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This paper develops a model of Bayesian learning from online reviews and inves-
tigates the conditions for learning the quality of a product and the speed of learning
under different rating systems. A rating system provides information about reviews left
by previous customers. observe the ratings of a product and decide whether to purchase
and review it. We study learning dynamics under two classes of rating systems: full his-
tory, where customers see the full history of reviews, and summary statistics, where the
platform reports some summary statistics of past reviews. In both cases, learning dy-
namics are complicated by a selection effect—the types of users who purchase the good,
and thus their overall satisfaction and reviews depend on the information available at
the time of purchase. We provide conditions for complete learning and characterize
and compare its speed under full history and summary statistics. We also show that
providing more information does not always lead to faster learning, but strictly finer
rating systems do.

KEYWORDS: Bayesian learning, online reviews, recommendation systems, selection
effect, social learning, speed of learning, summary statistics.

1. INTRODUCTION

THE FRACTION OF CONSUMER PURCHASES performed online has reached 16%, and on-
line commerce now accounts for $215 billion. Amazon alone has over 147 million prime
customers.! The vibrancy of these platforms depends not just on the lower transaction
costs they enable but also on successful online information sharing, often based on re-
views by past users. Many platforms such as Amazon, Airbnb, eBay, and Uber encourage
users to provide reviews and present to new customers/users summaries of the reviews.
Despite the centrality of such online reviews, there is relatively little work investigating
the specific challenges such systems face and their efficacy in aggregating the dispersed
information of diverse users.
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We construct a simple benchmark model of Bayesian learning from past reviews. For
simplicity, we consider an online platform selling a single product of unknown quality,
which is either high or low, and assume that the platform also provides a rating system,
consisting of options for reviews for users and a rule for aggregating these reviews. Exam-
ples of rating systems include: full history (where the reviews of all past users, and their
exact sequence, are presented to current users), or more realistically, summary statistics
(where some summary statistics of past users’ reviews are presented to potential new
users). The options for reviews include different scores (“like” vs. “dislike” or number of
stars) from which users can choose.

Potential users know the rating system of the platform and also their own (ex ante)
taste parameter, which determines how likely they are to enjoy the product in question. If
they decide to purchase the product, they experience their material utility, which depends
on the realization of an ex post idiosyncratic preference parameter. They then decide
whether to leave a review and the product’s rating depending on this material utility.
Using this model, we investigate how well (and how rapidly) the information of customers
is aggregated by various rating systems.

In addition to developing a benchmark model of learning from online reviews, our anal-
ysis has three main contributions. First, we identify a new challenge to learning, which we
call the selection effect, likely to be particularly relevant in the context of online reviews.
Because customers know part of their preferences before purchase, those making a pur-
chase are selected depending on their taste parameters. Such selection becomes more pro-
nounced when the information about the product is not very favorable, for example, only
those very biased toward a particular type of book or movie would consider buying it if
past purchasers have very negative assessments of its quality. The selection effect is differ-
ent from the difficulty faced by models of observational learning, such as Bikhchandani,
Hirshleifer, and Welch (1992), Welch (1992), Banerjee (1992), and Smith and Sgrensen
(2000). In observational learning models, agents may not be able to learn the underlying
state because of “herding”—the possibility that the informative signals of past users cease
to affect their behavior because they are themselves following the information of others.
In contrast, here, herding issues do not arise because users base their reviews on their
own experience, and the information they receive while making their purchase does not
directly affect this experience. Instead, the challenge for users is to disentangle past users’
preferences concerning the product from their information relayed through reviews. We
provide a comprehensive analysis of learning under different rating systems and establish
conditions under which Bayesian updating ensures (complete) learning by undoing the
implications of the selection effect.

Second, in addition to conditions for complete learning, we investigate the speed of
learning. Both in the full history and summary statistics cases, we prove that learning is ex-
ponentially fast and provide a tight characterization of the speed of learning as a function
of the Kullback-Leibler (KL) divergence between the probability distribution of reviews
conditional on high versus low quality.> Because of the aforementioned selection effect,
these probability distributions depend on past users’ beliefs. The exact form of this de-
pendence varies between the full history and the summary statistics cases, highlighting
how the difficulty of dealing with the selection effect depends on the exact information
structure generated by the rating system.

2The role of KL divergence in this context is intuitive. Asymptotically, the problem of each individual is
similar to a binary hypothesis testing problem (Cover and Thomas (2012, Chapter 11)), though with one im-
portant complication: the observations are not conditionally independent. We overcome this complication by
using a different approach to prove that the speed of learning still takes the form of KL divergence.
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Third, we compare the speed of learning under different rating systems, and show that,
in general, providing more information to users does not guarantee faster learning. In
particular, we characterize the conditions for observing summary statistics to lead to more
rapid learning than the full history of reviews. This is because the more limited informa-
tion from summary statistics may change equilibrium behavior and inferences.

Throughout, we carry out the analysis separately for the full history case, which enables
us to use the martingale convergence theorem and related tools, and for rating systems
with summary statistics, which necessitate a different mathematical approach.> Complete
learning takes place under mild assumptions with full history and requires somewhat more
restrictive, but still reasonable, assumptions when the rating system provides summary
statistics. This difference arises because the selection effect can be undone when users
have access to full history, but not with summary statistics. Conditional on complete learn-
ing, however, the speed of learning is given by a similar logic and analogous expressions
in the two cases, even though the exact speed of learning differs.

Our results on the speed of learning are not just of methodological interest. A rating
system that aggregates the dispersed information of past users accurately but extremely
slowly would not be very useful to an online platform that relies on users having this
information in real time.

Our work is related to several literatures. The first is the Bayesian observational learn-
ing literature, which was mentioned above. Most closely related within this literature are
Acemoglu, Dahleh, Lobel, and Ozdaglar (2011), Lobel and Sadler (2015a,b), Mossel, Sly,
and Tamuz (2014) and Mossel, Sly, and Tamuz (2015), which study Bayesian observational
learning when agents observe a subset of past actions determined according to a stochas-
tic network. Both the difficulty of learning from past information and the techniques used
in our analysis are different from those emphasized in these papers. Specifically, the se-
lection effect does not feature in this literature, and in contrast to the Markov-martingale
type arguments (e.g., McLennan (1984) and Smith and Sgrensen (2000)) or those based
on local improvements (e.g., Banerjee and Fudenberg (2004), Acemoglu et al. (2011),
and Wolitzky (2018)), our most novel results are based on a characterization of the lim-
iting behavior of dependent stochastic processes (along the lines outlined in footnote 3).
Another innovation relative to this literature is our analysis of the speed of learning.

Our paper also relates to several recent papers studying the speed of learning in
Bayesian models. Examples include Acemoglu, Dahleh, Lobel, and Ozdaglar (2009) and
Rosenberg and Vieille (2019), who characterize the speed of convergence in the baseline
observational learning model in some special cases, such as when each agent observes all
past actions or just the previous action or one randomly drawn action from the past; Harel,
Mossel, Strack, and Tamuz (2014), who study the speed of learning in a setting where
finitely many agents repeatedly observe each other’s actions; Hann-Caruthers, Martynov,
and Tamuz (2018), who compare the speed of convergence in the baseline observational
learning model when each agent observes the previous actions versus the case in which
they also observe past signals; Dasaratha and He (2019), who study the speed of learn-
ing with Gaussian signals; and Vives (1993, 1995), and Amador and Weill (2012), who
focus on the speed of learning in rational expectations equilibria where agents learn from
prices.

3Namely, we construct two distributions, one first-order stochastically dominated (majorized) by the distri-
bution of our summary statistics conditional on high quality, and one first-order stochastically dominating the
distribution of our summary statistics conditional on low quality, and prove that these two distributions are
asymptotically separated.
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Our paper is also related to a few works on online reviews and rating systems. Ifrach,
Maglaras, Scarsini, and Zseleva (2019) study a setting similar to the full history version
of our model with pricing and investigate the implications of the pricing strategy of the
seller on learning. Their model provides guidelines for pricing in this setting, but does not
focus on any of our main contributions: analysis of learning with summary statistics, char-
acterization of the speed of learning, and comparison of different rating systems. Besbes
and Scarsini (2018) is also closely related. They study a setting similar to ours, but mainly
focus on a non-Bayesian learning rule based on averages of utilities reported by previous
reviews. They show how this learning rule makes users overestimate quality and how sim-
ple heuristics can correct this bias.* Other related papers include: Che and Horner (2018),
who investigate the optimal review system to encourage experimentation by early users,
Horner and Lambert (2021), who characterize the trade-off between the informational
role of reviews and their impact on the seller’s effort on quality, Garg and Johari (2017),
who study the implications of pairwise comparisons on online reputation building, and
Vellodi (2018) who studies the implications of rating systems on firm incentives to partic-
ipate in the market.

There is also an emerging empirical literature documenting issues related to the selec-
tion effect in the context of online markets. In particular, Hu, Pavlou, and Zhang (2006,
2017), and Hu, Zhang, and Pavlou (2009) document that the distribution of reviews is
J-shaped (bimodal) and does not necessarily reveal the product’s true quality. They show
via online experiments that this is because: (i) only people with higher product valuations
purchase a product and they tend to leave positive reviews, and (ii) among people who
purchase a product, those with extreme ratings are more likely to express their views. Our
model not only provides a theoretical foundation for these effects, but also shows how
the rating system impacts the extent of the selection effect, the conditions for complete
learning, and the speed of learning.’

The rest of the paper is organized as follows. In Section 2, we introduce our model.
Sections 3 and 4 provide conditions for complete learning and characterize the speed of
learning under full history and summary statistics, respectively. Section 5 compares the
speed of learning across a range of rating systems. Section 6 concludes, while proofs are
presented in Appendix A and the Online Supplementary Material, Appendix B (Ace-
moglu, Makhdoumi, Malekian, and Ozdaglar (2022)), which also contains several exten-
sions and additional results.

2. ENVIRONMENT

We consider a platform selling, or intermediating the sale of, a product whose quality
is unknown to both customers/users and the platform. The platform has a rating system
that collects reviews from previous customers and provides a rating of the product (which

4Other plausible non-Bayesian learning rules and their impact on learning are considered in, among others,
Golub and Jackson (2010), Eyster and Rabin (2010), Guarino and Jehiel (2013), Bohren and Hauser (2017),
and Frick, Iijima, and Ishii (2020). See Golub and Sadler (2016) for a survey.

3Other important empirical works in this area include Chevalier and Mayzlin (2006) and Chua and Banerjee
(2016), who examine the impact of reviews on sales, Talwar, Jurca, and Faltings (2007) who document similarity
among customer reviews based on their preferences, Li and Hitt (2008), who study the impact of early (posi-
tive) reviews on the review trends, and Cai, Chen, and Fang (2009), who undertake an empirical investigation
of the baseline observation learning model.
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could be a summary statistic of these reviews or their entire history).® New customers ob-
serve the information from the rating system of the platform and decide whether to pur-
chase the product depending on their ex ante type (valuation). After the purchase deci-
sion, their material utility from the product, which depends on true quality, their type, and
an additional ex post idiosyncratic preference term, is realized and they decide whether
and what review to leave.

2.1. Customers’ Problem and the Rating System

We assume that the true quality of the product is binary, low or high, and denote it by
0 €{0, 1}. Without loss of generality, we assume the common prior is that high and low
quality are equally likely. A new customer arrives at each time, denoted by her arrival
time ¢ € N, and decides whether to purchase the product. The material utility of customer
t from the purchase is

w=0+4{+0-p, (D

where p is the price of the product; 0, is the ex ante type of the customer, drawn inde-
pendently from a continuous distribution Fy; and ¢, is an ex post idiosyncratic preference
term, also drawn independently from a different continuous distribution F; (and even
though these variables are independent, it is sometimes convenient to work with their
joint distribution, which we denote by Fy /). The (ex ante) type 6, captures customer ¢’s
valuation based on the features of the product that can be observed before purchase, and
the ex post idiosyncratic preference term represents the valuation of the characteristics
that customers can evaluate (or experience) only after purchase. Throughout, 6, and ¢,
are customer ¢’s private information.

Before making the purchase decision, customer ¢ observes the rating of the product
provided by the platform based on past reviews (as well as her ex ante valuation 6,).
She then decides whether to purchase the product, which is denoted by b, € {0, 1}. If she
purchases (b, = 1), she experiences her material utility and decides whether to leave a
review r,. We assume that the rating system of the platform allows users to leave one of
—K, ..., K reviews with K, K € N, where 0 is interpreted as leaving no review. We let
R ={-K,...,K} denote the set of reviews. In what follows, we sometimes refer to the
most favorable review K as “like” and to the least favorable review —K as “dislike.” The
platform observes the purchase decision b, as well as the review decision r,. We denote
actions at time ¢ by a, € R U{N}, where a, = N designates “no purchase” by customer ¢,
that is, b, = 0. The set of actions is denoted by A = R U{N}, while the history available to
the platform at time ¢ is #, ={a, ..., a,_1}, and by convention /; = ¢. The platform has a
rating system denoted by €2, which at time ¢ maps the history of actions by customers into
arating. We denote the (revealed) rating available to customer ¢ by (},. Examples of rating
systems € are: (i) full history (where (), = A,), and (ii) systems that report summaries of
past reviews, such as fractions of reviews in different bins or certain averages thereof.

