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THE ELITE ILLUSION: ACHIEVEMENT EFFECTS AT BOSTON
AND NEW YORK EXAM SCHOOLS

BY ATILA ABDULKADIROĞLU, JOSHUA ANGRIST, AND PARAG PATHAK1

Parents gauge school quality in part by the level of student achievement and a
school’s racial and socioeconomic mix. The importance of school characteristics in the
housing market can be seen in the jump in house prices at school district boundaries
where peer characteristics change. The question of whether schools with more attrac-
tive peers are really better in a value-added sense remains open, however. This pa-
per uses a fuzzy regression-discontinuity design to evaluate the causal effects of peer
characteristics. Our design exploits admissions cutoffs at Boston and New York City’s
heavily over-subscribed exam schools. Successful applicants near admissions cutoffs for
the least selective of these schools move from schools with scores near the bottom of
the state SAT score distribution to schools with scores near the median. Successful
applicants near admissions cutoffs for the most selective of these schools move from
above-average schools to schools with students whose scores fall in the extreme upper
tail. Exam school students can also expect to study with fewer nonwhite classmates than
unsuccessful applicants. Our estimates suggest that the marked changes in peer char-
acteristics at exam school admissions cutoffs have little causal effect on test scores or
college quality.
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1. INTRODUCTION

A three bedroom house on the northern edge of Newton, Massachusetts
costs $412,000 (in 2008 dollars), while across the street, in Waltham, a similar
place can be had for $316,000.2  Black (1999) attributed this and many simi-
lar Massachusetts contrasts to differences in perceived school quality. Indeed,
92 percent of Newton’s high school students are graded proficient in math,
while only 78 percent are proficient in Waltham. These well-controlled com-

1Our thanks to Kamal Chavda, Jack Yessayan, and the Boston Public Schools; and to Jennifer
Bell-Ellwanger, Thomas Gold, Jesse Margolis, and the New York City Department of Educa-
tion, for graciously sharing data. The views expressed here are those of the authors and do not
reflect the views of either the Boston Public Schools or the NYC Department of Education. We
are grateful for comments from participants in the June 2010 Tel Aviv Frontiers in the Eco-
nomics of Education conference, the Summer 2011 NBER Labor Studies workshop, and the
December 2011 Hong Kong Human Capital Symposium. Thanks also go to Jonah Rockoff for
comments and data on teacher tenure in NYC. We are also grateful to Daron Acemoglu, Gary
Chamberlain, Yingying Dong, Guido Imbens, and especially to Glenn Ellison for helpful dis-
cussions. Alex Bartik, Weiwei Hu, and Miikka Rokkanen provided superb research assistance.
We thank the Institute for Education Sciences for financial support under Grant R305A120269.
Pathak also thanks the Graduate School of Business at Stanford University, where parts of this
work were completed, and the NSF for financial support; and Abdulkadiroglu acknowleges an
NSF-CAREER award.

2These are average prices of 42 three bedroom units in Newton and 27 units in Waltham, sepa-
rated by 0.1 miles or less, as quoted on Greater Boston’s Multiple Listing Service for transactions
between 1998 and 2008.
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parisons suggest something changes at school district boundaries. Parents look-
ing for a home are surely aware of achievement differences between Newton
and Waltham, and many are willing to pay a premium to see their children at-
tend what appear to be better schools. At the same time, it is clear that differ-
ences in achievement levels can be a highly misleading guide to value-added, a
possibility suggested by theoretical and empirical analyses in Rothstein (2006),
Hastings, Kane, and Staiger (2009), and MacLeod and Urquiola (2009), among
others.

Similar observations can be made regarding the relationship between racial
composition and home prices. For over a half-century, American education
policy has struggled with the challenge of racial integration. The view that
racial mixing contributes to learning motivates a range of social interventions
ranging from within-district busing and court supervision of school assignment,
to Boston’s iconic Metco program, which sends minority children to mostly
white suburban districts. In this context as well, home-buying parents vote
with their housing dollars —typically for more white classmates—as shown re-
cently by Boustan (2012) using cross-border comparisons in the spirit of Black
(1999).3

An ideal experiment designed to reveal causal effects of peer characteristics
would randomly assign the opportunity to attend schools with high-achieving
peers and fewer minority classmates. The subjects of such a study should be
a set of families likely to take advantage of the opportunity to attend schools
that differ from their default options. Imagine sampling parents found in sub-
urban Boston real estate offices, as they choose between homes in Newton and
Waltham. We might randomly offer a subset of those who settle for Waltham a
voucher that entitles them to send their children to Newton schools in spite of
their choice of a Waltham address. This manipulation bears some resemblance
to the Moving to Opportunity (MTO) experiment, which randomly allocated
housing vouchers valid only in low-poverty neighborhoods. MTO was a compli-
cated intervention, however, that did not manipulate the school environment
in isolation (see Kling, Liebman, and Katz (2007) and Sanbonmatsu, Ludwig,
Katz, Gennetian, Duncan, Kessler, McDade, and Lindau (2011)).

While a perfect peer characteristics experiment is hard to engineer, an im-
portant set of existing educational institutions induces quasi-experimental vari-
ation that comes close to the ideal experiment. A network of selective public
schools in Boston and New York known as exam schools offer public school
students the opportunity to attend schools with much higher achieving peers.
Moreover, in these mostly nonwhite districts, exam schools have a markedly
higher proportion of white classmates than do the public schools that appli-
cants are otherwise likely to attend. Of course, exam school admissions are not

3Guryan (2004) found that court-order integration schemes increase nonwhite high school
graduation rates without hurting whites, but evidence on the achievement consequences of busing
for racial balance is mixed (see, e.g., Hoxby (2000) and Angrist and Lang (2004)).
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made by random assignment; rather, students are selected by an admissions
test with sharp cutoffs for each school and cohort. This paper exploits these
admissions cutoffs in a fuzzy regression discontinuity (RD) design that iden-
tifies causal effects of peer achievement and racial composition for applicants
to the six traditional exam schools operating in Boston and New York. The
application of RD methods in this context generates a number of challenges
related to the real-world messiness of school assignment and the exclusion re-
strictions needed to interpret two-stage least squares (2SLS) estimates. Solu-
tions for these problems are detailed in the sections that follow.4

2. INSTITUTIONAL BACKGROUND

Boston’s three exam schools span grades 7–12. The best-known is the Boston
Latin School, which enrolls about 2,400 students. Seen by many as the crown
jewel of Boston’s public school system, Boston Latin School was named a top
20 U.S. high school in the inaugural 2007 U.S. News & World Report school
rankings. Founded in 1635, the Boston Latin School is America’s first public
school and the oldest still open (Goldin and Katz (2008)).5 Boston Latin School
is a model for other exam schools, including the recently opened Brooklyn
Latin School in New York (Jan (2006)). The second oldest Boston exam school
is Boston Latin Academy, formerly the Girls’ Latin School. Opened in 1877,
Latin Academy first admitted boys in 1972 and currently enrolls about 1,700
students. The John D. O’Bryant High School of Mathematics and Science (for-
merly Boston Technical High) is Boston’s third exam school; O’Bryant opened
in 1893 and now enrolls about 1,200 students.

New York’s three original academic exam schools are Stuyvesant High
School, Bronx High School of Science, and Brooklyn Technical High School,
each spanning grades 9–12. The New York exam schools were established in
the first half of the 20th century and share a number of features with Boston’s
exam schools. Stuyvesant and Bronx Science appear on Newsweek’s list of elite
public high schools, and all three have been high in the U.S. News & World
Report rankings. Stuyvesant enrolls just over 3,000 students, Bronx Science en-
rolls 2,600–2,800 students, and Brooklyn Tech has about 4,500 students. New
York opened three new exam schools in 2002: the High School for Math, Sci-
ence and Engineering at City College, the High School of American Studies at
Lehman College, and Queens High School for the Sciences at York College. In
2005, Staten Island Technical High School converted to exam status, while the

4Neighborhoods and schools are not the only settings in which peer effects might arise, but
these are among the most commonly encountered contexts for peer effects in social science re-
search. A voluminous literature, summarized in a recent survey by Sacerdote (2011), reveals a
strong association between the performance of students and their classmates.

5Boston Latin School was established one year before Harvard College. Local lore has it that
Harvard was founded to give graduates of Latin a place to continue their studies.
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Brooklyn Latin School opened in 2006. The admissions process for these new
schools is the same as for the three original exam schools, but we omit the new
schools from this study because they are not as well established as New York’s
traditional exam schools, and some have unusual characteristics such as small
enrollment.6

Boston Public Schools span a range of peer achievement that may be unique
among American urban districts. Like many urban students elsewhere in the
United States, Boston exam school applicants who fail to enroll in an exam
school end up at schools with average SAT scores well below the state average,
in this case, at schools close to the 5th percentile of the distribution of school
averages in the state. By contrast, O’Bryant’s average SAT falls at the 40th per-
centile of the state distribution of averages, a big step up from the overall BPS
average, but not elite in an absolute sense. Successful Boston Latin Academy
applicants find themselves at a school with average SATs around the 80th per-
centile of the distribution of school means, while the average SAT score at the
Boston Latin School is the fourth highest among public schools in the state.

Data from New York’s exam schools enrich this picture by allowing us to
evaluate the impact of exposure to extremely high-achieving peers. The least
selective of New York’s three traditional exam schools, Brooklyn Tech, is at-
tended by students with average SAT scores found around the 99th percentile
of the distribution of average scores in New York State, a level comparable
to the Boston Latin School. Successful applicants to Brooklyn Tech typically
move from schools where peer achievement is around the 30th percentile of
the school average SAT distribution. Students at the two most selective New
York exam schools are exposed to the brightest of classmates, with the Bronx
Science average SAT falling at percentile 99.9, while Stuyvesant has the high-
est average SAT scores in New York State, placing it among the top five public
schools nationwide.

As far as we know, ours is one of two RD analyses of achievement effects
at highly selective U.S. exam schools. In independent contemporaneous work,
Dobbie and Fryer (2013) estimated the reduced-form impact of admissions
offers at New York exam schools; their analysis showed no impact on col-
lege enrollment or quality. Selective high schools have also been studied else-
where. Pop-Eleches and Urquiola (2013) estimated the effects of attending
selective high schools in Romania, where the admissions process is similar to
that used by Boston’s exam schools. Selective Romanian high schools appear to
boost scores on the high-stakes Romanian Baccalaureate test. Jackson (2010)
similarly reported large score gains for those attending a selective school in

6Estimates including New York’s new exam schools are similar to those generated by the three-
school sample. Other selective New York public schools include the Fiorello H. LaGuardia High
School, which focuses on visual and performing arts and admits students by audition, and Hunter
College High School, which uses a unique admissions procedure and is not operated by the New
York City Department of Education.
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Trinidad and Tobago. On the other hand, Clark (2008) found only modest score
gains at selective U.K. schools. Likewise, using admissions lotteries to ana-
lyze the consequences of selective middle school attendance in China, Zhang
(2010) found no achievement gains for students randomly offered seats at a
selective school. In contrast with our work, none of these studies interpret the
reduced-form impact of exam school offers as operating through specific causal
channels for which there is a clear first stage.7

Selective institutions are more commonly found in American higher educa-
tion than at the secondary level. Dale and Krueger (2002) compared students
who were accepted by the same sets of colleges but made different choices
in terms of selectivity. Perhaps surprisingly, this comparison shows no earn-
ings advantage for those who went to more selective schools, with the possible
exceptions of minority and first-generation college applicants in more recent
data (Dale and Krueger (2011)). In contrast with the Dale and Krueger re-
sults, Hoekstra (2009) reported that graduates of a state university’s relatively
selective flagship campus earn more later on than those who went elsewhere.

Finally, a large literature looks at peer effects in educational settings. Ex-
amples include Hoxby (2000), Hanushek, Kain, Markman, and Rivkin (2003),
Angrist and Lang (2004), Hoxby and Weingarth (2006), Lavy, Silva, and Wein-
hardt (2012), Ammermueller and Pischke (2009), Imberman, Kugler, and Sac-
erdote (2012), and Carrell, Sacerdote, and West (2012). Findings in the volu-
minous education peer effects literature are mixed and not easily summarized.
It seems fair to say, however, that the likelihood of omitted variables bias in
naive estimates motivates much of the econometric agenda in this context.
Economists have also studied tracking. A recent randomized evaluation from
Kenya looks at tracking as well as peer effects, finding gains from the former
but contradictory evidence on the latter (Duflo, Dupas, and Kremer (2011)).

The exam schools of interest here are also associated with marked changes
in peers’ racial mix. In our fuzzy RD setup, which uses exam school admissions
offers to construct instrumental variables for peer characteristics, enrollment
compliers at Boston Latin Academy are exposed to a peer group that falls from
two-thirds to 40 percent black and Hispanic. The proportion minority falls by
half, from 40 to 20, for Latin School compliers.

Changes in peer composition are not necessarily the only component of the
education production function associated with changes in attendance at the
exam schools in our sample. Still, our research design holds many potential
confounders fixed, including family background, ability, and residential sort-
ing. The principal sources of omitted variables bias, in our setup interpreted
here as violating an exclusion restriction, are changes in resources or curricu-
lum. We argue that bias from omission of these factors is likely to be positive,

7Pop-Eleches and Urquiola (2013) reported a peer achievement first stage in their analysis of
Romanian selective schools, but the effect of a Romanian exam school offer on peer composition
is small and, as the authors noted, unlikely to explain their findings.
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reinforcing our interpretation of the findings as offering little evidence for peer
achievement or racial composition effects on state test scores; PSAT, SAT, and
AP scores; or college quality. As a theoretical matter, we also show that 2SLS
estimates are free of omitted variables bias if resource and curriculum changes
are themselves a consequence of peer composition. Importantly, most of the
2SLS estimates reported here are reasonably precise; we can rule out relatively
modest peer composition effects.

The next section describes Boston data and school assignment. A compli-
cation here is Boston’s deferred acceptance (DA) assignment algorithm. As a
preliminary to the estimation of causal effects, we develop an empirical strat-
egy that embeds DA in an RD framework.

3. BOSTON DATA AND ADMISSIONS PROCESS

3.1. Data

We obtained registration and demographic information for BPS students
from 1997 to 2009. BPS registration data are used to determine whether and
for how many years a student was enrolled at a Boston exam school. Demo-
graphic data in the BPS file include information on race, sex, and subsidized
lunch, limited English proficiency, and special education status.

