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The utility ofmachine learning (ML) for regression-based causal infer-
ence is illustrated by using lasso to select control variables for estimates
of college characteristics’ wage effects. Post-double-selection lasso
offers a path to data-driven sensitivity analysis.ML also seems useful
for an instrumental variables (IV) first stage, since two-stage least
squares (2SLS) bias reflects overfitting. While ML-based instrument
selection can improve on 2SLS, split-sample IV and limited infor-
mation maximum likelihood do better. Finally, we use ML to choose
IV controls. Here, ML creates artificial exclusion restrictions, gener-
ating spurious findings. On balance,ML seems ill-suited to IV applica-
tions in labor economics.
I. Introduction

Many economic applications of machine learning (ML) originate in re-
search on consumer choice. For instance, Bajari et al. (2015) useML topredict
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the demand for salty snacks. What does the ML toolkit offer empirical labor
economics? Like marketing researchers, labor economists also benefit from
more and bigger data sets. But much of the applied labor agenda seeks to un-
cover causal effects, such as the effect of schooling on wages, using tools like
regression and instrumental variables (IV). Causal inference focuses on pa-
rameters, such as average causal effects, rather than the prediction of individ-
ual choices or outcomes.
The distinction between parameter estimation and individual prediction

parallels that between slope coefficients and R2 in regression analysis. Pur-
suing this analogy,Mullainathan and Spiess (2017) note thatML aims to im-
prove the accuracy offitted values ( ŷ) rather than estimate a regression slope
coefficient or marginal effect. Empirical findings in labor economics rarely
turn on ŷ. Yet asBelloni, Chernozhukov, andHansen (2014a) observe, in any
empirical application with many covariates, we would like to guard against
overfitting and the vagaries of data mining. These concerns extend to causal
models with many control variables or many instruments.
We consider three domains where ML might play a supporting role in

pursuit of causal effects in labor economics. Thefirst is data-driven selection
of ordinary least squares (OLS) control variables. Hahn (1998) notes that
efficient nonparametric matching estimators use controls to impute coun-
terfactual outcomes. The fact that imputation is a form of prediction sug-
gests that ML is a good way to do it. We find empirical support for this idea
in a replication and extension of the Dale andKrueger (2002) investigation of
the causal effect of college characteristics on graduates’ earnings.
The Dale and Krueger (2002) research design conditions on the charac-

teristics of colleges to which an applicant has applied and been admitted.
The key identifying assumption here takes enrollment decisions conditional
on application/admission sets to be as good as randomly assigned. Graduates
of highly selective and private colleges earn more, on average, than do those
who attended less selective or public institutions. But this evidence of an elite
school earnings advantage disappears after conditioning on 150 dummy var-
iables indicating the selectivity of the schools in application/admissions sets.
The cost of theDale andKrueger (2002) dummy-variable control strategy is a
two-thirds reduction in sample size. We would like to have a more parsimo-
nious control strategy.
In the Dale and Krueger (2002) context, analysts seeking a smaller set of

control variables must grapple with the fact that the college application pro-
cess can be parameterized inmanyways.Thisflexibility opens the door topo-
tentially misleading specification searches (Leamer 1983). The post-double-
selection (PDS) lasso estimator introduced by Belloni, Chernozhukov, and
Hansen (2014b) can addresses this concern. Lasso (Tibshirani 1996), which
abbreviates the “least absolute shrinkage and selection operator,” is a form
of regularized regression that improves out-of-sample predictionbydiscarding
some regressors and shrinking the coefficients on those retained. Post-lasso
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estimators use lasso solely for variable selection. ThePDSprocedure estimates
causal effects in two steps. First, lasso is used to determine which covariates
predict outcomes andwhich covariates predict treatment.The treatment effect
is then estimated in a second step that includes the union of post-lasso controls
selected for the outcome and treatmentmodels as covariates in a conventional
regression model.
The value of ML for sensitivity analysis emerges when we use PDS to se-

lect the control variables characterizing sets of colleges to which members
of the Dale and Krueger (2002) sample had applied and been accepted. Al-
though the number and identity of lasso-chosen controls change as we change
the details required for lasso implementation,OLS estimates withML-chosen
controls robustly replicate earlier estimates showing null returns to elite or
private college attendance. These encouraging findings should not be taken
as suggesting that ML creates valid conditional independence restrictions.
Rather,ML tools seem helpful for choosing between alternative specifications
that implement a common underlying conditional independence claim.1

Our second ML domain is the choice of instruments for IV estimation.
Use of ML for instrument selection is motivated by the fact that two-stage
least squares (2SLS) estimates in heavily overidentified models are biased.
And 2SLS estimation is infeasible when the instrument set exceeds the sam-
ple size. ML would seem to provide a useful guide to instrument selection
in the face of these problems, whittling a large set of potential instruments
down, keeping only those with a strong first stage. Motivated by this idea,
theoretical work by Belloni et al. (2012), Carrasco (2012), Hansen andKozbur
(2014),Hartford et al. (2016), and others consider regularizedmodels like lasso
for first-stage estimation. We explore a pair of overidentified IV applications
that would seem to have a role for ML-based instrument selection (although
the settings considered here have far fewer instruments than observations). In
contrast with encouraging findings on the utility ofML for selection of OLS
control variables, our findings for instrument choice are mostly negative.
In simulations derived from the Angrist and Krueger (1991) data, 2SLS

estimation using a post-lasso first stage often improves on conventional 2SLS
estimators using all available instruments, especially when lasso uses a plug-
in rather than a cross-validated penalty. Lasso with a cross-validated penalty
performs about like conventional 2SLS, however.And theAngrist andKrueger
(1995) split-sample IV (SSIV) estimator, an improved jackknife IV (IJIVE)
1 Urminsky, Hansen, and Chernozhukov (2016) discuss the value of PDS for
principled variable selection. Empirical work using ML for the selection of controls
includes Goller et al. (2019), which explores propensity score matching with an
ML-based propensity score estimate. See also Lee, Lessler, and Stuart (2010) for
an earlier effort in the same vein. In a Monte Carlo study, Knaus, Lechner, and
Strittmatter (2018) compare ML-based estimates of individual average treatment ef-
fects, focusing on effect heterogeneity. We discuss a related paper by Wuthrich and
Zhu (2019) in sec. III.
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estimator introduced byAckerberg andDevereux (2009), and the limited infor-
mation maximum likelihood (LIML) estimator are almost always better (i.e.,
less biased and have lower median absolute error) than 2SLS estimators using
apost-lassofirst stage, nomatter how the lassopenalty is chosen.Thesefindings
can be explained by the fact that approximate sparsity, a key lasso assumption,
requires the unknown population first stage to have few parameters relative to
sample size. In the applications we have in mind, the finite-sample behavior of
IV estimators is effectively characterized by a Bekker (1994) many-instrument
asymptotic sequence that fixes the ratio of the sample size to the number of
first-stage parameters (Angrist, Imbens, and Krueger [1999] demonstrate the
empirical relevance of the Bekker sequence for a leading example).
2SLSwith anML-chosenfirst stage also disappoints in a reexamination of

the instrument-selection strategy used by Gilchrist and Sands (2016). This
study uses lasso to pick instruments for the effect of a movie’s opening-
weekend viewership on subsequent ticket sales. ML is unimpressive here
in spite of the fact that a small number of terms appear to approximate the
first-stage conditional expectation function (CEF) well. The potential draw-
backs of ML for instrument choice are anticipated in part by Belloni et al.
(2012), Belloni, Chernozhukov, and Hansen (2013), and especially Hansen
and Kozbur (2014), but our conclusions are less optimistic.2 Even in models
with a mix of strong and weak instruments, where an analyst might hope that
lasso favors the strong, results using a post-lasso first stage exhibit substantial
bias. Moreover, this bias is aggravated by the pretesting of first-stage estimates
implicit in lasso.3

Our third domain concerns the selection of control variables in IV mod-
els withmany (possible) control variables but few instruments. This includes
applications like that of Angrist and Evans (1998), who estimate causal ef-
fects of childbearing on mothers’ labor supply using twin births and sibling
sex composition as a source of exogenous variation in family size. These just-
identified IV estimates are made more plausible by conditioning on maternal
characteristics (twin birth rates, e.g., are correlatedwithmaternal age and school-
ing). Our exploration of this idea, inspired by Athey, Tibshirani, and Wager
(2019), shows how random forest procedures founder when confronted with
models that require a low-dimensional additive first stage for identification.
2 Summarizing an analysis of the Angrist and Krueger (1991) data, e.g., Belloni,
Chernozhukov, and Hansen (2013, 281) conclude that “the results in Table 5 are
interesting and favorable to the idea of using lasso to perform variable selection for
instrumental variables.” Hansen and Kozbur (2014) note the poor performance of
post-lasso IV in the absence of approximate sparsity, including the potential for pre-
test bias, but this work comments more on precision than bias. Hansen and Kozbur
(2014) discuss a regularized jackknife IV estimator (JIVE) of the sort discussed by
Angrist, Imbens, and Krueger (1999) but omit LIML.

3 Hall, Rudebusch, andWilcox (1996) appear to be the first to note this sort of pre-
test bias. Andrews, Stock, and Sun (2019) demonstrate the relevance of pretest bias in
a simulation study based on articles appearing in the American Economic Review.
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The worst-case scenario here is an estimator with algorithmically induced
spurious exclusion restrictions that yield meaningless, yet statistically signif-
icant, second-stage estimates.

II. Casting Regression in Two Roles

Regression uses linear models to describe conditional CEFs. The condi-
tional expectation of a random variable, denoted Yi for person i, given a set
of variables,Xi, can be written E½YijXi 5 x�. Because E½YijXi 5 x� takes on
as many values as there are choices of x, labor economists and others doing
applied econometrics often aspire to simplify or approximate the CEF so as
to highlight or summarize important features of it. The regression of Yi on
Xi does this by providing the best linear approximation to the CEF. For-
mally, assuming Xi includes a set of K explanatory variables indexed by k,
the K � 1 regression slope vector, b, can be defined as the minimum mean
squared error (MMSE) linear approximation:

b 5 arg min
b

E E½YijXi� 2 X0
ibf g2� �

5 E½XiX0
i �21E½XiYi�: (1)

If the CEF is indeed linear, then regression finds it.
The contemporary ML agenda is more likely to use data on schooling to

predict individual earnings than to approximate the CEF. But the law of it-
erated expectations implies that the best (MMSE) linear predictor of Yi co-
incides with the best linear approximation to E½YijXi�. That is,

b 5 E½XiX0
i �21E½XiYi� 5 arg min

b
E Yi 2 X0

ibf g2� �
: (2)

The distinction between CEF approximation and individual prediction is
therefore of no consequence for parameters: the regression slope vector that
approximates the CEF also provides the best linear predictor ofYi givenXi.
TheOLS estimator, denoted here by b̂LS, replaces expectations with sums in
equation (2) and provides the best linear predictor in the sample in which it
is fit.
There seems to be little daylight between predictive regression and econo-

metric regression models motivated by an interest in conditional expecta-
tions. A gap opens, however, when an analyst aspires to use regression to
generate predictions in new data. Assuming that b̂LS is computed using data
on the first n observations only, the regression prediction ofYn11 givenXn11

is ŷn11 5 X0
n11b̂LS. Even in the realm of linear models, ŷn11 is not the best we

can do when it comes to out-of-sample prediction.
A better out-of-sample predictor augments the least squares minimand,

equation (2), with a regularization term that favors smaller coefficients
and lower-dimensional models over an unrestricted OLS fit. Much of the
ML toolkit can be said to consist of prediction augmented by regulariza-
tion. Ridge regression, introduced byHoerl and Kennard (1970), is an early
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version of this idea: the ridge regularization term is the sum of squared re-
gression coefficients. Lasso, a method associated with contemporary ML,
regularizes by including the sum of the absolute value of coefficients in the
estimation minimand:

min
b

1
no

n

i51

Yi 2 X0
ibf g2 1 lo

k

bkj j; (3)

where l is a user-chosen tuning parameter.
A second gap between the econometric and predictive ML frameworks

arises from the asymmetry with which most empirical labor economists
view regressors. The modern empirical paradigm usually distinguishes be-
tween the components ofXi: one is a causal variable of interest, the rest a set
of supporting controls whose coefficients are of secondary interest. An em-
pirical example highlights the significance of this distinction.