Customers’ problems can be broken down into two steps: purchase and review. Let us
start with the purchase decision. Customer ¢ observes the realized rating (), and forms her
belief regarding the quality of the product, and we assume that she does so using Bayes’
rule taking the strategies of other players as given. The purchase decision of customer ¢,

®Throughout, we refer to the scores or other information left by customers as “review,” to the aggregate
of these reviews provided by the platform as “rating” and to the rules for reporting these reviews as “rating
system.”



2862 ACEMOGLU, MAKHDOUMI, MALEKIAN, AND OZDAGLAR

B, : Q, x R* — {0, 1}, maps the information provided by the rating system at time ¢, the
ex ante type 6,, the ex post idiosyncratic preference ¢, and the price p into a purchase
decision. A collection of purchase decision strategies B = {B,};°, constitute a Bayes—Nash
equilibrium if, for all r e N,

B.(Q,,0,)=1 ifandonlyif 6,+E[{]—p+4q >0,
where Bayesian updating gives the belief of customer ¢ as
q:= P{(es,gs)}fg;{ [Q=1]Q]. (2)

In our baseline analysis, the rating system (), reveals the number of previous customers.
In extensions, we consider rating systems that provide information only about a subset of
reviews T C R and, therefore, the customers cannot directly observe the number of pre-
vious customers. Letting 7 denote the number of reviews in T observed by a customer in
this case, her equilibrium purchase decision in a Bayes—Nash equilibrium depends on her
posterior belief about the true quality as given in (2). Customers do not observe any other
event and form a belief over the times at which there have been previous purchases. We
assume that their prior is that the index of each customer (with respect to calendar time)
is drawn from an improper uniform prior. This implies that user posteriors for any history
of observations will be that the number of users between any two purchase decisions is
uniformly distributed.’

2.2. Review Decisions

We next turn to review decisions. If customer ¢ purchases the product (b, = 1), then
her material payoff, (1), is realized (whether she directly observes her material utility
or the underlying quality Q € {0, 1} and the ex post idiosyncratic preference term ¢, is
immaterial). At this point, the customer decides whether to leave a review of the product
and what review to leave. We assume that all customers have thresholds denoted by A_x <
...A_1 <A = ...25 € R, and their reviews will be determined by the location of their
material utility relative to these thresholds. In particular, customer ¢ chooses review r,
such that

—K ifu <Mk,
i fA <u <A, —K<i<0,
=10 if A <u, <Ay, 3)
i if A <u, <Aip1,0<i<K,
K if u, > Ax.

The next assumption imposes that there is sufficient “richness” in the distribution of
valuations so that such high (low) enough material utilities will be realized with positive
probability.

A similar property and all of our results hold so long as each user has a “memoryless” prior over her
index in the sequence of all users—so that the number of users between the purchasing user and the previous
purchase has a geometric distribution which is independent of the length of history (see Appendices B.3.3 and
B.3.4).
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ASSUMPTION 1—Richness: The random variables 6 and { have continuous and strictly
increasing cumulative distribution functions over their supports, [0, 0] and [{, {], respectively.
The support of { is wide enough so that { + 6 — p > Ag (which guarantees that when material
utility is near { + 0 — p, the review decision will be K)) and { + 60 — p+1 < A_g (which ensures
that when material utility is near { + 6 — p + 1, the review decision will be —K).

Note that the conditions for both the most favorable and the least favorable reviews are
in terms of the customer with the highest ex ante valuation, 6, because lower-valuation
customers may not purchase the product, and thus their review decisions might not be
relevant to observed ratings. Moreover, the condition for the most favorable review is
evaluated at Q = 0, while the condition for the least favorable review is evaluated at Q =
1, which ensures that these reviews are not fully revealing about the quality of the product.

REMARK 1: In Appendix A.2, we provide microfoundations for review decisions. We
first show that when users have expressive overall utility—meaning that their review deci-
sions reflect their wish to express their satisfaction/dissatisfaction—then (3) applies under
a natural single crossing condition. We also derive a similar decision rule from a model
of consequentialist utility, where agents leave reviews to influence the decisions of others,
and generalize our main results, Theorems 1-4, to this setting.

3. FULL HISTORY

With full history, the rating system reveals all past actions, that is, (), = 4,. In particular,
we are initially assuming that the history also includes “no purchase” and “no review”
decisions. This assumption is adopted to simplify the notation in our baseline analysis
and is relaxed at the end of the section. We first prove that, as long as customers do not
stop purchasing the product, there will be complete learning under full history and then
characterize the speed of learning.

3.1. Learning Dynamics

When (), = h,, the belief of customer ¢, g,, defined in (2) becomes
q:= P{(os,gs)};} [O=1]|h].

Because in this case history #, is available to all future customers, we follow the obser-
vational learning literature and refer to g, as public belief. We also denote the associated
likelihood ratio by

q P{(os,m};;}[Q =11h/]
L=q Py [Q=01h]
Throughout the paper, we use 7 (a; Fy ., Q, q) to denote the probability of action a € A

given the joint distribution of the valuations 6 and ¢, the price of the product p and the
thresholds A_g, ..., Ax when the true quality is Q and the belief is g. This probability can

I, =

(4)
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be written as

7(a; For, O, q)

Py c[q+6+E[{] - p<0], fora=N,
Pofq+O0+E[]—p=0,0+{+Q—p<Ag] fora=—K,
| Po g+ O0+E[L]-p=0,A 1 <0+{+0—p<A,], for-K<a<0,

T Pofq+0+E[]-p=0,A,<0+{+Q—p<A], fora=0,
Po g+ 0+E[{]—p=0,A, <0+ {+Q—p<Ayi], for0<a<K,
Poclg+0+E[{]—p=0,0+{+0— p=>Ag), for a = K.

We also let @ (Fy ;, O, q) be the vector of probabilities of all actions a € A:

7(Foz, O, q) = (m(a; For, 0, q) sa € A).

The likelihood ratio at time ¢ > 2 is thus the product of likelihood ratios of past actions:

g Puoo@=11h] Py, ymlh 1Q=1]
=g Po gy [@=01d Pry [ 1Q=0]

I, =

:ﬁ m(as; For, Q=1,qy) 5)
_1 77(615; FG,Z: Q = 07 qs) ’

where we used the fact that a priori Q =0 and Q = 1 are equally likely.
We next derive the evolution of the public belief. Customer ¢ + 1 observes a, (and not
6, and ¢,) and she updates her belief as

77'(61[; FG,Z’ Q = 1: C]z)
w(a; For, 0=0,q,)

Therefore, the dynamics of public belief are presented by the following stochastic process:

7T(at§ Fe,g, 0=1, CIt)
77((1[; Fe,g, Q = 0’ qt) ’
where Q is the true quality of the product and /; = 1. Note that /, is a sufficient statistic of

h, for (estimating) Q. Moreover, given the thresholds A g, ..., A and the price p, the law
of motion of the likelihood ratio /, is determined by exogenously-specified distributions.

lin=1x

=1 x w.p. m(a; Fos, Q,q),ae Afort>1,

3.2. Complete Learning

The next theorem provides necessary and sufficient conditions for complete learning—
almost sure convergence of g, to the true Q.

THEOREM 1: Suppose Assumption 1 holds.

1. If 0 + E[{] — p = 0, then, starting from any initial belief q, € (0, 1), there is complete
learning with full history, that is, q, — Q almost surely.

2. If 0+E[{]— p < 0, then starting from any initial belief q, € (0, 1), learning is incomplete
with positive probability.
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The proof of this theorem, like those of our other main results, Theorems 24, is pre-
sented in Appendix A.1. _

The theorem shows that the condition 6 + E[{] — p > 0 is sufficient for complete learn-
ing starting from any initial belief. When this condition does not hold, for sufficiently
pessimistic beliefs about the quality of the product Q, all customers stop buying it. This
can be seen by noting that at the time of the purchase, the most positive assessment
of expected utility will be from a customer with the highest ex ante valuation 6 and
is thus 6 + E[{] + g — p, where g is the public belief at the time of purchase. When
6 +E[{] — p <0, there exists a sufficiently low value of g such that 6 + E[{]+ ¢ — p <0,
implying that once beliefs reach this pessimistic level, even customers with the most pos-
itive ex ante valuation stop purchasing, and consequently beliefs remain stuck at g. Con-
versely, however, when condition 6 + E[{] — p > 0 holds, even for very pessimistic beliefs
about quality, some customers purchase the product and this generates sufficient informa-
tion for complete learning. When 6 + E[{] — p =0, the analysis is more nuanced because
for O =0, as the public belief, g,, converges to Q, the probability of purchase converges
to 0, and we prove that complete learning still happens.®

The condition 6 + E[{] — p > 0 plays a role analogous to the unbounded likelihood as-
sumption in baseline models of observational learning (e.g., McLennan (1984) and Smith
and Sgrensen (2000)). In these models, unbounded likelihood ratio ensures that learning
never comes to an end (because there is always the possibility of a very informative sig-
nal), and this precludes “herding” where all agents follow the action favored by the public
belief, disregarding their own information. This condition similarly rules out “herding in
purchase decisions,” whereby on the basis of a negative public belief purchasing stops.
However, in our framework, there is no “herding in review decisions,” because customers
leave reviews after experiencing the true quality and what they believed before the pur-
chase decision is irrelevant. But which types of users purchase the product depends on the
public belief at the time of purchase, underpinning our selection effect (which we discuss
further in Section 3.4).

In the rest of the paper, we impose the following.

ASSUMPTION 2: 6+ E[{]— p > 0.
Assumption 2 ensures that there is complete learning, so that we can study the speed of

learning. It also rules out the edge case where §+E[Z]— p = 0, where our characterization
of the speed of learning does not apply.

3.3. Speed of Learning

We next characterize the speed of learning under full history. For this purpose, we
introduce the Kullback-Leibler (KL) divergence between two distributions.

DEFINITION 1—KL Divergence: For two strictly positive distributions g = (wy, ...,
wm) and v = (vy, ..., v,) defined on a finite set {1, ..., m}, KL divergence is defined as

D(u 1) =3 wiog( ).
i=1 !

8In Appendix B.3.1, we strengthen part 2 of Theorem 1 and establish that if 6 +E[{] — p < 0, then for Q =0
almost surely learning is incomplete.
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In the rest of the paper, we use the following definition of the speed of learning.

DEFINITION 2—Speed of Learning: For a rating system with exponentially fast (com-
plete) learning, the speed of learning is lim,_, 1 log g, when Q =0, and lim,_ * log(1 —
q:) when Q = 1. We say that a rating system has faster learning than another one if its
speed of learning is greater for both Q =0 and O = 1.

THEOREM 2: Suppose Assumptions 1 and 2 hold. Then learning is exponentially fast. That
is, q, almost surely converges exponentially to Q. In particular, for Q = 0, we almost surely
have

|
lim - logg, = —D(7@(Fy;, 0 =0,9=0) || w(F,;, Q=1,4=0)),

t—oo [

and for Q = 1, we almost surely have
1
tllglo T log(1—q) =—D(w(Fo;, 0=1,9=1) || w(Fs;, Q=0,g=1)).

This theorem establishes that learning under full history is exponentially fast, and more-
over, its exact rate is governed by the KL divergence between the probability distribution
of possible actions (i.e., a € A) when the underlying quality is Q and the public belief is
g = Q and the probability distribution when the underlying quality is 1 — Q (while still
q = Q). There are three components to the intuition for this result. First, the fact that
the learning is exponentially fast follows from the ability of users to overcome the selec-
tion effect and combine (the independent components of) past reviews (see Cover and
Thomas (2012, Chapter 11)). They can achieve this because they know the distribution of
past reviews and can draw the correct inferences from them.

Second, that the speed of learning is given by KL divergence is intuitive as well. We
can think of the problem of distinguishing QO = 0 from Q =1 as a binary hypothesis
testing problem. The best error exponent for a binary hypothesis testing problem from
independently-drawn samples is given by the KL divergence between the probability dis-
tributions of these samples conditional on the two hypotheses.’ The subtlety in our case
is that, because of the selection effect, reviews are not conditionally independent—the
current belief affects the distribution of types that will purchase, and thus the probability
distribution of reviews. Nevertheless, as ¢ — Q almost surely, we can bound the effects of
this dependence and still derive the KL divergence as the measure of the distance between
the two relevant probability distributions determining the speed of learning.'

See Cover and Thomas (2012, Theorem 11.8.3) for the theory and Glosten and Milgrom (1985) for an
application in the context of learning from prices.
"More specifically, note that if we could apply the strong law of large numbers, then when Q = 0, (5) would

imply

1
}E?Q?bgl’ = Z’JT((EFM, Q:O,q:0)10g<

acA

W(H;Fs,;,QZLf]:O))
m(a; For, 0=0,9=0)

:_D(Tr(Fﬂ,§7Q:07q:0) ” ﬂ(F0,§7Q:]7q:O))

Though we cannot directly apply the strong law of large numbers, we can bound the departure from indepen-
dence by sandwiching /, between two stochastic processes with independent increments, both converging at
the rate stated in the theorem.



