
Games and Economic Behavior 61 (2007) 27–49
www.elsevier.com/locate/geb

Perfect public equilibrium when players are patient ✩

Drew Fudenberg a, David K. Levine b, Satoru Takahashi a,∗

a Department of Economics, Harvard University, Cambridge, MA 02138, USA
b Department of Economics, Washington University in St. Louis, MO 63130, USA

Received 29 September 2005

Available online 12 February 2007

Abstract

We provide a characterization of the limit set of perfect public equilibrium payoffs of repeated games
with imperfect public monitoring as the discount factor goes to one. Our result covers general stage games
including those that fail a “full-dimensionality” condition that had been imposed in past work. It also pro-
vides a characterization of the limit set when the strategies are restricted in a way that endogenously makes
the full-dimensionality condition fail, as in the strongly symmetric equilibrium studied by Abreu [Abreu,
D., 1986. Extremal equilibria of oligopolistic supergames. J. Econ. Theory 39, 191–228] and Abreu et al.
[Abreu, D., Pearce, D., Stacchetti, E., 1986. Optimal cartel equilibria with imperfect monitoring. J. Econ.
Theory 39, 251–269]. Finally, we use our characterization to give a sufficient condition for the exact achiev-
ability of first-best outcomes. Equilibria of this type, for which all continuation payoffs lie on the Pareto
frontier, have a strong renegotiation-proofness property: regardless of the history, players can never unani-
mously prefer another equilibrium.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Fudenberg and Levine (1994) (FL) showed that the limit of the set of perfect public equi-
librium payoffs of a repeated game as the discount factor goes to one can be characterized by
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the solution of a family of static linear programming problems. This result has been applied
and extended by a number of subsequent authors, including Kandori and Matsushima (1998),
Dellarocas (2003), and Ely et al. (2003).

The FL result requires that the set of payoff vectors obtained by the algorithm should have
“full dimension,” that is, the dimension is equal to the number of long-run players in the
game. This paper extends the linear programming characterization to cases where this “full-
dimensionality” condition fails, either because of the payoff structure of the stage game, or
because of a restriction to equilibrium strategies whose continuation payoffs are on a lower-
dimensional set. We apply our result to three such restrictions from the literature. The first
application is to repeated games with all long-run players and observed actions, where the
feasible payoffs in the stage game lie in a lower-dimensional set. The linear programming char-
acterization allows us to generalize the results of Abreu et al. (1994), who assumed that payoffs
satisfy a “non-equivalent utilities” condition, and of Wen (1994), who assumed that mixed strate-
gies are observed. The second application is to the strongly symmetric equilibria of symmetric
games, studied by Abreu (1986) and Abreu et al. (1986). This equilibrium concept requires that
all players take the same action, which restricts the continuation payoffs to the one-dimensional
set where all players’ payoffs are identical. The third application is to the restriction that all
payoffs lie on a face of the Pareto frontier, which we use to derive a sufficient condition for the
exact achievability of first-best outcomes. Equilibria for which all continuation payoffs lie on the
Pareto frontier have a strong renegotiation-proofness property: regardless of the history, players
can never unanimously prefer another equilibrium.

A recent paper by Tomala (2005) uses our result to analyze repeated games with communi-
cation. Here the “full-dimensionality” condition fails because the mediator’s payoff is always
zero.

To incorporate exogenous restrictions on the strategies such as symmetry or efficiency, we use
the concept of A0-perfect public equilibria: these are perfect public equilibria in which players
choose action profiles from A0 after all public histories. Our method yields a characterization of
the limit of A0-perfect public equilibrium payoffs for an arbitrary specification of the set A0.

2. Model

We consider a repeated game with imperfect public monitoring played by long-run and short-
run players.1 Our notation follows FL. In the stage game, players i = 1, . . . , n simultaneously
choose pure actions ai from finite sets Ai . An action profile a ∈ A := ∏n

i=1 Ai induces a publicly
observed outcome y ∈ Y with probability πy(a). Player i’s payoff to an action profile a is gi(a).
For each mixed action profile α ∈ A := ∏n

i=1 Ai , we can define πy(α) by
∑

a∈A πy(a)α(a) and
gi(α) by

∑
a∈A gi(a)α(a), where α(a) = ∏n

i=1 αi(ai); πy(ai, α−i ) and gi(aj ,α−j ) are defined
similarly.

In each period t = 1,2, . . . of the repeated game, the stage game is played, with each player ĩ

choosing action ai(t). The resulting action profile a(t) induces the distribution πy(a(t)) on pub-
lic outcomes y, and the realized public outcome y(t) is observed at the end of the period. Thus
at the end of period t̃ , player ĩ has observed a public history h(t) = (y(1), . . . , y(t)) ∈ Y t .
Because players know their own actions, each player has also observed a private history

1 The examples we present have only long-run players. Because allowing for short-run players does not complicate the
proofs, we have chosen to present the more general results.
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hi(t) = (ai(1), . . . , ai(t)) ∈ At
i . Thus a strategy for player ĩ is a sequence of maps σi(t) :Y t−1 ×

At−1
i → Ai . A strategy for player i is public if it does not depend on private histories:

σi(t)(h(t −1), hi(t −1)) = σi(t)(h(t −1), h′
i (t −1)) for any t , h(t −1), hi(t −1), and h′

i (t −1).
With a slight abuse of notation, we denote it by σi(t)(h(t −1)). If all players use public strategies,
then players’ beliefs about other players’ private histories are irrelevant.

For i ∈ LR := {1, . . . ,L}, L � n, i is a long-run player whose objective is to maximize the
average discounted value of per-period payoffs {gi(t)},

(1 − δ)

∞∑
t=1

δt−1gi(t).

The remaining players j ∈ SR := {L+ 1, . . . , n} represent short-run players, each of whom plays
only once. Let

B :A1 × · · · ×AL →AL+1 × · · · ×An

be the correspondence that maps any mixed action profile αLR = (α1, . . . , αL) for the long-run
players to the corresponding static equilibria αSR = (αL+1, . . . , αn) for the short-run players.
That is, graph (B) := {(αLR, αSR) ∈ A | αSR ∈ B(αLR)} is the set of mixed action profiles α such
that gj (α) � gj (aj ,α−j ) for any j ∈ SR and any aj ∈ Aj .2

A strategy profile {σ(t)} is a perfect public equilibrium (PPE) if every player i’s strategy
{σi(t)} is public, and, after any public history h(t − 1), every long-run player i maximizes his
average discounted payoff given the other players’ strategy profile {σ−i (t)}, and every short-run
player j maximizes his one-shot payoff given the other players’ action profile σ−j (t)(h(t − 1)),
that is, σ(t)(h(t − 1)) ∈ graph (B).

Let A0 be a subset of graph (B). We focus on A0-perfect public equilibria (A0-PPE): perfect
public equilibria in which players choose action profiles from A0 after all public histories, that is,
σ(t)(h(t − 1)) ∈A0 for any h(t − 1). Note that an action profile specified by an equilibrium be-
longs to A0 even after an off-path history, but that each player’s deviations from the equilibrium
need not be in A0. Let E(A0, δ) be the set of average present values for the long-run players in
A0-perfect public equilibria when all long-run players use a common discount factor δ. We will
characterize the limit of E(A0, δ) as δ → 1 without the “full-dimensionality” condition.3

As an example, let Ap := {α ∈ graph (B) | α(a) = 1 for some a ∈ A}, the set of all pure action
profiles in graph (B). Then Ap-PPEs mean pure-strategy PPEs. As another example, let As :=
{α ∈ graph (B) | α1 = · · · = αL}. Then the As-PPEs are the PPEs in which the long-run players
use strongly symmetric strategies.

We also consider repeated games with public randomization. In these games, an additional
signal ω(t) is publicly observed at the beginning of each period t ; we suppose that these signals
are independently and identically distributed according to the uniform distribution on [0,1]. Thus
in these games the public history is given by h∗(t) = (ω(1), y(1), . . . ,ω(t), y(t),ω(t + 1)),
and a strategy for player i is a sequence of measurable maps σ ∗

i (t) :Y t−1 × At−1
i × [0,1]t →

Ai . We define A0-PPE in a repeated game with public randomization by replacing h(t) with
h∗(t) in the previous definition. Let E∗(A0, δ) be the set of A0-PPE payoff profiles when public
randomization devices are available. E∗(A0, δ) is a bounded convex set that contains E(A0, δ).