A. When Regression Reveals Causal Effects

Adapting the pioneering study by Dale and Krueger (2002), Angrist and
Pischke (2015) ask whether it pays to attend a private university like Duke
instead of a state school like theUniversity ofNorthCarolina (UNC). Is the
money spent on private college tuition justified by future earnings gains?
The causal regressor here is a dummy variable, Di, that indicates graduate
i attended private college. The outcome of interest, Yi, is a measure of earn-
ings roughly 20 years after enrollment. Our sample consists of the College
and Beyond survey data analyzed in Dale and Krueger (2002).
The causal relationship between private college attendance and earnings

can be described in terms of potential outcomes: Y1i represents the earnings
of individual i were he or she to go to a private college (Di 5 1), while Y0i

represents i’s earnings after a public education (Di 5 0). The causal effect of
attending a private college is the difference,Y1i 2 Y0i.We see onlyY1i orY0i,
depending on the value of Di. The analyst therefore aspires to measure an
average causal effect, like E½Y1i 2 Y0i�, or an effect conditional on treatment,
E½Y1i 2 Y0ijDi 5 1�.
The link between causal inference and regression is easiest to make in a

constant-effects framework that highlights the problem of selection bias, gloss-
ing over the distinction between different sorts of causal averages. The constant-
effects causal model can be written

Y0i 5 a 1 hi, (4)

Y1i 5 Y0i 1 r, (5)

where the first equation defines a to be the mean of Y0i and the individual
deviation from this mean to be hi. The second line says that the causal effect,
Y1i 2 Y0i, is a constant, r. Using the fact that observed outcomes are related
to counterfactual outcomes by
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Yi 5 Y0i 1 Y1i 2 Y0ið ÞDi,

we can use the constant-effects model to write

Yi 5 a 1 rDi 1 hi: (6)

Equation (6) casts the problem of selection bias in terms of hi, which looks
like a regression error term.Unlike regression residuals, however, which are
uncorrelated with regressors by definition, hi is correlated with Di.
Regression-based solutions to the problem of selection bias begin with a

key conditional independence assumption. Specifically, causal claims for re-
gression estimates are founded on the assumption that

E hijDi 5 1,Ai 5 a½ � 5 E hijDi 5 0,Ai 5 a½ �, (7)

where Ai is a vector of control variables and a is a particular value of Ai. In
other words, in the population withAi 5 a, the private and public earnings
comparison is an apples-to-apples contrast. This ceteris paribus claim can
be written compactly as

E hijDi,Ai½ � 5 E hijAi½ �: (8)

In the Dale and Krueger (2002) empirical strategy, the control vector Ai

identifies the sets of schools to which college graduates in the sample had
applied and were admitted. Equations (7) and (8) say that, conditional on
having applied to Duke and UNC and having been admitted to both, those
who chose Duke have the same average potential earnings as those who
went to UNC. Angrist and Pischke (2015) provide support for this claim,
showing that applicants matched on Ai have similar family income and SAT
scores.
The last element of the causal regression story is the assumption that the

conditional mean of hi is a linear function of Ai:

E hijAi½ � 5 g0Ai: (9)

This implies

hi 5 g0Ai 1 εi,

where it is surely true that

E εijAi½ � 5 0: (10)

Combining equations (8) and (9) generates a linear CEF with a causal
interpretation:

E YijAi,Di½ � 5 a 1 rDi 1 E hijAi½ �
5 a 1 rDi 1 g0Ai:

The regression model,
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Yi 5 a 1 rDi 1 g0Ai 1 εi, (11)

can therefore be used to construct unbiased estimates of the causal effect of
interest, r. The control coefficient vector, g, need not be economically inter-
esting but may provide diagnostic information useful for assessing the plau-
sibility of equation (8).4

Regression produces the best (in-sample) linear predictor of individual
outcomes, but our interest in equation (11) does not derive from this fact.
Indeed, the predictive accuracy of most labor regressions as measured by
R2 is pitiable. Rather, causal regressions like equation (11) are valuable if
and when they generate unbiased estimates of causal effects. An analyst
who seeks only to predict the wages of college graduates would likely do
well to dispense with elite college measures and application and admission
indicators altogether, focusing instead on where graduates live and work,
since these variables are highly predictive of earnings. Yet this sort of anal-
ysis misses the point of causal inquiry.

B. Benchmark Private College Premia

Private college alumni earnmore than those who attended public schools.
Remarkably, however, a set of well-chosen controls serves to eliminate ev-
idence of an elite college premium based on uncontrolled comparisons. This
can be seen in panel A of table 1. A private schooling earnings premium of
around 21 log points estimated with no controls (reported in the first col-
umn of the table) falls to a still-substantial 14 points (reported in the second
column) when estimated with 10 controls for applicant ability, like SAT
scores and class rank, and for family background in the form of parents’ in-
come. In contrast with the substantial private college premia reported in the
first two columns, however, estimates in columns 3 and 4 show that, con-
ditional on controls for the selectivity of schools to which graduates had ap-
plied and been admitted, the private premium falls to zero.
The choice of selectivity controls used to compute the estimates reported

in columns 3 and 4 of table 1 is motivated by the idea that, within each se-
lectivity group, students are likely to have similar educational and career am-
bitions, while they were also judged similarly capable by college admissions
staff. Within-group comparisons should therefore be considerably more
apples-to-apples than uncontrolled comparisons involving all students. Be-
cause there are many unique combinations of application and admissions
choices, it is helpful to group similarly selective schools like Princeton
4 The utility of regression for causal inference is not limited to models with con-
stant effects. Provided the parameterization of Ai is suitably flexible (as with sets of
dummy variables for categorical controls), the OLS estimand is a weighted average
of control-specific average causal effects (this interpretation is detailed in Angrist and
Krueger 1999).
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and Yale together. The models used to construct the estimates in columns 3
and 4 therefore control for sets of schools grouped by their Barron’s selec-
tivity (Barron’s magazine groups schools into six selectivity groups). This
model can be written

Yi 5 a 1 rDi 1 d00 Ci 1o
150

j51

djGROUPji

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
g0Ai

1 εi, (12)
Table 1
OLS Estimates of Elite College Effects

Basic Controls

DK02 Selection Controls

Barron’s
Matches
Only
(3)

Barron’s Matches
with Personal
Characteristics

(4)

Self-Revelation

None
(1)

Personal
Characteristics

(2)

Barron’s
Sample
(5)

Full
Sample
(6)

A. Private School Effects

Estimate .212 .139 .007 .013 .036 .037
(.060) (.043) (.038) (.025) (.029) (.039)

R2 .019 .107 .058 .138 .111 .114
Number of
controls 0 10 150 160 13 14

N 14,238 5,583 14,238

B. Effects of School-Average SAT Score/100

Estimate .109 .076 .008 .004 .004 .000
(.026) (.016) (.029) (.016) (.017) (.018)

R2 .019 .107 .066 .140 .107 .113
Number of
controls 0 10 334 344 13 14

N 14,238 9,166 14,238

C. Effects of Attending Schools Rated Highly Competitive or Better

Estimate .225 .153 .018 .022 .031 .068
(.046) (.030) (.047) (.035) (.032) (.029)

R2 .020 .108 .048 .129 .106 .114
Number of
controls 0 10 128 138 13 14

N 14,238 4,945 14,238
NOTE.—This table reports OLS estimates of the effect of college characteristics on graduate earnings, es-
timated with various sets of controls. Estimates use College and Beyond sampling weights and cluster stan-
dard errors by institution. Controls used for col. 2 include graduates’ SAT scores, log parental income, and
indicators for female, black, Hispanic, Asian, other/missing race, high school top 10%, high school rank
missing, and athlete. Controls for estimates reported in panel A, col. 3, include 150 dummies (for 151 cat-
egories) indicating the Barron’s selectivity mix of schools to which graduates applied and were admitted.
Controls for col. 4 include Barron’s dummies and the personal characteristics used for col. 2. The Barron’s
model in panel B includes 334 dummies; the Barron’s model in panel C includes 128 dummies. Columns 5
and 6 models replace dummies for Barron’s selectivity groups with the average SAT score of schools ap-
plied to, along with indicators for applying to two, three, and four or more schools. DK02 5 Dale and
Krueger (2002).
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where fGROUPji; j 5 1, ::: , 150g is a set of dummy variables indicating ap-
plication and admission to a particular configuration of Barron’s selectivity
groups, with group coefficients denoted dj (for 151 groups with variation in
private college attendance). The vector Ci contains the additional controls
used to construct the estimates reported in column 2. The full set of controls
in Ai includes Ci and the selectivity group dummies, although conditional
on the latter, the former may be unnecessary.5

Estimates of equation (12) suggest that the earnings premium enjoyed by
private college graduates reflects the high Y0is of those who aim higher and
are more attractive to admissions officers rather than capturing a causal ef-
fect of private attendance. The similarity of the estimates in columns 3 and 4
also shows this conclusion to be unaffected by adjustment for further con-
trols, like SAT score and family background, that are strongly predictive of
earnings. Is this lack of omitted-variable bias (OVB) a robust result, or did
we just get lucky? ML helps answer this.

III. Welcome to the Machine

A. ML Picks OLS Controls

Predictive ML fails to discriminate between causal and control variables,
but economists using ML are free to draw such distinctions. In an econo-
metric extension of the ML toolkit, Belloni, Chernozhukov, and Hansen
(2014b) introduce the method of PDS, an empirical strategy that uses lasso
to pick regression control variables. The Dale and Krueger (2002) research
design, potentially involving hundreds of control variables, seems like a pro-
mising test bed for the PDS framework.
Returning to the simple causal structure embodied in equations (4) and

(5), the identifying assumption motivating PDS can be stated as

E hijDi,Ai½ � 5 E hijAi½ � 5 g Aið Þ, (13)

where Ai is a vector of control variables as before. Function g(Ai) is short-
hand for an unknown, possibly nonlinear model capturing the dependence
of potential outcomes on controls. The Belloni, Chernozhukov, andHansen
5 College selectivity categories are determined by Barron’s Profiles of American
Colleges 1978. For example, one of the selectivity groups coded by fGROUPji;
j 5 1, ::: , 150g indicates those who applied to one highly competitive school and
two competitive schools and were admitted to one of each. Our sample consists of
people from the 1976 college-entering cohort who appear in the College and Beyond
survey and who were full-time workers in 1995. The analysis excludes graduates of
historically black colleges and is further restricted to applicant-selectivity groups con-
taining some students who attended public universities and some students who at-
tended private universities. The dependent variable is the log of pretax annual earnings
in 1995. Regressions are weighted tomake the sample representative of the population
of graduates of 30 College and Beyond institutions. A total of 68.6% of the sample
with Barron’s matches attended a private school.
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(2014b) framework maintains the hypothesis that the conditioning vari-
ables, Ai, are observed.
Faced with an abundance of candidate controls, PDS finds a list of vari-

ables adequate to control OVB while rendering causal inference feasible.
This strategy has an analog in a partially linear model in the style of Robin-
son (1988). The partially linear model of interest here can be written

Yi 5 g Aið Þ 1 rDi 1 εi, (14)

where condition (13) ensures that the error term, εi, is mean independent of
Ai and Di, and r is defined as a constant additive causal effect.
PDS adds to this structure a model for the propensity score—that is, for

the conditional probability of treatment given Ai—and a model for the re-
duced form, defined as E½YijAi�. These can be written as follows:

E½DijAi� 5 m1ðAiÞ, (15)

E YijAi½ � 5 m0 Aið Þ 5 g Aið Þ 1 rm1 Aið Þ: (16)

A partially linear estimator of r regresses Yi 2 m0ðAiÞ on Di 2 m1ðAiÞ, re-
placing unknown functions with consistent nonparametric estimates thereof.
This yields consistent estimates of r because both Yi 2 m0ðAiÞ and Di 2
m1ðAiÞ are uncorrelated with the unknown control function, g(Ai). In fact,
consistency requires only one of m0 or m1 to be specified correctly. In the
Robinson model, Ai is low dimensional, while the PDS scenario envisions
a need for dimension reduction.
PDS uses the assumption of (approximate) sparsity to approximate the

unknown, possibly nonlinear regression functions m0(Ai) and m1(Ai). Let
~Ai denoteAi augmentedwith transformations, adding, for example, polyno-
mial terms, dummy variables, and interaction terms. Approximations ofm1

and m0 can then be written

m1 Aið Þ 5 g0
1
~Ai 1 r1i,

m0 Aið Þ 5 g0
0
~Ai 1 r0i,

where r0i and r1i are approximation errors. The assumption of approximate
sparsity means that all but a few of the elements of g1 and g0 are zero and that
the approximation errors are small in a sense made precise in Belloni, Cher-
nozhukov, and Hansen (2014b). In other words, selection bias can be elim-
inated using only a subset of the elements of ~Ai.
The augmented control vector, ~Ai, is sometimes said to make up a “dic-

tionary” of possible controls. The dictionary is presumed to be of dimen-
sion p, where p may exceed sample size. Even where the underlying set
of controls is of modest dimension, the fact that functionsm0 andm1 are left
unspecified can lead to a a high-dimensional set of controls. Importantly,
however,m0(Ai) is presumed to be well approximated by s0 < n regressors,
while m1(Ai) is likewise well approximated by s1 < n regressors.
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PDS implements sparsity via lasso, a regularized regression estimator that
minimizes expression (3). Lasso deletes some variables from the covariate
dictionary while shrinking the coefficients on those retained toward zero.
PDS ignores lasso shrinkage, using lasso only as a model selection device;
OLS estimation of a model including only the variables retained by lasso
is called “post-lasso” estimation. Let Mi denote the union of control vari-
ables selected by lasso estimation of m0 and m1. Exploiting the properties
of multivariate regression models, PDS obtains the bivariate regression of
Yi 2 m0ðAiÞ on Di 2 m1ðAiÞ by OLS estimation of

Yi 5 p0Mi 1 rDi 1 yi, (17)

where yi is a regression residual.
The key approximate sparsity condition supporting PDS, formalized by

Belloni, Chernozhukov, andHansen (2014b), puts limits on s 5 maxfs0, s1g,
the maximum number of nonzero coefficients in the linear approximation
tom0(Ai) andm1(Ai). This condition requires that s2log2ðmaxfp, ngÞ=n con-
verges to zero and that the root mean squares of the approximation error
terms, r0i, r1i, be no more than C

ffiffiffiffiffiffiffi
s=n

p
for some fixed constant C.6

How important is double selection, that is, the fact that Mi contains the
union of post-lasso-chosen controls for the outcome reduced form and the
treatment propensity score? Given conditional independence assumption (8),
a regression ofYi onDi and reduced-form controls yields unbiased estimates.
In practice, the reduced form is unknown, and the post-lasso approximation
to it is inherently imperfect. Inclusion of lasso-retained covariates from the
propensity score mitigates the bias arising from such specification errors.7

B. Estimating Elite College Effects

The estimates at the top of table 1 suggest that, conditional on the Barron’s
categories of the colleges to which graduates had applied and been admitted,
private college attendance is unrelated to earnings. But control for OVB us-
ing 150 Barron’s dummies leaves around 5,600 observations, down from
more than 14,000 observations in the full College and Beyond sample of
graduates with earnings. A key problem here is that many selectivity groups
are populated by sets of graduates in which Di equals 0 or 1 for everyone.
OLS estimation of a model including the full set of Barron’s dummies is im-
plicitly a panel-data-style within-group estimator that drops observations in
6 Also needed for asymptotic normality are a sparse eigenvalue condition on the
Gram matrix, E½AiA0

i�, and the existence of bounds on various moments of the data;
see Belloni, Chernozhukov, and Hansen (2014b) for details.

7 More formally, Belloni, Chernozhukov, and Hansen (2014b) establish the uni-
form consistency of a PDS procedure given regularity conditions under which single-
selection estimators are not uniformly consistent. Doubly-robust propensity score
estimators offer similar bias mitigation in a semiparametric context (see, e.g., Bang
and Robins 2005).
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covariate cells where the regressor Di is fixed at 0 or 1—that is, cells with a
degenerate propensity score. The sample that can be used to estimate equa-
tion (12) need not be representative of the population covered by the Col-
lege and Beyond survey.
PDS offers an alternative to full selectivity-group control while retaining

variables that seem likely tomitigateOVB. It is worth noting, however, that
although a post-lasso algorithm applied to the set of Barron’s dummies in-
cluded in equation (12) may drop some of these dummies, it will not com-
bine them. Rather, by dropping dummies that are deemed unnecessary, post-
lasso estimators expand the reference group for the set of dummies retained.
Suppose, for example, that applicants apply to and are admitted to one of
three sets of schools. This scenario generates two Barron’s dummies plus a ref-
erence group. Omitting one dummy pools those in the omitted group with
the original reference group. Likewise, lasso will not pool groups of appli-
cants with a degenerate probability of assignment in a manner that makes
such groups informative about treatment effects. Recognizing problems
with lasso applied to dummy variables, analysts have proposed lasso-type
strategies that penalize differences in coefficients like the djs in equation (12).
But such methods (known as fused lasso) seem unlikely to be attractive for
models with categorical control variables indicating many categories. Our PDS
implementation therefore builds on an alternative control strategy that does
not rely on a large set of dummy controls.8

In addition to saturated control for 151 Barron’s selectivity groups, the
Dale and Krueger (2002) study explores a parsimonious control strategy
that conditions only on the average SAT score of the schools to which grad-
uates applied, plus dummies for the number of schools applied to (specifi-
cally, three dummies indicating those who applied to two, three, and four or
more schools). The Dale and Krueger (2002) paper labels this specification
a “self-revelation model.” The model is motivated by the hypothesis that
college applicants have a pretty good idea of the sort of schools within their
reach and of the set of schools where they are likely to be well matched. An
applicant’s self-assessment is reflected in the average selectivity of the schools
they have targeted, while the number of applications submitted is a gauge
of academic ambition.
Columns 5 and 6 in panel A of table 1 report estimates of private school

effects from the self-revelation model. When estimated using the sample
for which we can control for Barron’s matches, the self-revelation model
likewise generates a small and statistically insignificant private school effect
(specifically, 0.036 with a standard error of 0.029). Moreover, as can be seen
8 For variables like the Barron’s categories used to compute the estimates in table 1,
the number of parameters required tomodel all possible dummy coefficient differences
far exceeds the parameter constraints required for approximate sparsity. It also seems
worth noting that lasso estimators, like ridge estimators, are sensitive to the choice of
omitted group when categorical variables are coded with dummies.
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in column 6, the estimated private attendance effect is almost unchanged
when the self-revelation model is estimated using the full College and Be-
yond sample rather than the sample with Barron’s matches.
The Dale and Krueger (2002) study focuses on a continuous measure of

college selectivity—the average SAT score of students enrolled at the col-
lege attended—rather than a dichotomous private attendance variable. Al-
though PDS is motivated as a strategy for estimation of dichotomous treat-
ment effects, the logic behind it applies to models with continuous causal
regressors (Belloni, Chernozhukov, and Hansen [2014b] evaluate PDS in
a simulation study involving a normally distributed regressor). With con-
tinuous treatments, function m1(Ai) becomes a model for the conditional
mean of treatment rather than the conditional probability of treatment.
As a benchmark forML estimates of average SAT effects, panel B of table 1

reports estimates of the earnings gain generated by attendance at a more se-
lective school (cols. 2 and 4 of this panel replicate results reported in Dale
andKrueger 2002).Without controls, each 100 point increment in almama-
ter selectivity is associated with around 11% higher earnings among grad-
uates, a substantial gap that falls to a still-significant 7.6% when estimated
with controls for individual characteristics like SAT scores and class rank.
As with the private earnings premium, however, the estimates reported in
columns 3 and 4 of panel B suggest that college selectivity is unrelated to
earnings when SAT effects are estimated with ability and ambition controls
in the form of dummies for Barron’s selectivity groups. Likewise, as can be
seen in column 5, self-revelation controls serve to eliminate college selectiv-
ity effects. Finally, the estimates in column 6 show that this conclusion holds
in the full College and Beyond sample.
We also consider effects of a third treatment variable, dichotomous like

the private attendance dummy butmeasuring college selectivity like average
SAT scores. This is a dummy for schools that Barron’s ranks as being “highly
competitive” or better (denoted HC1). Roughly 73% of the full College
and Beyond sample attendedHC1 schools, close to the 72%who attended
a private school (the private and HC1 dummies differ for 13% of the Col-
lege and Beyond sample). As can be seen in panel C of table 1, the premium
associated with HC1 attendance is close to that associated with private at-
tendance. Moreover, like the estimated private college effects reported in
panel A, the HC1 effect falls but remains substantial when estimated with
controls for a few individual characteristics. Finally, as with the private and
selective college estimates in panels A and B, theHC1 effect disappears con-
ditional on dummies for Barron’s selectivity groups andwhen estimatedwith
self-revelation controls in the Barron’s-group sample. Interestingly, how-
ever, self-revelation estimates computed using the full sample fail to replicate
the statistical zeros reported in columns 3 and 4. Rather, the estimated pre-
mium forHC1 attendance reported at the bottomof column 6 is amarginally
statistically significant 0.068.
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C. PDS-Supported Sensitivity Analysis

The small set of Dale and Krueger (2002) self-revelation controls yields a
model estimable in the full College and Beyond sample. But the set of con-
trols used by this strategy could just as well have been something else, per-
haps characteristics of the most or least selective school to which applicants
applied instead of average selectivity.MLmethods—and PDS in particular—
seem useful for a systematic exploration of the sensitivity of causal conclu-
sions when many equally plausible specifications are available.
Our PDS estimator for private college effects begins with a dictionary

containing 384 possible control variables, including the personal character-
istics used for column 2 and the self-revelation controls used for columns 5
and 6 of table 1. The dictionary omits dummies for Barron’s selectivity
groups, relying on coarser summary statistics to describe the colleges to
which graduates applied and were accepted. Specifically, the dictionary adds
the number of colleges applied to; indicators for being accepted to one, two,
three, or four or more colleges; indicators for being rejected from one, two,
three, or four or more colleges; mean SAT scores at the most selective
school, at the least selective school, and for all schools where the applicant
was accepted; mean SAT scores at the most selective school, at the least se-
lective school, and for all schools where the applicant was rejected; and all
two-way interactions and squared terms associated with the underlying list
of possible controls except for squares of dummy variables, which are re-
dundant. This dictionary encompasses a wide range of alternatives to the
self-revelation model.
PDS estimates of private college effects, reported in the first three col-

umns of panel A in table 2, aremostly similar to the corresponding estimates
computed inmodelswithBarron’s dummies and self-revelation controls. For
example, using a plug-in penalty computed by Stata 16’s lasso linear com-
mand, the PDS-estimated private attendance effect is 0.038 with a standard
error of 0.04. This is generated by a model that retains 18 controls. The
plug-in penalty used to compute this estimate, based on a formula in Belloni,
Chernozhukov, and Hansen (2014b), is data driven although not cross vali-
dated. As can be seen in column 2, a cross-validated penalty retains far more
controls (100) but yields similar estimates. An alternate procedure, cvlasso,
part of a set of Stata routines called Lassopack (Ahrens, Hansen, and Schaffer
2019), adds a few more controls (for a total of 112) but again yields similar
estimated private school effects. These results appear in column 3.9
9 The Belloni et al. (2012) and Belloni, Chernozhukov, and Hansen (2014b) plug-in
penalties generalize the penalty formula proposed by Bickel, Ritov, and Tsybakov
(2009). The plug-in penalty requires two user-specified constants, c and g, which we
set at the rlasso (Ahrens, Hansen, and Schaffer 2019) defaults (c 5 1:1 and g 5 0:1=
logðnÞ). Belloni, Chernozhukov, and Hansen (2014b) suggest using c 5 1:1 and
g 5 0:05.
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The tendency for cross validation to produce smaller penalties (and hence
to include more controls) also surfaces in results reported by Chetverikov,
Liao, and Chernozhukov (2019). This is an important caution for practi-
tioners: implementation details are likely to matter in some applications,
even if not in our table 2. Other relevant computational considerations in-
clude the use of regressor-specific penalty loadings, choice of software, and
options affecting cross validation. In view of the increasinglywide variety of
lasso estimation routines, an appendix (available online) details our choices
in this regard further. Table A1 (tables A1–A3 are available online) com-
pares estimates of elite college effects computed using additional cross-
validation schemes. With one exception, these are qualitatively similar to the
estimates reported in table 2.
able 2
ost-lasso Estimates of Elite College Effects