LEARNING FROM REVIEWS 2867

Third, note that both probability distributions in the KL divergence condition on g = Q.
This is because, under full history, each customer correctly reasons about previous users’
beliefs, which are converging to Q. It is this feature of the full history rating system that
enables the effective filtering out of selection effect and contrasts with our analysis of the
case of summary statistics, presented in the next section.

3.4. The Selection Effect

The selection effect refers to the fact that because the composition of customers pur-
chasing the product is influenced by information at time ¢ (summarized by g,), the distri-
bution of reviews depends on this information. For example, with full history, when the
public belief g, is very low, only customers with very high 6 purchase and these customers
are much more likely to enjoy a high material utility and leave a positive review than the
average customer. The next example illustrates the selection effect.

EXAMPLE 1: Consider a rating systemwith p =0, (=0, 0 ~U[—1,1]and Q =0. Letus
assume that customers leave a positive review (“like”) when Q + 6 > 0. Suppose first that
the public belief is g &~ 1, and so all customers purchase the good because 6 + g~ 6 + 1
is greater than zero for almost all 6. Then the ex ante valuation of customers who have
purchased the product is uniformly distributed over [—1, 1], and thus half of the reviews
will be positive. In contrast, when the public belief is g ~ 0, then only customers with
positive 6 purchase the product and the conditional distribution of ex ante valuations is
uniform over [0, 1]. Consequently, all reviews will be positive.

The selection effect, or more generally any additional information, naturally impacts
the speed of learning. Suppose that customer ¢ (in addition to /,) observes the ex ante
valuation of previous customers, that is, 6, for s =1,...,¢ — 1. In this setting, the extra
information completely removes the selection effect because current customers can con-
dition on past customers’ valuations. In Appendix B.3.2, we show that learning is faster in
this case than in Theorem 2, and establish a more general result, Proposition B-2: provid-
ing any extra information regarding the distribution of previous customers’ preferences
(weakly) increases the speed of learning.

4. SUMMARY STATISTICS

In this section, we characterize the conditions for complete learning and its speed for
more realistic rating systems where the platform provides summary statistics of reviews
by past customers.

4.1. Learning Dynamics

With summary statistics, customers will not see the full history (i.e., the sequence of
reviews) and only observe a vector of statistics S that includes the fraction of reviews in
a subset of all reviews. Formally, we consider a nonempty subset of all possible actions
A denoted by T. A rating system is represented by a partition of T, {7}, ..., T} (i.e.,
T=J;,T;and T,NT; =¥, i # j € [m]) such that for any i > j, all the reviews in the set
T; are more positive than the reviews in the set 7;."" We also use the notation 7 to denote

This ordering assumption is to make the definitions that will follow (and in particular, positive and negative
selections) easier to explain and does not substantially change our analysis. Also, the “no purchase” action can
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the times ¢ at which an action in 7 occurs. In our leading case, 7 will be the number of
reviews left so far. With this convention, customers observe the number of actions in the
set 7', and thus know their own 7 (and not their exact place in the original sequence, over
which they have uniform priors). Therefore, for user 7, the rating system takes the form
Q. =S,_; and reports information from the first  — 1 reviews.

A summary statistic is a vector S, € R™ with its ith entry representing fraction of past
reviews in T;, that is,

S.(i) = %Zl{ax eT}, ie[m].
s=1

Examples of rating systems with summary statistics include:

(1) The fractions of each one of K + K reviews are reported. In this case, S, € R” where
m=K+K,and T=R\{0}, T, ={-K}, ..., Tx ={-1}, Txps = {1}, ..., Txox =
{K}.

(2) Averages of the scores of past reviews (see Appendix B.3.5).

(3) “Likes” among all reviews meaning that the rating system reports only the fraction
of reviews that give the highest score, a = K, out of the available K 4 K options. In
this case, T = R\ {0}, T, = {K}, T, = T \ T» and the rating system is represented by
S, € R? where

S.(2) = % il{as =K}, and S.(1)=1-8,(2). (6)

The key object in our analysis is again the expectation of quality Q, conditional on the
information available from the rating system at time ¢, g, (as defined in (2)). Since in
this case the relevant information is summarized by the vector S, after 7 purchases, we

write this as g, = P, oy [O=1]8,]. Critically, in contrast to the full history case, g. is

no longer the public belief because S, is only observed by the customer making the rth
purchase. The likelihood ratio implied by belief g, takes an analogous form to (4):

p_ 4 _ Pzt [Q=118:] _ Py, eyt [S- 10 =1] -
Tol=gr Py t[Q=018] Py g[S 10=0]

Because future customers do not observe S, and cannot compute g,, the likelihood ratio
[, is no longer a martingale, and we develop a different approach to study its asymptotic
properties.

We denote the probability of observing an action profile a in the set 7; conditional on
the action profile being in T by

7T(l, Fg,g,Q,q, T):Pg,g[aen|aeT, q, Q], Vle[m]
The governing stochastic process for S, given the true quality O can then be written as

T 1
= — —Y Vr>0 8
ST+1 T+IST+T+1 T+1> T=2VY, ()

belong to T in which case it can be included in any of the sets 7; for j € [m], noting that the information
content of the rating system and its speed of learning depends on the set 7; that contains “no purchase.”
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where Y, € R”, and

YT+1 =€, W~p~ 7T(la F9,§7 Qs q7'+1’ T)7

where e; € R™ is the ith canonical basis vector, e; = (0,...,0,1,0,...,0).

In computing (7), agents take into account that there may be unobserved actions (those
not purchasing or not leaving reviews), but because the information observed by an agent
who did not leave a review is the same as the information available to the next agent,
Bayesian customers can consistently compute posterior probabilities (see Lemma A-1 in
Appendix A.1).

4.2. Negative and Positive Selection

The notions of negative selection and positive selection play a central role in our analysis
of learning with summary statistics. Intuitively, negative selection corresponds to the case
where, as belief ¢, becomes more favorable to Q = 1, reviews become less likely to be
positive—they are “negatively selected.” Positive selection, conversely, corresponds to the
case where as belief g, becomes more favorable to Q = 1, reviews are more likely to be
positive. We next formally introduce these notions.

DEFINITION 3—Negative and positive selections: Consider a rating system with m re-
view options T, ..., T, such that, for any i’ < i, P[a € U:”:l Tilae U;”:l Ti,q,0=1] >
Plae UL Tilae U Tj, ¢, Q =0].2
e The rating system has negative selection if, for any i’ < i, Pla € U;.":i Ti|ac
U;.":i, T}, q, Q] is decreasing in g, that is, if the probability of more favorable reviews
is decreasing in belief g.

e The rating system has positive selection if, for any i’ < i, Pla € U;":i T |ac
U;":i, T;, q, Q] is increasing in g, that is, if the probability of more favorable reviews
is increasing in belief g.

In both negative and positive selection, as g, becomes more favorable, customers with
lower ex ante valuations (lower 6) become more likely to purchase the product. With neg-
ative selection, these additional purchases decrease the likelihood of favorable reviews.
With positive selection, on the other hand, they increase the likelihood of favorable re-
views.

Whether a rating system features negative or positive selection depends on both the re-
view options available to customers and the distribution of the random variables 6 and ¢.
The next proposition presents simple sufficient conditions for positive and negative selec-
tion in terms of the primitives of the model, given a rating system with m =K — £ +1>2
review options reporting the fraction of all reviews that are more favorable than ¢ for
someEe{—K-i—l,...,F—l}(i.e.,theset Tis{¢,...,Kyandwe have T, ={¢}, ..., T,, =
{K3}).

12This condition is not very restrictive. It requires that the probability of a more positive review, a € U;":, T,
conditional on the information that a € |JJ_, 7; (where i’ < i) is greater when Q = 1 than when Q = 0. It
always holds when 6 has a uniform distribution with a sufficiently wide range and T3, ..., T, is a partition of
the set of review options (see Proposition 1). It may be violated in some rare cases where T, ..., T,, suppresses
information on some middling reviews.
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PROPOSITION 1: Forany L e{—-K +1,..., K — 1}, consider a rating system that reports
the fraction of all reviews that are more favorable than £. If 6 has a uniform distribution and
0 > max{p — E[{], Ax — { + p}, then forany i' < i,Plac U], Tjlac U], T;,q, 0 =1] >
Plac U Ti1ac UL, T}, q, Q = 0], and we have:

1. If the hazard rate Je©) decreasing in x, then this rating system features negative

1—F§ (X)
selection.
2. If the hazard rate ; f ;(;()x 5 is increasing in x, then this rating system features positive selec-
tion.

The next example illustrates Proposition 1 and presents examples of negative and posi-
tive selection.

EXAMPLE 2: Negative Selection: Consider a rating system with two review options re-
porting the fraction of the most favorable review, K (i.e., T ={K —1,K}, T, ={K — 1},
T, = {K} with K > 2). This rating system features negative selection when ¢ has de-
creasing hazard rate (e.g., when the distribution of { is Pareto) and 6 is uniform with
6 = max{p — E[{], Ax — { + p}.

Positive Selection: Consider the same rating system, but now suppose that ¢ has in-
creasing hazard rate (e.g., when the distribution of { is uniform) and 6 is again uniform
with 6 > max{p — E[{], Az — { + p}.

A simpler, even if less realistic, example of positive selection is a rating system with
two review options that reports the fraction of “likes” among all customers, that is, T =
{-1,0,13 U{N} and T, ={-—1, 0} U{N}, T, = {1} with any distribution of # and ¢ (see
Appendix B.2.2).

The selection effect becomes more pronounced when customers have access to sum-
mary statistics (rather than the full history as in the previous section) and also when there
is negative selection. The former is because customers do not know the exact belief with
which the previous actions were taken. To understand the latter claim, suppose the rating
system exhibits negative selection and Q = 0. Then as g, approaches 0, only customers
with very high 0 purchase the product, and they tend to leave more positive reviews. This
makes it more difficult for g, to converge to 0. This intuition also explains why with pos-
itive selection, the selection effect will be less burdensome for learning and less harmful
to the speed of learning; in this case, as g, approaches 0, more favorable reviews become
less likely, and this helps faster convergence to 0.

4.3. Complete Learning

We now define the notion of separation, which plays a critical role in our analysis of
learning, because it enables customers to filter out the selection effect for rating systems
with summary statistics. Intuitively, this condition requires the distribution of at least one
review option under Q = 1 to be nonoverlapping with its distribution under Q = 0. For-
mally, we have the following.

DEFINITION 4—Separation: A rating system (71, ..., T,,) satisfies the weak separation
condition if there exists a subset of reviews & C [m] such that the range of functions
Yoies (i For, Q=0,q,T)and ), w(i; For, Q=1, g, T) (as functions of q) are weakly
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separate. Formally, we have either

min i;Fy,,0=0,q,T)> max L Fy,,O0=1,q, T
w(i; Fo, Q q,T) qe[o’”;”( 0.0, Q q,T)

€[0,1
g<l0-1] ieS

or

min 7(i; For,O=1,q,T)> max w(i; For,0=0,q,T).
(i; Fo, Q q,T) 46[0‘1];( 0.0, Q q,T)

€[0,1
g<l0-1] ieS

A rating system satisfies the strict separation condition if the above inequalities are strict.

THEOREM 3: Suppose Assumptions 1 and 2 hold, and consider a rating system with sum-
mary statistics.
1. The strict separation condition is sufficient for complete learning.
2. For m = 2 reviews and negative selection, the weak separation condition is necessary
and sufficient for complete learning.

The first part of the theorem shows that, with summary statistics, the strict separation
is sufficient for complete learning. The second part establishes a partial converse to this
result: for rating systems with m = 2 reviews and negative selection, the weak separation
condition is necessary as well as being sufficient for complete learning. We also note that
if Assumption 2 did not hold, then purchases would stop with positive probability and
there would be no complete learning, as in Theorem 1.

The proof of Theorem 3 is based on a different approach than those commonly used
in this literature. We first provide a recursive characterization of the stochastic process
for reviews conditional on the underlying quality of the product, which highlights that
the processes under low and high quality are coupled. We then construct two indepen-
dent distributions, one first-order stochastically dominated by the distribution of summary
statistics conditional on low quality and the other one first-order stochastically dominat-
ing the distribution conditional on high quality. We finally prove that, under strict sep-
aration, these two distributions are asymptotically separated on at least one dimension,
enabling us to establish complete learning. This intuition also explains the role of the sep-
aration condition. Without this condition, the probability distributions of summary statis-
tics conditional on both Q =0 and O = 1 would assign positive probabilities to the same
asymptotic events, making it impossible for users to learn the true quality. Conversely,
when the two probability distributions are separated, for example, for some i € [m], then
7 (i; Fo ¢, O =1, q) would be different than = (i; F,;, O =0, g), and thus as 7 grows, the
marginal distributions of S, (i) conditional on Q = 0 and Q =1 overlap with lower and
lower probability, ensuring complete learning.

The next example illustrates how absence of weak separation leads to failure of com-
plete learning with negative selection, but not necessarily with positive selection.

EXAMPLE 3: Consider a rating system with two review options, “like” and “dislike”
denoted by K and —K. Suppose p =0 and a customer leaves review K when her ma-
terial utility is positive. Also, let the distribution of 6 be close to a distribution with two
equally likely point masses at —7/8 and 1/2, and the distribution of { be close to four
equally likely point masses at —7/4, —1/4, 1/4, and 7/4 (the exact distributions are given
in Appendix B.2.3).

