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Abstract

Most economic analyses presume that there are limited differences in the prior beliefs
of individuals, an assumption most often justified by the argument that sufficient common
experiences and observations will eliminate disagreements. We investigate this claim using a
simple model of Bayesian learning. Two individuals with different priors observe the same
infinite sequence of signals about some underlying parameter. Existing results in the literature
establish that when individuals know the interpretation of signals, under very mild conditions,
there will be asymptotic agreement–their assessments will eventually agree. In contrast,
we look at an environment in which individuals are uncertain about the interpretation of
signals, meaning that they have non-degenerate probability distributions over the conditional
distribution of signals given the underlying parameter. When priors on the parameter and the
conditional distribution of signals have full support, we show the following: (1) Individuals will
never agree, even after observing the same infinite sequence of signals. (2) Before observing the
signals, they believe with probability 1 that their posteriors about the underlying parameter
will fail to converge. (3) Observing the same (infinite) sequence of signals may lead to a
divergence of opinion rather than the typically-presumed convergence. We then characterize
the conditions for asymptotic agreement under “approximate certainty”–i.e., as we look at the
limit where uncertainty about the interpretation of the signals disappears. When the family
of probability distributions of signals given the parameter has “rapidly-varying tails” (such
as the normal or the exponential distributions), approximate certainty restores asymptotic
agreement. However, when the family of probability distributions has “regularly-varying tails”
(such as the Pareto, the log-normal, and the t-distributions), asymptotic agreement does not
obtain even in the limit as the amount of uncertainty disappears. We also discuss how lack of
common priors implied by the type of learning in this paper interacts with economic behavior
in various different situations, including games of common interest, coordination, asset trading
and bargaining.
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1 Introduction

The common prior assumption is one of the cornerstones of modern economic analysis. Most

models postulate that the players in a game have the “same model of the world,” or more

precisely, that they have a common prior about the game form and payoff distributions–

for example, they all agree that some payoff-relevant parameter vector θ is drawn from a

known distribution G, even though each may also have additional information about some

components of θ. The typical justification for the common prior assumption comes from

learning ; individuals, through their own experiences and the communication of others, will

have access to a history of events informative about the vector θ, and this process will lead

to “agreement” among individuals about the distribution of the vector θ. A strong version of

this view is expressed in Savage (1954, p. 48) as the statement that a Bayesian individual,

who does not assign zero probability to “the truth,” will learn it eventually as long as the

signals are informative about the truth. An immediate implication of this result is that two

individuals who observe the same sequence of signals will ultimately agree, even if they start

with very different priors. A more sophisticated version of this conclusion also follows from

Blackwell and Dubins’ (1962) theorem about the “merging of opinions”.1

Despite these powerful intuitions and theorems, disagreement is the rule rather than the

exception in practice. Just to mention a few instances, there is typically considerable disagree-

ment even among economists working on a certain topic. For example, economists routinely

disagree about the role of monetary policy, the impact of subsidies on investment or the mag-

nitude of the returns to schooling. Similarly, there are deep divides about religious beliefs

within populations with shared experiences, and finally, there was recently considerable dis-

agreement among experts with access to the same data about whether Iraq had weapons of

mass destruction. In none of these cases can the disagreements be traced to individuals having

access to different histories of observations. Rather it is their interpretations that differ. In

particular, it seems that an estimate showing that subsidies increase investment is interpreted

very differently by two economists starting with different priors; for example, an economist

believing that subsidies have no effect on investment appears more likely to judge the data or

the methods leading to this estimate to be unreliable and thus to attach less importance to this

evidence. Similarly, those who believed in the existence of weapons of mass destruction in Iraq

1Blackwell and Dubins’ (1962) theorem shows that if two probability measures are absolutely continuous with
respect to each other (meaning that they assign positive probability to the same events), then as the number of
observations goes to infinity, their predictions about future frequencies will agree. This is also related to Doob’s
(1948) consistency theorem for Bayesian posteriors, which we discuss and use below.
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presumably interpreted the evidence from inspectors and journalists indicating the opposite as

biased rather than informative.

In this paper, we show that this type of behavior will be the outcome of learning by Bayesian

individuals with different priors when they are uncertain about the informativeness of signals.

Even though Bayesian individuals will learn the asymptotic frequency of signals, they may

not always be able to infer the payoff-relevant (state) variables because of an identification

problem. The same long run frequency of signals may result from different combinations of

payoff-relevant variables and different interpretations of the signals. Our main objectives in

this paper are to determine when such an identification problem will prevent agreement among

individuals and to provide a full characterization of when a small amount of uncertainty will

lead to failure of identification and lack of agreement.

We consider the following simple environment: one or two individuals with given priors

observe a sequence of signals, {st}nt=0, and form their posteriors about some underlying state

variable (or parameter) θ. The only non-standard feature of the environment is that these

individuals may be uncertain about the distribution of signals conditional on the underlying

state. In the simplest case where the state and the signal are binary, e.g., θ ∈ {A,B}, and
st ∈ {a, b}, this implies that Pr (st = θ | θ) = pθ is not a known number, but individuals

also have a prior over pθ, say given by Fθ. We refer to this distribution Fθ as individuals’

subjective probability distribution and to its density fθ as subjective (probability) density. This

distribution, which can differ among individuals, is a natural measure of their uncertainty about

the informativeness of signals. When subjective probability distributions are non-degenerate,

individuals will have some latitude in interpreting the sequence of signals they observe.

We first identify general conditions under which Bayesian updating leads to asymptotic

learning (individuals learning, or believing that they will be learning, the true value of θ with

probability 1 after observing infinitely many signals) and asymptotic agreement (convergence

between their assessments of the value of θ). For the case that both individuals attach probabil-

ity 1 to the event that pθ > 1/2 for θ ∈ {A,B}, we show that there will always be asymptotic
learning. Nevertheless, asymptotic learning is not sufficient for asymptotic agreement. We

therefore also characterize the conditions for asymptotic agreement. A simple condition suffi-

cient both for asymptotic learning and asymptotic agreement is for each individual i = 1, 2 to

be certain that pθ = pi for some known number pi > 1/2 (with possibly p1 6= p2).

These positive results do not hold, however, when there is a positive probability that pθ

might be less than 1/2. In particular, when Fθ has a full support for each θ, we show that:

2



1. There will not be asymptotic learning. Instead each individual’s posterior of θ continues

to be a function of his prior.

2. There will not be asymptotic agreement; two individuals with different priors observing

the same sequence of signals will reach different posterior beliefs even after observing

infinitely many signals. Moreover, individuals attach ex ante probability 1 that they will

disagree after observing the sequence of signals.

3. Two individuals may disagree more after observing a common sequence of signals than

they did so previously. In fact, for any model of learning under uncertainty that satisfies

the full support assumption, there exists an open set of pairs of priors such that the

disagreement between the two individuals will necessarily grow starting from these priors.

While it may appear plausible that the individuals should not attach zero probability to

the event that pθ < 1/2, it is also reasonable to expect that the probability of such events

should be relatively small. This raises the question of whether the results regarding the lack

of asymptotic learning and agreement under uncertainty survive when there is a small amount

of uncertainty.

Our most important results concern whether the asymptotic learning and agreement re-

sults under certainty are robust to a small amount of uncertainty. We investigate this issue

by studying learning under “approximate certainty,” i.e., by considering a family of subjective

density functions {fm} that become more and more concentrated around a single point–thus
converging to full certainty. It is straightforward to see that as each individual becomes more

and more certain about the interpretation of the signals, asymptotic learning obtains. Inter-

estingly, however, even though each individual expects to learn the payoff-relevant parameters,

asymptotic agreement may fail to obtain. This implies that asymptotic agreement under cer-

tainty may be a discontinuous limit point of a general model of learning under uncertainty. We

show that whether or not this is the case depends on the tail properties of the family of subjec-

tive density functions {fm}. When this family has regularly-varying tails (such as the Pareto
or the log-normal distributions), even under approximate certainty there will be asymptotic

disagreement. When {fm} has rapidly-varying tails (such as the normal distribution), there
will be asymptotic agreement under approximate certainty.

Intuitively, approximate certainty is sufficient to make each individual believe that they

will learn the payoff-relevant parameter, but they may still believe that the other individual

will fail to learn. Whether or not they believe this depends on how an individual reacts when
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a frequency of signals different from the one he expects with “almost certainty” occurs. If

this event prevents the individual from learning, then there will be asymptotic disagreement

under approximate certainty. This is because under approximate certainty, each individual

trusts his own model of the world and thus expects the limiting frequencies to be consistent

with his model. When the other individual’s model of the world differs, he expects the other

individual to be surprised by the limiting frequencies of the signals. Then whether or not

asymptotic agreement will obtain depends on whether this surprise is sufficient to prevent the

other individual from learning, which in turn depends on the tail properties of the family of

subjective density functions {fm}.
Lack of asymptotic agreement has important implications for a range of economic situa-

tions. We illustrate some of these by considering a number of simple environments where two

individuals observe the same sequence of signals before or while playing a game. In particular,

we discuss the implications of learning in uncertain environments for games of coordination,

games of common interest, bargaining, games of communication and asset trading. We show

how, when they are learning under uncertainty, individuals will play these games differently

than they would in environments with common priors–and also differently than in environ-

ments without common priors but where learning takes place under certainty. For example,

we establish that contrary to standard results, individuals may wish to play games of common

interests before receiving more information about payoffs.

We also show how the possibility of observing the same sequence of signals may lead

individuals to trade only after they observe the public information. This result contrasts with

both standard no-trade theorems (e.g., Milgrom and Stokey, 1982) and with existing results

on asset trading without common priors, which assume learning under certainty (Harrison and

Kreps, 1978, and Morris, 1996). Harris and Raviv (1993) have already shown that public

signals can lead to greater disagreement among individuals in the “short run” and have used

this observation to generate asset trading. Recent independent work by Dixit and Weibull

(2007) also shows how this kind of short-run disagreement can arise both in general and also in

political situations. The source of divergence of beliefs in our environment and thus the reason

for the resulting asset trades are quite different, however. Existing results focus on learning

under certainty. We know from Theorem 1 below that, in this case, individuals’ beliefs will

eventually agree (and trade will necessarily stop). Instead when learning is under uncertainty,

individuals may continue to interpret public signals differently even asymptotically (and may

prefer to trade after observing infinitely many signals). The fact that the contrast between the
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implications of learning under certainty and uncertainty is most transparent asymptotically is

one of our main motivations for focusing on asymptotic results in this paper (i.e., learning,

agreement and divergence of opinions after individuals observe infinitely many signals).

Our results cast doubt on the idea that the common prior assumption may be justified by

learning. In many environments, even when there is little uncertainty so that each individual

believes that he will learn the true state, learning does not necessarily imply agreement about

the relevant parameters. Consequently, the strategic outcomes may be significantly different

from those in the common-prior environments.2 Whether this assumption is warranted there-

fore depends on the specific setting and what type of information individuals are trying to

glean from the data.

Relating our results to the famous Blackwell-Dubins (1962) theorem may help clarify their

essence. As briefly mentioned in Footnote 1, this theorem shows that when two agents agree

on zero-probability events (i.e., their priors are absolutely continuous with respect to each

other), asymptotically, they will make the same predictions about future frequencies of signals.

Our results do not contradict this theorem, since we impose absolute continuity. Instead, as

pointed out above, our results rely on the fact that agreeing about future frequencies is not the

same as agreeing about the underlying payoff-relevant variables, because of the identification

problem that arises in the presence of uncertainty.3 This identification problem leads to dif-

ferent possible interpretations of the same signal sequence by individuals with different priors.

In most economic situations, what is important is not future frequencies of signals but some

payoff-relevant parameter. For example, what was essential for the debate on the weapons of

mass destruction was not the frequency of news about such weapons but whether or not they

existed. What is relevant for economists trying to evaluate a policy is not the frequency of

estimates on the effect of similar policies from other researchers, but the impact of this specific

policy when (and if) implemented. Similarly, what may be relevant in trading assets is not the

frequency of information about the dividend process, but the actual dividend that the asset

will pay. Thus, many situations in which individuals need to learn about a parameter or state

that will determine their ultimate payoff as a function of their action falls within the realm of

the analysis here.

In this respect, our work differs from papers, such as Freedman (1963, 1965) and Miller

2For previous arguments on whether game-theoretic models should be formulated with all individuals having
a common prior, see, for example, Aumann (1986, 1998) and Gul (1998). Gul (1998), for example, questions
whether the common prior assumption makes sense when there is no ex ante stage.

3 In this respect, our paper is also related to Kurz (1994, 1996), who considers a situation in which agents
agree about long-run frequencies, but their beliefs fail to merge because of the non-stationarity of the world.
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and Sanchirico (1999), that question the applicability of the absolute continuity assumption

in the Blackwell-Dubins theorem in statistical and economic settings (see also Diaconis and

Freedman, 1986, Stinchcombe, 2005). Similarly, a number of important theorems in statistics,

for example, Berk (1966), show that when individuals place zero probability on the true data

generating process, limiting posteriors will have their support on the set of all identifiable

values (though they may fail to converge to a limiting distribution). Our results are different

from those of Berk both because in our model individuals always place positive probability

on the truth and also because we provide a tight characterization of the conditions for lack of

asymptotic learning and agreement.4

Our paper is also closely related to recent independent work by Cripps, Ely, Mailath and

Samuelson (2006), who study the conditions under which there will be “common learning”

by two agents observing correlated private signals. Cripps, et al. focus on a model in which

individuals start with common priors and then learn from private signals under certainty

(though they note that their results could be extended to the case of non-common priors).

They show that individual learning ensures “approximate common knowledge” when the signal

space is finite, but not necessarily when it is infinite. In contrast, we focus on the case in which

the agents start with heterogenous priors and learn from public signals under uncertainty or

under approximate certainty. Since all signals are public in our model, there is no difficulty in

achieving approximate common knowledge.5

The rest of the paper is organized as follows. Section 2 provides all our main results in the

context of a two-state two-signal setup. Section 3 provides generalizations of these results to

an environment with K states and L ≥ K signals. Section 4 considers a variety of applications

of our results, and Section 5 concludes.

2 The Two-State Model

2.1 Environment

We start with a two-state model with binary signals. This model is sufficient to establish all

our main results in the simplest possible setting. These results are generalized to arbitrary

4 In dynamic games, another source of non-learning (and thus lack of convergence to common prior) is that
some subgames are never visited along the equilibrium path and thus players do not observe information that
contradict their beliefs about payoffs in these subgames (see, Fudenberg and Levine, 1993, Fudenberg and Kreps,
1995). Our results differ from those in this literature, since individuals fail to learn or fail to reach agreement
despite the fact that they receive signals about all payoff-relevant variables.

5Put differently, we investigate whether, under approximate certainty, a player thinks that the other player
will learn, whereas Cripps et al. ask whether a player i thinks that the other player j thinks that i thinks that
j thinks that ... a player will learn.
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number of states and signal values in Section 3.

There are two individuals, denoted by i = 1 and i = 2, who observe a sequence of signals

{st}nt=0 where st ∈ {a, b}. The underlying state is θ ∈ {A,B}, and agent i assigns ex ante prob-
ability πi ∈ (0, 1) to θ = A. The individuals believe that, given θ, the signals are exchangeable,

i.e., they are independently and identically distributed with an unknown distribution.6 That

is, the probability of st = a given θ = A is an unknown number pA; likewise, the probability

of st = b given θ = B is an unknown number pB–as shown in the following table:

A B
a pA 1− pB
b 1− pA pB

Our main departure from the standard models is that we allow the individuals to be

uncertain about pA and pB. We denote the cumulative distribution function of pθ according

to individual i–i.e., his subjective probability distribution–by F i
θ. In the standard models, F

i
θ

is degenerate and puts probability 1 at some p̂iθ. In contrast, for most of the analysis, we will

impose the following assumption:

Assumption 1 For each i and θ, F i
θ has a continuous, non-zero and finite density f iθ over

[0, 1].

The assumption implies that F i
θ has full support over [0, 1]. It is worth noting that while

this assumption allows F 1θ (p) and F 2θ (p) to differ, for many of our results it is not important

whether or not this is so (i.e., whether or not the two individuals have a common prior about

the distribution of pθ). Moreover, as discussed in Remark 2, Assumption 1 is stronger than

necessary for our results, but simplifies the exposition.

In addition, throughout we assume that π1, π2, F 1θ and F
2
θ are known to both individuals.