Double Selection (PDS) Outcome Selection
All

Controls

Plug-In
(1)

CV l
(2)

cvlasso
(3)

Plug-In
(7)

CV l
(8)

cvlasso
(9)

OLS
(7)

A. Private School Effects

stimate .038 .020 .040 .046 .043 .042 .017
(.040) (.039) (.041) (.041) (.043) (.043) .039

umber of controls 18 100 112 10 35 50 303

B. Effects of School-Average SAT Score/100

stimate 2.009 2.013 2.009 2.008 2.009 2.008 2.012
(.020) (.018) (.019) (.020) (.019) (.019) (.018)

umber of controls 24 151 58 10 34 43 303

C. Effects of Attending Schools Rated Highly Competitive or Better

stimate .068 .051 .073 .076 .080 .082 .053
(.033) (.033) (.033) (.031) (.032) (.032) .033

umber of controls 17 185 106 10 34 43 303
NOTE.—The sample size is 14,238. Estimates in cols. 1–3 are from PDS lasso procedures. Results in cols. 4–
are from a procedure applying lasso to a reduced-form regression of the outcome on the dictionary of
ntrols. Columns 1 and 4 show results using the Stata 16 lasso linear command to select controls with a
lug-in penalty and OLS to compute the estimates. Columns 2 and 5 use lasso linear with tenfold cross
alidation (CV) to select the penalty. Columns 3 and 6 use Stata 15 (Lassopack) cvlasso to select the penalty,
asso to select controls, and OLS to compute estimates. See the appendix for details. Column 7 reports
LS estimates including the entire set of controls. Controls include those used for col. 5 of table 1 plus
e following: indicators for being accepted to two colleges, three colleges, and four or more colleges; in-
icators for being rejected from one college, two colleges, three colleges, and four or more colleges; the
umber of schools applied to; the average SAT score among schools at which the applicant was accepted;
e average SAT score among schools from which the applicant was rejected; the highest average SAT score
ross schools at which the applicant was accepted; the highest average SAT score across schools from
hich the applicant was rejected; the lowest average SAT score among schools at which the applicant
as accepted; the lowest average SAT score among schools from which the applicant was rejected; and
l two-way interactions of the above variables. The control dictionary contains 384 variables. OLS esti-
ates use weights and are reported with robust standard errors clustered by institution. All lasso com-
ands use regressor-specific penalty loadings.
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PDS estimates of the effect of elite college attendance as measured by
school-average SAT scores are reported in the first three columns of panel B
in table 2. These are close to zero and about as precise as the benchmark
full-sample estimates of average SAT effects reported in table 1. In this case,
PDS estimation with plug-in, cross-validated, and cvlasso tuning parame-
ters retains 24, 151, and 58 controls, respectively. Thewide variation in con-
trol variable choice induced by changes in tuning parameters is an impor-
tant caution for researchers looking to interpret coefficients on the control
variables themselves. But this variation also suggests that the findings in
table 1 should not be seen as the product of a judicious specification search.
Finally, as with the benchmark self-revelation estimates of HC1 effects re-
ported in column 5 of table 1, PDS estimates of HC1 effects reported in
panel C of table 2 show positive effects, two of which are marginally sig-
nificant. Again, tuning parameter choice generates considerable variation in
controls, but this variation is not reflected in estimates of the causal effect of
interest.
It is interesting to contrast PDSwith single-selection lasso. Results in col-

umns 4–6 of table 2 are from a procedure applying lasso to the reduced-
form regression of the outcome variable on controls (the reduced form
excludes the treatment variable). This single-selection estimator naturally
relies on fewer controls than does PDS.Outcome-only selection of controls
also generates somewhat larger HC1 effects. In contrast with the rest of ta-
ble 2, the impression left by columns 4–6 of panel C is one of significant ef-
fects on the order of 0.08. The argument for double selection given in sec-
tion III.A implies that the smaller PDS estimates (with similar standard
errors) are likely to be more reliable. Reinforcing this conclusion, outcome
selection using an alternative plug-in penalty yields a model with only a sin-
gle control and an outlying estimated HC1 effect of 0.22.10

A conventional, ML-free approach to probing the sensitivity of regres-
sion estimates simplywidens the set of controls. Column 7 of table 2 reports
estimates and standard errors of the effect of elite college attendance from
models that include the full set of controls in the dictionary underlying
lasso. Because some controls are linearly dependent, the model used to con-
struct these estimates retains 303 of 384 controls in the dictionary. Full-
dictionary control is feasible here because the dictionary is not truly high
dimensional in the sense of containing more variables than observations.
As it turns out, the full-control estimates in column 7 are similar to those
generated by PDS.
An empirical example does not make a theorem, of course. Wuthrich and

Zhu (2019) use a mix of simulation evidence and theory to show that the
10 Single selection applied to the propensity score with this penalty generates an
estimate with a standard error almost 50% larger than that of the corresponding
PDS estimates. These results appear in table A1.
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quality of PDS bias mitigation depends on design features like regressor
variance and the extent of OVB. Moreover, we have examined a scenario
in which OLS with full-dictionary control is feasible and effectively re-
moves OVB. Even so, PDS seems a useful tool for sensitivity analysis in
a regression context, where analysts may choose from an abundance of pos-
sible control variables. Findings where the target causal estimate remains
reasonably stable while the list of selected controls varies from one routine
to another reinforce claims of robustness.
It is worth emphasizing that a causal interpretation of theML estimates in

table 2 turns on a maintained conditional independence assumption. ML
methods do not create quasi-experimental variation. Rather, ML uses data to
pick from among a large set of modeling options founded on a common iden-
tifying assumption. This facilitates estimation in high-dimensional control sce-
narios and may increase precision (although that is not the finding here). We
have also noted considerable sensitivity to implementation details, specifically
to software choice and lasso penalty determination.

IV. ML Picks Instruments

The sampling variance of a 2SLS estimate is inversely proportional to the
first-stage R2. This fact encourages the use of many instruments. On the
other hand, 2SLS estimates are biased, with a finite-sample distribution
shifted toward the mean of the corresponding OLS estimates. Additional
instruments aggravate this bias when their explanatory power is low (see, e.g.,
Angrist and Krueger 1999). This bias-variance trade-off appears to suggest
a fruitful empirical strategy that uses ML to select instruments. Use of ML
for instrument selection is discussed and explored in work by Belloni, Cher-
nozhukov, and Hansen (2011), Belloni et al. (2012), and Mullainathan and
Spiess (2017), among others.11

A. Machining the Angrist and Krueger (1991) First Stage

How valuable is a machine-specified first stage for labor IV? We explore
this question by revisiting Angrist and Krueger (1991), an influential IV
study that uses quarter of birth (QOB) dummies as instruments to estimate
the economic returns to schooling. The QOB identification strategy is mo-
tivated by the fact that children who start school at an older age attain the
minimum school dropout age after having completed less schooling than
11 Okui (2011) and Carrasco (2012) appear to be the first explorations of ridge-
type regularized IV as a solution to the weak-instruments problem. Carrasco and
Tchuente (2015) discuss regularized LIML. Hansen and Kozbur (2014) regularize the
Angrist, Imbens, and Krueger (1999) jackknife IV estimator. Donald and Newey
(2001) truncate an instrument list based on approximate mean squared error.
Chamberlain and Imbens (2004) introduce a random effects procedure for models
with many weak instruments that is closely related to LIML.
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those who enter school younger. Because most children start school in the
year they turn 6 years old, those born later in the year are younger when
school starts and are therefore constrained by compulsory attendance laws
to spend more time in school before reaching the dropout age. Angrist and
Krueger (1991) document a strong QOB first stage, showing that highest
grade completed increases with QOB for US men born in the 1920s and
1930s.
The Angrist and Krueger (1991) endogenous variable is highest grade

completed; the dependent variable is the log weekly wage. Our replication
focuses on a sample of 329,509 men born between 1930 and 1939 from the
1980 census public use files. In this sample, a regression of schooling on
three QOB dummies and nine year of birth (YOB) dummies generates an
F-statistic for the three excludedQOB instruments of around 36. This strong
relationship reflects the fact that fourth-quarter births complete around
0.12 more years of schooling than first-quarter births and are around 2 per-
centage points more likely to graduate high school (t-statistics for these ef-
fects exceed 7). 2SLS estimates using three QOB dummies as instruments
therefore seem unlikely to suffer substantial weak-instrument bias.
The many-weak-instrument angle surfaces when QOB dummies are in-

teracted with dummies for YOB and place (state) of birth (POB). These in-
teractions are motivated by the fact that the relationship betweenQOB and
schooling varies both across cohorts (as compulsory attendance laws have
grown less important) and across states (since states set school attendance
policy).12 Interacting three QOB dummies with nine YOB and 50 POB
dummies (including one for theDistrict ofColumbia) generates 180 excluded
instruments. The first-stage F-statistic in this case (controlling for additive
YOB and POB main effects) falls to around 2.6. As first noted by Bound,
Jaeger, and Baker (1995), this many-weak-instrument first stage may gener-
ate estimates of the economic returns to schooling that are close to the cor-
responding OLS estimates solely by virtue of finite-sample bias. A fully in-
teracted QOB-YOB-POB first stage has 1,530 instruments. The first-stage
F-statistic in this case falls below 2, so the potential bias of 2SLS here is even
larger.
As in the previous section, our framework for instrument selection main-

tains the underlying identifying assumptions that motivate IV estimation.
In particular, we aspire not to find valid instruments but rather to choose
among them. We assess the consequences of instrument choice for the bias
and dispersion of the resulting IV estimates; problems of statistical inference
are left for futurework.Our investigation begins by examining anML strat-
egy in which conventional 2SLS is carried out using the instrument set re-
tained by a lasso preliminary stage, an approach suggested by Belloni et al.
(2012).
12 Angrist and Krueger (1992) explore this heterogeneity.
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Lasso for instrument selection is evaluated here in a simulation experiment
calibrated so that OLS estimates are misleading. In the absence of omitted
variables or endogeneity bias in OLS estimates, it is hard to gauge the po-
tential for finite sample bias in 2SLS estimates. For example, with a single
fourth-quarter dummy as the instrument, 2SLS in the Angrist and Krueger
(1991) sample generates an estimated return to schooling of 0.074. The cor-
respondingOLS estimate is 0.071.13 This just-identified IV estimate (which,
like LIML, is approximately median unbiased) suggests that OLS is a good
guide to the causal effect of schooling on wages. But then we should expect
OLS and 2SLS estimates to be close regardless of instrument strength (see
alsoCruz andMoreira [2005], which argues that even heavily overidentified
Angrist andKrueger [1991] estimates have little bias). This leads us to craft a
simulation design that preserves the structure of the Angrist and Krueger
(1991) sample and IV estimates but introduces substantial OVB in the cor-
responding OLS estimates.
Our simulated endogenous school variable is constructed from average