For a rating system reporting the fraction of “likes” (K) among reviews, the probabili-
ties of “like” given reviews as a function of belief g for Q =0 and Q =1 are depicted in
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FIGURE 1.—(a) Probability of “like” given review as a function of g € [0, 1] for Q =1 and Q =0 (b) distri-
bution of fraction of “likes” for Q =1 and Q =0 for = = 1000.

panel (a) of Figure 1. The presence of negative selection in this case can be seen from the
fact that the curves are downward sloping in panel (a). That there is no weak separation
in this case can be seen from the ranges of 7(K; F,;, @ =0, q) and m(K; Fo;, Q =1, q)
being overlapping. Panel (b) of Figure 1 shows the distribution of the number of “likes”
among 1000 reviews for both Q =1 and Q = 0 and illustrates that complete learning fails:
for beliefs in the overlapping range customers cannot identify the underlying quality.

If, in contrast, the rating system reports fraction of “likes” among all (potential) cus-
tomers, then the probability of “like” as a function of belief g for both Q =0and Q =1
is depicted in panel (a) of Figure 2. In this case, the curves are upward sloping in panel
(a), indicating positive selection. Even though weak separation again fails (the ranges of
7(K; Fy;,Q=0,q) and w(K; Fy;, Q = 1, q) are overlapping), the distributions of the
number of “likes” among 1000 customers for Q = 1 and Q = 0, shown in panel (b) of
Figure 2, are distinct, which ensures complete learning.

The separation condition is stated in terms of probabilities of the realization of differ-
ent review combinations, the 7 (i; Fy;, O =0, g, T)’s. The next lemma presents a simple
property of the distribution of ex ante valuations that is sufficient for this condition to be
satisfied.
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FIGURE 2.—(a) Probability of “like” as a function of g € [0, 1] for Q =1 and Q = 0 (b) distribution of
fraction of “likes” among all customers for Q =1 and Q = 0 for ¢ = 1000.
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LEMMA 1: Consider a rating system that reports the fraction of each review among all re-
views, that is, T = R and Ty ={—K}, ..., T,, = {K} where m = K + K + 1. For any distribu-
tion on {, if the hazard rate - S ‘1’,(:())[) is monotonically increasing in x, then the strict separation
condition holds.

A consequence of Lemma 1 is that, for a rating system that reports the fraction of each
review among all reviews, strict separation is satisfied for a wide range of distributions of
0, including uniform and normal (see, e.g., Thomas (1971) for a list of distributions with
increasing monotone hazard rate).

4.4. Speed of Learning

The next theorem shows that, conditional on complete learning, the speed of learning
under summary statistics is governed by a KL divergence measure closely related to the
full history case.

THEOREM 4: For a given rating system (T, ..., T,), suppose Assumptions 1 and 2 and
the strict separation condition hold. Then learning is exponentially fast and in particular, for
0 =0, we almost surely have

o1
111’1’1 —loqu = —D(ﬂ(FB){, Q = 0, q :O, T) || ﬂ(Fg,{, Q = 1, q= 1, T)),

T—>00 T

and for Q = 1, we almost surely have
1
T113.1o ;log(l —q.)=-D(a(Fy;,0=1,q=1,T) || w(Fs;,0=0,4=0,T)).

The intuition for why KL divergence determines the speed of learning is similar to
the full history case. There is a major difference worth noting, however. Let us consider
Q = 0. While with full history the probability distribution under the alternative hypoth-
esis was still conditioned on g = 0, it is now conditioned on g = 1. This difference is
a consequence of the selection effect: under full history, when drawing inferences from
past reviews, customers know the public belief at each point and correct for the selection
effect by conditioning on the public belief at the time the review was left. This is not possi-
ble with summary statistics. This forces a user into the following inference: if Q =1, then
the belief of all other customers, which she does not observe, is very likely to have also
converged to g = 1. More specifically, consider customer ¢’s learning problem for some
large ¢. In both full history and summary statistics settings, customer ¢ is facing a binary
hypothesis testing problem. For both settings, the null hypothesis is conditioned on, say,
O = 0 and the alternative is conditioned on Q = 1. What about the belief of customer ¢
regarding previous customers’ beliefs? With full history, she observes their public beliefs
and conditions on them. With summary statistics, however, she does not observe their
beliefs and draws inferences about their belief conditioning on her expectation that g is
converging to Q, that is, g ~ 0 under the null hypothesis and g ~ 1 under the alternative
hypothesis. This explains why in Theorem 4 the distributions being compared have g =0
and g = 1, while in Theorem 2, under full history, these distributions both condition on
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the same g. In Section 5, we investigate the implications of this difference on the speed
of learning under full history and summary statistics."

REMARK 2: We note that the results in Theorems 3 and 4 apply when we consider
more general summary statistics (see Appendix B.3.5). In particular, a general summary
statistics can be represented by a mapping from the fraction of each of the k = K + K +
1 reviews among previous customers, that is, f : A* — R™, where A* = {(x},...,x;) €

[0,1]%: 38 x; =1}

5. COMPARISON OF RATING SYSTEMS

In this section, we compare the speed of learning generated by various different rating
systems. We start with a comparison of full history and summary statistics, then move
to a characterization of how different review options affect the speed of learning, and
subsequently provide examples of fast and slow learning as the rating system is modified.

5.1. Full History versus Summary Statistics

A natural conjecture is that full history, which provides more information than sum-
mary statistics based on the same history, should lead to faster learning. In this subsection,
we show that learning is indeed faster under full history when there is negative selection,
but in fact slower when there is positive selection. In the comparisons, we always hold
the set of review options the same and only vary whether the platform presents a sum-
mary statistic or the full history of these reviews. Our main result is provided in the next
proposition.

PROPOSITION 2: Consider a rating system with summary statistics that reports the fraction
of reviews in sets Ty, ..., T, with T = J | T,, that is, S,(i) = % Yor_ Ya, € T} where 7 is
the number of reviews in T (i.e., 7 = #{a € T}), and a rating system with full history that
reports the sequence of reviews in the sets Ty, . .., T,,. Suppose that Assumptions 1 and 2 and
the strict separation condition hold (so that there is complete learning under both full history
and summary statistics). Then:

1. If the rating system has negative selection, the speed of learning under full history is

greater than under summary statistics.

2. If the rating system has positive selection, then the speed of learning under summary

statistics is greater than under full history.

Part 1 of Proposition 2 shows that with negative selection, having access only to sum-
mary statistics slows down learning. Paradoxically, however, part 2 of the proposition
shows that with positive selection, the opposite result holds.!*

The intuition for this result is again related to the selection effect. Recall, first, that
the speed of learning is determined by the problem of distinguishing the distribution of

B3The speed of learning in Theorem 4 is with respect to index 7, the number of customers who left a review
in the set 7', but the speed of learning with respect to calendar time is straightforward to derive by scaling down
the present speed of learning with the probability of taking an action in the set T given g = Q, which converges
to Y ,.r m(a; Fo ., Q, q = Q) in both cases (see Appendix B.3.6).

4Two additional observations are worth making. First, the comparison between the speeds of learning under
negative and positive selection is with respect to 7, the number of reviews. We show in Appendix B.3.6, the
comparison is exactly the same with respect to calendar time (because the same asymptotic scaling factor,
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reviews under the true state, say Q = 1, and their distribution under the alternative state,
Q = 0. As emphasized in our discussion following Theorems 2 and 4, under full history,
because users observe the public belief, we also have ¢ = 1. In contrast, with summary
statistics, users infer that when Q = 1, we must have ¢ = 1, and when Q = 0, then we must
have g = 0. Now suppose there is negative selection. Then, under full history, we are trying
to distinguish (Q =1,¢g=1) from (Q =0, g = 1), but under summary statistics, we are
trying to disentangle (Q =1, g =1) from (Q =0, g = 0), which exacerbates the selection
effect, leading to slower learning. This is because, under negative selection, false favorable
reviews are quite likely when g = 0, even if O = 0, making the task of distinguishing the
two distributions more difficult. Contrast this with the case of positive selection. Now,
the combination (Q =0, g = 1) generates more false favorable reviews than (Q =0, g =
0), because, by the definition of positive selection, favorable reviews are less likely when
g = 0. Consequently, under positive selection, distinguishing (Q =1,g=1) and (Q =
0, g = 0) is easier than distinguishing (0 =1, ¢ =1) from (Q =0, g = 1), leading to faster
learning under summary statistics than full history.
The next example illustrates the results of Proposition 2.

EXAMPLE 4: Consider a rating system with two review options and T = {K — 1, K},
T, ={K — 1}, T, = {K} that reports the fraction of the most favorable review among
the most favorable two review options, that is, S,(2) = % > Ya, = K} where 7 is the

number of reviews in the set {K — 1, K}. Suppose the distribution of  is uniform and
0 > max{p — E[{], Ax — { + p} and the distribution of { is Pareto so that this rating sys-
tem features negative selection (as in Example 2). Suppose that the conditions in Theo-
rem 3 are satisfied so that there is complete learning under both full history and summary
statistics. Then the speed of learning under full history is greater than under summary
statistics. However, with the same rating system but now ¢ having a uniform distribution,
there is positive selection, and in this case, the speed of learning under summary statistics
is greater than full history.

5.2. Learning From Refined Rating Systems

In this subsection, we show that more refined rating systems lead to faster learning, both
under full history and under summary statistics. Consider a rating system £ with review
options R ={-K, ..., K} and thresholds A = {A_k, ..., Ag}. We say that Q' is “coarser”
than € if the review options in ' are fewer and have thresholds A’ ={A,, ..., A;,} where
i1 <---<iypandi;eRforj=1,...,m.

PROPOSITION 3: Consider a rating system with either full history or summary statistics,
and suppose Assumptions 1 and 2 and the strict separation condition hold (so that there is

> aer m(a; For, Q, q = Q), applies to the relationship between the number of reviews and calendar time in
rating systems with full history and summary statistics).

Second, in Proposition 2, we are comparing full history and summary statistics with the same partitioning
or review options. Using Theorems 2 and 4, we can also compare the speed of learning under full history
and summary statistics with different partitioning. In particular, consider a rating system (71, ..., T,,) with full
history and the set of actions T = | J;~, 7;. Then we can show that there exists a rating system with summary
statistics and the same set of actions 7 whose speed of learning is greater than the full history if the speed of
learning of the rating system that reports the fraction of each of the actions in T separately is higher than the
speed of learning under full history.
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complete learning). Then the speed of learning is always faster under a more refined rating
system.

The intuition for this result is that the more refined rating system € provides strictly
more information about the utility of previous users (and, therefore, their preferences)
than the less refined ', and thus makes it easier for customers to distinguish between
the probability distributions of reviews induced under the true state of nature and the
alternative.

REMARK 3: In Appendix B.3.5, we extend Proposition 3 to rating systems with gen-
eral summary statistics (as mentioned in Remark 2). In particular, for a general summary
statistic f : A¥ — R and a noninjective function g : R” — R™, h = g o f will represent a
coarser summary statistic, and Proposition B-5 shows that this general form of coarsening
always reduces the speed of learning.

One application of Proposition 3 is to rating systems that report an average score of past
reviews rather than reporting detailed fractions of reviews that fall in different categories.
When review thresholds remain unchanged, a rating system reporting average scores is
less refined than a rating system reporting detailed fractions, and, from Proposition 3,
leads to slower learning (see Appendix B.3.5).

Another application is to rating systems that have “targeted information.” In particular,
platforms such as Amazon offer information about the reviews of groups of customers
with certain characteristics. For instance, for a book at the intersection of climate science
and economics, Amazon separately depicts reviews among customers who are interested
in economics as well as reviews among customers who are interested in climate science.
Providing information on reviews by groups of customers is a form of refinement, and we
make this intuition precise in Appendix B.3.7, which establishes that this type of targeting
always leads to faster learning.

It is worth noting, however, that Proposition 3 and our other results do not imply that
more review options always lead to faster learning: when the platform alters the review
options, users’ thresholds might also change, reducing the informativeness of their re-
views. This will be the case, for example, when the review options are noncomparable
between two rating systems or when additional options change the users’ review thresh-
olds. The next example shows that a greater number of review options may lead to slower
learning.

EXAMPLE 5: Assume ¢ is uniform over [—2, 2], 6 is uniform over [—1, 1], and p =0.
Consider the following two rating systems: (i) there are two review options {—1, 1}, with
threshold 0, that is, the review is 1 if and only if the utility is nonnegative, (ii) there are
three review options {—2, —1, 1}, with thresholds —1/2 and 1/2, that is, the customer
chooses —2 if her utility is below —1/2; —1 if her utility is between —1/2 and 1/2; and 1
if her utility is above 1/2. It can be verified that even though the second rating system has
more review options, it leads to slower learning.

5.3. Fast and Slow Learning From Reviews

In Appendix B.2.1, we provide several examples illustrating how different aspects of
the rating system and the extent of heterogeneity among customers affect the speed of
learning. Example B-1 illustrates how a small refinement of a rating system can lead to
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a very large change in the speed of learning because the refinement provides a review
option that has a much higher likelihood ratio when Q = 1 than when Q =0.

