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Abstract
We introduce the possibility of coercive punishment by specialized enforcers into a model of
community enforcement. We assume that, just as regular agents need to be given incentives to
cooperate with each other, specialized enforcers need to be given incentives to carry out costly
punishments. We fully characterize optimal equilibria in the model. When the specialized enforcement
technology is sufficiently effective, cooperation is best sustained by a “one-time enforcer punishment
equilibrium”, where any deviation by a regular agent is punished only once, and only by enforcers.
In contrast, enforcers themselves are disciplined (at least in part) by community enforcement. The
reason why there is no community enforcement following deviations by regular agents is that such a
response, by reducing future cooperation, would decrease the amount of punishment that enforcers
are willing to impose on deviators. Conversely, when the specialized enforcement technology is less
effective, optimal equilibria involve a mix of specialized enforcement and community enforcement
(which might take the form of “ostracism”). Our results hold both under perfect monitoring of actions
and under various types of private monitoring. (JEL: C73, D72, D74)

1. Introduction

Throughout history, human societies have used a variety of means and practices
to foster prosocial behavior among their members. Prominent among these is
decentralized community enforcement, where deviations from cooperative behavior
are discouraged by the threat of withholding future cooperation, or even the threat
of the widespread collapse of cooperation throughout society. A large literature in
the social sciences, especially in game theory, provides conceptual foundations for
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this type of enforcement. In small groups, where an individual’s behavior can be
accurately observed by other members of the community, the threat of exclusion or
punishment is a powerful means of supporting cooperation (Axelrod 1984; Fudenberg
and Maskin 1986; Coleman 1988; Ostrom 1990; Greif 2006). In large groups, where
information about past behavior is more limited, cooperation can be supported by
contagion strategies, which trigger the spread of noncooperative behavior following
a deviation (Kandori 1992; Ellison 1994). Furthermore, several prominent examples,
such as the cooperative arrangements among the medieval Maghribi traders and their
overseas agents (Greif 1993) and the norms of behavior and compensation between
ranchers and landowners in 20th-century Shasta County, California (Ellickson 1991)
demonstrate the practical feasibility of decentralized community enforcement.

In modern societies, however, the basis of cooperative behavior is rather different.
Major transgressions are not directly punished by neighbors, nor do they trigger a wave
of noncooperative behavior throughout society. Instead, they are directly punished by
specialized law enforcers, including the police, the courts, and other state and nonstate
institutions. Indeed, following Thomas Hobbes and Max Weber, most social scientists
view this type of specialized enforcement as desirable, as well as inevitable both in
societies with full-fledged states and in those with less developed proto-states (Johnson
and Earle 2000; Flannery and Marcus 2012). Yet, there exists little formal modeling
of the foundations of such specialized enforcement.

The goal of this paper is to develop a model of specialized enforcement, to compare
its performance in supporting cooperation with that of community enforcement, and to
delineate the conditions under which specialized enforcement emerges as the optimal
arrangement for sustaining cooperation.

We consider a model of cooperation within a group of agents. In our baseline
model, regular producers randomly match with each other, as well as with specialized
enforcers assigned to monitor their relationships. Each producer chooses a level of
cooperation (e.g., a contribution to a local public good or an investment in a joint
project), which is costly for her but generates benefits for her partners (both the other
producers with whom she matches and the enforcers who monitor them). Absent the
threat of direct or indirect punishment, a producer would choose zero cooperation. In
this model, cooperation can be supported by contagion strategies as in Kandori (1992)
and Ellison (1994), where a deviation from prosocial behavior triggers the withdrawal
of cooperation throughout the entire community. Cooperation can alternatively
be supported by specialized enforcement—in which enforcers coercively punish
producers who deviate—provided that enforcers can be given incentives to behave
in this way.1 Cooperation can also be supported by any number of other strategies,
including various combinations of community and specialized enforcement involving
repentance by the deviator, ostracism of the deviator, and so on. Our question then is

1. In practice, another important problem is ensuring that enforcers do not use their access to violence to
expropriate producers. At the level of abstraction of our model, this is similar to the problem of convincing
enforcers to choose the appropriate level of punishment in response to transgressions, as we discuss in
what follows.

D
ow

nloaded from
 https://academ

ic.oup.com
/jeea/article-abstract/18/2/1078/5398119 by M

IT Libraries user on 16 April 2020



1080 Journal of the European Economic Association

not what kinds of strategies can support some cooperation, but rather what strategies
support the maximum possible level of cooperation (at a fixed discount factor).

Our simplest and sharpest results apply under perfect monitoring, where each
agent observes the entire past history of behavior. We consider both a small group
version of the model, where all agents in the group interact directly in every
period, and a large group version, where interactions are determined by random
matching. The main results are the same in both cases. The optimal equilibrium
always utilizes the specialized enforcement technology in a specific way—using one-
time enforcer punishment strategies, where enforcers punish a deviant producer as
harshly as possible, but only punish once. Enforcers are incentivized to undertake
costly punishments through the threat of contagion: if they fail to punish the deviator,
this triggers a switch to zero cooperation by all producers.2 When the specialized
enforcement technology is sufficiently effective, following punishment by the enforcers
all agents immediately return to equilibrium play, so there is no contagion or
withholding of future cooperation. When the specialized enforcement technology
is less effective, one-time enforcer punishment must be combined with some form
of “community enforcement”, where producers withhold cooperation to punish the
deviator. In our baseline model, this is optimally achieved via repentance, whereby the
deviator cooperates at a higher level than other producers in the period immediately
following a deviation. If in addition we allow the deviator to be directly excluded from
the benefits of cooperation (or “ostracized”), then we show that one-time enforcer
punishment strategies are optimally combined with ostracism rather than repentance.

The form of our one-time enforcer punishment strategies can be viewed as a
stylized representation of how formal and informal incentives interact in modern legal
systems. Enforcers’ incentives come from the fact that they themselves benefit from
societal cooperation (either directly or, in an extension, because the revenues that pay
their salaries are generated by such cooperation), and societal cooperation depends on
citizens’ trust in the integrity of the law enforcement apparatus. If this trust is damaged
because enforcers deviate from their expected course of behavior, societal cooperation
collapses, and it is the prospect of such a collapse that incentivizes enforcers.3 With
this interpretation, our results show that societies with more effective specialized
enforcement technologies should rely solely on enforcers (or “state institutions”)
to deter undesirable behavior, whereas those with less efficient technologies should
combine enforcer punishments with community enforcement.

One general implication of our analysis is the optimality of one-time enforcer
punishment strategies for supporting cooperation (either by themselves or in
combination with repentance or ostracism). The possibility that one-time enforcer
punishment strategies (without repentance or ostracism) can be optimal may appear

2. We also show that when enforcers can be directly punished by other enforcers, their deviations trigger
both direct punishment and the temporary withholding of cooperation by producers.

3. More realistically, enforcers may be organized in a hierarchy, where low-level enforcers are
incentivized by higher-level enforcers and only the top-level enforcers are incentivized by community
enforcement. We discuss such an extension of our model in Section 5.

D
ow

nloaded from
 https://academ

ic.oup.com
/jeea/article-abstract/18/2/1078/5398119 by M

IT Libraries user on 16 April 2020



Acemoglu and Wolitzky Sustaining Cooperation 1081

surprising, as one might have conjectured that it would always be better to combine
specialized enforcer punishments with decentralized community enforcement—if both
coercive punishment and the withdrawal of cooperation are bad for producers, why not
use both to provide incentives? The intuition for this result highlights the economic
mechanism at the heart of our paper. Adding decentralized punishment to a given
level of specialized punishment would indeed improve producers’ incentives for
cooperation. But, crucially, it would also erode the incentives of enforcers to undertake
coercive punishment. Enforcers are willing to undertake costly punishments today only
because of the future rewards of continued societal cooperation. Hence, if a deviation by
a producer also triggered costly community enforcement, then these implicit rewards
would be diminished, curtailing the extent of enforcer punishments. This reasoning thus
identifies a novel and powerful cost of decentralized punishment: its negative impact
on the extent and efficacy of specialized punishment. The reason why it is optimal to
punish deviators only once is also interesting: as we show, the gain in efficiency from
spreading punishments over time is always more than offset by the reduced willingness
of the deviator to return to cooperation during the punishment phase.

The role of specialized punishment by enforcers and the tradeoff between
community enforcement and specialized enforcement generalize beyond the perfect
monitoring case. First, we show that, for a fairly general class of information structures
(including the possibility that each individual observes play only in her own past
matches), one-time enforcer punishment strategies outperform pure contagion when
either the punishment technology is sufficiently effective or the discount factor is
sufficiently large. Because pure contagion is optimal in this environment without the
enforcers (Wolitzky 2013), this result immediately implies that the optimal equilibrium
must rely on enforcers to some extent. Second, we establish that, when individuals
observe behavior in their partners’ most recent matches, one-time enforcer punishment
strategies form an optimal equilibrium, provided that the specialized enforcement
technology is sufficiently effective and that imperfections in the monitoring structure
cannot be used to increase the extent to which enforcers are willing to punish a
deviator. This latter requirement can be guaranteed, for example, when enforcers are
better informed than producers.4 We further show that one-time enforcer punishment
strategies are also optimal under an additional stability requirement, which postulates
that a single deviation by any single individual is not sufficient to start contagion.5

Our paper is related to several different lines of research. First, we build on the
literature on community enforcement in repeated games, pioneered by Kandori (1992)

4. The superior information of enforcers here might result from communication with producers or from
the enforcers’ being organized in some institution, such as a law enforcement agency.

5. We find this requirement attractive because it captures another potential cost of decentralized
community enforcement: the danger of contagion being triggered accidentally by trembles or mistaken
observations. Indeed, many accounts of cooperation in societies with weak or absent states, such as Lewis’s
(1994) study of Somalia, emphasize how small transgressions can start major feuds, or even all-out tribal
wars. Such accidental contagion would also be triggered in our model under community enforcement
if producers trembled with small probability. Under enforcer punishments, however, a similarly costly
contagion can occur only if both an individual producer trembles and an enforcer trembles in response.
This makes accidental contagion much less likely under enforcer punishments.
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and Ellison (1994), by introducing costly punishments into this literature. Recent
contributions to this literature include Takahashi (2010), Deb (2012), and Deb and
González-Dı́az (2014). Most closely related to our paper are Wolitzky (2013) and Ali
and Miller (2014), which provide conditions under which contagion strategies support
the maximum level of cooperation at a fixed discount factor in repeated cooperation
games without costly punishments. In contrast, we show that introducing the possibility
of costly punishments can radically change the structure of the optimal equilibrium
from contagion (grim trigger) strategies to one-time enforcer punishment strategies.
Several other papers in this literature emphasize various weaknesses of contagious
strategies. Jackson, Rodriguez-Barraquer, and Xu (2012) note that contagion strategies
violate a renegotiation-proofness condition and focus instead on equilibria in which
social breakdowns are contained following a deviation. Lippert and Spagnolo (2011)
and Ali and Miller (2016) show that contagion or permanent exclusion discourages
communication about past deviations and argue for equilibria involving temporary
exclusion or ostracism. These papers do not consider specialized enforcers and more
generally do not investigate optimal equilibria in settings where contagion strategies
are suboptimal.6

Second, our paper is also related to the literature on optimal penal codes in general
repeated games (Abreu 1988), especially the “stick-and-carrot” equilibria of Abreu
(1986). In particular, our one-time enforcer punishment equilibria offer the “stick” of
specialized punishment for producers and the “carrot” of continued cooperation for
enforcers. However, although in Abreu (1986) stick-and-carrot equilibria are optimal
only within the class of pure strategy, strongly symmetric equilibria (i.e., under the
restriction that play is symmetric at all histories), we show that one-time enforcer pun-
ishment equilibria are globally optimal in our model under perfect monitoring, and we
also extend this result to certain classes of imperfect private monitoring. Among other
works in related environments, Padró-i-Miquel and Yared (2012) consider stick-and-
carrot equilibria in a political economy model, and Goldlücke and Kranz (2012) show
that stick-and-carrot equilibria are generally optimal in repeated games with transfers.

Third, our work connects to the literature on the economic foundations of the
enforcement of laws and norms. Early contributions to this literature, including Ostrom
(1990), Greif (1989, 1993), Milgrom, North, and Weingast (1990), Greif, Milgrom,
and Weingast (1994), Fearon and Laitin (1996), and Dixit (2003), focused on informal
enforcement supported by “reputation” and various ostracism-like arrangements.
Dixit (2007) surveys and extends these early frameworks. A particularly relevant
contribution by Greif (1994) distinguishes between the “private order” institutions
of the Maghribi traders and the “public order” institutions of the rival Genoese
traders—which resemble, respectively, our community enforcement and specialized
enforcement equilibria—and argues that public order institutions proved more efficient
as the scope for trade expanded in the late medieval period.