highest grade completed in each QOB-YOB-POB cell, computed in the
Angrist and Krueger (1991) 1980 sample (for a total of 2,040 means). Call
these cell averages �sðq, c, pÞ, where q 5 1, ::: , 4; c 5 1,930, ::: , 1,939; and
p 5 1, ::: , 51. Simulated schooling,~si, is a Poisson drawwithmean mi, where

mi 5 max½1,�sðQi,Ci, PiÞ 1 k1ni� (18)

and variablesQi,Ci, and Pi are i’s quarter, cohort (year), and place (state) of
birth. This mean is censored below at 1. Mean mi is generated with the aid of
a standard normal variable, denoted ni, multiplied by a scale parameter, k1.
Scale is chosen to generate a first-stage R2 and partial F-statistic matching
those from a 2SLS procedure that uses 180 excluded instruments in the orig-
inal Angrist and Krueger (1991) data. This benchmark specification uses
three QOB dummies interacted with 10 YOB dummies and 50 POB dum-
mies as instruments, controlling for a full set of POB-by-YOB interactions.
The first-stage F-statistic in this 180-instrument model is 2.56.
Our simulated dependent variable builds on the conditional mean func-

tion generated by 2SLS estimation with 180 instruments in the Angrist and
Krueger (1991) sample. Specifically, let ŷðCi, PiÞ be the second-stage fitted
value this model generates after subtracting r̂2SLSSi, where r̂2SLS is the 2SLS
estimate of the returns to schooling and Si is schooling. The notation here
reflects the fact that this estimated fitted value varies only by YOB and
POB. The simulated dependent variable is then constructed as
13 These estimates, which include no controls, are from table 6.5 in Angrist and
Pischke (2015). The corresponding standard error is 0.028. The 2SLS estimate with
three QOB dummies as instruments and YOB dummies included as controls is
0.105, with a standard error of 0.02.
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~yi 5 ŷðCi, PiÞ 1 0:1~si 1 qðQi,Ci, PiÞðni 1 k2eiÞ, (19)

where~si is schooling simulated using equation (18). The causal effect of school-
ing on wages is fixed at 0.1. Error term εi is standard normal, while weight
qðQi,Ci, PiÞ is set to generate a conditional variance of residual wages in each
QOB-YOB-POB cell proportional to the variance of 2SLS residuals in the
original data (again, using the 180 instrument model). Finally, setting the scale
parameter k2 5 0:1 generates an OLS estimand equal to 0.207, or roughly
double the causal effect of interest. Each simulation begins with a bootstrap
sample of fQi,Ci, Pig from the original data. Simulated schooling and wages
are then constructed for this draw as described by equations (18) and (19).
Across 999 simulation draws, 2SLS estimates have bias around 0.04, while

the bias of OLS is 0.107 by construction. Using the full set of QOB�
YOB � POB dummies as instruments (for a total of 1,530 excluded instru-
ments) increases 2SLS bias by about 50%, to 0.061. These results appear in
thefirst two rows of table 3, which also shows the averagefirst-stage F-statistic
across simulations above column headings. The Monte Carlo standard de-
viation of 0.011 is close to the (robust) standard error estimated for the 180-
instrumentmodel using the original data.Not surprisingly,moving from180
to 1,530 instruments increases precision, at the price of increased bias. As
can be seen in columns 4 and 9, themedian absolute deviation (MAD, defined
as the median of the absolute value of the difference between simulated esti-
mates and themedian simulation estimate) of the 2SLS estimates is somewhat
below the corresponding standard deviation. The Monte Carlo median ab-
solute error (MAE, reported in columns 5 and 10 and defined as the median
of the absolute value of the difference between simulated estimates and 0.1)
is close to the bias.
The bias reduction yielded by a post-lasso first stage depends heavily on

themanner inwhich the penalty term is chosen.On average, a cross-validated
penalty retains 74 of 180 and 99 of 1,530 instruments. As can be seen in the
row immediately below the 2SLS estimates, post-lasso estimation using cross-
validation-chosen penalties yields almost no bias reduction over 2SLS while
slightly increasing sampling variance (as reflected in the Monte Carlo stan-
dard deviation).14

Swapping the cross-validated penalty for a plug-in penalty leaves far fewer
instruments. This is because the modified plug-in penalty proposed by
Belloni et al. (2012) is much larger than the corresponding cross-validated
penalty. Starting with a dictionary of 180 instruments, the plug-in penalty
retains only two instruments, on average, and even fewerwhen startingwith
14 Cross-validated lasso penalty terms for the estimates in table 3 are chosen once
using the original data. Plug-in penalties are recalculated in each simulation draw.
Conditional on covariates, the original data and simulation draws are independent.
Lasso is reestimated for each draw.
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1,530 instruments (in a few simulation runs, the plug-in estimator retains no
instruments). Our findings here are consistent with simulation results com-
paring lasso estimates computed with cross-validated and plug-in penalties
reported by Belloni et al. (2012) and Chetverikov, Liao, and Chernozhukov
(2019). Use of a much smaller instrument set reduces bias to around 0.015
when starting with either instrument set.
The bias reduction yielded by a plug-in penalty comes at the cost of re-

duced precision. With so few instruments retained, the standard deviation
of estimated schooling coefficients is about 0.035, while the MAE of these
estimates is about 0.028. This is a considerable improvement on the bias of
2SLS estimates. But three non-ML IV estimators that are often used inmany-
weak-IV scenarios—LIML, SSIV, and IJIVE—do better. LIML is an ap-
proximately (median) unbiased maximum likelihood alternative to 2SLS (see,
e.g., Davidson and MacKinnon 1993). SSIV, a split-sample version of 2SLS
introduced by Angrist and Krueger (1995), estimates first-stage parameters
in half the sample, carrying these over to the other half to computefitted val-
ues. SSIVuses these “cross-samplefitted values” as instruments.15 SSIV is con-
sistent under a Bekker (1994) many-instrument asymptotic sequence and
is therefore also approximately unbiased. The IJIVE estimator suggested by
Ackerberg and Devereux (2009) constructs a first-stage fitted value for each
observation in a leave-out sample omitting that observation, after partialing
out covariates using the full sample. Ackerberg and Devereux (2009) show
that IJIVE is superior to the JIVE estimators discussed in Angrist, Imbens,
and Krueger (1999). Like SSIV and LIML, JIVE-type estimators are Bekker
unbiased.
The results in table 3 suggest that SSIV, IJIVE, and LIML estimates using

both 180 and 1,530 instruments are indeed virtually median unbiased, al-
though LIML and IJIVE are more precise than SSIV (compare, e.g., Monte
Carlo standard deviations of 0.012 for LIML and 0.016 for SSIV using
1,530 instruments).16 The standard deviation of these estimators mostly lies
between that of the lasso estimators computed using plug-in and cross-
validated penalties. LIML, IJIVE, and SSIV outperform the best of the lasso
estimators onMAE grounds. This reflects the fact that even with a relatively
severe plug-in penalty, lasso-based estimates remain biased. The median un-
biasedness of LIML, IJIVE, and SSIV is apparent from the fact that MAE for
these estimators is almost indistinguishable from MAD.17
15 Angrist and Krueger (1995) call this version of split-sample IV an “unbiased
split-sample estimator.”

16 Blomquist and Dahlberg (1999) also find that LIML and JIVE perform better
than SSIV.

17 LIML is the maximum likelihood estimator of a linear equation with an endog-
enous regressor under normality, but the generalized-method-of-moments justifica-
tion for LIML requires only conditional homoskedasticity (Hausman et al. 2012). Our
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Grouped under the split-sample IV heading, table 3 reports SSIV estimates
computed with an instrument list chosen by lasso. Using a cross-validated
penalty, these are virtually unbiased. But there would seem to be little rea-
son to prefer lassoed SSIV over full-dictionary SSIV, since the latter is more
precise and has smaller MAE. At the same time, use of a plug-in penalty in a
post-lasso SSIV procedure yields a first stage that mostly chooses no instru-
ments. Specifically, post-lasso SSIV with a plug-in penalty picks no instru-
ments in 670 out of 999 iterations for the 180-instrument case and in 893 out
of 999 iterations for the 1,530-instrument case. The post-lasso SSIV estimates
computed when instruments are retained are biased and much less precise
than conventional SSIV estimates. Finally, using a sample split just to
choose instruments (although not forfirst-stage estimation) yields estimates
only marginally better than 2SLS when applied to the 1,530-instrument
model (compare MAEs of 0.046 and 0.056) and a little worse for the 180-
instrument model (compare MAEs of 0.043 and 0.040).18

B. Theoretical Considerations

Lasso for instrument selection faces two challenges. First is the fact that any
overidentified 2SLS estimator is biased. The second is a pretesting problem.
The Bekker sequence (named for Bekker [1994] and used by Angrist and

Krueger [1995]) describes the bias of IV estimators using an asymptotic se-
quence that fixes the (limiting) number of observations per instrument as
the sample size grows. This sequence shows that with many weak instru-
ments, we should expect 2SLS estimates to be biased toward the correspond-
ing OLS estimates in inverse proportion to the first-stage F-statistic for ex-
cluded instruments. By contrast, LIML, SSIV, and JIVE estimators are Bekker
unbiased. Angrist, Imbens, and Krueger (1999), among others, show that the
Bekker sequence describes thefinite-sample behavior of alternative IV estima-
tors extraordinarily well.19
simulation errors are normal but realistically heteroskedastic, so it seems fair to say
that the simulation design does not stack the deck in favor of LIML.

18 This estimator, reported in the row labeled “Post-lasso (IV choice split only,
cross-validated penalty),” splits the sample, using one half-sample and the cross-
validation penalty chosen in the original data to select instruments via lasso. This
instrument set is then used for conventional 2SLS estimation in the other half-
sample. All our split-sample procedures enforce an equal split and average results
from complementary splits. Chernozhukov et al. (2018) discuss IV strategies that
use lasso or other ML estimators in combination with SSIV-type sample splitting.