2 Note that when there are no short-run players, graph (B) is taken to be the set of all mixed action profiles A.
3 Note that for some choices of A0 and δ, E(A0, δ) may be empty. This does not matter for our analysis: for example,

our results cover the trivial case where E(A0, δ) is empty for all δ.
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3. The algorithm

We fix A0 throughout this section. For each affine subspace X of RL with dimX � 1, we
consider a linear programming problem for given α ∈A0 with gLR(α) ∈ X, λ ∈ RL \ {0} parallel
to X, and δ ∈ (0,1):

k(α,λ, δ,X) := max
v∈RL,w : Y→RL

λ · v subject to

(a) vi = (1 − δ)gi(ai, α−i ) + δ
∑
y∈Y

πy(ai, α−i )wi(y)

for i ∈ LR and ai ∈ Ai s.t. αi(ai) > 0,

(b) vi � (1 − δ)gi(ai, α−i ) + δ
∑
y∈Y

πy(ai, α−i )wi(y)

for i ∈ LR and ai ∈ Ai s.t. αi(ai) = 0,

(c) λ · v � λ · w(y) for y ∈ Y ,

(d) w(y) ∈ X for y ∈ Y .

If there is no (v,w) that satisfies constraints (a)–(d), then we set k(α,λ, δ,X) := −∞. Note that
k(α,λ, δ,RL) corresponds to k∗(α,λ, δ) in FL.

As is standard in this literature, payoff profile v is the target that will be supported by some
equilibrium, and the function w gives continuation payoff w(y) starting tomorrow if the cur-
rent outcome is y. Constraints (a) are the accounting identities that define the expected payoff
profile v, and constraints (b) are the incentive constraints, requiring that playing α maximizes ex-
pected payoff provided that continuation payoffs are given by w. Constraints (c) require that all
of the continuation payoffs are included in the half-space defined by v and λ; loosely speaking,
the continuation payoffs are not allowed to be “better” (in the λ direction) than v is.

This linear programming problem differs from FL’s only in constraints (d). Constraints (d)
require that all of the continuation payoffs are included in X.

To help interpret and motivate the problem, recall that the literature says that w enforces (α, v)

under discount factor δ if

vi = (1 − δ)gi(ai, α−i ) + δ
∑
y∈Y

πy(ai, α−i )wi(y)

for i ∈ LR and ai ∈ Ai such that αi(ai) > 0, and

vi � (1 − δ)gi(ai, α−i ) + δ
∑
y∈Y

πy(ai, α−i )wi(y)

for i ∈ LR and ai ∈ Ai such that αi(ai) = 0. The pair (α, v) is enforceable with respect to W un-
der discount factor δ if there exists w :Y → W that enforces (α, v). Further, v is generated by A0

and W under discount factor δ if there exists α ∈A0 such that (α, v) is enforceable with respect
to W under discount factor δ. Let P(A0, δ,W) be the set of payoff profiles generated by A0 and
W under discount factor δ. By applying the principle of optimality of dynamic programming,
Abreu et al. (1990) showed that if W is bounded and W ⊆ P(A0, δ,W), then W ⊆ E(A0, δ).
Let H(λ, k) := {v ∈ RL | λ · v � k}; then constraints (a)–(d) say that (α, v) is enforceable with
respect to the (unbounded) set H(λ,λ · v) ∩ X.
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Lemma 3.1.

(1) If (α, v) is enforced by w under discount factor δ, then it is enforced by

w′(y) = δ′ − δ

δ′(1 − δ)
v + δ(1 − δ′)

δ′(1 − δ)
w(y)

under discount factor δ′.
(2) If gLR(α) ∈ X, then k(α,λ, δ,X) is independent of δ and positively homogeneous of degree

1 in λ.
(3) If W is convex and δ′ � δ, then P(A0, δ,W) ∩ W ⊆ P(A0, δ′,W).4

Proof. [Proof of (1)] Note that the coefficients on v and w(y) add up to one. Moreover, for all
i ∈ LR, ai , and α−i ,

(1 − δ′)gi(ai, α−i ) + δ′ ∑
y∈Y

πy(ai, α−i )w
′
i (y)

= δ′ − δ

1 − δ
v + 1 − δ′

1 − δ

[
(1 − δ)gi(ai, α−i ) + δ

∑
y∈Y

πy(ai, α−i )wi(y)

]
,

where the term in the square brackets is the payoff to playing ai when the opponents play α−i ,

the continuation payoffs are given by w, and the discount factor is δ. So the fact that w enforces
(α,v) when the discount factor is δ implies that w′ enforces (α,v) when the discount factor is δ′.

[Proof of (2)] Since we have gLR(α) ∈ X and w(y) ∈ X by (d), it follows from (a) that v ∈ X.
Since X is affine, it follows then that w′(y) ∈ X for all y. And using λ · v � λ · w(y), we see that
also λ · v � λ · w′(y) so that these new continuation payoffs also satisfy (c). Thus given feasible
w(y) for any δ, we can construct feasible w′(y) for any δ′ that give the same value of v, so the
solution of the linear programming problem must be independent of δ.

In the linear programming problem, the objective function is positively homogeneous of de-
gree 1 in λ and the constraints are not affected by any positive scalar multiplication of λ. So the
solution is positively homogeneous of degree 1 in λ.

[Proof of (3)] Pick any v ∈ P(A0, δ,W) ∩ W . There exist α ∈ A0 and w such that (α, v) is
enforced by w under discount factor δ and w(y) ∈ W for all y. Since δ′ � δ, w′(y) defined in
part 1 is a convex combination of v and w(y), which belongs to W because W is convex. So we
have v ∈ P(A0, δ′,W). �

Since k(α,λ, δ,X) is independent of δ, we will therefore denote it by k(α,λ,X).
The algorithm characterizes the limit set of equilibrium payoffs using extremal halfspaces.

We define these by setting

k
(
A0, λ,X

) := sup
α∈A0, gLR(α)∈X

k(α,λ,X),

H
(
A0, λ,X

) := H
(
λ, k

(
A0, λ,X

))
, and

4 The first two parts of Lemma 3.1 was originally proven as FL Lemma 3.1. We should point out that the condition
given in FL Lemma 3.1(iii) is sufficient but not necessary for k∗(α,λ) = λ · gLR(α); FL incorrectly asserted that the
condition is necessary as well. The condition is only necessary under the additional assumption that all outcomes have
positive probability under α.
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Q
(
A0,X

) :=
⋂

λ∈RL\{0} : parallel to X

H
(
A0, λ,X

) ∩ X.

If k(A0, λ,X) = −∞, then we set H(A0, λ,X) = ∅. k(A0, λ,X) is the supremum of λ · v such
that (α, v) is enforceable with respect to H(λ,λ · v) ∩ X for some α ∈ A0 with gLR(α) ∈ X.
Note that, since gLR(α) ∈ X, by Lemma 3.1, whether (α, v) is enforceable with respect to H(λ,

λ · v) ∩ X does not depend on δ.

Lemma 3.2. If E∗(A0, δ) ⊆ X, then E∗(A0, δ) ⊆ Q(A0,X).

Proof. The proof is the same as in FL, except that we use public randomizations and E∗(A0, δ)

may not be closed.
Suppose that E∗(A0, δ) 
⊆ Q(A0,X). Then there exists a point v ∈ E∗(A0, δ) \ Q(A0,X).

By the definition of Q(A0,X), we can find a vector of length one, λ, parallel to X that satisfies
λ · v > k(A0, λ,X). Let ε be a positive number such that ε < λ · v − k(A0, λ,X).

Given such v, λ, and ε, since E∗(A0, δ) is bounded, we may find a point v′ ∈ E∗(A0, δ) with
k′ := λ · v′ that satisfies

k′ + (1 − δ)ε � λ · x for any x ∈ E∗(A0, δ
)
.

In particular, by plugging x = v, we have k′ + (1 − δ)ε � λ · v > k(A0, λ,X) + ε. Thus we have
k′ − δε > k(A0, λ,X).

Since v′ ∈ E∗(A0, δ), v′ is written as

v′ =
1∫

0

v′(ω)dω,

where v′(ω) is the payoff profile after ω is realized at the beginning of the first period. For
every ω ∈ [0,1], let α(ω) ∈ A0 be the current action profile and w′(y,ω) ∈ E∗(A0, δ) be the
continuation payoff profile if the current outcome is y. Note that w′(·,ω) enforces (α(ω), v′(ω))

under discount factor δ. Since v′(ω), w′(y,ω) ∈ E∗(A0, δ) ⊆ X, we have gLR(α(ω)) ∈ X.
Pick ω ∈ [0,1] such that λ · v′(ω) � λ · v′ = k′. Shifting payoff profiles independently of y,

we define

v′′ := v′(ω) − δελ

and

w′′(y) := w′(y,ω) − ελ.

Since w′(·,ω) enforces (α(ω), v′(ω)) under discount factor δ, w′′(·) enforces (α(ω), v′′) under
discount factor δ. Moreover, we have

λ · v′′ = λ · v′(ω) − δε � k′ − δε,

λ · w′′(y) = λ · w′(y,ω) − ε � k′ + (1 − δ)ε − ε = k′ − δε.