7

We consider infinite sequences s ≡ {st}∞t=1 of signals and write S for the set of all such

sequences. The posterior belief of individual i about θ after observing the first n signals {st}nt=1
is

φin (s) ≡ Pri (θ = A | {st}nt=1) ,
6See, for example, Billingsley (1995). If there were only one state, then our model would be identical to De

Finetti’s canonical model (see, for example, Savage, 1954). In the context of this model, De Finetti’s theorem
provides a Bayesian foundation for classical probability theory by showing that exchangeability (i.e., invariance
under permutations of the order of signals) is equivalent to having an independent identical unknown distrib-
ution and implies that posteriors converge to long-run frequencies. De Finetti’s decomposition of probability
distributions is extended by Jackson, Kalai and Smorodinsky (1999) to cover cases without exchangeability.

7The assumption that player 1 knows the prior and probability assessment of player 2 regarding the distri-
bution of signals given the state is used in the “asymptotic agreement” results and in applications. Since our
purpose is to understand whether learning justifies the common prior assumption, we assume that agents do
not change their views because the beliefs of others differ from theirs.
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where Pri (θ = A | {st}nt=1) denotes the posterior probability that θ = A given a sequence of

signals {st}nt=1 under prior πi and subjective probability distribution F i
θ . Since the sequence

of signals, s, is generated by an exchangeable process, the order of the signals does not matter

for the posterior. It only depends on

rn (s) ≡ # {t ≤ n|st = a} ,

the number of times st = a out of first n signals.8 By the strong law of large numbers, rn (s) /n

converges to some ρ (s) ∈ [0, 1] almost surely according to both individuals. Defining the set

S̄ ≡ {s ∈ S : limn→∞ rn (s) /n exists} , (1)

this observation implies that Pri
¡
s ∈ S̄

¢
= 1 for i = 1, 2. We will often state our results for all

sample paths s in S̄, which equivalently implies that these statements are true almost surely

or with probability 1. Now, a straightforward application of the Bayes rule gives

φin (s) =
1

1 + 1−πi
πi

Pri(rn|θ=B)
Pri(rn|θ=A)

, (2)

where Pri (rn|θ) is the probability of observing the signal st = a exactly rn times out of n

signals with respect to the distribution F i
θ.

Throughout, without loss of generality, we suppose that in reality θ = A. The two questions

of interest for us are:

1. Asymptotic learning: whether Pri
¡
limn→∞ φin (s) = 1|θ = A

¢
= 1 for i = 1, 2.

2. Asymptotic agreement: whether Pri
¡
limn→∞

¯̄
φ1n (s)− φ2n (s)

¯̄
= 0

¢
= 1 for i = 1, 2.

Notice that both asymptotic learning and agreement are defined in terms of the ex ante

probability assessments of the two individuals. Therefore, asymptotic learning implies that an

individual believes that he or she will ultimately learn the truth, while asymptotic agreement

implies that both individuals believe that their assessments will eventually converge.9

8Given the definition of rn (s), the probability distribution Pri on {A,B} × S is

Pri EA,s,n ≡ πi
1

0

prn(s) (1− p)n−rn(s) f iA (p) dp, and

Pri EB,s,n ≡ 1− πi
1

0

(1− p)rn(s) pn−rn(s)f iB (p) dp

at each event Eθ,s,n = {(θ, s0) |s0t = st for each t ≤ n}, where s ≡ {st}∞t=1 and s0 ≡ {s0t}∞t=1.
9We formulate asymptotic learning in terms of each individual’s initial probability measure so as not to take

a position on what the “objective” for “true” probability measure is.
In terms of asymptotic agreement, we will see that Pri limn→∞ φ1n (s)− φ2n (s) = 0 = 1 also implies

limn→∞ φ1n (s)− φ2n (s) = 0 for almost all sample paths, thus individual beliefs that there will be asymp-
totic agreement coincide with asymptotic agreement (and vice versa).
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2.2 Asymptotic Learning and Disagreement

The following is a well-known result, which applies when Assumption 1 does not hold. A

version of this result is stated in Savage (1954) and also follows from Blackwell and Dubins’

(1962) more general theorem applied to this case.

Theorem 1 (Savage) Assume that each F i
θ puts probability 1 on p̂θ for some p̂θ > 1/2, i.e.,

F i
θ (p̂θ) = 1 and F i

θ (p) = 0 for each p < p̂θ. Then, for each i = 1,2,

1. Pri
¡
limn→∞ φin (s) = 1|θ = A

¢
= 1.

2. Pri
¡
limn→∞

¯̄
φ1n (s)− φ2n (s)

¯̄
= 0

¢
= 1.

This standard result states that when the individuals know the conditional distributions of

the signals (and hence they agree what those distributions are), they will learn the truth with

experience (almost surely as n → ∞) and two individuals observing the same sequence will
necessarily come to agree what the underlying state, θ, is. A simple intuition for this result

is that the underlying state θ is fully identified from the limiting frequencies, so that both

individuals can infer the underlying state from the observation of the limiting frequencies of

signals.

However, there is more to this theorem than the simple intuition. Each individual is sure

that they will be confronted either with a limiting frequency of a signals equal to p̂A, in which

case they will conclude that θ = A, or they will observe a limiting frequency of 1− p̂B, and they
will conclude that θ = B; and they attach zero probability to the events that they will observe

a different asymptotic frequency. What happens if an individual observes a frequency ρ of

signals different from p̂A and 1− p̂B in a large sample of size n? The answer to this question

will provide the intuition for some of the results that we will present next. Observe that this

event has zero probability under the individual’s beliefs at the limit n = ∞. However, for
n <∞ he will assign a strictly positive (but small) probability to such a frequency of signals

resulting from sampling variation. Moreover, it is straightforward to see that there exists a

unique ρ̂ (p̂A, p̂B) ∈ (1− p̂B, p̂A) such that when ρ > ρ̂ (p̂A, p̂B), the required sampling variation

that leads to ρ under θ = B is infinitely greater (as n→∞) than the one under θ = A. This

cutoff value ρ̂ (pA, pB) is clearly the solution to the equation pρA (1− pA)
1−ρ = p1−ρB (1− pB)

ρ,

given by

ρ̂ (pA, pB) ≡
log (pB/ (1− pA))

log (pB/ (1− pA)) + log (pA/ (1− pB))
∈ (1− pB, pA) . (3)
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Consequently, when ρ > ρ̂ (p̂A, p̂B), the individual will asymptotically assign probability 1 to

the event that θ = A. Conversely, when ρ < ρ̂ (p̂A, p̂B), he will assign probability 1 to θ = B.

In Theorem 1, the assumption that p̂θ > 1/2 assures that p̂A 6= 1 − p̂B, so that θ is fully

identified. Our next result determines exactly how far we can generalize asymptotic learning

and agreement results of Theorem 1. Let us denote the support of a distribution F by suppF

(that is, the smallest set such that the distribution F assigns zero probability to all events

outside this set). Let us define inf(suppF ) to be the infimum of the set suppF (i.e., the largest

p such that F (p) = 0).

Theorem 2 (Generalized Asymptotic Learning and Agreement) Let ρ̂ (pA, pB) be as

defined in (3). Assume that for each θ and i, pθ,i = inf(suppF i
θ) ∈ (1/2, 1) and 1 − pB,i 6=

ρ̂ (pA,j , pB,j) 6= pA,i for all i 6= j. Then for all i 6= j,

1. Pri
¡
limn→∞ φin (s) = 1|θ = A

¢
= 1;

2. Pri
¡
limn→∞

¯̄
φ1n (s)− φ2n (s)

¯̄
= 0

¢
= 1 if and only if 1− pB,i < ρ̂ (pA,j , pB,j) < pA,i.

Proof. We will first prove that for any s ∈ S̄,

lim
n→∞

φin (s) =

½
1 if rn (s) /n→ ρ > ρ̂ (pA,i, pB,i)
0 if rn (s) /n→ ρ < ρ̂ (pA,i, pB,i) .

. (4)

Both parts of the theorem follow readily from (4). First, since pθ,i = inf(suppF i
θ) ∈ (1/2, 1), (4)

implies that conditional on θ = A, agent i assigns probability 1 to the event that rn (s) /n→
ρ ≥ pA,i > ρ̂ (pA,i, pB,i), where the last inequality follows from (3). This implies that

Pri
¡
limn→∞ φin (s) = 1|θ = A

¢
= 1, establishing part 1.

For part 2, suppose that ρ̂ (pA,j , pB,j) < pA,i. Then conditional on θ = A, (4) implies that

φjn (s) also converges to 1, and therefore
¯̄
φ1n (s)− φ2n (s)

¯̄
→ 0. Next, when ρ̂ (pA,j , pB,j) > 1−

pB,i, we have that φjn (s)→ 0 and also conditional on θ = B, φin (s)→ 0, thus
¯̄
φ1n (s)− φ2n (s)

¯̄
→

0, proving sufficiency. To prove necessity, suppose pA,i < ρ̂ (pA,j , pB,j). Then, i assigns

strictly positive probability to the event that rn (s) /n → ρ ∈ [pA,i, ρ̂ (pA,j , pB,j)). But then
(4) implies φin (s) → 1 and φjn (s) → 0, so that

¯̄
φ1n (s)− φ2n (s)

¯̄
→ 1, establishing that

1− pB,i < ρ̂ (pA,j , pB,j) < pA,i is necessary for Pri
¡
limn→∞

¯̄
φ1n (s)− φ2n (s)

¯̄
= 0

¢
= 1.

To complete the proof, we need to derive (4). Let us define

Ri
n (rn) ≡

Pri (rn|θ = B)

Pri (rn|θ = A)
=

R
(1− p)rn pn−rndF i

BR
prn (1− p)n−rn dF i

A

.
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Take any ρ > ρ̂ (pA,i, pB,i). Since 1− pB,i < pA,i, we have

(1− pB,i)
ρ p1−ρB,i < pρA,i (1− pA,i)

1−ρ . (5)

The function pρ (1− p)1−ρ is continuous and concave in p, and reaches its maximum at p = ρ.

Then (5) implies that there exists ε > 0 and p̂ > pA,i such that for all p̃ ∈ suppF i
B, p ∈

[pA,i, p̂],rn/n ∈ (ρ− ε, ρ+ ε),

(1− p̃)rn p̃n−rn ≤ (1− pB,i)
rn pn−rnB,i < prn (1− p)n−rn ≤ p̂rn (1− p̂)n−rn .

Hence, Z
(1− p)rn pn−rndF i

B ≤ (1− pB,i)
rn pn−rnB,i

and Z
prn (1− p)n−rn dF i

A ≥
Z
p≤p̂

prn (1− p)n−rn dF i
A ≥ F i

A (p̂) p̂
rn (1− p̂)n−rn .

Thus,

0 ≤ Ri
n (rn) ≤

1

F i
A (p̂)

⎛⎝(1− pB,i)
rn/n p

1−rn/n
B,i

p̂rn/n (1− p̂)1−rn/n

⎞⎠n

.

When rn/n ∈ [ρ− ε/2, ρ+ ε/2], the expression in the paranthesis is smaller than 1 and there-

fore the right-hand side converges to 0 as n→∞ and rn/n→ ρ. This implies Ri
n (rn)→ 0 and

thus φin (s)→ 1. The same argument (switching A and B) implies that when ρ < ρ̂ (pA,i, pB,i),

φin (s)→ 0. This establishes (4) and completes the proof.

The characterization in part 2 generalizes the asymptotic agreement result of Theorem 1

in several directions. The following corollary spells out some of the implications of part 2 of

Theorem 2.

Corollary 1 (Sufficient Conditions for Asymptotic Agreement) Under the assump-

tions of Theorem 2, there will be asymptotic agreement whenever any of the following conditions

hold:

1. certainty (with symmetry): each F i
θ puts probability 1 on some p̂

i > 1/2;

2. symmetric support: suppF i
A = suppF

i
B for each i;

3. common support: suppF 1θ = suppF
2
θ for each θ.

11



Proof. Part 1 of the corollary is a special case of part 2. Under symmetric support

assumption, we have ρ̂ (pA,i, pB,i) = 1/2 for each i, so that part 2 of the corollary follows from

part 2 of Theorem 2. Finally, part 3 of the corollary follows from the fact that under the

common support assumption ρ̂ (pA,j , pB,j) = ρ̂ (pA,i, pB,i) ∈ (1− pB,i, pA,i).

Theorem 2 provides a precise answer to one of our main questions: it shows that under

the “full identification assumption” that pθ,i > 1/2 for each θ and i, asymptotic learning

always obtains. Furthermore, asymptotic agreement depends on the lowest value pθ,i of pθ

that individual i = 1, 2 assigns positive probability. This is intuitive in view of the discussion

preceding Theorem 2. When individual i observes a frequency ρ ∈ (1− pB,i, pA,i), he presumes

that this has resulted from sampling variation, and decides whether frequency ρ is more likely

under θ = A or under θ = B. In particular, for each θ, the lowest sampling variation that leads

to ρ is attained at pθ,i, and the asymptotic beliefs depend only on how large these variations

are. When ρ > ρ̂ (pA,i, pB,i) (and as n → ∞) the necessary sampling variation is infinitely
smaller under θ = A than under θ = B. Consequently, the individual believes with probability

1 that θ = A. Conversely, when ρ < ρ̂ (pA,i, pB,i), he believes with probability 1 that θ = B.

Whether there will be asymptotic agreement then purely depends on whether and how different

the cutoff values ρ̂ (pA,1, pB,1) and ρ̂ (pA,2, pB,2) are. When they are close, both individuals

will interpret the limiting frequency of signals, ρ, similarly, even when this is a frequency

to which they initially assigned zero probability, and will reach asymptotic agreement. In

contrast, when these cutoff values are far apart, so that ρ̂ (pA,j , pB,j) /∈ (1− pB,i, pA,i), both

players assign positive probability to the event that their beliefs will diverge to the extremes:

limn→∞
¯̄
φ1n (s)− φ2n (s)

¯̄
= 1.

Corollary 1 shows that various reasonable conditions ensure asymptotic agreement. Asymp-

totic agreement is implied, for example, by certainty, symmetric support or common support

assumptions. In particular, certainty (with symmetry), which corresponds to both individuals

believing that limiting frequencies have to be p̂i or 1− p̂i (but with p̂1 6= p̂2) is sufficient for as-

ymptotic agreement. In this case, each individual is certain about what the limiting frequency

will be and therefore believes that the frequency expected by the other individual will not be

realized (creating a discrepancy between that individual’s initial belief and observation). Nev-

ertheless, with the same reasoning as in the discussion preceding Theorem 2, each individual

also believes that the other individual will ascribe this discrepancy to sampling variation and

reach the same conclusion as himself. This is sufficient for asymptotic agreement.

12



Theorem 2 and Corollary 1 therefore show that results on asymptotic learning and agree-

ment are substantially more general than Savage’s original theorem (Theorem 1). Nevertheless,

these results rely on the feature that F i
θ (1/2) = 0 for each i = 1,2 and each θ. This implies that

both individuals attach zero probability to a range of possible models of the world–i.e., they

are certain that pθ cannot be less than 1/2. There are two reasons for considering situations

in which this is not the case. First, the preceding discussion illustrates why assigning zero

probability to certain models of the world is important; it enables individuals to ascribe any

frequency of signals that are unlikely under these models to sampling variability. This kind of

inference may be viewed as somewhat unreasonable, since individuals are reaching very strong

conclusions based on events that have vanishingly small probabilities (since sampling variabil-

ity vanishes as n → ∞). Second, our motivation of investigating learning under uncertainty
suggests that individuals may attach positive (albeit small) probabilities to all possible values

of pθ. This latter feature is what the full support assumption, Assumption 1, implies. We next

impose this assumption and show that under the more general circumstances where F i
θ has full

support, there will be neither asymptotic learning nor asymptotic agreement.

Theorem 3 (Lack of Asymptotic Learning and Agreement) Suppose Assumption 1

holds for i = 1,2. Then,

1. Pri
¡
limn→∞ φin (s) 6= 1|θ = A

¢
= 1 for i = 1,2;

2. Pri
¡
limn→∞

¯̄
φ1n (s)− φ2n (s)

¯̄
6= 0

¢
= 1 whenever π1 6= π2 and F 1θ = F 2θ for each θ ∈

{A,B}.