19 The Bekker sequence has antecedents in Kunitomo (1980) and Morimune
(1983), althoughBekker (1994) appears to be thefirstmotivated by quasi-experimental
applications like Angrist andKrueger (1991). Hansen, Hausman, andNewey (2008)
generalize the Bekker sequence to approximate the behavior of a wider class of es-
timators under weaker conditions.
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MLmethods are oftenmotivated by prediction problems in which the num-
ber of predictors is very large, perhaps even of the same order of magnitude as
the sample size. In an IV context, this sounds like a many-weak-instrument
scenario. But the asymptotic sequence that justifies use of lasso for first-stage
estimation has the sample size increasing relative to the number of parameters
estimated. In such a sequence, the dictionary of possible instruments may be
much larger than the sample size, but the number of parameters in anML-
engineered first stage is still limited. In particular, the Belloni et al. (2012)
approximate sparsity condition implies limn→∞s=n 5 0, where s is the number
of instruments needed to approximate the first-stage CEF. By contrast, the
Bekker sequence allows the limit of s=n to be fixed at a number strictly be-
tween 0 and 1, a scenario Ng (2013) refers to as “dense.” In the Bekker se-
quence, the fact that lasso truncates a dense instrument list reduces the bias
of 2SLS estimates but does not eliminate it.
Perhaps the Angrist and Krueger (1991) application is an unfair test of

the lasso idea. The number of Angrist and Krueger (1991) instruments is
at least two orders of magnitude below sample size, so Angrist and Krueger
(1991) is not a true high-dimensional scenario. Even so, Angrist and
Krueger (1991) is often seen as representative of empirical labor applications
in which many weak instruments are a concern (e.g., Staiger and Stock 1997;
Chamberlain and Imbens 2004; Hansen, Hausman, andNewey 2008). Like-
wise, Belloni, Chernozhukov, andHansen (2011), Belloni andChernozhukov
(2011), Belloni, Chernozhukov, and Hansen (2013), and Hansen and Kozbur
(2014) use Angrist and Krueger (1991) data as a test bed for machine-chosen
first stages.
Other IV scenarios may indeed favor lasso. Belloni et al. (2012) report

simulation results for a sample size of 100 and a sparse first stage with ex-
ponentially or discontinuously declining first-stage coefficients. In this ex-
periment, lasso-based IV outperforms 2SLS, LIML, and the Fuller (1977)
modification of LIML. Belloni et al. (2012) also consider weak-instrument-
robust hypothesis testing in combination with lasso, extending an approach
in Staiger and Stock (1997). But this may be unnecessary: Bekker (1994) gives
standard error formulas consistent under a many-IV sequence, Kolesár et al.
(2015) show that these provide good confidence interval coverage, and
Hansen, Hausman, and Newey (2008) generalize Bekker standard errors
to allow for heteroskedasticity.
1. Post-lasso as Pretest

As first noted by Hall, Rudebusch, and Wilcox (1996), estimation after
screening instruments on the basis of the statistical significance offirst-stage
coefficients need not improve, and may even aggravate, the bias of IV esti-
mates with weak instruments. Pretesting estimated first-stage coefficients
aggravates bias because high in-sample correlation with an endogenous
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regressor is associated with a high in-sample correlation with omitted var-
iables (or structural error terms) when instruments are weak.20

The theoretical link between post-lasso IV and pretesting is most visible
in the case where the instruments are a set of orthonormalized variables (say,
mutually exclusive dummies normalized by the size of the groups they in-
dicate). In this case, post-lasso selects an instrument when the associated
first-stage coefficient exceeds a constant. In particular, letting p̂j denote
the coefficient on the jth instrument from an OLS first stage using ortho-
normalized instruments, post-lasso estimators retain the jth instrumentwhen

p̂j

�� �� > cn, (20)

where cn is determined by the lasso penalty and sample size (see, e.g., Hastie,
Tibshirani, and Wainwright 2015). The analogy with pretesting arises be-
cause pretest estimators retain p̂j using a rule like inequality (20), where
the threshold is proportional to the estimated standard error of p̂j, which
depends on sample size. Lasso regularity conditions imply that lasso and
pretest thresholds converge at different rates. In the data at hand, however,
lasso and 2SLS with a pretested first stage can be operationally similar.
Evidence of pretest bias emerges when LIML is computed with a post-

lasso instrument list. This can be seen in the rows in table 3 labeled “post-
lasso LIML.”When lasso penalties are cross validated, the otherwise median-
unbiased LIML estimator exhibits bias of 0.022 in the 180-instrument model
(with 74 instruments retained) and 0.048 when using 1,530 instruments (with
an average of 99 retained). Lasso with a plug-in penalty retains only two in-
struments, but here too we see evidence of bias. With a plug-in penalty, the
combination of bias and reduced precision yields an MAE of around 0.026
using both instrument lists, two to three times MAE for all-instrument
LIML. Not surprisingly, with only two instruments retained, the behavior
of plug-in lassoed LIML is close to that of post-lasso (plug-in) 2SLS using
a similarily small instrument set. Byway of comparison, the table also shows
an explicitly pretested LIML estimator, which retains instruments with a
first-stage t-statistic in the upper decile of t-statistics for the full set of instru-
ments. The point here is not to recommend this for empirical practice.Rather,
the similarity of bias andMAE for pretested LIML and lassoed LIML using
a cross-validated penalty highlight the pretesting problem with the latter.

2. A Walk in the Woods

The bias engendered by an ML-chosen instrument list is not unique to
lasso. This is evident in results from an IV procedure that uses regression
trees to estimate first-stage conditional mean functions. Given predictors
20 Andrews, Stock, and Sun (2019) survey and assess the pretesting problem in
modern applications of IV.
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like YOB and QOB, a tree-based first stage might split schooling into
branches containing older and younger workers and then split the older
group by QOBwhile leaving all of the younger group pooled (perhaps be-
cause compulsory attendance laws matter little for those born later). Splits
are chosen or skipped so as to minimize mean squared error or some other
measure of fit. “Leaves” on the resulting trees are end points in each se-
quence of splits. Regression tree predictions are given by average outcomes
for observations on a leaf (see, e.g., Athey and Imbens 2019). Random for-
ests, introduced by Breiman (2001), elaborate on regression trees by using
bootstrap samples and looking only at randomly selected subsets of predic-
tors when deciding where to split. Random forest predictions average the
predictions from each of these sampled splits.
Building on methods described in Hartford et al. (2017), Ash et al. (2018)

explore a procedure using random forest first-stage fitted values to com-
pute IV estimates of the effects of appellate court decisions on the length
of sentences handed down in district courts. The characteristics of appel-
late court judges, who are selected by random assignment, play the role of
(high-dimensional) instruments. In a related application of ML to IV,
Athey, Tibshirani, and Wager (2019) and Chernozhukov et al. (2018) use
a random forest procedure to select instruments and to select and partial
out nonexcluded (exogenous) covariates, an ML application discussed in
section V.
We explore the utility of IV with random forest first-stage fitted values

using 1,530 QOB-based instruments for education, controlling for a full
set of YOB-by-POB fixed effects. In this application, random forest repro-
duces the first-stage fitted values from conventional 2SLS with a saturated
first stage, so the second-stage estimates are indistinguishable from conven-
tional 2SLS estimates. Similarly, when combined with sample splitting, the
random forest results are indistinguishable from SSIV. These results, re-
ported in the appendix, offer little reason to favor IV using a random forest
first stage over conventional non-ML estimators.
C. IV at the Movies

Gilchrist and Sands (2016) uses lasso to select instruments for a 2SLS pro-
cedure in which the ratio of the number of instruments to sample size is an
order of magnitude higher than in the 1,530-instrument version of Angrist
and Krueger (1991). We might therefore expect the relative performance of
post-lasso instrument selection to improve in this setting. The Gilchrist and
Sands (2016) study is motivated by an inquiry into social spillovers from
movie viewership: filmgoers discuss movies they have seen with friends
and coworkers, perhaps increasing viewership. Weather induces quasi-
experimental variation in opening-weekend viewership that identifies this
social effect.
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The Gilchrist and Sands (2016) sample contains information on the total
dollar value of ticket sales for 1,381 movies over 1,671 weekend days (the
unit of observation for econometric analysis). The instruments for opening-
weekend viewership are average weather conditions near theaters on a
film’s opening weekend. This identification strategy is motivated by the idea
that the weather is randomly assigned and that good weather reduces movie
attendance. The instrument dictionary includes 52 weather variables, such as
the proportion of theaters experiencing 757F–807F temperatures, indicators
of snow and rain, and average hourly precipitation. Exogenous covariates
in the model include dummies for the timing of opening-weekend days. Ad-
ditional exogenous controls include summary measures of weather condi-
tions in the periods for which subsequent viewership is measured. These var-
iables control for possible serial correlation in theweather. There are a total of
142 (mostly dummy) controls.
The IV estimates reported byGilchrist and Sands (2016) are the result of a

manual 2SLS procedure in which exogenous covariates are first partialed
(using OLS) from opening weekend and subsequent viewership and from
the excluded instruments. Specifically, the paper reports estimates from a
model regressing residual subsequent viewership on first-stage fitted values
using residualized “weather shocks” as instruments. Subject to the require-
ment that controls and samples be identical in all three partialing steps, this
procedure is the same as 2SLS estimation of a model that includes exoge-
nous covariates as controls instead of partialing them out (manual 2SLS
standard errors are incorrect). We therefore focus on the 2SLS equivalent
of the Gilchrist and Sands (2016) estimates and lasso versions thereof.
The full-dictionary 2SLS estimate of the effects of opening-weekend view-

ership on viewership a week later is 0.5 (SE 5 0:022); the manual 2SLS esti-
mate reported inGilchrist and Sands (2016) is 0.475 (SE 5 0:024), a result we
replicate using data posted by the authors. These estimates use all 52 excluded
instruments. Our corresponding OLS estimate is .449 (SE 5 0:016), while
the original OLS estimate is 0.423 (SE 5 0:015). Small differences between
our estimates and the originals arise because the original procedure par-
tials both dummy variable and weather controls from the outcome vari-
able while partialing only contemporaneous weather variables from the re-
gressor of interest.
Using a single lasso-selected instrument, Gilchrist and Sands (2016) re-

port an opening-weekend effect of 0.474 (SE 5 0:047). The instrument in
this case, a dummy for pervasive good weather, has a strong first stage, with
a t-statistic more than 6 (and hence a first-stage F close to 40). The fact that
this differs little from 2SLS estimates using all 52 excluded weather instru-
ments and from the corresponding OLS estimates points to limited scope
for bias in the IV estimates.As noted in the discussion ofAngrist andKrueger
(1991),whenOLS is indistinguishable from low-dimensional, strongly iden-
tified IV estimates, finite-sample concerns usually evaporate. This leads us
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to explore a simulation design built from the Gilchrist and Sands (2016)
model and data, with more OLS bias. IV procedures are then evaluated on
the basis of their ability to get closer than OLS to the truth.
Second-weekend attendance is our outcome variable of interest (the orig-

inal study looks at opening-weekend effects on viewership in weeks 2–6,
finding declining effects). The simulation design starts by regressing opening-
weekend attendance on exogenous covariates and the full set of excluded
instruments to obtain first-stage fitted values. The list of exogenous covari-
ates includes indicators for calendar year, day of the week, week of the year,
holidays, and measures of weather conditions during the movie’s second
weekend. Call these first-stage fitted values âðXdt,ZtÞ, whereXdt is the vector
of exogenous covariates on second-weekend day d (Friday, Saturday, Sun-
day) amongmovies opening in week t andZt is the vector of excluded instru-
ments for movies opening in week t (the weather instruments vary only by
week). Simulated opening-weekend attendance, ~adt, is drawn from a standard
gamma distribution with shape parameter mdt 5 maxfd, âðXdt, ZtÞg=k1. This
yields a skewed, nonnegative continuous distribution. Scaling by k1 5 1:35
approximates the first-stage R2 and partial F-statistic in the original data. Be-
cause the gammadistribution requires a shape parameter bounded away from
zero, mdt is censored below by setting d 5 :01. Simulated attendance is then
drawn by first generating a uniform random variable, ndt, and evaluating
the inverse gamma conditional distribution function with shape parameter
mdt at ndt. The appearance of ndt in the simulated outcome residual is our source
of endogeneity.
The simulated outcome builds on LIML estimates in the original data us-

ing all 52 instruments. Specifically, let ŷðXdtÞ be the dependent variable fit-
ted value, after subtracting r̂LIMLadt, where r̂LIML is a LIML estimate of the
effects of opening-weekend attendance on second-weekend attendance and
adt is observed opening-weekend attendance on day d for movies opening
in week t. The notation here reflects the fact that this estimated fitted value
varies only by Xdt. The simulated dependent variable is then constructed as