Examples B-2 and B-3 show that an increase in ex post heterogeneity (a wider sup-
port or greater variance of {) reduces the speed of learning because reviews become less
informative about the underlying quality of the product. In particular, in Example B-3
we consider a setting where both 6 and { are normally distributed (with E[{] =0 and
var(#) = 1), and then study how the speed of learning changes as a function of var({)
and E[6]. The speed of learning is decreasing in var({) and increasing in E[6]. The in-
tuition for the former result is that more disperse ex post preferences make reviews less
informative. The intuition for the latter result is that higher E[ 0] implies that customers
who purchase the product are more likely to have a positive experience, exacerbating the
selection effect and slowing down learning.

6. CONCLUSION

As the number of goods and services sold online continues to grow rapidly, platforms
are increasingly relying on rating systems that provide information on both the quality of
various products that are difficult to inspect online and the reputation of distant sellers
and service providers. Despite their essential role, properties and efficacy of online rating
systems have attracted only limited attention in the recent literature.

In this paper, we presented a model of Bayesian learning from online reviews and in-
vestigated the conditions for complete learning of the quality of a product and the speed
of learning under different rating systems. In addition to building a benchmark model of
learning from online reviews, our analysis has three main contributions. First, we identi-
fied a new challenge to learning, the selection effect: the distribution of past reviews will
depend on the information available to the users at the time, which may not be known by
current users. We developed a systematic analysis of learning in the presence of this selec-
tion effect, under rating systems with both full history and summary statistics. The latter
case necessitated a new approach for analyzing the limiting behavior of reviews and be-
liefs. Second, we characterized the speed of learning under both full history and summary
statistics, showing that in both cases learning is exponentially fast and is characterized by
a KL divergence term. Finally, we studied how different rating systems shape the speed of
learning, and showed that more information does not necessarily lead to faster learning
and full history may cause slower learning than summary statistics, because it changes the
behavior of users and impacts how they deal with the selection effect.

We view our paper as a first step in a comprehensive theoretical analysis of learning
from online rating systems. Several interesting directions are worth investigating. First,
it is important to study how platform decisions, including design of rating systems and
pricing, interact with user learning. We take a first step in this direction in Appendix B.
In Appendix B.3.8, we show that if the platform would like to maximize participation by
users, then it will always choose a rating system that maximizes the speed of learning. In
Appendix B.3.9, we show that our learning and speed of learning results generalize to
some environments in which the platform also chooses an endogenous sequence of prices
to maximize revenue. Second, another interesting direction is to introduce more strategic
interactions between users (our analysis of review decisions intended to influence future
purchasing behavior in Appendix A.2.2 is one step in this direction). Third, it is important
to move beyond Bayesian learning and investigate what types of rating systems robustly
aggregate information when agents use simple learning rules. Finally, a fruitful area for
future research would be to close the gap between theoretical models of learning and the
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burgeoning empirical literature on behavior in online markets, which highlights both the
role of selection effects and user incentives.

APPENDIX A

This Appendix presents the proof of the main results and two foundations for the
threshold review decisions in equation (3). The remaining proofs, additional results, and
examples are presented in the Online Supplementary Material, Appendix B.

A.1. Proofs

PROOF OF THEOREM 1: At time ¢, the likelihood ratio is a random variable defined as

m(a,; Fo:,0=1,q9= q:)
m(as; Fo;, 0=0,9=¢q,)’

where a, = a with probability 7 (a; Fy;, O, q = q,). We will use this random variable in
the proof of this theorem as well as the proof of Theorem 2.

Z(a, 1) = Va, € A, (A-1)

_ Part 1: We first provide the proof when 6 +E[{] — p > 0 and then show the proof when
0+ E[{]— p =0. Without loss of generality, we assume Q = 0 and then prove that g, — 0
almost surely. The proof for Q = 1 is similar. We first establish that /, forms a martingale,
and thus converges to a limiting random variable, and then show that the limiting random
variable must be 0 with probability 1.

Note that the random variables Z(a | /;) are all mean 1 (conditional on history). This is
because

m(a; For, O=1,9=¢q,)
EaNﬂ(Fs,g,QﬂLq:qz)[Z(a | lt) | ht] = ]EHNﬂ(Fo,ng—U,q—qr)[ oL t

W(ﬂ§F9,g,Q=0,q=CIt)
=Y m(a:For,Q=1,9=q)=1.

acA

This guarantees that /, forms a martingale. Since /, > 0, from the martingale convergence
theorem (Chapter 5, Durrett (2010)) we conclude that /, — /., almost surely. We next
prove that the limiting random variable /,, is 0 almost surely.

Given any history (or equivalently its sufficient statistic /,), we have

W(a=?§F9,§7Q=1,q=%)

m(a=K:;Fy;,0=0,9=gq,)

P+ 0+ E[]-p=0,0+{+1—p=> )]

Poc[qi+0+E[{]—p=0,0+{—p>)g]

Po[q+0+E[{]—p=0,0+(—p—Irge[-1,0)]
Poc[qi+0+E[{]—p>0,0+(—p—Ag>0]

Py [0 +E[{]—p=0,0+(—p—Age[-1,0)]

Po 1+ 0+E[{]-p=0,0+{—p—Ag=>0]’

Z(a:E”t):
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where the inequality follows by substituting g, = 0 in numerator and g, = 1 in the denomi-
nator. Using 6+ E[{] — p > 0 and the fact that by Assumption 1, 6 and { have continuous
and strictly increasing cumulative distributions over their supports and 6 + { — p > Ag,
we have

Py [0+E[L]—p=0,0+¢—p—Age[-1,0)]
© Po 1+ 04E[]-p=0,0+( - p> ]

This is because both the numerator and denominator of the above expression are strictly
positive. In particular, for A; = min{1, 0 + E[{] — p} > 0, we have

Py [0+E[{]— p=0,0+— p—Age[-1,0)]

> 0. (A-2)

Q -
2P9>§[02O_Alap'i‘/\E—e—lS{Sp.'.)\?_e](;)(),

where (a) follows from the the choice of A, and (b) follows from p+Ag—60—-1<p+
—04+A —1<pH+rg—0O<land p+Ag—0—1>pH+A —06—1> { (where we used
Assurnption 1 in both inequalities), showing the numerator is strictly positive. A similar
argument shows that the denominator is strictly positive as well. Therefore, irrespective
of the belief, whenever @ = K the random variable Z (- 1) is strictly larger than 1, that is,
min; Z(a=K |I)—1>€> 0.
Again, using Assumption 1 and §+E[{] — p > 0, for any belief, the probability of a = K
is positive, that is,

7)—mél}]Peg[Q+9+E[§]_PZO,9+§—PZ/\E]

>Py [0+E[{]-p=0,04+¢—p=>2g]

2ru020-2.027- 2| =0 (A3)

where A, = min{f + E[{] — p, 0+ — p — Ag} > 0. With these definitions for € and 7, for
all ¢t and /, we have

Povn(ry.0-0.9-a0[|Z(a | 1) = 1| 2 €| L] = m(a =K Fyr, 0=0,9=1q.)
>Py[q+0+E[(]—p=0,0+{—p=> )]
=N.

We next prove that /,, = 0 with probability 1. Using (A-2) and (A-3), for an arbitrary 6 > 0
we can write

Pioncon_, [1lie1 — Ll = 8€) = Eyq oy [1{[L(Z(-11) — 1)| = 8€}]
> Eqocopr_, [l = S| Z(- [ 1) — 1] = €}]
!

G5 1, > 8YEq, o [L{|Z( 1) — 1] = €} 11]]

E (g0, 1[1{1, >8P [|Z(-11)—1]|=€|l]]

{(9 Y

(b)
= T’]E{(gs,{s)}i;: [l{l[ = 5}] = WP{(GS,;S)};} [Z: > 4], (A-4)
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where (a) follows from tower property of expectation and (b) follows from (A-2) and
(A-3). Since [, — I, almost surely, we have Py, )y [|lis1 —1i| = €] — 0, which along
with (A-4), leads to P, Loyl [/, > 8] — 0. This proves that /, — 0 in probability, which
together with /, — [, almost surely, establishes almost sure convergence, that is, P[/,, =
0]=1."

Finally, note that since /, = ]f—’qt, from [, — 0, we have g, — 0 almost surely, completing
the proof of Part 1 when 6 4+ E[¢{] — p > 0.

We next present the proof when 6 + E[{] — p = 0. Note that /, still forms a martingale
and, therefore, almost surely converges. That is, we have [, — [, almost surely. We next
prove that /,, = 0 with probability 1. To obtain a contradiction suppose that P[/,, = 0] < 1.
This implies that there exists w > 0 such that P[/,, > w] > 0. Because if P[/,, > o] =0 for
all w > 0, we have P[/,, € [0, w)] =1 for all w > 0. Then, the continuity from above of
probability measure /,, ensures that 1 =lim,_(P[/» € [0, w)] = P[/» = 0], which contra-
dicts P[/, = 0] < 1. Therefore, there exists @ > 0 such that P[/, > w] > 0. We can bound
Z(a=K |I) for [ >  for some v > 0 as follows:

Pofqg+0+E[{]—p=0,0+(—p—Age[-1,0)]
Po[q+0+E[{]—p=0,0+(—p—2rg=>0]

minZ(a:EU):I}linl—l—

I>w

w
P[0+ B0~ p L 20,04~ p— A [1,0)]
Py [0 +E[{]—p+1=0,04+¢—p—Ag>=0]
:1+”U, (A_S)

>1+

where we used Assumption 1 and in particular the facts that 6 and ¢ have continuous and
strictly increasing cumulative distribution functions over their supports and that Z(a =
K| [) is continuous for / > w and, therefore, the minimum is achievable. That v > 0
follows from 6 + E[{] — p =0, with a similar argument to (A-2). Therefore, given w > 0,
the numerator Py [0 + E[{] — p+ %= > 0,0+ { — p — Ag € [-1, 0)] is strictly positive.
Now since P[/,, > ] > 0, for o = min{%w, s} there exists [* > w + o such that P[/,, €
[I*— 0, 1"+ 0)] > 0. The existence of /* follows from the fact that [w, 00) = -, [@+2(i —
1)o, w + 2ip). The subadditivity of the probability measure /., implies P[/,, € [w, 00)] <
Y2 Plly €[w+2(i—1)p, w +2ip)]. Because the left-hand side of the above inequality
is positive and the right-hand side is the summation of countably many terms, one of
the terms must be positive. Letting i* > 1 be the index of the positive term, we can take

I*=1((@+2(i* —1)0) + (w + 2i*0)). This implies

1 Z@=R ) —1|2 (- o)v 220, forallle[l'—o.I'+0),  (AG)

where (a) follows from inequality (A-5), I* > w + 0, and / > [* — o > w and (b) follows
from [* > o and ¢ < 57 w. This inequality establishes that if /, € [I* — o, [* + 0) and the

review decision at time ¢ is K, then the likelihood ratio in the next round, /,;, will not be
in the interval [/* — o, [* + ). Moreover, using Assumption 1 and a similar argument to

BTo see this, first note that from /, — [, almost surely (a.s.), we have I/, — [, in probability and the result
follows by noting that for a sequence of random variables {X,,}, if X,, — X and X,, — Y in probability, then
X=Yas.
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0,0+ ¢ — p = Ag] > 0, the review decision is K, and hence using (A-6), we conclude
that the likelihood ratio of the next round will not be in the interval [[* — o, [* 4+ 0) with
positive probability.

Since Pl € [I* — 0, I* + 0)] > 0, with positive probability there exists ¢, such that for
t > t,, the likelihood ratio /, is in the interval [[* — o, [* 4+ ). But we just proved that
if [, € [I* — 0,0* + 0), then [,,; is not in the interval [/* — o, [* + o) with probability at
least p > 0. Letting £, be the event that /, ,, does not fall into interval [I* — o, [* + o),
we have Y~ PP[E,] = co. Using the second Borel-Cantelli lemma, we can conclude that
with probability 1 the events {E,}° | occur infinitely often, which contradicts the fact that
for t > #,, [, is in the interval [/* — o, [* 4 ©). This completes the proof of Part 1.

(A-3),forall [ € [I — o, 1" + ) with probability at least p =P [0 + E[{] — p+ 175 >

Part 2: We break the proof into two steps. In the first step, we prove that with a positive
probability, starting from any initial belief g, € (0, 1), in finite time g, becomes very small.
In the second step, we show that once this happens and given the assumption of part 2,
which is 6 + E[{] — p < 0, no purchase takes place and learning stops.

Step 1: Let A= —(6 + E[{] — p), where by the assumption of part 2, A > 0. First, note
that if A > 1 then 6 + E[{] — p + ¢ < —A + 1 < 0, which implies that when A > 1, no
purchase happens. Therefore, we only need to consider the case where A < 1. In this
case, we prove that there exists a finite ¢ such that, starting from any belief, with positive
probability we have g, < A.

