tn, ηn)

]
−αEP [f(Π1:Tn,n, Tn, ηn)]

∣∣∣∣ > 2ϵ.

Then there exists a subsequence Pnr where for all r > 0,

lim sup
n→∞

sup
P∈P

∣∣∣∣EP

[
1

(
|η′nS⋆

n − η′nµ(P )| > z1−α/2
σ̂τ,n√
n

)
f(Π1:Tn,n, Tn, ηn)

]
−αEP [f(Π1:Tn,n, Tn, ηn)]

∣∣∣∣ > ϵ.

(C.7)

By Theorem C.2, we can extract a further subsequence nm along which

√
nm

|η′nm
S⋆
nm

− η′nm
µ(Pnm)|

σ̂τ,nm

d−→ Z (C.8)

and

(ηnm ,Π1:Tnm
, Tnm)

d−→ (η,Π1:T , T )

where

Z | (η,Π1:T , T ) ∼ N (0, 1).

By Assumption C.5, we additionally have

f(Π1:Tnm ,nm , Tnm , ηnm)
d−→ f(Π1:T , T, η).

Thus

1

(
√
nm

|η′nm
S⋆
nm

− η′nm
µ(Pnm)|

σ̂τ,nm

< z1−α/2

)
f(Π1:Tnm ,nm , Tnm , ηnm)

d−→ 1(Z < z1−α/2)f(Π1:T , T, η).

Since f is bounded, we have that the expectations also converge. Note that

E[1(Z < z1−α/2)f(Π1:T , T, η)] = αE[f(Π1:T , T, η)].

Therefore, along this subsequence nm, the limit is zero, contradicting (C.7). □

C.5. Auxiliary lemmas.

Lemma C.2 (Uniform central limit theorem via Lyapunov condition). Let π ∈ ∆K−1 be a

vector of probabilities. LetXi, . . . , Xn
i.i.d.∼ Q be RK-valued random vectors for some distribu-

tion Q ∈ Q in a family Q, with EQ[X] = µ(Q). Let Σ(Q) = diag(VarQ(X1), . . . ,VarQ(XK)).

Let Y (Q, π) ∈ RK be such that its kth coordinate is

Yk(Q, π) =
1√
n

n∑
i=1

Dik(Xik − µk(Q)) Di = [Di1, . . . , DiK ]
′ i.i.d.∼ Mult(1, π).

Correspondingly, write Y (Q, π) = 1√
n

∑n
i=1 Yi. Suppose that there exists c > 0 such that

sup
Q∈Q

EQ

[
∥X∥2+c

]
< C <∞,
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where ∥·∥ denotes the Euclidean norm. Then, there exists cn → 0 dominating the Prokhorov

metric:

sup
Q∈Q

sup
π∈∆K−1

prok(Y (Q, π),N (0,Σ(Q)Π)) ≤ cn → 0,

where prok denotes the Prokhorov metric and Π = diag(π). Since the Prokhorov metric

dominates the bounded Lipschitz metric, the same statement hold for the latter.

Proof. This is a straightforward application of Proposition A.5.2 in van der Vaart andWellner

(1996). Observe that, since the entries of Di are bounded by 1, Yi satisfies the Lyapunov

condition

∥Yi∥ ≤ ∥Xi∥ almost surely =⇒ EQ,π∥Yi∥2+c < C

and VarQ,π(Yi) = Σ(Q) diag(π).

For a given Q, let

g(t, Q, π) = EQ,π∥Yi∥21(∥Yi∥ ≥ t)

≤ PQ,π(∥Yi∥ ≥ t)EQ,π[∥Yi∥2+c]

≤ C · PQ,π(∥Yi∥ ≥ t)

≤ C ·
(
E[∥Yi∥2+c]

t2+c
∧ 1

)
=

C2

t2+c
∧ C

where the first inequality is via Hölder’s inequality, the second inequality is via the Lyapunov

condition, and the third inequality is via Markov’s inequality combined with the Lyapunov

condition.