BPS demographic and registration information was merged with Mas-
sachusetts Comprehensive Assessment System (MCAS) scores using student
identification numbers.8 The MCAS database contains raw scores for math,
English Language Arts (ELA), Writing, and Science. MCAS tests are taken
each spring, typically in grades 3–8 and 10. The current testing regime cov-
ers math and English in grade 7, 8, and 10 (in earlier years, there were fewer
tests). Baseline (i.e., pre-application) scores for grade 7 applicants are from
4th grade tests. Baseline English scores for 9th grade applicants come from
8th grade math and 7th grade English tests (the 8th grade English exam was
introduced in 2006). We lose some applicants with missing baseline scores.
Other outcomes examined here include scores on the Preliminary SAT (PSAT),
the SAT, and Advanced Placement (AP) exams from the College Board. For
the purposes of our analysis, MCAS, PSAT, and SAT scores were standard-
ized by subject, grade, and year to have mean zero and unit variance in the
BPS population. Data on college enrollment come from the National Student
Clearinghouse, as reported to BPS for their students.

Our analysis file combines student registration, test scores, and college out-
come files with the BPS exam school applicant file. The exam school applicant
file records grade, year, sending school, applicants’ preference ranking of exam
schools, applicants’ Independent Schools Entrance Exam (ISEE) test scores,

8The MCAS is a state-mandated series of achievement tests that includes a high-stakes exit
exam in 10th grade.
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and each exam school’s ranking of its applicants on the basis of ISEE scores
and grades. This ranking variable determines exam school admissions deci-
sions.

Our analysis sample includes BPS-enrolled students who applied for exam
school seats in 7th grade from 1997 to 2008 or in 9th grade from 2001 to 2007.
We focus on applicants enrolled in BPS at the time of application because we
expect the peer experiment to be most dramatic for this group. Moreover, pri-
vate school applicants are much more likely to remain outside the BPS district
and hence out of our sample if they fail to get an exam school offer (about
45% of Boston exam school applicants come from private schools). The 10%
of applicants who apply to transfer from one exam school to another are also
omitted. Table A.I in Appendix A reports additional information on demo-
graphic characteristics and baseline scores for all BPS students and for Boston
exam school applicants and those enrolled in exam schools. Exam school ap-
plicants are clearly a select group, with markedly higher baseline scores than
other BPS students. For example, grade 7 applicants’ 4th grade math scores
are more than 0.7σ higher than those of a typical BPS student. Enrolling stu-
dents are even more positively selected. The Boston data appendix explains
the analysis file further, and describes test coverage and application timing in
detail.

3.2. Exam School Admissions

Boston exam school admissions are based on the student-proposing DA
algorithm, which matches students to schools on the basis of student pref-
erences and schools’ rankings of their applicants. DA complicates RD be-
cause it loosens the direct link between the running variable and school admis-
sions offers. Our econometric strategy therefore begins by constructing anal-
ysis samples that restore a direct link, so that offers are sharp around cutoffs.
This approach seems likely to be useful elsewhere, since DA is now used for
school assignment in Chicago, Denver, New York City, Newark, and England
(Abdulkadiroğlu, Pathak, and Roth (2009), Pathak and Sönmez (2008, 2013)),
as well as in Boston.

Boston residents interested in an exam school seat take the ISEE in the fall
of the school year before they would like to transfer. We focus on those ap-
plying for seats in 7th and 9th grade (O’Bryant also accepts a handful of 10th
graders). Successful 7th grade applicants transfer out of middle school, while
9th grade applicants are picking a high school. Exam school applicants also
submit an official GPA report, based on their grades through the most recent
fall term. Finally, exam school applicants are asked to rank up to three exam
schools. Each exam school running variable is a composite constructed as a
weighted average of applicants’ standardized math and English GPA, along
with standardized scores on the four parts of the ISEE (verbal, quantitative,
reading, and math).
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Let pik denote student i’s kth choice and represent i’s preference list by
pi = (pi1�pi2�pi3), where pik ≡ 0 if the student’s rank order list is incomplete.
Applicants are ranked only for schools to which they have applied, so appli-
cants with the same GPA and ISEE scores might be ranked differently at dif-
ferent schools depending on where they fall in each school’s applicant pool.9
Let cik denote student i’s school-k specific ranking as determined by his or her
composite score (where we adopt the convention that a higher number is bet-
ter) and write the vector of ranks as ci = (ci1� ci2� ci3), where cik is missing if
student i did not rank school k.

Assignment is determined by the student-proposing DA with student pref-
erences over the three schools, school capacities, and students’ (rank-ordered)
school-specific composites as parameters. The algorithm works as follows:

ROUND 1: Each student applies to her first choice school. Each school re-
jects the lowest-ranking students in excess of its capacity, with the rest provi-
sionally admitted (students not rejected at this step may be rejected in later
steps).

ROUND � > 1: Students rejected in Round � − 1 apply to their next most
preferred school (if any). Each school considers these students and provision-
ally admitted students from the previous round, rejecting the lowest-ranking
students in excess of capacity, producing a new provisional admit list (again,
students not rejected at this step may be rejected in later steps).

The algorithm terminates when either every student is matched to a school
or every unmatched student has been rejected by every school he has ranked.

Let τk denote the rank of the lowest ranked student offered a seat at
school k. We center and scale school-specific composite ranks around this cut-
off value using

rik = 100
Nk

× (cik − τk)�(3.1)

where Nk is the number of students who ranked school k. These standard-
ized school-specific ranks equal zero at the cutoff for school k, with nonneg-
ative values indicating students who ranked and qualified for admission at
that school. Absent centering, standardized ranks give applicants percentile
position in the distribution of applicants to school k. A dummy variable,
qi(k) = 1{cik ≥ τk}, indicates that student i qualified for school k by clearing
τk (when k is not ranked by i, qi(k) is zero).

9School-specific running variables arise because schools standardize GPA and ISEE scores
among only their applicants, implicitly generating school-specific weights in the composite for-
mula.
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Students who ranked and qualified for a school are not offered a seat at that
school if they obtain an offer at a more preferred school. With three schools
ranked, applicant i gets an offer at school k in one of three ways:

• The applicant ranks school k as his top choice and qualifies: ({pi1 = k} ∩
{qi(k)= 1}).

• The applicant does not qualify for his top choice, ranks school k as his
second choice, and qualifies there: ({qi(pi1)= 0} ∩ {pi2 = k} ∩ {qi(k)= 1}).

• The applicant does not qualify at his top two choices, ranks school k
as his third choice, and qualifies there: ({qi(pi1) = qi(pi2) = 0} ∩ {pi3 = k} ∩
{qi(k)= 1}).
To summarize these relationships, letOi denote the identity of student i’s offer,
with the convention that Oi = 0 means the student receives no offer.10 DA then
produces the following offer rule:

Oi =
J∑
j=1

pijqi(pij)

[
j−1∏
�=1

(
1 − qi(pi�)

)]
�

The sample for whom offers at school k are sharp in the sense of being
deterministically linked with k’s running variable—a group we refer to as the
sharp sample for school k—is the union of three sets of applicants:

• applicants who rank k first, so (pi1 = k),
• applicants who did not qualify for their top choice and rank k second, so

({qi(pi1)= 0} ∩ {pi2 = k}),
• applicants who did not quality for their top two choices and rank k third,

so ({qi(pi1)= qi(pi2)= 0} ∩ {pi3 = k}).
Applicants can be in multiple sharp samples. For example, a student who
ranked Boston Latin first, but did not qualify there, is also in the sharp sample
for Latin Academy if Latin Academy is her second choice.

An offer dummy, Zik, indicates applicants who clear the admissions cutoff
at school k, defined separately for each school and sharp sample. This is the
instrumental variable in the fuzzy RD strategy used here. Note that Zik = 0 for
a student who qualifies at k, but is not in the k sharp sample. Within sharp
samples, the discontinuity sample consists of applicants ranked in the interval
[−20�+20]. Applicants outside this “Boston window” are well below or well
above the relevant cutoffs. At the same time, the [−20�+20] window is wide
enough to allow for reasonably precise inference.

A possible drawback in the sharp sample estimation strategy arises from the
fact that the sharp sample itself may change discontinuously at the cutoff.11

Suppose, for example, two schools have the same admissions cutoff and use
a common running variable to select students. Some students rank school 2

10We also adopt the convention that
∏0
�=1 a� = 1.

11Our thanks to a referee for pointing this out.
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ahead of school 1 and some rank school 1 ahead of school 2. The sharp sample
for school 1 includes those who rank 1 first, as well as those who rank 2 first
but are disqualified there. This second group appears only to the left of the
common cutoff, changing the composition of the sharp sample at the cutoff.
In practice, this is unlikely to be a problem because cutoffs are well-separated.
Moreover, in Boston, running variables are school-specific. Not surprisingly,
therefore, we find no evidence of discontinuities in sharp sample membership
at each cutoff in our data. Nevertheless, as insurance against bias of this sort,
the estimating equation includes a full set of dummies for application risk sets.
That is, estimating equations include dummies for the full interaction of appli-
cation cohort and applicant preferences. By construction, estimates that con-
dition on applicant preferences are immune to changes in preferences at the
cutoff.

Offers, Enrollment, and Schools in Sharp Samples

Figure 1(a) plots offers as a function of standardized composite ranks in
sharp samples, confirming the sharpness of offers in these samples. Plotted
points are conditional means for all applicants in a one-unit binwidth, sim-

(a) Offers at each Boston exam school

FIGURE 1.—This figure shows offers (a) and enrollment (b) at each Boston exam school, as
well as enrollment at any Boston exam school (c), plotted against school-specific standardized
running variables.
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(b) Enrollment at each Boston exam school

(c) Enrollment at any Boston exam school

FIGURE 1.—Continued.
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ilar to the empirical conditional mean functions reported in Lee, Moretti,
and Butler (2004). The plots also show estimated conditional mean functions
smoothed using local linear regression (LLR). Specifically, for school k, data
in the Boston window were used to construct estimates of E[yi|rik], where yi is
the dependent variable and rik is the running variable. The LLR smoother uses
the edge kernel,

Kh(rik)= 1
{∣∣∣∣ rikh

∣∣∣∣ ≤ 1
}

·
(

1 −
∣∣∣∣ rikh

∣∣∣∣
)
�

where h is the bandwidth. In a RD context, LLR has been shown to produce
estimates with good properties at boundary points (Hahn, Todd, and Van der
Klaauw (2001) and Porter (2003)). The bandwidth used here is a version of the
DesJardins and McCall (2008) bandwidth, studied by Imbens and Kalyanara-
man (2012) (IK), who derived optimal bandwidths for sharp RD using a mean
squared error loss function with a regularization adjustment (hereafter, DM).
This DM smoother (which generates somewhat more stable estimates in our
data than the bandwidth IK prefer) is also used to construct nonparametric
RD estimates, below.

In sharp samples, offers are determined by the running variable, but exam
school enrollment remains probabilistic. Specifically, not all offers are ac-
cepted. Figure 1(b) shows that applicants scoring just above admissions cut-
offs are much more likely to enroll in a given school than are those just below,
but enrollment rates among the offered are below 1. Enrollment rates at other
schools also change around each school-specific cutoff. Figure 1(c) puts these
pieces together by plotting the probability of enrollment in any exam school.
Overall exam school enrollment jumps at the O’Bryant and Latin Academy
cutoffs, but changes little at the Latin School cutoff because those to the left
of this cutoff are very likely to enroll in either O’Bryant or Latin Academy.

The effect of qualification on enrollment is detailed further in Table I. This
table reports LLR estimates of school-specific enrollment rates in the neigh-
borhood of each school’s cutoff. Among qualifying 7th grade applicants in the
O’Bryant sharp sample, 72% enroll in O’Bryant, while the remaining 28% en-
roll in a regular BPS school. Ninety-one percent of those qualifying at Latin
Academy enroll there the following fall, while 92% qualifying at Latin School
enroll there. Many of those not offered seats at one exam school end up in
another, mostly the next school down in the hierarchy of school selectivity.

Our fuzzy RD strategy uses exam school offer dummies as instruments for
exam school exposure. Specifically, we assume exam school offers affect test
scores and other outcomes solely by virtue of changing peer composition.
A prerequisite for this change in peer exposure is exam school enrollment. Ta-
ble I therefore also describes destination schools in the relevant subpopulation
of compliers. Here, compliers are defined as applicants to school k who en-
roll there when offered, but go elsewhere otherwise. Complier enrollment out-
comes are estimated using the IV strategy described in Abadie (2003), where
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TABLE I

BOSTON AND NEW YORK SCHOOL CHOICESa

All Applicants Compliers

Z = 0 Z = 1 Z = 0 Z = 1 Z = 0 Z = 1 Z = 0 Z = 0 Z = 0
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A. Boston 7th Grade Applicants
O’Bryant Latin Academy Latin School O’Bryant Latin Academy Latin School

Traditional Boston public schools 1�00 0�28 0�22 0�09 0�08 0�06 1�00 0�15 0�03
O’Bryant · · · 0�72 0�77 · · · 0�06 · · · · · · 0�84 0�05
Latin Academy · · · · · · · · · 0�91 0�86 0�01 · · · · · · 0�93
Latin School · · · · · · · · · · · · · · · 0�92 · · · · · · · · ·

Panel B. Boston 9th Grade Applicants
O’Bryant Latin Academy Latin School O’Bryant Latin Academy Latin School

Traditional Boston public schools 1�00 0�32 0�27 0�14 0�14 0�04 1�00 0�13 0�10
O’Bryant · · · 0�68 0�73 · · · 0�01 · · · · · · 0�85 · · ·
Latin Academy · · · · · · · · · 0�87 0�86 0�02 · · · · · · 0�91
Latin School · · · · · · · · · −0�01 · · · 0�94 · · · 0�01 · · ·

Panel C. NYC 9th Grade Applicants
Brooklyn Tech Bronx Science Stuyvesant Brooklyn Tech Bronx Science Stuyvesant

Traditional NYC public schools 0�74 0�36 0�49 0�22 0�15 0�09 0�86 0�72 0�12
Brooklyn Tech 0�10 0�54 0�39 0�30 0�25 0�08 · · · 0�23 0�32
Bronx Science 0�02 · · · 0�02 0�39 0�43 0�17 0�04 · · · 0�50
Stuyvesant 0�03 0�01 · · · · · · 0�08 0�63 0�04 · · · · · ·

aThis table describes the destination schools of exam school applicants in Boston and New York. Columns (1)–(6) show enrollment rates to the left (Z = 0) and right (Z = 1)
of each exam school cutoff. Enrollment rates are measured in the fall following exam school application and estimated using local linear smoothing. Columns (7)–(9) show
enrollment destinations when not offered a seat, for enrollment compliers only. Enrollment compliers are applicants who attend the target exam school when offered a seat but
not otherwise. Panels A and B report distributions for Boston applicants in 7th and 9th grade. Panel C reports distributions for 9th grade applicants to NYC schools. The Boston
7th grade sample includes students who applied for admission from 1999–2008. The Boston 9th grade sample includes students who applied for admission from 2001–2007. The
NYC sample includes students who applied for admission from 2004–2007. Boston calculations are for the sharp sample of applicants who are offered a seat at the target school
when they qualify. Entries of · · · indicate no enrollment.