This theorem contrasts with Theorems 1 and 2 and implies that, with probability 1, each

individual will fail to learn the true state. The second part of the theorem states that if the

individuals’ prior beliefs about the state differ (but they interpret the signals in the same way),

then their posteriors will eventually disagree, and moreover, they will both attach probability

1 to the event that their beliefs will eventually diverge. Put differently, this implies that there

is “agreement to eventually disagree” between the two individuals, in the sense that they both

believe ex ante that after observing the signals they will fail to agree. This feature will play

an important role in the applications in Section 4 below.

Remark 1 The assumption that F 1θ = F 2θ in this theorem is adopted for simplicity. Even in

the absence of this condition, there will typically be no asymptotic agreement. Theorem 6 in

the next section generalizes this theorem to a situation with multiple states and multiple signals

13



and also dispenses with the assumption that F 1θ = F 2θ . It establishes that the set of priors and

subjective probability distributions that leads to asymptotic agreement is of “measure zero”.

Remark 2 Assumption 1 is considerably stronger than the necessary conditions for Theorem

3. It is adopted only for simplicity. It can be verified that for lack of asymptotic learning

it is sufficient (but not necessary) that the measures generated by the distribution functions

F i
A (p) and F i

B (1− p) be absolutely continuous with respect to each other. Similarly, for lack

of asymptotic agreement, it is sufficient (but not necessary) that the measures generated by

F 1A (p), F
1
B (1− p), F 2A (p) and F

i
B (1− p) be absolutely continuous with respect each other. For

example, if both individuals believe that pA is either 0.3 or 0.7 (with the latter receiving greater

probability) and that pB is also either 0.3 or 0.7 (with the former receiving greater probability),

then there will be neither asymptotic learning nor asymptotic agreement. Throughout we use

Assumption 1 both because it simplifies the notation and because it is a natural assumption

when we turn to the analysis of asymptotic agreement under approximate certainty below.

We next provide a proof of Theorem 3. The next lemma provides a useful formula for

φi∞ (s) ≡ limn→∞ φin (s) for all sample paths s in S̄ and also introduces the concept of the

asymptotic likelihood ratio, which will be used throughout the rest of the paper.

Lemma 1 Suppose Assumption 1 holds. Then for all s ∈ S̄,

φi∞ (ρ (s)) ≡ lim
n→∞

φin (s) =
1

1 + 1−πi
πi

Ri (ρ (s))
, (6)

where ρ (s) = limn→∞ rn (s) /n, and ∀ρ ∈ [0, 1],

Ri (ρ) ≡ f iB (1− ρ)

f iA (ρ)
(7)

is the asymptotic likelihood ratio.

Proof. Write

Pri (rn|θ = B)

Pri (rn|θ = A)
=

R 1
0 p

rn(1− p)n−rnfB(1− p)dpR 1
0 p

rn(1− p)n−rnfA(p)dp

=

1
0 prn(1−p)n−rnfB(1−p)dp

1
0 prn(1−p)n−rndp

1
0 prn(1−p)n−rnfA(p)dp

1
0 prn(1−p)n−rndp

=
Eλ[fB(1− p)|rn]
Eλ[fA(p)|rn]

.
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Here, the first equality is obtained by dividing the numerator and the denominator by the

same term. The resulting expression on the numerator is the conditional expectation of

fB (1− p) given rn under the flat (Lebesgue) prior on p and the Bernoulli distribution on

{st}nt=0. Denoting this by Eλ[fB(1− p)|rn], and the denominator, which is similarly defined as
the conditional expectation of fA (p), by Eλ[fA(p)|rn], we obtain the last equality. By Doob’s
consistency theorem for Bayesian posterior expectation of the parameter, as rn → ρ, we have

that Eλ[fB(1 − p)|rn] → fB(1 − ρ) and Eλ[fA(p)|rn] → fA(ρ) (see, e.g., Doob, 1949, Ghosh

and Ramamoorthi, 2003, Theorem 1.3.2). This establishes

Pri (rn|θ = B)

Pri (rn|θ = A)
→ Ri (ρ) ,

as defined in (7). Equation (6) then follows from (2).

In equation (7), Ri (ρ) is the asymptotic likelihood ratio of observing frequency ρ of a when

the true state is B versus when it is A. Lemma 1 states that, asymptotically, individual i uses

this likelihood ratio and Bayes rule to compute his posterior beliefs about θ.

An immediate implication of Lemma 1 is that given any s ∈ S̄,

φ1∞ (ρ (s)) = φ2∞ (ρ (s)) if and only if
1− π1

π1
R1 (ρ (s)) =

1− π2

π2
R2 (ρ (s)) . (8)

The proof of Theorem 3 now follows from Lemma 1 and equation (8).

Proof of Theorem 3. Since f iB (1− ρ (s)) > 0 and fA (ρ (s)) is finite, Ri (ρ (s)) > 0.

Hence, by Lemma 1, φi∞ (ρ (s)) 6= 1 for each s, establishing the first part. The second part

follows from equation (8), since π1 6= π2 and F 1θ = F 2θ implies that for each s ∈ S̄, φ1∞ (s) 6=
φ2∞ (s), and thus Pr

i
¡¯̄
φ1∞ (s)− φ2∞ (s)

¯̄
6= 0

¢
= 1 for i = 1, 2. ¥

Intuitively, when Assumption 1 (in particular, the full support feature) holds, an individual

is never sure about the exact interpretation of the sequence of signals he observes and will

update his views about pθ (the informativeness of the signals) as well as his views about the

underlying state. For example, even when signal a is more likely in state A than in state

B, a very high frequency of a will not necessarily convince him that the true state is A,

because he may infer that the signals are not as reliable as he initially believed, and they may

instead be biased towards a. Therefore, the individual never becomes certain about the state,

which is captured by the fact that Ri (ρ) defined in (7) never takes the value zero or infinity.

Consequently, as shown in (6), his posterior beliefs will be determined by his prior beliefs

about the state and also by Ri, which tells us how the individual updates his beliefs about the
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informativeness of the signals as he observes the signals. When two individuals interpret the

informativeness of the signals in the same way (i.e., R1 = R2), the differences in their priors

will always be reflected in their posteriors.

In contrast, if an individual were certain about the informativeness of the signals (i.e.,

if i were sure that pθ = piθ for some piθ > 1/2) as in Theorem 1 and Corollary 1, then he

would never question the informativeness of the signals, even when the limiting frequency of

a converges to a value different from piA or 1− piB, and would interpret such discrepancies as

resulting from sampling variation. This would be sufficient for asymptotic agreement. The full

support assumption in Assumption 1 prevents this type of reasoning and ensures asymptotic

disagreement.

As noted above, an important implication of Theorem 3 is that there will typically be

“agreement to eventually disagree” between the individuals. In other words, given their priors,

both individuals will agree that after seeing the same infinite sequence of signals they will still

disagree (with probability 1). This implication is interesting in part because the common prior

assumption, typically justified by learning, leads to the celebrated “no agreement to disagree”

result (Aumann, 1976, 1998), which states that if the individuals’ posterior beliefs are common

knowledge, then they must be equal.10 In contrast, in the limit of the learning process here,

individuals’ beliefs are common knowledge (as there is no private information), but they are

different with probability 1. This is because in the presence of uncertainty and full support

as in Assumption 1, both individuals understand that their priors will have an effect on their

beliefs even asymptotically; thus they expect to disagree. Many of the applications we discuss

in Section 4 exploit this feature.

2.3 Divergence of Opinions

Theorem 3 established that the differences in priors are reflected in the posteriors even in

the limit as n → ∞. It does not, however, quantify the possible disagreement between the
two individuals. The rest of this section investigates different aspects of this question. We

first show that two individuals that observe the same sequence of signals may have diverging

posteriors, so that common information can increase disagreement.

Theorem 4 (Divergence of Opinions) Suppose that subjective probability distributions

are given by F 1θ and F 2θ that satisfy Assumption 1 and that there exists � > 0 such that

10Note, however, that the “no agreement to disagree” result derives from individuals’ updating their beliefs
because those of others differ from their own (Geanakoplos and Polemarchakis, 1982), whereas here individuals
only update their beliefs by learning.
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¯̄
R1 (ρ)−R2 (ρ)

¯̄
> � for each ρ ∈ [0, 1]. Then, there exists an open set of priors π1 and π2,

such that for all s ∈ S̄,

lim
n→∞

¯̄
φ1n (s)− φ2n (s)

¯̄
>
¯̄
π1 − π2

¯̄
;

in particular,

Pri
³
lim
n→∞

¯̄
φ1n (s)− φ2n (s)

¯̄
>
¯̄
π1 − π2

¯̄´
= 1.

Proof. Fix F 1θ and F 2θ and take π1 = π2 = 1/2. By Lemma 1 and the hypothesis

that
¯̄
R1 (ρ)−R2 (ρ)

¯̄
> � for each ρ ∈ [0, 1], limn→∞

¯̄
φ1n (s)− φ2n (s)

¯̄
> �0 for some �0 > 0,

while
¯̄
π1 − π2

¯̄
= 0. Since both expressions are continuous in π1 and π2, there is an open

neighborhood of 1/2 such that the above inequality uniformly holds for each ρ whenever π1

and π2 are in this neighborhood. The last statement follows from the fact that Pri
¡
s ∈ S̄

¢
= 1.

Remark 3 The assumption that R1 and R2 are different for each ρ is not very restrictive but

implies that both R1 and R2 cannot be continuous everywhere. It is straightforward to extend

Theorem 4 such that for � > 0 the hypothesis that the (Lebesgue) measure of the set over which¯̄
R1 (ρ)−R2 (ρ)

¯̄
> � is greater than 1− � implies Pri

¡
limn→∞

¯̄
φ1n (s)− φ2n (s)

¯̄
>
¯̄
π1 − π2

¯̄¢
≥

1− �. We do not state this generalization of Theorem 4 to economize on space and notation.

Intuitively, even a small difference in priors ensures that individuals will interpret signals

differently, and if the original disagreement is relatively small, after almost all sequences of

signals, the disagreement between the two individuals grows. Consequently, the observation

of a common sequence of signals causes an initial difference of opinion between individuals to

widen (instead of the standard merging of opinions under certainty). Theorem 4 also shows that

both individuals are certain ex ante that their posteriors will diverge after observing the same

sequence of signals, because they understand that they will interpret the signals differently.

This strengthens our results further and shows that for some priors individuals will “agree to

eventually disagree even more”.

An interesting implication of Theorem 4 is also worth noting. As demonstrated by The-

orems 1 and 2, when there is learning under certainty individuals initially disagree, but each

individual also believes that they will eventually agree (and in fact, that they will converge to

his beliefs). This implies that each individual expects the other to “learn more”. More specif-

ically, let Iθ=A be the indicator function for θ = A and Λi =
¡
πi − Iθ=A

¢2 − ¡φi∞ − Iθ=A¢2
be a measure of learning for individual i,and let Ei be the expectation of individual i (under

17



the probability measure Pri). Under certainty, Theorem 1 implies that φi∞ = φj∞ = Iθ=A,

so that Ei
£
Λi − Λj

¤
= −

¡
πi − πj

¢2
< 0 and thus Ei

£
Λi
¤
< Ei

£
Λj
¤
. Under uncertainty, this

is not necessarily true. In particular, Theorem 4 implies that, under the assumptions of the

theorem, there exists an open subset of the interval [0, 1] such that whenever π1 and π2 are in

this subset, we have Ei
£
Λi
¤
> Ei

£
Λj
¤
, so that individual i would expect to learn more than

individual j. The reason is that individual i is not only confident about his initial guess πi, but

also expects to learn more from the sequence of signals than individual j, because he believes

that individual j has the “wrong model of the world.” The fact that an individual may expect

to learn more than others will play an important role in some of the applications in Section 4.

2.4 Non-monotonicity of the Likelihood Ratio and Discontinuity of Asymp-
totic Agreement

Theorems 3 and 4 show how Bayesian individuals may fail to agree even after observing an

infinite sequence of common signals. One may be concerned that these results rely on a

significant degree of uncertainty on the part of the individuals (i.e., on significantly dispersed

subjective probability distributions). In this subsection, we show by means of an example that

even a very small amount of uncertainty can lead to significant asymptotic disagreement. This

topic is then investigated in greater detail in the next subsection.

Our example in this subsection will serve two purposes. First, it will show the possibility

of discontinuity of asymptotic agreement. Second, it will illustrate that the important role

that the non-monotonicity of the asymptotic likelihood ratio, Ri (ρ), plays in the behavior

of individual beliefs and the possibility of asymptotic agreement under a small amount of

uncertainty. When the asymptotic likelihood ratio is non-monotone, a high frequency of signals

taking the value a may imply that the signals could be biased towards a and induce the

individual to put lower probability on state A than he would have done with a lower frequency

of a among the signals.

We start with a simple result. Inspection of expression (6) establishes the following:

Lemma 2 For any s ∈ S̄, φi∞ (s) is decreasing at ρ (s) if and only if R
i is increasing at ρ (s).

Proof. This follows immediately from equation (6) above.

When Ri is non-monotone, even a small amount of uncertainty about the informativeness

of the signals may lead to significant differences in limit posteriors. The next example illus-

trates this point, while the second example shows that there can be “reversals” in individuals’
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assessments, meaning that after observing a sequence “favorable” to state A, the individual

may have a lower posterior about this state than his prior.

Example 1 (Non-monotonicity) Each individual i thinks that with probability 1− �, pA

and pB are in a δ-neighborhood of some p̂i > (1 + δ) /2, but with probability � > 0, the signals

are not informative. More precisely, for p̂i > (1 + δ) /2, � > 0 and δ <
¯̄
p̂1 − p̂2

¯̄
, we have

f iθ (p) =

½
�+ (1− �) /δ if p ∈

¡
p̂i − δ/2, p̂i + δ/2

¢
� otherwise

(9)

for each θ and i. Now, by (7), the asymptotic likelihood ratio is

Ri (ρ (s)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�δ

1−�(1−δ) if ρ (s) ∈
¡
p̂i − δ/2, p̂i + δ/2

¢
1−�(1−δ)

�δ if ρ (s) ∈
¡
1− p̂i − δ/2, 1− p̂i + δ/2

¢
1 otherwise.

This and other relevant functions are plotted in Figure 1 for �→ 0 and δ → 0. The likelihood

ratio Ri (ρ (s)) is 1 when ρ (s) is small, takes a very high value at 1 − p̂i, goes down to 1

afterwards, becomes nearly zero around p̂i, and then jumps back to 1. By Lemmas 1 and 2,

φi∞ (s) will also be non-monotone: when ρ (s) is small, the signals are not informative, thus

φi∞ (s) is the same as the prior, πi. In contrast, around 1 − p̂i, the signals become very

informative suggesting that the state is B, thus φi∞ (s) ∼= 0. After this point, the signals

become uninformative again and φi∞ (s) goes back to πi. Around p̂i, the signals are again

informative, but this time favoring state A, so φi∞ (s) ∼= 1. Finally, signals again become

uninformative and φi∞ (s) falls back to πi. Intuitively, when ρ (s) is around 1 − p̂i or p̂i, the

individual assigns very high probability to the true state, but outside of this region, he sticks

to his prior, concluding that the signals are not informative.

The first important observation is that even though φi∞ is equal to the prior for a large

range of limiting frequencies, as �→ 0 and δ → 0 each individual attaches probability 1 to the

event that he will learn θ. This is because as illustrated by the discussion after Theorem 1,

as � → 0 and δ → 0, each individual becomes convinced that the limiting frequencies will be

either 1− p̂i or p̂i.

However, asymptotic learning is considerably weaker than asymptotic agreement. Each

individual also understands that since δ <
¯̄
p̂1 − p̂2

¯̄
, when the long-run frequency is in a

region where he learns that θ = A, the other individual will conclude that the signals are

uninformative and adhere to his prior belief. Consequently, he expects the posterior beliefs

of the other individual to be always far from his. Put differently, as � → 0 and δ → 0, each

19



0 1 ρ0

πi

1

ip̂1− ip̂0 1

Ri

ρ0

1

ip̂1− ip̂ 0 1 ρ0

π1

1

1ˆ1 p− ip̂

1− π2
π2-π1

π2
1− π1

2ˆ1 p−

2p̂

∞ i
∞φ

21
∞∞ −φφ

0 1 ρ0

πi

1

ip̂1− ip̂0 1

Ri

ρ0

1

ip̂1− ip̂ 0 1 ρ0

π1

1

1ˆ1 p− ip̂

1− π2
π2-π1

π2
1− π1

2ˆ1 p−

2p̂

∞ i
∞φ

21
∞∞ −φφ

Figure 1: The three panels show, respectively, the approximate values of Ri (ρ), φi∞, and¯̄
φ1∞ − φ2∞

¯̄
as �→ 0.

individual believes that he will learn the value of θ himself but that the other individual will

fail to learn, thus attaches probability 1 to the event that they disagree. This can be seen from

the third panel of Figure 1; at each sample path in S̄, at least one of the individuals will fail

to learn, and the difference between their limiting posteriors will be uniformly higher than the

following “objective” bound

min
©
π1, π2, 1− π1, 1− π2,

¯̄
π1 − π2

¯̄ª
.