Then Proposition A.5.2 in van der Vaart and Wellner (1996) implies that there are con-

stants C1, . . . , C5, dependent only on the moment bound C, such that for any δ,

prok (Y (Q, π),N (0,Σ(Q, π))) ≤ δ + C1g(δ
√
n,Q, π)1/3 + C2δ

1/4
(
1 + C3 + C4

√
| log δ|

)
≤ C5

(
δ +

(
1 ∧ 1

δ2+cn1+c/2

)1/3

+ δ1/4
√
| log δ|

)
We can pick cn → 0 to be the expression on the RHS with, say, δ = n−1/4 to complete the

proof. □

Lemma C.3. Let N ∼ Bin(n, p), then with probability at least 1−∆n,∣∣∣∣Nn − p

∣∣∣∣ ≤ dn

where dn,∆n → 0 are sequences independent of p. Hence, by a union bound, for any K

variables N1, . . . , NK where Nk ∼ Bin(n, pk),

P

[
∀k :

∣∣∣∣Nk

n
− pk

∣∣∣∣ ≤ dn

]
≥ 1−K∆n.
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Proof. Exercise 2.3.5 in Vershynin (2018) shows the following Chernoff bound: For some

absolute c > 0,

P

[∣∣∣∣Nn − p

∣∣∣∣ ≥ δp

]
≤ 2e−cnpδ2

If we choose δ = dn/p, we have

P

[∣∣∣∣Nn − p

∣∣∣∣ ≥ dn

]
≤ 2e−cnd2n/p ≤ 2e−cnd2n

Pick, for instance, dn = log(n)/
√
n+ 1/n and ∆n = 1− 2n−c to complete the proof. □

Lemma C.4. Under our setup, consider a subsequence nm. Let Vtnm be certain random

variables indexed by t = 1, . . . , T0 and nm. Suppose

(V1nm , . . . , VT0,nm ,Ξ1nm , . . . ,ΞT0,nm , Tnm)
d−→ (V1, . . . , VT0 ,Ξ1, . . . ,ΞT0 , T )

Then

VTnm ,nm

d−→ VT

Proof. Note that, by continuous mapping theorem,

VTnm ,nm =

T0∑
t=1

(Ξt−1,nm − Ξt,nm)Vt,nm

d−→
T0∑
t=1

(Ξt−1 − Ξt)Vt = VT .

This concludes the proof. □

Lemma C.5. Let Mn,M be random positive semi-definite matrices such that Mn
d−→ M .

Suppose that there exists sets Mn,M such that (a) for all n, P(Mn ∈ Mn) = P(M ∈ M) =

1 and that (b) for every deterministic sequence vn → v where vn ∈ Mn and v ∈ M, we

have that for all sufficiently large n rank(vn) = rank(v). Then M+
n

d−→ M+ where (·)+ is

the Moore-Penrose pseudo-inverse.

Proof. Since rank(vn) = rank(v) for every sequence eventually, we have that v+n → v+

for all sequences (Rakočević, 1997). Hence by the extended continuous mapping theorem,

M+
n

d−→M+. □

Lemma C.6. Under the conditions of Theorem C.2 and in its proof,(
λnmλ

′
nm
/
√
nm

λ′nm
1

+
nTnm

nm

Σ̂−1
nm

Π̂Tnmnm

)+
d−→
(
λ′λ

λ′1
+ cTΣ

−1ΠT

)+

jointly.