Since w′′(y) ∈ H(λ,λ · v′′) ∩ X, (α(ω), v′′) is enforceable with respect to H(λ,λ · v′′) ∩ X

under discount factor δ. This contradicts the definition of k(A0, λ,X) because λ · v′′ � k′ − δε >

k(A0, λ,X). �
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For v ∈ RL, let |v| denote the l2-norm of v, |v| =
√∑

i∈LR v2
i . This norm induces the usual

topology on RL. The relative interior of a subset S of RL is the interior of S under the topology
induced on the affine hull of S. Relative boundary and relatively open neighborhood are defined
similarly; a relative interior (boundary) point of a set is a point in its relative interior (boundary).

For any affine subspace X of RL with dimX � 1, we say that a convex and compact subset W

of X is smooth in X if for any relative boundary point v of W , there exists a unique vector of
length one, λ, parallel to X such that W ⊆ H(λ,λ · v).5

Lemma 3.3. Suppose that dimQ(A0,X) = dimX � 1.

(1) For any compact set K in the relative interior of Q(A0,X), there exists δ̄ < 1 such that
K ⊆ E(A0, δ) for any δ > δ̄.

(2) If E∗(A0, δ) ⊆ X for all δ, then

lim
δ→1

E
(
A0, δ

) = lim
δ→1

E∗(A0, δ
) = Q

(
A0,X

)
in the Hausdorff metric.

Remark. The role of the full-dimensionality assumption is to allow us to find W smooth in X that
approximates Q from inside. Lemma A.2 in the appendix shows that for any set W smooth in X

and any κ , κ ′ > 0, there exists ε ∈ (0,1) such that every v′ ∈ X that satisfies λ · v′ � λ · v − κε

and |v′ − v| � κ ′ε is a relative interior point of W . We use this in the proof at the end of the
discussion of case 1 to conclude that when δ is close enough to 1, certain actions and payoffs can
be enforced with continuation payoffs in the relative interior of W .

Proof. [Proof of (1)] The proof differs from FL’s in two respects. First, we use the relative
topology induced on X instead of the standard topology on RL. Second, because we do not
assume the existence of static equilibria in A0, we use a different technique to generate relative
interior points.

Claim 1: Smooth Approximation. To begin the proof, we claim that there is a convex and
compact set W ⊇ K in the relative interior of Q(A0,X) that is smooth in X. To see this, let

W :=
{
v ∈ X | min

x∈co (K)
|v − x| � ε

}
with ε > 0, where co(K) is the convex hull of K . Because K is a compact set, Lemma A.1 in
the appendix shows that W is convex, compact, and smooth in X. Moreover, because K is a
compact set in the relative interior of Q(A0,X) and dimQ(A0,X) = dimX, W is in the relative
interior of Q(A0,X) for sufficiently small ε. For such W , we will show that W ⊆ E(A0, δ) for
sufficiently large δ.6

Claim 2: Local Generation. We claim next that it is enough to show that the set W is “locally
generated” by A0 and W , meaning that for each v ∈ W , there exist δv < 1 and a relatively open
neighborhood Uv of v with Uv ⊆ P(A0, δv,W). When this condition is satisfied, since {Uv}v∈W

5 This definition is equivalent to the set W having a differentiable relative boundary.
6 Earlier work used an approximation W that has a C2 boundary. With a C2 boundary, we can get a stronger approx-

imation whose error term is bounded by a quadratic function. However, as our proof shows, this stronger bound is not
needed.
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is an open cover of W and W is compact, we can choose a finite subcover {Uvm}m∗
m=1 of W . Let

δ̄ := maxm δvm < 1. Since W is convex, it follows from Lemma 3.1 that for any δ > δ̄, we have

Uvm ∩ W ⊆ P
(
A0, δvm,W

) ∩ W ⊆ P
(
A0, δ,W

)
for every m, which implies W ⊆ P(A0, δ,W). Since W is bounded, we have W ⊆ E(A0, δ).
This proves the second claim: it is enough to show that W is locally generated by A0 and W .

To show that W is locally generated by A0 and W , we first show that for each v ∈ W , there
exists δv such that v ∈ P(A0, δv,W), and then extend this from the points v to neighborhoods Uv .

Case 1: Relative Boundary. For any relative boundary point v of W , let λ be the unique vector
of length one parallel to X and normal to W at v. Let k := λ ·v. Then we have W ⊆ H(λ, k)∩X.
Fix an arbitrary δ < 1. Since W is in the relative interior of Q(A0,X), there exist an action
profile α ∈ A0 with gLR(α) ∈ X and a point v′ ∈ X with k′ := λ · v′ > k that are enforced by
some w′(y) ∈ H(λ, k′) ∩ X under discount factor δ.

Translating the continuation payoffs, we can find ε > 0 and w(y) ∈ H(λ, k − ε)∩X such that
w(y) enforce (α, v) under discount factor δ.

For any δ′ < 1, by Lemma 3.1, we may find w(y, δ′) that enforce (α, v) under discount fac-
tor δ′:

w(y, δ′) = δ′ − δ

δ′(1 − δ)
v + δ(1 − δ′)

δ′(1 − δ)
w(y).

We have

w(y, δ′) ∈ X

and

λ · w(y, δ′) � k − κ(1 − δ′)
with κ := [δ/(1 − δ)]ε. We also have∣∣w(y, δ′) − v

∣∣ � κ ′(1 − δ′)
with κ ′ := [δ/(1− δ)]maxy |w(y)−v|. Since W is smooth in X, by Lemma A.2 in the appendix,
there exists δv < 1 such that w(y, δv) are in the relative interior of W .

Case 2: Relative Interior. For any relative interior point v of W , fix an arbitrary δ < 1. Since
Q(A0,X) 
= ∅, v is generated by A0 and X under discount factor δ. Let α be a mixed action
profile in A0 with gLR(α) ∈ X such that (α, v) is enforced by some w(y) ∈ X under discount
factor δ.

Similarly to the relative boundary case, for any δ′, by Lemma 3.1, we define w(y, δ′) as above
so that w(y, δ′) enforce (α, v) under discount factor δ′. Since

w(y, δ′) ∈ X

and ∣∣w(y, δ′) − v
∣∣ � κ ′(1 − δ′)

with κ ′ := [δ/(1 − δ)]maxy |w(y) − v|, there exists δv < 1 such that w(y, δv) are in the relative
interior of W .

In both cases, since w(y, δv) are in the relative interior, they may be translated by a small
constant independent of y, generating incentive compatible payoffs in a relatively open neigh-
borhood Uv of v.
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[Proof of (2)] Since E∗(A0, δ) ⊆ X, by Lemma 3.2, we have E(A0, δ) ⊆ E∗(A0, δ) ⊆
Q(A0,X). Since we showed in (1) that any relative interior of Q(A0,X) is included in E(A0, δ)

for sufficiently large δ, we have

lim
δ→1

E
(
A0, δ

) = lim
δ→1

E∗(A0, δ
) = Q

(
A0,X

)
in the Hausdorff metric. �
Remark. It is easy to extend Lemmas 3.2 and 3.3 to games with infinitely many pure actions.7

However, allowing infinitely many signals would involve measure-theoretic complications that
are beyond the scope of this paper.

Now we provide an algorithm to find X that satisfies the assumptions in Lemma 3.3. Let X0 :=
RL. For each Xm, we compute the linear programming problem, and obtain Qm := Q(A0,Xm).
If Qm = ∅ or Qm is a singleton whose element does not correspond to a static equilibrium
in A0, we stop the algorithm and define Q∗(A0) := ∅.8 If Qm is a singleton consisting of a
static equilibrium payoff profile in A0 or we have dimQm = dimXm, we stop the algorithm and
define Q∗(A0) := Qm. Otherwise, let Xm+1 be the affine hull of Qm, which is the smallest affine
space including Qm, and we again solve the linear programming problem after Xm is replaced
by Xm+1.

Note that every time the algorithm continues, the dimension of Xm decreases by at least one,
so the algorithm stops in a finite number of steps.

In the case of A0 = graph (B), the first step of the algorithm is exactly the same as FL’s linear
programming problem, and Q0 is equal to what FL called Q. If dimQ = L, then the algorithm
stops at the first step, and we have Q∗(graph (B)) = Q. However, if dimQ < L, then Lemma 3.3
does not apply to Q because we cannot find a subset W of Q that is smooth in RL and the last
step in the proof of case 1 fails: even if δ is close to 1, the continuation payoffs constructed in the
proof need not lie in W . This is why we need to iterate the algorithm.