150 A. ABDULKADIROĞLU, J. ANGRIST, AND P. PATHAK

a school-specific enrollment dummy is the endogenous variable.12 Column (7)
of Table I shows that the counterfactual for all O’Bryant compliers is regu-
lar public school. Among Latin Academy compliers, the counterfactual school
is mostly O’Bryant, while among Latin School compliers, the counterfactual
school is most often Latin Academy. This serves to highlight the progressive
nature of the Boston exam school “experiment”: only among O’Bryant compli-
ers do we get to compare exam school and traditional public schools directly.
At the same time, as we show below for New York as well as Boston, movement
up the ladder of exam school selectivity is associated with dramatic changes in
peer composition.

3.3. The Exam School Environment

The peer achievement first stage that lies behind our fuzzy RD identification
strategy is described in Figure 2(a). This figure plots peer mean math scores
for 7th and 9th grade applicants in the sharp sample who are on either side
of admissions cutoffs. Peer means are defined as the average baseline score of
same-grade schoolmates in the year following exam school application. Base-
line peer means jump by roughly half a standard deviation at each admissions
cutoff. The jump in peer mean English scores (not shown) is similar to that for
math.

The proportion nonwhite among exam school students has often been a
lightning rod for controversy. Beginning in the 1970s, Boston’s court-mandated
desegregation plan maintained the proportion black and Hispanic in exam
schools at roughly 35%. Racial preferences were challenged in 1996, however,
and Boston exam school admissions have ignored race since 1999. In our sam-
ple, drawn from years after racial preferences were abandoned, the proportion
of black and Hispanic peers drops sharply at exam school cutoffs, a fact docu-
mented in Figure 2(b). The proportion nonwhite falls by about 10 percentage
points at the O’Bryant cutoff, with even larger drops at the Latin Academy and
Latin School cutoffs.

Additional features of the exam school environment are summarized in Ta-
ble II, focusing on enrollment compliers as in columns (7)–(9) of Table I. Ta-
ble II documents the marked shifts in peer achievement and racial composition
captured graphically in Figure 2. Other contrasts between the exam school en-
vironment and regular public schools are less systematic. Class sizes for mid-
dle school applicants tend to be larger at exam schools, but differences in size
shrink in grade 9 and change little at the Latin School cutoff. Exam school

12Specifically, compliers are defined as follows. Let D1i denote exam school enrollment status
when the instrument Zi is switched on and D0i denote exam school enrollment status when the
instrument Zi is switched off. Compliers have D1i = 1 and D0i = 0. Although the compliant pop-
ulation cannot be enumerated, characteristics of this population are nonparametrically identified
and easily estimated.
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(a) Baseline peer math score at Boston exam schools for 7th and 9th grade applicants

FIGURE 2.—This figure shows average baseline peer math scores (a) and proportion of peers
that are black or Hispanic (b) among 7th and 9th grade applicants to Boston exam schools, plotted
against school-specific standardized running variables.

teachers tend to be older than regular public school teachers, as can be seen at
the O’Bryant cutoff, but teacher age changes little at the Latin Academy and
Latin School cutoffs.

The large and systematic changes in peer composition at each cutoff and
entry grade motivate our focus on peers as the primary mediator of the exam
school treatment. Before turning to a 2SLS analysis that treats peer composi-
tion as the primary causal channel for exam school effects, however, we begin
with reduced-form estimates.

4. REDUCED-FORM ACHIEVEMENT EFFECTS

4.1. Boston Estimates

We constructed parametric and nonparametric RD estimates of the effect of
an exam school offer using the standardized composite rank (3.1) as the run-
ning variable. We refer to this initial set of estimates as “reduced form” because
these estimates capture the overall effect of an exam school offer, without ad-
justing for the relationship between offers and mediating variables. As noted in
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(b) Proportion black or Hispanic at Boston exam schools

FIGURE 2.—Continued.

the recent survey by Lee and Lemieux (2010), parametric and nonparametric
RD estimates are complementary, providing a mutually reinforcing specifica-
tion check.

The parametric estimating equation for applicants in the sharp sample at
school k is

yitk = αtk +
∑
j

δjkdij +(1 −Zik)f0k(rik)+Zikf1k(rik)+ ρkZik +ηitk�(4.1)

where yitk is an outcome variable for student i, observed in year t, who applied
to school k; Zik indicates an offer at school k, and the coefficient of interest is
ρk. Equation (4.1) controls for test year effects at school k, denoted αtk, and for
the full interaction of application cohort and applicant preferences, indicated
by dummies, dij . (These are included for consistency with some of the over-
identified 2SLS models discussed below.)13 The effects of the running variable

13The over-identified 2SLS models discussed in Section 5 use interactions between exam offers
and applicant cohort dummies as additional instruments.
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TABLE II

BOSTON SCHOOL CHARACTERISTICS FOR COMPLIERSa

O’Bryant Latin Academy Latin School

Z = 0 Z = 1 Z = 0 Z = 1 Z = 0 Z = 1
(1) (2) (3) (4) (5) (6)

Panel A. 7th Grade Applicants
Baseline peer mean in math −0�15 0�84 0�68 1�20 1�15 1�97
Baseline peer mean in English −0�15 0�80 0�65 1�11 1�06 1�78

Proportion black or Hispanic 0�78 0�63 0�65 0�40 0�43 0�18
Proportion qualifying for a free lunch 0�78 0�66 0�66 0�46 0�48 0�28
Proportion female 0�46 0�57 0�56 0�56 0�56 0�55

Student/teacher ratio 12�1 19�7 19�7 21�2 21�5 22�0
Proportion of teachers

licensed to teach assignment 0�90 0�97 0�96 0�95 0�96 0�96
Proportion of teachers

highly qualified in core subject 0�91 0�93 0�94 0�95 0�95 0�95

Proportion of teachers 40 and older 0�39 0�63 0�66 0�52 0�56 0�53
Proportion of teachers 48 and older 0�26 0�51 0�54 0�38 0�42 0�41
Proportion of teachers 56 and older 0�10 0�27 0�29 0�19 0�21 0�21

Panel B. 9th Grade Applicants
Baseline peer mean in math −0�32 0�87 0�75 1�02 0�94 1�76
Baseline peer mean in English −0�22 0�72 0�61 0�99 0�89 1�40

Proportion black or Hispanic 0�82 0�67 0�69 0�42 0�46 0�18
Proportion free lunch 0�67 0�59 0�58 0�45 0�47 0�26
Proportion female 0�48 0�58 0�58 0�57 0�58 0�55

Student/teacher ratio 16�5 19�8 18�2 21�2 21�2 22�1
Proportion of teachers

licensed to teach assignment 0�88 0�98 0�97 0�96 0�94 0�96
Proportion of teachers

highly qualified in core subject 0�86 0�94 0�91 0�95 0�94 0�95

Proportion of teachers 40 and older 0�26 0�65 0�66 0�54 0�52 0�54
Proportion of teachers 48 and older 0�19 0�52 0�53 0�40 0�40 0�42
Proportion of teachers 56 and older 0�06 0�27 0�26 0�18 0�21 0�21

aThis table shows descriptive statistics for Boston enrollment compliers to the left (Z = 0) and right (Z = 1) of
Boston exam school cutoffs. Student-weighted average characteristics of teachers and schools were constructed from
data posted at http://profiles.doe.mass.edu/state_report/teacherdata.aspx. Teachers licensed to teach assignment gives
the percent of teachers at the school attended who are licensed with Provisional, Initial, or Professional licensure to
teach in the subject(s) in which they are posted. Proportion of teachers highly qualified in core subject gives the percent
of teachers of core subjects (ELA, Math, and science, among others) at the school attended that were taught by
teachers holding a Massachusetts teaching license and demonstrating subject matter competence in the areas they
teach. Teacher data are for Fall 2003–2008, except information on core academic teachers, which is for Fall 2003–
2006, and teacher age, which is for Fall 2007–2008. For middle school applicants, peer baseline means are enrollment-
weighted scores on 4th grade MCAS for Fall 2000–2008. Peer baseline for 9th grade applicants comes from 7th and
8th grade MCAS tests taken for Fall 2002–2008.



154 A. ABDULKADIROĞLU, J. ANGRIST, AND P. PATHAK

at school k are controlled by a pair of third-order polynomials that differ on
either side of the cutoff, specifically

fjk(rik)= πjkrik + ξjkr2
ik +ψjkr3

ik; j = 0�1�(4.2)

Nonparametric estimates differ from parametric in three ways. First, they
narrow the Boston window when the optimal data-driven bandwidth falls be-
low 20.14 Second, our nonparametric estimates use a tent-shaped edge kernel
centered at admissions cutoffs instead of the uniform kernel implicit in para-
metric estimation. Finally, nonparametric models control for linear functions
of the running variable only, omitting higher-order terms. We can write the
nonparametric estimating equation as

yitk = αtk +
∑
j

δjkdij + γ0k(1 −Zik)rik + γ1kZikrik + ρkZik +ηitk(4.3)

= αtk +
∑
j

δjkdij + γ0krik + γ∗
kZikrik + ρkZik +ηitk

for each of the three schools indexed by k. Nonparametric RD estimates come
from a kernel-weighted least squares fit of equation (4.3).

MCAS Scores

The plots for 10th grade English show jumps at two out of three cutoffs, but
other visual reduced forms offer little evidence of marked discontinuities in
MCAS scores. This can be seen in Figures 3(a) and 3(b) for middle school and
Figures 4(a) and 4(b) for high school. Jumps in smoothed scores at admissions
cutoffs constitute nonparametric estimates of the effect of an exam school offer
in the sharp sample. The corresponding estimates, reported in Table III, tell
the same story. Few of the estimates are significantly different from zero, while
some of the significant effects at Latin School are negative (e.g., Latin School
effects on 10th grade math and middle school English). Most of the estimates
are small, and some are precise enough to support a conclusion of no effect.

In an effort to increase precision, we constructed estimates pooling ap-
plicants to all three Boston exam schools. The pooled estimating equa-
tions parallel equations (4.1) and (4.3), but with a single offer effect, ρ.
These specifications interact all control variables, including running variables,
with application-school dummies.15 The kernel weight for the stack becomes
Khk(rik), where school k’s bandwidth hk is estimated separately in a prelim-
inary step. Because the pooled model includes a full set of main effects and
interactions for school-specific subsamples, we can think of the estimate of ρ

14The DM bandwidths for Table III range from about 10 to 37.
15In the stacked analysis, an observation from the sharp sample for school k is associated with

the running variable for that school. Other running variables are switched off by virtue of the
interaction terms included in the stacked model.
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(a) 7th and 8th grade math at Boston exam schools for 7th grade applicants

FIGURE 3.—This figure shows the average 7th and 8th grade math (a) and English (b) MCAS
scores of 7th grade applicants to Boston exam schools, plotted against a school-specific standard-
ized running variables.

in this stack as a variance-of-treatment-weighted average of school-specific es-
timates.16 Note that some students appear in more than one sharp sample; each
student contributes up to three observations for each outcome. Our inference
framework takes account of this by clustering standard errors by student.

Paralleling the pattern shown in the Boston reduced-form figures, offer ef-
fects from the stacked models, reported in columns labeled “All Schools” in
Table III, are mostly small, with few significantly different from zero. The large
significant estimate for 10th grade English scores, a result generated by both
parametric and nonparametric models, is partly offset by marginally significant
negative effects on 7th and 8th grade English.17 When all scores are pooled,
the overall estimate is close to zero (models combining years and grades are
stacked in much the same way that models combining schools are stacked).
Importantly, the combination of school- and score-pooling generates precise

16Variance-weighting is a property of regression models with saturated controls; see, for exam-
ple, Angrist (1998).

17Table A.IV in Appendix A reports high school results separately for 7th and 9th grade appli-
cants. This table shows positive English effects for both application grades.
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(b) 7th and 8th grade English at Boston exam schools for 7th grade applicants

FIGURE 3.—Continued.

estimates, with standard errors on the order of 0.02 for both math and English.
Estimates for black and Hispanic applicants, reported in Table A.V in Ap-

pendix A, are in line with the full-sample findings for math and middle school
English scores. Also, consistent with the full-sample results for 10th grade En-
glish, an exam school education seems especially likely to boost 10th grade
English scores for blacks and Hispanics, with an estimated effect of 0.16σ , but
there are some significant negative estimates as well.

The Appendix reports results from an exploration of possible threats to a
causal interpretation of the reduced-form estimates in Table III. Specifically,
we look for differential attrition (i.e., missing score data) to the right and left
of exam school cutoffs (in Table A.II) and for discontinuities in covariates (in
Table A.III). Receipt of an exam school offer makes attrition somewhat less
likely, but the gaps here are small and unlikely to impart substantial selection
bias in estimates that ignore them.18 A handful of covariate contrasts also pop
up as significantly different from zero, but the spotty nature of these estimates

18Lee (2009) bounds on the extent of selection bias confirm this. Also worth noting is the fact
that F-tests for the joint significance of differential attrition in all MCAS reduced forms generate
p-values of about 0.2 or higher.
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(a) 10th grade math at Boston exam schools for 7th and 9th grade applicants

FIGURE 4.—This figure shows the average 10th grade math (a) and English (b) MCAS scores
of 7th and 9th grade applicants to Boston exam schools, plotted against school-specific standard-
ized running variables.

seem consistent with the notion that comparisons to the left and right of exam
school admissions cutoffs are indeed a good experiment.

A related threat to validity comes from the possibility that marginal students
switch out of exam schools at an unusually high rate. If school switching is
harmful, excess switching might account for findings showing little in the way of
score gains. As it turns out, however, exam school applicants who clear admis-
sions cutoffs are less likely to switch schools than are traditional BPS students.
Increased persistence in school is especially marked among 7th grade appli-
cants, though this latter increase is due in part to the fact that few exam school
students switch schools in grade 9, when most other BPS students transition to
a new high school.19

High Achievers

To provide additional evidence on effects across quantiles of the applicant
ability distribution, we exploit the fact any single test is necessarily a noisy mea-

19These estimates come from a nonparametric reduced-form analysis similar to that used to
construct the covariate balance and attrition estimates in the Appendix.
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(b) 10th grade English at Boston exam schools for 7th and 9th grade applicants

FIGURE 4.—Continued.

sure of ability. Although we cannot construct (nonparametric) RD estimates
for, say, O’Bryant students with ISEE scores in the upper tail of the score dis-
tribution, we can look separately at subsamples of students with especially high
baseline MCAS scores. This approach operationalizes a suggestion in Lee and
Lemieux’s (2010) recent survey of RD methods, which points out that a test
score running variable can be seen as a noisy measure of an underlying abil-
ity control. Here, we exploit the fact that some in the high-baseline group are
ultra-high achievers who earned marginal ISEE scores by chance.