Proof. We verify this statement with Lemma C.5. Let

Mnm =
λnmλ

′
nm
/
√
nm

λ′nm
1

+
nTnm

nm

Σ̂−1
nm

Π̂Tnmnm
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andM = λ′λ
λ′1

+cTΣ
−1ΠT whereMn

d−→M (along a subsequence) is already shown. Consider

a fixed sequence vm → v. Note that vm is of the form

ℓmℓ
′
m/

√
nm

ℓ′m1
+
nTm

nm

Ω−1
m πTm,m

Similarly, we can write

v =
ℓℓ′

ℓ′1
+ cT ∗Ω−1πT ∗

Note that vm → v implies that
ℓmℓ′m/

√
nm

ℓ′m1
→ ℓℓ′

ℓ′1
, by inspecting the convergence of the off-

diagonal elements. Hence
nTm

nm

Ω−1
m πTm,m → cT ∗Ω−1πT ∗

Since ΠTnm ,nm

d−→ ΠT , by Assumption C.3, we can restrict to considering πT ∗ whose

entries are never within (0, ϵ). Thus the diagonal entries of cT ∗Ω−1πT ∗ are never within

(0,mint∈[T0] ct
1
C1
ϵ) by Assumption A.1. Hence, if

ℓmℓ
′
m/

√
nm

ℓ′m1
→ ℓℓ′

ℓ′1

nTm

nm

Ω−1
m πTm,m → cT ∗Ω−1πT ∗ ,

then for all sufficiently large m, we must have that (a) the number and location of zeros in

the diagonal of
nTm

nm
Ω−1

m πTm,m remain fixed and (b) ℓm has strictly positive entries.

It suffices to verify that for a strictly positive vector a ∈ RK and diagonal matrix A ⪰ 0

with rank r, aa′ + A has rank equal to K ∧ (r + 1). Given this claim, since the number of

zeros in the diagonal of
nTm

nm
Ω−1

m πTm,m remain unchanged for sufficiently large m, its rank is

constant. Thus the rank of vm is also constant for sufficiently large m.

To verify this claim, we will show that a and {ek : Akk ̸= 0} span the column space of

aa′ + A, where ek is the kth standard basis vector. First, note that if A ≻ 0 is positive

definite, then aa′+A is full-rank, and the claim is true. Otherwise, there is some k for which

Akk = 0. Then (aa′+A)ek = (a′ek)a. Since a has strictly positive entries, this shows that a is

in the column space of aa′+A. Let ℓ be such that Aℓℓ ̸= 0. Then (aa′+A)eℓ = Aℓℓeℓ+(a′eℓ)a

is a linear combination of eℓ and a. Since a is in the column space of aa′ + A, then eℓ is

also in the column space. Lastly, since every vector in the column space is in the span

of a and {ek : Akk ̸= 0}: (aa′ + A)u = (a′u)a +
∑

k:Akk ̸=0Akkukek, we conclude that a and

{ek : Akk ̸= 0} span the column space of aa′ + A. We finish the proof by noting that the

dimension of a and {ek : Akk ̸= 0} is K ∧ (r + 1). □

C.6. Verification of Theorem A.2.

Theorem A.2. Under Assumptions A.1 to A.5, level-(1−α) two-sided confidence intervals

CSn(α) ≡ η′nS
⋆
n±Φ−1(1−α/2)· σ̂

2
τ,n√
n
have exact conditional asymptotic size for the parameters
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τn: For all η, T ,

lim inf
n→∞

inf
P∈P

∣∣∣∣P (τn ∈ CSn(α) | ηn = η, Tn = T )− α

∣∣∣∣P (ηn = η, Tn = T ) = 0.

Proof. The theorem follows from Theorem C.3 pending verification of Assumptions C.1

to C.5.

Note that our setup means that Assumption C.1(1) and Assumption C.2(1) are satisfied.

Lemma C.7 verifies Assumption C.1(2–3) and Assumption C.2(2–3). Assumption A.4 implies

Assumption C.3 directly. Lemma C.8 verifies Assumption C.4. Finally, since ηn and Tn both

have finite support (with discrete topology), for any η1, T1 in the support, f(η, T ) = 1(η =

η1, T = T1) satisfies Assumption C.5. □

Lemma C.7. If the assignment algorithm satisfies Assumptions A.2 and A.3 then it satisfies

Assumption C.1(2–3) and Assumption C.2(2–3).