When π1 = 1/3 and π2 = 2/3, this bound is equal to 1/3. In fact, the belief of each indi-

vidual regarding potential disagreement can be greater than this; each individual believes

that he will learn but the other individual will fail to do so. Consequently, for each i,

Pri
¡
limn→∞

¯̄
φ1n (s)− φ2n (s)

¯̄
≥ Z

¢
≥ 1− �, where as �→ 0, Z → min

©
π1, π2, 1− π1, 1− π2

ª
.

This “subjective” bound can be as high as 1/2.

Example 1 illustrates how asymptotic agreement may be a “discontinuous” limit point of

models with small amount of uncertainty. The important feature leading to this result is the

non-monotonicity of the asymptotic likelihood ratio Ri (ρ). However, in this example, Ri (ρ)

is not only non-monotonic but also discontinuous. In the next subsection, we will see that,

under some additional conditions, similar results obtain when Ri (ρ) is a continuous function

of ρ. Before presenting these results, we also observe that an even more extreme phenomenon,

whereby a high frequency of s = a among the signals may reduce the individual’s posterior

that θ = A below his prior, is also possible.
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Example 2 (Reversal) Now suppose that individuals’ subjective probability densities are

given by

f iθ (p) =

⎧⎨⎩
¡
1− �− �2

¢
/δ if p̂i − δ/2 ≤ p ≤ p̂i + δ/2

� if p < 1/2
�2 otherwise

for each θ and i = 1, 2, where � > 0, p̂i > 1/2, and 0 < δ < p̂1 − p̂2. Clearly, as � → 0, (7)

gives:

Ri (ρ (s)) ∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
if ρ (s) < 1− p̂i − δ/2,

0 or 1− p̂i + δ/2 < ρ (s) < 1/2,
or p̂i − δ/2 ≤ ρ (s) ≤ p̂i + δ/2

∞ otherwise.

Hence, the asymptotic posterior probability that θ = A is

φi∞ (ρ (s)) ∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
if ρ (s) < 1− p̂i − δ/2,

1 or 1− p̂i + δ/2 < ρ (s) < 1/2,
or p̂i − δ/2 ≤ ρ (s) ≤ p̂i + δ/2

0 otherwise.

Consequently, in this case observing a sufficiently high frequency of s = a may reduce the

posterior that θ = A below the prior. Moreover, the individuals assign probability 1− � that

there will be extreme asymptotic disagreement in the sense that
¯̄
φ1∞ (ρ (s))− φ2∞ (ρ (s))

¯̄ ∼= 1.
In both examples, it is crucial that the likelihood ratio Ri is not monotone. If Ri were

monotone, at least one of the individuals would expect that their beliefs will asymptotically

agree. To see this, take p̂i ≥ p̂j . Given the form of Ri (ρ), individual i is almost certain that,

when the state is A, ρ (s) will be close to p̂i. He also understands that j would assign a very

high probability to the event that θ = A when ρ (s) = p̂j ≥ p̂i. If Rj were monotone, individual

j would assign even higher probability to A at ρ (s) = p̂i and thus his probability assessment

on A would also converge to 1 as �→ 0. Therefore, in this case i will be almost certain that j

will learn the true state and that their beliefs will agree asymptotically.

Theorem 1 and Corollary 1 established that there will be asymptotic agreement under

certainty when p̂1, p̂2 > 1/2. One might have thought that as �→ 0 and uncertainty disappears,

the same conclusion would apply. In contrast, the above examples show that even as each F i
θ

converges to a Dirac distribution (that assigns a unit mass to a point) at p̂i > 1/2, there may

be significant asymptotic disagreement between the two individuals. Notably this is true not

only when there is negligible uncertainty, i.e., �→ 0 and δ → 0, but also when the individuals’

subjective distributions are nearly identical, i.e., as p̂1 − p̂2 → 0 as in Theorem 1. This shows
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that the result of asymptotic agreement in Theorem 1 is not necessarily a continuous limit

point of the more general model of learning under uncertainty (which allows for nondegenerate

subjective probability distributions F i
θ ’s).

11 We will see in the next subsection that when Ri’s

are continuous in ρ, whether or not there is asymptotic agreement under approximate certainty

(i.e., as F i
θ becomes more and more concentrated around a point) is determined by the tail

properties of the family of distributions F i
θ.

2.5 Agreement and Disagreement with Approximate Certainty

In this subsection, we characterize the conditions under which “approximate certainty” ensures

asymptotic agreement. More specifically, we will study the behavior of asymptotic beliefs as

the subjective probability distribution F i
θ converges to a Dirac distribution and the uncertainty

about the interpretation of the signals disappears. As already illustrated by Example 1, as

F i
θ converges to a Dirac distribution, each individual will become increasingly convinced that

he will learn the true state. However, because asymptotic agreement is considerably more

demanding than asymptotic learning, this does not guarantee that the individuals will believe

that they will also agree on θ. We will demonstrate that whether or not there is asymp-

totic agreement in the limit depends on the family of distributions converging to certainty–in

particular, on their tail properties. For many natural distributions, a small amount of uncer-

tainty about the informativeness of the signals is sufficient to lead to significant differences in

posteriors.

To state and prove our main result in this case, consider a family of subjective probability

density functions f iθ,m for i = 1, 2, θ ∈ {A,B} and m ∈ Z+, such that as m → ∞, we have
that F i

θ,m → F i
θ,∞ where F i

θ,∞ assigns probability 1 to p = p̂i for some p̂i ∈ (1/2, 1). Naturally,
there are many different ways in which a family of subjective probability distributions may

converge to such a limiting distribution. Both for tractability and to make the analysis more

concrete, we focus on families of subjective probability distributions
n
f iθ,m

o
parameterized by

a determining density function f . We impose the following conditions on f :

(i) f is symmetric around zero;

(ii) there exists x̄ <∞ such that f (x) is decreasing for all x ≥ x̄;

11Nevertheless, it is also not the case that asymptotic agreement under approximate certainty requires the
support of the distribution of each F i

θ to converge to a set as in Theorem 2 (that does not assign positive
probability to piθ < 1/2). See Theorem 5 below.
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(iii)

R̃ (x, y) ≡ lim
m→∞

f (mx)

f (my)
(10)

exists in [0,∞] at all (x, y) ∈ R2+.12

Conditions (i) and (ii) are natural and serve to simplify the notation. Condition (iii)

introduces the function R̃ (x, y), which will arise naturally in the study of asymptotic agreement

and has a natural meaning in asymptotic statistics (see Definitions 1 and 2 below).

In order to vary the amount of uncertainty, we consider mappings of the form x 7→
(x− y) /m, which scale down the real line around y by the factor 1/m. The family of subjective

densities for individuals’ beliefs about pA and pB,
n
f iθ,m

o
, will be determined by f and the

transformation x 7→
¡
x− p̂i

¢
/m.13 In particular, we consider the following family of densities

f iθ,m (p) = ci (m) f
¡
m
¡
p− p̂i

¢¢
(11)

for each θ and i where ci (m) ≡ 1/
R 1
0 f

¡
m
¡
p− p̂i

¢¢
dp is a correction factor to ensure that

f iθ,m is a proper probability density function on [0, 1] for each m. We also define φi∞,m ≡
limn→∞ φin,m (s) as the limiting posterior distribution of individual i when he believes that the

probability density of signals is f iθ,m. In this family of subjective densities, the uncertainty

about pA is scaled down by 1/m, and f iθ,m converges to unit mass at p̂i as m → ∞, so that
individual i becomes sure about the informativeness of the signals in the limit. In other words,

as m → ∞, this family of subjective probability distributions leads to approximate certainty
(and ensures asymptotic learning; see the proof of Part 1 of Theorem 5).

The next theorem characterizes the class of determining functions f for which the resulting

family of the subjective densities
n
f iθ,m

o
leads to asymptotic agreement under approximate

certainty.

Theorem 5 (Asymptotic Agreement and Disagreement Under Approximate Cer-

tainty) Suppose that Assumption 1 holds. For each i = 1, 2, consider the family of subjec-

tive densities
n
f iθ,m

o
defined in (11) for some p̂i > 1/2, with f satisfying conditions (i)-(iii)

above. Suppose that f (mx) /f (my) uniformly converges to R̃(x, y) over a neighborhood of¡
p̂1 + p̂2 − 1,

¯̄
p̂1 − p̂2

¯̄¢
. Then,

12Convergence will be uniform in most cases in view of the results discussed following Definition 1 below
(and of Egorov’s Theorem, which links pointwise convergence of a family of functions to a limiting function to
uniform convergence, see, for example, Billingsley, 1995, Section 13).
13This formulation assumes that p̂iA and p̂

i
B are equal. We can easily assume these to be different, but do not

introduce this generality here to simplify the exposition. Theorem 8 allows for such differences in the context
of the more general model with multiple states and multiple signals.
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1. limm→∞
¡
φi∞,m

¡
p̂i
¢
− φj∞,m

¡
p̂i
¢¢
= 0 if and only if R̃

¡
p̂1 + p̂2 − 1,

¯̄
p̂1 − p̂2

¯̄¢
= 0.

2. Suppose that R̃
¡
p̂1 + p̂2 − 1,

¯̄
p̂1 − p̂2

¯̄¢
= 0. Then for every � > 0 and δ > 0, there exists

m̄ ∈ Z+ such that

Pri
³
lim
n→∞

¯̄
φ1n,m (s)− φ2n,m (s)

¯̄
> �
´
< δ (∀m > m̄, i = 1, 2).

3. Suppose that R̃
¡
p̂1 + p̂2 − 1,

¯̄
p̂1 − p̂2

¯̄¢
6= 0. Then there exists � > 0 such that for each

δ > 0, there exists m̄ ∈ Z+ such that:

Pri
³
lim
n→∞

¯̄
φ1n,m (s)− φ2n,m (s)

¯̄
> �
´
> 1− δ (∀m > m̄, i = 1, 2).

Proof. (Proof of Part 1) Let Ri
m (ρ) be the asymptotic likelihood ratio as defined in

(7) associated with subjective density f iθ,m. One can easily check that limm→∞Ri
m

¡
p̂i
¢
= 0.

Hence, by (8), limm→∞
¡
φi∞,m

¡
p̂i
¢
− φj∞,m

¡
p̂i
¢¢
= 0 if and only if limm→∞Rj

m

¡
p̂i
¢
= 0. By

definition, we have:

lim
m→∞

Rj
m

¡
p̂i
¢
= lim

m→∞

f
¡
m
¡
1− p̂1 − p̂2

¢¢
f (m (p̂1 − p̂2))

= R̃
¡
1− p̂1 − p̂2, p̂1 − p̂2

¢
= R̃

¡
p̂1 + p̂2 − 1,

¯̄
p̂1 − p̂2

¯̄¢
,

where the last equality follows by condition (i), the symmetry of the function f . This establishes

that limm→∞Ri
m

¡
p̂i
¢
= 0 (and thus limm→∞

¡
φi∞,m

¡
p̂i
¢
− φj∞,m

¡
p̂i
¢¢
= 0) if and only if

R̃
¡
p̂1 + p̂2 − 1,

¯̄
p̂1 − p̂2

¯̄¢
= 0.

(Proof of Part 2) Take any � > 0 and δ > 0, and assume that R̃
¡
p̂1 + p̂2 − 1,

¯̄
p̂1 − p̂2

¯̄¢
= 0.

By Lemma 1, there exists �0 > 0 such that φi∞,m (ρ (s)) > 1− � whenever Ri (ρ (s)) < �0. There

also exists x0 such that

Pri
¡
ρ (s) ∈

¡
p̂i − x0/m, p̂i + x0/m

¢
|θ = A

¢
=

Z x0

−x0
f (x) dx > 1− δ. (12)

Let κ = minx∈[−x0,x0] f (x) > 0. Since f monotonically decreases to zero in the tails (see (ii)

above), there exists x1 such that f (x) < �0κwhenever |x| > |x1|. Letm1 = (x0 + x1) /
¡
2p̂i − 1

¢
>

0. Then, for any m > m1 and ρ (s) ∈
¡
p̂i − x0/m, p̂i + x0/m

¢
, we have

¯̄
ρ (s)− 1 + p̂i

¯̄
> x1/m,

and hence

Ri
m (ρ (s)) =

f
¡
m
¡
ρ (s) + p̂i − 1

¢¢
f (m (ρ (s)− p̂i))

<
�0κ

κ
= �0.

Therefore, for all m > m1 and ρ (s) ∈
¡
p̂i − x0/m, p̂i + x0/m

¢
, we have that

φi∞,m (ρ (s)) > 1− �. (13)
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Again, by Lemma 1, there exists �00 > 0 such that φj∞,m (ρ (s)) > 1−� wheneverR
j
m (ρ (s)) <

�00. Now, for each ρ (s),

lim
m→∞

Rj
m (ρ (s)) = R̃

¡
ρ (s) + p̂j − 1,

¯̄
ρ (s)− p̂j

¯̄¢
. (14)

Moreover, by the uniform convergence assumption, there exists η > 0 such that Rj
m (ρ (s))

uniformly converges to R̃
¡
ρ (s) + p̂j − 1,

¯̄
ρ (s)− p̂j

¯̄¢
on
¡
p̂i − η, p̂i + η

¢
and

R̃
¡
ρ (s) + p̂j − 1,

¯̄
ρ (s)− p̂j

¯̄¢
< �00/2

for each ρ (s) in
¡
p̂i − η, p̂i + η

¢
. Moreover, uniform convergence also implies that R̃ is contin-

uous at
¡
p̂1 + p̂2 − 1,

¯̄
p̂1 − p̂2

¯̄¢
(and in this part of the proof, by hypothesis, it takes the value

0). Hence, there exists m2 <∞ such that for all m > m2 and ρ (s) ∈
¡
p̂i − η, p̂i + η

¢
,

Rj
m (ρ (s)) < R̃

¡
ρ (s) + p̂j − 1,

¯̄
ρ (s)− p̂j

¯̄¢
+ �00/2 < �00.

Therefore, for all m > m2 and ρ (s) ∈
¡
p̂i − η, p̂i + η

¢
, we have

φj∞,m (ρ (s)) > 1− �. (15)

Set m̄ ≡ max {m1,m2, η/x0}. Then, by (13) and (15), for any m > m̄ and ρ (s) ∈¡
p̂i − x0/m, p̂i + x0/m

¢
, we have

¯̄
φi∞,m (ρ (s))− φj∞,m (ρ (s))

¯̄
< �. Then, (12) implies that

Pri
¡¯̄
φi∞,m (ρ (s))− φj∞,m (ρ (s))

¯̄
< �|θ = A

¢
> 1 − δ. By the symmetry of A and B, this

establishes that Pri
¡
|φi∞,m (ρ (s))− φj∞,m (ρ (s)) | < �

¢
> 1− δ for m > m̄.

(Proof of Part 3) Since limm→∞Rj
m

¡
p̂i
¢
= R̃

¡
p̂1 + p̂2 − 1,

¯̄
p̂1 − p̂2

¯̄¢
is assumed to be

strictly positive, limm→∞ φj∞,m

¡
p̂i
¢
< 1. We set � =

¡
1− limm→∞ φj∞,m

¡
p̂i
¢¢
/2 and use

similar arguments to those in the proof of Part 2 to obtain the desired conclusion.

Theorem 5 provides a complete characterization of the conditions under which approximate

certainty will lead to asymptotic agreement. In particular, it shows that, while approximate

certainty ensures asymptotic learning, it may not be sufficient to guarantee asymptotic agree-

ment. This contrasts with the result in Theorems 1 that there will always be asymptotic

agreement under full certainty. Theorem 5, instead, shows that even a small amount of uncer-

tainty may be sufficient to cause disagreement between the individuals.