The average baseline score for exam school applicants in the upper half of
the baseline MCAS distribution hovers around 1.2–1.5σ in both math and En-
glish. Table IV shows that this is close to the average baseline achievement
level among students enrolled in exam schools. Importantly, MCAS scores re-
main informative even for these high achievers: no more than one third top
out in the sense of testing at the Advanced (highest) MCAS proficiency level.
Likewise, MCAS scores remain informative even for applicants in the upper
baseline MCAS quartile, where average baseline scores are 0.5–0.6σ beyond
those of the average among exam school 7th graders. Note also that applicants
in these high-achieving groups are exposed to almost exactly the same changes
in peer composition as applicants in the full sample.
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TABLE III

BOSTON REDUCED-FORM ESTIMATES: MCAS MATH AND ENGLISHa

Parametric Estimates Nonparametric (DM) Estimates

O’Bryant Latin Academy Latin School All Schools O’Bryant Latin Academy Latin School All Schools
Application Grade Test Grade (1) (2) (3) (4) (5) (6) (7) (8)

Panel A. Math
7th 7th and 8th −0�125 −0�105 0.002 −0.079 −0.093 −0�144∗ 0.012 −0�086∗∗

(0�100) (0�093) (0�099) (0�054) (0�071) (0�074) (0�060) (0�034)
4,047 4,208 3,786 12,041 3,637 4,000 3,067 10,704

7th and 9th 10th 0�066 −0�097 −0.056 −0.018 0.067 −0.047 −0�064∗∗ 0.000
(0�066) (0�085) (0�051) (0�036) (0�045) (0�047) (0�028) (0�026)
3,389 2,709 2,459 8,557 3,083 2,027 1,827 6,937

7th and 9th 7th, 8th, and 10th −0�038 −0�102 −0.020 −0.054 −0.020 −0�115∗∗ −0.016 −0�053∗∗

(0�068) (0�067) (0�072) (0�039) (0�049) (0�049) (0�043) (0�024)
7,436 6,917 6,245 20,598 6,720 6,027 4,894 17,641

Panel B. English
7th 7th and 8th −0�061 −0�092 −0�187∗∗∗ −0�110∗∗ −0.062 0.012 −0�128∗∗∗ −0�063∗∗

(0�078) (0�067) (0�065) (0�043) (0�041) (0�042) (0�037) (0�025)
4,151 4,316 3,800 12,267 3,931 3,762 3,533 11,226

7th and 9th 10th 0�108 0�136 0.028 0�095∗ 0�140∗∗∗ 0�182∗∗∗ −0.002 0�113∗∗∗

(0�079) (0�096) (0�085) (0�053) (0�048) (0�057) (0�065) (0�036)
3,398 2,715 2,463 8,576 3,308 1,786 1,916 7,010

7 th and 9th 7th, 8th, and 10th 0�014 −0�001 −0�106∗ −0.026 0.029 0.067 −0�089∗∗∗ 0.002
(0�055) (0�070) (0�061) (0�039) (0�034) (0�042) (0�032) (0�023)
7,549 7,031 6,263 20,843 7,239 5,548 5,449 18,236

aThis table reports estimates of the effects of exam school offers on MCAS scores. The sample covers students within 20 standardized units of offer cutoffs. Parametric models
include a cubic function of the running variable, allowed to differ on either side of offer cutoffs. Nonparametric estimates use the edge kernel, with bandwidth computed following
DesJardins and McCall (2008) and Imbens and Kalyanaram (2012), as described in the text. Optimal bandwidths were computed separately for each school. Robust standard
errors, clustered on year and school, are shown in parentheses. Standard errors for the all-schools estimates and for estimates pooling outcomes also cluster on student. Sample
sizes are shown below standard errors. * significant at 10%; ** significant at 5%; *** significant at 1%.
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TABLE IV

BOSTON REDUCED-FORM ESTIMATES FOR HIGH ACHIEVERSa

Conditional on Baseline Score

Baseline in Upper Half Baseline in Upper Quartile

Baseline Mean for Enrolled Baseline Mean Estimate Baseline Mean Estimate
Application Grade Test Grade (1) (2) (3) (4) (5)

Panel A. Math
7th 7th and 8th 1�43 1�53 −0�097∗∗ 2�13 −0�016

(0�042) (0�063)
5,986 2,906

7th and 9th 10th 1�33 1�38 −0�006 1�85 0�014
(0�024) (0�030)

4,196 2,459

7th and 9th 7th, 8th, and 10th 1�35 1�461 −0�062∗∗ 1�99 −0�002
(0�028) (0�038)
10,182 5,365

Panel B. English
7th 7th and 8th 1�31 1�42 −0�074∗∗ 1�85 −0�091∗∗

(0�029) (0�042)
6,926 3,038

7th and 9th 10th 1�21 1�25 0�048 1�58 0�094∗

(0�039) (0�051)
4,399 2,468

7th and 9th 7th, 8th, and 10th 1�23 1�35 −0�028 1�72 −0�009
(0�028) (0�038)
11,325 5,506

aThis table reports nonparametric reduced-form estimates of the all-schools model for Boston exam school applicants with high baseline MCAS scores. The baseline mean
reported in column (1) is the average baseline MCAS score for enrolled applicants from study cohorts. Conditional-on-baseline estimates are nonparametric estimates in upper-
half and upper-quartile subsamples, with bandwidth computed as for the all-schools results reported in Table III. Robust standard errors, clustered on year and school, are shown
in parentheses. Standard errors also cluster on student. Sample sizes are shown below standard errors. * significant at 10%; ** significant at 5%; *** significant at 1%.
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Perhaps surprisingly, nonparametric RD estimates of the All Schools model
for applicants in the upper half and upper quartile of the baseline score dis-
tribution come out similar to those for the full sample. These results, reported
in columns (3) and (5) of Table IV, are mostly negative, with few significantly
different from zero. The exception again is a significant positive effect for 10th
grade English. At the same time, the sample of high achievers generates a sig-
nificant negative estimate of effects on middle school English—an effect of
roughly the same magnitude as the positive estimate for 10th graders. Thus,
even in a sample of ultra-high (baseline) achievers, there is little evidence of a
consistent exam school boost.

PSAT, SAT, and AP Exam Scores

With the exception of the 10th grade test that serves as an exit exam, MCAS
scores are only indirectly linked to educational attainment. We therefore look
at other indicators of human capital and learning. The first of these is the PSAT,
which serves as a warmup for the SAT and is used in the National Merit Schol-
arship program; the second is the SAT.20

SAT and PSAT tests are usually taken toward the end of high school, so
scores are unavailable for the youngest applicant cohorts in our sample (Ta-
ble C.II in the Supplemental Material (Abdulkadiroğlu, Angrist and Pathak
(2014)) lists the cohorts contributing each outcome). In March 2005, the Col-
lege Board added a writing section to the SAT. Since the writing section does
not appear in earlier years, we focus on the sum of Critical Reading (Verbal)
and Mathematics scores for both SAT and PSAT tests. The average PSAT score
for exam school applicants in the Boston window is 91.3, while the average SAT
score is 1019. These can be compared with 2010 national average PSAT and
SAT scores of 94 and 1017. As with MCAS outcomes, PSAT and SAT scores
are standardized to have mean zero and unit variance among all test-takers in
our data in a given year.

About 70–80 percent of exam school applicants take the PSAT. O’Bryant
offers are estimated to increase PSAT taking by about 6 points, but the cor-
responding estimate from a model that pools applicants to different schools
is small and not significantly different from zero. These results can be seen in
Panel A of Table V. Panel B of this table shows that exam school offers have
little effect on the likelihood that applicants take the SAT. Selection bias in the
sample of test-takers therefore seems unlikely to be a concern. Consistent with
the MCAS results, exam school offers generate little apparent gain in either
PSAT or SAT scores for test-takers near admissions cutoffs.

Motivated by the prevalence of AP courses in the Boston exam school cur-
riculum, we estimated exam school offer effects on AP participation rates and

20The correlation between 10th grade MCAS math scores and PSAT and SAT math scores is
about 0.7; the correlation for English is similar. These estimates come from models that control
for application cohort and grade, test year, and demographics (race, gender, free lunch).
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TABLE V

BOSTON REDUCED-FORM ESTIMATES: PSAT, SAT, AND AP SCORESa

Latin Latin All Latin Latin All
O’Bryant Academy School Schools O’Bryant Academy School Schools

Dependent Variable (1) (2) (3) (4) (5) (6) (7) (8)

Probability Tested Test Score for Takers

PSAT 0�062∗∗ 0�017 −0�071∗∗ 0.012 0.038 −0�016 0�006 0�017
(0�025) (0�023) (0�034) (0�015) (0�043) (0�053) (0�054) (0�031)

2,728 2,058 1,790 6,576 2,670 1,433 1,351 5,454

SAT −0.024 0�036 0.018 0.003 0.043 −0�006 0�074 0�040
(0�031) (0�030) (0�028) (0�019) (0�038) (0�046) (0�063) (0�031)
2,518 1,731 1,540 5,789 2,364 1,429 1,516 5,309

Number of Exams Sum of Scores

AP—All Exams 0.075 −0�172 0.067 0.008 0�761∗∗∗ −0�573 0�146 0�271
(0�106) (0�230) (0�178) (0�068) (0�238) (0�653) (0�614) (0�203)
2,654 1,735 1,827 6,216 2,651 1,641 1,404 5,696

AP—Exams With 500+ Takers −0.032 −0�204 −0�228∗ −0�132∗∗ 0�405∗∗ −0�693 −0�349 −0�067
(0�096) (0�202) (0�130) (0�063) (0�201) (0�563) (0�478) (0�170)
2,681 1,719 1,993 6,393 2,628 1,624 1,535 5,787

aThis table reports nonparametric RD estimates of effects of exam school offers on PSAT, SAT, and AP test taking and scores for pooled 7th and 9th grade applicant samples.
Panel D results are for AP tests with 500 or more takers (Calculus AB/BC, Statistics, Biology, Chemistry, Physics B/C, English Language and Composition, English Literature and
Composition, European History, U.S. Government and Politics, U.S. History, Microeconomics, and Macroeconomics). Outcome-specific nonparametric estimates, bandwidths,
and standard errors were computed as for Table III. Robust standard errors, clustered on year and school, are shown in parentheses. Standard errors also cluster on student when
schools are stacked. Sample sizes are shown below standard errors. * significant at 10%; ** significant at 5%; *** significant at 1%.
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scores in a pooled sample of 7th and 9th grade applicants for whom the AP is
relevant. As with the PSAT/SAT analysis, younger cohorts are excluded since
these tests are usually taken in grades 11–12 (again, Table C.II in the Supple-
mental Material gives details). AP tests are scored on a scale of 1–5, with some
colleges granting credit for subjects in which an applicant scores at least 3 or 4.
At the high end of the distribution of the number of tests taken, Latin School
students take an average of three to four AP exams.

Table V reports nonparametric RD estimates of AP effects on scores
summed over all AP exams, as well as on the sum of scores for a subset of the
most popular exams, defined as those taken by at least 500 students in our BPS
score file. This restriction narrows the set of exams to include widely assessed
subjects like math, science, English, history, and economics, but omits music
and art.21 Exam school offers fail to increase the number of tests taken, though
the sum of scores goes up at O’Bryant. The sum of scores on the most com-
monly taken, and probably the most substantively important, tests increases as
a result of an O’Bryant offer, but is unaffected by offers from Latin School and
Latin Academy.

Post-Secondary Outcomes

BPS matches data on high school seniors to National Student Clearinghouse
(NSC) files, which record information on enrollment at over 90 percent of
American 4-year colleges and universities. We used the BPS-NSC match to
look at college attendance, excluding post-secondary institutions that focus on
technical and vocational training. The sample here includes 7th and 9th grade
exam school applicant cohorts for whom college outcomes are relevant. (For
details, see Tables C.II and C.V in the Supplemental Material.) Most Boston
exam school applicants go to college: roughly 60 percent to the left of the
O’Bryant cutoff, and 90 percent to the right of the Latin School cutoff. At
the same time, Table VI, which reports estimated effects on post-secondary
outcomes, shows little evidence of a positive exam school treatment effect on
college enrollment or quality.22 Despite the positive grade 10 English and AP
score results for some O’Bryant applicants, applicants who clear the O’Bryant
cutoff appear to be less likely to attend a competitive college or highly compet-
itive college than they otherwise would have been, though only the nonpara-
metric estimates here are significant.

21Tests with at least 500 takers are Calculus AB/BC, Statistics, Biology, Chemistry, Physics B/C,
English Language and Composition, English Literature and Composition, European History,
U.S. Government and Politics, U.S. History, Microeconomics, and Macroeconomics.