Proof. Note that we can rewrite

√
nWt,n =

(
t∑

s=1

nt

n
Π̂sn

)−1

︸ ︷︷ ︸
Π̂−1

:t,n

t∑
s=1

√
nt

n
Ysn︸ ︷︷ ︸

Y:t,n

+
√
nµn︸ ︷︷ ︸

hn+maxℓ µn,ℓ

Hence we can equivalently write

κt+1

(√
nWt,n, Σ̂tnΠ̂

−1
:t,n

)
= κt+1

(
Π̂−1

:t,nY:t,n + hn, Σ̂tnΠ̂
−1
:t,n

)
and similarly for Ξt+1.

With respect to the subsequence Pnm , let J = {j : hnm,j > −∞}. We restrict to the

subsequence nm and index by n instead.

To verify Assumption C.1(2–3) and Assumption C.2(2–3), we induct on t. We will verify

that

• The statements in Assumption C.1(2–3) and Assumption C.2(2–3) hold for batch t

• P(Πt+1,j > 0 | Ξt = 1) = 1 for all j ∈ J .

The base case is t = 1 for κ2,Ξ2. Note that Σ̂tn
p−→ Σ > 0. Under (C.2), Π̂:1,n = n1

n
Π̂1,n

p−→
c1Π1 > 0. Thus, Y:1,nΠ̂:1,n

Σ̂tn

 d−→


√
c1Y1

c1Π1

Σ

 .
Hence, for t = 1, [

Π̂−1
:t,nY:t,n + hn

Σ̂tnΠ̂
−1
:t,n

]
d−→

[
(c1)

−1/2Π−1
1 Y1 + h

ΣΠ−1
1

]
.
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Here, the limit (c1)
−1/2Π−1

1 Y1 + h is absolutely continuous with respect to the Lebesgue

measure on indices in J , since Y1 is absolutely continuous with respect to the Lebesgue

measure on RK and Π1 > 0.

Hence Assumptions A.2 and A.3 imply that the set of discontinuities of Ξ2(·), κ2,(1)(·, ·)
and κ2,(0) is measure zero with respect to the law of ((c1)

−1/2Π−1
1 Y1 + h,ΣΠ−1

1 ). Thus, the

continuous mapping theorem applies and κ2,Ξ2 converges. This verifies the statements in

Assumption C.1(2) and Assumption C.2(2) for t = 1.

By location-invariance, Π2,Ξ2 are measurable with respect to the differences{
c
−1/2
1 Π1kY1k − c

−1/2
1 Π1KY1K : k ∈ [K − 1]

}
.

These differences can be written as B1Y1 where B1
√
c1Π11K = 0. This proves Assump-

tion C.1(2–3) and Assumption C.2(2–3) for t = 1.7 Moreover, observe that P(Π2k > 0) = 1

whenever hnk > −∞.

In the inductive case, for a generic t, assume (C.3). We have that[
Π̂−1

:t,nY:t,n + hn

Σ̂tnΠ̂
−1
:t,n

]
d−→

[
Π−1

:t Y:t + h

ΣΠ−1
:t

]
.

Note that Π:t > c1Π1 > 0 almost surely. Note that the inductive hypothesis implies that

P(Πtk > 0 | Ξt−1 = 1) = 1 for k where hnk > −∞. Note that this means {Y:t,j : j ∈ J}
is absolutely continuous conditional on Π1:t,Ξt = 1 with respect to the Lebesgue measure

on R|J |, since the last term Yt ∼ N (0,ΠtΣ). As a result, the set of discontinuities of

Ξt+1, κt+1,(0), κt+1,(1) is measure zero with respect to the law of (Π−1
:t Y:t + h,ΣΠ−1

:t ) | Ξt = 1.

Note that we can write

Ξt+1 = ΞtΞt+1.

Since both Ξt+1 and κt+1 are continuous when Ξt = 0, we conclude that their discontinuities

are measure zero with respect to the law of (Π−1
:t Y:t + h,ΣΠ−1

:t ,Ξt). Therefore, κt+1,Ξt+1

converges weakly by the continuous mapping theorem.

