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We are pleased that the data we published in Science (1) is being used for complementary 

analyses. Millroth (2) does not question the validity of our results as presented, but analyzes our 

data using a different methodology, leading to conclusions that appear to be less strong than the 

conclusions supported by our own preregistered analyses, which use the classical statistics 

framework. 

While we are sympathetic to any further research done with our data, we think there are 

some issues with the analyses presented in this comment. The method used by Millroth is known 

in statistics to be very sensitive to the choice of algorithms and priors, and it is impossible to 

judge from the information provided whether the reported results are robust. We suspect that 

they are not because our own new analyses using more robust Bayesian methods lead to results 

that are broadly consistent with the analyses that we presented in our paper. We first describe the 

problems with Millroth’s analyses and then present our own. 
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Millroth relies on one particular tool, Bayes Factors, which is highly controversial in the 

Bayesian statistics community. Bayes Factors do not have a straightforward interpretation, and 

they are not recommended for testing purposes in modern Bayesian statistics because they use 

marginal likelihoods, the value of which can be highly sensitive even to diffuse priors. A key 

takeaway from Kass and Raftery’s seminal work (3) on Bayes Factors was, “It is important, and 

feasible, to assess the sensitivity of conclusions to the prior distributions used.” Problematic 

sensitivity to small changes in the priors is even more likely when point nulls are tested, as they 

are here, because typical prior choices such as “spike and slab” distributions or “g-priors” have 

undesirable properties (see, e.g., 4). Moreover, Bayes Factors often do not allow stable 

computation because marginalizing the likelihood numerically is challenging even with Markov 

chain Monte Carlo methods. These problems are much more severe than the challenges of 

computing raw posterior probabilities — the typical output of Bayesian analysis — because 

Bayes Factors, unlike posterior probabilities, require accurate calculation of the posterior 

normalizing constant.  

Millroth does not discuss the computational method that he used, nor does he 

demonstrate its reliability via citations to the computational literature or to simulation studies 

(e.g., 5-7). His comment never discusses any of the well-established problems with these tools, 

nor does it provide prior sensitivity analysis, which is the recommended practice when using 

Bayes Factors. The computational properties of the algorithms that he used are not discussed, 

despite the fact that the computational stability of these algorithms is often unclear. The 

documentation of the package that is used (8) suggests that the package uses the g-priors which, 

have “several undesirable consistency issues” (4). 

 



Given these issues, the tool that is recommended in Bayesian statistics by most experts, 

and by standard textbooks on Bayesian statistics for psychology and economic analyses (see, 

e.g., 9, 10), is to compute the 95% credibility interval, which is the closest concept in Bayesian 

statistics to the 95% confidence interval in frequentist statistics. 

To test for the robustness of our results to a Bayesian framework, therefore, we fit a 

linear Bayesian model equivalent to our second regression specification for each endline using a 

Metropolis-Hastings algorithm, and we computed 95% credibility intervals. We used a normal 

likelihood combined with weakly informative priors (the prior specified that the coefficients 

were independently normally distributed each with a mean of zero and a variance of 10,000 and 

that the variance of the error terms followed an inverse gamma distribution with the shape and 

scale parameters both equal to 0.01.) 

The results of this analysis are consistent with those reported in our paper. Fig. 1 shows 

the means of the posterior distribution for the treatment coefficients for each outcome. For 

comparison, Fig. 2 shows the original frequentist coefficients and the 95% confidence intervals 

that we reported. The results lead to the same conclusions. In particular, as in the frequentist 

analysis reported in the paper, zero is outside of the 95% credibility interval in the Bayesian 

analysis for the mean at all three endlines for our prespecified all math and all nonsymbolic 

composites. Moreover, zero is outside of the 95% credibility interval for the symbolic composite 

at our first endline, but not at endlines two and three, again in accord with our published 

findings. When comparing the math games to the social, active control games, we observe that 

the credibility intervals of the two treatments do not overlap at the first or second endlines, either 

for the composite measure of all math assessments or for the composite measure of the 

nonsymbolic math assessments. At the third endline, they do overlap substantially on the 



composite measure of all math assessments but only slightly on the composite measure of the 

nonsymbolic math assessments. These analyses therefore confirm both the positive and the 

negative effects that we originally reported. 

 In summary, we welcome further analyses of our work, if the analyses are well-founded. 

We agree with Millroth that Bayesian statistics are a valuable tool for field experiments like our 

own. When such analyses focus on posterior probabilities rather than Bayes Factors, in accord 

with the recommendations of the leading statistics experts recognized in economics and 

psychology, they confirm rather than undermine our original conclusions.  



 

 

 
Fig. 1. Means of the posterior distribution of the coefficients and the 95% credibility intervals 

from a linear Bayesian model of the main outcome measures. 

 

 

 
Fig. 2. Linear regression coefficients and the 95% confidence intervals reported in the original 

paper (1) for the main outcome measures. 
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