22Selectivity is defined by Barron’s. Boston University and Northeastern University are exam-
ples of “Highly Competitive” schools. The University of Massachusetts—Boston and Emmanuel
College are “Competitive.”
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Ğ
L

U
,J.A

N
G

R
IST,A

N
D

P.PA
T

H
A

K

TABLE VI

BOSTON REDUCED-FORM ESTIMATES: POST-SECONDARY OUTCOMESa

Parametric Estimates Nonparametric (DM) Estimates

Latin Latin All Latin Latin All
O’Bryant Academy School Schools O’Bryant Academy School Schools

Dependent Variable (1) (2) (3) (4) (5) (6) (7) (8)

Attended Any College −0�039 0�047 0�045 0�010 0.007 0�048 0�062∗ 0�031
(0�052) (0�066) (0�051) (0�032) (0�031) (0�031) (0�035) (0�019)
2,793 2,217 2,039 7,049 2,721 1,926 1,277 5,924

Attended 4 Year College −0�053 −0�007 0�102 0�003 −0.056 0�060∗ 0�101∗∗ 0�013
(0�070) (0�081) (0�069) (0�041) (0�044) (0�035) (0�040) (0�026)
2,793 2,217 2,039 7,049 2,769 2,131 1,401 6,301

Attended Competitive College −0�082 −0�011 0�104 −0�011 −0�100∗∗ 0�052 0�101∗∗ −0�004
(0�078) (0�087) (0�089) (0�051) (0�045) (0�044) (0�049) (0�029)
2,793 2,217 2,039 7,049 2,631 2,217 1,302 6,150

Attended Highly Competitive College −0�062 0�028 0�036 −0�009 −0�062∗∗∗ 0�048 −0.002 −0�014
(0�049) (0�054) (0�080) (0�032) (0�022) (0�032) (0�044) (0�017)
2,793 2,217 2,039 7,049 2,770 2,047 1,450 6,267

aThis table reports nonparametric RD estimates of the effects of exam school offers on college enrollment using data from the National Student Clearinghouse. College
selectivity is as classified by Barron’s. Each panel shows estimates for pooled 7th and 9th grade applicants. Outcome-specific nonparametric estimates, bandwidths, and standard
errors were computed as for Table III. Robust standard errors, clustered on year and school, are shown in parentheses. Standard errors also cluster on student when schools are
stacked. Sample sizes are shown below standard errors. * significant at 10%; ** significant at 5%; *** significant at 1%.
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4.2. New York Estimates

New York data come from three sources: enrollment and registration files
containing demographic information and attendance records; application and
school assignment files; and the Regents test score files. Our analysis covers
four 9th grade applicant cohorts (from 2004–2007), with follow-up test score
information through 2009. The New York data appendix in the Supplemental
Material explains how these files were processed.

The New York exam school admissions process is simpler than the Boston
process because selection is based solely on the Specialized High School
Achievement Test (SHSAT), whereas Boston schools rely on school-specific
composites. New York 8th graders interested in an exam school seat in 9th
grade take the SHSAT and submit an application listing school preferences.
Students are ordered by SHSAT scores. Seats are then allocated down this
ranking, with the top scorer getting his first choice, the second highest scorer
get his most preferred choice among schools with remaining seats, and so on.
There is no corresponding sharp sample for New York exam school applicants,
because New York applicants rank many schools, both exams and others, and
we have no information on applicant preferences beyond the fact of an exam
school application.23

Stuyvesant is the most competitive New York City exam school, so the min-
imum score needed to obtain an offer there exceeds the minimum required
at Bronx Science and Brooklyn Technical. As in equation (3.1), school-specific
standardized running variables equal zero at each cutoff, with positive values
indicating applicants offered a seat. Also as in Boston, applicants might qualify
for placement at one school, but rank a less competitive school first and get
an offer at that school instead. New York admissions cutoffs are typically sep-
arated by six standardized rank units, so the estimation window for each of the
New York schools is set at [+6�−6]. The New York window is narrower than
the Boston window of +/−20 but still includes many more applicants.

Figure 5(a) shows how New York offers are related to the running variable.
Here, the dots indicate averages in half-unit bins, while the smoothed line was
constructed using LLR with the DM bandwidth generated by the estimation
sample. Own-school offers jump at each cutoff. Unlike in Boston, however,
offer rates among qualified applicants are less than 1 because the sample here
is not sharp; that is, some New York applicants who qualify at the target school
in each panel have ranked another school at which they qualify higher. Five or
six points to the right of the Brooklyn Tech and Bronx Science cutoffs, offers
at the next most selective exam school replace those at the target school.

23The NYC exam school assignment mechanism is a serial dictatorship with students ordered
by SHSAT score. Students apply for exam schools at the same time that they rank regular New
York City high schools, and may receive offers from both. Abdulkadiroğlu, Pathak, and Roth
(2009) described how exam school admissions interact with admissions at regular high schools in
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(a) Offers at each NYC exam school

FIGURE 5.—This figure shows offers (a) at each NYC exam school and enrollment (b) at any
NYC exam school, plotted against school-specific standardized running variables.

Offers at each exam school boost rates of overall exam school enrollment,
defined here as enrollment at any of the three schools in our New York sample.
This pattern is documented in Figure 5(b). The any-school enrollment jumps
seen at the Brooklyn Tech and Bronx Science cutoffs are larger than the cor-
responding jump at Stuyvesant, implying that many students not offered a seat
at Stuyvesant are offered and attend one of the other two exam schools.

New York has considerable school choice, with other selective public schools
outside the set of traditional exam schools. Admission to one of the three
traditional exam schools is nevertheless associated with a sharp jump in peer
achievement, as can be seen in Figure 6(a). The average baseline math score
of peers increases by about 0�5σ at the Brooklyn Tech cutoff. The peer qual-
ity jump is smaller for Bronx Science and Stuyvesant, though still substantial
at about 0�2σ . Peer averages for English move similarly. As at Boston’s exam
school cutoffs, qualification for a New York exam school seat induces a sharp
drop in the proportion of peers who are nonwhite. This can be seen in Fig-

New York. In the notation introduced in Section 3, the information available for New York is Zik,
but the underlying preference orderings, pi , are not.
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(b) Enrollment at any NYC exam school

FIGURE 5.—Continued.

ure 6(b), which shows a 20 percentage point drop in the proportion of peers
nonwhite at Brooklyn Tech, and 10 percentage point drops at Bronx Science
and Stuyvesant.

New York’s exam schools expose successful applicants to a number of
changes in school environment, but here, too, the largest and most consistent
changes involve peer achievement and race. This can be seen in Table VII,
which characterizes the changes in school environment experienced by New
York exam school enrollment compliers. Class size changes less at New York
exam school cutoffs than at Boston’s. Differences in teacher experience across
New York cutoffs are small.

Finally, as for Boston, reduced-form estimates for New York offer little ev-
idence that exam schools boost achievement. This is apparent in Figures 7(a)
and 7(b), which plot performance on the Advanced Math and English compo-
nents of the New York Regents exam against standardized New York running
variables. Table VIII reports the corresponding parametric and nonparametric
estimates of offer effects on Advanced Math and English scores, as well as es-
timates for other Regents outcomes. The estimates here come from equations
similar to (4.1) and (4.3), fit to samples of New York applicants in a [−6�+6]
interval. These estimates are precise enough to rule out even modest score
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(a) Baseline peer math score at NYC exam schools

FIGURE 6.—This figure shows the average peer math score (a) and the proportion of peers
black or Hispanic (b) for NYC exam school applicants, plotted against school-specific standard-
ized running variables.

gains. For example, the nonparametric estimate of the effect on English scores
in the stacked sample is 0�01σ , with a standard error also around 0�01. The few
significant pooled estimates in Table VIII are negative.24

5. PEERS IN EDUCATION PRODUCTION

The reduced-form estimates reported here show remarkably little evidence
of an exam school offer effect on test scores and post-secondary outcomes.
These findings are relevant for policy questions related to exam school ex-
pansion, including contemporary proposals to lower admissions cutoffs and
increase the number of exam school seats.25 At the same time, we are also in-
terested in the general lessons that might emerge from an exam school analysis.

24Appendix B reports additional descriptive statistics, results, and specification checks for New
York.

25Vaznis (2009) discussed efforts to add 6th grade cohorts at Boston exam schools, while
Hernandez (2008) reported on proposals to increase minority representation at New York’s exam
schools. Further afield, Lutton (2012) described a proposed exam school expansion in Chicago.



THE ELITE ILLUSION 169

(b) Proportion black or Hispanic at NYC exam schools

FIGURE 6.—Continued.

TABLE VII

NYC COMPLIER CHARACTERISTICSa

Brooklyn Tech Bronx Science Stuyvesant

Z = 0 Z = 1 Z = 0 Z = 1 Z = 0 Z = 1
(1) (2) (3) (4) (5) (6)

Baseline peer mean in math 0�35 1�60 1�21 1�75 1�58 2�12
Baseline peer mean in English 0�31 1�44 1�21 1�69 1�51 2�08
Proportion black or Hispanic 0�57 0�23 0�39 0�12 0�20 0�05

Proportion qualifying for a free lunch 0�65 0�61 0�60 0�65 0�64 0�68
Proportion female 0�53 0�41 0�52 0�45 0�46 0�43

Average English class size 29�3 31�8 27�1 31�8 31�0 29�1
Average math class size 29�0 31�1 27�8 31�6 30�9 33�0
Proportion of teachers fully licensed 0�96 0�97 0�97 0�97 0�97 0�99
Proportion of teachers highly educated 0�45 0�59 0�51 0�60 0�60 0�64
Proportion of teachers

with less than 3 years experience 0�13 0�07 0�12 0�12 0�10 0�07

aThis table shows descriptive statistics for NYC exam school enrollment compliers to the left (Z = 0) and right
(Z = 1) of admission cutoffs, using data on applicants for admission from 2004–2007. Student-weighted average char-
acteristics are reported for teachers and schools. Fully licensed teachers are those who have Provisional, Initial, or
Professional licenses to teach in their subject(s). Highly educated teachers have Masters or other graduate degrees.
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(a) Regents Advanced Math at NYC exam schools

FIGURE 7.—This figure shows average Regents Advanced Math (a) and English (b) scores for
applicants to NYC exam schools, plotted against school-specific standardized running variables.

What is the exam school treatment? An overall change in school quality
is hard to document or even define, but it is clear that exam school students
gain the opportunity to study with high-achieving peers. The peer achievement
changes documented here emerge at each exam school admissions cutoff. In
other words, each admissions cutoff induces a substantial “peer achievement
experiment,” in spite of the fact that overall exam school admission probabili-
ties jump markedly only at cutoffs for the least selective schools (O’Bryant in
Boston and Brooklyn Tech in New York). Jumps in peer achievement allow
us to identify causal peer effects. Moreover, because the six exam school cut-
offs under consideration intersect the applicant ability distribution over a wide
range, the resulting estimates reflect peer effects for exceptionally high-ability
as well as moderate-ability students.

In addition to manipulating peer achievement, admissions cutoffs induce a
sharp change in racial composition, with large shifts at each cutoff. The exam
school racial mix partly reflects the selective admissions policies that drive peer
achievement: Because white applicants have higher test scores than do non-
whites (in this case, black and Hispanic applicants), the enrolled population is
disproportionately white. Successful exam school applicants therefore receive
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(b) Regents English at NYC exam schools

FIGURE 7.—Continued.

the same sort of treatment generated by our imaginary voucher experiment
for Waltham homeowners on the Newton town line: the opportunity to attend
school with fewer minority as well as higher-achieving classmates. These ob-
servations motivate models that specify peer race and ability characteristics as
the primary causal channels mediating exam school offer effects.

The 2SLS estimates of peer achievement and racial composition effects re-
ported here come from specifications and samples paralleling those used for
the pooled reduced-form estimates reported in Tables III and VIII (pooling ap-
plicant grades and test years, as well as schools). All control variables, including
year and grade of test, application cohort effects, and own- and other-school
running variable controls, are subsumed in a vector Xit , with conformable co-
efficient vector Γ . The 2SLS second stage can then be written

yit = Γ ′Xit +ψait + εit�(5.1)

where ait is a vector of endogenous variables to be instrumented,ψ is the causal
effect of interest, and εit is the 2SLS residual. The corresponding first-stage
equations include the same controls plus offer dummies as excluded instru-
ments. We estimated both (5.1) and the first-stage equations using the non-
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TABLE VIII

NYC REDUCED-FORM ESTIMATES: REGENTS EXAMSa

Parametric Estimates Nonparametric (DM) Estimates

Brooklyn Tech Bronx Science Stuyvesant All Schools Brooklyn Tech Bronx Science Stuyvesant All Schools
(1) (2) (3) (4) (5) (6) (7) (8)

Math 0.048 −0�105∗ −0�05 −0.032 0.01 −0�132∗∗∗ −0�045 −0�062∗∗∗

(0�060) (0�054) (0�044) (0�027) (0�039) (0�033) (0�039) (0�018)
5,116 4,479 4,259 13,854 3,990 4,479 2,915 11,384

Advanced Math −0.081 −0�040 −0�023 −0.046 −0.013 −0.053 −0�026 −0.034
(0�072) (0�062) (0�040) (0�038) (0�047) (0�040) (0�026) (0�024)
6,758 6,605 7,308 20,671 4,859 6,605 5,350 16,814

English 0.030 −0�042 −0�020 −0.011 0.048 −0.011 −0�005 0.012
(0�051) (0�038) (0�033) (0�025) (0�038) (0�021) (0�022) (0�013)
5,926 5,506 5,693 17,125 5,926 5,506 5,693 17,125

Global History −0�112∗∗ −0�039 −0�008 −0�051∗∗ −0�060∗ −0.013 0�014 −0.020
(0�048) (0�036) (0�036) (0�023) (0�031) (0�027) (0�024) (0�014)
7,540 7,103 7,635 22,278 6,920 7,103 5,918 19,941

U.S. History −0�100∗∗∗ −0�012 0�032 −0.024 −0.036 −0.015 0�038 −0.006
(0�037) (0�030) (0�032) (0�023) (0�022) (0�021) (0�023) (0�014)
5,316 5,139 5,486 15,941 3,886 5,139 3,913 12,938

Living Environment −0�077∗∗ 0�069∗ −0�061∗ −0.024 −0�078∗∗∗ 0�057∗∗ −0�032 −0�024∗∗

(0�038) (0�037) (0�034) (0�020) (0�022) (0�024) (0�020) (0�012)
6,980 6,575 6,991 20,546 6,980 5,665 6,991 19,636

aThis table reports estimates of the effect of New York exam school offers on Regents scores. The discontinuity sample includes applicants 5 standardized units from the cutoff.
Model parameterization and estimation procedures parallel those for Boston. Math scores are from Regents Math A (Elementary Algebra and Planar Geometry) or Integrated
Algebra I. Advanced Math scores are from Regents Math B (Intermediate Algebra and Trigonometry) or Geometry. The table reports robust standard errors, clustered on year
and school of test, in parentheses. Standard errors are also clustered on student when schools are stacked. Sample sizes for each outcome are reported below the standard errors.
* significant at 10%; ** significant at 5%; *** significant at 1%.
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parametric bandwidth chosen for the associated single-school reduced forms
in each city.