By this algorithm, we obtain the limit of A0-PPE payoffs, which is a generalization of Theo-
rem 3.1 in FL.

Theorem. E∗(A0, δ) ⊆ Q∗(A0) for any δ. If Q∗(A0) 
= ∅, then for any compact subset K of the
relative interior of Q∗(A0), there exists δ̄ < 1 such that K ⊆ E(A0, δ) for any δ > δ̄. Hence

lim
δ→1

E
(
A0, δ

) = lim
δ→1

E∗(A0, δ
) = Q∗(A0)

in the Hausdorff metric.

Proof. Since E∗(A0, δ) ⊆ RL = X0, we have E∗(A0, δ) ⊆ Q(A0,X0) = Q0 by Lemma 3.2.
Applying Lemma 3.2 inductively, we have E∗(A0, δ) ⊆ Qm∗

, where m∗ is the number of steps
we need until our algorithm stops.

7 The proofs carry over verbatim as long as stage-game payoff function gi is bounded for every player i, “max” is
replaced by “sup” in the definition of k(α,λ, δ,X), and constraints (a) are required not only for every ai with positive
point mass but also for almost every ai with respect to αi .

8 Every static equilibrium in A0 is contained in Qm for each m, and hence Qm = ∅ is possible only if there is no
static equilibrium in A0. The converse is not true. For example, in the case of A0 = Ap, the repeated game may have a
pure-strategy equilibrium for large δ even if the stage game has no pure-strategy equilibrium. See Section 4.4 for another
example.
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If Qm∗
is a singleton whose element does not correspond to a static equilibrium in A0,

then, since there is no static equilibrium in A0 and continuation payoffs need to be con-
stant, we have E∗(A0, δ) = ∅ = Q∗(A0). Otherwise, since we set Q∗(A0) = Qm∗

, we have
E∗(A0, δ) ⊆ Q∗(A0). Thus we have shown the first part of the claim.

The second part is shown as follows. If Qm∗
is a singleton whose element corresponds to a

static equilibrium in A0, then we have E(A0, δ) = Qm∗
for any δ, and hence limδ→1 E(A0, δ) =

Qm∗ = Q∗(A0).
If Qm∗

is neither the empty set nor a singleton, then we have dimQm∗ = dimXm∗ � 1, and
we can apply Lemma 3.3. �
Remark. Our theorem shows that limδ→1 E(A0, δ) = limδ→1 E∗(A0, δ), i.e., allowing public
randomizations does not change the limit set. For a fixed δ, however, E∗(A0, δ) may be larger
than E(A0, δ).

Several other choices of how to determine the sets Xm lead to the same result Q∗(A0). For
example, at the beginning of the first step, we can choose X0 to be any affine subspace of RL

that contains gLR(α) for every α ∈ A0. If 1 � dimQm < dimXm, then we can move to the next
step with any affine subspace Xm+1 of Xm that contains Qm.

4. Applications

4.1. Fudenberg and Maskin’s example

To illustrate the algorithm, we apply it to the example Fudenberg and Maskin (1986) used to
motivate the full dimensionality condition. We set L = n = 3, so that there are three long-run
players and no short-run players, set Y = A = {0,1}3, and set πy(a) = 1 if and only if y = a, so
that the signal perfectly reveals the action profile. Stage game payoffs are depicted in Fig. 4.1.

Let A0 = A and X0 = R3, and solve the first step of our algorithm. By a simple computation,
we have Q0 = {(x, x, x) | 0 � x � 1}. Since Q0 has a lower dimension than X0, we set X1 =
{(x, x, x) | x ∈ R} and move to the second step of our algorithm.

In the second step, we have two directions parallel to X1 (up to positive scalar multiplica-
tion), 1 := (1,1,1) and −1 := (−1,−1,−1). We first consider the case of λ = −1. Fix any α.
As Fudenberg and Maskin show, for any α, there exist a player i and an action ai such that
gi(ai, α−i ) � 1/4. Since (v,w) in the linear programming problem satisfies constraints (a)
and (b), we have

vi � 1 − δ

4
+ δ

∑
y

πy(ai, α−i )wi(y).

Since g(α) ∈ X1 and w(y) ∈ X1 for any outcome y by constraints (d), it follows from con-
straints (a) that v ∈ X1 as well. Then, since −3vi = (−1) · v � (−1) · w(y) = −3wi(y) for any
outcome y by constraints (c), we have

vi � 1 − δ

4
+ δ

∑
y

πy(ai, α−i )wi(y) � 1 − δ

4
+ δvi,

and hence vi � 1/4. Therefore, we have k(α,−1,X1) � −3/4 for any α. Since the equality
holds when each player mixes the two actions with equal probability, we have k(A,−1,X1) =
−3/4 and H(A,−1,X1) = H(−1,−3/4). We also have H(A,1,X1) = H(1,3) by a simple
computation.
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1,1,1 0,0,0
0,0,0 0,0,0

0,0,0 0,0,0
0,0,0 1,1,1

Fig. 4.1. A three-player game in Fudenberg and Maskin (1986).

Since

Q1 = H(A,1,X1) ∩ H(A,−1,X1) ∩ X1 = {
(x, x, x) | 1/4 � x � 1

}
and

dimQ1 = 1 = dimX1,

we stop the algorithm and conclude that Q∗(A) = Q1 is the limit set of subgame-perfect equi-
librium payoffs as δ → 1.

The same result was obtained by Fudenberg and Maskin (1986) and Wen (1994). Fudenberg
and Maskin determined the limit set by a direct computation in this specific game, whereas Wen
used effective minmax values. Wen’s method is applicable to all repeated games with perfect
monitoring without the full dimensionality condition. Our algorithm is even more general, as we
allow imperfect public monitoring and short-run players.

4.2. Characterization of the limit payoffs in general stage games with observed actions and all
long-run players

Consider repeated games with perfect monitoring and without short-run players, that is,
Y = A, πy(a) = 1 if and only if y = a, and L = n. We assume that A0 ⊇ Ap = {α ∈ A |
α(a) = 1 for some a ∈ A}, i.e., A0 contains all pure action profiles.

We also assume that no player is universally indifferent: for every player i, there exist two
action profiles a, a′ ∈ A such that gi(a) 
= gi(a

′). Players i and j have equivalent utility functions
if there exist c ∈ R and d > 0 such that gj (a) = c + dgi(a) for all a ∈ A. Denote by I+

i the set
of players whose utility functions are equivalent to gi . Similarly, denote by I−

i the set of players
whose utility functions are equivalent to −gi .

Recall the standard definition of the minmax payoff:

vs
i := min

α∈A
max

{
gi(ai, α−i ) | ai ∈ Ai

}
.

The previous example shows that the lowest equilibrium payoffs can be bounded away from
these values; intuitively this is because it can be difficult to induce players with identical payoffs
to punish each other when this punishment is costly. We will show that the correct lower bound
on equilibrium payoffs is what we call the “effective minmax values.”

Player i’s effective minmax payoff is given by

vi

(
A0) := inf

α∈A0
max

{
gi(aj ,α−j ) | j ∈ I+

i , aj ∈ Aj , or j ∈ I−
i , aj ∈ Aj s.t. αj (aj ) > 0

}
.

(If A0 is compact, then the infimum operator can be replaced by the minimum operator because
the infimand is lower semi-continuous in α.)

Wen (1994) defined the effective minmax payoff to be

vWen
i := min

α∈A
max

{
gi(aj ,α−j ) | j ∈ I+

i , aj ∈ Aj

}
.

In our setting, with actions constrained to lie in A0 ⊆ A, the obvious extensions of the standard
minmax and of Wen’s definition are respectively



38 D. Fudenberg et al. / Games and Economic Behavior 61 (2007) 27–49
vs
i

(
A0) := inf

α∈A0
max

{
gi(ai, α−i ) | ai ∈ Ai

}
,

vWen
i

(
A0) := inf

α∈A0
max

{
gi(aj ,α−j ) | j ∈ I+

i , aj ∈ Aj

}
.

The effective minmax we defined above differs from this extension of Wen’s definition be-
cause unlike Wen, we do not assume that mixed strategies are observable, so our analysis needs
to consider the incentives of players in I−

i to randomize their actions. Inducing players in I−
i to

randomize when mixing probabilities are not observed requires the use of continuation payoffs
to make each player indifferent among all actions chosen with positive probabilities. Since play-
ers i and j have opposite payoff functions, player i is also indifferent among such actions. This
may induce a higher reward than Wen’s minmax payoff.9

Recall that a game satisfies the nonequivalent utilities (NEU) condition of Abreu et al. (1994)
if I+

i = {i} for all i.