6. Hirshleifer and Rasmusen (1989) consider a form of ostracism that resembles direct punishment and
show how it can support cooperation in the finitely repeated prisoner’s dilemma.
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Other related recent papers include Acemoglu and Verdier (1998), who study how
law enforcers matched with pairs of producers can be used to incentivize effort, but must
also be discouraged from corruption; Hadfield and Weingast (2012), who model law as
a device for coordinating decentralized punishment; Mailath, Morris, and Postlewaite
(2017), who develop a model of laws and authority based on cheap talk; Levine and
Modica (2016), who consider the problem of designing a specialized enforcement
system and emphasize the tradeoff between providing insufficient incentives for
cooperation and expending excessive effort in punishment; and Acemoglu and Jackson
(2017), who study how social norms can constrain the effectiveness of laws. Two
recent papers, Masten and Prüfer (2014) and Aldashev and Zanarone (2017), are
especially related because they explore aspects of the trade-off between different types
of enforcement. Masten and Prüfer introduce court enforcement in a model similar
to Dixit (2003) and analyze the transition from merchant law to court law, whereas
Aldashev and Zanarone compare coercive and noncoercive enforcement in a model
with two producers and a state specialized in enforcement. Beyond the differences in
emphasis and modeling approach, our paper differs from these analyses by focusing
on the globally optimal equilibrium for maximizing cooperation in a repeated game.
Finally, in a companion paper (Acemoglu and Wolitzky 2018) we use a model where
punishments are costless but are carried out by “elites” who also engage in production
to analyze the emergence of “equality before the law”, that is, the equal application of
coercive punishments to both normal agent and elites.7

Lastly, to the extent that enforcer punishment strategies may be viewed as a
type of formal enforcement, our paper relates to the literature on the efficiency of
formal versus informal enforcement of norms and contracts. Theoretical contributions
include Kranton (1996) and Kali (1999). Empirical studies of reputation-based contract
enforcement include Fafchamps (1996), Clay (1997), Woodruff (1998), McMillan and
Woodruff (1999), and Johnson, McMillan, and Woodruff (2002).

The rest of the paper is organized as follows. Sections 2 and 3 analyze the small-
group and large-group versions of the model, respectively. Section 4 considers private
monitoring. Section 5 discusses various modeling issues. Section 6 concludes. Proofs
for Sections 2 and 3 are presented in Appendix A. The Online Appendices contain the
proofs for Section 4, as well as an extension of our model that allows for ostracism of
individual players.

2. Small Group Model: Repeated Prisoner’s Dilemma with an Enforcer

We begin with the analysis of a standard repeated game model of cooperation in a
small group. This setting is a special case of the large group model considered in the
next section, but we present it separately for ease of exposition.

7. There is also an enormous literature on the role of punishments in public good games in experimental
economics and evolutionary game theory. Seminal experimental papers include Ostrom, Walker, and
Gardner (1992) and Fehr and Gächter (2000, 2002). Seminal theoretical papers include Boyd and Richerson
(1992), Sethi and Somanathan (1996), and Henrich and Boyd (2001).
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2.1. Environment

There is a group consisting of k C 1 players. We compare the prospects for cooperation
in this group in two situations: first, when all k C 1 players are producers, who can exert
effort in providing benefits for their partners; and second, when one of the players is an
enforcer, who can exert effort in punishing her partners. In each case, we investigate the
optimal strategies for supporting cooperation and the resulting level of social welfare.
The interpretation is that the group can decide whether to assign one of their number
to the role of enforcer—exempting her from production while requiring her to punish
deviators—but this decision is not formally modeled as part of the game.

The players take part the following two-stage game in every period t D 0, 1,
2. . . . The game is a version of the prisoner’s dilemma among the producers, with the
possibility of costly punishment by the enforcer (if an enforcer is present).

(1) Cooperation Stage: Each producer i chooses a level of cooperation xi 2 RC. These
choices are perfectly observed. Choosing cooperation level xi costs xi for player
i, and benefits every other player k 6D i by an amount f(xi), where f W RC ! RC
is an increasing, strictly concave, bounded, and differentiable function satisfying
f(0) D 0.8

(2) Punishment Stage: If an enforcer is present, he then chooses a level of punishment
yi 2 RC for each producer i. These choices are also perfectly observed. Choosing
punishment level yi costs the enforcer yi, and hurts producer i by an amount g(yi),
where g W RC ! RC is an increasing, strictly concave, and differentiable function
satisfying g(0) D 0. We refer to g as the specialized enforcement technology.

In summary, if there is no enforcer, each producer i’s stage game payoff isX
i 0¤i

f .xi 0/ � xi :

If instead there is an enforcer (label him player 1), each producer i’s stage game payoff
is X

i 0¤1;i

f .xi 0/ � xi � g.yi /;

and the enforcer’s payoff is X
i¤1

.f .xi / � yi /:

Observe that playing xi D 0 (“shirking”) is myopically optimal for producer i, and
playing yi D 0 for all i 6D 1 (“failing to punish”) is myopically optimal for the enforcer.
Thus, only the shadow of future interactions can incentivize producers to cooperate or
incentivize the enforcer to punish.

8. Boundedness is for simplicity and can be replaced by the Inada condition lim
x ! 1

f 0(x) D 0.
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Note also that the assumptions that f and g are concave imply that there is
a technological advantage to spreading out cooperation or punishments over time.
Nevertheless, we will show that, although optimal equilibria do spread cooperation
over time, they do not spread punishments over time. Instead, if an enforcer is present,
optimal equilibria always concentrate punishments in a single period.

Players maximize expected discounted payoffs with common discount factor ı.
The solution concept is subgame perfect equilibrium (SPE).

2.2. One-Time Enforcer Punishment Strategies and Repentance Strategies

Given a path of play of the repeated game, let xt
i denote producer i’s level of cooperation

in period t, and let

X t
i D .1 � ı/

1X
�D0

ı�xtC�
i

denote producer i’s present discounted level of cooperation starting in period t. From
the perspective of a given equilibrium of the game, xt

i and X t
i are (possibly degenerate)

random variables. We refer to the quantity EŒX0
i � as player i’s average level of

cooperation in a given equilibrium. We say that an equilibrium is the most cooperative
one if it simultaneously achieves the highest value of EŒX0

i � for every player i among
all SPE (as we will see, such an equilibrium exists); and we call the corresponding
value of EŒX0

i � the maximum level of cooperation. Note that, by concavity of f, the
most cooperative equilibrium is also the optimal equilibrium in terms of utilitarian
social welfare—provided that producers choose constant levels of cooperation on
path, punishments are not used on path, and the maximum level of cooperation is
below the first-best level, xFB, given by kf 0(xFB) D 1. This last requirement represents
the main case of economic interest, as in most settings the challenge is providing
sufficient incentives for cooperation rather than avoiding excessive cooperation.

Our main concern is whether optimal equilibria are based on punishment by
enforcers (specialized enforcement) or the withdrawal of future cooperation by
producers (community enforcement). We first observe that the problem of maximizing
cooperation when all k C 1 players are producers is a trivial one: in this case,
cooperation is maximized by grim trigger strategies, where producers always play
some xi D Ox on path and switch to xi D 0 following a deviation. The maximum level
of cooperation Ox that can be sustained with grim trigger strategies is given by the
unique nonzero solution to the equation

Ox D ıkf . Ox/ :

This equation simply equates the benefit of a deviation to xi D 0 (the cost-saving of Ox)
with its cost (the lost benefit of others’ future cooperation, which equals ıkf . Ox/).

PROPOSITION 1. In the absence of enforcers, grim trigger strategies are optimal, and
the maximum level of cooperation is Ox.
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Grim trigger strategies constitute an extreme form of community enforcement,
since cooperation is incentivized entirely by the threat of the group withdrawing
cooperation in the future.

On the other hand, when an enforcer is present, the group can instead rely on
various strategies that involve specialized enforcement. An extreme form of specialized
enforcement, where following a deviation there is no withdrawal of future cooperation
at all, is given by what we call one-time enforcer punishment strategies. With these
strategies, a producer who deviates is immediately punished by the enforcer. Following
this one-time punishment, everyone returns to her normal behavior in the next period.
If however the enforcer fails to punish a producer deviation, this triggers the breakdown
of cooperation.

DEFINITION 1. A one-time enforcer punishment strategy profile is characterized by a
cooperation level x and a punishment level y, and can be represented by the following
automaton:

There are two states, normal and punishment. Play in each state is as follows:

Normal state: Each producer i plays xi D x. If all producers i play xi D x, then the
enforcer plays yi D 0 for all producers i. If instead some producer i plays xi 6D x, then
the enforcer plays yi D y and plays yi 0 D 0 for all producers i0 6D i. 9

Punishment state: Players always take action 0 (producers never cooperate; the
enforcer never punishes).

Players start in the normal state and permanently transition to the punishment
state if in any period some producer i plays xi 6D x and the enforcer then plays yi 6D y.

The component-wise maximum levels of cooperation and punishment (x�, y�) that
can be sustained with one-time enforcer punishment strategies are given by the system
of equations,

x� D g.y�/;

y� D ı

1 � ı
kf .x�/: (1)

The intuition is that a producer who deviates gains at most x� (her cost of effort) and
loses g(y�) (the cost of being punished at level y�), whereas an enforcer who deviates
gains at most y� and loses (ı=(1 � ı))kf(x�) (the future benefit of cooperation at level
x� from k producers). Note that the 1=1 � ı term in the formula for y� reflects the fact
that, with one-time enforcer punishment strategies, an enforcer trades off the one-time
cost of punishing a deviant producer against the benefit of cooperation in every future
period. In contrast, there is no such term in the formula for Ox, as under grim trigger
strategies a producer trades off the cost of cooperating in every period against the
benefit of cooperation in every period.

9. As is standard in repeated games with perfect monitoring, we ignore simultaneous deviations
throughout.
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An alternative form of enforcement, which combines elements of community and
specialized enforcement, is given by (one-time) enforcer punishment plus repentance
strategies. Under these strategies, a producer who deviates is immediately punished
by the enforcer, but in addition all other producers reduce their level of cooperation for
one period while the deviator “repents” by cooperating at the pre-deviation equilibrium
level.

DEFINITION 2. A (one-time) enforcer punishment plus repentance strategy profile is
characterized by cooperation levels x and x and a punishment level y, and can be
represented by the following automaton:

There are k C 2 states: normal, punishment, and i-repenting, for each i 6D 1. Play
in these states is as follows:

Normal state: Each producer i plays xi D x. If all producers i play xi D x, then the
enforcer plays yi D 0 for all producers i. If instead some producer i plays xi 6D x, then
the enforcer plays yi D y and plays yi 0 D 0 for all producers i0 6D i.

Punishment state: Players always take action 0.

i-repenting state: Producer i plays xi D x. Producers i0 6D i play xi 0 D x. If
producer i plays xi D x and all producers i0 6D i play xi 0 D x, then the enforcer plays
yi 0 D 0 for all producers (including i). If producer i plays xi 6D x, then the enforcer
plays yi D y and plays yi 0 D 0 for all producers i0 6D i. If producer i0 6D i plays xi 0 ¤ x,
then the enforcer plays yi 0 D y and plays yi 00 D 0 for all producers i00 6D i0.

Players start in the normal state. In the normal state, if some producer i plays
xi 6D x and the enforcer then plays yi D y, players transition to the i-repenting state. If
some producer i plays xi 6D x and the enforcer plays yi 6D y, then players transition to
the punishment state.

In the i-repenting state, players transition to the normal state if producer i plays
xi D x and all producers i0 6D i play xi D x. If producer i plays xi 6D x and the enforcer
plays yi D y, then players stay in the i-repenting state. If some producer i0 6D i plays
xi 0 ¤ x and the enforcer then plays yi 0 D y, players transition to the i0-repenting state.
If producer i plays xi 6D x (resp., some producer i0 6D i plays xi 0 ¤ x) and the enforcer
plays yi 6D y (resp., yi 0 ¤ y), then players transition to the punishment state.

The punishment state is absorbing.