For any g > A, using Assumption 1 and a similar argument to that of (A-2), we have

Py [0+E[{]+q—p=0,0+{+1—p=<Ag]

ax <1.
acld1 Py [0+ E[{]+q—p=0,0+¢—p<A]

This is because a necessary condition to satisfy the first constraint in the numera-
tor and denominator is to have # > § — (1 — A). Using this condition, we have ¢ <
Axk+p—0—-1<Aig+p—0—-1<rg+p—(6—(1—A)—1<{, which im-
plies that the difference between denominator and numerator is bounded from below
by Py [0>0—(1—A),A x+p—0—1<{<A g+ p— 0] >0.Therefore, we obtain

. P[0 +E[]+q—p=0,0+¢+1—p<A,]\)
lim { max =0.
e8I\ Py [0 +E[{]+qg—p=0,0+(—p=<ig]

t—00
Let T; be the smallest number such that for all ¢ > T;, we have

¢ Py [0+E[{]+q—p>0,0+C+1—p=<Ag]\) A
max < . (A7)
1—qi \acld1\ Py [0+E[{]+q—p=>0,0+(—p<Ag] 1—A

Notice that such Ty exists because ¢; € (0, 1). Let us also define

p:(mn@MW+EMHﬁ—pZQ0+§_pSLﬂ»m>Q

qe[A,1]

where p denotes a lowerbound on the probability of having 7; consecutive dislikes when
belief is above A. Note that under this condition, (A-7) implies that g7, < A.

We next prove that, starting from initial belief ¢, € (0, 1), with probability at least p
there exists a time ¢ € [1, Ty] such that g, < A. Let £ be the event that in the interval
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[1, Tp], the belief goes below A and & be the event that in the interval [1, Ty — 1], the
belief goes below A. We can write

P[E] =P[€ | &IPIE] +P[E | E P[] = PIE] + Plgr, <Al q > A, 1 <1< T, — 1]P[&]
>P[&] + pP[Ef] = p,

where the probabilities are over random variables {(0;, ¢ Y)}STil. Therefore, with probability
p > 0, there exists t* € [1, Ty] such that g« < A.

Step 2: For all t > t*, we have ¢, = g~ and the limiting belief becomes g, # Q.
We establish Step 2 by induction on ¢. It holds for ¢ = ¢*. Since g, — p + 60 + E[{] <
A+ 60+ E[{] — p =0, purchase does not happen at time #*. Since purchase does not

happen at time #*, the belief at time ¢* + 1 is the same as g, because —L4=NO=Llel

Pg,;[a=N10=0,lx] —
Py ([0+E[{]+qp—p<0] . % . . :
B L[0T EI T —p 0] — 1. Therefore, no purchase occurs at time ¢* + 1. By repeating this ar

gument, no purchase occurs for any ¢ > ¢* and g, = q,-. Finally, note that g, is away from
Q =0 (similarly from Q = 1) because using Assumption 1 if purchase occurs, then the
probability of any review is nonzero. Hence, the likelihood ratio at each time is multiplied
by a number bounded away from zero and cannot become 0 in finite time. Q.E.D.

PROOF OF THEOREM 2: We prove the theorem for Q = 0 as the proof for Q = 1 can be
obtained by a similar argument. Recall that {/,}°, is the sequence of likelihood ratio of
beliefs. The proof of this theorem follows by starting from the sequence {/,}?°, and then
defining a coupled new sequence {/,}{°, that is larger (and similarly smaller) than /, and
has updates with i.i.d increments.

We index the set of actions and let A ={1, ..., m} denote the set of all actions including
“no purchase.” First, note that using Assumptions 1 and 2, both Z(a | /) and Py [a | [, O]
are continuous, where Z(a | /) is defined in (A-1) denoting the likelihood ratio of action
a with belief g = 1%1 Since g, — 0 almost surely (equivalently /, — 0 almost surely), for
any € we can choose N such that /, < e for t > N. For any a € A and €, we define €, =
argmax., 4 Z(a | ), denoting the likelihood ratio in [0, €] that results in the highest belief
when taking action a. Using this definition, we almost surely have

Z(a|l)<Z(a|l=¢€,), VYacAt>=N. (A-8)
We can reindex the set of actions and without loss of generality we suppose
Za=1|l=€)<---<Z(a=m|l=¢,). (A-9)

Let p, =min, . Pysla|l,Q=0]foralla=1,...,m—1, and define p,, =1 — Z;";ll Pas
sothat ) _, p,=1. Note that

m—1

m—1
Zpa SE?{EPMM I, QZO]} <L

a=1

Therefore, p,,=1— Z'::_]l p.>0and py, ..., p, form a probability mass function. With
this choice of py, ..., p., we have

. a Pla|Q=1,1=0
i > log(Z(a 1= e) & 3 Fla1 0 = 0.1 =0j1og( St 2= =) o,

acA acA
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where (a) follows from the continuity of Z(a | /) and Py [a | /, Q] and (b) follows from the
fact that for a = K, using Assumption 1, {+ 6 — p+1< Ak < Ag, therefore, Pla=K |

Q0=1,l=0]>Pla=K | Q=0,/=0] and the fact that KL divergence is strictly positive
if the two distributions are not identical. Therefore, for small enough € we have

> palog(Z(a|l=¢,)) <0, (A-10)
acA
and from the choice of py, ..., p,, we have
ZIP’“HI,,Q 0] > Zp,, Vae A,fort>N. (A-11)

i=1

Recall that /,,; =/,Z(a, | ;) where the action at time ¢, a,, is equal to a € .A with probabil-
ity Py ([a | I;, O = 0]. Alternatively, we can define {/,} as follows. Let % denote a uniform
distribution with support [0, 1]. At any time ¢, we draw an independent sample o, ~ 2.
We then find action a for which o, € (Zf:_ll Po i1, 0=0],> " Po,lill,O0=0]], and
set a, equal to this action a (for a = 1, we define Z,[-: Po,li ], Q =0]=0). Finally, we
update /.., =1, Z(a | l,).

Note that since o, € [0, 1], there exists a € A such that o, € (X% Py [i | 1, Q =
0], >0, Po,li | I;, Q = 0]]. By definition, the sequence {/,} defined above evolves as the
likelihood ratio of the public belief. This is because we have

Pz[m . (ZPM[:‘ 11,013 B i 11, Q]H =Puglall, Ql

We next define a sequence /, for £ > N and the corresponding sequence of actions , that
couples with sequence {/,}. We initialize this sequence at t = N, by defining Iy = ly. At
any time ¢ > N, let o, denote the drawn random variable in sequence /,. We then find an
actlon a € A such that o, (Zl \ Dis Zl , pi] and set @, = a (again, for a = 1, we define
Z, ! pi=0). Finally, we update [,,, =, Z(a |l = €,).

Since o, € [0, 1], there exists a € A such that o, € (3"} pi, Y0, pi]. Since {0} is an
i.i.d. sequence, the strong law of large numbers implies that, almost surely,

t—=1 m

lim 1ogzt_tlggt221{av (Zp,,Zp:“log Z(a|l=¢,)))

s=1 a=1

= Zpa log(Z(a|l=¢,)).

acA

Combined with (A-10), this proves that /, converges to zero at the rate — Y wea PalogZ(a|
l=¢€,).
We next prove that [, > [, for t > N. We establish this inequality by induction on .
It evidently holds for ¢ = N. Suppose at time ¢, we have o, € (X" Py.[i | L, Q =
0], > Py,li | I, 0 =0]], that is, a, = a. Using (A-11) and assuming a, = a leads to
a, > a. Therefore, we have

lo=2ZG@ =€)l > Z(a |l =€), > Z(a |l =e)l, S Z(a | 1) 21,01,
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where (a) follows from induction hypothesis, (b) follows from @, > a and (A-9), (c) follows
from (A-8), and (d) follows from the definition of sequence {/;}. This establishes that
almost surely lim,,,, 1logl, <>, , p.log(Z(a | = €,)). Since this inequality holds for
all small enough e, letting € — 0 (and consequently €, — 0 and p, —» Pla |/ =0, 0 =0]
for all a € A) leads to

1 .
lim —log/, < gzpa log(Z(a|l=€,)) =) Py a|l=0,0=0]log(Z(a|l=0))

el acA acA
= —D(n(Fu, 0=0,g=0)|7(Fp, O=1,qg= 0)). (A-12)

To prove the other direction of inequality (A-12), we define €, = argmax,, , Z(a | [),
re-index the set of actions and suppose without loss of generality that Z(a =1 |1/ =
€)>-->Z(a=m|l=¢,). We also define p, = min,.Py,[a|l,Q = 0], for all
a=1,...,m—1,and p,=1-Y"""p,.

Using this new ordering and by replacing €, and p, with €, and p, respectively, a similar
procedure used in defining sequence {/,};°,, defines coupled sequences {/,}°,, and {/,}°
such that /, > [, for all + > N almost surely and lim,_, %logll =D weaPalog(Z(a|l=
€,)). Therefore, by letting € — 0 (and consequently €, — 0 and p, — Pla | =0, Q =0]),
we almost surely have

1
lim —logl, > —D(m(Fys, Q=0,q=0) | #(Fss, 0 =1, g =0)). (A-13)

t—oo

Combining (A-12) and (A-13) leads to

1
lim - logl/, = —D(m@(F,;,0=0,q=0) | @(F,;, Q=1,q=0)).

t—oo [

Finally, we have

1 1
lim —logg, = lim —logl,=—D(a(Fy;, 0 =0,4=0) || m(Fy.;, 0 =1,9=0)),

t—oo

which completes the proof. QE.D.

PROOF OF THEOREM 3: A similar argument to the proof of Theorem 1 shows that un-
der Assumptions 1 and 2 for any belief g € [0, 1] and any quality Q € {0, 1} all actions
have nonzero probability. We first derive some relations that will be useful in the rest of
the proof. A summary statistic S, is a vector (k,/, ..., k,/7) such that Z;”:l k;=r and
k; >0, j € [m]. Any summary statistic can be equivalently expressed as (ki, ..., k,,) at
time 7, and we define

pilki, ..k, ) =P[S, = (ki, ..., kn) | Q=1],
po(ki, ..o kp, 7) =P[S. = (ki,...,kn) | Q=0].

We next determine the stochastic evolution of pi(ky,..., k., 7) and po(ki,..., k., 7).
Note that both sequences {p;(:, 7)} and {p,(-, 7)} depend on ¢q(-, 7), which is in turn
determined by the sequences themselves. The next lemma shows that despite this depen-
dence and the fact that the behavior and number of customers who have taken actions
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that are not in T are not observed, Bayesian updating implies that these probabilities sat-
isfy an intuitive recursion under our assumption of uniform priors over the number of
past people who joined the platform.

To simplify the notation, let us use (i, q) (resp., m(i, q)) to denote the probability of
Y, =e; given belief g and Q =1 (resp., Q = 0). Therefore,

Wl(i,Q):ﬂ'(i;Fo,g,Q:la(I)a iE[m],
m(i,q) =7(i; For, Q=0,q), ie[m],

where [m] denotes the set {1,...,m}. Note that since Ti,..., T, form a partition of
T, for any g, we have Y ", m(i,q) = Y .., m(i, g) = 1. Moreover, for any subset R C
{1, ..., m}, we write

m(R,q)=Y_ m(@i,q), mR,q)=)_m(q).

ieR ieR

(A-14)

LEMMA A-1: The sequences {pi(k1, ..., km, T)} and {po(ky, ..., k., T)} satisfy

p1(k1,...,km,7')
—Zpl(kl,... /1, 1 kl_H,...,km,’T—l)
X7Tl(j,61(k1,~-~,kj—1,kj—l,kj+1,...,km,7—1)),
polky, ...k, T) (A-15)
_Zpo(kl,... itk =1k, e ey T — 1)

X 7To(j, q(kl, ...,kj_l,kj — 1,kj+1, ...,km, T — 1)),

pl(kl,...,km,’T)
k’ b M’T = .
a(ki )= o T & polkrs o T ™)

PROOF: For 7 =1, the belief without any observation is 1/2. Therefore, we have
pi(e;, 1) = m(i, 1) and py(e;, 1) = m(i, 3) for all i € [m]. We let random variable %,_;.,
denote the history of actions in between 7 — 1-th and th actions in 7. Given customers
have uniform prior on the number of people who joined the platform denoted by C, and
the fact that all customers in this interval observe the same history, and hence form the
same belief, we can write

P[hf—lzr | Sr—la Q] = Z]P[hr—lzf | C= c, S-r—l: Q] = ZP[(I ¢ T | ST*la Q]C (A_16)
c=0 c=0

Using (A-16), we next show the update rule for > 2. We have

pI(k1,...,km,T)
—P[S,(1) =ki,...,8,(m) =k, | 0 =1]
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ZZZP[Sffl:(k17"'7kj71)kj_17kj+17"'7km)|Q=1]

j:1 hT—l:T

S ]P)[hT*]iT | Q: 17 ST*] = (kla (KRS kjflakj - 1’ kj+1’ tee km)]
X ]P[ar € ]—‘j | hfflzfy Q = 13 Srfl = (k17 KRR kj*l: k] - 17 kj+17 L) km)]

Il
.ME

]:P[ST—l = (kla L) kj—la kj - 17 kj+1a e km) | Q = 1]
J

[e°]

x Y Plag¢T|qki,....kio,kj—1, ki, k), Q=1]°

c=0

X]P)[LZET}|q(kl,...,kj,l,kj—1,kj+1,...,km),Q:1]

:Z]P[ST—I:(kla“'akj—l’kj_1’kj+1a~-~9km) | Q=1]
j=1
y ]P)[ae7}'|q(k1,...,kj_l,kj—1,kj+1,...,km),Q=1]
1-P[a¢T|q(kl,...,kj,],kj—l,ijr],...,km),Q:l]

Zzpl(kly---akj—lakj_]-7kj+1;---:km77_1)
j=1
X Wl(j,q(kl,...,kj_l,kj— 1,kj+1, ...,km,'T—l)).