Proposition 4.1. We have the following relations among the standard minmax, Wen’s effective
minmax, and our effective minmax:

(1) vs
i (A0) � vWen

i (A0) � vi(A0).
(2) vWen

i (A0) = vi(A0) if A0 = Ap or I−
i = ∅.

(3) vs
i (A0) = vi(A0) if (A0 = Ap or A) and the NEU condition is satisfied.

Proof. Parts (1) and (2) are obvious. Part (3) is also obvious, except for the case in which
A0 = A, the NEU condition is satisfied, and I−

i 
= ∅. Since the NEU condition is satisfied
and I−

i 
= ∅, I−
i is a singleton {j}. Let α∗−i be a minmax action profile against player i, and

α∗
i is a maximin action of player i against player j when the other players’ action profile is

fixed to be α∗−ij . By the minmax theorem, (α∗
i , α∗

j ) is a Nash equilibrium of the game be-
tween players i and j when the other players play α∗−ij . Since α∗

i is a best response to α∗−i

for player i, we have gi(ai, α
∗−i ) � gi(α

∗) for any ai ∈ Ai . Also, since α∗
j is a best response to

α∗−j for player j , player j is indifferent among all pure actions taken with positive probabili-
ties under α∗

j , i.e., we have gj (aj ,α
∗−j ) = gj (α

∗) for any aj ∈ Aj such that α∗
j (aj ) > 0. Since

j ∈ I−
i , we have gi(aj ,α

∗−j ) = gi(α
∗) for any aj ∈ Aj such that α∗

j (aj ) > 0. Therefore, we have
vi(A) � gi(α

∗) = vs
i (A). �

Example. We may have vWen
i (A0) < vi(A0). Consider the stage game in Fig. 4.2. Note that

I+
1 = {1,2} and I−

1 = {3}. We have vWen
1 (A) = 5/2, where the solution α to Wen’s minmax

problem is such that players 1 and 2 choose the first actions, and player 3 mixes the two actions
with equal probability. We also have v1(A) = 3, where the solution α to our minmax problem
is such that players 1 and 3 choose the first actions, and player 2 chooses the first action with
probability more than or equal to 1/2.

9 A similar payoff bound that arises from indifference conditions has been investigated in repeated games with short-
run players. Fudenberg et al. (1990) showed that

v∗
i := max

α∈graph (B)
min

{
gi (ai , α−i ) | ai ∈ Ai s.t. αi(ai ) > 0

}
is an upper bound for long-run player i’s equilibrium payoffs if mixing probabilities are unobservable.
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0,0,0 3,3,−3
2,2,−2 4,4,−4

4,4,−4 2,2,−2
3,3,−3 4,4,−4

Fig. 4.2. A game in which vWen
1 (A) < v1(A).

Let V be the set of feasible payoff profiles, i.e., the convex hull of {g(a) ∈ Rn | a ∈ A}. Let

V
(
A0) := {

v ∈ V | vi � vi

(
A0) for every player i

}
,

V ∗(A0) := {
v ∈ V | vi > vi

(
A0) for every player i

}
be the sets of feasible payoff profiles that weakly and strongly dominate v(A0), respectively.

Proposition 4.2. Q∗(A0) ⊆ V (A0). If V ∗(A0) 
= ∅, then Q∗(A0) = V (A0).

Abreu et al. (1994) showed the folk theorem under the NEU condition, which corresponds
to Proposition 4.2 when (A0 = Ap or A) and the NEU condition is satisfied. Wen (1994)
showed the pure-strategy folk theorem, which corresponds to Proposition 4.2 for A0 = Ap.10

These classical results are stronger than Proposition 4.2 in the following sense. They show
that E(A0, δ) ⊆ V (A0) for any δ, and that, for any v ∈ V ∗(A0), there exists δ < 1 such that
v ∈ E(A0, δ) (exactly attained as an equilibrium payoff profile) for any δ > δ. On the other hand,
combined with our Theorem, Proposition 4.2 claims that any point v ∈ V (A0) is approximately
attained as an equilibrium payoff profile. See Section 4.4 for a discussion of the exact attainability
of efficient payoffs.

We will show Proposition 4.2 by applying our algorithm. Let X be the affine hull of V .
We have dimX � 1 because of the absence of universal indifference. A vector λ ∈ Rn \ {0}
parallel to X is said to be a punishment direction for player i if there exist c ∈ R and d > 0 such
that λ · v = c − dvi for every v ∈ X. If λ is a punishment direction for player i, then we have
H(λ,λ · v) ∩ X = {v′ ∈ X | v′

i � vi}.

Lemma 4.3. There exists a punishment direction for player i.

Proof. Let λ be the orthogonal projection of −ei to X, where ei is the vector whose ith compo-
nent is one and whose other components are zeros. λ is nonzero since player i is not universally
indifferent. By construction, λ is a punishment direction for player i. �

Let Xi := {vi ∈ R | v ∈ X} and Xij := {(vi, vj ) ∈ R2 | v ∈ X} be the orthogonal projections
of X to the i-axis and to the ij -plane, respectively.

Lemma 4.4. Xi = R; if j /∈ I+
i ∪ I−

i , then Xij = R2 .

Proof. Xi is a nonempty affine subspace of R, i.e., a point or R. Since player i is not universally
indifferent, Xi contains at least two points. So we have Xi = R.

10 As we noted in the example, in the class of mixed-strategy subgame-perfect equilibria (A0 = A), Wen’s definition
of effective minmax may be lower than ours. In this case, the effective minmax value in his definition is not a tight lower
bound for mixed-strategy subgame-perfect equilibrium payoffs. Thus our results show that the assumption that mixed
strategies are observable is not innocuous in cases where the NEU condition is not satisfied. See footnote 11 in Abreu et
al. (1994).
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Xij is a nonempty affine subspace of R2, i.e., a point, a line, or R2, and from the previous
step Xij is not a point or a vertical or horizontal line. Since j /∈ I+

i ∪ I−
i , Xij is not a line with a

nonzero slope, so Xij = R2. �
For a mixed action profile α and player i’s payoff vi , we say that (α, vi) is enforceable with

respect to W if there exists a payoff profile v′ with v′
i = vi such that (α, v) is enforceable with

respect to W .

Lemma 4.5. (α, vi) is enforceable with respect to {v′ ∈ X | v′
i � vi} if and only if vi �

gi(aj ,α−j ) for any j ∈ I+
i and any aj ∈ Aj and for any j ∈ I−

i and any aj ∈ Aj such that
αj (aj ) > 0.

Proof. See the appendix. The main difficulty to prove the “if” part is how to induce players to
randomize. To control incentives of players in I+

i ∪ I−
i , we use Lemma A.3 in the appendix.

Intuitively speaking, this lemma claims that if vi � gi(aj ,α−j ) for any j ∈ I+
i ∪ I−

i and any
aj ∈ Aj such that αj (aj ) > 0, then we can find continuation payoffs to make all players in I+

i ∪
I−
i indifferent simultaneously. Other players’ incentives are easy to control without affecting

player i’s payoff because we have shown Xij = R2 for j /∈ I+
i ∪ I−

i in Lemma 4.4. �
Lemma 4.6. If λ is not a punishment direction for player i, then, for any (x, k) ∈ R2, there exists
v ∈ H(λ, k) ∩ X such that vi � x.

Proof. Since λ is not a punishment direction for player i, λ ·v and −vi are linear utility functions
that represent different preference orderings on X. Then there exist v1 and v2 ∈ X such that (i)
λ · v1 � λ · v2 and v1

i > v2
i , or (ii) λ · v1 > λ · v2 and v1

i = v2
i .

In case (i), pick any v3 ∈ H(λ, k) ∩ X, and let v = v3 − c(v1 − v2). Then we have v ∈
H(λ, k) ∩ X and vi � x for a sufficiently large c.

In case (ii), pick any v4, v5 ∈ X such that v4
i > v5

i , and let ṽ1 = v1 + ε(v4 − v5). It follows
from Lemma 4.4 that such v4 and v5 exist. For a sufficiently small ε > 0, we have λ · ṽ1 > λ · v2

and ṽ1
i > v2

i . Thus we can apply case (i) to the pair (ṽ1, v2). �
Lemma 4.7. If λ is not a punishment direction for any player, then (α, g(α)) is enforceable with
respect to H(λ,λ · g(α)) ∩ X for any α ∈Ap.

Proof. Let a ∈ A be the pure strategy profile such that α(a) = 1. Define w(a′) ∈ H(λ,λ ·g(α))∩
X for each a′ ∈ A as follows:

• If there exists a unique player i such that a′
i 
= ai , then, because of Lemma 4.6, we can

construct a sufficiently strong punishment for player i by setting w(a′) ∈ H(λ,λ · g(α))∩X

such that wi(a
′) � [gi(α) − (1 − δ)gi(a

′
i , a−i )]/δ.