We refer to the special case of enforcer punishment plus repentance strategies
with x D 0 as enforcer punishment plus full repentance, and we refer to the case
where x > 0 as enforcer punishment plus partial repentance. The maximum levels of
cooperation and punishment . Lx; Ly/ that can be sustained with enforcer punishment
plus full repentance are straightforward to characterize as

Lx D g . Ly/ C ı .k � 1/ f . Lx/;

Ly D
�

ı

1 � ı
k � ı .k � 1/

�
f . Lx/: (2)

Intuitively, a producer who deviates gains Lx and loses g . Ly/ C ı .k � 1/ f . Lx/ (the
cost of being punished at level Ly plus the lost benefit of others’ cooperation
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in the next period), whereas an enforcer who deviates gains Ly and loses
..ı= .1 � ı// k � ı .k � 1// f . Lx/ (the benefit of others’ future cooperation, taking
into account that only the deviant producer cooperates in the very next period).

Note that, under (one-time) enforcer punishment strategies—or enforcer
punishment plus repentance strategies—punishments are not used on path and
producers choose constant levels of cooperation. This implies that, whenever such
a strategy profile sustains the maximum level of cooperation, it is also the optimal
equilibrium in terms of utilitarian social welfare, provided the maximum level of
cooperation is below the first-best level. If instead such strategies sustain a level of
cooperation above the first best, the concavity of the functions f and g makes it possible
to reduce cooperation in an incentive compatible manner and exactly achieve the first
best.10

2.3. Optimal Equilibrium in the Presence of an Enforcer

Our first main result characterizes the most cooperative equilibrium in the presence of
an enforcer. The result states that either a one-time enforcer punishment equilibrium
or a one-time enforcer punishment plus repentance equilibrium is always optimal.

Define the “efficient” level of punishment, yE, as follows:11

yE D

8̂<
:̂

1 if limy!1 g0 .y/ � 1,

.g0/�1
.1/ if g0 .0/ > 1 > limy!1 g0 .y/,

0 if g0 .0/ � 1.

With this notation, we can also determine the level of cooperation that can be sustained
by enforcer punishment plus partial repentance strategies. In particular, if yE < 1,
define the levels of cooperation . Qx; x/ under such a strategy profile by the system of
equations

Qx D g
�
yE
�C ı .k � 1/ Œf . Qx/ � f .x/� ;

yE D
�

ı

1 � ı
k � ı .k � 1/

�
f . Qx/ C ı .k � 1/ f .x/ : (3)

The following theorem characterizes the most cooperative equilibrium.

THEOREM 1. If yE � y�, one-time enforcer punishment strategies are optimal, and
the maximum level of cooperation is x�.

If yE � Ly, one-time enforcer punishment plus full repentance strategies are
optimal, and the maximum level of cooperation is Lx.

10. For example, in the case of one-time enforcer punishments, the utilitarian optimal equilibrium would
be characterized by x D xFB and y D ((ı=1 � ı)kf) (xFB). Concavity of f and g then imply that x � g(y)
whenever xFB � x�.

11. Intuitively, the “efficient” level of punishment is the one that equates the marginal cost of punishment
to its marginal “benefit”, which is the disutility imposed on a deviant producer.
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If yE 2 . Ly; y�/, one-time enforcer punishment plus partial repentance strategies
are optimal, and the maximum level of cooperation is Qx.

One special case of Theorem 1 bears particular emphasis: if g0(y) � 1 for all y 2 RC
(so that one unit of disutility of effort in punishment incurred by the enforcer always
inflicts at least one unit of disutility on a producer), then yE D 1, so Theorem 1 says that
one-time enforcer punishments are optimal. Thus, under this condition, it is optimal
for producers’ incentives to be provided purely through specialized enforcement.

It is useful to break the intuition for this result into two parts, relating to why the
optimal equilibrium can involve only specialized enforcement and why specialized
enforcement takes the form of one-time punishment.

Why Only Specialized Enforcement? To give a producer the strongest possible
incentive to cooperate, her continuation payoff after a deviation must be made as
low as possible. Ideally, her continuation payoff would be reduced in two ways: the
enforcer would punish her, and other producers would refuse to cooperate with her.
However, the enforcer is willing to exert effort in punishing the deviator only if he
is subsequently rewarded with cooperation from the producers. Since cooperation
benefits both producers and the enforcer, there is no way for producers to reward
the enforcer for punishing the deviant producer without also benefiting the deviator
herself.12 Society must then choose between incentivizing the enforcer to punish
deviators by immediately restoring cooperation (enforcer punishment strategies), or
by reducing enforcer punishments and instead providing incentives by withdrawing
cooperation following a deviation (enforcer punishment plus repentance strategies).

We can quantify the tradeoff between incentivizing the enforcer to punish and
incentivizing producers by withdrawing cooperation as follows. Consider a history
following a producer deviation. The direct effect of reducing another producer’s level
of cooperation at such a history by one unit is to reduce the deviator’s payoff by f 0(x)
units. This effect increases on-path incentives for cooperation. This direct effect is
countered by the indirect effect of reducing the maximum level of punishment the
enforcer is willing to impose on the deviator. In particular, reducing the producer’s
level of cooperation by one unit decreases the amount of punishment the enforcer can
be induced to provide by f 0(x) units, and each unit of reduced punishment increases
the deviator’s payoff by g0(y). Thus, the indirect effect reduces on-path incentives for
cooperation by f 0(x)g0(y). Consequently, the overall impact of withdrawing producer
cooperation following a deviation on on-path producer incentives is negative if and only
if g0(y) � 1—that is, if and only if y � yE. Therefore, if y� � yE then, after a producer
deviation, it is better to rely solely on enforcer punishments rather than reducing other
producers’ cooperation levels. Conversely, if Ly � yE then reducing other producers’
cooperation levels as far as possible is optimal. Finally, if yE 2 . Ly; y�/ then it is

12. In Online Appendix C, we study how the structure of the optimal equilibrium changes if we allow
for ostracism—the practice of excluding only deviators from the benefits of cooperation.
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optimal to reduce other producers’ cooperation levels to the point where the efficient
punishment level yE is just incentive-compatible for the enforcer.

It is possible to give a short, heuristic proof of Theorem 1, under the assumption
that strategies take the form of enforcer punishment plus full, partial, or no repentance.
(However, most of the substance of Theorem 1 is showing that this assumption is
without loss.) The problem of choosing an on-path cooperation level x, an off-path
cooperation level x, and a punishment level y to maximize on-path cooperation is

max
x;x;y

x

subj. to: x � g .y/ C ı .k � 1/ Œf .x/ � f .x/� and (4)

y �
�

ı

1 � ı
k � ı .k � 1/

�
f .x/ C ı .k � 1/ f .x/; (5)

where (4) and (5) are the incentive-compatibility constraints for producers and
enforcers, respectively. Using the constraints to substitute for x and y, a necessary
condition for optimality is that x solves the unconstrained problem

max
x

g

0
BBB@
�

ı

1 � ı
k � ı .k � 1/

�
f .x/ C ı .k � 1/ f .x/„ ƒ‚ …

Dy

1
CCCACı .k�1/ Œf .x/ � f .x/� :

The derivative with respect to x equals

ı .k � 1/ f 0 .x/
�
g0 .y/ � 1

�
:

Hence, if g0(y) � 1 for all incentive-compatible y (i.e., if yE � y�), then off-
path cooperation should be maximized, yielding one-time enforcer punishment. If
g0(y) � 1 when y is chosen to bind (5) with x D 0 (i.e., yE � Ly), then off-path
cooperation should be minimized, yielding one-time enforcer punishment plus full
repentance. Finally, if g0(y) < 1 when x D 0 but g0(y) > 1 when x D x (i.e.,
yE 2 . Ly; y�/), then x should be chosen so that y D yE, yielding one-time enforcer
punishment plus partial repentance.

We also emphasize that the result that one-time enforcer punishment strategies
are optimal whenever g0(y) � 1 for all y 2 RC holds independently of the
production technology f. Intuitively, improvements in the production technology
increase the greatest level of cooperation that can be sustained with both specialized
enforcement and community enforcement, and such improvements cancel out when
comparing the two kinds of equilibria. An interesting implication is that, provided
the efficiency of the production and punishment technologies are positively related
across different societies, Theorem 1 predicts that societies with more effective
technologies should rely purely on specialized enforcement, whereas societies with less
effective technologies should rely on a mix of community enforcement and specialized
enforcement.
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Why are deviators punished only once? One might have conjectured that, to provide
the harshest deterrent against a deviation, the enforcer should punish a deviator several
times for the same transgression. The reason why this does not occur in the optimal
equilibrium is that, with multiple rounds of punishment, the deviator would not be
willing to exert as much effort in cooperation during her punishment phase, and
the deviator’s continuation payoff from being punished once and then returning to
full cooperation is weakly lower than her continuation payoff from being punished
repeatedly while shirking. (In fact, it is strictly lower, as the deviator’s own future
cooperation can be used to give the enforcer additional incentives to punish her.)

Another way of seeing the intuition is to observe that, in the most cooperative
equilibrium, a producer is indifferent between following her equilibrium strategy and
following the policy of always shirking. If the enforcer were asked to spread the
punishment for each individual instance of shirking over multiple periods, this would
reduce the total punishment faced by a producer who always shirks, and would therefore
reduce the maximum sustainable level of cooperation.

Our results so far show that one-time enforcer punishments are always part of
the optimal equilibrium. In particular, society should deploy all available enforcers.
However, we also note that enforcer punishments provide very little benefit when
the specialized enforcement technology is sufficiently ineffective, so in this case pure
community enforcement becomes approximately optimal.

PROPOSITION 2. For " > 0, there exists � > 0 such that if g0(y) < � for all y 2 RC
then the grim trigger strategy profile with cooperation level Ox attains within " of the
maximum level of cooperation.

2.4. The Tradeoff Between Production and Enforcement

We have characterized the optimal equilibrium both in a group consisting of only
k C 1 producers (Proposition 1) and in a group consisting of k producers and a single
enforcer (Theorem 1). Given these results, it is straightforward to compare the resulting
level of social welfare in the two cases. This answers the question of when a group of
producers would gain from designating one of their number as an enforcer.

THEOREM 2. Assume the maximum level of cooperation is below the first-best level,
with or without an enforcer. If

g0 .0/ � 1 � ı

1 C ık
;

then utilitarian social welfare in an optimal equilibrium is higher without an enforcer
(i.e., with k C 1 producers, rather than with k producers and one enforcer). Conversely,
fixing the values of the other parameters of the model and assuming g0 is bounded away
from 0, there exists Nı < 1 (resp., ˛ < 1 or Nk < 1) such that the maximum level of
cooperation is higher with an enforcer if ı > Nı (resp., g0(y) > ˛ for all y 2 RC or
k > Nk).
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Consequently, if the players are patient, the group is large, or the specialized
enforcement technology is effective, then it is optimal to designate an individual
as an enforcer. Conversely, if the players are impatient, the group is small, and
the specialized enforcement technology is ineffective, it is optimal for all agents to
remain producers. The comparative static with respect to ı—wherein higher ı favors
specialized enforcement—is the most subtle of these results. It is a consequence of the
1=1 � ı term in the formula for y�, which was explained earlier.

3. Large Group Model: Random Matching

The small group model considered previously has the advantage of bringing out as
simply as possible the tradeoff between community and specialized enforcement and
the possible optimality of one-time enforcer punishment equilibria. However, in large
groups it is more realistic to assume that only smaller subsets of the population interact
directly in each period, and in general there is also no reason to suppose that each
producer is monitored by only a single enforcer. In addition, in large groups it is also
more realistic to assume that players can only observe the actions of individuals with
whom they interact directly. In this section, we show that exactly the same insights—in
fact, essentially the same mathematical results—generalize from small groups to large
groups under the assumption of perfect monitoring. Imperfect private monitoring is
studied in Section 4.

Specifically, we generalize the small group model of Section 2 as follows. The
group now consists of (k C l)n players, with k, l, n � 1. Out of the (k C l)n players, kn
of them are producers and ln of them are enforcers. The small group model is thus the
special case with n D 1 and l D 1.

Denote the set of producers by P, the set of enforcers by E, and the set of all players
by I. In every period t D 0, 1, 2. . . , the players break into n matches uniformly at
random, where each match consists of k producers and l enforcers. Denote the match
containing player i by Mi.

The following two-stage game is played simultaneously in each match M.

(1) Cooperation Stage: Each producer i in match M chooses a level of cooperation
xi 2 RC before observing the identities of the other players in M.13 The vector
(i, xi)i2M\P is perfectly observed by all players in M. Choosing cooperation level
xi costs xi for player i, and benefits every other player k 6D i in M by f(xi).

(2) Punishment Stage: Each enforcer j 2 M then chooses a level of punishment
yj i 2 RC for each producer i 2 M \ P. The vector (j, i, yji)j2M\E, i2M\P is perfectly
observed by all players in M. Choosing punishment level yji costs yji for player j,
and hurts player i by g(yji).