Similarly, by location-invariance, Πt+1 is measurable with respect to{
Π−1

:t,kY:t,k − Π−1
:t,KY:t,K : k ∈ [K − 1]

}
.

7It is easy to show that

Tn = argmax
t

Ξt−1,n − Ξt,n
d−→ T = argmax

t
Ξt−1 − Ξt

provided that Ξ1:T0,n
d−→ Ξ1:T0

by the continuous mapping theorem, since the support of (Ξt−1,n −Ξt,n)
T0
t=2

is the set of standard basis vectors in RT0 .
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When written as a transformation BtY1:t, we have that

Bt


√
c1Π11K

...
√
ctΠt1K

 = 0.

Lastly, we have that P(Πt+1,j > 0 | Ξt = 1) = 1 by assumption. This completes the proof. □

Lemma C.8. Under Assumption C.3 and Assumption A.1, if ηn(·) satisfies Assumption A.5,

then it satisfies Assumption C.4.

Proof. Let ςn = ς(WTn,n) denote the strict ranking of the entries of WTn,n. Likewise, let

En = {k : ΠTn,n,k = 0}.
For the weak convergence of ηn along a subsequence nm, it suffices to show that

(Tnm , ςnm , Enm)

converges weakly along the subsequence, since their support is finite (and hence any function

is continuous under the discrete topology). Note that since ςn is a function of the indicators

Ik,k′,n = 1(
√
nWTn,t,k −

√
nWTn,t,k′ > 0), k ̸= k′ and k, k′ ∈ [K] (and a continuous function

since the domain is discrete). It further suffices to show joint convergence of

(Tnm , {Ik,k′,nm : k, k′ ∈ [K], k ̸= k′} , Enm).

Let us consider the above display as some function ψm of Um = (Tnm , Π̂Tnm
,
√
nm(WTnm,nm

−
µnm)), where

Um
d−→ (T,ΠT ,WT ) WT =

(
T∑
t=1

ctΠt

)−1 T∑
t=1

√
ctYt

Note that for any h ∈ R, P(WT,k −WT,k′ = h) = 0. Along the subsequence, we also have by

Lemma C.1 that
√
nm(µnm,k − µnm,k′) → ∆µk,k′ ∈ [−∞,∞].

Fix some t0, πt0 , wt0 where wt0,k − wt0,k′ ̸= −∆µkk′ . It suffices to show that every sequence

tm → t0, πtm → πt0 , wtm → wt0 in the support of Um has that

ψn(tm, πtm , wtm) → (t0, {1(wt0,k − wt0,k′ +∆µkk′ > 0) : k, k′ ∈ [K], k′ ̸= k} , {k : πtm,k = 0}) .
(C.9)

The convergence of tm is immediate. Moreover, for all sufficiently large m, tm = t0. Since

wt0,k − wt0,k′ ̸= −∆µkk′ , the indicator functions likewise converge. Lastly, note that if

πt0,k = 0, then for all sufficiently large m, πtm,k = 0 as well since πtm,k ̸∈ (0, ϵ) by Assump-

tion C.3; likewise, if πtm,k > ϵ, then for all sufficiently large m, πtm,k > ϵ as well. Hence

{k : πtm,k = 0} = {k : πt0,k = 0} for all sufficiently large m. This proves (C.9), and hence it

proves the first part of Assumption C.4.
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∥ηn∥ > ϵ is by assumption. Lastly, note that for all sufficiently large m, λnm > 0 and

Σ̂nm > 0. Hence, by Lemma C.9, we have that ηnm is in the column space of

λnmλ
′
nm
/
√
nm

λ′nm
1

+
nT

nm

Σ̂−1
nm

Π̂Tnm

almost surely for all sufficiently large m. Similarly for the limit η. □

Lemma C.9. Let RK ∋ u > 0 be a vector with positive entries. Let D ≥ 0 be a diagonal

matrix with strictly positive entries on ∅ ̸= J ⊂ [K]. Consider v ∈ RK whose nonzero

entries are a subset of J . Then v is in the column space of cuu′ +D for c > 0.