We can write a similar recursion for po(ky, ..., k., 7). The proof concludes by using
Bayes’ rule to find g(k4, ..., k,, 7) as in (A-15). Q.E.D.

We now provide the proof of the theorem. We first prove Part 1: strict separation is
sufficient for complete learning.

Part 1: We prove that strict separation is sufficient for complete learning in three steps.
Under strict separation, there exists R C [m] such that the range of ) ,_; 7 (i,-) and
Y i (i, -) are separated. Without loss of generality, suppose the range of ) ,_» 71 (i, -)
is above the range of ). » m(i, -), that is, min, ) ,_» (i, q) > max, ) ., » m(i,q). We
let

. . 1 ) 1
m = <qulnzﬂ'1(la Q)) - ZA3’ and m = <manZ (i, LI)) + ZA3, (A-17)

ieR ieR
where Ay = (min, 3, mi (i, ¢)) — (max, Y, m(i, g)) > 0.

Step I: Let ST(7A2) =Y. S;(i) denote the fraction of reviews in R after  reviews.
Then

S.(R) > Binomial(m,7) forQ=1 and §,(R) < Binomial(m, ) for Q=0.



LEARNING FROM REVIEWS 2887
Equivalently, using the notation kz =), 5 k;, we have

$i(l,7) =P[S,(R) <11 Q=1] = Z Z pi(kss s Ky 7)

kimpr k=1

()0

j=0

(A-18)
So(l, ) =P[S.(R) <11Q=0] = Z Z po(kyy ...y ko, )
[m]\R kR
!
Z( )770(1—77)7 d
j=0
where the inequalities are strict for some / in {0, ..., 7}.

PROOF OF STEP 1: We prove the claim for Q = 1 (the proof for Q = 0 is identical). The
proof idea is as follows. Given Q = 1, consider the random process S,(R). Lemma A-1

proves that the distribution of ST(7A€) satisfies a recursive relationship. We consider an-
other random process, whose distribution satisfies a similar recursion with the difference

that (7@, g.) is replaced by 7, its minimum over all g. We prove that the distribution
of this process at 7 is the same as the distribution of Binomial(, 7). Moreover, because

this process is defined recursively using the minimum of (7@, q) over g, it follows that
S, with Q =1 first-order stochastically dominates Binomial (7, 7).
We next present the formal proof. First, note that from the definition in (A-18), we have

S, 1) =S, 7—1)

Z Zm(k],...,km,f) Z Zpl(k],..., my T —1)

k.5=1

[mJ\R ’R [m]\’R R

Z Zzpl(kl; /Ia 1’kj+17---7km,7_1)
k =1 j=1

[m\R ’R

X 7Tl(j, q(kl, ...,kj_l,k'— 1,kj+1,...,km,7'— 1))

-3 Zpl(kl,..., s T — 1)

kimp = k=1
Z Z pl(kla---a ms )Zwl(jaq(kla"'akm,T_l))
Kz kr=1 =l

=YY > pikis ek =D (i gk, ki, T — 1))

ki k=l ieR
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—Z Zpl(kl,... m,T—l)

[m]\R kR 1

=— Z Y itk ookt =D m (R, gk, kT 1)), (A19)

[m]\R kR71

where the second equality follows from Lemma A-1 and the last equality follows from the
fact that Y7, m (i, ¢) = 1. We define the sequence {S;(/, )}, . recursively as

SUL=81-1,7—D)m+8(,r—1)(1-m), 0<l<7,7>0. (A-20)
We next prove that S;(I, 7) > S, (I, 7) (with one strict inequality) by induction on 7. For

7=1,wehave §;(0,1)=1—m > 1—m(i, 1) =$(0,1) and S;(1,1) = 1 = S, (1, 1). We
now suppose that the induction hypothesis holds for 7 — 1 and prove it for 7. We have

S, 7)=8(I—-1,7=)m +8S(l, 7 —1)(1 —m)
>Si(-1,7—Dm+ S r—-1)1—-m)

>S1(l 7—1)—771 Z Zpl(kla-“a maT_l)

[WI]\R Kp=
>8(l,T—1) - Z 3 pilkis ok T =D m(R, qlhys o ki, 7= 1))
[m]\R K”Rfl
=5, 7), (A-21)

where the first inequality follows from the induction hypothesis, the second inequal-
ity follows from the definition in (A-18), the third inequality follows from using m <
min, m (7@, q) and the last equality follows from using (A-19). Also, note that by induc-
tion hypothesis for some /, S(I, 7 — 1) > S(I, 7 — 1) and, therefore, S(I, 7) > S(, 7) is
strict. We next prove, again by induction on , that the recursive definition of {S;(/, 7)}
given in (A-20) leads to $,(I, 7) = Y, () (1 — ).

This evidently holds for 7 =1 as we have 5’1(0, 1)=1—-m and 51(1, 1) = 1. We now
suppose it holds for 7 — 1 and prove it for 7. We have

ST =8(-1,7r—Dm+8(,7—1)(1—m)
-1

(7)) ma-my e Z (75 ") ma=myr

j=0

St () (1) =i (). v

Combining (A-21) and (A-22) completes the proof of Step 1.
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Step 2: Using definitions of 7y and m, in (A-17), we have m — my = 2. We let A, = 7‘
which is strictly positive. For any € > 0, we have
1 A 1 a2
Plg,>€|Q=0]<-e"2, Vr>1, and P[l—¢g,>€|Q0=1]<-e"2, Vr>1.
€ €

' PR.OOF OF STEP 2: Using Step 1, for y = @, we have 7 — % =1+ % = vy. This
implies

2 . ) A A2
Si(yr, ) < Z <;> m(l—m) = ]P’|:Binomia1(7n, T) < (771 - f)r] <e 7, (A-23)
j=0

where we used Chernoff-Hoeffding’s inequality in establishing the last inequality. We
also have

YT ) ) A
So(yT, ) = Z (;) my(1— )™ = [P[Binomial(m), T) < (770 + 74>T:|

j=0
3
>1—e"72. (A-24)
We next prove the claim for Q = 0 (the proof for Q =1 is analogous). We have

Plg.>€|Q0=0]= Z poki, ...k, T q(ky, ... ky, T) > €}

K2
q(kla-'-akm,T) € }
= ki,....kn, 7)1 >
;k%nknzp()(l ){1_q(k15"-,km,7) 1—¢€
q(kla-'-7km,7) € }
+ k:"',kmaTl{ >
lz;k%ik;p(](l ) 1—g(ki,....kp,7) 1—€

(a) qlky, ... ky,T) €
D e e e
=0 k[m]\RkR,Z > s m»

+ (1 = So(yT, T))

() — pi(kiy ...k, T) € 4
=y Zpo(kl,...,km,r)l{po(kl ikt R
1=0 kp i kg =1 v
© 1—¢ 2 l—e & 2
<D 2 > ke ky ) e s e e
1=0 ki k=1
14
= e 7, (A-25)

€

where (a) simply follows from the fact that indicator function is less than or equal to one,
(b) follows from (A-24), and (c) follows from (A-23). This completes the proof of Step 2.
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Step 3: We have g, — Q almost surely.

PROOF OF STEP 3: We present the proof for Q = 0 (the proof for Q =1 is identical).
The idea is to use the Borell-Cantelli lemma together with the exponential tail bound
obtained in Step 2 (see Etemadi (1981) and Korchevsky and Petrov (2010) for similar

arguments). For any m, 7 € N, we let A('”) ={g. > 1}. From Step 2, for any m € N we

A2
have > 7 P A( )] <m) X e’ 7 < co. Therefore, the Borell-Cantelli lemma implies
P[i.o. A(Tl/’”)] =P[, ey Uiss A"™] = 0. Therefore,

¢ (1im 0. =0) ] e[ UNUA™ | = X elio 0] =0,

meN 7eN k>r

where we used a standard union bound for the inequality. This completes the proof of
Part 1.

Part 2: Here, we first establish that, with negative selection and m = 2 reviews, weak
separation is sufficient for complete learning to happen. We use the same line of argument
as part 1 of the theorem to bound P[gq, > € | Q = 0] similar to inequality (A-25). For a

given €, we let y = w We can write

Plg. >e| Q=0]= ZPU(T—k,k77)1{‘](7_k’k’7) > E}

k=0

1) — 1— .

(5) ZPI(T—k,k,T) E—i—Zpo(‘r—k,k, T)l{q(T—k,k,T)>€}
k=0 k=yT1

(b) 1—¢€

]P’[Blnomlal(ﬂ-o(Z 0),7) < y7]

+ > po(r—k, k,7)1{q(r — k. k,7) > €}
k=yT

Q 1—P[B1n0mlal(770(2 0),7) <¥7]
€

+ P[Binomial (my(2, €), T) > y7]

@1 (meo-mEe?
—e 2

—_ b

€

where (a) follows a similar argument to that of (A-25), (b) follows from the fact that with
negative selection min, 7 (2, q) = m (2, 1) = m(2, 0), (c) follows from the fact that for
g. > € the negative selection implies (2, q,) < m(2, €), and (d) follows from Chernoff-
Hoeftding’s inequality. We use a similar argument to that of part 1 to complete the proof.

In particular, for any m, 7 € N, we let AT = {g, > +}. Using the above inequality, for any

meNwe have ) - P A( '”) <my ., e < 00, and similar to the proof of
Part 1, the Borell—Cantelh lemma 1mphes P[(lim,_ g, = 0)€ ]

We next prove that the weak separation condition is also necessary for complete learn-
ing by using the following claim.
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CLAIM 1: If a rating system with m = 2 has negative selection, then for any T, we have

(S.(12) 10=1) > (S-({12}) | 0 =0),

where recall that S,({2}) is the number of top reviews at time .
PROOF OF CLAIM 1: Let

771(29 Q) = 7T(l = 2’ F@,{y Q = 1’ LI), 770(29 (J) = 7T(l = 2a Fé’,{’ Q:O’ q)7

where the subscript of 7 (S, g) for O € {0, 1} indicates true quality, on which this expres-
sion conditions. We also define

ST =P[S, () <110=1],  S(l,m)=P[S,(2}) <110 =0].

We next prove that, for all /, we have S;(/, ) < Sy(/, ) and the inequality is strict for
some /. The proof is by induction on 7. The base of induction (for 7 = 1) holds because
Sl(O, 1) =1- 7T1(2, q= %) <1- 770(2, q= %) = So(o, 1) and Sl(l, 1) = So(l, 1) = 1. This
inequality holds since, for the same belief, the probability of a top review with quality
Q =1 is strictly greater than the same probability with quality Q = 0 (this follows from
Assumption 1 and a similar argument to (A-2) in the proof of Theorem 1). We next show
that if this inequality holds for 7 — 1, then it holds for 7 as well. We write

SGy=SU,r-1)—pi(r—1-L1,7— 1)771(2,q(7— 1-0L1,7— 1))
O8lr—1)(1-m2 q(r—1—1,1,7—1)))
+850(-1,7— 1)771(2, g(r—1-1,1,7-1))

sl = 1)(1—m (2, q(f—l—l 1, T—l)))
+S(l =1, 7=D)m(2,q(r—1-11,7-1))

OSo(l,r—1) = po(r =1 =1, 1,7 = 1)m (2, q(r — 1 — ~ 1)

(%) Sol, 7 —1) —po(r—1-1,1,7— 1)770(2, q(r—1-10L1,7— 1)) =S(/, 1),

where (a) follows from py(r—1—-1,1,7—1)=8,(l,7—1) - S (!l — 1,7 — 1), (b) follows
from the induction hypothesis, (c) follows from a similar argument to that of (a), and (d)
follows from the fact that (2, q) > m(2, q) for all g € [0, 1].

Also, note that by induction hypothesis, there exists / € {0, ..., 7} for which we have
Si(l, 7—1) <Sy(I, 7 — 1). This establishes that the inequality for 7 is strict for some /.

We now complete the proof of Part 2. Since there is complete learning, when O =0
we have lim,_, o, 5@ (2, 0) almost surely and when Q =1 we have lim,_, 5@
(2, 1) almost surely From Claim 1, S, ({2}) when Q =1 first-order stochastically dorn—
inates S,({2}) when Q =0, estabhshlng that (2, 1) > my(2, 0). We next prove that this
inequality implies weak separation with set S = {2}. We can write

min (2, q) ©om 2,1) = m(2, 0) max 770(2 q),

q¢[0,1]
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where (a) and (b) follow from negative selection, completing the proof of Part 2 of the
theorem. QE.D.