~ydt 5 ŷ Xdtð Þ 1 0:6~adt 1 q Xdt,Ztð Þ k2F
21 vdtð Þ 1 εdtð Þ, (21)

so the causal effect of opening-weekend attendance isfixed at 0.6. Error com-
ponent εdt is standard normal, whileqðXdt, ZtÞ is set to generate a conditional
variance of residual second-weekend attendance given exogenous covariates
and excluded instruments proportional to the variance of second-stage
LIML residuals in the original data.21 Finally, k2 5 21:5 generates OLS es-
timates around 0.23, biased in the same direction as OLS in the original data
but much more so. Each simulation draw begins with a bootstrap sample of
21 Specifically, we regress the squared residuals generated by full-dictionary LIML
on all instruments and covariates and use the square root of the predicted values to
scale the simulated error term.
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ðXdt,ZtÞ, with simulated opening-weekend and second-weekend atten-
dance constructed as described above.22

The coefficients of interest are OLS, 2SLS, and post-lasso 2SLS estimates
of parameter r in an IV setup modeling ticket sales on day d of the second
weekend, ydt, as a function of ticket sales on day d of the opening weekend,
adt, among movies opening in week t. This model can be written as

ydt 5 radt 1 X0
dtg0 1 εdt,

adt 5 Z0
tp 1 X0

dtg1 1 vdt,

where p is the vector of first-stage coefficients. We follow Gilchrist and
Sands (2016) in specifying a day-specific causal model that links, say, Friday
attendance 1week after openingwith Friday attendance on openingweekend.
The bias of OLS estimates across simulations is 20.37, while 2SLS is

about half as bad, with a bias around 20.17. In other words, both proce-
dures yield estimated effects of opening-weekend sales on second-weekend
sales that are much reduced from the causal effect of 0.6. Adding 52 worth-
less (standard uniform) instruments to the original dictionary of 52 weather
instruments raises the 2SLS bias by almost 50%, to 0.24. These benchmark
estimates appear in the first two rows of table 4, which also show that the
MAE of 2SLS is indistinguishable from the bias of estimates using either
52 or 104 instruments. First-stage F-statistics fall from close to 3 with 52 in-
struments to around 2 with 104 instruments.
As can be seen in the third and fourth rows of the table, 2SLS with a

post-lasso first stage shortens the instrument list considerably but does little
to reduce bias. Specifically, using the larger plug-in penalty yields a list of
12 instruments, while the 104 instrument list falls to around 23. Lasso with a
cross-validated penalty retains 37 and 58 instruments, respectively. But post-
lasso 2SLS estimates remain substantially biased with both instrument lists
and either penalty choice. Using the larger plug-in penalty, for example, yields
second-stage estimates with a bias of 20.132. The bias-reduction payoff to
post-lasso is larger when the instrument dictionary includes 52 noise variables
and lasso is tuned with a plug-in penalty. In particular, the bias of 2SLS
falls from around20.24 to20.15. On the other hand, post-lasso instrument
selection using cross-validated penalties leaves bias in the 104-instrument
model almost unchanged from that of 2SLS.
The middle rows of table 4, which describe the behavior of SSIV, IJIVE,

and LIML estimates, show that SSIV estimates are less biased than 2SLS es-
timates computed using post-lasso to choose instruments but more biased
22 The sample includes 557 opening weekends. The bootstrap sample draws in-
dividual days independently rather than by weekend. This is consistent with
Gilchrist and Sands (2016), who report standard errors described as clustered, but
with clusters equal to the unit of observation.



Machine Labor S127
than the SSIV results in the Angrist andKrueger (1991) simulation. SSIV also
suffers here from low precision, withMonte Carlo standard deviations rang-
ing from around 0.6 to 6.6. This dispersion reflects a few extreme SSIV real-
izations. MAD for SSIV is far below variance, however. Remarkably, SSIV
still beats post-lasso for bothmodels onMAEgrounds, with the SSIV advan-
tage most impressive when the instrument list includes 52 real instruments
only. Moreover, IJIVE improves markedly on SSIV. The bias of IJIVE is
small (although not zero), and the IJIVE standard deviation is less than a
quarter of that for SSIV. The MAD and MAE for IJIVE are indistinguish-
able (andwell below that of SSIV), indicating that IJIVE ismedian unbiased.
As in the Angrist and Krueger (1991) results, LIML estimates are virtu-

ally median unbiased using both instrument sets. Here, LIML is about as
precise as post-lasso 2SLS estimates computedwith a plug-in penalty. The up-
shot is that MAE for LIML is less than half of the MAE for post-lasso IV
estimates constructed using a plug-in penalty. The robustly good perfor-
mance of LIML in this case may be surprising given that the simulation re-
siduals are heteroskedastic and the sample size is modest. But this finding
is consistent with simulation evidence in favor of LIML reported in Angrist,
Imbens, and Krueger (1999). We note that our analysis focuses on estimator
bias and dispersion rather than procedures for inference. As has been shown
Table 4
Simulation Results for Opening-Weekend Effects

Estimator

Original Instruments
(F 5 2.85)

Original Plus 52 Noise
Instruments (F 5 2.06)

Average
IV

Retained
(1)

Bias
(2)

SD
(3)

MAD
(4)

MAE
(5)

Average
IV

Retained
(6)

Bias
(7)

SD
(8)

MAD
(9)

MAE
(10)

OLS 2.374 .015 .010 .374
2SLS 52 2.165 .042 .027 .165 104 2.239 .034 .022 .238
Post-lasso IV
(CV penalty) 36.6 2.160 .054 .029 .163 58.2 2.219 .063 .029 .228

Post-lasso IV
(plug-in) 12.2 2.132 .092 .053 .142 22.5 2.150 .095 .067 .159

Split-sample IV 52 .053 .568 .095 .093 104 2.109 6.610 .134 .134
IJIVE 52 .019 .133 .067 .067 104 .004 .166 .082 .087
LIML 52 .007 .089 .057 .057 104 .009 .104 .064 .065
NOTE.—This table reports simulation results for 999 Monte Carlo estimates of the effect of opening-
weekend ticket sales on second-weekend ticket sales using simulated samples constructed from the data used
by Gilchrist and Sands (2016; N 5 1,671). The causal effect of interest is calibrated to 0.6. Columns 1–5
show results using the original installments. Columns 6–10 report the results of adding 52 randomly gener-
ated (standard uniform) installments to the original 52-instrument dictionary. Lasso estimates are computed
after partialing out included exogenous covariates. Post-lasso IV estimates are computed as described in the
appendix. Split-sample IV uses first-stage coefficients estimated in one half-sample to construct a cross-
sample fitted value used for IV in the other. Sample-splitting procedures average results from complemen-
tary splits.
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elsewhere, however, many-instrument (Bekker 1994) standard error formulas
forLIMLappear toyield good confidence interval coverage. It seems likely that
similar formulas can be obtained for SSIV (perhaps along the lines of those for
JIVE in Chao et al. 2012).
The appendix includes a brief account of simulation results generated by

the Stata 16 poivregress command (documented in Stata 2019). Motivated
by Chernozhukov, Hansen, and Spindler (2015), poivregress allows the list
of instruments and the list of exogenous covariates to be modeled as high
dimensional, applying lasso to the selection of variables in both. These re-
sults, computed using a plug-in penalty, are mostly similar to those shown
in table 4 when the procedure is constrained to use a fixed number of con-
trols and when some instruments are retained. It is noteworthy, however,
that poivregress fails to select any instruments in about two-thirds or more
of these simulation runs. Worryingly, poivregress reports second-stage es-
timates for many no-instrument runs. IV estimates generated without ex-
cluded instruments are biased and imprecise. Simulations using poivregress
to select control variables as well as instrumental variables look a little better
in that bias is reduced and more runs finish with at least some instruments
retained. Here too, however, the procedure reports second-stage estimates
with no instruments excluded. And in both variations, LIML and IJIVE es-
timates exhibit less bias and lowerMAE than the corresponding poivregress
estimates.
V. ML Picks IV Controls

Identification in IV models may turn on control for covariates as well
as on the choice of instruments. For example, in a study of the effects of fam-
ily size on parents’ labor supply, Angrist and Evans (1998) use the occur-
rence of multiple second births and same-sex sibships as a source of quasi-
experimental variation in the probability of having a third child. Because
twin birth rates increasewithmaternal age and education, estimators exploit-
ing the twins experiment are made more credible by conditioning on these
variables. The Angrist and Evans (1998) same-sex instrument exploits the
fact that among women with two children, the probability of a third birth
increaseswhen thefirst two are both boys or both girls. But parentsmay care
about the sex of their first- and secondborn for many reasons. Ananat and
Michaels (2008), for example, argue that male firstborns reduce divorce.
The same-sex identification strategymay therefore be improved by allowing
for additive male birth effects.
2SLS estimators incorporate control variables as exogenous covariates in

linear models. But ML methods can control for covariates without func-
tional form assumptions. We briefly explore the ability of random forest
routines tomodel covariate effects in IV identification strategies that require
some degree of control. This investigation is inspired by Athey, Tibshirani,
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and Wager (2019), which uses random forest methods to model heteroge-
neous causal effects of family size when these are identified by sibling sex
composition in the Angrist and Evans (1998) data.
The Athey, Tibshirani, and Wager (2019) random forest IV procedure

generates an unconditional IV estimate of the form

r̂ATW 5
∑i½Yi 2 ĝYðXiÞ�½ðZi 2 ĝZðXiÞ�
∑i½Di 2 ĝDðXiÞ�½ðZi 2 ĝZðXiÞ ,

where Zi indicates families, Xi is a vector of controls, the function ĝZðXiÞ is
the (leave-out) fitted value from a random forest estimate of E½ZijXi�, and
functions ĝY and ĝD are defined similarly for dependent and endogenous
variables denoted by Yi andDi, respectively. Replacing random forest cen-
tering (i.e., subtracting fitted values) with linear regression residuals gener-
ates a version of r̂ATW equal to 2SLS. But random forest centering may be
more flexible and, hence, more robust.23

As a benchmark, column 1 in panel A of table 5 reports conventional 2SLS
estimates of effects of childbearing on labor supply using a dummy variable
indicating same-sex sibships to instrument a variable indicatingmothers with
three ormore children (everyone in the sample has at least two). As inAngrist
and Evans (1998), these estimates show a first-stage effect of same-sex sib-
ships on the probability of having more than two children equal to about
0.07. 2SLS using the same-sex instrument generates substantial and precisely
estimated negative labor supply effects of a third birth. Specifically, the birth
of a third child reduces employment rates by about 12 points,with a concom-
itant decline of about 5 weeks worked. These effects are smaller than the cor-
responding OLS estimates (not reported here), suggesting a high degree of
selection bias in the latter.
Columns 2–4 report estimates of r̂ATW computed using the Stata random

forest routine rforest, implementedwithminimum leaf sizes 10, 100, and 800.
The estimates in columns 5–7 were computed using the regression_forest
command contained in theGeneralizedRandomForest (GRF) software pack-
age distributed by the authors of Athey, Tibshirani, and Wager (2019).24 The
rforest-based estimates in columns 2–4 are remarkably imprecise, with
23 A related “double/debiased” procedure outlined in Chernozhukov et al. (2018)
uses random forest and otherMLmethods to partial covariates from instruments, de-
pendent variables, and endogenous variables in combination with a sample splitting
strategy similar to SSIV. The moment conditions motivating this procedure (eqq. [4.4]
and [4.8] in Chernozhukov et al. 2018) appear to be the same as those motivating
the estimators considered by Athey, Tibshirani, and Wager (2019). The Athey, Tib-
shirani, and Wager (2019) procedure uses jackknifed random forest fits rather than
sample splitting.