• If a′ = a or a′
j 
= aj for at least two players j , then let w(a′) = g(α).

Then (α, g(α)) is enforced by w. �
Lemma 4.8. If V ∗(A0) 
= ∅, then dimV ∗(A0) = dimX.
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Proof. Here we use the relative topology induced to X. Suppose V ∗(A0) 
= ∅. Then there exists
an interior point v of V such that v ∈ V ∗(A0). Otherwise, V \ V ∗(A0) is a closed proper subset
of V that contains the whole interior of V . This contradicts the fact that the closure of the interior
of compact and convex set V is equal to V . Since V \V ∗(A0) is closed, v is also an interior point
of V ∗(A0), so V ∗(A0) and X have the same dimension. �

Now we can prove Proposition 4.2 as follows.

Proof. We use our algorithm with the constraint X0 = X on continuation payoff profiles at the
first step. Since A0 ⊇ Ap, it follows from Lemmas 4.3, 4.5, and 4.7 that we have Q∗(A0) ⊆
Q0 = V (A0).

If V ∗(A0) 
= ∅, then, by Lemma 4.8, we have dimQ0 = dimX0. We stop the algorithm at the
first step, and obtain Q∗(A0) = V (A0). �
4.3. Symmetry assumptions

4.3.1. Strongly symmetric equilibria
Assume that the static game is symmetric for long-run players, i.e., A1 = · · · = AL and

gi(a) = gj (a
′) for any i, j ∈ LR and a, a′ ∈ A if ai = a′

j , a′
LR is a permutation of aLR, and

aSR = a′
SR. The signal structure is also symmetric, i.e., πy(a) = πy(a

′) if a′
LR is a permutation of

aLR, and aSR = a′
SR.

A strategy profile is strongly symmetric (for long-run players) if all long-run players take the
same action after every history. In this case we take A0 to be the set of symmetric mixed action
profiles for the long-run players in graph (B), As := {α ∈ graph (B) | α1 = · · · = αL}, and denote
by Qs the result Q∗(As) of our algorithm under the restriction of As. Our theorem can charac-
terize the limit of E(As, δ) by Qs. Set X0 = {(x, . . . , x) ∈ RL | x ∈ R}, and compute Q0 in the
first step of our algorithm. Since As contains at least one static equilibrium, we have Q0 
= ∅. No
matter whether Q0 is a singleton (which must be a unique symmetric static equilibrium payoff)
or one-dimensional, we have Qs = Q0. Since continuation payoffs are restricted to be symmet-
ric, Qs may be strictly smaller than FL’s Q without any restriction on continuation payoffs. This
corresponds to Abreu et al.’s (1986) analysis for large δ.

As a corollary of our theorem, we have the following.

Corollary 4.9. Qs = limδ→1 E(As, δ). That is, Qs is the limit as δ goes to one of strongly sym-
metric equilibrium payoffs with discount factor δ.

4.3.2. Partially symmetric equilibria
We can consider partially symmetric equilibria. Suppose that long-run and short-run players

are divided into several groups, for example, buyers and sellers. The players’ payoffs are sym-
metric within groups, but may be asymmetric between groups. Then we can restrict our attention
to partially symmetric equilibria where the players behave symmetrically within groups. As in
the case of strongly symmetric equilibria, let X0 be the set of payoff profiles symmetric within
groups. Then, we can execute the first step of our algorithm, in which continuation payoffs are
constrained to be symmetric within groups.

Note that the FL result does not apply to partially symmetric equilibria when there are L − 1
or less groups because Q0 does not satisfy the full dimensionality condition. In principle one
could apply Abreu et al.’s (1990) result and obtain the set of partially symmetric equilibria for
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any fixed δ, but when the number of groups for long-run players is 2 or more, it is difficult and
sometimes practically infeasible to compute the set P(A0, δ,W) generated by A0 and W for any
nonlinear constraint W on continuation payoff profiles. By contrast, our algorithm is applicable
and relatively easy to carry out.

4.4. Exact achievability of first-best outcomes

In the case of A0 = graph (B) and X0 = RL, FL showed that, under the assumption of
dimQ0 = L, for any compact subset K of the interior of Q0, there exists δ̄ < 1 such that
K ⊆ E(graph (B), δ) for any δ > δ̄. Under an identifiability condition, in a game without short-
run players, Q0 is a full-dimensional set containing all payoff profiles that Pareto-dominate a
static equilibrium (Fudenberg et al., 1994, Theorem 6.1). When this identifiability condition is
satisfied, some efficient payoff profiles can be approximated by equilibrium payoff profiles as the
discount factor tends to one, even if the actions are imperfectly observed. However, this conclu-
sion leaves open the question of whether a given efficient payoff vector v can be exactly attained
by an equilibrium payoff for some large but fixed δ.

Recently Athey and Bagwell (2001) have provided sufficient conditions for the exact achiev-
ability of first-best payoffs in a repeated duopoly game. Our theorem leads to the following
generalization of their analysis.

Let V be the convex hull of {gLR(α) ∈ RL | α ∈ graph (B)}, let h be a hyperplane tangent
to V , and let Ah := {α ∈ graph (B) | gLR(α) ∈ h}. To achieve a payoff profile in h, it is necessary
for the players to take actions in Ah at any on-path history (a public history which occurs with
positive probability).

We focus on Ah-PPE, assuming that equilibrium actions are in Ah even at off-path histories.
Every Ah-PPE has the property that there is no history where players unanimously prefer some
other feasible outcome to the continuation payoffs prescribed by the equilibria. This is a very
strong form of renegotiation-proofness, and implies that the equilibria are strongly renegotiation-
proof in the sense of Farrell and Maskin (1989).11

Here we sketch how to obtain a sufficient condition for exact achievability. Let X0 = h and
A0 = Ah. Using our algorithm, we compute Q∗(Ah), which we denote by Qh. Our theorem
implies the following:

Corollary 4.10. If Qh 
= ∅, then the relative interior of Qh is nonempty, and for any relative
interior point v of Qh, there exists δ̄ < 1 such that v ∈ E(Ah, δ) for any δ > δ̄.

This gives a sufficient condition for the exact attainability of Pareto-efficient payoffs; if hy-
perplane h is such that V ∩ h is a set of Pareto-efficient payoff profiles and Qh 
= ∅, then every
relative interior point of Qh is a Pareto-efficient outcome that can be exactly attained by some
Ah-PPE payoff for sufficiently large δ.

11 Imposing the restriction of Ah on off-path play does not lose much generality. If the full support condition holds
for Ah , i.e., πy(α) > 0 for any α ∈ Ah and y ∈ Y , then there is no off-path public history, and hence any perfect public
equilibrium which achieves a payoff profile in h is always an Ah-perfect public equilibrium. Moreover, even if the full
support condition is not satisfied, we can modify our algorithm to analyze perfect public equilibria with payoff profiles
in h without assuming off-path outcomes in Ah . See the end of this subsection. Note also that allowing off-path play not
in Ah may destroy the renegotiation-proofness property of the equilibria; some equilibria which use non-Ah actions in
off-path play are still renegotiation-proof, but others not.
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So far we have imposed the restriction of Ah not only on on-path play but also on off-path
play. In the case where Ah corresponds to efficient payoffs, this can be motivated by the rela-
tionship with renegotiation-proofness. However, one can also follow Athey and Bagwell (2001),
investigating possibility that there are exactly efficient equilibria that rely on the ability to use
inefficient continuation payoffs after some outcomes that have zero probability along the equi-
librium path. (Outcomes that trigger inefficient continuation payoffs must have zero probability
along the equilibrium path for the overall equilibrium to be efficient.) For example, in Athey
and Bagwell (2001), in each period, firms report their current period marginal costs and then
choose prices. The equilibrium strategies assign a unique price to each cost report, so that many
report/price combinations have zero probability in equilibrium, and the efficient equilibria that
Athey and Bagwell constructed specify inefficient reversion to a static Nash equilibrium follow-
ing these “off-path” deviations.

To analyze when these sorts of efficient equilibria exist, we now modify our algorithm by
only imposing the restriction that actions lie in Ah along the path of play. Action ai is an on-path
deviation from α if πy(ai, α−i ) > 0 implies πy(α) > 0 for any y ∈ Y . An on-path deviation is a
deviation which cannot be detected perfectly. ai is an off-path deviation from α if ai is not an
on-path deviation from α.

We modify our algorithm as follows. Let A0 = Ah. At each step, in the linear programming
problem for α ∈ Ah, we impose incentive constraints (b) only for on-path deviations from α.
Then denote the final output of the algorithm by Qh

on instead of Qh.