PROOF OF THEOREM 4: We prove the theorem for Q = 0 (the proof for Q =1 is iden-
tical). First, recall that under Assumptions 1 and 2 and the strict separation condition,
Theorem 3 establishes that we have g, — Q almost surely. Moreover, a similar argu-
ment to the proof of Theorem 1 implies that under Assumptions 1 and 2 for any belief
q € [0, 1] and any quality Q € {0, 1} all actions have nonzero probability and the prob-
ability of each action is continuous in the belief. As in the proof of Theorem 3, we let
mo(i,q) = 7(i; For, O, q) for Q€{0,1} and i € [m].

When Q = 0, complete learning implies g, — 0 a.s. and thus T(’)

— (1, 0) a.s. for all
i € [m]. Analogously, when Q = 1, we have that g, — 1 almost surely, and thus ST(’) —

m1(i, 1) almost surely for all i € [m]. Therefore, for any € there exists N such that for
7> N we have

g. <e and S()

— (i, 0)' <e€, forallie[m]given Q=0,

qg.>1—¢€ and

<e, forallie[m]givenQ=1.

Sr(l) _ 771(i 1)

We let

,(i,0)=minPlae T;|aeT,q,Q=0],
g=e

_ (A-26)
(i, 1) :,fgflfip[a €TilacT,q,Q=1].

With these definitions, for any time 7 > N we let N, (i) denote the number of reviews i
among 7 reviews for i € [m]. We let H, be the set of possible histories that are consistent
with N.(1), ..., N,(m). We obtain

> Pl |Q=1]
q: hreHr
log =log
1-4 > Pl |Q=0]
hreHr
Y Plan 1 @ =11P[hysrs |y, @ =1]
. IOg hreHr
Y Plan | Q=01P[hysrs | iy, Q=0]
hretr
(maxPlhy 1 Q=11) 3 Plins, | Ay, @ =1]
@ log " focs
(minBliy |Q=01) 3~ Blhyer | by, Q=0]

hreHr
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NT(i)

hN|Q-1)|%|1‘[m(z 1))

<log
NT(i)

(b) (
(mi

minP[Ay | Q = 0] |7—L|1_[770(l 0))

NT(i)

)
axPlhy | Q= 1]) . 77'1(l 1)

=log (A-27)

770(1 0) Nr(’)

m

i=1

m b
i=1

(ma
(mln]P [Anv ] O = 0])

where N, (i) is the difference between N, (i) and the maximum number of i’s over all
histories up to time N that are consistent with set ., and Nf(i) is the difference between
N. (i) and the minimum number of i’s over all histories up to time N that are consistent
with set .. In (A-27), (a) holds because we replaced the terms P[Ay | Q = 1] in the
numerator by their maximum and the terms P[4y | Q = 0] in the denominator by their
minimum and (b) follows by using (A-26). Using Assumptions 1 and 2, all actions have a
positive probability and, therefore, we have 0 < (i, 1) <1 and 0 < m,(i, 0) < 1, which
leads to

(%1(l.,1))ﬁf(i)< 70, 1)\ VO 1 Vo
(go(i,O))NT(i)_<Eo(i,0)) (Favman) - e o

Combining (A-27) and (A-28), we obtain

q. - log n}:fVlXED[hN | Q: 1] lﬁ[(ﬁ-l(l; 1)>Nr(i)( 1 >N |
—q, =\ minPlhy 10 =01 LN\ 7, 0) 7, Dy, 0)

Nf()

1
og1

Since Q =0, we almost surely have — (i, 0), which yields

lim — log T fim = log +log| [ ———+—
o7 ~1l—gq, o007 mmIED[hN | O =0] (1, 1), (i, 0)

e (1205 )
-t G ) = oG )

i=1

Since this inequality holds for any e, by letting € — 0 we have (i, 0) — (i, 0) and
(i, 1) — (i, 1), which leads to

- (i, 1) (i, 0)
v 2770(1 0)10g( G 0)> Zm,(z 0)10g< 1(“)). (A-29)

1
lim — log

T—>00 T
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Similarly, define m(i,0) = max,..Py,la € T, | a € T,q,Q = 0] and =,(i,1) =
ming.,_ Py faeT;|aecT,q,Q=1],and thus

1 g ENG, (mGDY e ™ (5 1)
m - 0og 1—q, TE?O; T Og(ﬁ'o(i, 0) ; mo(i; 0) log (i, 0)

Again, by letting € — 0 we have (i, 0) — (i, 0) and 7, (i, 1) — (i, 1), which yields

1 q. ” . (i, 0)
lim —1 > — 0)1 . A-30
T 8T g, ;”O(l’ )Og<m(i, ) (A-30)

Therefore, combining (A-29) and (A-30), we obtain

1 .
lim = log —2

T—>00 T 1—q7_

= _D(ﬂ-(FG,{’ Q:O’ CI=07 T) ” ﬂ(FG,{a Q: 1’ q= 13 T))7
which completes the proof. Q.E.D.

A.2. Microfoundations for Equation (3)
A.2.1. Expressive Utility

Suppose first that customers have an expressive overall utility, meaning that their review
decisions reflect their wish to express their satisfaction/dissatisfaction. More specifically,
users have overall utility defined over the realized material utility () and the set of re-
view options: J : R x R — R. Given the overall expressive utility of users, we next formally
define the strategy profile of users and a Bayes—Nash equilibrium in this setting.

Review and purchase decision strategy profile: For any customer ¢,we let R, : (), x R - R
denote the review decision strategy of customer ¢, which is a mapping from the information
provided from the rating system to fth customer and her material utility u, to a review
decision in set R. We refer to the collection of review decision strategies R = {R,}°, as the
review decision strategy profile. Given a review decision strategy profile, customer ¢ makes
a purchase decision, which is a mapping from (},, 6,, {,, and the price p to her material
utility and is equal to u, = 6, + {, + O — p, if she purchases the product and equal to zero,
otherwise. We represent the purchase decision of customer ¢ by B, : (), x R — {0, 1},
which maps from the information provided by the rating system at time ¢ into a purchase
decision. We also refer to the collection of purchase decision strategies B = {B,}2, as the
purchase decision strategy profile.

Bayes—Nash equilibrium: A review decision strategy profile R° = {R¢}>°, and a purchase
decision strategy profile B¢ = {B¢}?°, constitute a Bayes—Nash equilibrium if no customer
has a profitable deviation from her purchase and review decision strategies. This means,
in particular, that each customer uses a belief that is formed by using Bayes’ rule and
taking the review and purchase decision strategy profile of others as given. In particular,
at time ¢ the customer observes 6, and (), and therefore in a Bayes—Nash equilibrium, her
purchase and review decision become

argmax E[V (u,, 1) | Q, 6,].

be{0,1},reR

We now impose two assumptions relevant for this Appendix.
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ASSUMPTION A-1: The overall utility function V : R x R — R is such that for any q €
[0,1] and 6

EZ,Q[IE%XV(@ +{-p+0, r)] >0 ifandonlyif E.ol0+¢—p+Q0]=0,
where Q € {0, 1} is a binary random variable such that P[Q =1]=1-P[Q =0] =q.

This assumption decomposes the purchase and review decisions. In particular, given
this assumption, the purchase decision of customer ¢ becomes

b,=1 ifandonlyif 0,+E[{,+0Q0—p|Q,]=>0.
We can write the equilibrium purchase decision as a function of €}, and the reviews:
B,(Q,R)=1 ifandonlyif 6, +E[{]+q.(Q,R)—p=>0,

where g, : (), x R — [0, 1] is a mapping form the information provided from the rating
system to fth customer and the review decision strategy profile of all customers to a belief
about the true quality. The review decision in a Bayes—Nash equilibrium is given by

R:(Qy, u,) e argmaxV (u,,r), forallt>1,u, eR,Q,

rer

ASSUMPTION A-2: The overall utility function V : R x R — R satisfies:
1. Increasing differences, that is,

V(,ry=vVW,r)=V(ur)-V(u,r), VYuzur=>r
2. Boundary conditions:

L}Lrg(V(u, K)— max V(u, r)) >0 and MEIPOC(V(L" —-K) —reglaz(&V(u, r)) > 0.

reR\{K} \{

This assumption ensures that customers prefer to express a more positive opinion when
their own experience was more positive. The increasing differences property in Part 1 of
Assumption A-2 ensures that customers derive greater overall utility from a more posi-
tive review when their own material payoff is greater. Part 2, on the other hand, imposes
simple boundary conditions that guarantee that customers will leave both the most favor-
able and least favorable reviews for some realizations of their material utility. Given this
assumption, the next lemma characterizes users’ review decisions.

LEMMA A-2: Suppose Assumptions A-1 and A-2 hold. Then there exist thresholds A_x <
... A1 < A <. Ag € R such that utility-maximizing review decisions are

—K ifu, <Ak,

I ifAhii<u <A,—K<i<0,
r,=10 ifA <u, <A,
ifA<u, <Aj,0<i<K,
ifu, > Az.

Al
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A.2.2. Consequentialist Utility

The threshold review decisions in equation (3) and our results also hold in a model
in which individuals leave reviews to influence others’ decisions, which we refer to as
consequentialist utility. Here, we outline the model and the main arguments.

We simplify our analysis by assuming that each user cares only about the action of the
next user (rather than the full sequence of subsequent actions). Let (), again denote the
information provided from the rating system to ¢th customer (this can either be full his-
tory or a summary statistics) and g, denote the belief of customer ¢. Customer ¢ makes
a purchase decision and a review decision. Similar to our baseline model, the purchase
decision is b, € {0, 1} where b, = 1 if and only if 0, + E[{] + g, — p > 0. A customer who
has purchased the product experiences her material utility, u, = 6, + {, + Q — p, and then
on the basis of this, decides what review to leave. We formalize the idea that a user cares
about the next user’s purchasing decision (summarized by their purchase probability, de-
noted by pur,, ) by positing an overall utility function V" : R x [0, 1] — R, where the first
argument is the user’s material utility and the second is the purchase probability of the
next user. Here, again, we impose Assumption A-1. In a Bayes—Nash equilibrium, users
will correctly take into account how the next user’s purchase probability depends on their
reviews and try to influence this purchase probability. Review and purchase decisions, and
the Bayes—Nash equilibrium are defined similarly. In particular, for any customer ¢, we let
R, : Q), xR — R denote the review decision strategy of customer ¢, which is a mapping from
the information provided from the rating system to ¢th customer and her material utility
u, to a review decision in set R. We refer to the collection of review decision strategies
R ={R,}?, as the review decision strategy profile. The purchase decision of customer ¢ is
B, : Q), x R — {0, 1}, which maps from the information provided by the rating system at
time ¢ into a purchase decision. We can write this function as

B,(),R)=1 ifandonlyif 6,+E[{]+q.(,R)—p=>0, (A-31)

where g, : (), x R— [0, 1] is a mapping form the information provided from the rating
system to ¢th customer and the review decision strategy profile of all customers to a belief
about the true quality.'® We also refer to the collection of purchase decision strategies B =
{B.}2, as the purchase decision strategy profile. A Bayes—Nash equilibrium (or equivalently
a sequential equilibrium) is defined analogous to the expressive utility case, and we omit
the details to save space.

The following assumption replaces Assumption A-2 and Assumption 1.

ASSUMPTION A-3: 1. The random variables 0 and { have continuous and strictly increas-
ing cumulative distribution functions over their supports, [0, 0] and [{, {], respectively.

2. The utility function V : R x [0, 1] — R is continuous and satisfies increasing differences,
that is,

V (u,,pur,,,) — V(u,, pur,,,)

/ /
= V(”n purt+1) —V(u;,pur,,,), Yu, >u,pur,, >pur,,.

3. We impose the following boundary conditions: for any pur’ > pur and u > 6 + { — p,
we have V (u, pur’) — V (u, pur) > 0, and for any pur’ > purand u <0+ { —p+1,
we have V (u, pur) — V (u, pur’) > 0.

161n both purchase decision B, and belief g, it is the review decisions strategy of previous customers (i.e.,
R, for s=1,...,t) that are relevant, but we condition on the entire R for notational simplicity.
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Part 1 of this assumption is similar to Assumption 1. Part 2 is similar to Part 1 of As-
sumption A-2, but with a different interpretation. What the customer now cares about is
whether or not the next customer purchases the product, and increasing differences in this
context implies that the greater is her material utility, the more she would like the next
customer to purchase. The complication arises from the fact that the purchase probability
pur,,, of the next customer is itself endogenous and depends on her belief, in turn deter-
mined by the review decision as well as the strategy shaping the review decision. Finally,
Part 3 of this assumption is a combination of Part 2 of Assumption A-2 and the boundary
conditions in Assumption 1 in the text. Recall that Part 2 of Assumption A-2 ensured that
both review K (“like”) and review —K (“dislike”) are possible for some values of mate-
rial utility and the boundary conditions in Assumption 1 ensured that the distributions
of 0 and ¢ were such that both of these reviews were left with positive probability. With
“consequentialist utility” we need to combine these two assumptions because the utility
function depends on the purchase probability of the next customer which in turn depends
on the distributions of 6 and ¢. This is the feature that Part 3 of this assumption imposes.

Our main result is (proof in Appendix B.1):

THEOREM A-1: Suppose that customers have consequentialist utility and Assumptions A-
1 and A-3 hold. Then there exists a Bayes—Nash equilibrium in which review decisions take
a threshold form. Suppose in addition that the strict separation condition holds. Then, in this
equilibrium, Theorems 1-4 hold.
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