Proof. If J = [K], then cuu′ +D is full rank. Thus v is in the column space. If J ⊊ [K], let

j0 ∈ JC . Set q ∈ RK where for j ∈ J , qj = vj/Djj. Let qj0 = −
∑

j∈J ujqj. Let qk = 0 for

k ̸∈ J ∪ {j0}. By construction, q′u = 0 and Dq = v. This concludes the proof. □

Appendix D. Two-batch experiment and properties of Zhang et al. (2020)

To illustrate properties of Zhang et al. (2020)’s procedure, we restrict to a simple two-batch

setup. Consider

X1 ∼ N (µ, 2I) and X2 | X1 ∼ N (0, diag (1/Π, 1/(1− Π))).

Since Π2 = (Π21, 1−Π21) is summarized by Π21, we drop the subscript and refer to Π = Π21.

Note that if the assignment algorithm is location-invariant—that is, Π(X1) = Πt(X1 + h12)

for every h—then Πt(X1) = Πt(X11, X12) = Πt(X11 −X12, 0) = Πt(X11 −X12) depends only

on the difference ∆ ≡ X11 −X12.

Suppose we are interested in making inferences about µ1. Zhang et al. (2020) propose a

simple inference procedure. The Gaussian limit analogue of their procedure is based on the

following statistic, which is a sum of studentized batch means:

Z =
1√
2
X11 +Π(∆)1/2X21.

Since the studentized second batch statistic is independent of ∆,

Π1/2(X21 − µ1) | ∆ ∼ N (0, 1),

the following quantity is pivotal:

Z∗ = Z∗(µ1) = Z −
(

1√
2
+ Π1/2

)
µ1 ∼ N (0, 2).

Thus, for example, we can testH0 : µ1 = µ01 by comparing Z∗(µ01) to its distributionN (0, 2)

under H0. As another example, the natural estimator
(

1√
2
+Π1/2

)−1

Z is median-unbiased

for µ1.
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Note that the joint density of X1, X2 factors into

pµ(X1, X2) = f1(Uµ1)f2(V µ2)f3(Π(∆)(µ2
1 − µ2

2))h1(µ)h2(X1, X2)

where U = 1
2
X11 +

1
Π
X21, V = 1

2
X12 +

1
1−Π

X22, h1 is free of (X1, X2), and h2 is free of µ.

As a result, the statistics (U, V,Π) are sufficient for µ in the law of (X1, X2). Consequently,

(U, V,∆) is sufficient as well. We can decompose the statistic Z as a linear combination of

the sufficient statistics (∆, U, V ) and a Gaussian noise term. We do so by studying the joint

Gaussian distribution of (U, V, Z) conditional on ∆.

Proposition D.1. The statistic Z obeys the following representation:

Z = a∆+ b(Π)V + c(Π)U + σ(Π)ξ

=
∆

2
√
2
+

√
2Π−

√
Π

1 + 4Π− 4Π2
V +

√
2 + 5

√
Π−

√
2Π− 4Π3/2

1 + 4Π− 4Π2
U

+

√
(1 + 2Π− 2

√
2Π)(1− Π)

1 + 4Π− Π2
· ξ

for some ξ ∼ N (0, 1) independently of (U, V,∆).

Proof. Observe thatX1

X21

X22

 | X11 −X12︸ ︷︷ ︸
∆

∼ N




µ1+µ2

2

µ1

µ2

 ,
1 0 0

0 1/Π 0

0 0 1/(1− Π)




where X1 =
1
2
(X11+X12). Note that, since X11 = X1+∆/2 and X12 = X1−∆/2, the above

display captures the distribution of the data conditional on ∆. Hence we can compute thatZ − ∆
2
√
2