24 Our appendix gives computational details. Athey, Tibshirani, and Wager (2019)
use a leaf size of 800 for IV estimation.
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standard errors more than 10 times larger than the 2SLS standard errors for
minimum leaf size of 10 andmore than three times larger for aminimum leaf
size of 800. This imprecision reflects the fact that same sex is deterministi-
cally related to the additivemale birth indicators included as covariates. Spe-
cifically, the same-sex instrument can be written as

ssi 5 m1im2i 1 ð1 2 m1iÞð1 2 m2iÞ,
where ssi indicates mothers of a same-sex sibship and mji indicates mothers
with amale child at birth j. 2SLS uses additivity to accommodate this depen-
dence, distinguishing interaction terms fromadditive effects. The rforest rou-
tine struggles to make this distinction.
As can be seen in columns 5–7, the regression_forest program does better

with the same-sex instrument than does rforest. In particular, estimated la-
bor supply effects in these columns are similar to those generated by 2SLS.
But these too are considerably less precise than the corresponding 2SLS es-
timates, with standard errors asmuch as 40% larger (compare, e.g., the 2SLS
estimate of the effect on employment equal to 20.12 with a standard error
of 0.028 to a similar regression_forest estimate with a standard of about 0.04
in col. 5). A second noteworthy feature of this set of results is the set of large
first-stage estimates, ranging from 0.24 in column 7 to 0.57 in column 5.
These estimates presumably reflect the underlying parameterization of mji

effects on ssi implicit in the random forest fit. While this parameterization
yields same-sex residuals with enough variance to generate informative
second-stage estimates, it renders the first stage uninterpretable.
Randomly excluded.—Random forest partialing may have undesirable

consequences beyond second-stage imprecision or a reparameterized first
stage. Since random forest is not regression, random forest residuals may
be correlated with the covariates that made them. In an IV context, failure
to orthogonalize covariates and instruments risks the creation of unintended
exclusion restrictions that lead to misleading second-stage estimates. This
phenomenon is analogous to the risk of spurious identificationwhen a probit
or logitfirst stage is used to instrument a dummyendogenous variable (see, e.g.,
Angrist 2001).
We illustrate this point using an “artificial instruments” experiment of the

sort that inspired the Bound, Jaeger, and Baker (1995) critique of Angrist
and Krueger (1991). This experiment (originally suggested by Alan Krueger)
uses randomly generated instruments to reveal the bias of heavily over-
identified 2SLS estimates in cases where the instruments are uninformative.
Our version constructs a single just-identifying instrument that is highly cor-
related with covariates but unrelated to treatment conditional on covariates.
The covariates used for IV estimation in Angrist and Evans (1998) and

Athey, Tibshirani, and Wager (2019) include mother’s age (agemi) and
mother’s education (educmi). Our first artificial instrument is a function
of these two variables plus randomly drawn noise:
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h1i 5 agemi 1 educmi 1 ui ; xi 1 ui,

where ui is standard uniform, drawn independently of covariates. We refer
to xi 5 agemi 1 educmi as a “covariate index.” Conditional on the covar-
iates used to construct the index, instrument h1i should have no identifying
power. 2SLS estimates computed using h1i as an instrument in a model in-
cluding mother’s education, age, and the other covariates used to construct
the real-instrument 2SLS estimates reported in panel A appear in the first
column of panel B in table 5. These estimates have large standard errors
and indeed appear uninformative. For example, where the same-sex instru-
ment generates an estimated reduction of 5.3 weeks worked with a standard
error of 1.2, instrument h1i generates an estimate with a standard error
around 22.
Random forest partialing of covariates from h1i yields a residual that re-

mains correlated with xi. Figure 1 documents this by plotting residuals from
a random forest fit of h1i to the covariates used to construct the 2SLS esti-
mates reported in column 1 of table 5. The figure shows average residuals
conditional on xi, along with the conditional mean of OLS fitted values
and OLS residuals given xi. Not surprisingly, conditional mean OLS fitted
values are linear in xi, while conditional mean OLS residuals are flat. Con-
ditional mean random forest residuals, by contrast, turn up or down for val-
ues at the ends of the support of xi. Smaller leaf size reduces but does not
eliminate this correlation.25

The risks posed byfigure 1 for IV are apparent in the IV estimates reported
in columns 2–7 of panel B in table 5. These estimates generate a misleading
impression of large and (for the most part) statistically significant effects.
The problem is especially severe for estimates computed with a larger min-
imum leaf size. The spurious identification conjured by random forest
partialing stems from the failure to fit an additive linear model (repeated
draws of h1i generate similar findings). Some of the artificial IV estimates
shown in columns 2–4 of the table (computed using rforest) are implausibly
large, implying, for example, a fall in employment rates in excess of 1. An
attentive analyst might not be fooled here. But the estimates computed us-
ing regression_forest, reported in columns 5–7, are both small enough and
precise enough to give the impression of a meaningful finding.
The failure to fit (or “learn,” in ML vernacular) the relationship between

h1i and covariates may seem at odds with results using random forest to es-
timate the Angrist and Krueger (1991) first stage. In the Angrist and
Krueger (1991) simulations, random forestfits a 1,530-instrumentfirst stage
perfectly, recovering the empirical CEF. Random forest does worse with
the artificial Angrist and Evans (1998) first stage because the number of
25 The figure plots residuals computed by rforest. A plot constructed using the
regression_forest routine looks similar.
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covariate cells in this case is much larger. While the Angrist and Krueger
(1991) design has roughly 2,000 cells and around 200 observations per cell,
the Angrist andEvans (1998)first stage has around 161,000 cells, with 1.6 ob-
servations per cell. This necessitates some smoothing, which random forest
delivers as promised. Yet this flexible ML routine misses important features
of the CEF that it has been tasked to model.
Figure 1 suggests that reducing minimum leaf size moderates the corre-

lation between random forest residuals and covariates. The estimates re-
ported in column 5 of panel B show that partialing controls from h1i with
a leaf size of 10 (and therefore little regularization) generates no statistically
significant second-stage estimates. This offers an interesting contrast with
the lasso-IV estimates reported in table 3, where larger tuning parameters
induce more regularization, mitigating bias. But the small-leaf strategy is
a double-edged sword. The results in panel A using the real same-sex instru-
ment with a minimum leaf size of 10 are either so imprecise as to be useless
(i.e., those in col. 2, computed using rforest) or generate a first stage farthest
from the causal effect of the same-sex experiment on fertility (i.e., an esti-
mate of 0.572 in col. 5, computed using regression_forest).
FIG. 1.—Random forest residuals are correlated with covariates. This figure
plots residuals from random forest and least squares fits of an artificial instrument
on a linear function of covariates. The covariate list contains mother’s education,
mother’s age, mother’s age at first birth, an indicator for the sex of each of the first
two children, ages of the first two children (in quarters), and three race indicators
(black, Hispanic, and other race). The artificial instrument is the sum of mother’s
age and education plus uniform ð0, 1Þ noise. Plotted points are averages conditional
on the value of mother’s age 1 education. RF 5 random forest.
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The risk of spurious identification using random forest partialing arises
even when instruments have some signal. Consider, for instance,

h2i 5 agemi 1 educmi 1 ðui � ssiÞ 5 xi 1 ðui � ssiÞ:
Identification using h2i hinges on control for the covariates that go into xi.
Unlike h1i, however, artificial instrument h2i has a strong and precisely esti-
mated first-stage effect on fertility of about 0.082, reported in the first col-
umn of panel C in table 5. A 2SLS estimator has no trouble extracting the
signal in h2i while successfully purging covariate effects. For example, the
estimated employment reduction due to a third child is about20.11 whether
computed using ssi or h2i, although the standard error increases by about 30%
when using the latter. 2SLS estimates for weeks worked are similarly close.
In contrast with the good performance of 2SLS using h2i, random forest

partialing mostly yields estimates as distorted or misleading as those com-
puted using an instrument with no information. Estimates computed using
rforest, reported in columns 2–4 of panel C, are too large to be coherent yet
too precise for their magnitudes to be put down to sampling variance. These
estimates reflect a small and unstable random forest first stage, which falls to
near zero and negative (although significantly different from zero) in col-
umns 2–4 and 7 and shrinks to 0.048 and 0.014 in columns 5 and 6. With
a minimum leaf size of 100, IV estimates computed using regression_forest
and instrument h2i are noisy and of the wrong sign. The regression_forest
estimates with a minimum leaf size of 10 are in the ballpark of the corre-
sponding 2SLS estimates but, as in panel A, are markedly less precise. And
regression_forest estimates using h2i as an instrument with a minimum leaf
size of 800, shown in column 7, are arguably more troubling than the cor-
responding rforest estimates because they are way off base, statistically signif-
icant, and small enough to imply effects within the bounds of dependent var-
iable support.
VI. Summary and Conclusions

The Belloni, Chernozhukov, and Hansen (2014b) PDS procedure pro-
vides a partially automated scheme for regression sensitivity analysis. Ap-
plication of PDS to the estimation of effects of elite college attendance shows
how this approach can support causal conclusions in a regression context.
The identity and length of the list of PDS-included controls varies with
changes in lasso tuning parameters and software. But in the application stud-
ied here, the resulting estimates of causal effects are stable, consistently show-
ing little evidence of an elite college advantage. In this application, PDS ap-
pears to offer a coherent data-driven complement to ad hoc robustness checks.
The evidence onML in IV applications is less encouraging. In simulations

modeled on Angrist and Krueger (1991) and Gilchrist and Sands (2016),
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2SLS estimates with a post-lasso first stage sometimes improve on 2SLS
with all available instruments. But SSIV, IJIVE, and LIML do better than
2SLS procedures that use lasso for instrument selection. The asymptotic
sparsity condition required by lasso-based methods appears to poorly ap-
proximate this empirical setting. The simulation results reported here also
show LIML to be surprisingly robust to heteroskedasticity. While some
types of heteroskedasticity can confound LIML, this need not be true.
Our results hint at the empirical relevance of heteroskedastic scenarios dis-
cussed by Bekker and Van Der Ploeg (2005) and Hausman et al. (2012), in
which LIML remains consistent.
Our divergent conclusions on the utility ofML for control variable selec-

tion and for IV selection can be related to the differing consequences of high
dimensionality for regression and IV. 2SLS estimates are inconsistent in a
many-instrument asymptotic sequence that reproduces the finite-sample
behavior of IV estimators with many weak instruments. Lasso mitigates
but does not fix this inconsistency while also risking pretest bias. This con-
trastswith the behavior ofmany-covariate regressionmodelswhere the num-
ber of control variables increases in proportion to the sample size. Cattaneo,
Jansson, andNewey (2018a, 2018b) show thatOLS estimates of causal effects
in a partially linearmodel like equation (14) are consistent and asymptotically
normal in a Bekker-like sequence.
ML methods aim to improve out-of-sample fit, while the empirical labor

applications we highlight seek to estimate causal effects. Beyond the Dale
and Krueger (2002) and Angrist and Krueger (1991) studies expanded on
here, Alan Krueger’s many path-breaking empirical contributions testify
to the primacy of causality over fit in empirical labor economics. His work
shows, for example, that company-owned fast-food franchises pay their
workers more than franchisee-owned establishments (Krueger 1991), sug-
gesting a role for efficiency wages in the low-wage labor market; that work-
ers with computer skills earn substantially more and receive a higher rate of
return to their schooling than other workers (Krueger 1993), illuminating
the theory of skill-biased technical change; that minimum wages do not
depress employment (Katz and Krueger 1992; Card and Krueger 1994),
prompting a rethink of the competitive labor market paradigm; and that
workers who attended schools with more resources earn more as a result
(Card and Krueger 1992a, 1992b; Krueger 1999). This work generates evi-
dence on causal relationships central to labor economics yet unrelated to
goodness of fit.
In some contexts, pursuit of better fit is harmless. But our analysis also

highlights the potential risks of fit-focused IV. Random forest partialing
of covariates in a just-identified model generates misleading second-stage esti-
mates. This would seem to be a caution for applications relying on other non-
linear ML routines to pick controls in an IV setting.
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