13. We refer to the feature that producers act without knowing their partners’ identities as partial
anonymity. This assumption—which naturally does not arise in the small group model—plays an important
role in the large group model, as we discuss in Section 5.
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Producer i’s stage payoff is thus

X
i 02M

i
\P ni

f .xi 0/ � xi �
X

j 2M
i
\E

g.yj i /;

and enforcer j’s stage payoff is

X
i2M

j
\P

.f .xi / � yj i /:

We refer to the pair ((i, xi)i2M\P, (j, i, yji)j2M\E, i2M\P) as the outcome of
match M. Throughout the paper, we maintain the assumption that players perfectly
observe the outcomes of their own matches, while varying players’ information about
the outcomes of other matches. With perfect monitoring, players observe the outcomes
of all matches at the end of each period. We will also consider two different versions of
private monitoring—detailed in what follows—where players have less information
about what goes on outside their own matches. In all versions of the model, we let
ht

i denote a generic history for player i at the beginning of period t, and we omit the
subscript in the perfect monitoring case. The trivial initial history is denoted by h0. We
also denote a generic strategy for player i by � i. For example, if player i is a producer
then �i .h

t
i / 2 �.RC/ denotes player i’s mixed action at history ht

i .
Players maximize expected discounted payoffs with common discount factor ı.

The solution concept is weak perfect Bayesian equilibrium (PBE), with the additional
requirement that the equilibrium assessment is derived from a common conditional
probability system (Myerson 1991).14

Our goal is again to characterize the most cooperative equilibrium in this game.
(The definition of the most cooperative equilibrium is the same as in Section 2, and
once again the most cooperative equilibrium is also utilitarian efficient, so long as the
maximum level of cooperation is below the first-best level xFB, which is now given by
(k C l � 1)f 0(xFB) D 1). As in the small group model, contagion strategies, one-time
enforcer punishment strategies, and one-time enforcer punishment plus repentance
strategies will play a key role. The definitions of all of these strategy profiles are exactly
the same as in Section 2. However, the resulting formulas for the maximum level of
cooperation sustainable with these strategy profiles must be adjusted to account for the
presence of l enforcers in each match and the fact that, following a producer deviation,
each enforcer matches with the deviator in the following period with probability 1=n.
The resulting formulas are as follows.

14. This requirement implies that PBE are subgame perfect. We use PBE even for the perfect monitoring
version of the model because enforcers’ information sets are not roots of proper subgames. Another
approach would have been to discretize the action space and use sequential equilibrium. This would
lead to the same results, except that with discrete actions the equilibria we characterize would be only
approximately rather than exactly optimal.
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� One-time enforcer punishment strategies:

x� D lg.y�/;

y� D ı

1 � ı
kf .x�/: (6)

� One-time enforcer punishment plus full repentance strategies:

Lx D lg . Ly/ C ı .k � 1/ f . Lx/ ;

Ly D
�

ı

1 � ı
k � ı

�
k � 1

n

��
f . Lx/ : (7)

� One-time enforcer punishment plus partial repentance strategies

Qx D lg
�
yE
�C ı .k � 1/ Œf . Qx/ � f .x/� ;

yE D
�

ı

1 � ı
k � ı

�
k � 1

n

��
f . Qx/ C ı

�
k � 1

n

�
f .x/: (8)

In addition, in this section the definition of the efficient level of punishment yE is
given by

yE D

8̂<
:̂

1 if limy!1 g0 .y/ � m,

.g0/�1
.m/ if g0 .0/ > m > limy!1 g0 .y/,

0 if g0 .0/ � m,

where m WD
�

k � 1

k � 1=n

�
1

l
:

Note that m 2 [(k � 1)=(kl), 1=l] for all k, l, n.
With these modified definitions, Theorem 1 generalizes verbatim. Recall that all

results in the current section concern perfect monitoring.

THEOREM 3. If yE � y�, one-time enforcer punishment strategies are optimal, and
the maximum level of cooperation is x�.

If yE � Ly, one-time enforcer punishment plus full repentance strategies are
optimal, and the maximum level of cooperation is Lx.

If yE 2 . Ly; y�/, one-time enforcer punishment plus partial repentance strategies
are optimal, and the maximum level of cooperation is Qx.

Recalling that m � 1=l for all k, l, n, Theorem 3 implies that, if g0(y) � 1=l for
all y 2 RC (so that one unit of disutility of effort in punishment incurred in total
by the enforcers in a given match always inflicts at least one unit of disutility on a
producer), then one-time enforcer punishments are optimal. Thus, as in the small group
model, under a mild condition it is optimal for producers’ incentives to provided purely
through specialized enforcement.
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The intuition for Theorem 3 is essentially the same as in the small group model.
To understand the precise formula for the constant m, note that the direct effect of
reducing another producer’s level of cooperation on a deviant producer’s payoff is now
((k � 1)=(kn � 1))f 0(x) (as (k � 1)=(kn � 1) is the probability that the deviator
matches with a given producer in any period), whereas the indirect effect coming
through a reduction in the maximum incentive-compatible enforcer punishment is
l
n

f 0 .x/ g0 .y/ (as 1
n

is the probability that a given enforcer matches with a given
producer, and there are l enforcers per match). The indirect effect therefore dominates
if and only if g0(y) � m, or y � yE.

We also have the following generalization of Theorem 2. This result captures the
intuition that, if a social planner has the option to allocate some of the enforcers back
to production and the specialized enforcement technology is not very effective, she
may prefer to forgo the limited increase in the level of cooperation that these enforcers
afford, and also consequently rely on grim trigger strategies strategies.

THEOREM 4. Suppose a social planner can reallocate some of the enforcers back
to production, or equivalently chooses k and l (as well as selecting an equilibrium)
subject to k � Nk and k C l D s to maximize utilitarian social welfare. Suppose also
that the maximum level of cooperation is below the first-best level. If

g0 .0/ � min

( Nk � 1

Nk � 1
n

!
1

s � Nk ;
1

1
n

C ı
1�ı

s

)
(9)

then the social planner would prefer to have all agents become producers (i.e., set
k D s) and support cooperation using grim trigger strategies. Conversely, fixing the
values of the other parameters of the model and assuming g0 is bounded away from 0,
there exists Nı < 1 (resp., ˛ < 1 or Ns < 1) such that the maximum level of cooperation
is higher with one enforcer per group than with no enforcers if ı > Nı (resp., g0(y) > ˛

for all y 2 RC or s > Nk).

Finally, we note that Proposition 2 also applies identically to the large group model.
The proof of this result in the appendix thus allows for general l and n.

4. Large Group Model: Private Monitoring

One traditional motivation for studying community enforcement in large groups is
the desire to understand how groups can sustain cooperation when individuals have
limited information about each other’s past behavior. In this more general setting
with private monitoring, fully characterizing optimal equilibria at a fixed discount
factor (as we have done under perfect monitoring) appears intractable. Nevertheless,
we establish two useful results highlighting the robustness of the economic forces
we have emphasized so far. First, under general network monitoring, where players
observe the outcomes of their own matches, as well as possibly the outcomes of some
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other random matches in the population, we provide conditions under which one-
time enforcer punishment strategies outperform pure contagion strategies. Second,
we consider a setting with observable last matches, where a player observes the
outcomes of her own matches and the outcome of each of her current partner’s
most recent matches. With this information structure, enforcer punishment strategies
continue to sustain the same level of cooperation as with perfect monitoring,
which implies that they must remain globally optimal (if yE � y�) unless it is
possible to sustain more cooperation with observable last matches than with perfect
monitoring. Although this can be possible, we also establish that enforcer punishment
equilibria continue to be optimal if enforcers are perfectly informed (which may be
a consequence of their organization in an information-sharing institution, such as a
police force), or if we impose a requirement of stability in the face of individual
trembles.

4.1. General Network Monitoring

The setting considered here is one of general network monitoring (e.g., Wolitzky 2013).
At the end of each period t, a monitoring network Lt D (li, j, t)i, j2I � I, li, j, t 2 f0, 1g is

drawn independently from a fixed probability distribution � on f0; 1gjI j2. We assume
that

Pr�

��
li;j;t

	
i;j 2I�I

�
D Pr�

��
l'.i/;'.j /;t

	
i;j 2I�I

�
for any permutation ' W I ! I, so the distribution over networks is invariant to relabeling
the players. Player i perfectly observes the outcome of match M0 if and only if li, j, t D 1
for some j 2 M0. Otherwise, player i observes nothing about the outcome of match M0.
Assume that li, i, t D 1 with probability one, so players always observe the outcome of
their own matches. We compare the performance of contagion strategies and one-time
enforcer punishment strategies in this setting.

With contagion strategies, let dt be the expected number of producers who become
infected (i.e., enter the punishment state) within t periods of a producer deviation
(see the appendix for a formal definition). Intuitively, dt is the expected number
of producers who have observed a producer who has observed a producer who...
has observed the deviator within t periods. It follows from standard arguments that
the greatest level of cooperation that can be sustained with contagion strategies is
given by

Ox D .1 � ı/

1X
tD0

ıt k � 1

kn � 1
.dt � 1/f . Ox/:

With one-time enforcer punishment strategies, let qt be the expected number of
producers who become infected within t periods of an unpunished producer deviation
(once again the details are in the appendix). Note that a player now becomes infected
only if both a producer and an enforcer in a match she observes are already infected,
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as only then does she see a producer’s failure to cooperate go unpunished. Infection
therefore spreads more slowly with enforcer punishment strategies than with contagion
strategies, and in particular, qt is always less than dt. We will show that an upper bound
on the greatest level of cooperation and punishment that can be sustained with enforcer
punishment strategies is given by

x� D lg.y�/;

y� D
1X

tD0

ıt qt

n
f .x�/:

We also show that the resulting strategy profile is indeed part of a PBE whenever x� is
sufficiently high (which holds, e.g., if ı is sufficiently high).15

We can now inspect the formulas for Ox and x� and make some basic observations
about the relative performance of contagion and enforcer punishment strategies. First,
when the specialized enforcement technology is more effective (i.e., g is steeper),
enforcer punishment strategies have an advantage over contagion strategies. Second,
to the extent that dt is strictly greater than qt, contagion strategies have an advantage.
Third, as both dt and qt converge to kn as t ! 1, this advantage of contagion
strategies vanishes when ı is close to 1. Indeed, enforcer punishment strategies have a
clear advantage when ı is close to 1, owing to the (1 � ı) term in the definition of Ox;
the interpretation of this term is the same as in Section 2.16

The next theorem formalizes this comparison. The first part shows that, when
the specialized enforcement technology is sufficiently effective, enforcer punishment
strategies support more cooperation than contagion strategies. The second part
establishes the same conclusion when the discount factor ı is sufficiently high.

THEOREM 5. With general network monitoring,

(1) There exists ˛ such that, if g0(y) > ˛ for all y 2 RC, then one-time enforcer
punishment strategies form a PBE strategy profile and support greater cooperation
than contagion strategies.

15. To see why such a condition is required, consider the incentives of a producer in the infected state
who finds herself with the belief that all of the other producers in her match are in the normal state, whereas
exactly one of the enforcers in her match is in the infected state. If this producer works, she avoids being
punished at level y� by each one of the l � 1 enforcers in her match in the normal state, but also avoids
triggering contagion (because, if she shirked, the infected enforcer’s failure to punish her would trigger
contagion). When x� is sufficiently high, this new incentive for cooperation coming from the desire to
avoid triggering contagion is necessarily less than the incentive coming from being punished at level y� by
the lth enforcer. In this case (but not otherwise), the fact that the producer is indifferent between working
and shirking on path implies that she prefers to shirk when any enforcer is infected.

16. Presumably, optimal equilibria in this setting would take advantage of enforcers’ ability to punish
while also providing incentives for spreading information faster than one-time enforcer punishment
strategies. As providing incentives for strategic communication of this kind is beyond the scope of this
paper, we content ourselves with comparing the performance of one-time enforcer punishment strategies
and contagion strategies.
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(2) Assume limy ! 1g(y) D 1.17 Then there exists Nı such that, if ı > Nı, then one-time
enforcer punishment strategies form a PBE strategy profile and support greater
cooperation than contagion strategies.

We note as well that comparing one-time enforcer punishment strategies and
contagion strategies is not as ad hoc as it might seem, as there is a sense in which
contagion strategies are optimal among all equilibria in which enforcers never punish.
Wolitzky (2013) shows that, under general network monitoring without enforcers,
contagion strategies attain the maximum level of cooperation (provided the realized
monitoring network is observable). Thus, whenever enforcer punishment strategies
outperform contagion strategies, they outperform any equilibrium that does not rely
on the enforcers.18

4.2. Observable Last Matches

We now turn to the second of the two private monitoring environments we consider:
observable last matches. This setting, where players observe only the outcomes of their
own matches and their current partners’ most recent matches, is a natural benchmark
and is also tractable enough for us to fully generalize the perfect monitoring results.