The first part of the theorem provides a simple condition on the tail of the distribution

f that determines whether the asymptotic difference between the posteriors is small under

approximate uncertainty. This condition can be expressed as:

R̃
¡
p̂1 + p̂2 − 1,

¯̄
p̂1 − p̂2

¯̄¢
≡ lim

m→∞

f
¡
m
¡
p̂1 + p̂2 − 1

¢¢
f (m (p̂1 − p̂2))

= 0. (16)
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The theorem shows that if this condition is satisfied, then as uncertainty about the informa-

tiveness of the signals disappears the difference between the posteriors of the two individuals

will become negligible. Notice that condition (16) is symmetric and does not depend on i.

Intuitively, condition (16) is related to the beliefs of one individual on whether the other

individual will learn. Under approximate certainty, we always have that limm→∞Ri
m

¡
p̂i
¢
= 0,

so that each agent believes that he will learn the value of θ with probability 1. Asymptotic

agreement (or lack thereof) depends on whether he also believes the other individual will learn

the value of θ. When R̃
¡
p̂1 + p̂2 − 1,

¯̄
p̂1 − p̂2

¯̄¢
= 0, an individual who expects a limiting

frequency of p̂2 in the asymptotic distribution will still learn the true state when the limiting

frequency is p̂1. Therefore, individual 1, who is almost certain that the limiting frequency will

be p̂1, still believes that individual 2 will reach the same inference as himself. In contrast,

when R̃
¡
p̂1 + p̂2 − 1,

¯̄
p̂1 − p̂2

¯̄¢
6= 0, individual 1 is still certain that limiting frequency of

signals will be p̂1 and thus expects to learn himself. However, he understands that, when

R̃
¡
p̂1 + p̂2 − 1,

¯̄
p̂1 − p̂2

¯̄¢
6= 0, an individual who expects a limiting frequency of p̂2 will fail to

learn the true state when limiting frequency happens to be p̂1. Since he is almost certain that

the limiting frequency will be p̂1 (or 1− p̂1), he expects the other agent not to learn the truth

and thus he expects the disagreement between them to persist asymptotically.

Parts 2 and 3 of the theorem then exploit this result and the continuity of R̃ to show that

the individuals will attach probability arbitrarily close to 1 to the event that the asymptotic

difference between their beliefs will disappear when (16) holds, and they will attach probability

1 to asymptotic disagreement when (16) fails to hold. Thus the behavior of asymptotic beliefs

under approximate certainty are completely determined by condition (16).

Theorem 5 establishes that whether or not there will be asymptotic agreement depends

on whether R̃
¡
p̂1 + p̂2 − 1,

¯̄
p̂1 − p̂2

¯̄¢
is equal to 0. We next investigate what this condition

means for determining distributions f . Clearly, this will depend on the tail behavior of f ,

which, in turn, determines the behavior of the family of subjective densities
n
f iθ,m

o
. Suppose

x ≡ p̂1 + p̂2 − 1 > p̂1 − p̂2 ≡ y > 0. Then, condition (16) can be expressed as

lim
m→∞

f (mx)

f (my)
= 0.

This condition holds for distributions with exponential tails, such as the exponential or the

normal distributions. On the other hand, it fails for distributions with polynomial tails. For

example, consider the Pareto distribution, where f (x) is proportional to |x|−α for some α > 1.
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Figure 2: limn→∞ φin (s) for Pareto distribution as a function of ρ (s) [α = 2, p̂
i = 3/4.]

Then, for each m,
f (mx)

f (my)
=

µ
x

y

¶−α
> 0.

This implies that for the Pareto distribution, individuals’ beliefs will fail to converge even when

there is a negligible amount of uncertainty. In fact, for this distribution, the asymptotic beliefs

will be independent of m (since Ri
m does not depend on m). If we take π1 = π2 = 1/2, then

the asymptotic posterior probability of θ = A according to i is

φi∞,m (ρ (s)) =

¡
ρ (s)− p̂i

¢−α
(ρ (s)− p̂i)−α + (ρ (s) + p̂i − 1)−α

for any m.

As illustrated in Figure 2, in this case φi∞,m is not monotone (in fact, the discussion in

the previous subsection explained why it had to be non-monotone for asymptotic agreement

to breakdown). To see the magnitude of asymptotic disagreement, consider ρ (s) ∼= p̂i. In that

case, φi∞,m (ρ (s)) is approximately 1, and φj∞,m (ρ (s)) is approximately y−α/ (x−α + y−α).

Hence, both individuals believe that the difference between their asymptotic posteriors will be¯̄
φ1∞,m − φ2∞,m

¯̄ ∼= x−α

x−α + y−α
.

This asymptotic difference is increasing with the difference y ≡ p̂1 − p̂2, which corresponds to

the difference in the individuals’ views on which frequencies of signals are most likely. It is also

clear from this expression that this asymptotic difference will converge to zero as y → 0 (i.e., as

p̂1 → p̂2). This last statement is indeed generally true when R̃ is continuous and implies that

differences in the subjective probability distributions between the two individuals put limits

on their potential asymptotic disagreement:
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Proposition 1 (Limits to Asymptotic Disagreement) In Theorem 5, in addition, assume

that R̃ is continuous on the set D = {(x, y) |− 1 ≤ x ≤ 1, |y| ≤ ȳ} for some ȳ > 0. Then for

every � > 0 and δ > 0, there exist λ > 0 and m̄ ∈ (0,∞) such that whenever
¯̄
p̂1 − p̂2

¯̄
< λ,

Pri
³
lim
n→∞

¯̄
φ1n,m − φ2n,m

¯̄
> �
´
< δ (∀m > m̄, i = 1, 2).

Proof. To prove this proposition, we modify the proof of Part 2 of Theorem 5 and use the

notation in that proof. Since R̃ is continuous on the compact set D and R̃ (x, 0) = 0 for each

x, there exists λ > 0 such that R̃
¡
p̂1 + p̂2 − 1,

¯̄
p̂1 − p̂2

¯̄¢
< �00/4 whenever

¯̄
p̂1 − p̂2

¯̄
< λ. Fix

any such p̂1 and p̂2. Then, by the uniform convergence assumption, there exists η > 0 such

that Rj
m (ρ (s)) uniformly converges to R̃

¡
ρ (s) + p̂j − 1,

¯̄
ρ (s)− p̂j

¯̄¢
on
¡
p̂i − η, p̂i + η

¢
and

R̃
¡
ρ (s) + p̂j − 1,

¯̄
ρ (s)− p̂j

¯̄¢
< �00/2

for each ρ (s) in
¡
p̂i − η, p̂i + η

¢
. The rest of the proof is identical to the proof of Part 2 in

Theorem 5.

This proposition implies that if the individuals are almost certain about the informativeness

of signals, then any significant difference in their asymptotic beliefs must be due to a significant

difference in their subjective densities regarding the signal distribution (i.e., it must be the case

that
¯̄
p̂1 − p̂2

¯̄
is not small). In particular, the continuity of R̃ in Proposition 1 implies that

when p̂1 = p̂2, we must have R̃
¡
p̂1 + p̂2 − 1,

¯̄
p̂1 − p̂2

¯̄¢
= 0, and thus, from Theorem 5, there

will be no significant differences in asymptotic beliefs. Notably, however, the requirement that

p̂1 = p̂2 is rather strong. For example, Corollary 1 established that under certainty there will

be asymptotic agreement for all p̂1, p̂2 > 1/2.

It is also worth noting that the assumption that R̃ or limm→0Ri
m (ρ) is continuous in the

relevant range is important for the results in Proposition 1. In particular, recall that Example 1

illustrated a situation in which this assumption failed and the asymptotic differences remained

bounded away from zero, irrespective of the gap between p̂1 and p̂2.

We next focus on the case where p̂1 6= p̂2 and provide a further characterization of which

classes of determining functions lead to asymptotic agreement under approximate certainty.

We first define:

Definition 1 A density function f has regularly-varying tails if it has unbounded support and

satisfies

lim
m→∞

f(mx)

f(m)
= H(x) ∈ R

for any x > 0.
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The condition in Definition 1 that H (x) ∈ R is relatively weak, but nevertheless has

important implications. In particular, it implies that H(x) ≡ x−α for α ∈ (0,∞). This follows
from the fact that in the limit, the function H (·) must be a solution to the functional equation
H(x)H(y) = H(xy), which is only possible if H(x) ≡ x−α for α ∈ (0,∞).14 Moreover, Seneta
(1976) shows that the convergence in Definition 1 holds locally uniformly, i.e., uniformly for

x in any compact subset of (0,∞). This implies that if a density f has regularly-varying

tails, then the assumptions imposed in Theorem 5 (in particular, the uniform convergence

assumption) are satisfied. In fact, we have that, in this case, R̃ defined in (10) is given by the

same expression as for the Pareto distribution,

R̃(x, y) =

µ
x

y

¶−α
,

and is everywhere continuous. As this expression suggests, densities with regularly-varying tails

behave approximately like power functions in the tails; indeed a density f (x) with regularly-

varying tails can be written as f(x) = L(x)x−α for some slowly-varying function L (with

limm→∞L(mx)/L (m) = 1). Many common distributions, including the Pareto, log-normal,

and t-distributions, have regularly-varying densities. We also define:

Definition 2 A density function f has rapidly-varying tails if it satisfies

lim
m→∞

f (mx)

f (m)
= x−∞ ≡

⎧⎨⎩
0 if x > 1
1 if x = 1
∞ if x < 1

for any x > 0.

As in Definition 1, the above convergence holds locally uniformly (uniformly in x over any

compact subset that excludes 1). Examples of densities with rapidly-varying tails include the

exponential and the normal densities.

From these definitions, the following corollary to Theorem 5 is immediate and links asymp-

totic agreement under approximate certainty to the tail behavior of the determining density

function.

Corollary 2 (Tail Properties and Asymptotic Disagreement Under Approximate

Certainty) Suppose that Assumption 1 holds and p̂1 6= p̂2.

14To see this, note that since limm→∞ (f(mx)/f(m)) = H (x) ∈ R, we have

H (xy) = lim
m→∞

f(mxy)

f(m)
= lim

m→∞

f(mxy)

f(my)

f(my)

f (m)
= H (x)H (y) .

See de Haan (1970) or Feller (1971).
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1. Suppose that in Theorem 5 f has regularly-varying tails. Then there exists � > 0 such

that for each δ > 0, there exists m̄ ∈ Z+ such that

Pri
³
lim
n→∞

¯̄
φ1n,m (s)− φ2n,m (s)

¯̄
> �
´
> 1− δ (∀m > m̄, i = 1, 2).

2. Suppose that in Theorem 5 f has rapidly-varying tails. Then for every � > 0 and δ > 0,

there exists m̄ ∈ Z+ such that

Pri
³
lim
n→∞

¯̄
φ1n,m (s)− φ2n,m (s)

¯̄
> �
´
< δ (∀m > m̄, i = 1, 2).

This corollary therefore implies that whether there will be asymptotic agreement depends

on whether the family of subjective densities converging to “certainty” has regularly or rapidly-

varying tails (provided that p̂1 6= p̂2).

Returning to the intuition above, Corollary 2 and the previous definitions make it clear

that the failure of asymptotic agreement is related to disagreement between the two individuals

about limiting frequencies, i.e., p̂1 6= p̂2, together with sufficiently thick tails of the subjective

probability distribution so that an individual who expects p̂2 should have sufficient uncer-

tainty when confronted with a limiting frequency of p̂1. Along the lines of the intuition given

there, this is sufficient for both individuals to believe that they will learn the true value of θ

themselves, but that the other individual will fail to do so. Rapidly-varying tails imply that

individuals become relatively certain of their model of the world and thus when individual i

observes a limiting frequency ρ close to but different from p̂i, he will interpret this as being

driven by sampling variation and attach a high probability to θ = A. This will guarantee

asymptotic agreement between the two individuals. In contrast, with regularly-varying tails,

even under approximate certainty, limiting frequencies different from p̂i will be interpreted not

as a sampling variation, but as potential evidence for θ = B, preventing asymptotic agreement.

3 Generalizations

The previous section provided our main results in an environment with two states and two

signals. In this section, we show that our main results generalize to an environment withK ≥ 2
states and L ≥ K signals. The main results parallel those of Section 2 and all the proofs for

this section are contained in the Appendix. To economize on space, we do not provide analogs

of Theorems 1 and 2, since these require additional notation.

To generalize our results to this environment, let θ ∈ Θ, where Θ ≡
©
A1, ..., AK

ª
is a set

containing K ≥ 2 distinct elements. We refer to a generic element of the set by Ak. Similarly,
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let st ∈
©
a1, ..., aL

ª
, with L ≥ K signal values. As before, define s ≡ {st}∞t=1, and for each

l = 1, ..., L, let

rln (s) ≡ #
n
t ≤ n|st = al

o
be the number of times the signal st = al out of first n signals. Once again, the strong law of

large numbers implies that, according to both individuals, for each l = 1, ..., L, rln (s) /n almost

surely converges to some ρl (s) ∈ [0, 1] with
PL

l=1 ρ
l (s) = 1. Define ρ (s) ∈ ∆ (L) as the vector

ρ (s) ≡
¡
ρ1 (s) , ..., ρL (s)

¢
, where ∆ (L) ≡

n
p =

¡
p1, . . . , pL

¢
∈ [0, 1]L :

PL
l=1 p

l = 1
o
, and let

the set S̄ be

S̄ ≡
n
s ∈ S : limn→∞ rln (s) /n exists for each l = 1, ..., L

o
. (17)

With analogy to the two-state-two-signal model in Section 2, let πik > 0 be the prior probability

individual i assigns to θ = Ak, πi ≡
¡
πi1, ..., π

i
K

¢
, and plθ be the frequency of observing signal

s = al when the true state is θ. When players are certain about plθ’s as in usual models,

immediate generalizations of Theorems 1 and 2 apply. With analogy to before, we define F i
θ as

the joint subjective probability distribution of conditional frequencies p ≡
¡
p1θ, ..., p

L
¢
according

to individual i. Since our focus is learning under uncertainty, we impose an assumption similar

to Assumption 1.

Assumption 2 For each i and θ, the distribution F i
θ over ∆(L) has a continuous, non-zero

and finite density f iθ over ∆(L).

This assumption can be weakened along the lines discussed in Remark 2 above.

We also define φik,n (s) ≡ Pri
¡
θ = Ak | {st}nt=0

¢
for each k = 1, ...,K as the posterior

probability that θ = Ak after observing the sequence of signals {st}nt=0, and

φik,∞ (ρ (s)) ≡ lim
n→∞

φik,n (s) .

Given this structure, it is straightforward to generalize the results in Section 2. Let us now

define the transformation Tk : RK
+ → RK−1

+ , such that

Tk (x) =

µ
xk0

xk
; k0 ∈ {1, ...,K} \ k

¶
.

Here Tk (x) is taken as a column vector. This transformation will play a useful role in the

theorems and the proofs. In particular, this transformation will be applied to the vector πi of

priors to determine the ratio of priors assigned the different states by individual i. Let us also

define the norm kxk = maxl |x|l for x =
¡
x1, . . . , xL

¢
∈ RL.

The next lemma generalizes Lemma 1:
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Lemma 3 Suppose Assumption 2 holds. Then for all s ∈ S̄,

φik,∞ (ρ (s)) =
1

1 +
k0 6=k π

i
k0f

i

Ak
0 (ρ(s))

πikf
i
Ak
(ρ(s))

. (18)

Our first theorem in this section parallels Theorem 3 and shows that under Assumption

2 there will be lack of asymptotic learning, and under a relatively weak additional condition,

there will also asymptotic disagreement.

Theorem 6 (Generalized Lack of Asymptotic Learning and Agreement) Suppose As-

sumption 2 holds for i = 1,2, then for each k = 1, ...,K, and for each i = 1,2,

1. Pri
¡
φik,∞ (ρ (s)) 6= 1|θ = Ak

¢
= 1,and

2. Pri
¡¯̄
φ1k,∞ (ρ (s))− φ2k,∞ (ρ (s))

¯̄
6= 0

¢
= 1 whenever Pri((Tk

¡
π1
¢
−Tk

¡
π2
¢
)0Tk(f i(ρ(s)) =

0) = 0 and F 1θ = F 2θ for each θ ∈ Θ.