A simple causal model of education production facilitates interpretation of
2SLS estimates of equation (5.1). Ignoring the time dimension, a vector mi is
assumed to contain education inputs measured in the exam school entry grade.
These inputs include peer achievement and race, measures of school quality,
and teacher effects. Our goal is to identify the causal effects of variation in a
subset of these inputs at a specific point in the education profile, holding earlier
inputs and family background fixed.26 A parsimonious representation of the
education production function linking contemporaneous inputs with achieve-
ment is

yi = π ′mi +ηi�
where ηi is the random part of potential outcomes revealed under alterna-
tive assignments of the input bundle, mi. We partition mi into observed peer
achievement and racial composition, ai, and unobserved inputs, wi. That is,

mi =
[
a′
i w

′
i

]′
�

with conformable vectors of coefficients, “beta” and “gamma,” so that we can
write the structural education production function as

yi = β′ai + γ′wi +ηi�(5.2)

where wi is defined so that γ is positive.
The instrument vector in this context, zi, indicates exam school offers. Of-

fers are assumed to be independent of potential outcomes (i.e., independent
of ηi), without necessarily satisfying an exclusion restriction. In other words,
exam school offers, taken to be as good as randomly assigned in a nonpara-
metric RD setup, lead to exam school enrollment, which in turn changes
peer characteristics and perhaps other features of the school environment, de-
noted by wi. We capture these changes in the following first-stage relation-
ships:

ai = θ′
1zi + ν1i�

wi = θ′
2zi + ν2i�

where first-stage residuals are orthogonal to the instruments by construction,
but possibly correlated with ηi. The proposition below characterizes the causal
effects identified by 2SLS given this structure:

26Todd and Wolpin (2003) discussed the conceptual distinction between this type of
interruption-based causal relationship and a complete cumulative education production function.
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PROPOSITION 1: 2SLS estimates using zi as an instrument for ai in (5.2), omit-
ting wi, identify β+ δ′γ, where δ is the population 2SLS coefficient vector from a
regression of wi on ai, using zi as instruments.

This is a 2SLS version of the omitted variables bias formula (see, e.g., Angrist
and Krueger (1992)). Proposition 1 implies that if δ is positive (because exam
schools have better unmeasured inputs), 2SLS estimates of peer effects omit-
ting wi tend to be too big. The notion that omitted variables bias is likely to
be positive seems reasonable in this context; among other distinctions, Boston
and New York exam schools feature, to varying degrees, a rich array of course
offerings, relatively modern facilities, and a challenging curriculum meant to
prepare students for college.

An alternative interpretation under somewhat stronger assumptions is based
on the notion that any input correlated with exam school offers is itself caused
by ai. In other words, the relationship between wi and exam school offers is
a consequence of the effect of exam school attendance on peer characteris-
tics (exam school curricula are challenging because exam school students are
high-achieving; the prevalence of nonwhite students affects course content).
Suppose the causal effect of ai on wi is described by a linear constant effects
model with coefficient vector λ. Then we have

wi = λai + ξi�(5.3)

E[ziξi] = 0�

This assumption generates a triangular structure in which 2SLS estimates com-
bine both the direct and indirect effects of peers.27 When other inputs are
causally downstream to peer characteristics, 2SLS estimates of peer effects
omitting wi capture the total impact of randomly assigning ai. In other words,
in this scenario, 2SLS identifies β+ λ′γ.

5.1. Estimates

To maximize precision and facilitate exploration of models with multiple en-
dogenous variables, we constructed 2SLS estimates using a combined Boston
and New York sample, with six offer dummies as instruments. The 2SLS spec-
ifications parallel those used to construct the single-city stacked reduced-form
estimates, except that here the stack includes six schools. In addition to es-
timates using one offer dummy for each school as instruments, we also re-
port 2SLS estimates from more heavily over-identified models adding interac-

27A referee points out that the list of omitted variables affected by exam school enrollment
might include parental behavior such as help with homework or the provision of tutors.
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tions between offer dummies and applicant cohort dummies to the instrument
list.

Table IX reports first-stage estimates and the associated F statistics (ad-
justed, where appropriate, for multiple endogenous variables), as well as
second-stage estimates. Consistent with the figures, the first-stage estimates
show large, precisely estimated offer effects on peer achievement and racial
composition. For example, an O’Bryant offer increases average baseline math
peer scores by over two-thirds of a standard deviation, while the math peer
achievement gain is about 0�36σ at the Latin Academy cutoff, and 0�77σ at the
Latin School cutoff. Peer achievement also shifts sharply at New York cutoffs,
though less than in Boston. First stages for racial composition show that offers
induce a 12–23 percentage point reduction in the proportion nonwhite at each
Boston cutoff, and a 6–15 percentage point reduction at cutoffs in New York.

Consistent with the reduced-form offer estimates discussed in the previous
section, 2SLS estimates treating peer achievement as a single endogenous vari-
able show no evidence of a statistically significant peer effect. These results ap-
pear in columns (1) and (6) of Table IX. Importantly, the 2SLS estimates and
the associated standard errors, on the order of 0�03, also provide a basis for
comparisons. For example, these estimates allow us to reject the correspond-
ing large positive OLS estimates of peer effects reported as a benchmark in
our working paper (Abdulkadiroğlu, Angrist, and Pathak (2011)). The small
peer effects in Table IX are also significantly different from estimates of con-
ceptually similar education peer effects reported elsewhere. Examples include
Hoxby (2000) (with effects on the order of 0.3–0.5σ), Hanushek et al. (2003)
(effects on the order of 0.15–0.24σ), and estimates from many other studies
summarized in Sacerdote’s (2011) recent survey.

2SLS estimates of racial composition effects, reported in columns (2) and (7)
of Table IX, likewise show no statistically significant evidence of a substantial
impact, though these are less precise than the corresponding peer achievement
effects. At the same time, we can easily rule out large negative effects of pro-
portion nonwhite. (Compare, e.g., estimates reported in Hoxby (2000) ranging
from −1 to −2 for black and Hispanic third graders.)

Models with two endogenous variables capture pairs of causal effects at the
same time. These models, identified by variation at six admissions cutoffs, al-
low for the possibility that different sorts of causal effects are reinforcing or
offsetting. We also introduce a secular exam school effect, parameterized as
operating through years of exam school enrollment. This provides a simple ad-
justment for possible violations of the exclusion restriction in models with spe-
cific causal channels. Results from models with multiple endogenous variables
are naturally less precise than the estimates generated by models with a single
channel. Except possibly for a large positive effect of the proportion nonwhite
on applicants’ math scores in column (3) of Table IX, multiple-endogenous-
variable estimates are consistent with those generated by models allowing only
a single causal channel.
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TABLE IX

2SLS ESTIMATES FOR BOSTON AND NEW YORKa

Math English

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

2SLS Estimates (Models With Cohort Interactions)
Peer mean −0�038 0�064 −0�035 0�006 0�044 −0�047

(0�032) (0�080) (0�044) (0�030) (0�064) (0�051)

Proportion nonwhite 0�145 0�421 0�160 −0�014 0�141 0�063
(0�110) (0�279) (0�137) (0�102) (0�218) (0�134)

Years in exam school −0�003 0�006 0�045 0�027
(0�036) (0�030) (0�034) (0�025)

First-Stage F-Statistics (Models With Cohort Interactions)
Peer mean 65�8 9�1 50�0 39�8 5�7 22�8
Proportion nonwhite 65�8 17�6 60�0 52�3 12�4 41�2
Years in exam school 12�0 16�2 10�6 15�8

N 31,911 33,313 31,911 31,911 33,313 31,222 32,185 31,222 31,222 32,185

(Continues)



T
H

E
E

L
IT

E
IL

L
U

SIO
N

177

TABLE IX—Continued

Math English

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

First-Stage Estimates (Models Without Cohort Interactions)
Panel A. Boston

O’Bryant 0�763∗∗∗ −0�119∗∗∗ 0�702∗∗∗ −0�118∗∗∗

(0�071) (0�013) (0�064) (0�013)

Latin Academy 0�355∗∗∗ −0�210∗∗∗ 0�355∗∗∗ −0�212∗∗∗

(0�073) (0�014) (0�063) (0�014)

Latin School 0�769∗∗∗ −0�225∗∗∗ 0�632∗∗∗ −0�216∗∗∗

(0�037) (0�011) (0�033) (0�011)

Panel B. NYC
Brooklyn Tech 0�486∗∗∗ −0�137∗∗∗ 0�517∗∗∗ −0�152∗∗∗

(0�074) (0�024) (0�058) (0�022)

Bronx Science 0�174∗∗∗ −0�101∗∗∗ 0�158∗∗ −0�098∗∗∗

(0�067) (0�031) (0�074) (0�034)

Stuyvesant 0�264∗∗∗ −0�066∗∗∗ 0�255∗∗∗ −0�060∗∗

(0�076) (0�022) (0�096) (0�029)
aThis table reports two-stage least squares (2SLS) estimates of the effects of peer characteristics on test scores in a sample combining Boston and New York. Boston scores are

from MCAS Math and English tests for all grades tested; NYC scores are Advanced Math (Regents Math B or Geometry) and Regents English. The table shows nonparametric
estimates using bandwidths computed one school at a time. The 2SLS estimates and first-stage F-statistics reported in the upper half of the table are from models that interact
exam school offers with application cohort dummies. The first-stage coefficient estimates shown in the lower half of the table are from models without these interactions. Robust
standard errors, clustered on year and school, are shown in parentheses. Standard errors also cluster on student. * significant at 10%; ** significant at 5%; *** significant at 1%.
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6. SUMMARY AND CONCLUSIONS

The results reported here suggest that an exam school education produces
only scattered gains for applicants, even among students with baseline scores
close to or above the mean in the target school. Because the exam school ex-
perience is associated with sharp increases in peer achievement, these results
weigh against the importance of peer effects in the education production func-
tion. Our results also fail to uncover systematic evidence of racial composition
effects. The outcome most strengthened by exam school attendance appears to
be the 10th grade English score, a result driven partly by gains for minorities.
Given the history of racial preferences (and their more recent elimination) in
Boston’s exam schools, this finding seems worth further exploration. Overall,
however, while the exam school students in our samples typically have good
outcomes, most of these students would likely have done well without the ben-
efit of an exam school education.

Of course, test scores and peer effects are only part of the exam school
story. It may be that preparation for exam school entrance is itself worth-
while. The RD design captures the impact of peer composition and possibly
other changes at admissions cutoffs, while ignoring effects common to appli-
cants on both sides. Likewise, unique features of an exam school education
may boost achievement in specific subject areas. Students who attend Boston
Latin School almost certainly learn more Latin than they would have other-
wise. The many clubs and activities found at some exam schools may expose
students to ideas and concepts not easily captured by achievement tests or our
post-secondary outcomes. It is also possible that exam school graduates earn
higher wages, a question we plan to explore in future work. Still, the estimates
reported here suggest that any labor market gains are likely to come through
channels other than peer composition and increased cognitive achievement.

Can these results be reconciled with those of other studies reporting a strong
association between group averages and individual outcomes? Every context is
different, and the absence of peer effects in one setting does not prove that
such effects are unimportant elsewhere. At the same time, it is worth empha-
sizing the high risk of specification error in peer analysis. As noted by Manski
(2000) and Angrist and Pischke (2009), among others, the relationship between
an individual-level variable and any group average of this variable is essentially
mechanical. Likewise, any regression of one outcome variable on the group
average of another outcome variable is biased toward a finding of peer effects
due to the presence of common shocks. Random assignment to groups fails
to solve either of these problems. Finally, any regression of an individual out-
come on a combination of observationally varying individual- and group-level
treatments is almost sure to produce something that looks like a peer effect for
reasons related to the information content of the average (see, e.g., Acemoglu
and Angrist (2000) and Moffitt (2001)). It is perhaps unsurprising, therefore,
that experimental or quasi-experimental manipulation of predetermined peer
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characteristics is less likely to uncover a peer effect than are other study de-
signs. Estimates from the Moving to Opportunity demonstration, for example,
which manipulated peer composition by randomly assigning housing vouchers,
are consistent with the results reported here in offering little evidence of causal
peer effects (see, e.g., Kling, Liebman, and Katz (2007)).

Our results are also relevant to the economic debate around school qual-
ity and school choice, as developed in analyses by Kane and Staiger (2002),
Hastings, Kane, and Staiger (2009), Hsieh and Urquiola (2006), Rothstein
(2006), and MacLeod and Urquiola (2009), among others. As with the jump
in house prices at school district boundaries, heavy rates of exam school over-
subscription suggest that parents believe peer composition matters a great deal
for their children’s welfare. The fact that we find little support for causal peer
effects suggests that parents either mistakenly equate attractive peers with high
value added, or that they value exam schools for reasons other than their im-
pact on learning. Both of these scenarios reduce the likelihood that school
choice in and of itself has strong salutary demand-side effects in education
production.

Finally, our study makes a number of methodological contributions. As
school choice has proliferated across districts, so, too, has the use of so-
phisticated assignment mechanisms such as deferred acceptance. We have
shown how to craft a sharp regression discontinuity design from a deferred-
acceptance match of students to schools. In the spirit of a suggestion by Lee
and Lemieux (2010), we have also shown how information on a second vari-
able with content similar to the running variable facilitates an exploration of
the external validity of regression discontinuity estimates. Recent and ongo-
ing work by Angrist and Rokkanen (2012) and Rokkanen (2013) pursues these
ideas further.

APPENDIX A: ADDITIONAL RESULTS FOR BOSTON

Table A.I compares Boston exam school applicants with the general BPS
population. Non-exam BPS students are mostly nonwhite and poor enough
to qualify for a subsidized lunch. Black and Hispanic students are somewhat
under-represented among exam school applicants and students, but most exam
school applicants are also poor. Not surprisingly, there are few special edu-
cation students in an exam school, though many exam school applicants and
students are classified as limited English proficient.