U − ∆
4

V + ∆
4

 | ∆ ∼ N




µ1+µ2

2
√
2

+
√
Πµ1

µ1+µ2

4
+Πµ1

µ1+µ2

4
+ (1− Π)µ2

 ,


3
2

1
2
√
2
+
√
Π 1

2
√
2

1
2
√
2
+
√
Π 1

4
+Π 1

4
1

2
√
2

1
4

5
4
− Π


 ,

since the left-hand side are functions of X1, X21, X22 and ∆. The claim follows by computing

that

E[Z | ∆, U, V ] = a∆+ b(Π)V + c(Π)U

and Var(Z | ∆, U, V ) = σ2(Π), since Z,U, V are jointly Gaussian conditional on ∆. □

One can further show that the projection of the pivot Z∗ onto (∆, V, U) is Gaussian with

conditional mean a(∆ + µ2 − µ1) and conditional variance 3
2
− σ2(Π):

a∆+ b(Π)V + c(Π)U −
(

1√
2
+ Π1/2

)
µ | ∆ ∼ N

(
a(∆ + µ2 − µ1),

3

2
− σ2(Π)

)
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As a result, the unconditional distribution of the projection of the pivot onto (∆, U, V ) is a

mean and variance mixture of Gaussians, whose unconditional mean is zero. The pivot Z∗

is thus Gaussian by injecting ∆-dependent noise σ(Π)ξ so as to stabilize the ∆-conditional

variance.

Due to the presence of the noise term ξ, the statistic Z suffers from certain deficiencies.

For instance, there exist recognizable subsets—events on which inferences based on Z are

unreliable.

Corollary D.1. Assume that Π ̸= 1
2
with positive probability and Π ∈ (0, 1) almost surely.

Fix any significance level α ∈ (0, 1/2). There exists an event A which does not depend on

the unknown parameter µ on which the coverage probability is at most 1/2. That is, for all

µ ∈ R2, Pµ(A) > 0, and

Pµ

(∣∣∣∣Z −
(

1√
2
+ Π1/2

)
µ

∣∣∣∣ ≤ √
2Φ−1(1− α/2) | A

)
≤ 1

2
.

Proof. Let A =
{
|ξ| >

√
2 1
σ(Π)

Φ−1(1− α/2),Π ̸= 1/2
}
. Since when Π ̸= 1/2, σ(Π) > 0,

and Π ̸= 1/2 with positive probability, A occurs with positive probability. Consider Z =

a∆ + b(Π)V + c(Π)U + σ(Π)ξ and Z = a∆ + b(Π)V + c(Π)U − σ(Π)ξ. Note that on the

event A,

|Z − Z ′| > 2
√
2Φ−1(1− α/2).

Hence, on A,

|Z − (1/
√
2 + Π1/2)µ| <

√
2Φ−1(1− α/2) and |Z ′ − (1/

√
2 + Π1/2)µ| <

√
2Φ−1(1− α/2)

are mutually exclusive events. Moreover, the probabilities of these two events conditional on

A are identical by symmetry. Therefore,

2 P
[
|Z − (1/

√
2 + Π1/2)µ| <

√
2Φ−1(1− α/2) | A

]
≤ 1.

This completes the proof. □

Moreover, the natural estimator
(

1√
2
+Π1/2

)−1

Z can be improved in mean-squared error

by Rao–Blackwellization against (U, V,∆):

Corollary D.2. Let T0 =
(

1√
2
+Π1/2

)−1

Z. Let

T ∗ = E [T0 | U, V,∆] =

(
1√
2
+ Π1/2

)−1

(a∆+ b(Π)V + c(Π)U)

be its conditional expectation with respect to U, V,∆. Then, for any µ ∈ R2,

Eµ[(T
∗ − µ1)

2] ≤ Eµ[(T0 − µ1)
2].
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Proof. Note that we can write T0 = T ∗(U, V,∆) + q(Π)ξ for some q(Π). Note that

E[(T0 − µ1)
2] = q(Π)2 + E[(T ∗ − µ1)

2] ≥ E[(T ∗ − µ1)
2].

□
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