The additional condition in part 2 of Theorem 6, that Pri((Tk
¡
π1
¢
−Tk

¡
π2
¢
)0Tk(f i(ρ(s)) =

0) = 0, plays the role of differences in priors in Theorem 3 (here “ 0 ” denotes the transpose

of the vector in question). In particular, if this condition did not hold, then at some ρ (s), the

relative asymptotic likelihood of some states could be the same according to two individuals

with different priors and they would interpret at least some sequences of signals in a similar

manner and achieve asymptotic agreement. It is important to note that the condition that

Pri((Tk
¡
π1
¢
− Tk

¡
π2
¢
)0Tk(f i(ρ(s)) = 0) = 0 is relatively weak and holds generically–i.e., if

it did not hold, a small perturbation of π1 or π2 would restore it.15 The Part 2 of Theorem 6

therefore implies that asymptotic disagreement occurs generically.

The next theorem shows that small differences in priors can again widen after observing

the same sequence of signals.

Theorem 7 (Generalized Divergence of Opinions) Suppose Assumption 2 holds and

also assume that 10
³
Tk

³¡
f1θ (ρ)

¢
θ∈Θ

´
− Tk

³¡
f2θ (ρ)

¢
θ∈Θ

´´
6= 0 for each ρ ∈ [0, 1], each k =

15More formally, the set of solutions S ≡ { π1, π2, ρ ∈ ∆(L)2 : (Tk π1 − Tk π2 )0Tk(f
i(ρ)) = 0} has

Lebesgue measure 0. This is a consequence of the Preimage Theorem and Sard’s Theorem in differential
topology (see, for example, Guillemin and Pollack, 1974, pp. 21 and 39). The Preimage Theorem implies that
if y is a regular value of a map f : X → Y , then f−1 (y) is a submanifold of X with dimension equal to
dimX−dimY . In our context, this implies that if 0 is a regular value of the map (Tk π1 −Tk π2 )0Tk(f

i(ρ)),
then the set S is a two dimensional submanifold of ∆(L)3 and thus has Lebesgue measure 0. Sard’s theorem
implies that 0 is generically a regular value.
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1, ...,K (where 1 ≡ (1, ..., 1)0). Then, there exists an open set of prior vectors π1 and π2, such
that ¯̄

φ1k,∞ (ρ (s))− φ2k,∞ (ρ (s))
¯̄
>
¯̄
π1k − π2k

¯̄
for each k = 1, ...,K and s ∈ S̄

and

Pri
¡¯̄
φ1k,∞ (ρ (s))− φ2k,∞ (ρ (s))

¯̄
>
¯̄
π1k − π2k

¯̄¢
= 1 for each k = 1, ...,K.

The condition 10
³
Tk

³¡
f1θ (ρ)

¢
θ∈Θ

´
− Tk

³¡
f2θ (ρ)

¢
θ∈Θ

´´
6= 0 is similar to the additional

condition in part 2 of Theorem 6, and as with that condition, it is relatively weak and holds

generically. Finally, the following theorem generalizes Theorem 5. The appropriate construc-

tion of the families of probability densities is also provided in the theorem.

Theorem 8 (Generalized Asymptotic Agreement and Disagreement Under Ap-

proximate Certainty) Suppose that Assumption 2 holds. For each θ ∈ Θ and m ∈ Z+,
define the subjective density f iθ,m by

f iθ,m (p) = c (i, θ,m) f (m (p− p̂ (i, θ))) (19)

where c (i, θ,m) ≡ 1/
R
p∈∆(L) f (m (p− p̂ (i, θ))) dp, p̂ (i, θ) ∈ ∆ (L) with p̂ (i, θ) 6= p̂

¡
i, θ0

¢
when-

ever θ 6= θ0, and f : RL → R is a positive, continuous probability density function that satisfies

the following conditions:

(i) limh→∞max{x:kxk≥h} f (x) = 0,

(ii)

R̃ (x, y) ≡ lim
m→∞

f (mx)

f (my)
(20)

exists at all x, y, and

(iii) convergence in (20) holds uniformly over a neighborhood of each¡
p̂ (i, θ)− p̂

¡
j, θ0

¢
, p̂ (i, θ)− p̂ (j, θ)

¢
.

Also let φik,∞,m (ρ (s)) ≡ limn→∞ φik,n,m (s) be the asymptotic posterior of individual i with

subjective density f iθ,m. Then,

1. limm→∞
³
φik,∞,m

¡
p̂
¡
i, Ak

¢¢
− φjk,∞,m

¡
p̂
¡
i, Ak

¢¢´
= 0 if and only if

R̃
³
p̂
¡
i, Ak

¢
− p̂

³
j, Ak0

´
, p̂
¡
i, Ak

¢
− p̂

¡
j, Ak

¢´
= 0 for each k0 6= k.
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2. Suppose that R̃
¡
p̂ (i, θ)− p̂

¡
j, θ0

¢
, p̂ (i, θ)− p̂ (j, θ)

¢
= 0 for each distinct θ and θ0. Then

for every � > 0 and δ > 0, there exists m̄ ∈ Z+ such that

Pri
¡°°φ1∞,m (s)− φ2∞,m (s)

°° > �
¢
< δ (∀m > m̄, i = 1, 2).

3. Suppose that R̃
¡
p̂ (i, θ)− p̂

¡
j, θ0

¢
, p̂ (i, θ)− p̂ (j, θ)

¢
6= 0 for each distinct θ and θ0. Then

there exists � > 0 such that for each δ > 0, there exists m̄ ∈ Z+ such that

Pri
¡°°φ1∞,m (s)− φ2∞,m (s)

°° > �
¢
> 1− δ (∀m > m̄, i = 1, 2).

These theorems therefore show that the results about lack of asymptotic learning and

asymptotic agreement derived in the previous section do not depend on the assumption that

there are only two states and binary signals. It is also straightforward to generalize Proposition

1 and Corollary 2 to the case with multiple states and signals; we omit this to avoid repetition.

The results in this section are stated for the case in which both the number of signal values

and states are finite. They can also be generalized to the case of a continuum of signal values

and states, but this introduces a range of technical issues that are not central to our focus

here.

4 Applications

In this section we discuss a number of applications of the results derived so far. The applications

are chosen to show various different economic consequences from learning and disagreement

under uncertainty. Throughout, we strive to choose the simplest examples. The first example

illustrates how learning under uncertainty can overturn some simple insights from basic game

theory. The second example shows how such learning can act as an equilibrium selection

device as in Carlsson and van Damme (1993). The third example is the most substantial

application and shows how learning under uncertainty affects speculative asset trading. The

fourth example illustrates how learning under uncertainty can affect the timing of agreement

in bargaining. Finally, the last example shows how a special case of our model of learning

under uncertainty can arise when there is information transmission by a potentially biased

media outlet.16

16 In this section, except for the example on equilibrium selection and the last example of the game of belief
manipulation, we study complete-information games with possibly non-common priors. Formally, information
and belief structure in these games can be described as follows. Fix the state space Ω = Θ × S̄, and for each
n < ∞, consider the information partition In = In (s) = {(θ, s0) |s0t = st∀t ≤ n} |s ∈ S̄ that is common for
both players. For n = ∞, we introduce the common information partition I∞ = I∞ (s) = Θ× {s} |s ∈ S̄ .
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4.1 Value of Information in Common-Interest Games

Consider a common-interest game in which the players have identical payoff functions. Typi-

cally in common interest games information is valuable in the sense that with more information

about underlying parameters, the value of the game in the best equilibrium will be higher. We

would therefore expect players to collect or at least wait for the arrival of additional informa-

tion before playing such games. We now show that when there is learning under uncertainty,

additional information can be harmful in common-interest games, and thus the agents may

prefer to play the game before additional information arrives.

To illustrate these issues, consider the payoff matrix

α β
α 2θ, 2θ 1/2, 1/2
β 1/2, 1/2 1− θ, 1− θ

where θ ∈ {0, 1}, and the agents have a common prior on θ according to which probability of

θ = 1 is π ∈ (1/2, 1). When there is no information, α strictly dominates β (since the expected
value of the payoff from (α, α) is strictly greater than 1/2 and the expected value of the payoff

from (β, β) is strictly less than 1/2). In the dominant-strategy equilibrium, (α, α), each player

receives 2θ with probability π, thus achieve an expected payoff of 2π > 1.

First, consider the implications of learning under certainty. Suppose that the agents are

allowed to observe an infinite sequence of signals s = {st}∞t=1, where each agent believes that
Pri (st = θ|θ) = pi > 1/2. Theorem 1 then implies that after observing the sequence of signals,

the agents will learn θ. If the frequency ρ (s) of signal with st = 1 is greater than 1/2, they

will learn that θ = 1; otherwise they will learn that θ = 0. If ρ (s) < 1/2, β strictly dominates

α, and hence (β, β) is the dominant strategy equilibrium. If ρ (s) > 1/2, α strictly dominates

β and (α, α) is the dominant strategy equilibrium. Consequently, when they learn under

certainty before playing the game, the expected payoff to each player is 2π + (1− π) > 2π.

This implies that, if they have the option, the players would prefer to wait for the arrival of

public information before playing the game.

Let us next turn to learning under uncertainty. In particular, suppose that the agents do

not know the signal distribution and their subjective densities are similar to those in Example

At each In (s), player i = 1, 2 assigns probability φin (s) to the state θ = A and probability 1 − φin (s) to the
sate θ = B. Since the players have a common partition at each s and n, their beliefs are common knowledge.
Notice that, under certainty, φ1∞ (s) = φ2∞ (s) ∈ {0, 1}, so that after observing s, both players assign probability
1 to the same θ. In that case, there will be common certainty of θ, or loosely speaking, θ becomes “common
knowledge.” This is not necessarily the case under uncertainty.
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2:

f iθ (p) =

⎧⎨⎩
¡
1− �− �2

¢
/δ if p̂i − δ/2 ≤ p ≤ p̂i + δ/2

� if p < 1/2
�2 otherwise

(21)

for each θ, where 0 < δ < p̂1− p̂2 and � and δ are taken to be arbitrarily small (i.e., we consider
the limit where � → 0 and δ → 0, or loosely speaking, where � ∼= 0 and δ ∼= 0). Recall from
Example 2 that when � ∼= 0 and δ ∼= 0, the asymptotic posterior probability of θ = 1 is

φi∞ (ρ (s)) ∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
if ρ (s) < 1− p̂i − δ/2,

1 or 1− p̂i + δ/2 < ρ (s) < 1/2,
or p̂i − δ/2 ≤ ρ (s) ≤ p̂i + δ/2,

0 otherwise.

As discussed above, when � ∼= 0 and δ ∼= 0, each agent believes that he will learn the true

value of θ, while the other agent will reach the opposite conclusion. This implies that both

agents expect that one of them will have φi∞ (ρ (s)) ∼= 1 while the other has φi∞ (ρ (s)) ∼= 0.

Consequently, the unique equilibrium will be (α, β), giving both agents an ex ante expected

payoff of 1/2, which is strictly less than the expected payoff to playing the game before the

arrival of information (which is 2π). Therefore, when there is learning under uncertainty, both

agents may prefer to play the game before the arrival of public information.

4.2 Selection in Coordination Games

The initial difference in players’ beliefs about the signal distribution need not be due to lack

of common prior; it may be due to private information. Building on an example by Carlsson

and van Damme (1993), we now illustrate that when the players are uncertain about the signal

distribution, small differences in beliefs, combined with learning, may have a significant effect

on the outcome of the game and may select one of the multiple equilibria of the game.

Consider a game with the payoff matrix

I N
I θ, θ θ − 1, 0
N 0, θ − 1 0, 0

where θ ∼ N (0, 1). The players observe an infinite sequence of public signals s ≡ {st}∞t=0,
where st ∈ {0, 1} and

Pr(st = 1|θ) = 1/ (1 + exp (− (θ + η))) , (22)

with η ∼ N (0, 1). In addition, each player observes a private signal

xi = η + ui
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where ui is uniformly distributed on [−�/2, �/2] for some small � > 0.
Let us define κ ≡ log(ρ (s))− log(1− ρ (s)). Equation (22) implies that after observing s,

the players infer that θ+ η = κ. For small �, conditional on xi, η is distributed approximately

uniformly on [xi − �/2, xi + �/2] (see Carlsson and van Damme, 1993). This implies that con-

ditional on xi and s, θ is approximately uniformly distributed on [κ− xi − �/2, κ− xi + �/2].

Now note that with the reverse order on xi, the game is supermodular. Therefore, there exist

extremal rationalizable strategy profiles, which also constitute monotone, symmetric Bayesian

Nash Equilibria. In each equilibrium, there is a cutoff value, x∗, such that the equilibrium ac-

tion is I if xi < x∗ and N if xi > x∗. This cutoff, x∗, is defined such that player i is indifferent

between the two actions, i.e.,

κ− x∗ = Pr(xj > x∗|xi = x∗) = 1/2 +O (�) ,

where O (�) is such that lim�→0O (�) = 0. This establishes that

x∗ = κ− 1/2−O (�) .

Therefore, when � is small, the game is dominance solvable, and each player i plays I if

xi < κ− 1/2 and N if xi > κ+ 1/2.

In this game, learning under certainty has very different implications from those above.

Suppose instead that the players knew the conditional signal distribution (i.e., they knew η),

so that we are in a world of learning under certainty. Then after s is observed, θ would become

common knowledge, and there would be multiple equilibria whenever θ ∈ (0, 1). This example
therefore illustrates how learning under uncertainty can lead to the selection of one of the

equilibria in a coordination game.

4.3 A Simple Model of Asset Trade

One of the most interesting applications of the ideas developed here is to models of asset trad-

ing. Models of assets trading with different priors have been studied by, among others, Harrison

and Kreps (1978) and Morris (1996). These works assume different priors about the dividend

process and allow for learning under certainty. They establish the possibility of “speculative

asset trading”.17 We now investigate the implications of learning under uncertainty for the

pattern of speculative asset trading.

17Fudenberg and Levine (2005) show that learning by traders may be sufficient to prevent asset trading even
when it does not lead to common knowledge about the gains from trade.
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Consider an asset that pays 1 if the state is A and 0 if the state is B. Assume that Agent

2 owns the asset, but Agent 1 may wish to buy it. We have two dates, τ = 0 and τ = 1, and

the agents observe a sequence of signals between these dates. For simplicity, we again take this

to be an infinite sequence s ≡ {st}∞t=1. We also simplify this example by assuming that Agent
1 has all the bargaining power: at either date, if he wants to buy the asset, Agent 1 makes

a take-it-or-leave-it price offer Pτ , and trade occurs at price Pτ if Agent 2 accepts the offer.

Assume also that π1 > π2, so that Agent 1 is more optimistic. This assumption ensures that

Agent 1 would like to purchase the asset. We are interested in subgame-perfect equilibrium of

this game.18

Let us start with the case in which there is learning under certainty. Suppose that each

agent is certain that pA = pB = pi for some number pi > 1/2. In that case, from Theorem

1, both agents recognize at τ = 0 that at τ = 1, for each ρ (s), the value of the asset will the

same for both of them: it will be worth 1 if ρ (s) > 1/2 and 0 if ρ (s) < 1/2. Hence, at τ = 1

the agents will be indifferent between trading the asset (at price P1 = φ1∞ (ρ (s)) = φ2∞ (ρ (s)))

at each history ρ (s). Therefore, if trade does not occur at τ = 0, the continuation value of

Agent 1 is 0, and the continuation value of Agent 2 is π2. If they trade at price P0, then the

continuation value of agents 1 and 2 will be π1−P0 and P0, respectively. This implies that at

date 0, Agent 2 accepts an offer if and only if P0 ≥ π2. Since π1 > π2, Agent 1 is happy to

offer the price P0 = π2 at date τ = 0 and trade takes place. Therefore, with learning under

certainty, there will be immediate trade at τ = 0.

We next turn to the case of learning under uncertainty and suppose that the agents do

not know pA and pB. In contrast to the case of learning under certainty, the agents now have

an incentive to delay trading. To illustrate this, we first consider a simple example where

subjective densities are as in Example 1, with � → 0. Now, at date 1, if p̂1 − δ/2 < ρ (s) <

p̂1 + δ/2, then the value of the asset for Agent 2 is φ2∞ (ρ (s)) = π2, and the value of the asset

for Agent 1 is approximately 1. Hence, at such ρ (s), Agent 1 buys the asset from Agent 2 at

price P1 (ρ (s)) = π2, enjoying gains from trade equal to 1− π2. Since the equilibrium payoff

of Agent 1 must be non-negative in all other contingencies, this shows that when they do not

trade at date 0, his continuation value is at least

π1
¡
1− π2

¢
(when � → 0). The continuation value of Agent 2 must be at least π2, as he has the option

18We focus on a game between two agents for convenience. All the results presented in this subsection easily
generalize to the competitive equilibrium of a model with many agents on each side.
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of never selling his asset. Therefore, they can trade at date 0 only if the total payoff from

trading, which is π1, exceeds the sum of these continuation values, π1
¡
1− π2

¢
+π2. Since this

is impossible, there will be no trade at τ = 0. Instead, Agent 1 will wait for the information

to buy the asset at date 1 (provided that ρ (s) turns out to be in a range where he concludes

that the asset pays 1).