Proposition 4.11. (1) E∗(graph (B), δ)∩h ⊆ Qh
on for any δ. Hence if Qh

on = ∅, then E∗(graph (B),

δ) ∩ h = ∅ for any δ. (2) If Qh
on 
= ∅ and a relative interior point v of Qh

on strictly dominates
some point in Q∗(graph (B)), then there exists δ̄ < 1 such that v ∈ E(graph (B), δ) for any
δ > δ̄.

Proof. [Sketch of the proof of (1)] If a PPE achieves a payoff profile in h, all continuation
payoffs on the equilibrium path lie in h. Thus, as far as on-path deviations are concerned, we can
use linear programming problems with continuation payoffs in h to bound equilibrium payoffs,
so we can modify Lemma 3.2 and our main theorem to obtain this result.

[Sketch of the proof of (2)] Let v′ be a relative interior point of Q∗(graph (B)) strictly dom-
inated by v. Modifying the argument in Lemma 3.3, we can show that, for sufficiently large δ,
there exists a public strategy profile such that the long-run players earn v after the initial history,
all continuation payoff profiles strictly dominates v′, and there is neither a profitable deviation for
short-run players nor profitable on-path deviations for long-run players. We can punish off-path
deviations for long-run players by reverting to a PPE that achieves v′. �

Since Qh
on may not be empty even if Qh is, Proposition 4.11 may provide a sufficient condition

for the exact achievability of first-best outcomes even when Corollary 4.10 is not applicable. The
Athey and Bagwell result corresponds to the case where a point in the relative interior of Qh

on
strictly Pareto dominates a static Nash equilibria; static Nash equilibrium payoffs are always
in Q∗(graph (B)).



44 D. Fudenberg et al. / Games and Economic Behavior 61 (2007) 27–49
Appendix A. Proofs

A.1. Smooth sets in the proof of Lemma 3.3

We assume throughout the non-trivial case that dimX � 1. First we examine the set W con-
structed in the proof of Lemma 3.3.

Lemma A.1. For any compact subset K of X and any ε > 0, W := {v ∈ X | minx∈co (K) |v−x| �
ε} is convex, compact, and smooth in X.

Proof. For any v, v′ ∈ W and 0 � α � 1, there exist x, x′ ∈ co(K) such that |v − x| � ε and
|v′ − x′| � ε. Then, since we have∣∣(αv + (1 − α)v′) − (

αx + (1 − α)x′)∣∣ � α|v − x| + (1 − α)|v′ − x′| � ε

and αx + (1 − α)x′ ∈ co(K), we have αv + (1 − α)v′ ∈ W . So W is convex.
Since K is compact, co(K) is also compact, and hence it is bounded. Then there exists M > 0

such that |x| � M for any x ∈ co(K). For any v ∈ W , there exists x ∈ co(K) such that |v−x| � ε.
Then we have |v| � |x| + |v − x| � M + ε. So W is bounded.

For any sequence {vm} on W that converges to v, there exists a sequence {xm} on co(K)

such that |vm − xm| � ε. Since co(K) is compact, there exists a limit x ∈ co(K) of {xm} (take a
subsequence if necessary). In the limit, we have |v − x| � ε, and hence we have v ∈ W . So W is
closed.

For any relative boundary point v of W , there exists x ∈ co(K) such that |v − x| = ε. In order
for a vector λ to be normal to W at v, H(λ,λ · v) has to contain W , and hence it has to contain
the closed ball with center x and radius ε. Then a vector of length one parallel to X and normal
to W at v is uniquely determined by (v − x)/ε. So W is smooth. �
Lemma A.2. Let W be a convex and compact subset of RL that is smooth in X. For a relative
boundary point v of W , let λ be the unique vector of length one parallel to X and normal to W

at v. For any κ , κ ′ > 0, there exists ε ∈ (0,1) such that every v′ ∈ X that satisfies λ ·v′ � λ ·v−κε

and |v′ − v| � κ ′ε is a relative interior point of W .

Proof. If not, we can find positive numbers κ and κ ′ and a sequence {vm}∞m=2 of points in X such
that each vm is not in the relative interior of W , λ · vm � λ · v − κ/m, and |vm − v| � κ ′/m. We
have vm → v. For each m, by the separating hyperplane theorem, there exists a vector of length
one, λm, parallel to X such that W ⊆ H(λm,λm · vm). Since v ∈ W , we have λm · v � λm · vm.
Then we have∣∣λm − λ

∣∣ × ∣∣vm − v| � (
λm − λ

) · (vm − v
)
� κ/m.

Since |vm − v| � κ ′/m, we have |λm − λ| � κ/κ ′ > 0. Since the set of vectors of length one
parallel to X is compact, there exists a limit λ∗ of {λm} (take a subsequence if necessary). Then
we have λ∗ 
= λ and W ⊆ H(λ∗, λ∗ · v), which contradicts the definition of smoothness. �
A.2. Proof of Lemma 4.5

We use the following lemma in the proof of Lemma 4.5 below to deal with indifference
conditions for players in J := I+ ∪ I−. Fudenberg and Maskin (1990, Lemma 2) proved the
i i
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same result for the case of two players. For notational convenience, for a given mixed action
profile α, take Sj := {aj ∈ Aj | αj (aj ) > 0}, S := ∏

j∈J Sj , S−j := ∏
k∈J,k 
=j Sk , σ := αJ , and

u(σ ) := gi(σ,α−J ).

Lemma A.3. If σj (sj ) > 0 and x � u(sj , σ−j ) for all j ∈ J and all sj ∈ Sj , then there exists
f :S → R such that f (s) � x for all s ∈ S and

x = (1 − δ)u(sj , σ−j ) + δ
∑

s−j ∈S−j

σ−j (s−j )f (s)

for all j ∈ J and all sj ∈ Sj .

Proof. We will construct the desired f explicitly. Let S0
j := Sj , p0

−j = 1, and r0
j (sj ) := [x −

(1 − δ)u(sj , σ−j )]/δ for each j ∈ J and each sj ∈ Sj . Here r0
j (sj ) is the amount of continuation

payoff player j needs after choosing action sj in order to achieve the target payoff x. Note that
we express r0

j (sj ) in terms of player i’s utilities. We can do so because players in J have perfectly
(positively or negatively) correlated payoffs. We now define a series of steps m = 0, 1, . . . . At
step 0, we pick all pairs (j, sj ) that minimize r0

j (sj ). For any such pair, if player j takes action sj ,

give him the continuation payoff f (sj , s−j ) equal to x0 = r0
j (sj ) independently of realized action

profile s−j of the other players. Notice that if x = max{u(sj , σ−j )|j ∈ J, sj ∈ Sj }, then this is
the only possible solution with f (s) � x. We now have left the set S1

j of actions that remain.
Now (in general, from step m− 1), let Sm

j be the set of player j ’s remaining actions at step m.
We define

pm
−j :=

∏
k∈J,k 
=j

∑
sk∈Sm

k

σk(sk)

to be the probability that f (s) has been undetermined if player j chooses one of his remaining
actions. Note that even if action sj remains at step m, f (sj , s−j ) was already determined as
xm−1 at the previous step based on other players’ actions s−j . Since this occurs with probability
pm−1

−j −pm
−j , the remaining amount of continuation payoff player j needs after choosing action sj

is given by

rm
j (sj ) := rm−1

j (sj ) − (
pm−1

−j − pm
−j

)
xm−1.

We consider the following minimization problem:

xm := min

{
rm
j (sj )

pm
−j

∣∣∣ j ∈ J, sj ∈ Sm
j

}
.

If pair (j, sj ) solves this minimization problem, we determine f (sj , s−j ) as xm at this step
independently of s−j . The set of remaining actions at the next step is given by

Sm+1
j := Sm

j \
{
sj ∈ Sm

j

∣∣∣ rm
j (sj )

pm
−j

= xm

}
.

Observe that Sm+1
j ⊆ Sm

j for all j ∈ J and Sm+1
j � Sm

j for some j ∈ J so that this iteration stops

in a finite number of steps. Let m∗ be the first step at which Sm∗+1
j = ∅ for some j ∈ J . Then f

is completely determined at the end of step m∗. We will show that this f is the desired solution.
For each s ∈ S, let m(s) � m∗ be the step at which f (s) is determined.
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First we show that
∑

sj ∈Sm
j

σj (sj )r
m
j (sj ) is independent of j . The key property of u(sj , σ−j )

is that
∑

sj ∈Sj
σj (sj )u(sj , σ−j ) = u(σ ) is independent of j . It follows that

∑
sj ∈S0

j
σj (sj )r

0
j (sj ) =

[x − (1−δ)u(σ )]/δ is also independent of j . Inductively, if
∑

sj ∈Sm
j

σj (sj )r
m
j (sj ) is independent

of j , then we have

∑
sj ∈Sm+1

j

σj (sj )r
m+1
j (sj ) =

∑
sj ∈Sm+1

j

σj (sj )
[
rm
j (sj ) − (

pm
−j − pm+1

−j

)
xm

]

=
∑

sj ∈Sm+1
j

σj (sj )
(
rm
j (sj ) − pm

−j x
m
) +

∑
sj ∈Sm+1

j

σj (sj )p
m+1
−j xm

=
∑

sj ∈Sm
j

σj (sj )r
m
j (sj ) −

∑
sj ∈Sm

j

σj (sj )p
m
−j x

m

−
∑

sj ∈Sm
j \Sm+1

j

σj (sj )
(
rm
j (sj ) − pm

−j x
m
)

+
∑

sj ∈Sm+1
j

σj (sj )p
m+1
−j xm.