Students near admissions cutoffs should be similar at the time of applica-
tion. Even so, subsequent attrition may lead to differences in the follow-up
sample, unless the attrition process is also random. In other words, a threat to
our research design is differential and selective attrition by exam offer status.
For instance, students just below the cutoff may be less likely to be found than
students above the cutoff if students below the cutoff leave the public school
system when they do not obtain an exam offer. Differential attrition may gen-
erate selection bias. A simple test for selection bias looks at the effect offers
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TABLE A.I

ADDITIONAL DESCRIPTIVE STATISTICS FOR BOSTON EXAM SCHOOL APPLICANTSa

O’Bryant Latin Academy Latin School

BPS Applicants Enrolled Compliers Applicants Enrolled Compliers Applicants Enrolled Compliers
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A. 7th Grade Applicants
Female 0�478 0�539 0�582 0�543 0�540 0�559 0�626 0�541 0�561 0�577
Black 0�471 0�377 0�381 0�399 0�373 0�271 0�302 0�370 0�124 0�194
Hispanic 0�314 0�214 0�231 0�205 0�210 0�185 0�194 0�211 0�094 0�166
Free lunch 0�750 0�754 0�805 0�812 0�745 0�697 0�741 0�744 0�489 0�647
Limited English Proficient 0�203 0�144 0�146 0�156 0�142 0�122 0�138 0�142 0�083 0�047
Special Educationb 0�234 0�047 0�010 0�009 0�047 0�008 0�010 0�047 0�007 0�007
Baseline Mathc −0�019 0�746 0�835 0�693 0�761 1�201 0�929 0�764 1�986 1�461
Baseline Englishc −0�023 0�711 0�799 0�664 0�725 1�110 0�911 0�729 1�791 1�195

Panel B. 9th Grade Applicants
Female 0�476 0�540 0�608 0�519 0�540 0�591 0�592 0�541 0�559 0�547
Black 0�494 0�479 0�410 0�388 0�480 0�311 0�299 0�479 0�189 0�205
Hispanic 0�341 0�258 0�226 0�230 0�255 0�206 0�274 0�256 0�170 0�257
Free lunch 0�762 0�807 0�808 0�766 0�805 0�815 0�854 0�805 0�648 0�908
Limited English Proficient 0�182 0�132 0�140 0�185 0�131 0�115 0�099 0�131 0�111 0�088
Special Educationb 0�248 0�080 0�018 0�010 0�080 0�020 0�048 0�079 0�015 0�023
Baseline Mathc −0�313 0�230 0�848 0�685 0�230 1�423 1�284 0�229 1�717 1�402
Baseline Englishc −0�246 0�276 0�702 0�638 0�278 1�085 0�842 0�278 1�269 1�053

aThis table reports descriptive statistics for 7th grade applicants from 1999–2008 and for 9th grade applicants from 2001–2007. Column (1) reports descriptive statistics for 6th
and 8th grade students in Boston public schools who had not previously enrolled in any exam school. Columns (2), (5), and (8) report descriptive statistics for applicants to each
Boston exam school. Columns (3), (6), and (9) report descriptive statistics for students who enroll in each exam school the following fall. Columns (4), (7), and (10) report statistics
for enrollment compliers at each admissions cutoff. Baseline math and English scores for 7th grade applicants are from 4th grade. Baseline scores for 9th grade applicants are
from middle school.

bInformation on special education status is available only for 1999–2004.
cBaseline scores are available from 2000 onward for 6th grade and from 2002 onward for grade 8.
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have on the likelihood that an applicant contributes MCAS scores to our sam-
ple. If differences in follow-up rates across cutoffs are small, then selection bias
from differential attrition is also likely to be modest.

Between 76% and 89% of applicants contribute MCAS outcomes to the
discontinuity sample. This relatively high follow-up rate, documented in Ta-
ble A.II, is likely due to the fact that the analysis here is limited to students who
were enrolled in BPS at baseline. Follow-up differentials are estimated using
models that parallel those used to construct the estimates in Table III. Most of
the estimated differentials for math and English are small and not significantly
different from zero. While the parametrically estimated follow-up differential
is significant when schools are stacked, the estimated difference (on the order
of 3 percent) seems too small to impart substantial bias.

A second potential threat to the validity of our research design is some sort
of sorting behavior that changes in a discontinuous manner at admissions cut-
offs. The fact that exam school admissions decisions are made in the BPS cen-
tral office suggests that it is unlikely that schools have much discretion in se-
lecting which applicants obtain offers at particular schools. Nonetheless, dis-
continuities in the characteristics of applicants may arise in situations where
the admissions process is compromised.

Table A.III briefly examines this possibility. This table shows estimates from
models that parallel the reduced-form models discussed in the text, but the
dependent variables here are covariates. These results reveal little evidence of
covariate imbalance across admissions cutoffs. Joint tests suggest that the few
significant differences in covariates seen in the table are chance findings.

As background for the high-achievers estimation strategy reported on in Ta-
ble IV, we explored the correlation between ISEE (exam school admissions)
scores and MCAS scores. The two scores are correlated, but far from perfectly.
For instance, the correlation between the verbal ISEE and grade 7 English is
0.62, while the correlation between verbal ISEE and grade 10 English is 0.58.
The correlation between math ISEE and grade 8 Math is 0.76, while the corre-
lation between math ISEE and grade 10 Math is 0.66.

Table A.IV reports high school MCAS estimates for grade 7 and grade 9 ap-
plicants separately. This breakdown is motivated in part by the fact that 7th
grade applicants who enroll in an exam school have longer exam school expo-
sure than 9th grade applicants who do so. As it turns out, however, the group
for which evidence of an exam school gain is strongest consists of 9th grade
applicants, especially for English scores.

Table A.V reports detailed MCAS results for the sample of Boston minority
applicants. These results show no clear pattern, though, as noted in the text,
there is reasonably strong evidence here for a gain in 10th grade English scores.
There are also some significant negative effects.

Figure A.1 reports on the distance to school faced by students on either side
of exam school admissions cutoffs. Travel distance was computed using straight
line distance as measured by ArcGIS. Students offered a seat at O’Bryant
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TABLE A.II

BOSTON ATTRITION DIFFERENTIALSa

Parametric Estimates Nonparametric (DM) Estimates

Fraction With O’Bryant Latin Academy Latin School All Schools O’Bryant Latin Academy Latin School All Schools
Application Grade Test Grade Followup (1) (2) (3) (4) (5) (6) (7) (8)

Panel A. Math
7th 7th and 8th 0�875 0�046 0�072∗ −0�023 0�034 0�043 0�023 0�032 0�032∗∗

(0�049) (0�041) (0�041) (0�026) (0�028) (0�021) (0�025) (0�014)
4,775 4,845 4,187 13,807 4,258 4,609 3,384 12,251

7th and 9th 10th 0�759 0�072 0�002 0�005 0�034 0�022 0�004 0�055 0.025
(0�050) (0�056) (0�057) (0�031) (0�029) (0�034) (0�036) (0�020)
4,652 3,613 3,058 11,323 4,243 2,673 2,254 9,170

7th and 9th 7th, 8th, and 10th 0�823 0�059 0�041 −0�011 0�034 0�032 0�017 0�041∗ 0�029∗∗

(0�041) (0�039) (0�040) (0�024) (0�024) (0�021) (0�025) (0�014)
9,427 8,458 7,245 25,130 8,501 7,282 5,638 21,421

Panel B. English
7th 7th and 8th 0�891 0�046 0�081∗ −0�011 0�041 0�036 0�032 0�018 0�029∗∗

(0�049) (0�043) (0�040) (0�026) (0�027) (0�024) (0�021) (0�014)
4,786 4,883 4,164 13,833 4,519 4,250 3,860 12,629

7th and 9th 10th 0�761 0�080 −0�021 0�020 0�034 0�027 −0�022 0�056 0.022
(0�050) (0�056) (0�056) (0�031) (0�028) (0�037) (0�035) (0�020)
4,652 3,613 3,058 11,323 4,515 2,351 2,361 9,227

7th and 9th 7th, 8th, and 10th 0�832 0�063 0�036 0�002 0�038∗ 0�031 0�012 0�031 0�026∗∗

(0�040) (0�039) (0�037) (0�023) (0�022) (0�023) (0�021) (0�013)
9,438 8,496 7,222 25,156 9,034 6,601 6,221 21,856

aThis table reports estimates of the effects of exam school offers on an indicator for non-missing outcome scores. The specification and estimation procedures are the same as
used to construct the estimates in Table III. The fraction with MCAS is the probability an MCAS score is observed for applicants who appear in any school-specific discontinuity
sample. Robust standard errors, clustered on year and school, are shown in parentheses. Standard errors for the all-schools estimates also cluster on student. Sample sizes are
shown below standard errors. * significant at 10%; ** significant at 5%; *** significant at 1%.
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TABLE A.III

BOSTON COVARIATE DISCONTINUITIESa

Parametric Estimates Nonparametric (DM) Estimates

O’Bryant Latin Academy Latin School All Schools O’Bryant Latin Academy Latin School All Schools
Covariate Mean (1) (2) (3) (4) (5) (6) (7) (8)

Panel A. 7th Grade Applicants
Female 0�567 −0�060 −0.024 −0.015 −0.035 −0�026 0.061 0.071 0.028

(0�061) (0�065) (0�070) (0�037) (0�036) (0�041) (0�043) (0�024)
3,696 3,728 3,236 10,660 3,368 2,760 2,456 8,584

Black 0�307 0�063 0.023 0.026 0.039 −0�024 0.047 0.031 0.020
(0�058) (0�060) (0�056) (0�033) (0�035) (0�031) (0�029) (0�018)
3,677 3,709 3,211 10,597 3,330 3,709 3,211 10,250

Hispanic 0�199 −0�052 −0.045 −0.048 −0.048 −0�017 −0.029 −0.017 −0.021
(0�052) (0�055) (0�054) (0�031) (0�028) (0�028) (0�030) (0�017)
3,677 3,709 3,211 10,597 3,677 3,709 3,145 10,531

Free lunch 0�724 0�035 −0�108∗∗ −0�116∗ −0�056∗ 0�010 −0�068∗∗ −0.037 −0�038∗∗

(0�048) (0�055) (0�065) (0�032) (0�032) (0�029) (0�034) (0�019)
3,696 3,728 3,236 10,660 2,862 3,728 3,236 9,826

Limited English Proficient 0�126 −0�020 −0.021 −0�131∗∗∗ −0�053∗∗ 0�012 −0.023 −0�076∗∗∗ −0�023∗

(0�042) (0�042) (0�037) (0�024) (0�023) (0�026) (0�021) (0�014)
3,696 3,728 3,236 10,660 3,696 2,931 3,135 9,762

Special Education 0�017 −0�020 0.004 0.000 −0.006 −0�018 0.004 0.005 −0.004
(0�021) (0�013) (0�013) (0�010) (0�011) (0�007) (0�007) (0�005)
3,696 3,728 3,236 10,660 3,415 3,402 2,763 9,580

Joint p-value 0�559 0.525 0.010 0.107 0�629 0.053 0.005 0.123

(Continues)
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TABLE A.III—Continued

Parametric Estimates Nonparametric (DM) Estimates

O’Bryant Latin Academy Latin School All Schools O’Bryant Latin Academy Latin School All Schools
Covariate Mean (1) (2) (3) (4) (5) (6) (7) (8)

Panel B. 9th Grade Applicants
Female 0�602 −0�065 −0�025 −0.018 −0�047 0�024 −0�055 −0�059 −0�012

(0�083) (0�117) (0�172) (0�064) (0�048) (0�065) (0�100) (0�036)
1,978 978 754 3,710 1,875 978 501 3,354

Black 0�409 −0�006 0�063 −0.046 0�008 −0�023 0�028 −0�087 −0�023
(0�085) (0�108) (0�138) (0�061) (0�046) (0�084) (0�086) (0�037)
1,967 971 750 3,688 1,967 500 487 2,954

Hispanic 0�237 −0�049 0�075 0.013 −0�005 0�008 0�063 0�027 0�024
(0�072) (0�103) (0�131) (0�055) (0�044) (0�069) (0�093) (0�034)
1,967 971 750 3,688 1,686 643 363 2,692

Free lunch 0�789 −0�044 0�039 −0�278∗ −0�051 0�013 0�095∗ 0�037 0�046
(0�069) (0�088) (0�150) (0�052) (0�043) (0�051) (0�087) (0�031)
1,978 978 754 3,710 1,561 978 396 2,935

Limited English Proficient 0�120 −0�002 −0�096 0.038 −0�023 0�022 −0�032 0�047 0�009
(0�057) (0�070) (0�098) (0�042) (0�034) (0�041) (0�060) (0�025)
1,978 978 754 3,710 1,889 913 389 3,191

Special Education 0�031 0�013 0�061 −0�072∗∗ 0�015 −0�014 0�024 −0�008 −0�003
(0�025) (0�047) (0�035) (0�020) (0�014) (0�025) (0�028) (0�011)
1,978 978 754 3,710 1,824 793 455 3,072

Joint p-value 0�940 0�589 0.240 0�906 0�906 0�354 0�887 0�840
aThis table reports discontinuities in covariates estimated using models like those used to construct the reduced-form estimates in Table III. Robust standard errors, clustered

on year and school, are shown in parentheses. Standard errors for the all-schools estimates also cluster on student. Sample sizes are shown below standard errors. The joint
p-value in the bottom row is for tests looking at all covariate discontinuities at once. * significant at 10%; ** significant at 5%; *** significant at 1%.
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TABLE A.IV

ADDITIONAL BOSTON ESTIMATES FOR 10TH GRADERS: MCAS MATH AND ENGLISHa

Parametric Estimates Nonparametric (DM) Estimates

O’Bryant Latin Academy Latin School All Schools O’Bryant Latin Academy Latin School All Schools
Application Grade Test Grade (1) (2) (3) (4) (5) (6) (7) (8)

Panel A. Math
7th 10th −0�015 −0�190∗ −0�053 −0�085∗∗ 0.027 −0�118∗ −0�055∗ −0.042

(0�092) (0�113) (0�055) (0�042) (0�052) (0�066) (0�032) (0�031)
1,832 1,920 1,854 5,606 1,699 1,423 1,467 4,589

9th 10th 0�159 0�109 −0�072 0.112 0�118∗ 0�097∗ −0�107∗ 0�083∗∗

(0�099) (0�081) (0�114) (0�069) (0�064) (0�053) (0�058) (0�040)
1,557 789 605 2,951 1,384 604 360 2,348

Panel B. English
7th 10th 0�035 0�144 0�015 0.065 0�117∗∗ 0�178∗∗∗ −0�008 0�094∗∗

(0�097) (0�108) (0�082) (0�055) (0�055) (0�063) (0�069) (0�040)
1,836 1,925 1,857 5,618 1,778 1,325 1,459 4,562

9th 10th 0�192 0�118 0�081 0�154∗ 0�168∗∗ 0.195 0�021 0�150∗∗∗

(0�118) (0�184) (0�179) (0�088) (0�067) (0�124) (0�089) (0�050)
1,562 790 606 2,958 1,530 461 457 2,448

aThis table reports estimates of the effects of exam school offers on 10th grade MCAS scores separately by application grade. Models and methods parallel those used to
construct the estimates in Table III. Robust standard errors, clustered on year and school, are shown in parentheses. Standard errors for the all-school estimates also cluster on
student. The sample size is reported below standard errors. * significant at 10%; ** significant at 5%; *** significant at 1%.
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TABLE A.V

ADDITIONAL BOSTON REDUCED-FORM ESTIMATES FOR BLACKS AND HISPANICS: MCAS MATH AND ENGLISHa

Parametric Estimates Nonparametric (DM) Estimates

O’Bryant Latin Academy Latin School All Schools O’Bryant Latin Academy Latin School All Schools
Application Grade Test Grade (1) (2) (3) (4) (5) (6) (7) (8)