One-Time Enforcer Punishment Strategies and Contagion Strategies. We first
establish that both enforcer punishment strategies and contagion strategies do exactly
as well with observable last matches as they do with perfect monitoring. In particular,
any comparison between enforcer punishment strategies and contagion strategies with
observable last matches is exactly the same as in the perfect monitoring case.

However, as in the previous section, existence of an enforcer punishment
equilibrium requires an additional condition. In what follows, let x�, y�, and Ox be
defined as in Section 3, and let Px be the positive solution to Px D lı .k � 1/ f . Px/.

THEOREM 6. With observable last matches,

(1) If x� � Px, then the one-time enforcer punishment strategy profile with cooperation
level x� and punishment level y� is a PBE strategy profile. Furthermore, x� is an

17. The resulting asymmetry between the functions f and g is not essential for this result. If the assumption
that f is bounded is relaxed, as discussed in Section 5, the result still holds as long as lim

x ! 1
f 0(x)

< 1=l(k � 1), which is consistent with f D g and lim
y ! 1

g(y) D 1.

18. However, recall that our notion of optimality is in terms of supporting a higher level of cooperation.
As we have emphasized, this notion corresponds to optimality in terms of utilitarian social welfare if this
maximum level of cooperation is below the first-best level, but not necessarily otherwise. This caveat is
especially important for high discount factor results like part 2 of Theorem 5, as for very high discount
factors both the most cooperative one-time enforcer punishment equilibrium and the most cooperative
contagion equilibrium are sure to involve an inefficiently high level of cooperation, so the one that supports
the higher level of cooperation will actually be worse in terms of welfare. Thus, the main point of Theorem 5
is not that one-time enforcer punishment strategies outperform contagion strategies in the ı ! 1 limit per
se, but rather that they outperform contagion strategies for moderately high discount factors where the
maximum level of cooperation may still be below the first-best level.
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upper bound on the level of cooperation in any one-time enforcer punishment
equilibrium.

(2) The contagion strategy profile with cooperation level Ox is a PBE strategy profile.
Furthermore, Ox is an upper bound on the level of cooperation in a contagion
equilibrium.

The intuition for this result is simple. Contagion following a producer deviation
with contagion strategies, or following an enforcer deviation with enforcer punishment
strategies, spreads more slowly under private monitoring than under perfect monitoring.
Nevertheless, the implications for the deviating agent’s payoffs are the same as with
perfect monitoring, because, when all agents observe the behavior in their partners’
last match, the deviator herself always starts suffering the consequences of contagion
immediately.

Informed Enforcers. Theorem 6 shows that enforcer punishment strategies can
sustain as much cooperation with observable last matches as with perfect monitoring.
The question remains whether it is possible to sustain more cooperation with observable
last matches than with perfect monitoring, or alternatively if enforcer punishment
strategies remain globally optimal with observable last matches (when yE > y�). In the
next section, we will see that the former possibility can sometimes arise. That result
notwithstanding, we show that, when enforcers have superior information relative to
producers, enforcer punishment strategies are indeed globally optimal, under a simple
equilibrium refinement in the spirit of partial anonymity. Specifically, we consider the
situation with informed enforcers, where enforcers perfectly observe all past actions,
whereas producers continue to observe only their partners’ most recent matches.

The following condition is in the spirit of the partial anonymity assumption of
Section 3.

NONDISCRIMINATION. For every producer i, complete history of play ht, and pair of
players j, k such that M t

j D M t
k

, we have,

E
h

tC1

i

�
�i

�
htC1

i

� jht ; i 2 M tC1
j

� D E
h

tC1

i

�
�i

�
htC1

i

� jht ; i 2 M tC1
k

�
:

That is, the distribution over producer i’s period-t C 1 actions is independent of
whether i matches with j or k in period t C 1. This requirement is only imposed
for players j and k who are themselves matched at period t, so that producer i’s
behavior can depend on the outcomes of the period-t matches she observes, but not
on which members of those matches she finds herself matched with in period t C 1.
Nondiscrimination thus says that a producer’s behavior cannot depend on her partners’
identities, except insofar as this is informative about past play. Both one-time enforcer
punishment strategies and contagion strategies are clearly nondiscriminatory.

THEOREM 7. Suppose producers observe their partners’ last matches while enforcers
are perfectly informed. If g0(y) � m for all y, then one-time enforcer punishment
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strategies with cooperation level x� and punishment level y� sustain the maximum
level of cooperation among all nondiscriminatory equilibria.19

To provide intuition for this result, let us first revisit the case of perfect monitoring.
An explanation for why one-time enforcer punishment strategies are optimal with
perfect monitoring is that reducing producer j ’s level of cooperation at a history htC1

j ,
after producer i deviates at history ht

i and is punished by enforcer k, has a direct positive
effect on producer i’s on-path incentives for cooperation at history ht

i of

k � 1

kn � 1
Pr
�
htC1

j jht
i

�
E
�
f 0�xtC1

j jhtC1
j

��
;

and has an indirect negative effect of

l

n
E
�

Pr
�
htC1

j jht
k

�jht
i

�
E
�
f 0�xtC1

j jhtC1
j

��
E
�
g0� Qy��;

for some random variable Qy. If monitoring is perfect, or if enforcers always have finer
information than producers, then we have

Pr
�
htC1

j jht
i

� D E
�

Pr
�
htC1

j jht
k

�jht
i

�
; (10)

so the indirect effect outweighs the direct effect whenever g0(y) � m for all y. This
explains why enforcer punishment strategies are optimal with perfect monitoring
(Theorem 3) or with private monitoring with informed enforcers (Theorem 7).
However, if monitoring is private and enforcers do not necessarily have finer
information than producers, then (10) may fail, and the differing beliefs of enforcers
and producers may be exploited to provide stronger on-path incentives than are possible
in enforcer punishment strategies. We now construct an example with these features.

A Counterexample: Departures from One-Time Enforcer Punishments. In this
section, we show by example that, when (10) is not satisfied, it may be possible
to support greater cooperation under private monitoring than public monitoring, and
this may involve multiple rounds of punishments of a deviator.20

Let n D k D 2 and l D 1. Thus, there are two enforcers and four producers, and
every period they randomly split into two groups, each consisting of one enforcer
and two producers. Assume that players observe the outcome of their own matches,
and that producers—but not enforcers—in addition observe the outcome of each of
their partner’s most recent matches. This informational edge for the producers is for
simplicity; in Online Appendix B, we sketch a more complicated example without

19. With informed enforcers, one-time enforcer punishment strategies constitute a PBE strategy profile
even if x� < Px.

20. Moreover, punishments in this counterexample also take a graduated form, similar to a pattern
identified by Ostrom (1990) as an important tool for sustaining cooperation under imperfect information.
The intuition here is different from Ostrom’s, however: the advantage of graduated punishments in the
current setting is that it takes time to build up differences in beliefs among individuals, and these differing
beliefs can then be exploited to provide harsher punishments than are possible with perfect monitoring.
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this feature. To complete the description of the physical environment of the example,
assume that f .x/ D 100

p
x, g(y) D y, and ı D 0.1. These parameters satisfy our

condition for one-time enforcer punishment strategies to be optimal under perfect
monitoring (yE � y�).

As we have seen, the highest level of cooperation that can be sustained with
one-time enforcer punishment strategies, x�, is given by,

x� D g

�
ı

1 � ı
2f .x�/

�
D 0:1

1 � 0:1
2
�
100

p
x�
	
; or x� � 493:8272:

In contrast, we now describe an equilibrium that sustains a cooperation level of (exactly)
493.830. We call it the three strikes and you’re out (3SYO) equilibrium. In what follows,
let x1 D 493.830, x2 D 494.102, x3 D 502.058, and y D 493.828.

Producers’ Strategies.

� On path: play x1.

� If you play x < x1: play x2 for one period, then go back to x1.

� If (i) you play x0 < x2 in the period after playing x < x1, and (ii) you matched with
the same producer in both of these periods but matched with different enforcers:
play x3 for one period, then go back to x1. If (i) holds but not (ii): go back to x1
immediately.

� If you see the same producer play x < x1, then x0 < x2, and then x 00 < x3, or if you
are seen following such a sequence by the same producer, or if you see a producer
play x < x1 and see the corresponding enforcer fail to punish her: play 0 forever.

Enforcers’ Strategies.

� If you see a unique producer play x < x1, punish her at level y. Do not punish
anyone if you see two producers deviate.

� If you fail to punish a producer who plays x < x1, or if you see the same producer
take actions below x1 three times in a row, stop punishing forever.

Intuitively, the key difference between the one-time enforcer punishment
equilibrium and the 3SYO equilibrium is that, with the latter, if a producer shirks
three times in a row and is monitored by the same producer but different enforcers,
then after the third time she shirks she is “punished” both by the enforcer (who punishes
at level y, as usual), and by the other producer (who shirks forever, as in a contagion
equilibrium). The reason why the enforcer is willing to punish at level y even though
the other producer is about to start shirking is that he does not realize that this is what
is happening: he has seen the deviator shirk at most once before, so when he sees her
shirk again, he thinks this is at most the second straight time she has shirked. He is
then certain that the deviator (and the other producer) will return to cooperation in
the next period if he punishes, whereas contagion will start if he does not punish, so
he has an incentive to punish. Thus, the 3SYO equilibrium exploits the difference in
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beliefs between enforcer and producer at such a history to punish the deviator with
both coercive punishment and contagion.21

PROPOSITION 3. Under the parameter values presented above, the 3SYO strategy
profile is an equilibrium, and therefore one-time enforcer punishment strategies are
not optimal.

Stability. We conclude our analysis by providing another reason why one-time
enforcer punishment strategies may be optimal under private monitoring, even when
(10) is not satisfied: they are optimal among all equilibria satisfying a simple 1-period
stability refinement. Although the argument is simple, we believe it is potentially
important in light of empirical accounts of how small transgressions can lead to large
societal breakdowns in the absence of centralized law enforcement (e.g., Lewis 1994).

To define this notion of stability, we restrict attention to deterministic strategy
profiles, defined as profiles where xt

i and yt
j i are degenerate random variables for all

i, j, t.22

DEFINITION 3. A deterministic equilibrium satisfies Stability if, whenever a single
player i deviates at an on-path history in period t, play returns to the equilibrium path�
x�

i ; y�
j i

��2ftC1;:::g
i2P;j 2E

in period t C 1.

Note that if all players “tremble” with probability " when choosing their actions,
then an equilibrium that fails to satisfy Stability is knocked off its equilibrium path in
each period with probability of order ", whereas an equilibrium that satisfies Stability
is knocked off path with probability of order at most "2. In this sense, equilibria that
satisfy Stability are more robust to trembles than are equilibria that fail to satisfy this
condition.

THEOREM 8. With observable last matches, the one-time enforcer punishment strategy
profile with cooperation level x� and punishment level y� is the most cooperative
deterministic equilibrium satisfying Stability.

5. Discussion of Model Assumptions

We briefly discuss the role of several key assumptions, indicating how they impact our
results and their interpretation, focusing for brevity on the results from Section 3.

21. The reason why this “extra punishment” at an off-path history allows us to sustain more cooperation
on path is as follows: If a producer can be punished “extra hard” after she shirks three times, then she can
be asked to work extra hard after she shirks twice. Similarly, if she has to work extra hard after she shirks
twice, then she can also be asked to work harder after she shirks once. Finally, if she has to work harder
after she shirks once, then she can also be induced to work harder on path.

22. Equivalently, a deterministic strategy profile is a profile of pure strategies that do not condition on
the match realizations.
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5.1. Assumptions about the Role of Enforcers

Enforcers can Only Punish Producers. When allowing for multiple enforcers in each
match (l � 2), we have assumed that enforcers can punish only producers and not other
enforcers. Changing this assumption by also letting enforcers punish each other would
change very little about our results. Specifically, one would redefine one-time enforcer
punishment strategies to specify that, if an enforcer fails to punish a deviant producer in
period t, then in period t C 1 there is no production and the deviant enforcer is punished,
whereas cooperation resumes in period t C 2. This changes the formula for y� from
.ı=.1 � ı// kf .x�/ to .ı=.1 � ı// .kf .x�/ C .l � 1/ g.y�//: (The formula for x� as
a function of y� stays the same.) With this change, one-time enforcer punishment
strategies remain optimal whenever g0(y) � m for all y 2 RC. The other parts of
Theorem 3 require similar small modifications. As this is a substantive result, we state
and prove this modified theorem in Appendix A.