This example exploits the general intuition discussed after Theorem 4: if the agents are

uncertain about the informativeness of the signals, each agent may expect to learn more from

the signals than the other agent. In fact, this example has the extreme feature whereby each

agent believes that he will definitely learn the true state, but the other agent will fail to do

so. This induces the agents to wait for the arrival of additional information before trading.

This contrasts with the intuition that observation of common information should take agents

towards common beliefs and make trades less likely. This intuition is correct in models of

learning under certainty and is the reason why previous models have generated speculative

trade at the beginning (Harrison and Kreps, 1978, and Morris, 1996). Instead, here there is

delayed speculative trading.

The next result characterizes the conditions for delayed asset trading more generally:

Proposition 2 In any subgame-perfect equilibrium, trade is delayed to τ = 1 if and only if

E2
£
φ2∞
¤
= π2 > E1

£
min

©
φ1∞, φ

2
∞
ª¤

.

That is, when π2 > E1
£
min

©
φ1∞, φ

2
∞
ª¤
, Agent 1 does not buy at τ = 0 and buys at τ = 1 if

φ1∞ (ρ (s)) > φ2∞ (ρ (s)); when π2 < E1
£
min

©
φ1∞, φ

2
∞
ª¤
, Agent 1 buys at τ = 0.

Proof. In any subgame-perfect equilibrium, Agent 2 is indifferent between trading and not,

and hence his valuation of the asset is Pr2 (θ = A|Information). Therefore, trade at τ = 0 can
take place at the price P0 = π2, while trade at τ = 1 will be at the price P1 (ρ (s)) = φ2∞ (ρ (s)).

At date 1, Agent 1 buys the asset if and only if φ1∞ (ρ (s)) ≥ φ2∞ (ρ (s)), yielding the payoff of

max
©
φ1∞ (ρ (s))− φ2∞ (ρ (s)) , 0

ª
. This implies that Agent 1 is willing to buy at τ = 0 if and

only if

π1 − π2 ≥ E1
£
max

©
φ1∞ (ρ (s))− φ2∞ (ρ (s)) , 0

ª¤
= E1

£
φ1∞ (ρ (s))−min

©
φ1∞ (ρ (s)) , φ

2
∞ (ρ (s))

ª¤
= π1 − E1

£
min

©
φ1∞ (ρ (s)) , φ

2
∞ (ρ (s))

ª¤
,

as claimed.
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Since π1 = E1
£
φ1∞
¤
≥ E1

£
min

©
φ1∞, φ

2
∞
ª¤
, this result provides a cutoff value for the initial

difference in beliefs, π1 − π2, in terms of the differences in the agents’ interpretation of the

signals. The cutoff value is E1
£
max

©
φ1∞ (ρ (s))− φ2∞ (ρ (s)) , 0

ª¤
. If the initial difference is

lower than this value, then agents will wait until τ = 1 to trade; otherwise, they will trade

immediately. Consistent with the above example, delay in trading becomes more likely when

the agents interpret the signals more differently, which is evident from the expression for the

cutoff value. This reasoning also suggests that if F 1θ = F 2θ for each θ (so that the agents

interpret the signals in a similar fashion),19 then trade should occur immediately. The next

lemma shows that each agent believes that additional information will bring the other agent’s

expectations closer to his own and will be used to prove that F 1θ = F 2θ indeed implies immediate

trading.

Lemma 4 If π1 > π2 and F 1θ = F 2θ for each θ, then

E1
£
φ2∞
¤
≥ π2.

Proof. Recall that ex ante expectation of individual i regarding φj∞ can be written as

Ei
£
φj∞
¤
=

Z 1

0

£
πif iA (ρ)φ

j
∞ (ρ) +

¡
1− πi

¢
f iB (1− ρ)φj∞ (ρ)

¤
dρ (23)

=

Z 1

0

πifA (ρ) +
¡
1− πi

¢
fB (1− ρ)

πjfA (ρ) + (1− πj) fB (1− ρ)
fA (ρ) dρ,

where the first line uses the definition of ex ante expectation under the probability measure

Pri, while the second line exploits equations (6) and (7) and the fact that since F 1θ = F 2θ ,

f1θ (ρ) = f2θ (ρ) = fθ (ρ) for all ρ. Now define

I (π) ≡
Z 1

0

πfA (ρ) + (1− π) fB (1− ρ)

π2fA (ρ) + (1− π2) fB (1− ρ)
fA (ρ) dρ.

From (23), E1
£
φ2∞
¤
= I

¡
π1
¢
and π2 = E2

£
φ2∞
¤
= I

¡
π2
¢
. Hence, it suffices to show that I is

increasing in π. Now,

I 0 (π) =

Z 1

0

fA (ρ)

π2fA (ρ) + (1− π2) fB (1− ρ)
(fA (ρ)− fB (1− ρ)) dρ.

Moreover, fA (ρ) /
£
π2fA (ρ) +

¡
1− π2

¢
fB (1− ρ)

¤
≥ 1 if and only if fA (ρ) ≥ fB (1− ρ).

19Recall from Theorem 3 that even when F 1
θ = F 2

θ , agents interpret signals differently because π
1 6= π2.
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Hence,

I 0 (π) =

Z
fA≥fB

fA (ρ)

π2fA (ρ) + (1− π2) fB (1− ρ)
(fA (ρ)− fB (1− ρ)) dρ

−
Z
fA<fB

fA (ρ)

π2fA (ρ) + (1− π2) fB (1− ρ)
(fB (1− ρ)− fA (ρ)) dρ

≥
Z
fA≥fB

(fA (ρ)− fB (1− ρ)) dρ−
Z
fA<fB

(fB (1− ρ)− fA (ρ)) dρ

=

Z 1

0
(fA (ρ)− fB (1− ρ)) dρ = 0.

Together with the previous proposition, this lemma yields the following result establishing

that delay in asset trading can only occur when subjective probability distributions differ across

individuals.

Proposition 3 If F 1θ = F 2θ for each θ, then in any subgame-perfect equilibrium, trade occurs

at τ = 0.

Proof. Since π1 > π2 and R1 = R2, Lemma 1 implies that φ1∞ (ρ (s)) ≥ φ2∞ (ρ (s)) for

each ρ (s). Then, E1
£
min

©
φ1∞, φ

2
∞
ª¤
= E1

£
φ2∞
¤
≥ π2, where the last inequality is by Lemma

4. Therefore, by Proposition 2, Agent 1 buys at τ = 0.

This proposition establishes that when the two agents have the same subjective probability

distributions, there will be no delay in trading. However, as the example above illustrates,

when F 1θ 6= F 2θ , delayed speculative trading is possible. The intuition is given by Lemma 4:

when agents have the same subjective probability distribution but different priors, each will

believe that additional information will bring the other agent’s beliefs closer to his own. This

leads to early trading. However, when the agents differ in terms of their subjective probability

distributions, they expect to learn more from new information (because, as discussed after

Theorem 4 above, they believe that they have the “correct model of the world”). Consequently,

they delay trading.

Learning under uncertainty does not necessarily lead to additional delay in economic trans-

actions, however. Whether it does so or not depends on the effect of the extent of disagreement

on the timing of economic transactions. We will next see that, in the context of bargaining,

the presence of learning under uncertainty may be a force towards immediate agreement rather

than delay.
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4.4 Bargaining With Outside Options

Consider two agents bargaining over the division of a dollar. There are two dates, τ ∈ {0, 1},
and Agent 2 has an outside option θ ∈ {θL, θH} that expires at the end of date 1, where
θL < θH < 1 and the value of θ is initially unknown. Between the two dates, the agents

observe an infinite sequence of public signals s ≡ {st}∞t=1 with st ∈ {aL, aH}, where the signal
aL can be thought to be more likely under θL.

Bargaining follows a simple protocol: at each date τ , Agent 1 offers a share wτ to Agent

2. If Agent 2 accepts the offer, the game ends, Agent 2 receives the proposal, wτ , and Agent

1 receives the remaining 1− wτ . If Agent 2 rejects the offer, she decides whether to take her

outside option, terminating the game, or wait for the next stage of the game. We assume that

delay is costly, so that if negotiations continue until date τ = 1, Agent 1 incurs a cost c > 0.

Finally, as in Yildiz (2003), the agents are assumed to be “optimistic,” in the sense that

y ≡ E2 [θ]− E1 [θ] > 0.

In other words, they differ in their expectations of θ on the outside option of Agent 2–with

Agent 2 believing that her outside option is higher than Agent 1’s assessment of this outside

option–and y parameterizes the extent of optimism in this game.

We assume that the game form and beliefs are common knowledge and look for the subgame-

perfect equilibrium of this simple bargaining game.

By backward induction, at date τ = 1, for any ρ (s), the value of outside option for Agent

1 is E2 [θ|ρ (s)] < 1, and hence she accepts an offer w1 if and only if w1 ≥ E2 [θ|ρ (s)]. Agent 2
therefore offers w1 = E2 [θ|ρ (s)]. If there is no agreement at date 0, the continuation values of
the two agents are:

V 1 = 1− c− E1
£
E2 [θ|ρ (s)]

¤
and V 2 = E2

£
E2 [θ|ρ (s)]

¤
= E2 [θ] ,

which uses the fact that there is no cost of delay for Agent 2. Since they have 1 dollar in total,

the agents will delay the agreement to date τ = 1 if and only if

E2 [θ]− E1
£
E2 [θ|ρ (s)]

¤
> c.

Here, E1
£
E2 [θ|ρ (s)]

¤
is Agent 1’s expectation about how Agent 2 will update her beliefs

after observing the signals s. If Agent 1 expects that the information will reduce Agent 2’s

expectation of her outside option more than the cost of waiting, then Agent 1 is willing to wait.

This description makes it clear that whether there will be agreement at date τ = 0 depends

on Agent 1’s assessment of how Agent 2 will interpret the (public) signals.
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When each agent is certain about the informativeness of the signals, they agree ex ante

that they will interpret the information correctly. Consequently, as in Lemma 4 in the previous

subsection, Agent 1’s Bayesian updating will indicate that the public information will reveal

him to be right. Yildiz (2004) has shown that this reasoning gives Agent 1 an incentive to

“wait to persuade” Agent 2 that her outside option is relatively low. More specifically, assume

that each agent i is certain that Pri (st = θ|θ) = p̂i > 1/2 for some p̂1 and p̂2, where p̂1 and p̂2

may differ. Then, from Theorem 1, the agents agree that Agent 2 will learn her outside option,

i.e., Pri
¡
E2 [θ|ρ (s)] = θ

¢
= 1 for each i. Hence, E1

£
E2 [θ|ρ (s)]

¤
= E1 [θ]. Therefore, Agent 1

delays the agreement to date τ = 1 if and only if

y > c,

i.e., if and only if the level of optimism is higher than the cost of waiting. This discussion

therefore indicates that the arrival of public information can create a reason for delay in

bargaining games.

We now show that when agents are uncertain about the informativeness of the signals, this

motive for delay is reduced and there can be immediate agreement. Intuitively, each agent

understands that the same signals will be interpreted differently by the other agent and thus

expects that they are less likely to persuade the other agent. This decreases the incentives to

delay agreement.

This result is illustrated starkly here, with an example where a small amount of uncer-

tainty about the informativeness of signals removes all incentives to delay agreement. Suppose

that the agents’ beliefs are again as in Example 1 with � small. Now Agent 1 assigns proba-

bility more than 1 − � to the event that that ρ (s) will be either in
£
p̂− δ/2, p̂1 + δ/2

¤
or in£

1− p̂− δ/2, 1− p̂1 + δ/2
¤
, inducing Agent 2 to stick to her prior. Hence, Agent 1 expects

that Agent 2 will not update her prior by much. In particular, we have

E1
£
E2 [θ|ρ (s)]

¤
= E2 [θ] +O (�) .

Thus

E2 [θ]− E1
£
E2 [θ|ρ (s)]

¤
= −O (�) < c.

This implies that agents will agree at the beginning of the game. Therefore, the same forces that

led to delayed asset trading in the previous subsection can also induce immediate agreement

in bargaining when agents are “optimistic”.
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4.5 Manipulation and Uncertainty

Our final example is intended to show how the pattern of uncertainty used in the body of the

paper can result from game theoretic interactions between an agent and an informed party, for

example as in cheap talk games (Crawford and Sobel, 1982). Since our purpose is to illustrate

this possibility, we choose the simplest environment to communicate these ideas and limit the

discussion to the single agent setting. The generalization to the case with two or more agents,

which would enable us to reiterate results related to asymptotic agreement, is straightforward

and is omitted to economize on space.

The environment is as follows. The state of the world is θ ∈ {0, 1}, and the agent starts
with a prior belief π ∈ (0, 1) that θ = 1 at t = 0. At time t = 1, this agent has to make a

decision x ∈ [0, 1], and his payoff is − (x− θ)2. Thus the agent would like to form as accurate

an expectation about θ as possible.

The other player is a media outlet, M , which observes a large (infinite) number of signals

s0 ≡ {s0t}
∞
t=1 with s0t ∈ {0, 1}, and makes a sequence of reports to the agent s ≡ {st}∞t=1

with st ∈ {0, 1}. The reports s can be thought of as contents of newspaper articles, while s0

correspond to the information that the newspaper collects before writing the articles. Since s0

is an exchangeable sequence, we can represent it, as before, with the fraction of signals that

are 1’s, denoted by ρ0 ∈ [0, 1], and similarly s is represented by ρ ∈ [0, 1]. This is convenient
as it allows us to model the mixed strategy of the media as a mapping

σM : [0, 1]→ ∆ ([0, 1]) ,

where ∆ ([0, 1]) is the set of probability distributions on [0, 1]. Let i be the strategy that

puts probability 1 on the identity mapping, thus corresponding to M reporting truthfully.

Otherwise, i.e., if σM 6= i, there is manipulation (or misreporting) on the part of the media

outlet M .20

We also assume for simplicity that ρ0 has a continuous distribution with density g1 when

θ = 1 and g0 when θ = 0, such that g1 (ρ) = 0 for all ρ ≤ ρ̄ and g1 (ρ) > 0 for all ρ > ρ̄, while

g0 (ρ) > 0 for all ρ ≤ ρ̄ and g0 (ρ) = 0 for all ρ > ρ̄. This assumption implies that if M reports

truthfully, i.e., σM = i, then Theorem 2 applies and there will be asymptotic learning (and

also asymptotic agreement when there are more than one agent).

Now suppose instead that there are three different types of player M (unobservable to the

agent). With probability λH ∈ (0, 1), the media is honest and can only play σHM = i (where
20See Ottaviani and Sorenson (2006a,b) for more general analyses of potentially biased professional advice

and Baron (2004) and Gentzkow and Shapiro (2006) for related models of media bias.
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the superscript is for type H–honest). With probability λα ∈ (0, 1− λH), the media outlet is

of type α and is biased towards 1. Type α media outlet receives utility equal to x irrespective

of ρ0, and hence would like to manipulate the agent to choose high values of x. With the

complementary probability λβ = 1 − λα − λH , the media outlet is of type β and is biased

towards 0, and receives utility equal to 1− x.

Let us now look for the perfect Bayesian equilibrium of the game between the media outlet

and the agent. The perfect Bayesian equilibrium can be represented by two reporting functions

σαM : [0, 1]→ ∆ ([0, 1]) and σβM : [0, 1]→ ∆ ([0, 1]) for the two biased types ofM , and updating
function φ : [0, 1] → [0, 1], which determines the belief of the agent that θ = 1 when the

sequence of reports is ρ, and an action function x : [0, 1] → [0, 1], which determines the

choice of the agent as a function of ρ (there is no loss of generality here in restricting to pure

strategies).

In equilibrium, x must be optimal for the agent given φ; φ must be derived from Bayes

rule given σαM , σ
β
M and the prior π; and σαM and σβM must be optimal for the two biased media

outlets given x.

Note first that since the payoff to the biased media outlet does not depend on the true

ρ0, without loss of generality, we can restrict σαM and σβM not to depend on ρ0. Then, with a

slight abuse of notation, let σαM (ρ) and σβM (ρ) be the respective densities with which these

two types report ρ.