Panel A. Math
7th 7th and 8th −0�275∗∗ −0�213∗∗ −0.135 −0�222∗∗∗ −0�153∗ −0.135 −0.069 −0�127∗∗∗

(0�128) (0�108) (0�151) (0�073) (0�079) (0�086) (0�093) (0.044)
2,554 2,196 1,325 6,075 2,185 1,991 1,258 5,434

7th and 9th 10th 0.029 −0.190 −0.043 −0.054 0.024 −0.103 −0.075 −0.034
(0�098) (0�116) (0�074) (0�067) (0�066) (0�071) (0�052) (0�044)
2,237 1,441 907 4,585 1,824 1,073 687 3,584

7th and 9th 7th, 8th, and 10th −0.133 −0�203∗∗ −0.101 −0�150∗∗∗ −0.076 −0�124∗∗ −0.071 −0�092∗∗∗

(0�090) (0�083) (0�109) (0�054) (0�061) (0�053) (0�069) (0�032)
4,791 3,637 2,232 10,660 4,009 3,064 1,945 9,018

Panel B. English
7th 7th and 8th −0.051 −0�187∗∗ −0�245∗∗ −0�142∗∗ −0.056 −0.013 −0�113∗∗ −0.055

(0�092) (0�093) (0�102) (0�059) (0�047) (0�067) (0�052) (0�035)
2,616 2,246 1,330 6,192 2,616 2,130 1,330 6,076

7th and 9th 10th 0.127 0�218∗ −0.131 0.110 0�162∗∗∗ 0�238∗∗∗ 0.039 0�160∗∗∗

(0�099) (0�112) (0�134) (0�072) (0�063) (0�072) (0�091) (0�045)
2,247 1,443 909 4,599 2,091 961 668 3,720

7th and 9th 7th, 8th, and 10th 0.031 −0.021 −0�205∗∗ −0.036 0.034 0.065 −0.067 0.022
(0�078) (0�086) (0�096) (0�055) (0�043) (0�061) (0�052) (0�032)
4,863 3,689 2,239 10,791 4,707 3,091 1,998 9,796

aThis table reports additional estimates of the effects of exam school offers on MCAS scores for minority applicants. Models and methods parallel those used to construct the
estimates in Table III. Robust standard errors, clustered on year and school are shown in parentheses. Standard errors for the all-school estimates also cluster on student. The
number of observations is reported below standard errors. * significant at 10%; ** significant at 5%; *** significant at 1%.
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(a) Distance to school for 7th grade applicants to Boston exam schools

FIGURE A.1.—This figure shows the average distance in miles between students’ home ad-
dresses and the school attended in the year after application for 7th grade (a) and 9th grade (b)
applicants to Boston exam schools, plotted against a school-specific standardized running vari-
ables.

travel about 0.5 miles farther in grade 7, but are 0.2 miles closer in grade 9.
The figure shows modest differences in commuting distance across the Latin
Academy and Latin School cutoffs for both grade 7 and grade 9.

APPENDIX B: ADDITIONAL RESULTS FOR NEW YORK

As in Boston, New York exam school applicants are positively selected rel-
ative to the population of New York 8th graders. This is documented in Ta-
ble B.I, which reports descriptive statistics for New York 8th graders, exam
school applicants, exam school students, and exam school enrollment compli-
ers. Applicants’ baseline scores exceed those of other 8th graders by about
0.7–0.8σ , while the score gap for enrolled students is over twice as large. Exam
school applicants reflect the New York public school population in that a sub-
stantial fraction are eligible for a subsidized lunch. In contrast to Boston, how-
ever, fewer than 15% of those enrolled in New York exam schools are black or
Hispanic.
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(b) Distance to next school for 9th grade applicants to Boston exam schools

FIGURE A.1.—Continued.

Table B.II reports estimates of NYC follow-up rates and attrition differen-
tials in a format paralleling that of Table A.II. Scores are most often missing
for math since many applicants take Regents exams in these subjects before 9th
grade. For the other subjects, the follow-up rates range from 79% to 87%. For
instance, 80% of students in at least one discontinuity sample contribute Ad-
vanced Math scores, while 87% contribute English scores. Although some of
the estimated attrition differentials are significantly different from zero when
estimated in the All Schools model, they are mostly small and seem unlikely to
be an important source of bias. For Math, Advanced Math, and English scores,
for example, the largest estimated differential is a marginally significant 3.6%
when estimated using a parametric specification.

As in Boston, the NYC admissions process is run in the central office, sug-
gesting limited scope for school discretion or parent sorting in making assign-
ments. In support of this claim, we document covariate balance for New York
exam schools in Table B.III. With the possible exception of the parametric esti-
mates for Stuyvesant reported in column (3), the scattered significant estimates
seem likely to be chance findings, a conclusion supported by joint test results
reported in the bottom row. Nonparametric estimates for Stuyvesant are small
and not significantly different from zero.
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TABLE B.I

ADDITIONAL DESCRIPTIVE STATISTICS FOR NYC EXAM SCHOOL APPLICANTSa

Brooklyn Tech Bronx Science Stuyvesant

NYC Applicants Enrolled Compliers Applicants Enrolled Compliers Applicants Enrolled Compliers
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Female 0�487 0�497 0�415 0�434 0�501 0�443 0�474 0�505 0�429 0�441
Black 0�336 0�306 0�133 0�181 0�291 0�040 0�042 0�296 0�019 0�022
Hispanic 0�377 0�224 0�089 0�139 0�253 0�070 0�124 0�243 0�030 0�046
Free lunchb 0�667 0�685 0�664 0�651 0�677 0�682 0�680 0�683 0�706 0�641
Limited English proficient 0�125 0�037 0�007 −0�002 0�038 0�003 0�002 0�037 0�003 0�002
Special Education 0�089 0�005 0�000 0�000 0�005 0�000 0�000 0�005 0�000 0�000
Baseline Math −0�004 0�809 1�619 1�350 0�817 1�771 1�601 0�802 2�119 1�892
Baseline English −0�005 0�734 1�426 1�333 0�755 1�666 1�453 0�730 2�047 1�851

aThis table reports additional descriptive statistics for 2004–2007. Column (1) reports descriptive statistics for 8th grade students in NYC public schools who had not previously
enrolled in any exam school. Columns (2), (5), and (8) report descriptive statistics for applicants to each of the NYC exam schools included in our study. Columns (3), (6), and (9)
report descriptive statistics for students who enroll in each exam school included in the study. Columns (4), (7), and (10) report descriptive statistics for enrollment compliers at
each admissions cutoff. Baseline math and English scores for applicants are from 8th grade.

bFor applicants in 2004 and 2005, free lunch status is from school year 2004–2005 (after assignment), while for applicants in 2006 and 2007, free lunch status is from school
year 2004–2005 and 2005–2006 (before assignment).
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TABLE B.II

NEW YORK ATTRITION DIFFERENTIALS: REGENTS SCORESa

Parametric Estimates Nonparametric (DM) Estimates

Brooklyn Tech Bronx Science Stuyvesant All Schools Brooklyn Tech Bronx Science Stuyvesant All Schools
Fraction With Regents (1) (2) (3) (4) (5) (6) (7) (8)

Math 0�535 −0.068 0�040 0�042 0.005 0.016 0�016 0�053∗ 0�026∗

(0�043) (0�045) (0�043) (0�025) (0�026) (0�023) (0�029) (0�015)
9,181 8,192 8,434 25,807 7,126 8,192 5,757 21,075

Advanced Math 0�799 0�101∗∗∗ 0�038 −0�027 0�036∗ 0�074∗∗∗ 0�022 0�008 0�033∗∗∗

(0�039) (0�035) (0�030) (0�020) (0�024) (0�018) (0�019) (0�012)
9,181 8,192 8,434 25,807 6,586 8,192 6,141 20,919

English 0�871 0.014 0�054 0�016 0.027 0.026 0�020 0�026∗ 0�024∗∗

(0�035) (0�033) (0�029) (0�018) (0�018) (0�018) (0�015) (0�010)
7,032 6,335 6,309 19,676 7,032 6,335 6,309 19,676

Global History 0�862 0�064∗ 0�052∗ 0�022 0�045∗∗∗ 0�059∗∗∗ 0�017 0�019 0�031∗∗∗

(0�034) (0�030) (0�026) (0�017) (0�018) (0�015) (0�016) (0�010)
9,181 8,192 8,434 25,807 8,407 8,192 6,506 23,105

U.S. History 0�810 0.029 0�06 −0�016 0.023 0�044∗ 0�031 0�009 0�029∗∗

(0�042) (0�040) (0�033) (0�022) (0�026) (0�021) (0�021) (0�013)
7,032 6,335 6,309 19,676 5,121 6,335 4,472 15,928

Living Environment 0�794 −0.015 0�041 0�035 0.020 0�032∗ 0�012 0�004 0.016
(0�037) (0�035) (0�033) (0�020) (0�019) (0�020) (0�016) (0�011)
9,181 8,192 8,434 25,807 9,181 7,017 8,434 24,632

aThis table reports estimates of the effect of exam school offers on indicators for non-missing outcome scores. Models and estimation procedures are the same as used to
construct the estimates in Table VIII. The fraction with Regents is the probability a Regents score is observed for applicants who appear in any school-specific discontinuity
sample. Robust standard errors, clustered on year and school, are shown in parentheses. Standard errors for the all-schools estimates also cluster on student. Sample sizes are
shown below standard errors. * significant at 10%; ** significant at 5%; *** significant at 1%.
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TABLE B.III

NEW YORK COVARIATE DISCONTINUITIESa

Parametric Estimates Nonparametric (DM) Estimates

Brooklyn Tech Bronx Science Stuyvesant All Schools Brooklyn Tech Bronx Science Stuyvesant All Schools
Mean of Variable (1) (2) (3) (4) (5) (6) (7) (8)

Female 0�469 −0.005 −0�003 0.012 0�002 −0.006 −0�013 −0�018 −0�012
(0�044) (0�045) (0�043) (0�025) (0�022) (0�027) (0�022) (0�014)
9,181 8,192 8,434 25,807 9,181 6,768 8,434 24,383

Black 0�109 −0.046 −0�002 0.023 −0�008 −0�033∗ −0�002 0�014 −0�006
(0�032) (0�028) (0�021) (0�016) (0�018) (0�015) (0�011) (0�009)
9,181 8,192 8,434 25,807 7,699 8,192 7,667 23,558

Hispanic 0�107 0.030 −0�012 0�055∗∗∗ 0�025 0�032∗∗ −0�013 0�005 0�008
(0�031) (0�028) (0�020) (0�015) (0�016) (0�014) (0�011) (0�009)
9,181 8,192 8,434 25,807 9,181 8,192 7,786 25,159

Free lunchb 0�669 −0.013 0�058 −0�091∗∗ −0�018 −0.008 0�042∗ −0�034 0�001
(0�041) (0�042) (0�040) (0�024) (0�022) (0�022) (0�022) (0�013)
9,181 8,192 8,434 25,807 9,139 8,192 7,944 25,275

Limited English Proficient 0�005 0�012∗∗ −0�002 0.001 0�004 0.000 −0�003 −0�002 −0�002
(0�006) (0�004) (0�005) (0�003) (0�003) (0�003) (0�002) (0�002)
9,181 8,192 8,434 25,807 8,703 6,675 8,434 23,812

Joint test: p-value 0.228 0�775 0.016 0�393 0.262 0�316 0�384 0�722
aThis table reports discontinuities in covariates estimated using models like those used to construct the reduced-form estimates in Table VIII. The joint p-value in the bottom

row is for tests looking at all covariate discontinuities at once. Robust standard errors, clustered on year and school, are shown in parentheses. Standard errors for the all-schools
estimates also cluster on student. Sample sizes are shown below standard errors. * significant at 10%; ** significant at 5%; *** significant at 1%.
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TABLE B.IV

NEW YORK REDUCED-FORM ESTIMATES FOR SUBGROUPSa

High Baseline Scores

Upper Half Upper Quartile Black and Hispanic

Proportion Proportion Proportion
Baseline Above 85 IK Baseline Above 85 IK Baseline Above 85 IK

Mean on Regents Estimates mean on Regents Estimates Mean on Regents Estimates
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Math 1�422 0�869 −0�055∗∗∗ 1�493 0�925 −0�035∗ 1�243 0�711 −0�084∗∗∗

(0�018) (0�019) (0�023)
10,523 9,138 6,189

Advanced Math 0�932 0�567 −0.029 1�024 0�635 −0�006 0�59 0�341 −0.048
(0�023) (0�020) (0�031)
16,168 14,612 8,713

English 1�092 0�812 0.011 1�157 0�866 0�012 0�969 0�711 0.031
(0�013) (0�017) (0�022)
15,450 10,254 7,146

Global History 1�231 0�837 −0.016 1�28 0�875 −0�019 1�076 0�712 0.002
(0�014) (0�014) (0�019)
17,569 13,422 9,856

U.S. History 1�147 0�934 0.003 1�183 0�953 0�000 1�029 0�866 −0.001
(0�015) (0�013) (0�016)
11,828 9,331 6,171

Living Environment 1�33 0�706 −0�021∗ 1�376 0�751 −0�019 1�175 0�559 −0.025
(0�012) (0�014) (0�018)
18,928 15,343 8,866

aThis table reports nonparametric reduced-form estimates of the all-schools model for students with high baseline scores and for minorities. Baseline means and the proportion
of applicants above 85 are computed for those who belong to at least one discontinuity sample. Math scores are from either Regents Math A (Elementary Algebra and Planar
Geometry) or Integrated Algebra I. Advanced Math scores are from either Regents Math B (Intermediate Algebra and Trigonometry) or Geometry. Robust standard errors,
clustered on year and school, are shown in parentheses. Standard errors also cluster on student. Sample sizes are shown below standard errors. * significant at 10%; ** significant
at 5%; *** significant at 1%.
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Distance to school for applicants to NYC exam schools

FIGURE B.1.—This figure shows the average distance in miles between students’ home ad-
dresses and the school they attend in the year after application for applicants to NYC exam
schools, plotted against school-specific standardized running variables.

By contrast with Boston, detailed results for black and Hispanic NYC exam
school applicants provide little in the way of evidence for minority applicants
gain at exam schools. These results can be seen in Table B.IV. For instance,
the effect on English for black or Hispanic students is 0.03σ (with standard
error 0�02). On the other hand, consistent with the Boston findings, Table B.IV
shows little in the way of gains for high baseline achievers in New York.

Figure B.1 reports on travel distance for NYC applicants on either side of
exam school admissions cutoffs. Students offered a seat at Bronx Science and
Brooklyn Tech travel, on average, 1 mile further, while travel appears to be
unchanged by offers from Stuyvesant.
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