Thus, all that changes when we allow enforcers to punish each other is that they
themselves are now incentivized by a mix of withdrawn cooperation and coercive
punishment, rather than by the breakdown of cooperation alone. In particular, whether
enforcers can punish each other or not does not affect the optimal mode of enforcement
for producers, which is our main focus.

An alternative way of extending both the small group and large group models
along these lines would be to introduce a hierarchy of enforcers with K levels, where
“level 1” enforcers can punish producers, “level 2” enforcers can punish level 1
enforcers, and so on. The structure of one-time enforcer punishment equilibria also
extends to this setting in a natural way, where each enforcer is incentivized by the threat
of punishment from enforcers one level up, and the top-level enforcers are incentivized
by the threat of contagion among producers. This variant gives a more realistic model
of modern law enforcement: cooperation throughout society does not break down the
moment a low-level policeman fails to do his job, but only if this is followed by a
breakdown of enforcement at all higher levels.

Partial Anonymity. In our large group model, producers choose how much to
cooperate before observing their partners’ identities, whereas identities are revealed
before enforcers act. Our results also apply exactly if, alternatively, players are
completely anonymous and their identities are never revealed. We prefer our baseline
assumptions because they emphasize that, even though enforcers have the ability to
identify and punish a deviator repeatedly, the optimal equilibrium involves only a
single round of punishment.

On the other hand, the assumption that players are anonymous at the cooperation
stage plays an important role in our analysis of the large group model. (Of course, this
assumption is trivially satisfied in the small group model, as without random matching
there is no uncertainty as to one’s partners’ identities.) Without this assumption, it may
be possible to partially exclude a deviator from future cooperation by reducing the
cooperation level in future matches she is a part of, without simultaneously excluding
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the enforcers who punished her. This would then allow deviators to be punished more
harshly.

We note that all our perfect monitoring results can alternatively be derived by
replacing partial anonymity with the requirement that strategies are nondiscriminatory
(in the section of Section 4.2). Moreover, strongly symmetric strategies (which impose
symmetric play at all histories, as in Abreu (1986)) are necessarily nondiscriminatory,
so without anonymity one-time enforcer punishment equilibria remain optimal in the
class of strongly symmetric equilibria.

Separate Roles for Producers and Enforcers. We have assumed that only some
agents have the ability to cooperate, and that other, distinct agents have the ability to
punish. This implies that the worst continuation play for enforcers is the withdrawal of
cooperation, whereas the best continuation play for enforcers is the most cooperative
equilibrium path itself. Both of these features are needed for stick-and-carrot equilibria
to be optimal and to take the simple form of one-time enforcer punishment equilibria.
If all agents could both cooperate and punish, then the mechanics of the model would
be closer to those of Abreu (1986). As in Abreu, stick-and-carrot equilibria would
remain optimal in the class of strongly symmetric pure strategy equilibria, whereas
globally optimal equilibria would be more complex. Thus, our assumption that some
agents specialize in production or cooperation whereas others specialize in punishment
is a deviation from standard models in a direction that contributes to both realism and
tractability.

5.2. Assumptions about Payoffs

Public Goods versus Bilateral Cooperation. We have assumed that the benefits
of cooperation are “nonexcludable” within a match, and thus have the flavor of a
public good. An alternative version of the large group model without this flavor is the
following: players match in pairs and do not observe whether their partner is a producer
or an enforcer until the end of the period. Thus, cooperation benefits only one’s (unique)
partner, and at the time she chooses her level of cooperation a producer does not know
whether she is matched with another producer (whom she could profitably cheat) or
an enforcer (who would punish her if she cheated). All of our results directly translate
to this slightly modified setting.

Enforcer Payoffs. Yet another interpretation of enforcer payoffs in our model is that
enforcers can impose a tax on producers’ output,

P
f (xi), either within their own match

or throughout the entire society. If an enforcer’s failure to punish a deviant producer
leads to reduced cooperation, this then reduces his future payoffs.

Ostracism. In practice, a major tool for sustaining cooperation in small groups is
ostracism, or the exclusion of deviators alone from the benefits of societal cooperation
(Coleman 1988; Ostrom 1990; Ellickson 1991; Greif 1993, 2006). The model analyzed
so far does not allow for ostracism, because it is not technologically feasible to exclude
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some players from the benefits of cooperation without excluding everyone. When
cooperation corresponds to directed actions (such as simple favors or investments in a
bilateral project) rather than undirected actions or the provision of public goods from
which all agents benefit, such exclusion becomes a possibility. In Online Appendix C,
we analyze a variant of both the small and large group models where producers have
the option to ostracize particular players. We show that all results from these sections
apply directly, with the modification that ostracism replaces repentance.

Enforcer Misbehavior. In our model enforcer misbehavior takes the form of
enforcers’ not undertaking costly punishments following a deviation by a producer.
Though this is an important consideration in some settings (e.g., motivating law
enforcement to pursue powerful individuals, or ensuring that they punish law-breakers
who might offer them bribes to avoid such punishment), an equally salient concern
is the possibility that enforcers may misuse their positions to expropriate citizens.
Introducing this type of misbehavior would not complicate our analysis because our
equilibrium construction is already based on giving enforcers the strongest possible
incentives to carry out costly punishments. Therefore, if expropriating citizens is as
observable as is failing to punish, then the same construction that maximizes enforcers’
incentives to punish will minimize their incentives to expropriate.

The Specialized Enforcement Technology. The specialized enforcement technology
g measures how much disutility an enforcer must incur to impose a given level of
disutility on a producer. This is not to be interpreted as, say, the level of sophistication
of a society’s instruments of torture, which after all were remarkably advanced even
in primitive societies. Rather, it should be interpreted as the cost—and the risk—to
enforcers of undertaking the entire process of investigating, pursuing, apprehending,
and punishing deviators. To the extent that this cost is less in modern societies than
in pre-modern societies, this interpretation suggests a reason why modern societies
might tend to rely more on specialized enforcement than community enforcement.

Furthermore, in a natural extension of the large group model where enforcers
can monitor multiple matches at the same time, increasing the number of matches
monitored by each enforcer would simply scale up the function g. Thus, another
reason why specialized enforcement may be more likely in modern societies is that
modern technology allows each enforcer to monitor a greater number of interactions
at once.23

The Possibility of Transfers and Fines. Our results are robust to allowing voluntary
monetary transfers from producers, for instance by having deviant producers pay fines
to enforcers in lieu of being punished. Indeed, as long as f 0(x) � 1 for all x, it can
be checked that our results hold without modification when transfers from producers

23. Other types of monitoring improvements would have more complicated effects, which are beyond
the scope of our analysis.
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are allowed. Intuitively, it is inefficient to ask a producer to pay a fine rather than
cooperating at a higher level. For example, if producers can pay fines in a separate
stage in between the cooperation stage and the punishment stage, they can be asked to
do so in equilibrium in lieu of being punished, but this does not increase the maximum
level of cooperation, and indeed simply pushes the threat of punishment by enforcers
one more step off the equilibrium path. (On the other hand, allowing monetary transfers
from enforcers to producers would give enforcers a “cooperative” role, undercutting
the separation of roles between producers and enforcers.)

6. Conclusion

This paper has introduced a framework for comparing community (private-order)
and specialized (public-order) enforcement of prosocial behavior. The key feature
of our approach is that we endogenize specialized enforcement by requiring that
enforcers have an incentive to carry out the punishment of deviators. We thus
require that both community and specialized enforcement are ultimately based on
“reputation”.

Our main results turn on a novel tradeoff: the withdrawal of future cooperation
following a transgression has a positive direct effect on producers’ incentives to
cooperate, but also a negative indirect effect coming through the erosion of enforcers’
incentives to punish. When the specialized enforcement technology is relatively
effective, this tradeoff is optimally resolved by going to the extreme of pure enforcer
punishments, where the future path of cooperation is completely unaffected by
producers’ transgressions. All the same, the threat of contagion does play a critical
role even under pure enforcer punishments, as in our baseline model it is precisely
this threat that gives enforcers the necessary incentives to carry out punishments. A
further implication of our analysis is that community enforcement is more likely to
emerge in groups with less effective enforcement technologies, whereas groups with
more effective technologies should rely on specialized enforcement. We also illustrate
that these results are unchanged when agents have the ability to ostracize (selectively
exclude) each other from the benefits of cooperation, and that partial versions of our
results remain valid under private monitoring.

The framework introduced in this paper could be developed in several promising
directions. First, we have considered the problem of endogenizing the number of
specialized enforcers from the perspective of a benevolent social planner (Theorems 2
and 4). One could alternatively analyze the labor market equilibrium of this
“occupational choice” problem. Such an exercise would bear some resemblance to the
“guns versus butter” tradeoff present in classic models of anarchy, such as Skaperdas
(1992), Grossman and Kim (1995), Hirshleifer (1995), and Bates, Greif, and Singh
(2002). One could also further extend the model in that direction by allowing “guns”
to be used for expropriating others as well as enforcing cooperation.

Second, in a specialized enforcement equilibrium, the enforcers in our model can
be interpreted as either a proto-state institution or a nonstate institution, such as a
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mafia. Several scholars, notably Tilly (1985), have argued that states evolve from—or
are in fact a form of—private provision of law enforcement. An important question
here is when we should expect specialized enforcers to organize in a single institution
rather than multiple collectives. Although some of our results bear on this question
(e.g., the results of Section 4.2 on optimal equilibria when enforcers share information
with each other), many other interesting questions could be addressed in future work.
These include the costs of mafia-like organizations as opposed to states, as well as
the dynamics of the process by which proto-states may be transformed into state
institutions.

Third, another reason why specialized enforcement may be preferable to
community enforcement is the presence of noisy observations, whereby cooperative
actions may appear as noncooperative. As briefly discussed in Section 4.2, such noise
may make contagion-like strategies prohibitively costly. An analysis of the framework
presented here under such richer information structures is an interesting and important
area for future work.

Finally, we have only briefly touched on the role of communication and other private
actions in supporting specialized enforcement. It would be interesting to analyze more
systematically how specialized enforcement (more generally, the legal system) affects
the incentives of citizens to cooperate not only with each other but also with state
institutions.

Appendix: Proofs for Sections 2 and 3

Proof of Proposition 1

In the absence of enforcers, a producer’s minmax payoff is 0, so grim trigger strategies
are an optimal penal code (Abreu 1988). That the level of cooperation is maximized by
a constant path of play then follows from concavity of f. This result is also the special
case of Theorem 3 with l D 0 and n D 1, replacing k with k C 1.

Proof of Theorem 1

The theorem is the special case of Theorem 3 with l D 1 and n D 1.

Proof of Theorem 2

The theorem is the special case of Theorem 4 with s D k C 1, Nk D k, and n D 1.

Proof of Theorem 3

Before proving the theorem, we observe that an enforcer punishment plus partial
repentance equilibrium with y D yE can exist only if yE � y�.

LEMMA A.1. If yE > y� then the system of equations (8) does not have a solution.
That is, an enforcer punishment plus partial repentance equilibrium with y D yE does
not exist.
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Proof. We wish to show that if yE > y�, then for every x 2 Œ0; x� the system of
equations

x D lg.y/ C ı.k � 1/Œf .x/ � f .x/�;

y D ı

1 � ı
kf .x/ � ı

�
k � 1

n

�
Œf .x/ � f .x/�

does not have a solution with y D yE. Letting w D 1 � f .x/ =f .x/, this is equivalent
to showing that, for every w 2 [0, 1], the system of equations

x D lg.y/ C ı.k � 1/wf .x/;

y D ı

1 � ı
kf .x/ � ı

�
k � 1

n

�
wf .x/ (A.1)

does not have a solution with y D yE. We will show that if yE > y�, then for every
w 2 [0, 1] the solution to this system has y � y�.

To see this, substitute for y to obtain the following equation for x as an implicit
function of w:

lg

�

ı

1 � ı
k � ı

�
k � 1

n

�
w

�
f .x/

�
C ı .k � 1/ wf .x/ � x D 0: (A.2)

Denote the left-hand side of (A.2) by F(x, w). Note that F(x, w) is concave in x
and satisfies F(0, w) D 0 for all w 2 [0, 1], so if F(x0, w) D 0 for x0 > 0 then
∂F=∂xj.x

0
;w/ < 0. Hence, by the implicit function theorem, the solution x to (A.2) is

differentiable as a function of w, and the sign of dx
dw

equals the sign of ∂F=∂w. Next,
note that

∂F

∂w
D ı .k � 1/ f .x/

�
1 � g0 .y/

m

�
;

where y is given by (A.1). Therefore, dx=dw � 0 if and only if y � yE, and hence
dy=dw � 0 whenever yE > y (noting that ∂y=∂x � 0 and ∂y=∂w � 0). Note also that
(A.1) coincides with the system defining (x�, y�) when w D 0. Hence, if yE > y� then
for every w � 0 the solution to (A.1) has y � y�. �

Turning to the proof of the theorem, it is straightforward to check that the three
strategy profiles referenced in the theorem are equilibria. It remains to prove that x�
(resp., Lx, Qx) is an upper bound on each producer’s level of cooperation in any PBE
when yFB � y� (resp., yFB � Ly, yFB 2 . Ly; y�/). We break the proof into several
steps.