The first term is independent of j by the induction hypothesis. The second and the fourth
terms are independent of j since they respectively are equal to (

∏
k∈J

∑
sk∈Sm

k
σk(sk))x

m and

to (
∏

k∈J

∑
sk∈Sm+1

k
σk(sk))x

m. As Sm+1
j is defined precisely so that rm

j (sj ) = pm
−j x

m for any

sj ∈ Sm
j \ Sm+1

j , the third term is zero.

Next, we observe that by the definition of m∗, we have Sm∗+1
j = ∅ for some j ∈ J . Our second

step is to show that this holds for all j ∈ J . If Sm∗+1
k = ∅ for some k ∈ J but Sm∗+1

k′ 
= ∅ for some
other k′ ∈ J , then we have

∑
sk∈Sm∗

k

σk(sk)r
m∗
k (sk) =

∑
sk∈Sm∗

k

σk(sk)p
m∗
−kx

m∗ =
(∏

l∈J

∑
sl∈Sm∗

l

σl(sl)

)
xm∗

=
∑

sk′ ∈Sm∗
k′

σk′(sk′)pm∗
−k′xm∗

<
∑

sk′ ∈Sm∗
k′

σk′(sk′)rm∗
k′ (sk′).

This contradicts the player-independence property of
∑

sj ∈Sm∗
j

σj (sj )r
m∗
j (sj ). Note that the strict

inequality holds because rm∗
k′ (sk′)/pm∗

−k′ � xm∗
for all sk′ ∈ Sm∗

k′ , strictly for all sk′ ∈ Sm∗+1
k′ 
= ∅,

and σk′(sk′) > 0 for all sk′ ∈ Sm∗
k′ . We conclude that Sm∗+1

j = ∅ for all j ∈ J .
It remains to show that f is in fact the desired solution. First we must show that f (s) � x

for all s ∈ S. Since f (s) = xm(s), this amounts to showing xm � x for all m � m∗. We do this
recursively. Since x � max{u(sj , σ−j ) | j ∈ J, sj ∈ Sj }, we have

x0 = min
{
r0
j (sj ) | j ∈ J, sj ∈ Sj

} = x − (1 − δ)max{u(sj , σ−j ) | j ∈ J, sj ∈ Sj } � x.

δ
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For any m < m∗, then there exists a pair of j ∈ J and sj ∈ Sm+1
j such that rm+1

j (sj )/p
m+1
−j =

xm+1. Then we have

xm+1 = rm+1
j (sj )

pm+1
−j

= rm
j (sj ) − (pm

−j − pm+1
−j )xm

pm+1
−j

>
pm

−j x
m − (pm

−j − pm+1
−j )xm

pm+1
−j

= xm.

Thus, if xm � x, then xm+1 > xm � x.
Finally, we show that f as constructed in fact solves the equation in question. For any j ∈ J ,

since Sm∗+1
j = ∅, it follows that for any sj ∈ Sj , there exists a unique mj(sj ) � m∗ such that

sj ∈ S
mj (sj )

j \ S
mj (sj )+1
j . Then we have

(1 − δ)u(sj , σ−j ) + δ
∑

s−j ∈S−j

σ−j (s−j )f (s)

= (1 − δ)u(sj , σ−j ) + δ

mj (sj )∑
m=0

∑
s−j ∈S−j ,m(s)=m

σ−j (s−j )f (s)

= (1 − δ)u(sj , σ−j ) + δ

[ mj (sj )−1∑
m=0

(
pm

−j − pm+1
−j

)
xm + p

mj (sj )

−j xmj (sj )

]

= (1 − δ)u(sj , σ−j ) + δ

[ mj (sj )−1∑
m=0

(
rm
j (sj ) − rm+1

j (sj )
) + r

mj (sj )

j (sj )

]

= (1 − δ)u(sj , σ−j ) + δr0
j (sj ) = x

for any j ∈ J and any sj ∈ Sj . �
Lemma 4.5. (α, vi) is enforceable with respect to {v′ ∈ X | v′

i � vi} if and only if vi �
gi(aj ,α−j ) for any j ∈ I+

i and any aj ∈ Aj and for any j ∈ I−
i and any aj ∈ Aj such that

αj (aj ) > 0.

Proof. “If” part. By Lemma 4.4, fix an arbitrary v ∈ X whose ith coordinate is vi . Define
w(a) ∈ X with wi(a) � vi for each a ∈ A as follows:

• If there exists a unique player j such that αj (aj ) = 0 and j ∈ I+
i , then let w(a) ∈ X be any

vector such that

vi � wi(a) � 1

δ
vi − 1 − δ

δ
gi(aj ,α−j ).

It follows from Lemma 4.4 and vi � gi(aj ,α−j ) that at least one such w(a) exists.
• If there exists a unique player j such that αj (aj ) = 0 and j /∈ I+

i , then let w(a) ∈ X be any
vector such that wi(a) � vi and

wj(a) � 1

δ
vj − 1 − δ

δ
gj (aj ,α−j ).

It follows from Lemma 4.4 that at least one such w(a) exists.
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• Let Sj := {aj ∈ Aj | αj (aj ) > 0}, J := I+
i ∪ I−

i , SJ := ∏
j∈J Sj , and S := ∏n

j=1 Sj . We
simultaneously define w(a) ∈ X for all a ∈ S as follows. By setting x := vi in Lemma A.3,
we obtain a function f such that f (aJ ) � vi for all aJ ∈ SJ and

vi = (1 − δ)gi(aj ,α−j ) + δ
∑

a−j ∈A−j

α−j (a−j )f (aJ )

for all j ∈ J and all aj ∈ Sj . For each aJ ∈ SJ , let wJ (aJ ) ∈ X be any vector such that
wJ

i (aJ ) = f (aJ ). It follows from Lemma 4.4 that at least one such wJ (aJ ) exists. If the
continuation payoffs are given by wJ (aJ ), then each player j ∈ J is indifferent among ac-
tions in Sj , and player i’s total payoff is equal to vi .
By modifying wJ , we can make each player j /∈ J indifferent among actions in Sj , main-
taining incentives of players in J . For example, define w0 ∈ X by

n′w0 := (n′ − 1)g(α) + 1

1 − δ
v − δ

1 − δ

∑
a∈A

α(a)wJ (aJ ),

where n′ := n − |J |. (If n′ = 0, then we choose w0 arbitrarily.) Finally, define

w(a) := wJ (aJ ) + 1 − δ

δ

(
n′w0 −

∑
j /∈J

g(aj ,α−j )

)
∈ X

for each a ∈ S. Then each player j is indifferent among actions in Sj and the total payoff
profile is equal to v.

• If αj (aj ) = 0 for at least two players j , let w(a) := v ∈ X.

Then (α, v) is enforced by w.

“Only if” part. Suppose that (α, vi) is enforced by continuation payoff profiles w(a) ∈ X

with wi(a) � vi .
For any j ∈ I+

i and any aj ∈ Aj , it follows from player j ’s incentive constraints that we have

vj � (1 − δ)gj (aj ,α−j ) + δ
∑

a−j ∈A−j

α−j (a−j )wj (a).

Since j ∈ I+
i , we can transform the above inequality to the following inequality about player i’s

payoffs:

vi � (1 − δ)gi(aj ,α−j ) + δ
∑

a−j ∈A−j

α−j (a−j )wi(a) � (1 − δ)gi(aj ,α−j ) + δvi,

thus we have vi � gi(aj ,α−j ).
For any j ∈ I−

i and any aj ∈ Aj such that αj (aj ) > 0, we have

vj = (1 − δ)gj (aj ,α−j ) + δ
∑

a−j ∈A−j

α−j (a−j )wj (a).

Since j ∈ I−
i , we have

vi = (1 − δ)gi(aj ,α−j ) + δ
∑

a−j ∈A−j

α−j (a−j )wi(a) � (1 − δ)gi(aj ,α−j ) + δvi,

thus we have vi � gi(aj ,α−j ). �
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