Second, the optimal choice of the agent after observing a sequence of signals with fraction

ρ being equal to 1 is

x (ρ) = φ (ρ) ,

for all ρ ∈ [0, 1], i.e., the agent will choose an action equal to his belief φ (ρ).
Third, an application of Bayes’ rule implies the following belief for the agent:

φ (ρ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λασαM (ρ)+λβσ

β
M (ρ) π

(1−π)λHg0(ρ)+λασαM (ρ)+λβσ
β
M (ρ)

if ρ ≤ ρ̄

λHg1(ρ)+λασαM (ρ)+λβσ
β
M (ρ) π

πλHg1(ρ)+λασαM (ρ)+λβσ
β
M (ρ)

if ρ > ρ̄.

(24)

The following lemma shows that any (perfect Bayesian) equilibrium has a very simple form:

Lemma 5 In any equilibrium, there exist φA > π and φB < π such that φ (ρ) = φB for all

ρ < ρ̄ and φ (ρ) = φA for all ρ > ρ̄.
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Proof. From (24), φ (ρ) < π when ρ < ρ̄, and φ (ρ) > π when ρ > ρ̄. Since the media type

α maximizes x (ρ) = φ (ρ), we have σαM (ρ) = 0 for ρ < ρ̄. Now suppose that the lemma is false

and there exists ρ1, ρ2 ≤ ρ̄ such that φ (ρ1) > φ (ρ2). Then we also have σ
β
M (ρ1) = 0–since

media type β minimizes x (ρ) = φ (ρ). But in that case, equation (24) implies that φ (ρ1) = 0,

contradicting the hypothesis. Therefore, φ (ρ) is constant over ρ ∈ [0, ρ̄). The proof for φ (ρ)
being constant over ρ ∈ (ρ̄, 1] is analogous.

It follows immediately from this lemma that equilibrium beliefs will take the form given in

the next proposition:

Proposition 4 Suppose that ρ 6= ρ̄, then the unique equilibrium actions and beliefs are:

σαM (ρ) = g1 (ρ) (25)

σβM (ρ) = g0 (ρ) (26)

x (ρ) = φ (ρ) =

⎧⎪⎨⎪⎩
λβπ

(1−π)λH+λβ if ρ < ρ̄

π(λH+λα)
πλH+λα

if ρ > ρ̄.

(27)

Proof. Consider the case ρ < ρ̄. As in the proof of Lemma 5, σαM (ρ) = 0. Since φ (ρ) is

constant over ρ ∈ [0, ρ̄) (by Lemma 5), equation (24) implies that σβM is proportional to g0 on

this range. Since this range is the common support of the densities σβM and g0, it must be that

σβM = g0. Similarly, σαM = g1. Substituting these equalities in (24), we obtain (27).

This proposition implies that the unique equilibrium of the game between the media outlet

and the agent leads to a special case of our model of learning under uncertainty. In particular,

the beliefs in (27) can be obtained by the appropriate choice of the functions fA (·) and fB (·)
from equation (6) in Section 2. This illustrates that the type of learning under uncertainty

analyzed in this paper is likely to emerge in game-theoretic situations where one of the players

is trying to manipulate the beliefs of others.

5 Concluding Remarks

A key assumption of most theoretical analyses is that individuals have a “common prior,” mean-

ing that they have beliefs consistent with each other regarding the game forms, institutions,

and possible distributions of payoff-relevant parameters. This presumption is often justified by

the argument that sufficient common experiences and observations, either through individual

observations or transmission of information from others, will eliminate disagreements, taking
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agents towards common priors. This presumption receives support from a number of well-

known theorems in statistics and economics, for example, Savage (1954) and Blackwell and

Dubins (1962).

Nevertheless, existing theorems apply to environments in which learning occurs under cer-

tainty, that is, individuals are certain about the meaning of different signals. Certainty is

sufficient to ensure that payoff-relevant variables can be identified from limiting frequencies

of signals. In many situations, individuals are not only learning about a payoff-relevant pa-

rameter but also about the interpretation of different signals. This takes us to the realm of

environments where learning takes place under uncertainty. For example, many signals favor-

ing a particular interpretation might make individuals suspicious that the signals come from a

biased source. We show that learning in environments with uncertainty may lead to a situation

in which there is lack of full identification (in the standard sense of the term in econometrics

and statistics). In such situations, information will be useful to individuals but may not lead

to full learning.

This paper investigates the conditions under which learning under uncertainty will take

individuals towards common priors and asymptotic agreement. We consider an environment

in which two individuals with different priors observe the same infinite sequence of signals in-

formative about some underlying parameter. Learning is under uncertainty, however, because

each individual has a non-degenerate subjective probability distribution over the likelihood of

different signals given the values of the parameter. We show that when subjective probability

distributions of both individuals have full support, they will never agree, even after observ-

ing the same infinite sequence of signals. We also show that this corresponds to a result of

“agreement to eventually disagree”; individuals will agree, before observing the sequence of

signals, that their posteriors about the underlying parameter will not converge. This common

understanding that more information may not lead to similar beliefs for agents has important

implications for a variety of games and economic models. On the other hand, when there is

no full support in subjective probably distributions, asymptotic learning and agreement may

obtain.

An important implication of this analysis is that after observing the same (infinite) sequence

of signals, two Bayesian individuals may end up disagreeing more than they originally did. This

result contrasts with the common presumption that shared information and experiences will

ensure eventual agreement.

We also systematically investigate whether asymptotic agreement obtain as the amount of
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uncertainty in the environment diminishes (i.e., as we look at families of subjective probability

distributions converging to degenerate limit distributions with all their mass at one point).

We provide a complete characterization of the conditions under which this will be the case.

Asymptotic disagreement may prevail even under “approximate certainty,” as long as the family

of subjective probability distributions converging to a degenerate distribution (and thus to an

environment with certainty) has regularly-varying tails (such as for the Pareto, the log-normal

or the t-distributions). In contrast, with rapidly-varying tails (such as the normal and the

exponential distributions), convergence to certainty leads to asymptotic agreement.

Lack of common beliefs and common priors has important implications for economic behav-

ior in a range of circumstances. We illustrate how the type of learning outlined in this paper

interacts with economic behavior in various different situations, including games of coordina-

tion, games of common interest, bargaining, asset trading and games of communication. For

example, we show that contrary to standard results, individuals may wish to play common-

interest games before rather than after receiving more information about payoffs. Similarly, we

show how the possibility of observing the same sequence of signals may lead to “speculative de-

lay” in asset trading among individuals that start with similar beliefs. We also provide a simple

example illustrating why individuals may be uncertain about informativeness of signals–the

strategic behavior of other agents trying to manipulate their beliefs.
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6 Appendix: Omitted Proofs
Proof of Lemma 3. The proof is identical to that of Lemma 1.

Proof of Theorem 6.
(Part1) This part immediately follows from Lemma 3, as each πik0fAk0 (ρ (s)) is positive, and

πikfAk (ρ (s)) is finite.
(Part 2) Assume F 1θ = F 2θ for each θ ∈ Θ. Then, by Lemma 3, φ1k,∞ (ρ) − φ2k,∞(ρ) = 0 if and

only if
¡
Tk
¡
π1
¢
− Tk

¡
π2
¢¢0

Tk

³¡
f1θ (ρ)

¢
θ∈Θ

´
= 0. The latter inequality has probability 0 under both

probability measures Pr1 and Pr2 by hypothesis.

Proof of Theorem 7. Define π̄ = (1/K, . . . , 1/K). First, take π1 = π2 = π̄. Then,P
k0 6=k π

1
k0f

1
Ak0

(ρ (s))

π1kf
1
Ak
(ρ (s))

−
P

k0 6=k π
2
k0f

1
Ak0

(ρ (s))

π2kf
1
Ak
(ρ (s))

= 10
³
Tk

³¡
f1θ (ρ(s))

¢
θ∈Θ

´
− Tk

³¡
f2θ (ρ(s))

¢
θ∈Θ

´´
6= 0,

where 1 ≡ (1, . . . , 1)0, and the inequality follows by the hypothesis of the theorem. Hence, by Lemma 3,¯̄
φ1k,∞ (ρ (s))− φ2k,∞ (ρ (s))

¯̄
> 0 for each ρ (s) ∈ [0, 1]. Since [0, 1] is compact and

¯̄
φ1k,∞ (ρ (s))− φ2k,∞ (ρ (s))

¯̄
is continuous in ρ (s), there exists � > 0 such that

¯̄
φ1k,∞ (ρ (s))− φ2k,∞ (ρ (s))

¯̄
> � for each ρ (s) ∈ [0, 1].

Now, since
¯̄
φ1k,∞ (ρ (s))− φ2k,∞ (ρ (s))

¯̄
is continuous in π1 and π2, there exists a neighborhood N (π̄)

of π̄ such that ¯̄
φ1k,∞ (ρ (s))− φ2k,∞ (ρ (s))

¯̄
>
¯̄
π1k − π2k

¯̄
for each k = 1, ...,K and s ∈ S̄

for all π1, π2 ∈ N (π̄). Since Pri
¡
S̄
¢
= 1, the last statement in the theorem follows.

Proof of Theorem 8. Our proof utilizes the following two lemmas.

Lemma A.

lim
m→∞

φik,∞,m (p) =
1

1 +
P

k0 6=k
πi
k0
πik

R̃ (p− p̂ (i, Ak0) , p− p̂ (i, Ak))
.

Proof. By condition (i), limm→∞ c
¡
i, Ak,m

¢
= 1 for each i and k. Hence, for every distinct k and

k0,

lim
m→∞

f i
Ak0

(p)

f i
Ak
(p)

= lim
m→∞

c
³
i, Ak0 ,m

´
c (i, Ak,m)

lim
m→∞

f
³
m
³
p− p̂

³
i, Ak0

´´´
f (m (p− p̂ (i, Ak)))

= R̃
³
p− p̂

³
i, Ak0

´
, p− p̂

¡
i, Ak

¢´
.

Then, Lemma A follows from Lemma 3. ¥

Lemma B. For any ε̃ > 0 and h > 0, there exists m̃ such that for each m > m̃, k ≤ K, and each
ρ (s) with

°°ρ (s)− p̂
¡
i, Ak

¢°° < h/m,¯̄̄
φik,∞,m (ρ (s))− lim

m→∞
φik,∞,m

¡
p̂
¡
i, Ak

¢¢¯̄̄
< ε̃. (28)

Proof. Since, by hypothesis, R̃ is continuous at each
¡
p̂ (i, θ)− p̂

¡
j, θ0

¢
, p̂ (i, θ)− p̂ (j, θ)

¢
, by

Lemma A, there exists h0 > 0, such that¯̄̄
lim

m→∞
φik,∞,m (ρ (s))− lim

m→∞
φik,∞,m

¡
p̂
¡
i, Ak

¢¢¯̄̄
< ε̃/2 (29)

49



and by condition (iii), there exists m̃ > h/h0 such that¯̄̄
φik,∞,m (ρ (s))− lim

m→∞
φik,∞,m (ρ (s))

¯̄̄
< ε̃/2. (30)

holds uniformly in
°°ρ (s)− p̂

¡
i, Ak

¢°° < h0. The inequalities in (29) and (30) then imply (28). ¥

(Proof of Part 1) Since R̃
³
p̂
¡
i, Ak

¢
− p̂

³
i, Ak0

´
, 0
´
= 0 for each k0 6= k (by condition (i)), Lemma

A implies that limm→∞ φik,∞,m

¡
p̂
¡
i, Ak

¢¢
= 1. Hence, limm→∞

³
φik,∞,m

¡
p̂
¡
i, Ak

¢¢
− φjk,∞,m

¡
p̂
¡
i, Ak

¢¢´
=

0 if and only if limm→∞ φjk,∞,m

¡
p̂
¡
i, Ak

¢¢
= 1. Since each ratio πjk0/π

j
k is positive, by Lemma A, the

latter holds if only if R̃
³
p̂
¡
i, Ak

¢
− p̂

³
j, Ak0

´
, p̂
¡
i, Ak

¢
− p̂

¡
j, Ak

¢´
= 0 for each k0 6= k, establishing

Part 1.

(Proof of Part 2) Fix � > 0 and δ > 0. Fix also any i and k. Since each πjk0/π
j
k is finite, by

Lemma 3, there exists �0 > 0, such that φik,∞,m (ρ (s)) > 1 − � whenever f i
Ak0

(ρ (s)) /f iAk (ρ (s)) < �0

holds for every k0 6= k. Now, by (i), there exists h0,k > 0, such that

Pri
¡°°ρ (s)− p̂

¡
i, Ak

¢°° ≤ h0,k/m|θ = Ak
¢
=

Z
kxk≤h0,k

f (x) dx > (1− δ) .

Let
Qk,m =

©
p ∈ ∆ (L) :

°°p− p̂
¡
i, Ak

¢°° ≤ h0,k/m
ª

and κ ≡ minkxk≤h0,k f (x) > 0. By (i), there exists h1,k > 0 such that, whenever kxk > h1,k, f (x) <
�0κ/2. There exists a sufficiently large constant m1,k such that for any m > m1,k, ρ (s) ∈ Qk,m, and

any k0 6= k, we have
°°°ρ (s)− p̂

³
i, Ak0

´°°° > h1,k/m, and

f
³
m
³
ρ (s)− p̂

³
i, Ak0

´´´
f (m (ρ (s)− p̂ (i, Ak)))

<
�0κ

2

1

κ
=

�0

2
.

Moreover, since limm→∞ c (i, θ,m) = 1 for each i and θ, there exists m2,k > m1,k such that

c
³
i, Ak0 ,m

´
/c
¡
i, Ak,m

¢
< 2 for every k0 6= k and m > m2,k. This implies

f i
Ak0

(ρ (s)) /f iAk (ρ (s)) < �0,

establishing that
φik,∞,m (ρ (s)) > 1− �. (31)

Now, for j 6= i, assume that R̃
¡
p̂ (i, θ)− p̂

¡
j, θ0

¢
, p̂ (i, θ)− p̂ (j, θ)

¢
= 0 for each distinct θ and θ0.

Then, by Lemma A, limm→∞ φjk,∞,m

¡
p̂
¡
i, Ak

¢¢
= 1, and hence by Lemma B, there exists m3,k > m2,k

such that for each m > m3,k, ρ (s) ∈ Qk,m,

φjk,∞,m (ρ (s)) > 1− �. (32)

Notice that when (31) and (32) hold, we have
°°φ1∞,m (s)− φ2∞,m (s)

°° < �. Then, setting m̄ = maxkm4,k,
we obtain the desired inequality for each m > m̄:

Pri
¡°°φ1∞,m (s)− φ2∞,m (s)

°° < �
¢
=

X
k≤K

Pri
¡°°φ1∞,m (s)− φ2∞,m (s)

°° < �|θ = Ak
¢
Pri

¡
θ = Ak

¢
≥

X
k≤K

Pri
¡
ρ (s) ∈ Qk,m|θ = Ak

¢
Pri

¡
θ = Ak

¢
≥

X
k≤K

(1− δ)πik

= 1− δ.
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(Proof of Part 3) Assume that R̃
¡
p̂ (i, θ)− p̂

¡
j, θ0

¢
, p̂ (i, θ)− p̂ (j, θ)

¢
6= 0 for each distinct θ and

θ0. Then, since each πjk0/π
j
k is positive, Lemma A implies that limm→∞ φjk,∞,m

¡
p̂
¡
i, Ak

¢¢
< 1 for each

k. Let
� = min

k

n
1− lim

m→∞
φjk,∞,m

¡
p̂
¡
i, Ak

¢¢o
/3 > 0.

Then, by part 2, for each k, there exists m2,k such that for every m > m2,k and ρ (s) ∈ Qk,m, we have
φik,∞ (ρ (s)) > 1 − �. By Lemma B, there also exists m5,k > m2,k such that for every m > m5,k and
ρ (s) ∈ Qk,m,

φjk,∞,m (ρ (s)) < lim
m→∞

φjk,∞,m

¡
p̂
¡
i, Ak

¢¢
+ � ≤ 1− 2� < φik,∞ (ρ (s))− �.

This implies that
°°φ1∞,m (ρ (s))− φ2∞,m (ρ (s))

°° > �. Setting m̄ = maxkm5,k and changing°°φ1∞,m (s)− φ2∞,m (s)
°° < � at the end of the proof of Part 2 to

°°φ1∞,m (s)− φ2∞,m (s)
°° > �, we obtain

the desired inequality.
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