Definitions and Preliminary Observations. Fixing a PBE profile � D (� i)i2I, let u be
the infimum continuation payoff of any producer starting from the punishment stage
at any history. In addition, let supp � i(h

t) denote the support of producer i’s action at
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history ht, and let

xX D sup
i;ht ;xt

i
2supp �

i
.ht /

.1 � ı/ xt
i C ıE

�
X tC1

i jht ; xt
i

�

be the supremum expected present discounted level of cooperation ever taken by any
producer at any history.

A preliminary observation is that u > �1 and xX < 1. To see this, note that, as f
is bounded and an enforcer’s minmax payoff is 0, there is a finite upper bound Ny 2 RC
on the level of punishment that an enforcer is ever willing to use in equilibrium.24

Since a producer always has the option of taking action 0 at cost 0, this implies that
u � �lg . Ny/ > �1. Given that there is a finite lower bound on u, it follows that there
is a finite upper bound on the level of cooperation that a producer is ever willing to
choose in equilibrium, so xX < 1.

Producer Incentive Compatibility. A necessary condition for producer i not to deviate
to playing xi D 0 at history ht is that, for all xt

i 2 supp �i .h
t /,

.1 � ı/

1X
�D0

ı�
E

2
64 X

j 2M
tC�

i
\P ni

f
�
xtC�

j

�jht ; xt
i

3
75 � .1 � ı/ xt

i � ıE
�
X tC1

i jht ; xt
i

�

� .1 � ı/ E

2
4 X

j 2M t
i

\P ni

f
�
xt

j

� jht

3
5C u;

where M tC�
i denotes player i’s period-t C � match (which is a random variable from

the perspective of period t). This is a necessary condition because the left-hand side
is an upper bound on player i’s equilibrium continuation payoff (as it assumes she
is never punished in equilibrium), whereas the right-hand side is a lower bound on
player i’s continuation payoff if she deviates (as it assumes she gets her lowest possible
continuation payoff).25 Note that the distribution of xt

j does not depend on xt
i , so,

E

2
4 X

j 2M t
i

\P ni

f
�
xt

j

�jht ; xt
i

3
5 D E

2
4 X

j 2M t
i

\P ni

f
�
xt

j

�jht

3
5 ;

24. By the same argument leading to (A.4), one such upper bound is lim
x ! 1

(ı=1 � ı)(kf(x)).

25. Technically, both expectations in this expression should also be conditioned on the event
j 2 M

tC�

i
\ C ni . However, because identities are concealed at the point where producers choose their

actions, the distribution of x
tC�

j
conditional on this event equals its unconditional distribution. We therefore

omit this conditioning throughout the proof.
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and we can rewrite this necessary condition as

.1 � ı/ xt
i C ıE

�
X tC1

i jht ; xt
i

�

� ı .1 � ı/

1X
�D0

ı�
E

2
64 X

j 2M
tC1C�

i
\P ni

f
�
xtC1C�

j

�jht ; xt
i

3
75 � u: (A.3)

Using Enforcer Incentive Compatibility to Bound u. Letting yt
ki

denote enforcer k’s
punishment action toward player i in period t (which, like xt

i , is a random variable), a
necessary condition for enforcer k not to deviate to playing yki D 0 at history ht is

yt
ki � ı

1X
�D0

ı�
E

2
64 X

j 2M
tC1C�

k
\P

f
�
xtC1C�

j

�jht

3
75 : (A.4)

This is a necessary condition because an enforcer’s minmax payoff is 0, while her
equilibrium continuation payoff is at most

.1 � ı/

0
B@ı

1X
�D0

ı�
E

2
64 X

j 2M
tC1C�

k
\P

f
�
xtC1C�

j

�jht

3
75 � yt

ki

1
CA ;

as this is her continuation payoff if she does not punish anyone other than player i in
period t and never punishes anyone after period t.

Now, producer i’s continuation payoff at the punishment stage at history ht is at
least

� .1�ı/ E

2
4 X

k2M t
i

\E

g
�
yt

ki

� jht

3
5Cı .1 � ı/ E

2
64 X

j 2M
tC1

i
\P ni

f
�
xtC1

j

�jht

3
75C ıu;

as a producer always has the option of playing xi D 0 in period t C 1. Therefore, there
exists a producer i and a history ht such that

u �� .1�ı/ E

2
4 X

k2M t
i

\E

g
�
yt

ki

� jht

3
5Cı .1�ı/ E

2
64 X

j 2M
tC1

i
\P ni

f
�
xtC1

j

�jht

3
75Cıu;

or equivalently

u � �E

2
4 X

k2M t
i

\E

g
�
yt

ki

� jht

3
5C ıE

2
64 X

j 2M
tC1

i
\P ni

f
�
xtC1

j

�jht

3
75 :
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In particular, by (A.4) and the observation that the quantity

E

2
64 X

j 2M
tC1C�

k
\P

f
�
xtC1C�

j

�jht

3
75

is the same for all k 2 E, we have

u � �lg

0
B@ı

1X
�D0

ı�
E

2
64 X

j 2M
tC1C�

k
\P

f
�
xtC1C�

j

�jht

3
75
1
CA

C ıE

2
64 X

j 2M
tC1

i
\P ni

f
�
xtC1

j

�jht

3
75 : (A.5)

Bounding u in Terms of xX . By the definition of xX , for every producer j, history htC1,
and level of cooperation xtC1

j 2 supp �j .htC1/, we have

xtC1
j � 1

1 � ı
xX � ı

1X
�D0

ı�
E
�
xtC2C�

j jhtC1; xtC1
j

�
: (A.6)

We now consider three cases.

Case 1. This case applies if, after replacing xtC1
j on the right-hand side of (A.5) with

its upper bound in (A.6 ) for all j, the resulting argument of g is less than yE.

Case 2. This case applies if, after replacing xtC1
i on the right-hand side of (A.5)

with its upper bound in (A.6 ) and replacing xtC1
j with 0 for all j 2 Pni, the resulting

argument of g is greater than yE.

Case 3. This case applies when Cases 1 and 2 do not apply. Note that, in this case,
there exists a unique value for the term EŒ

P
j 2M

tC1

i
\P ni

f .xtC1
j /jht � such that,

ıE

"
f

 
1

1 � ı
xX � ı

1X
�D0

ı�
E
�
xtC2C�

i jhtC1; xtC1
i

�! jht

#

C ı2
1X

�D0

ı�
E
�
f
�
xtC2C�

i

�jht
�C ıE

2
64 X

j 2M
tC1

i
\P ni

f
�
xtC1

j

�jht

3
75

C ı2
1X

�D0

ı�
E

2
64 X

j 2M
tC1

i
\P ni

f
�
xtC2C�

j

�jht

3
75 D yE :
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Call this value f E.
We now argue that, in Case 1, the bound (A.5) can be relaxed to

u � �lg

�
ı

1 � ı
kf

� xX��C ı .k � 1/ f
� xX� : (A.7)

Similarly, we argue that in Case 2, (A.5) can be relaxed to

u � �lg

��
ı

1 � ı
k � ı

�
k � 1

n

��
f
� xX�� ; (A.8)

and in Case 3, (A.5) can be relaxed to

u � �lg
�
yE
�C ı .k � 1/ f

� xX� � ı

1 � ı
kf

� xX�C yE : (A.9)

Start with Case 1. For every j 2 Pni and k 2 E, we have Pr.j 2 M tC1
k

/ D 1=n and
Pr.j 2 M tC1

i / D .k � 1/ = .kn � 1/, so the derivative of the right-hand side of (A.5)
with respect to xtC1

j equals,

�ı .l=n/ g0 .y/ f 0�xtC1
j

�C ı ..k � 1/ = .kn � 1// f 0�xtC1
j

�
for some number y. In Case 1, we have y � yE whenever xtC1

j 0 is below its upper bound
in (A.6) for all j0, so this derivative is nonpositive. Thus, by the fundamental theorem
of calculus, replacing xtC1

j with its upper bound in (A.6) for all j relaxes (A.5). The
resulting lower bound equals

� lg

0
BB@

ıE

hP
j 2M

tC1

k
\P

f
�

1
1�ı

xX � ı
P1

�D0 ı�
E
�
xtC2C�

j jhtC1; xtC1
j

��jht
i

C ı2
P1

�D0 ı�
E

hP
j 2M

tC2C�

k
\P

f
�
xtC2C�

j

�jht
i

1
CCA

C ıE

2
64 X

j 2M
tC1

i
\P ni

f

 
1

1 � ı
xX � ı

1X
�D0

ı�
E
�
xtC2C�

j jhtC1; xtC1
j

�! jht

3
75 : (A.10)

We next derive an upper bound on the argument of g in (A.10). Letting

Xj .htC1/ D .1 � ı/

1X
�D0

ı�
E
�
xtC2C�

j jhtC1
�
;
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by the concavity of f and Jensen’s inequality we have

ıE

2
64 X

j 2M
tC1

k
\P

f

 
1

1 � ı
xX � ı

1X
�D0

ı�
E
�
xtC2C�

j jhtC1; xtC1
j

�! jht

3
75

C ı2
1X

�D0

ı�
E

2
64 X

j 2M
tC2C�

k
\P

f
�
xtC2C�

j

�jht

3
75

� ıE

2
64 X

j 2M
tC1

k
\P

f

�
1

1 � ı

� xX � ıXj

�
htC1

�	� jht

3
75

C ı2

1 � ı
E

2
64 X

j 2M
tC2

k
\P

f
�
Xj

�
htC1

�	 jht

3
75 :

Next, again by the concavity of f, the maximum of

ıf
�
.1= .1 � ı//

� xX � ıXj

�
htC1

�		C �
ı2= .1 � ı/

�
Ef

�
Xj

�
htC1

�	

over Xj .htC1/ � xX is attained at Xj .htC1/ D xX for all j and htC1. This gives an
upper bound on the argument of g in (A.10) of

ıkf
�
.1= .1 � ı//

� xX � ı xX��C �
ı2= .1 � ı/

�
kf

� xX� D .ı= .1 � ı// kf
� xX� :

On the other hand,

E

2
64 X

j 2M
tC1

i
\P ni

f

 
1

1 � ı
xX � ı

1X
�D0

ı�
E
�
xtC2C�

j jhtC1; xtC1
j

�! jht

3
75

� E

2
64 X

j 2M
tC1

i
\P ni

f

�
1

1 � ı
xX � ı

1 � ı
xX
�375 D .k � 1/ f

� xX� :

Combining these observations, we see that (A.10) is lower-bounded by
�lg..ı=.1 � ı//kf . xX// C ı.k � 1/f . xX/. This yields (A.7).
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Next, consider Case 2. In this case, replacing xtC1
i with its upper bound in (A.6)

and replacing xtC1
j with 0 for all j 2 Pni relaxes (A.5). The resulting lower bound

equals

�lg

 
1

n



ıE



f

�
1

1 � ı
xX � ı

1X
�D0

ı�
E
�
xtC2C�

i jhtC1; xtC1
i

��jht

�

C ı2
1X

�D0

ı�
E

h
f
�
xtC2C�

i

�jht
i�

C ı2
1X

�D0

ı�
E

" X
j 2M

tC2C�

k
\P ni

f
�
xtC2C�

j

�jht

#!
: (A.11)

As we have seen,

ıE

"
f

 
1

1 � ı
xX � ı

1X
�D0

ı�
E
�
xtC2C�

i jhtC1; xtC1
i

�! jht

#

C ı2
1X

�D0

ı�
E
�
f
�
xtC2C�

i

� jht
� � ı

1 � ı
f
� xX� :

In addition, by concavity of f, Jensen’s inequality, and the definition of xX ,

ı2
1X

�D0

ı�
E

2
64 X

j 2M
tC2C�

k
\P ni

f
�
xtC2C�

j

	
jht

3
75 � ı2

1 � ı

�
k � 1

n

�
f
� xX� :

As 1
n

ı
1�ı

C ı2

1�ı

�
k � 1

n

� D ı
1�ı

k � ı
�
k � 1

n

�
, this yields (A.8).

Finally, consider Case 3. Here, replacing xtC1
i with its upper bound in (A.6) and

replacing EŒ
P

j 2M
tC1

i
\P ni

f .xtC1
j /jht � with f E relaxes (A.5). The resulting lower

bound equals

�lg
�
yE
�C ıf E

D �lg
�
yE
	

� ıE

"
f

 
1

1 � ı
xX � ı

1X
�D0

ı�
E
�
xtC2C�

i jhtC1; xtC1
i

�! jht

#

� ı2
1X

�D0

ı�
E
�
f
�
xtC2C�

i

� jht
��ı2

1X
�D0

ı�
E

2
64 X

j 2M
tC1

i
\P ni

f
�
xtC2C�

j

�jht

3
75CyE:
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As argued earlier, this bound can be relaxed to

�lg
�
yE
� � ı

1 � ı
f
� xX� � ı2

1 � ı
.k � 1/ f

� xX�C yE ;

which equals the right-hand side of (A.9).

Finishing the Proof. To finish the proof, we show that the maximum level of
cooperation is always either x�, Lx, or Qx, and that if the maximum level of cooperation
is x� (resp., Lx, Qx), then yE must be weakly greater than y� (resp., weakly less than Ly,
in between Ly and y�). This implies the desired result.

To begin, fix a sequence of equilibria converging to the maximum level of
cooperation for producer 1 (say).

Suppose that, for all " > 0, there exists an equilibrium along the sequence yielding
within " of the maximum level of cooperation for which Case 1 applies for some
producer i and history ht. Combining (A.3) and (A.7), it follows that, in this equilibrium
for every player i, history ht, and level of cooperation xt

i 2 supp �i .h
t /,

.1 � ı/ xt
i C ıE

�
X tC1

i jht ; xt
i

� � lg

�
ı

1 � ı
kf

� xX�� � ı .k � 1/ f
� xX�

C ı .1 � ı/

1X
�D0

ı�

2
64 X

j 2M
tC1C�

i
\P ni

f
�
xtC1C�

j

�jht ; xt
i

3
75

� lg

�
ı

1 � ı
kf

� xX���ı .k � 1/ f
� xX�C ı .k � 1/ f

� xX�
D lg

�
ı

1 � ı
kf

� xX�� :

As

xX D sup
i;ht ;xt

i
2supp �

i
.ht /

.1 � ı/ xt
i C ıE

�
X tC1

i jht ; xt
i

�
;

we have xX � lg..ı=.1 � ı//kf . xX//. By the definition of x�, this implies that xX � x�.
Furthermore, as EŒX0

i jh0� � xX , we have EŒX0
i jh0� � x�. Thus, in this case x� is an

upper bound on each player’s maximum equilibrium level of cooperation. As we have
seen that x� is supportable with one-time enforcer punishment strategies, this means
that x� equals each player’s maximum level of cooperation. Finally, if one-time enforcer
punishment strategies are optimal then yE � y�, as otherwise we could support more
cooperation in enforcer punishment plus partial repentance strategies with x D x � �

for sufficiently small � > 0 (recalling from the proof of Lemma A.1 that dx=dw > 0
if y > yE).

Next, suppose that, for all " > 0, there exists an equilibrium along the sequence
yielding within " of the maximum level of cooperation for which Case 2 applies for
some producer and history. Combining (A.3) and (A.8), we have, for every player i,
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history ht, and level of cooperation xt
i 2 supp �i .h

t /,

.1 � ı/ xt
i C ıE

�
X tC1

i jht ; xt
i

� � lg

��
ı

1 � ı
k � ı

�
k � 1

n

��
f
� xX��

C ı .1 � ı/

1X
�D0

ı�

2
64 X

j 2M
tC1C�

i
\P ni

f
�
xtC1C�

j

�jht ; xt
i

3
75

� lg

��
ı

1 � ı
k � ı

�
k � 1

n

��
f
� xX��C ı .k � 1/ f

� xX� :

As argued earlier, this gives

xX � lg
�
..ı= .1 � ı// k � ı .k � 1=n// f

� xX��C ı .k � 1/ f
� xX� :

By the definition of Lx, this implies that xX � Lx, and hence EŒX0
i jh0� � Lx. Thus, in this

case Lx is an upper bound on each player’s maximum equilibrium level of cooperation,
and hence enforcer punishment plus repentance is optimal. And, if these strategies are
optimal, then yE � Ly as otherwise we could support more cooperation in one-time
enforcer punishment plus partial repentance strategies with x D � for sufficiently small
� > 0 (recalling from the proof of Lemma A.1 that dx=dw < 0 if y < yE).

Finally, suppose that, for all " > 0, there exists an equilibrium along the sequence
yielding within " of the maximum level of cooperation for which Case 3 applies for
some producer and history. Combining (A.3) and (A.9), we have, for every player i,
history ht, and level of cooperation xt

i 2 supp �i .h
t /,

.1 � ı/ xt
i C ıE

�
X tC1

i jht ; xt
i

�
� lg

�
yE
� � ı .k � 1/ f

� xX�C ı

1 � ı
kf

� xX� � yE

C ı .1 � ı/

1X
�D0

ı�

2
64 X

j 2M
tC1C�

i
\P ni

f
�
xtC1C�

j

�jht ; xt
i

3
75

� lg
�
yE
�C ı

1 � ı
kf

� xX� � yE :

This gives xX � lg.yE / C .ı=.1 � ı//kf . xX/ � yE . By the definition of Qx, this implies
that xX � Qx, and hence EŒX0

i jh0� � Qx. Thus, now Qx is an upper bound on each player’s
maximum equilibrium level of cooperation, and one-time enforcer punishment plus
partial repentance is optimal. By Lemma A.1, such an equilibrium exists only if yE � y�.
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Finally, these strategies can be optimal only if yE � Ly, as since Qx � Lx we have

yE D
�

ı

1 � ı
k � ı

�
k � 1

n

��
f . Qx/ C ı

�
k � 1

n

�
f .x/

�
�

ı

1 � ı
k � ı

�
k � 1

n

��
f . Qx/ �

�
ı

1 � ı
k � ı

�
k � 1

n

��
f . Lx/ D Ly:

Proof of Theorem 4

Per-match social welfare with k producers per match and on-path cooperation x is
k((s � 1)f(x) � x). Thus, assuming that the maximum level of cooperation is below the
first-best level, a sufficient condition for setting k D s to maximize social welfare is that
the maximum (per producer) level of cooperation is maximized at k D s. The maximum
level of cooperation when k D s is given by the solution to Ox D ı.s � 1/f . Ox/. On the
other hand, if k < s and g0(y) � (k � 1)=(k � 1=n)(s � k) for all y (which is guaranteed
by the assumptions that g0.y/ � . Nk � 1/=. Nk � 1=n/.s � Nk/ for all y and k � Nk), then
by Theorem 3 the maximum level of cooperation is given by the solution to

x D .s � k/ g

�
ı

n
f .x/ C ı2

1 � ı
kf .x/

�
C ı .k � 1/ f .x/ : (A.12)

Thus, the planner prefers that all agents become producers if (A.12) is maximized at
k D s. In turn, a sufficient condition for this to hold is that the derivative of the
right-hand side of (A.12) with respect to k is non-negative for all x. This derivative
equals

.s � k/g0
�

ı

n
f .x/ C ı2

1 � ı
kf .x/

�
ı2

1 � ı
f .x/ � g

�
ı

n
f .x/ C ı2

1 � ı
kf .x/

�
C ıf .x/:

As the first term is positive, a sufficient condition for the whole derivative to be positive
is

ıf .x/ � g

�
ı

n
f .x/ C ı2

1 � ı
kf .x/

�
for all x, or, letting z D ıf(x),

z � g

��
1

n
C ı

1 � ı
k

�
z

�
for all z. Since k � s, a sufficient condition for this is

z � g

��
1

n
C ı

1 � ı
s

�
z

�
for all z. Finally, since g is concave with g(0) D 0, a sufficient condition is

g0 .0/ � 1
1
n

C ı
1�ı

s
:

Hence, if (9) holds, then the planner prefers that all agents become producers.
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For the second part of the theorem, it suffices to show that Lx (with k D s � 1 and
l D 1) is greater than Ox. By the same argument as given earlier, a sufficient condition
for this to hold is

z < g

��
1

n
C ı

1 � ı
k

�
z

�
for all z. Finally, this condition is satisfied if g0(y) is sufficiently large for all y 2 RC,
or if g0 is bounded away from 0 and either ı is sufficiently close to 1 or k is sufficiently
large.

Proof of Proposition 2

We prove the proposition for arbitrary l and n, so that it covers the large group setting
as well.

Formally, we show that, for all " > 0, there exists � > 0 such that Ox C " is an upper
bound on the maximum level of cooperation whenever g0(y) < � for all y.

By (A.5), the definition of xX (from the proof of Theorem 3), and Jensen’s inequality,

u � �lg

�
ı

1 � ı
kf

� xX�� : (A.13)

Combining (A.3) and (A.13) yields that, for every player i, history ht, and level of
cooperation xt

i 2 supp �i .h
t /,

.1 � ı/ xt
i C ıE

�
X tC1

i jht ; xt
i

� � lg

�
ı

1 � ı
kf

� xX��C ı .k � 1/ f
� xX� :

Again by the definition of xX , whenever g0(y) < � for all y we have

xX �
�

ı

1 � ı
kl� C ı .k � 1/

�
f
� xX� :

Recall that Ox D ı .k � 1/ f . Ox/. In addition, since ı(k � 1)f(x) � x is concave and
crosses 0 from above at x D Ox, there exists � > 0 such that ı .k � 1/ f 0 . Ox/ < 1 � �.
Hence, as f is concave, for all " > 0 we have�

ı

1 � ı
kl� C ı .k � 1/

�
f . Ox C "/

�
�

ı

1 � ı
kl� C ı .k � 1/

� �
f . Ox/ C "f 0. Ox/

�

�
�

ı

1 � ı
kl� C ı .k � 1/

��
f . Ox/ C "

1 � �

ı .k � 1/

�

D Ox C " .1 � �/ C ı

1 � ı
kl�

�
f . Ox/ C "

1 � �

ı .k � 1/

�
:
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For sufficiently small � > 0, this is less than Ox C ". Thus, ((ı=(1 � ı))kl� C
ı(k � 1))f(x) � x crosses 0 to the left of Ox C ", so xX � Ox C ". Finally, as EŒX0

i jh0� � xX ,
we have EŒX0

i jh0� � Ox C ". Therefore, Ox C " is an upper bound on the maximum
equilibrium level of cooperation.

Theorem 3 When Enforcers Can Punish Each Other

Suppose the enforcers can punish each other. The modified definition of one-time
enforcer punishment strategies is as follows: On path, producers cooperate at level
x�. If a producer deviates, all enforcers in her match punish her at level y�, and play
returns to the equilibrium path next period. If an enforcer j deviates, then in the next
period all producers shirk, all enforcers matched with j next period punish him at level
y�, and j himself randomly punishes another enforcer at level (ı=(1 � ı))(kf(x�) C
(l � 1)g(y�)). Finally, define (x�, y�) by the system of the equations

x� D lg.y�/;

y� D ı

1 � ı
.kf .x�/ C .l � 1/g.y�//:

THEOREM A.1. Suppose enforcers can punish other enforcers in addition to
producers. If g0(y) � m for all y 2 RC, then one-time enforcer punishment strategies
are optimal and the maximum level of cooperation is x�.

Proof (sketch). The argument is similar to the proof of Theorem 3. In particular,
fixing a PBE � D (� i)i2I, let Ny be the greatest action in the support of any
enforcer’s equilibrium strategy at any history. As an enforcer can always take action 0,
�ı .l � 1/ g . Ny/ is now a lower bound on each enforcer’s equilibrium continuation
payoff at any history. Equation (A.4) (“enforcer incentive compatibility”) then
becomes

Ny � ı

1X
�D0

ıt
E

2
64 X

j 2M
tC1C�

k
\P

f
�
xtC1C�

j

�jht

3
75C ı

1 � ı
.l � 1/ g . Ny/ :

Carrying the new ı
1�ı

.l � 1/ g . Ny/ term throughout the proof of Theorem 3, we obtain
the bounds

xX � lg . Ny/ ;

Ny � ı

1 � ı

�
kf

� xX�C .l � 1/ g . Ny/
�

in Case 1 of the proof (which always applies when g0(y) � m for all y 2 RC). With the
modified definition of (x�, y�), this implies that NX � x�. Thus, x� is an upper bound
on each player’s maximum level of cooperation. �
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